

1 **Temporal constraints on enhancer usage shape the regulation of limb gene transcription**

2

3

4 Raquel Rouco^{1,2}, Antonella Rauseo^{1,2}, Guillaume Sapin^{1,2}, Olimpia Bompadre^{1,2}, Fabrice
5 Darbellay^{1,2} and Guillaume Andrey^{1,2}

6

7 ¹Department of Genetic Medicine and Development, Faculty of Medicine, University of
8 Geneva, Geneva, Switzerland

9 ²Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva,
10 Switzerland

11

12 Correspondence: guillaume.andrey@unige.ch

13

14

15 **ORCID**

16 R.R. 0000-0002-0657-0704

17 A.R. 0000-0002-4115-5231

18 O.B. 0000-0002-8334-6538

19 F.D. 0000-0001-6942-3325

20 G.A. 0000-0002-0911-4907

21

22 **Abstract**

23 Repertoires of transcriptional enhancers orchestrate gene expression during embryonic development,
24 thereby shaping the forms and functions of organs. Within these repertoires individual enhancers
25 display spatially distinct or overlapping activities that collectively build up the expression domain of
26 cognate genes. However, the temporal specificity of these enhancers - how their activities change
27 over developmental time to dynamically influence gene expression - remains uncharacterized. Here,
28 we observed that temporally restricted enhancer repertoires are embedded at numerous loci
29 associated with mouse limb development. To monitor how such enhancer repertoires govern gene
30 transcription *in vivo* across extensive developmental periods, we introduce the regulatory trajectory
31 framework. This paradigm conceptually involves transcriptional initiation, marking the beginning of
32 gene expression, followed by its maintenance over time, and ultimately decommissioning, leading to
33 gene repression. To track and sort cells undergoing these distinct phases, we devised a transgenic
34 recorder approach at the *Shox2* model locus. Through this method, we discovered that cells
35 maintaining *Shox2* transcription in early and late limb development relies on distinct, temporally
36 restricted enhancer repertoires. We demonstrate that eliminating early- or late-acting enhancers only
37 transiently affects *Shox2* expression indicating that these enhancer repertoires function
38 independently. Additionally, we found that changes in the 3D topology of the locus associate with
39 enhancer activities and that a rapid loss of enhancer-promoter contacts occurs during
40 decommissioning. Finally, we show that the decommissioning of the *Shox2* locus can be actively driven
41 by *Hoxd13*, a gene which expression is known to antagonize *Shox2*. Overall, our work uncovers the
42 dependency of developmental genes on enhancers with temporally restricted activities to generate
43 complex expression patterns over time and shed light on the dynamics of enhancer-promoter
44 interactions.

45 **Introduction**

46 Organ and tissue patterning depend on spatiotemporally defined and cell-specific transcriptional
47 activities, which are regulated by enhancers, among other regulatory elements (Petit et al., 2017;
48 Robson et al., 2019). Enhancers bear the ability to be bound by transcription factors integrating the
49 cellular environments and ultimately to translate it into an integrated transcriptional output (Spitz and
50 Furlong, 2012). Within the same chromatin domains known as Topologically Associating Domains
51 (TADs), genes can dynamically interact with multiple enhancers, referred to as enhancer repertoires,
52 collectively shaping their expression patterns (Abassah-Oppong et al., 2023; Andrey and Mundlos,
53 2017; Furlong and Levine, 2018; Kvon et al., 2021; Robson et al., 2019; Stadhouders et al., 2019). While
54 multiple studies have explored how distinct enhancers may act with distinct or overlapping spatial
55 activities (Frankel et al., 2010; Kvon et al., 2014; Osterwalder et al., 2018; Perry et al., 2010; Petit et
56 al., 2017; Robson et al., 2019; Werner et al., 2007), their temporal specificities remain less clear. In
57 the context of a growing and differentiating embryo, it is unknown how regulatory landscapes adapt
58 to the changing *trans*- and signaling environments to sustain target gene transcription over time. It is
59 probable that enhancer repertoires change over time; however, the independence of these
60 repertoires in establishing the definitive expression pattern of genes has yet to be fully understood.
61 Furthermore, although several groups have investigated how enhancers are decommissioned, the way
62 large regulatory landscapes, involving multiple enhancers, terminate their activities is still not well
63 described (Respuela et al., 2016; Whyte et al., 2012; Wu et al., 2023).

64 Many complex regulatory landscapes have been dissected in the limb model system (Kragesteen et
65 al., 2018; Malkmus et al., 2021; Petit et al., 2017; Will et al., 2017). The mouse limb bud is a complex
66 appendage formed by different cell types that constitutes a widely used organ to study development.
67 Fore- and hindlimbs are budding from the lateral plate mesoderm at E9.5 and E10.0 respectively
68 (Martin, 1990). Initially, the limb is predominantly composed of undifferentiated mesenchyme,
69 capable of forming all proximo-distal segments. However, as development progresses, this potential
70 gradually diminishes as cells set their proximal or distal identity, and differentiate into cartilage and
71 connective tissues (Cooper et al., 2011). Mechanistically, as limb progenitor cells begin expressing
72 patterning genes, they can either commit to the associated specific limb segment or maintain their
73 progenitor status by activating more distal factors and repressing the more proximal ones. Thus, once
74 a proximo-distal patterning gene is activated in limb progenitors, its expression can either be
75 maintained during lineage commitment or inhibited to permit differentiation into a different, more
76 distal limb segment (Markman et al., 2023; Saiz-Lopez et al., 2015; Verheyden and Sun, 2008).
77 Therefore, the limb is an outstanding model system to define how regulation can be sustained or
78 repressed over time.

79 In this study, we sought to characterize the regulatory mechanisms of transcriptional maintenance
80 over time and locus-wide decommissioning within the limb developmental context. To allow for the
81 functional dissection of these mechanisms, we are using the *Shox2* gene locus that bear an essential
82 role in proximal limb development. *Shox2* expression starts in the limb around E9.5/E10.0 and
83 continues to be expressed in proximal connective tissues and cartilage, playing a crucial role in the
84 growth of proximal limb bones, such as the humerus and the femur (Blaschke et al., 2007; Cobb et al.,
85 2006; Espinoza-Lewis et al., 2009; Glaser et al., 2014; Gu et al., 2008; Neufeld et al., 2014; Rosin et al.,
86 2015; Scott et al., 2011; Yu et al., 2005). Moreover, the severe shortening of proximal limb bone
87 segments which has been observed in conditional knockout approaches (Blaschke et al., 2007; Glaser
88 et al., 2014; Yu et al., 2007) serves as a good model for human short stature caused by mutations in

89 the *SHOX* gene, a paralog absent in rodents (Clement-Jones et al., 2000; Cobb et al., 2006;
90 Gianfrancesco et al., 2001).

91 The regulatory landscape of *Shox2* is embedded within a 1.1 Mb TAD that splits into a centromeric
92 side featuring a 500 kb gene desert and a telomeric side, largely composed of the introns of the *Rsrc1*
93 gene. Numerous limb enhancers have been identified on both the telomeric and centromeric sides,
94 collectively contributing to *Shox2* limb expression (Abassah-Oppong et al., 2023; Osterwalder et al.,
95 2018; Rosin et al., 2013; Ye et al., 2016). Although these enhancer regions have been shown to drive
96 expression in the limb and other *Shox2*-expressing tissues, the specific time windows of their activity
97 have not been determined.

98 Given that *Shox2* expression is initiated in the early, undifferentiated limb bud and gradually becomes
99 restricted to proximal limb mesodermal derivatives, its regulation must involve mechanisms of
100 transcriptional maintenance and repression *via* precise enhancer activation and decommissioning,
101 respectively. To accurately track descendants of *Shox2*-expressing cells within the complex and
102 diversely populated developing limb, we have devised a novel conceptual and experimental
103 framework to follow *Shox2* locus activity. This approach enables the isolation of cells at distinct phases
104 of *Shox2* regulation, offering new insights into the dynamic control of gene expression during limb
105 development.

106

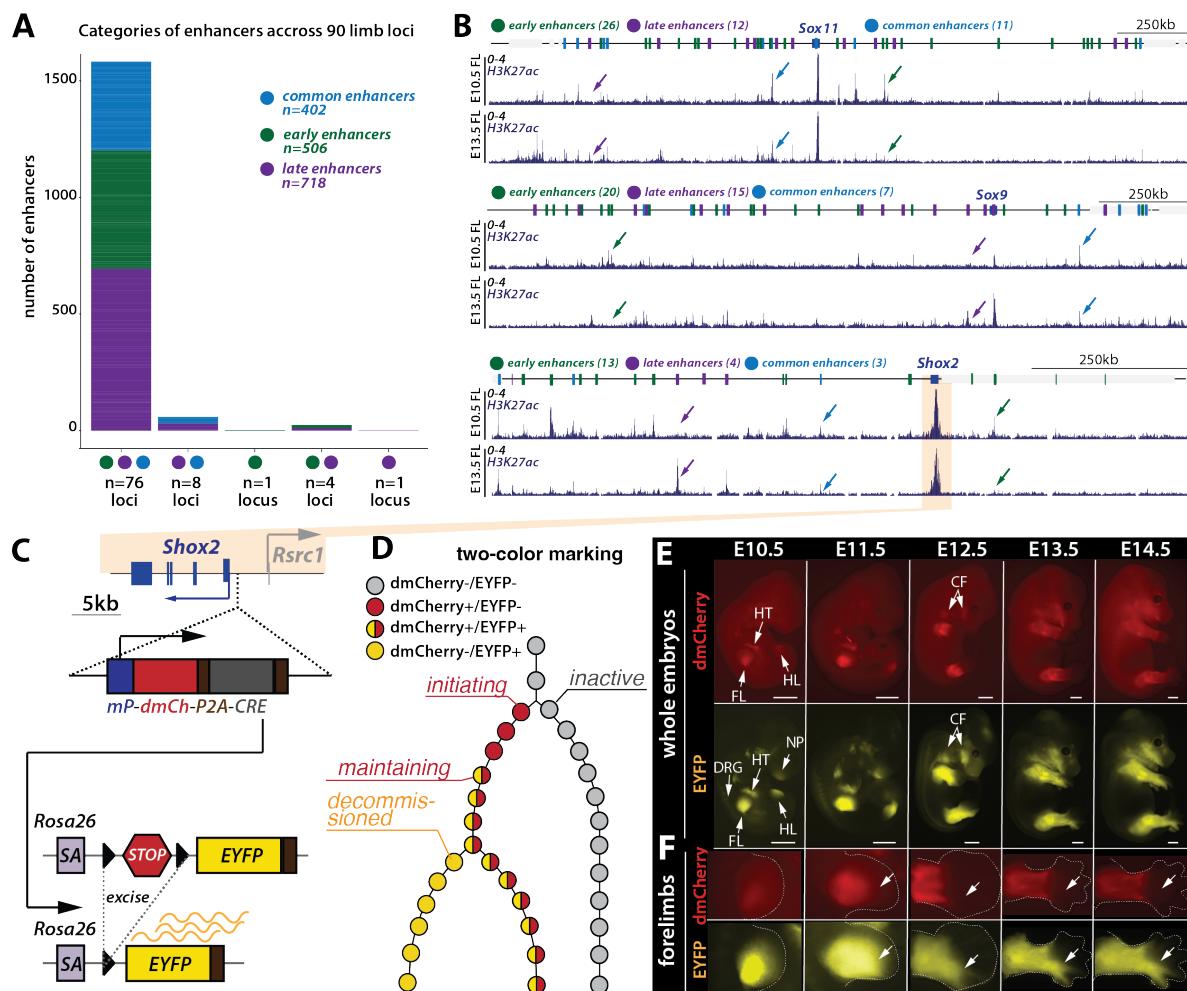
107 **Results**

108

109 **Characterization of temporal enhancer repertoire changes at limb development associated loci**

110 To examine whether *Shox2*, and more generally limb developmental genes, could rely on distinct
111 enhancer repertoire over time during limb development, we first re-analyzed transcriptomic and
112 epigenomic data from the E10.5 and E13.5 limb (Andrey et al., 2017). Specifically, we selected 90 genes
113 relevant for limb development, including *Shox2*, whose expression levels remained stable between both
114 stages. We mapped for these genes putative enhancers using H3K27ac ChIP-seq enrichment within their
115 contact domains, as defined by promoter Capture-C in the limb (Andrey et al., 2017; Rada-Iglesias et al.,
116 2011) (**Supplementary Fig. S1A, Supplementary Table S1**).

117 Across the 90 investigated contact domains, we observed a total of 1,626 putative enhancers. Of these,
118 402 were active at both E10.5 and E13.5 (25%, termed common enhancers), 506 were specifically active
119 at E10.5 (31%, termed early enhancers), and 718 at E13.5 (44%, termed late enhancers) (**Fig. 1A,**
120 **Supplementary Table S1**). A large majority of these contact domains (76 of them, 84%), including *Shox2*,
121 contained all three types of enhancers, a smaller fraction (13%) presents at least two types while only
122 two loci display putative enhancers belonging to a unique category (**Fig. 1A, Supplementary Table S1**).
123 This observation, which is exemplified in **Fig. 1B** by *Shox2* and two well-known limb-associated loci,
124 *Sox11* and *Sox9*, suggests that within the limb context, the usage of putative enhancer repertoires
125 generally shift over time (**Supplementary Fig. S1A**). This analysis led us to conclude that the *Shox2* locus,
126 which display 13 early, 3 common and 4 late putative enhancers (**Fig 1B, Supplementary Fig. S1A**), is
127 representative of limb developmental genes to study how genetic regulations are controlled over time.


128

129 **A transgenic reporter system to characterize the *Shox2* regulatory trajectory**

130 To carefully analyze the regulatory dynamics of gene expression across extended developmental
131 periods, we conceptually divide it into different states that collectively define a regulatory trajectory.
132 Such a trajectory begins from a poised state, from which a locus may transit towards an active state *via*
133 transcriptional *initiation*, or towards an inactive state *via* *repression* (**Supplementary Fig. S1B**) (Bernstein
134 et al., 2006; Mas et al., 2018; Mikkelsen et al., 2007). After transcriptional *initiation*, it is eventually
135 followed by a *maintenance* phase where gene transcription is sustained over time. Finally, a
136 *decommissioning* phase progressively leads to gene repression (**Supplementary Fig. S1B**).

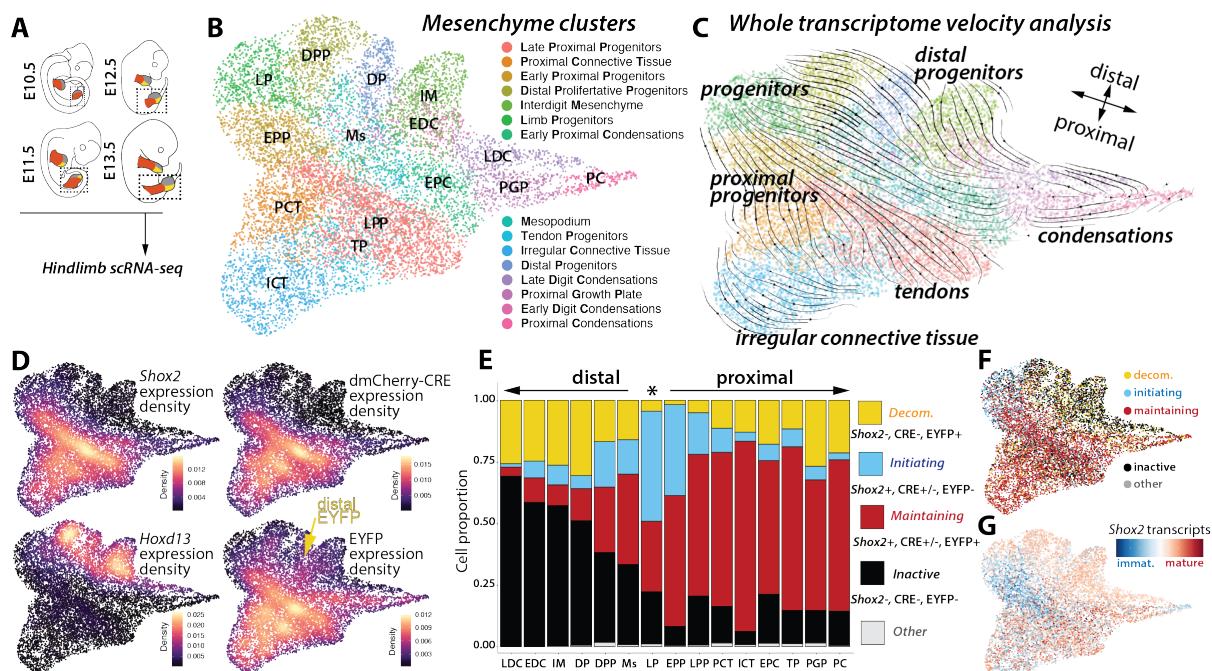
137 To monitor the *Shox2* regulatory trajectory and sort cells undergoing these distinct phases, we have
138 developed a dual-color transgenic reporter system. First, we inserted in mouse embryonic stem cells
139 (mESCs), 1kb upstream of the *Shox2* transcriptional start site, a regulatory sensor cassette constituted
140 by a minimal *β-globin* promoter, a mCherry reporter open reading frame (ORF) followed by a
141 destabilized PEST sequence, a P2A self-cleavage sequence and the CRE recombinase ORF (*Shox2*^{dmCherry/+})
142 (**Fig. 1C**)(Akhtar et al., 2013; Kondo and Duboule, 1999; Marinic et al., 2013; Ruf et al., 2011; Symmons
143 et al., 2016). These *Shox2*^{dmCherry/+} cells were then retargeted to integrate, at the *Rosa26* locus, a cassette
144 with a splice acceptor followed by a floxed 3x SV40pA STOP signal and the EYFP ORF (*Shox2*^{dmCherry/+};
145 *Rosa26*^{loxEYFP/+} or *Shox2*^{trac}) (**Fig. 1C**) (Srinivas et al., 2001). With this system, *Shox2* expressing cells will
146 induce dmCherry-P2A-CRE transcription and also continuously express EYFP, even after the inactivation
147 of *Shox2* and dmCherry-CRE transcription. Here, cells undergoing transcriptional *initiation* should
148 correspond to early limb *Shox2* expression and dmCherry-positive cells (**Fig. 1D**). Cells with dmCherry
149 and EYFP signals will indicate transcriptional *maintenance* and cells with EYFP only will have undergone

150 transcriptional *decommissioning* after an earlier active transcriptional phase, while cells that remained
 151 inactive will have no fluorescent labelling (**Fig. 1D**).
 152 Embryos were then obtained from these *Shox2*^{trac} mESCs by tetraploid complementation (Artus and
 153 Hadjantonakis, 2011). At E10.5, we detected dmCherry and EYFP signals in the fore-(FL) and hindlimbs
 154 (HL) as well as in the heart (HT) (**Fig 1E**). We also detected EYFP signal in the nasal process (NP) and
 155 dorsal root ganglia (DRG). While the dmCherry signal in hindlimbs was weak at E10.5 compared to
 156 forelimbs, it markedly increased by E11.5, reflecting the expected developmental delay of hindlimbs
 157 compared to forelimbs (Martin, 1990). Subsequently, at E12.5, additional craniofacial (CF) structures
 158 exhibited fluorescence from both dmCherry and EYFP (**Fig 1E**). These expression patterns closely match
 159 the known expression profile of *Shox2* (**Supplementary Fig. S1C, D**) (Blaschke et al., 1998; Glaser et al.,
 160 2014; Semina et al., 1998; Sun et al., 2013). Intriguingly, within the limbs, we observed that digits 4 and
 161 5, located in the posterior autopod, were exclusively marked by EYFP and not by dmCherry (**Fig. 1E, F**,
 162 **Supplementary Fig. S1D**). This indicates that part of the distal posterior limb originates from progenitor
 163 cells that had expressed *Shox2* at earlier stages, but whose regulatory landscape was subsequently
 164 decommissioned.

165
 166 **Figure 1: Temporal usage of enhancers repertoire hypothesis studied by a dual-color reporter at Shox2.** A.
 167 Distribution of 90 limb-related loci based on the presence of putative early (green), common (light blue), and late
 168 (purple) enhancers defined by H3K27ac enrichment on forelimbs at E10.5 and E13.5 within their contact domain.
 169 B. H3K27ac ChIPseq tracks at from E10.5 and E13.5 forelimbs of three examples of developmental loci: *Sox11*
 170 contact domain shown, mm39; chr12:26470941-28552347), *Sox9* (contact domain shown, mm39; chr11:111354041-113105934) and *Shox2* (contact domain shown, mm39; chr3:66194862-67308968). Early (green)
 171

172 spheres), common (blue spheres), and late (purple spheres) putative enhancer regions marked on the locus
173 illustration are based on H3K27Ac ChIP profile re-analyzed from (Andrey et al., 2017). Light grey box represents
174 other genes. For each locus, arrows pinpoint a representative example of one early (green), one common (blue) and
175 one late (purple) putative enhancers. **C.** A double fluorophore approach to monitor *Shox2* locus activity over time;
176 *mP*: minimal β -globin promoter, *dmCh*: *mCherry* gene with a destabilized PEST sequence; *P2A*: self-cleavage
177 sequence; *CRE*: *CRE* recombinase gene; *SA*: splice acceptor; *STOP*: floxed 3xSV40pA *STOP* signal; *EYFP*: *EYFP* gene.
178 **D.** Schematic of the double fluorophore approach that enables tracking of *Shox2* regulatory trajectory: different
179 color combinations correlate with different phases of the trajectory. **E.** Imaging of *dmCherry* and *EYFP* fluorescence
180 in *Shox2*^{trac} (*Shox2*^{dmCherry/+}; *Rosa26*^{loxEYFP/+}) embryos (scale: 1mm); *HT*: heart, *FL*: forelimbs, *HL*: hindlimbs, *NP*: nasal
181 process, *DRG*: dorsal root ganglia, and *CF*: craniofacial structures. **F.** Imaging of *dmCherry* and *EYFP* fluorescence
182 in developing *Shox2*^{trac} forelimbs. Note that cells in digits 4 and 5 (white arrows) are positive for *EYFP* but negative
183 for *dmCherry*.

184


185 **Single-cell insights into *Shox2* transcriptional dynamics trace early decommissioned cells in the distal**
186 **limb**

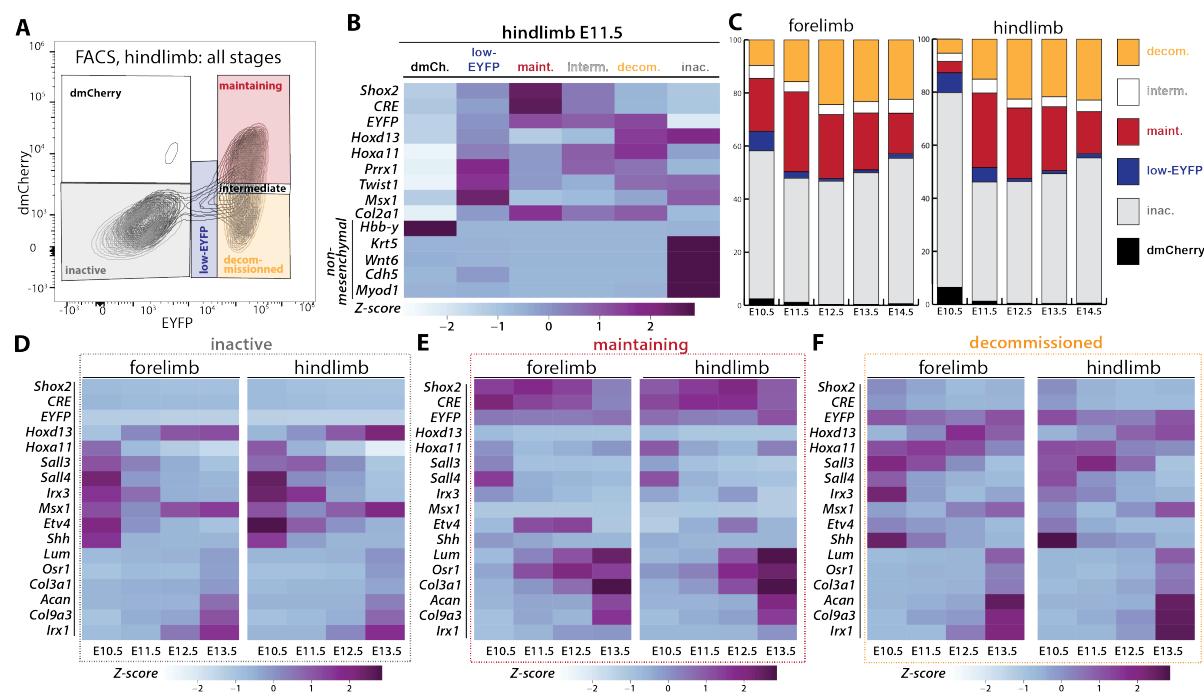
187 To gain a detailed understanding of transcriptional dynamics during limb development, and of *Shox2*
188 transcriptional phases over time, we produced single-cell RNA-seq transcriptomes from *Shox2*^{trac}
189 hindlimbs at four different embryonic stages: E10.5, E11.5, E12.5, and E13.5 (**Fig. 2A, Supplementary**
190 **Fig. S2A**). We then specifically focus our analyses on mesenchymal cells (*Prrx1+*, *Prrx2+*, *Twist1+*), where
191 *Shox2* is expressed (**Supplementary Fig. S2A, B**). Merging the four timepoints investigated together, we
192 identified 15 distinct clusters (**Fig. 2B, Supplementary Table S2A**), from limb progenitors (**LP**,
193 *Hoxd9/10/11+*, *Tfap2c+*, *Msx1+*, *Sall3/4+*) composed mainly by cells from E10.5 embryos, to more
194 differentiated clusters at later stages (**Supplementary Fig. S2C-D**). To precisely delineate the
195 developmental trajectories between these 15 clusters, we then ran a velocity analysis (Bergen et al.,
196 2020; La Manno et al., 2018). We found that limb mesenchymal cells originate from the E10.5 limb
197 progenitor cluster that is predicted to differentiate into both distal and proximal clusters (**Fig. 2B, C**). In
198 proximal clusters, which are marked by *Shox2* expression (**Supplementary Fig. S3A, B**), progenitor pools
199 (early and late proximal progenitors (**EPP** and **LPP**)) differentiate into proximal condensations (Proximal
200 Growth Plate (**PGP**), Early and Late Proximal Condensations (**EPC** and **LPC**)) and connective tissues
201 (Proximal Connective Tissue (**PCT**), Irregular Connective Tissue (**ICT**), and Tendon Progenitors (**TP**)). In
202 distal clusters which are marked by *Hoxd13* expression (**Supplementary Fig. S3B**), progenitor pools
203 (Early and Late Distal Progenitors (**EDP** and **LDP**)) differentiate into interdigit mesenchyme (**IM**) and
204 distal condensations (Early and Late Digit Condensations (**EDC**, **LDC**)). The Mesopodium (**Ms**), the
205 presumptive wrist domain, is predicted to derive directly from limb progenitors, expressing both
206 proximal (*Shox2*) and distal markers (*Hoxd13*) (**Fig. 2B, C**).

207 We then mapped within this clustering *dmCherry-P2A-CRE* and *EYFP* expressing cells from E10.5
208 onwards (**Fig. 2D, Supplementary Fig. S2E, S3A**). As expected from imaging data (**Fig. 1E, Supplementary**
209 **Fig. S1C**), we observed a high correlation between *Shox2* and *dmCherry-P2A-CRE* transcription
210 (correlation coefficient=0.808, p=0.00024, where the p-value is the probability for the correlation
211 coefficient to be negative (Lopez-Delisle and Delisle, 2022)) indicating that the *dmCherry-P2A-CRE*
212 cassette recapitulates *Shox2* expression. Interestingly, *EYFP* expression was observed in both proximal
213 and distal limb clusters, though less frequently in the latter (**Fig. 2D, Supplementary Fig. S3A**), matching
214 with our previous imaging observations (**Fig. 1E, Supplementary Fig. S1D**). These data confirm that the
215 *Shox2*^{trac} system efficiently tracks *Shox2* transcriptional activity over time.

216 Leveraging the transcript levels of *Shox2*, *EYFP*, and *dmCherry-P2A-CRE* we then categorize cells into
217 distinct phases of the *Shox2* regulatory trajectory (**Fig. 1D**). Given the low transcription levels of
218 *dmCherry-P2A-CRE* in comparison to *EYFP* and *Shox2* (for technical reasons, see Material and Methods),

219 we primarily depended on the latter two genes expression to annotate the locus activity, classifying cells
 220 as *inactive* (*Shox2*-, *dmCherry-P2A-CRE*-, *EYFP*), *initiating* (*Shox2*+, *dmCherry-P2A-CRE* +/-, *EYFP*),
 221 *maintaining* (*Shox2*+, *dmCherry-P2A-CRE* +/-, *EYFP*+) and *decommissioned* (*Shox2*-, *dmCherry-P2A-CRE*-,
 222 *EYFP*+) (Fig. 2E, F Supplementary Fig. S3C). This classification encompassed 99.9% of mesenchymal
 223 cells. We first observed that *Shox2* *initiating* cells were primarily found in progenitor clusters (LP and
 224 EPP) (Fig. 2E, F). This finding is also supported by a higher ratio of immature *Shox2* transcripts as
 225 measured by velocity analysis (La Manno et al., 2018) (Fig. 2G). Cells in the *maintaining* phase were
 226 located in proximal limb clusters, with a significant number also expressing *dmCherry-P2A-CRE* in
 227 addition to *Shox2* and *EYFP* (Fig. 2E). *Decommissioned* cells were in both proximal and distal clusters
 228 supporting the whole transcriptome velocity analysis (Fig. 2C) and the existence of distal limb cells
 229 originating from *Shox2*-expressing limb progenitors. Finally, *inactive* cells were predominantly observed
 230 in distal clusters (Fig. 2E, F). Over time, the proportion of *initiating* cells decreased concomitantly with
 231 an increase of *maintaining* and *decommissioned* cells (Supplementary Fig. S3C). In summary, while
 232 proximal clusters maintain *Shox2* expression initiated in limb progenitors, distal clusters increasingly
 233 decommission the locus transcription.

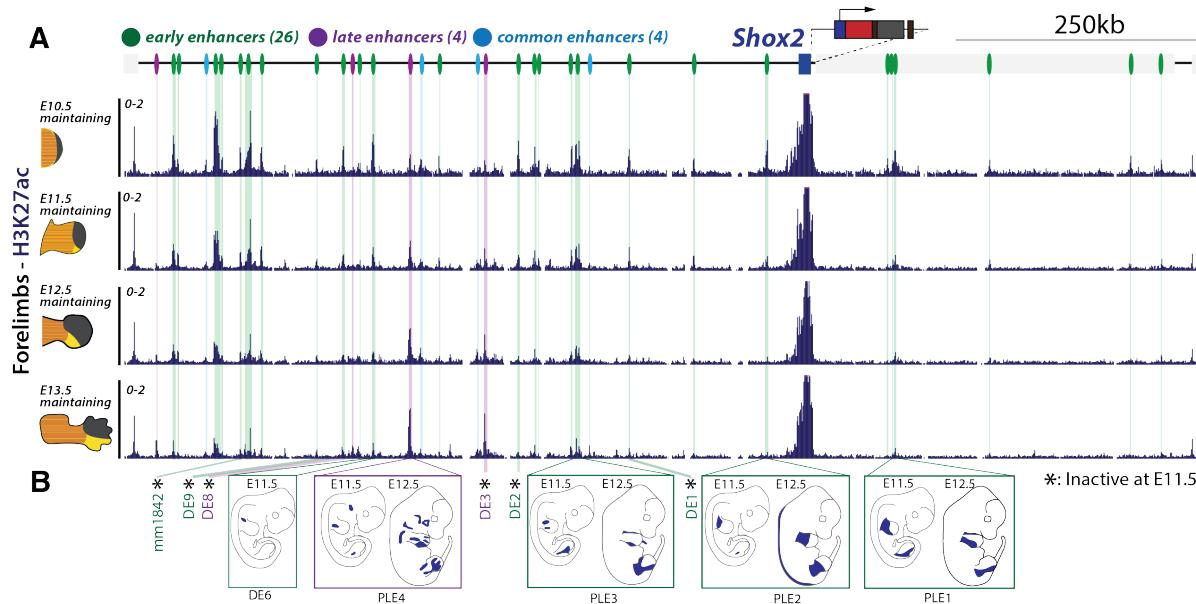
234
 235 **Figure 2: Single-cell analyses of *Shox2* regulatory trajectory.** **A.** Illustration of single-cell preparation from micro-
 236 dissected *Shox2*^{trac} hindlimbs at E10.5, E11.5, E12.5, and E13.5. **B.** UMAP visualization of re-clustered
 237 mesenchymal cells from all merged datasets. **C.** RNA-velocity analysis across mesenchymal cell clusters. **D.**
 238 Analysis of gene expression density for *Shox2* (proximal marker), *dmCherry-P2A-CRE*, *Hoxd13*, and *EYFP* (distal
 239 marker) in mesenchyme cells. Note the *EYFP* expression in distal clusters, in contrast to *Shox2* and *dmCherry-CRE*
 240 **E.** Distribution of cell proportions categorized by the different *Shox2* transcriptional phases: initiation (*Shox2*+,
 241 *dmCherry-P2A-CRE* +/-, *EYFP*), maintaining (*Shox2*+, *dmCherry-P2A-CRE* +/-, *EYFP*), decommissioned (*Shox2*-,
 242 *dmCherry-P2A-CRE*-, *EYFP*), inactive (*Shox2*-, *dmCherry-P2A-CRE*-, *EYFP*) or other cells (when where not
 243 included in any of the previously mentioned class) across mesenchymal clusters. Clusters are ordered according
 244 to their distal and proximal identity and to developmental time, with the limb progenitor cluster highlighted by
 245 a star. **F.** UMAP representing different *Shox2* cell phases: inactive (black), initiation (light blue), maintaining (red),
 246 decommissioned (yellow) and other (grey). **G.** Visualization of *Shox2* RNA-velocity: light blue signifies a higher
 247 fraction of immature transcripts (immat.), whereas red indicates a higher fraction of mature transcripts.
 248


249 **The dual-color reporter approach allows sorting of *inactive*, *maintaining* and *decommissioned* cells**
250 **over time**

251 To further characterize the dynamics of the *Shox2* regulatory landscape, we utilized Fluorescence-
252 Activated Cell Sorting (FACS) on *Shox2^{trac}* fore- and hindlimb cells from E10.5 to E14.5. Yet, before
253 conducting chromatin analyses, we evaluated through bulk RNA-seq, performed on the different
254 FACS-sorted populations (**Fig. 3A**), whether sorted cells matched the *Shox2* transcriptional phases
255 previously identified in the single-cell approach (**Supplementary Table S3**). We identified three major
256 distinct cell populations. First, cells lacking fluorescence marker activity, classified as *inactive*,
257 displayed no *Shox2* expression at E11.5 but expressed non-mesenchymal (*Krt5*, *Wnt6*, *Chd5*, *Myod1*)
258 and mesenchymal (*Twis1*, *Msx1*) markers with a distal identity (*Hoxd13*) (**Fig. 3A, B, Supplementary**
259 **Table S3**). Second, cells marked by high fluorescent levels of both dmCherry and EYFP, classified as
260 *maintaining*, expressed high levels of *Shox2* and displayed a mesenchymal identity signal already at
261 E11.5 (*Prrx1*, *Twist1*). Third, cells with high fluorescent levels of EYFP but no dmCherry signal, classified
262 as *decommissioned*, were found not to express *Shox2* and to bear a mesenchymal identity (**Fig. 3A, B, Supplementary**
263 **Table S3**). Additionally, we observed three minor cell populations. One was composed
264 of dmCherry-only cells that strongly expressed blood markers genes such as *Hbb-γ* and were therefore
265 considered as being mainly blood cells. A second population comprised with low levels of both
266 dmCherry and EYFP, termed "low-EYFP", exhibited weak *Shox2* expression and displayed a
267 mesenchymal progenitor identity by expressing high level of *Msx1* (**Fig. 3A, B**) (Markman et al., 2023).
268 Interestingly, low-EYFP cells were notably abundant at early stages as they accounted for 7.5% of cells
269 in E10.5 hindlimbs, but their prevalence decreased to 1% by E12.5-E13.5 (**Fig. 3C**). Finally, we identified
270 a group of cells with high levels of EYFP and intermediate levels of dmCherry, expressing *Shox2*, that
271 we termed "intermediate" and that bear a mesenchymal identity (**Fig. 3A, B**). Among these
272 populations, we were unable to clearly identify a distinct group of *Shox2 initiating* cells. This
273 observation led us to hypothesize that such cells might be dispersed among the identified cell
274 populations (low-EYFP, inactive), possibly due to the delayed translation of dmCherry and EYFP. In
275 summary, using FACS we could clearly isolate *inactive*, *maintaining* and *decommissioned* cell
276 populations, yet we could not identify a pure *initiating* cell population.

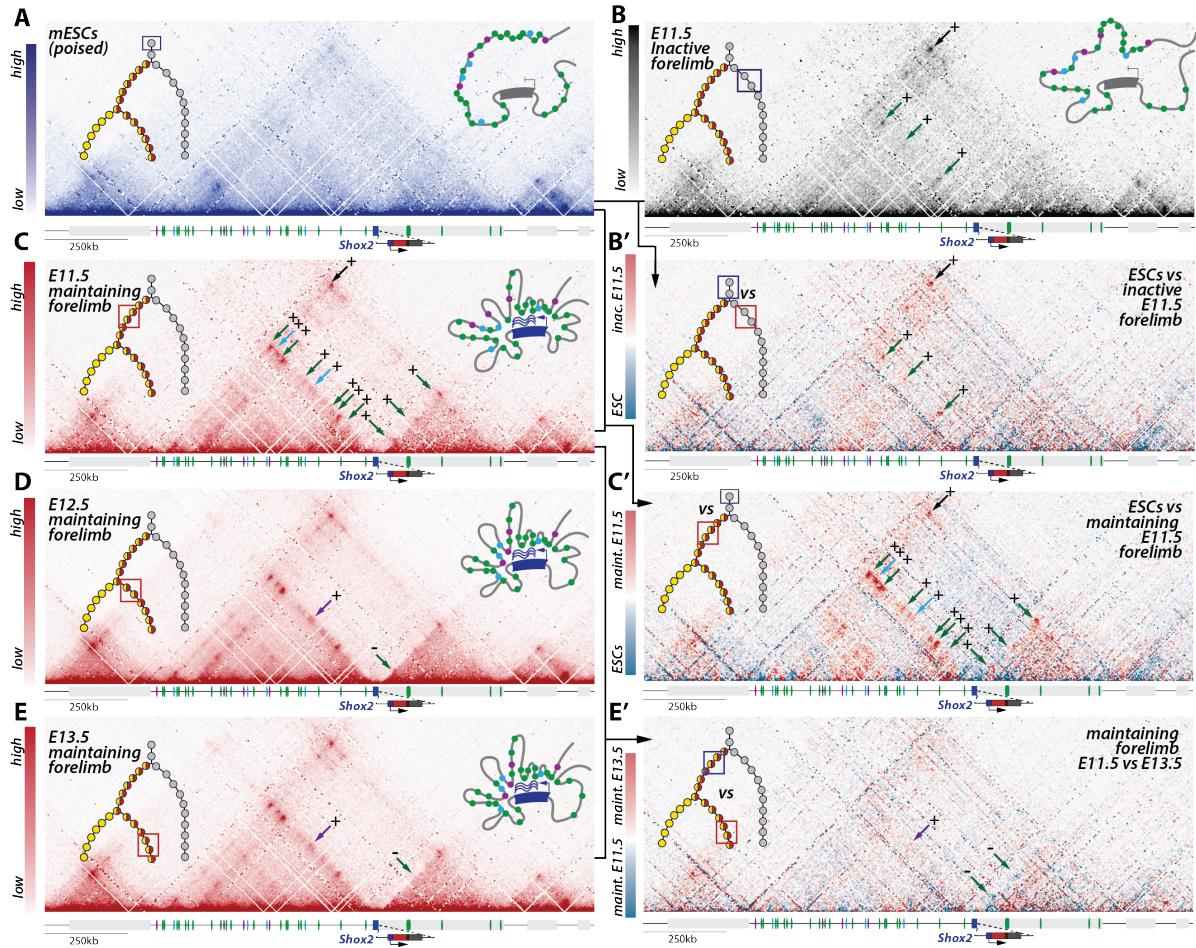
277 As *inactive*, *maintaining* and *decommissioned* cell populations accounted for 83-95% of the cells at
278 the stages analyzed, we focused on these three populations for further analyses (**Fig. 3C**). These were
279 also the main populations identified in our single-cell analysis together with the initiating population
280 (**Fig. 2E, F**). *Inactive* cells (EYFP-, dmCherry-) constituted 56% and 73% of fore- and hindlimb cells at
281 E10.5, respectively, and first displayed a proximal (*Hoxa11*+, *Hoxd13*-) and progenitor (*Irx3*+, *Msx1*+)
282 identity (**Fig. 3C, D, Supplementary Table S3**). At later stages, the proportion of *inactive* cells
283 decreased to around 50% while shifting to a more distal identity (*Hoxa11*-, *Hoxd13*+) along with a
284 gradual increased expression of chondrogenic and digit markers (*Col9a2*+, *Irx1*+) (**Fig. 3C, D, Supplementary Table S3**). The difference between fore- and hindlimbs proportion at early stages can
285 be attributed to the developmental advance of forelimbs, where more cells have already initiated
286 *Shox2* transcription by E10.5. In fore- and hindlimbs, *maintaining* cells (EYFP+, dmCherry+)
287 represented 20% and 4% at E10.5, respectively, then increased up to 25-30% at E11.5-E12.5 while
288 ultimately decreasing to 15% at later stages (**Fig. 3C**). This also underlines the developmental advance
289 of forelimbs in terms of *Shox2* activation. *Maintaining* cells continuously expressed proximal markers
290 (*Hoxa11*+) and rapidly differentiated into chondrogenic (*Col9a3*+, *Acan*+) and connective tissue
291 (*Osr1*+, *Lum*+, *Col3a1*+) lineages (**Fig. 3E, Supplementary Table S3**). *Decommissioned* cells (EYFP+,
292 dmCherry-) were rare at early stages, constituting 10% and 5% in E10.5 fore- and hindlimbs,

294 respectively, and displayed a proximal (*Hoxa11*+, *Hoxd13*-) and progenitor (*Irx3*+, *Shh*+, *Etv4*+) 295 identity. At later stages *decommissioned* cells progressively differentiate into connective tissue and 296 cartilage (*Lum*+, *Col9a2*+) in both distal and proximal limb segments (*Hoxa11*+, *Hoxd13*+, *Irx1*+) (Fig. 297 **3F, Supplementary Table S3**). Generally, the changes in marker genes expressed in *inactive*, 298 *maintaining* and *decommissioned* cell populations over time mirrored scRNA-seq and microscopy 299 analyses (See Fig. 1 and 2).


300 Changes in the proportions of each cell phase over time (Fig. 3C) indicate that during early stages the 301 activation of the *Shox2* locus reduces the pool of *inactive* cells to expand the population of *maintaining* 302 cells which ultimately lead to an increase of *decommissioned* cells. Discrepancies in cell proportion 303 identified by FACS, compared to single-cell analysis (see **Supplementary Fig. S3C**), can be explained 304 by the inherent differences in sensitivity between the two techniques. In conclusion, the dual-color 305 approach enables us to efficiently track and sort *inactive*, *maintaining*, and *decommissioned* cells 306 across time and through differentiation processes. Furthermore, our findings suggest an early wave 307 of *Shox2* decommissioning in *Irx3*+ progenitor cells, likely associated with the emergence of a distal 308 limb progenitor population (*Msx1*+) that gives rise to anterior digits (*Shh*+) These results pave the 309 way for defining how *Shox2* expression is maintained over time and through differentiation and 310 ultimately decommissioned in cells that will compose the future distal limb.

311
312 **Figure 3: Characterizing the dual-color reporter approach to sort cells undergoing distinct phases of Shox2**
313 **regulatory trajectory.** **A.** FACS plot of *Shox2*^{trac} hindlimbs dissociated cells illustrating the distribution of cells
314 based on dmCherry and EYFP fluorescence in all the developmental stages investigated. **B.** Heatmap profiles of
315 representative marker genes in different sorted populations from E11.5 hindlimbs. dmCh. = dmCherry, maint. =
316 maintaining, interm. = intermediate and inac. = inactive. **C.** Proportions of each sorted population at E10.5, E11.5,
317 E12.5, E13.5, and E14.5 in both forelimbs and hindlimbs, showcasing the dynamic changes in population sizes
318 over developmental time. **D-F.** Heatmaps of gene expression analysis of marker genes in sorted cells throughout
319 fore- and hindlimb development. **D.** Marker gene expression in inactive cells. **E.** Marker gene expression in
320 maintaining cells. **F.** Marker gene expression in decommissioned cells. Inactive (EYFP-, dmCherry-, in grey),
321 maintaining (EYFP+, dmCherry+, in red), decommissioned (EYFP+, dmCherry-, in yellow), blood (EYFP-,
322 dmCherry+, in black), low-EYFP (low EYFP+, low dmCherry+, in blue), intermediate (high EYFP+, intermediate
323 dmCherry+, in light grey or white). In **C**, **D-F**: Z-score scale derived from normalized FPKMs provides a normalized
324 measure by rows of gene expression levels enabling comparison across samples.

325 **Shox2 transcriptional maintenance is associated with distinct enhancer repertoires acting over**
326 **time**


327 Both single-cell analyses and RNA-seq data from FACS experiments have demonstrated dynamic
328 changes in the limb cell types in which *Shox2* is transcriptionally active, progressing from limb
329 progenitors to chondrogenic and connective cell types (see **Figs. 2, 3**). To support its transcription
330 through these transitions and adapt to this changing environment, the *Shox2* regulatory landscape
331 likely employs distinct sets of enhancers (see **Fig. 1**). To delineate the stage-specific enhancer
332 repertoires of *Shox2*, we leveraged our reporter system to focus on the chromatin status of *Shox2*
333 *maintaining* cells. We generated H3K27ac ChIP-seq profiles, indicative of active enhancers, in E10.5,
334 E11.5, E12.5, E13.5 forelimbs *maintaining* FACS sorted cells (dmCherry+, EYFP+) in (**Fig. 4A**) (Rada-
335 Iglesias et al., 2011). The usage of *Shox2* expressing cells across four stages allowed to produce a highly
336 accurate map of *Shox2* putative enhancers and to define time-windows of activity. Here, we identified
337 34 H3K27ac-marked enhancers within the *Shox2* TAD (mm39, chr3:66190000-67290000). While a
338 majority of these enhancers displayed an activity restricted to early stages of limb development (early
339 enhancers: 26/34) other showed consistent H3K27ac coverage across all stages (common enhancers:
340 4/34) or restricted to late stages (late enhancers: 4/34) (**Fig. 4A, Supplemental Table S4**). H3K27ac
341 ChIP-seq profiles from E11.5, E12.5 and E13.5 hindlimbs *maintaining* cells showed an identical
342 distribution of enhancer and a highly similar temporal restriction of their activities (**Supplementary**
343 **Fig. S4**). Prior studies have tested 13 of these enhancers *in vivo*, with five driving limb reporter activity
344 at specific embryonic stages, validating our approach for enhancer identification (**Fig. 4B,**
345 **Supplementary Table S4**) (Abassah-Oppong et al., 2023; Osterwalder et al., 2018). These findings
346 suggest that a significant number of early enhancers is required to initiate and maintain *Shox2*
347 transcription during the early stages of limb budding, while fewer are necessary to sustain expression
348 at later stages.

349
350 **Figure 4: Regulatory maintenance associates with changes of enhancer repertoires. A.** H3K27ac ChIP-seq
351 profiles at the *Shox2* locus (mm39: chr3:66,190,000-67,290,000) of FACS sorted *maintaining* (dmCherry+/EYFP+)
352 cells across E10.5, E11.5, E12.5, and E13.5 forelimbs. Putative enhancers are shown by color-coded lines: green
353 for early, light blue for common, and purple for late enhancers, as detailed in **Supplementary Table S4**. The light
354 gray box next to the *Shox2* gene is the *Rsrc1* gene. **B.** Schematic representation of the pattern displayed by
355 enhancers previously validated through *in vivo* LacZ reporter assays (Abassah-Oppong et al., 2023; Osterwalder
356 et al., 2018).

357 **The 3D locus topology of *Shox2* mirrors temporal enhancer repertoire shifts**

358 Recent studies have demonstrated that changes in chromatin architecture associates with the activity
359 of enhancers and promoters (Robson et al., 2019; Rouco et al., 2021). We sought to investigate
360 whether the temporal shifts in enhancer activities observed at the *Shox2* locus are also associated
361 with temporal changes in the 3D chromatin organization. To tackle this question, we generated
362 capture-HiC (C-HiC) maps across different phases and stages of the *Shox2* regulatory trajectory. We
363 started by comparing *Shox2^{trac}* embryonic stem cells (mESCs) with *inactive* (dmCherry-, EYFP-) fore-
364 and hindlimb FACS sorted cells at E11.5. Notably, while the poised *Shox2* locus in mESCs exhibited a
365 relatively relaxed structure, with few focal interaction contacts, increased contacts between the TAD
366 boundaries and between *Shox2* and three of its early enhancers were observed in *inactive* cells (**Fig. 5A-C, Supplementary Fig. S5**) (Mas et al., 2018). We then studied transition from a poised state
368 towards an active status, by comparing *Shox2^{trac}* mESCs and fore- and hindlimb FACS-sorted *Shox2*
369 *maintaining* cells at E11.5, E12.5, and E13.5. We observed that in *maintaining* cells, unlike in *inactive*
370 ones, interactions between *Shox2* and most of its enhancers were heightened (**Fig. 5A, C-E, C' and**
371 **Supplementary Fig. S5**). This was accompanied by a pronounced segregation of the locus into two
372 subTADs in-between the *Shox2* and *Rsrc1* promoters. Remarkably, at E11.5, we noted increased
373 interactions primarily with early and common putative enhancers, but not with late ones (**Fig. 5A, C,**
374 **C' and Supplementary Fig. S5**). This observation became more noticeable when comparing the locus
375 structure in *maintaining* cells at E11.5 and E13.5 (**Fig. 5E, 5E'**). Specifically, this comparison revealed
376 subtle yet consistent changes in contact patterns, where two early enhancers showed decreased
377 interactions with *Shox2* at E13.5, while one and two late enhancers in fore- and hindlimbs,
378 respectively, showed increased interactions (**Fig. 5A, C, Supplementary Fig. S5**). Thus, these
379 observations show that the 3D structure of the *Shox2* locus accompanies a shift between early and
380 late enhancer repertoires.

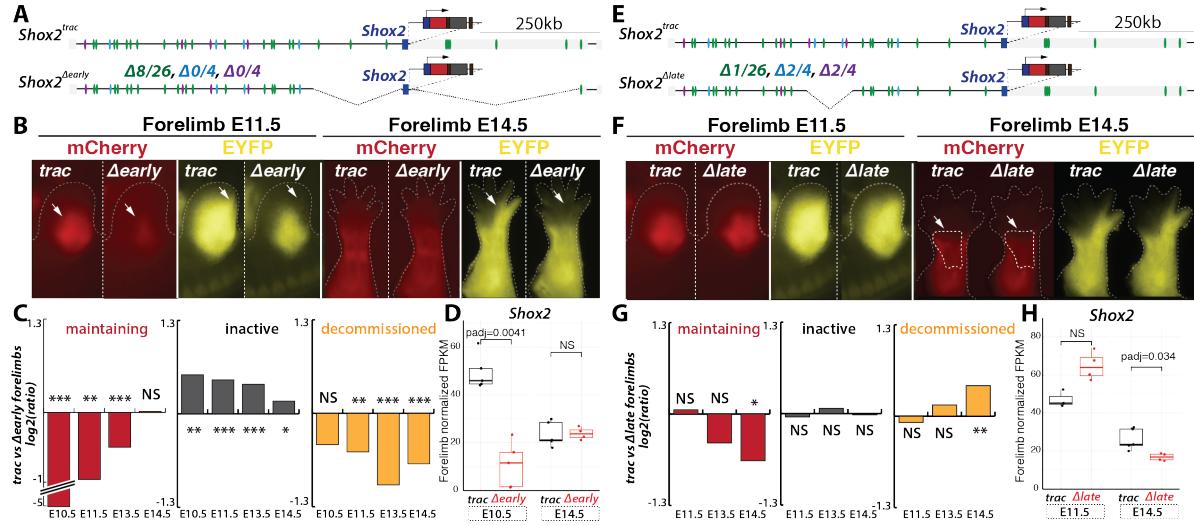


Figure 5: Shox2 locus 3D topology associates with active enhancer-promoter interactions in forelimbs. In all Capture-HiC (C-HiC) maps (mm39: chr3:65,885,132-67,539,263), the upper left illustration represents the position of the investigated cells in the regulatory trajectory and the upper right one a model of the average 3D locus structure. The light grey box next to Shox2 is the Rsrc1 gene. **A.** C-HiC maps of the Shox2 locus in Shox2^{trac} mESCs. Note a large TAD with few focal interaction points. **B.** C-HiC maps of the Shox2 locus in E11.5 forelimb FACS-sorted inactive cells. Note the formation of specific contacts with three early enhancers (green arrows) and increased loop contact between the two TAD borders (black arrow). **B'.** Subtraction C-HiC map between Shox2^{trac} E11.5 forelimb FACS-sorted inactive cells and Shox2^{trac} mESC. **C-E.** C-HiC maps of the Shox2 **C.** E11.5 **D.** E12.5, and **E.** E13.5 forelimb FACS-sorted maintaining cells. **C'.** C-HiC subtraction maps between Shox2^{trac} mESCs and Shox2^{trac} E11.5 forelimb FACS-sorted maintaining cells. **E'.** C-HiC subtraction maps between E12.5 and E13.5 Shox2^{trac} FACS sorted forelimb maintaining cells. Changes in enhancer-Shox2 interactions are marked by colored arrows at each stage: green for early enhancers, purple for late enhancers, and light blue for common enhancers. A plus sign (+) denotes a gain of interaction, and a minus sign (-) indicates a loss of interaction relative to the previous stage. Also note the increased separation between the two subTADs at the position of the Shox2 gene body. Maps coordinates mm9; chr3:65,781,633-67,435,852. Maint. = maintaining; inac. = inactive.

398 *Shox2* enhancers act in an early and late specific manner

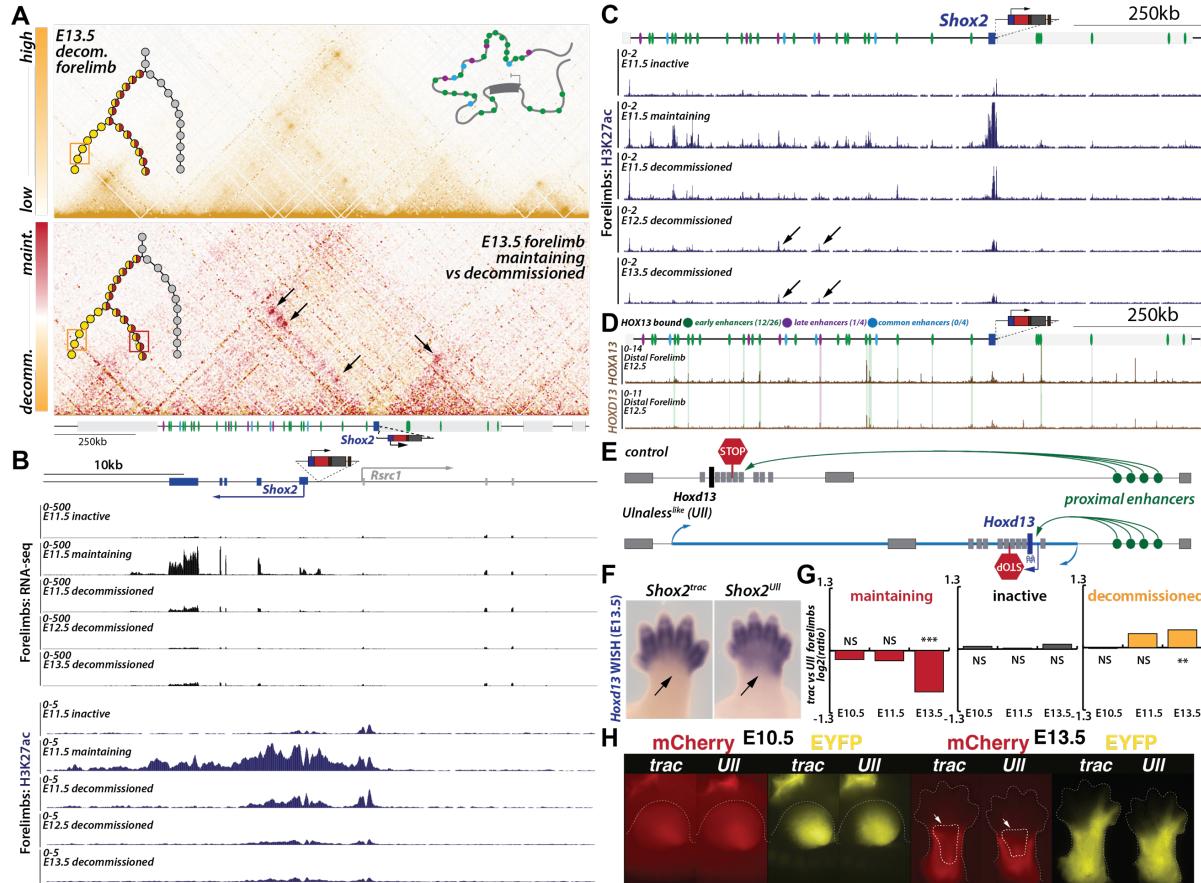
399 To functionally assess the role, timing and interdependency of identified early and late enhancers, we
 400 investigated whether deletions of these enhancers lead to transient, stage-specific alterations in
 401 *Shox2* expression. We first assessed the role of several early enhancers by generating two consecutive
 402 deletions, one of 139kb and another of 307kb, near the *Shox2* locus. These deletions removed 8 out
 403 of the 26 early enhancers (31%) in the *Shox2^{trac}* background, while leaving the common and late
 404 enhancers intact (Fig. 6A). This double deletion allele, referred to as *Shox2^{Δearly}*
 405 (*Shox2^{dmCherry/+;Δearly/Δearly}*; *Rosa26^{loxEYFP/+}*), was examined using fluorescent imaging, quantification of
 406 the proportion of *inactive*, *maintaining* and *decommissioned* cells as well as RNA-seq. At E11.5

407 *Shox2*^{Δearly} embryos displayed a limb-wide decreased in dmCherry and EYFP signals compared to those
408 in *Shox2*^{trac} forelimbs (**Fig. 6B**). We also observed the loss of the distal limb EYFP signal, not overlapping
409 dmCherry, in *Shox2*^{Δearly} limbs. By E14.5, dmCherry changes were no longer apparent, but the loss of
410 EYFP signal in distal segments persisted. Quantification of cell proportions from flow cytometry
411 experiments in *Shox2*^{Δearly} fore- and hindlimbs at E10.5, E11.5, E13.5, and E14.5 showed a complete
412 loss of *maintaining* cells at E10.5 (33 fold less, from 19% in *Shox2*^{trac} forelimb cells to 0.6% in *Shox2*^{Δearly})
413 that gradually returned to control levels at later stages (**Fig. 6C, Supplementary Fig. S6A, S7A, B,**
414 **Supplementary Table S5**). Additionally, we observed an increase in *inactive* cells, especially at early
415 stages (1.5 fold more: from 56% in *Shox2*^{trac} forelimbs to 81% in *Shox2*^{Δearly}), likely due to the delayed
416 *Shox2* transcriptional onset. Concomitantly, we noted a decrease in *decommissioned* cells reflecting
417 the observed loss of distal EYFP signal (for instance at E13.5 2 fold less: from 23.3% in *Shox2*^{trac}
418 forelimbs to 11.7% in *Shox2*^{Δearly}, **Fig. 6B, C, Supplementary Fig. S6A, S7A, B, Supplementary Table**
419 **S5**). RNA-seq of E10.5 and E14.5 forelimbs revealed a decrease in *Shox2* expression only at E10.5,
420 aligning with the changes observed in dmCherry fluorescence (**Fig. 6D, Supplementary Table S6**).
421 These findings indicate that the removal of early enhancers leads to a strong but transient decrease
422 in *Shox2* transcription in early limb progenitor cells. While transcription in proximal lineages is
423 gradually restored by the remaining enhancers, cells destined for distal posterior limb segments do
424 not regain *Shox2* expression (see **Fig. 2**).
425 Conversely, we hypothesized that late enhancers, in conjunction with common ones, are crucial for
426 sustaining *Shox2* expression during the late stages of limb development, without significantly
427 contributing to the early phase. To test this hypothesis, we engineered a targeted deletion spanning
428 84kb, *Shox2*^{Δlate} (*Shox2*^{dmCherry/+;Δlate/Δlate}; *Rosa26*^{loxEYFP/+}), that eliminates 2 out of 4 late enhancers (50%
429 of late), 2 out of 4 common enhancers (50% of common) and 1 out of 26 early enhancers (4% of early)
430 (**Fig. 6E**). At E11.5, no discernible differences in dmCherry or EYFP fluorescence were observed in
431 forelimb tissues compared to controls (**Fig. 6F**). However, a slight decrease in dmCherry signal (but
432 not EYFP) was noted in the central section of E14.5 forelimbs (**Fig. 6F**). Flow cytometry analysis of cell
433 proportions in *Shox2*^{Δlate} forelimbs at E11.5, E13.5, and E14.5 revealed a specific reduction in
434 *maintaining* cells solely at E14.5 (1.6 fold less: from 15% in *Shox2*^{trac} to 10% in *Shox2*^{Δlate}, **Fig. 6G,**
435 **Supplementary Fig. S6B**). RNA-seq analysis at E11.5 and E14.5 confirmed a loss of *Shox2* expression
436 exclusively at E14.5 (**Fig. 6H, Supplementary Table S6**). Unlike the early enhancer deletion, the late
437 enhancer deletion did not impact the proportion of *inactive* cells but only led to an increase in
438 *decommissioned* cells (1.3 fold more: from 22% in *Shox2*^{trac} to 30% in *Shox2*^{Δlate}), indicating that
439 previously ongoing transcription was halted due to the absence of late regulatory elements, entering
440 in a premature decommissioning phase (**Fig. 6G**). Surprisingly, hindlimb analyses showed no significant
441 changes, possibly due to the slight developmental delays between fore- and hindlimbs
442 (**Supplementary Fig. S7C, D**). Together, these deletion experiments demonstrate that *Shox2*
443 transcription is regulated by different enhancer repertoires operating transiently, in a temporal-
444 specific manner during limb development. Moreover, it suggests that early and late enhancers might
445 act in an independent way.

Figure 6: Partial early and late enhancer deletion induce stage-specific alterations. **A.** Illustration detailing the *Shox2^{early}* deletion allele lacking 8 out of 26 early putative enhancers (in green), while late (in purple) and common (light blue) putative enhancers remain intact. **B.** Fluorescent imaging comparing *Shox2^{trac}* and *Shox2^{early}* forelimbs at E11.5 and E14.5. White arrows indicate a reduction in dmCherry and EYFP signals at E11.5 and a complete loss of EYFP signal in distal limbs at E14.5. **C.** Log₂ ratio of the proportion of maintaining, inactive, and decommissioned cell populations, identified by flow cytometry analyses, in *Shox2^{trac}* versus *Shox2^{early}* forelimbs at E10.5, E11.5, E13.5, and E14.5. **D.** Normalized FPKM of *Shox2* expression in E10.5 and E14.5 *Shox2^{trac}* and *Shox2^{early}* entire forelimbs, with comprehensive DESeq2 analyses in **Supplementary Table S6**. **E.** Schematic representation of the *Shox2^{late}* deletion allele lacking 2 out of 4 late (in purple), 2 out of 4 common (in light blue), 1 out of 26 early putative enhancers. **F.** Fluorescent imaging of *Shox2^{trac}* and *Shox2^{late}* forelimbs at E11.5 and E14.5. White arrows and delimited area indicate a loss of dmCherry signal in the central limb section at E14.5. **G.** Log₂ ratio of the proportion of maintaining, inactive, and decommissioned cell populations, identified by flow cytometry analyses, *Shox2^{trac}* versus *Shox2^{late}* forelimbs at E11.5, E13.5, and E14.5. **H.** Normalized FPKM of *Shox2* in E10.5 and E14.5 *Shox2^{trac}* and *Shox2^{late}* entire forelimbs, detailed DESeq2 analyses in **Supplementary Table S6**. In **C** and **G**: T-tests were utilized to calculate p-values from replicates (**Supplementary Fig. S6**). NS= non-significant, * $p<0.05$, ** $p<0.01$ and *** $p<0.001$. In **D** and **H** boxplots, boxes indicate the first and third quartiles, the whiskers indicate $\pm 1.5 \times$ interquartile range, and the horizontal line within the boxes indicates the median. Statistical test used: DESeq2 Wald test, padj is the FDR-corrected p-value from DESeq2

Enhancer-Promoter disconnection marks *Shox2* decommissioning

Despite their fundamental contribution to the formation of gene expression patterns, the features associated with the termination of a locus' transcriptional activity remain poorly characterized. To define how *Shox2* transcription is terminated, we examined the changes in locus topology, transcription, and activities of regulatory elements within *decommissioned* cells. First, we generated C-HiC maps of FACS-sorted *decommissioned* cells from *Shox2^{trac}* E12.5 and E13.5 fore- and hindlimbs (**Fig. 7A, Supplementary Fig. S8A, B, C**). Compared to stage-matched *maintaining* cells, we observed a notable reduction in enhancer-promoter interactions and a decrease in the segregation of the two subTADs. We noticed that this *decommissioned* structure was very similar to the one seen in *inactive* cells (as shown in **Fig. 5B, Supplementary Fig. S8D**). Looking at the locus regulatory activity, we observed a significant decrease in *Shox2* expression and H3K27ac coverage of the gene's promoter in FACS-sorted *decommissioned* cells compared to *maintaining* ones (**Fig. 7B, Supplementary Fig. S9A**). At the enhancer level, we noted a faster depletion of H3K27ac coverage than at the *Shox2* promoter (**Fig. 7C, Supplementary Fig. S9B**), especially visible at early and common enhancers. However, by the late E13.5 stage, two late enhancers (see **Fig. 4B**) still retained H3K27ac coverage in *decommissioned* cells. Intriguingly, these same regions also exhibited some activity in late E12.5 and E13.5 *inactive* cells


482 (Supplementary Fig. S9C). This suggests that these two enhancers, although significantly contributing
483 to *Shox2* maintenance (see Fig.6 E-H), are insufficient to sustain or initiate *Shox2* expression by
484 themselves. Taken together, these findings indicate a rapid disconnection of the majority of enhancer-
485 promoter contacts, accompanied by a swift reduction in their active chromatin coverage during locus
486 decommissioning.

487

488 An *Ulnaless* like allele triggers ectopic *Shox2* locus decommissioning

489 The rapid disconnection of enhancer-promoter contacts and the swift decline in enhancer activities
490 upon *Shox2* locus decommissioning imply a targeted repressive activity at enhancer regions,
491 potentially mediated by the binding of specific transcription factors (TFs). Furthermore, the presence
492 of many *decommissioned* cells in the distal limb domain suggests the involvement of distal limb TFs in
493 this process (Fig. 2, 3). *HOXA/D13* TFs have been involved in *Shox2* repression in distal limbs and both
494 factors are binding several identified *Shox2* enhancers (Fig. 7D) (Beccari et al., 2016; Sheth et al.,
495 2016). Notably, out of 34 *Shox2* putative limb enhancers, *HOXA/D13* proteins were found to bind to
496 13 of them, encompassing 46% (12/26) of early acting enhancers and 1 out of 4 late enhancers in distal
497 forelimbs at E12.5. This positions *HOXA/D13* as candidate TFs for controlling *Shox2* decommissioning
498 by inhibiting its early expression phase in limb progenitors.

499 To explore this hypothesis, we employed a limb-specific gain-of-function allele known as *Ulnaless*,
500 which induces *Hoxd13* expression in proximal limbs where *Shox2* is normally active (Bolt et al., 2021;
501 Herault et al., 1997). Here, we re-engineered the *Ulnaless* inversion (*Ulnaless-like (Ull)*) in the dual-
502 color tracking background, *Shox2^{Ull}* (*Shox2^{dmCherry/+}*; *Rosa26^{loxEYFP/+}*; *HoxD^{Ull/+}*) (Fig. 7E). As expected,
503 *Shox2^{Ull}* displayed a gain of *Hoxd13* transcripts in the proximal region of E13.5 forelimbs (Fig. 7F). If
504 *Hoxd13* acts as a decommissioning factor, we would expect to observe a decrease in *maintaining* cells
505 and an increase in *decommissioned* cells, without affecting *inactive* cells. Quantification of such cell
506 proportion of cells by flow cytometry in both fore- and hindlimbs precisely revealed a decrease in
507 *maintaining* cells (1.8 fold less, from 21% of forelimb cells in *Shox2^{trac}* to 12% in *Shox2^{Ull}*) and an
508 increase in *decommissioned* cells (1.3 fold more, from 23% in *Shox2^{trac}* forelimb to 30% in *Shox2^{Ull}*) at
509 the late E13.5 stage, but not at earlier stages (Fig. 7G, Supplemental Fig. S9D, S10). Additionally,
510 fluorescent microscopy revealed a mild reduction of dmCherry signal in the center of E13.5 forelimbs
511 but not at E11.5 (Fig. 7H). These findings mirror the effects observed by late enhancer loss (See Fig. 6)
512 and demonstrate that *HOXD13* can induce locus decommissioning, likely through binding active
513 enhancers.

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536

Figure 7: Shox2 locus decommissioning associate with the disconnection between enhancers and promoters.

A. C-HiC of E13.5 forelimb FACS-sorted decommissioned cells (above) and subtraction map with E13.5 forelimb FACS-sorted maintaining cells (See Fig. 5C); in each panel the upper left illustration represents the position of the investigated cells in the regulatory trajectory; the upper right one is a model of the average 3D locus structure (maps coordinates mm39; chr3:65,885,132-67,539,263). Black arrows indicate strong losses of enhancer-promoter interactions.

B. RNA-seq and H3K27ac ChIP-seq tracks of early (E11.5) forelimb inactive, maintaining, decommissioned and late (E12.5-E13.5) decommissioned FACS-sorted cells at the *Shox2* and *Rsrc1* promoter region (mm39: chr3:66,870,000-66,910,000).

C. Forelimb H3K27ac ChIP-seq tracks in early (E11.5) forelimb inactive, maintaining, decommissioned and late (E12.5-E13.5) decommissioned FACS-sorted cells over the *Shox2* regulatory landscape (mm39: chr3:66,190,000-67,290,000). Note the overall loss of H3K27ac at enhancers in decommissioned cells while two of the four late enhancers show activity in decommissioned cells (black arrows).

D. HOXA/D13 ChIP-seq in distal forelimb at E12.5 re-analyzed from (Sheth et al., 2016).

E. Schematic illustration of the engineered *Ulnaless* inversion allele at the *Hoxd* locus, showing how the inversion brings proximal enhancers into close proximity with *Hoxd13*, leading to its misexpression.

F. *Hoxd13* WISH in wildtype and *Shox2^{Uln}* forelimbs at E13.5. Note how the *Ulnaless* inversion allele induce proximal expression of *Hoxd13* in forelimbs (black arrow).

G. Log₂ ratio between the proportion of forelimb *Shox2^{trac}* and *Shox2^{Uln}* initiating, maintaining and decommissioned cell population, identified by flow cytometry at E10.5, E11.5 and E13.5. T-tests were utilized to calculate p-values from replicates (See supplementary Fig. S10). NS= non-significant, *= $p<0.05$, **= $p<0.01$ and ***= $p<0.001$.

H. Fluorescent imaging of *Shox2^{trac}* (trac) and *Shox2^{Uln}* (*Uln*) forelimbs at E10.5 and E13.5. Note the decreased dmCherry signal in the central part of the limb (white arrow). Maint. = maintaining; decomm. = decommissioned.

537 **Discussion**

538 Developmental genes exert their influence through spatially and temporally restricted expression
539 patterns (Cao et al., 2019; Chen et al., 2022; He et al., 2020). Building upon previous studies on
540 enhancer dynamics, which explored enhancer activation and decommissioning, we delve into the
541 behavior of an entire gene regulatory landscape over time (Maeda and Karch, 2006; Whyte et al.,
542 2012; Wu et al., 2023). We conceptualized the study of this regulatory dynamics, affecting gene
543 expression across extended periods as a regulatory trajectory (see **Fig. 1D**). Through our investigation,
544 with *Shox2* serving as a testbed locus, we reveal that in the early stages of limb development, cells
545 either remain inactive, contributing predominantly to distal limb cell populations, or become
546 transcriptionally active initially in the limb progenitors. This activity is subsequently maintained during
547 differentiation into proximal connective tissue and cartilage. After transcriptional initiation and
548 maintenance, we identified that certain cells, including some destined to become part of distal limb
549 segments, undergo decommissioning of the *Shox2* locus, possibly through the activities of distally
550 expressed TFs such as HOXA/D13.

551 During early limb development, we have observed that limb progenitors seem to be neither proximal
552 nor distal as they express both *Hoxd13* and *Shox2*. Previous studies have also remarked the same
553 observation, even suggesting that these cells could contribute to the mesopodium (wrist-ankle)
554 formation (Desanlis et al., 2020; Markman et al., 2023; Neufeld et al., 2014). Using our tracing system,
555 we were able to precisely track the fate of cells that express *Shox2* in early stages but cease to do so
556 later. We found that *decommissioned* cells not only contribute to the mesopodium but also to
557 proximal and distal limb cell populations, including digits. Early *decommissioned* cells exhibited
558 expression of the *Msx1* limb progenitor marker, along with *Irx3/5* and *Shh* genes, which are crucial for
559 digit development (Li et al., 2014; Zhu et al., 2022). Moreover, the removal of one-third of the early
560 enhancers led to a delayed *Shox2* expression initiation and, subsequently, a loss of *Shox2*
561 *decommissioned* cells in distal limbs. These outcomes show that *Shox2* expressing limb progenitors
562 that rely on the activities of early enhancers contribute to the formation of the autopod and in
563 particular of digits 4 and 5.

564 Curiously, despite the significant delay and loss of *Shox2* expression following early enhancer deletion,
565 the late expression eventually manifests, indicating the capacity of remaining early, common, and late
566 enhancers to sustain proximal *Shox2* expression at late stages. Yet, it remains uncertain whether the
567 restoration of expression levels results from a collective effect of all enhancer classes or is attributable
568 to specific ones. Additionally, whether late enhancers alone can restore expression following the
569 complete abrogation of early enhancers - and what the resulting expression pattern might look like -
570 has yet to be clarified. Insights from the late enhancer deletion experiment, which led to an increase
571 in *decommissioned* cells without affecting inactive cells, specifically at late stages, suggest late
572 enhancers can only act on a previously activated *Shox2* locus and cannot activate expression in
573 inactive cells. This hypothesis is further supported by the presence of H3K27ac on some late enhancers
574 in *inactive, Shox2-* cells. Hence, these enhancers likely influence the locus only in cells already
575 imprinted with the patterning cues provided by early enhancers.

576 Initially, during the onset of *Shox2* transcription, enhancer-promoter contacts are strongly increased
577 alongside the formation of a subTAD boarder at the *Shox2* promoter position. As development
578 progress, contacts appear to shift from early- to late enhancers, as the first are becoming inactive and
579 the latter active. Finally, during decommissioning, enhancers are disconnected from *Shox2*
580 simultaneously with the decrease in H3K27ac coverage. This highly dynamic structure cannot be
581 explained by differential binding of CTCF, as the architectural protein does not bind the *Shox2*

582 promoter at any stage and only displays minimal binding differences within the *Shox2* centromeric
583 regulatory landscape (**Supplementary Fig. S11**)(Andrey et al., 2017). Here, two different CTCF-
584 independent mechanisms might be at play to explain this dynamic enhancer-promoter contact
585 behavior. First, it is conceivable, as recently proposed, that cohesin is loaded at enhancers via RNAPII
586 and subsequently extrudes the local domain until hitting the *Shox2* promoter region. In turn, this
587 would lead to a loading of cohesin at the promoter and a self-forward acting structural loop (Zhang et
588 al., 2023). In this view, enhancer promoter contacts would be stabilized independently of CTCF but
589 with a high dependency on enhancer activities. Alternatively, the contact might be depending on the
590 recruitment of looping factors at the various active enhancers enabling the formation of micro-
591 compartments independently of loop extrusion as recently shown in another study (Goel et al., 2023).
592 After transcriptionally active phases, gene expression can rapidly shut down to establish sharp
593 expression borders critical for defining anatomical transitions. In the case of *Shox2*, its widespread
594 expression in the early limb bud becomes restricted to proximal limb segments, with a sharp
595 expression boundary at the mesopodium level (Neufeld et al., 2014). This boundary precisely opposes
596 the expression onset of *Hoxa/d13*, marking the region where digits form. Here, we have shown how
597 *Ulnaless-like* embryos present a premature decommissioning of the *Shox2* locus likely causing the
598 alteration of *Shox2* boundaries of expression (Gross et al., 2012). This correlate with the proximal shift
599 of the *Hoxd13* expression domain (see **Fig.7F**), and with the known role of HOXD/A13 in repressing
600 the early/proximal phase of *Hoxd* genes themselves (Andrey et al., 2013; Andrey et al., 2017; Beccari
601 et al., 2016). However, the exact mechanisms of this decommissioning remain elusive. We hypothesize
602 that similar mechanisms to those observed during the exit from pluripotency might be in play, where
603 the histone lysine-specific demethylase 1 (LSD1) and histone de-acetylases (HDACs) target and
604 dismantle a significant fraction of pluripotency enhancers (Respuela et al., 2016; Whyte et al., 2012).
605 This decommissioning involves the demethylation and deacetylation of H3K4me2 and H3K27ac,
606 respectively, effectively reverting loci to a poised state that is permissive for either activation or
607 terminal repression. Indeed, we observed that normal *Shox2* locus decommissioning is featured by a
608 faster loss of active H3K27ac marks at enhancers than at the *Shox2* promoter. In this context,
609 HOXD/A13 proteins could tether HDACs and/or LSD1 to all enhancers of proximal loci including *Shox2*.
610 This deactivation could then trigger the disassembly of the locus 3D structure and particularly of
611 enhancer-promoter contacts as observed in all *decommissioned* cells.
612 Overall, our findings underscore the existence of temporally restricted enhancer repertoires, their
613 synchronized shutdown during locus decommissioning, and the significant structural transformations
614 accompanying these regulatory events. These insights are potentially applicable to dozens of other
615 limb-associated loci (see **Fig. 1**) and are likely extendable to genes involved in other morphogenetic
616 processes.

617

618 **Limitation of the study**

619 A challenge in this study was the inability to sort a distinct initiating population. This issue precluded
620 a detailed analysis of the *Shox2* regulatory landscape during the transcriptional initiation phase.
621 Therefore, further investigations are necessary to establish whether *Shox2* transcriptional initiation is
622 influenced by all identified enhancers, only a subset, or other elements acting at an earlier stage.

623 **Material and Methods**

624

625 **Animal procedures**

626 Animal research was performed at University of Geneva following the institutional, state and
627 government regulations (Canton de Genève authorizations GE/89/19 and GE192A).

628

629 **CRISPR/Cas9 engineered alleles**

630 Alleles genetically engineered were edited using CRISPR/Cas9 and following a similar procedure as
631 (Kraft et al., 2015). In brief, sgRNAs were designed using the online software Benchling
632 (<https://benchling.com/>) and were chosen based on predicted on-target and off-target scores. All the
633 sgRNAs used for this study, their CRISPR/Cas9 genomic target location and genotyping primers, can
634 be found in **Supplementary Table S7**. Each sgRNA was cloned in the plasmid pX459 (Addgene, #48139)
635 and 8µg of each vector was used during mESCs transfection following the standard procedure for
636 mESCs culture and genomic editing (Andrey and Spielmann, 2017). To construct the
637 *Shox2*^{dmCherry/+;RosaEYFP/+} or *Shox2*^{trac} mESC clone, two rounds of targeting on G4 male cells, obtained from
638 the Nagy laboratory (<http://research.lunenfeld.ca/nagy/?page=mouse%20ES%20cells>), were
639 performed, first to insert the dmCherry-CRE cassette at the *Shox2* locus (*Shox2*^{dmCherry/+}), followed by a
640 second round of targeting to insert the EYFP cassette at the *ROSA26* locus (*Shox2*^{trac}). To integrate the
641 dmCherry-CRE cassette cells were transfected with 8µg of the corresponding sgRNA and 4µg of in
642 house designed cassette containing unbalanced homology arms (1.7 kb and 0.5kb), minimal β-globin
643 promoter, dmCherry reporter sequence, PEST sequence, P2A self-cleaving peptide, CRE protein
644 sequence and a bGH-PolyA terminator. To integrate the EYFP cassette, the EYFP sensor from (Srinivas
645 et al., 2001) was modified by shortening the homology arms (final length of unbalanced arms 1.4kb
646 and 0.85kb) and by removing the PGK promoter, the Neo/Kan selection cassette, the polyA of the PGK
647 and the first spacer before the first SV40 poly(A). In house designed and modified cassettes were
648 synthesized by Azenta Genomics/GENEWIZ. Alleles containing deletions or inversions were created in
649 subsequent rounds of targeting performed using the *Shox2*^{trac+} mESC clone as starting clone.

650

651 **Aggregation of mESCs clones and embryo collection**

652 Mouse embryos were obtained following the tetraploid complementation procedure (Artus and
653 Hadjantonakis, 2011). In brief, two days before the aggregation procedure, desired clones were
654 thawed, seeded on male and female CD1 feeders, and grown. Donor tetraploid embryos were
655 provided from in vitro fertilization using c57bl6J x B6D2F1 backgrounds. Aggregated embryos were
656 transferred into CD1 or B6CBA foster females. Animals were obtained from Janvier laboratories or
657 from in house crosses. Embryos were collected in 1X DPBS (Gibco, 14190-094) at the desired stage
658 depending on the downstream protocol. The presence of desired mutations in embryos was
659 confirmed by PCR genotyping (Supplementary Table S7).

660

661 **Live fluorescent imaging**

662 Embryos were imaged in 1X DPBS (Gibco, 14190-094) in a petri dish on a Zeiss Axio Zoom V16 using
663 the Axiocam 506 color camera for brightfield images or the Axiocam 506 mono camera for fluorescent
664 images, after fluorescent laser stimulation (Illuminator HXP 200C) using filter 46 HE YFP (excitation BP
665 500/25, emission BP 535/50) for capturing EYFP signal and filter 63 HE mRFP (excitation BP 572/25,
666 emission BP 629/62) for capturing dmCherry signal. Images were taken using the Zen Blue Software
667 v3.6. Adjustment of brightness was performed using Adobe Lightroom v6.4.

668 **Light sheet microscopy imaging**

669 E12.5 embryo was fixed overnight in 4% PFA and storage in 1x PBS at 4 °C until clearing procedure
670 started. The entire embryo was cleared using passive CLARITY based clearing method. Tissue was first
671 incubated for three days at 4°C in a Bis-free Hydrogel X-CLARITY™ Hydrogel Solution Kit (C1310X, Logos
672 Biosystems) to allow hydrogel solution diffusion into the tissue. This was followed by polymerization
673 in a Logos Polymerization system (C20001, Logos Biosystem) at 37°C for 3 hours. The SDS-Clearing
674 solution was prepared by dissolving 24.73g of boric acid (Sigma B7660 or Thermo Fisher B3750) and
675 80g of sodium dodecyl sulfate (Brunschwig 45900-0010, Acros 419530010, or Sigma L3771) in dH₂O
676 to make 2L of 4% SDS solution, adjusting the pH to 8.5. Samples were then washed twice for 30
677 minutes in PBS, immersed in the SDS-based clearing solution at 37°C for 48 hours, followed by two
678 PBS washes with 0.1% TritonX. Finally, tissue was placed in a Histodenz© based-refractive index-
679 matching solution (Histodenz Sigma D22158, PB + Tween + NaN₃ pH 7.5 solution, 0.1% Tween-20,
680 0.01% NaN₃, in 0.02 M phosphate buffer, final solution pH 7.5). Imaging was performed with a home-
681 built mesoscale single-plane illumination microscope, the mesoSPIM microscope is described in (Voigt
682 et al., 2019). In brief, the sample was excited with 488nm, 561nm and 647nm lasers. The beam waist
683 was scanned using electrically tunable lenses (ETL, Optotune EL-16-40-5D-TC-L) synchronized with the
684 rolling shutter of the sCMOS camera. This produced a uniform axial resolution across the field-of-view
685 (FOV) of 5 μm. EYFP signal was filtered with 530/43 nm, dmCherry signal with 593/40 and far-red
686 signal with LP663 bandpass filter (BrightLine HC, AHF). Z-stacks were acquired at 5 μm spacing with a
687 zoom set at ×1.25 resulting in an in-plane pixel size of 5.26 μm. Background and autofluorescence
688 signal were subtracted using the 561 nm excitation channel during images pre-processing. This step
689 together with subsequent normalization and filtering of the images were performed with the Amira
690 2020.1 software. 3D videos and images were captured using the Imaris 9.6.0 software.
691

692 **Whole Mount In Situ Hybridisation (WISH)**

693 *Probes design and production:* *Hoxd13* probe was produced by amplification from mouse wildtype
694 DNA using primers located at the 3'UTR of the desired genes. Primers were designed with Prime3
695 Software v 0.4.0 (using default parameters except: product size range 400-600bp; primer size 15-19bp;
696 primer Tm 60-62°), extended with either SP6 or T7 primer sequence (*Hoxd13* probe forward primer:
697 CAAGCTATTAGGTGACACTATAGTGCTGCCAATCCGACT; *Hoxd13* probe reverse primer:
698 GAACTGTAATACGACTCACTATAGGGCGTGCCTAACCTCCAA). *Shox2* probe was extracted from
699 plasmid donated by John Cobb (Cobb and Duboule, 2005) by digestion with Ncol. After PCR
700 amplification or plasmid digestion product was purified with Monarch PCR clean-up kit (NEB, #T1030s)
701 and used to produce the DIG-labeled single-stranded RNA probes using the DIG RNA labeling kit
702 (Roche, #11175025910). Probes were then cleaned with MegaClear Kit (Thermo Fisher, #AM1908).

703 *WISH staining protocol:* Embryos from the desired stage and genotype were fixed overnight in 4%
704 PFA/PBS. Subsequently, the embryos were washed in PBST (PBS with 0.1% Tween), followed by
705 dehydration in methanol/PBST solutions of increasing concentrations (30%, 50%, and 70%), with final
706 storage at -20 °C in 100% methanol. For the WISH protocol, on the first day, embryos were bleached
707 in 6% H₂O₂/PBST for 1 hour at room temperature (RT), followed by rehydration in reverse
708 methanol/PBST steps, then washed in PBST. Embryos were then treated with 2μg/ml proteinase
709 K/PBST for 3 minutes, incubated in 2mg/ml glycine/PBST, washed again in PBST, followed by three 30
710 minutes washes in RIPA buffer (5M NaCl; 10% NP-40; 10% Deoxycholate; 20% SDS ; 500mM EDTA pH8;
711 1M Tris-HCl pH8) and finally refixed for 20 minutes with a 4% PFA. Following five additional PBST
712 washing steps, embryos were incubated at 68 °C in L1 buffer (50% De-ionized formamide; SSC 5X

713 pH4.5; 1% SDS; 0.1% Tween 20) for 10 minutes. Next, embryos were incubated for 2 hours at 68 °C in
714 hybridization buffer 1 (L1 Buffer, tRNA 100ug/ml, heparin 50ug/ml), followed by overnight incubation
715 at 68 °C in hybridization buffer 1 containing 150-200ng/ml of digoxigenin probe, previously
716 denaturalized 10 minutes at 80 °C in hybridization buffer 1. On the second day, unbound probe removal
717 involved three washes of 30-minute at 68 °C with L1 buffer, three of L2 buffer (50% De-ionized
718 formamide; SSC 2X pH4.5; 0.1% Tween 20), and one of 15 minutes with L3 buffer (SSC 2X pH4.5; 0.1%
719 Tween 20), followed by 40 minutes incubation at RT. After, embryos were washed three times in TBST
720 (TBS with 1% Tween) and pre-incubated with blocking solution (10% serum/TBST) for 2 hours, before
721 overnight incubation at 4 °C in blocking solution containing a 1/5000 dilution of anti-digoxigenin-
722 alkaline phosphatase. On the third day, unbound antibody was removed through a series of 30-minute
723 washes at room temperature with TBST, followed by overnight incubation at 4 °C. On the fourth day,
724 staining was initiated by washing at RT with NTMT solution (100mM NaCl; 100mM Tris pH9.5; 1%
725 Tween; 50mM MgCl₂), followed by staining with BM Purple (sigma # 11442074001). *Shox2* expression
726 was assessed by WISH at E12.5 in *Shox2^{dmCherry/+;RosaEYFP/+}* mouse embryos. *Hoxd13* expression was assessed by
727 WISH at E13.5 in *Shox2^{Uln}* and CD1 control mouse embryos. Images were taken using in a petri dish
728 with a top thin layer of 1% agarose on a Zeiss Axio Zoom V16 using the Axiocam 506 color camera the
729 Zen Blue Software v3.6.

730

731 **Tissue collection and single-cell dissociation**

732 Forelimb or Hindlimb buds of E10.5, E11.5, E12.5, E13.5 or E14.5 control (*Shox2^{dmCherry/+;RosaEYFP/+}*) or
733 mutant embryos were micro-dissected in 1X DPBS (Gibco, 14190-094) and placed in 1.5ml tubes. After
734 DPBS removal, each tube containing pairs of limb buds were incubated with 400μl trypsin-EDTA 0.25%
735 (Thermo Fischer Scientific, 25300062) supplemented with 40μl of 5% BSA in PBS (Sigma Aldrich,
736 A7906-100G), during 8-9 min for small embryos (E10.5 and E11.5) or 12-15 min for larger embryos
737 (E12.5, E13.5 or E14.5) at 37°C in a Thermomixer with a resuspension step after the first 6 min and at
738 the end of the rest of the incubation time. After Trypsin inactivation with one volume of 5% BSA, cells
739 were passed through a 40μm cell strainer and another volume of 5% BSA was added to wash the cell
740 strainer. Cells were spun at 400g for 5min at 4 °C and resuspended in 1%BSA in PBS (5mM Na-Butyrate
741 was added in case the cells were processed to be sorted and later used for downstream ChIP
742 experiments). The single-cell suspension obtained from this process were later used for subsequent
743 flow cytometry experiments or single-cell library preparation in the latter case cells were then counted
744 using an automatized cell counter and a 1% BSA 700cells/ul suspension was prepared.

745

746 **Single-cell RNA-seq library preparation**

747 Chromium Single Cell 3' GEM, Library & Gel Bead Kit v3 (10X Genomics, #PN-1000075) or v3.1 (10X
748 Genomics, #PN-1000121) was used to prepared single-cell libraries following 10X Genomics
749 manufacturer's protocol by the iGE3 Genomic Platform. In brief, Single-Cell 3' Gel Beads were
750 combined with the Master Mix containing single cells, and Partitioning Oil onto Chromium Chip B, to
751 generate Gel Beads in Emulsion (GEMs). Full-length cDNA was produced, during beads incubation,
752 from the poly-adenylated mRNA barcoded. Right after, gel beads were dissolved, cDNA was amplified
753 via PCR. This cDNA was used to construct the library and then sequenced on an Illumina HiSeq 4000
754 or a Illumina NovaSeq 6000. On average, 7000 cells were loaded on the Chromium Chip and between
755 45000-58000 mean reads were obtained.

756

757

758 **Flow cytometry sorting and analysis**

759 Fluorescent-activated cell sorting (FACS) was used to isolate cell populations based on the dmCherry
760 and EYFP fluorescent signal by using the BD FACS Aria fusion with a blue laser (488nm, filter 530/30)
761 for the EYFP signal and with a YG laser (561nm, filter 610/20) for the dmCherry signal. When sorted
762 of cells was not required and only recording of cell population proportion was needed, we used the
763 Beckman Coulter Cytoflex analyzer with a blue laser (488nm, filter 525/40) for the EYFP signal and
764 with a YG laser (561nm, filter 620/20) for the dmCherry signal. In both cases, a first FSC/SCC gating
765 was set between 30/40 and 210/240 to exclude debris followed by dead cells removal using a viability
766 dye (DAPI, AppliChem, #A10010010 for the BD Aria or DRAQ7, Invitrogen, D15106 for the Cytoflex).
767 Then, doublets were excluded before establishing the final gating. Flow cytometry analysis to extract
768 to apply a homogeneous gating to the different experiments and cell proportion analysis was
769 performed with the FlowJo™ Software (version 10.9.0). Statistical t-test for pair-wise comparison of
770 cell proportion changes was performed using R and ggplot2 (version 3.4.4).

771

772 **RNA-seq processing and library preparation**

773 After FACS sorting, cells were spun down at 1000g for 5 minutes at 4°C, the supernatant was removed,
774 and then cells were snap frozen at -80°C. For each experimental condition including the frozen pellets
775 of single-cell suspension for bulk experiment, total RNA was extracted from biological replicates
776 containing between 3.5×10^4 - 1.5×10^5 cells each, using the RNeasy Micro Kit (Qiagen, 74004).
777 Quantification of total RNA was performed with Qubit 2.0 (LifeTechnologies) and the RNA High
778 Sensitivity Assay (Q32852). Then, libraries were prepared by the iGE3 Genomic Platform using the
779 SMART-Seq v4 kit (Clontech, 634893) for the reverse transcription and cDNA amplification, starting
780 from 5 ng of total RNA. For library preparation, 200 pg of cDNA were used with the Nextera XT kit
781 (Illumina, FC-131-1096). Library molarity and quality was assessed with the Qubit and TapeStation
782 using a DNA High sensitivity chip (Agilent Technologies). Libraries were pooled at 2 nM and loaded for
783 clustering on a Single-read Illumina Flow cell for an average of 35 million reads/library. Reads of 50
784 bases were generated using the TruSeq SBS chemistry on an Illumina HiSeq 4000 or Illumina NovaSeq
785 6000 sequencer.

786

787 **ChIP-seq and C-HiC cell processing**

788 After FACS sorting, cells were centrifuged at 1500g for 5 minutes at 4°C, and the supernatant was
789 discarded. Cells were resuspended in 10% FCS/PBS and fixed either with 1% PFA (Sigma-Aldrich
790 #252549) for ChIP-seq or with 2% PFA for C-HiC for 10 minutes rolling. Fixation was halted by adding
791 1.425M glycine followed by centrifugation at 1000g for 8 minutes at 4°C. Then, cells were lysed in cold
792 lysis buffer (10mM Tris-HCl pH7.5, 10mM NaCl, 5mM MgCl₂, 1mM EGTA, with Roche Protease Inhibitor
793 #04693159001) and incubated on ice for 10 minutes to extract nuclei. Nuclei were then centrifugated
794 at 1000g for 5 minutes at 4°C, washed in cold 1x PBS and centrifuged again 1000g for 1 minutes at
795 4°C. PBS was removed and nuclei frozen at -80°C.

796

797 **ChIP-seq immunoprecipitation and library preparation**

798 Prior to sonication of frozen nuclei, 30ul of magnetic Protein G beads (Invitrogen 10003D) were pre-
799 washed in 0.25%BSA/DPBS and resuspended in 1ml of L3 sonication buffer (10mM TrisCl pH 8.0,
800 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na-Deoxycholate, 0.5% N-Laroysarcosine, filtered and
801 with Roche Protease Inhibitor #04693159001) with 1% Triton. H3K27Ac antibody was added
802 (Diagenode, C15410174), using a 2.5ul, and beads were left to rotate at 4°C for a minimum of 4 hours.

803 In parallel, fixed nuclei (an average of 5×10^5 cells) were sonicated 8 pulses (30 seconds ON / 30
804 seconds OFF) to 200–500 bp fragments using a Bioruptor Pico sonicator (Diagenode) in 200ul of L3
805 buffer. After sonication 1% Triton was added to the samples that were centrifuged 10 minutes at 4°C.
806 Subsequently, chromatin was combined with the magnetic beads from which unbound antibodies
807 were previously removed and 1.1ml of fresh L3 buffer was added. Samples were subjected to
808 overnight rotation at 4°C. The following day unbound chromatin was removed through seven washes
809 in RIPA buffer (1% NP-40, 0.7% Na-Deoxycholate, 1mM EDTA, 50mM HEPES-KOH, pH 7.55 and 0.5M
810 LiCl with Roche Protease Inhibitor #04693159001) and one in TE buffer. Chromatin was then eluted
811 and subjected to de-crosslinking overnight with the addition of 5 μ L Proteinase K (10mg/mL) at 65°C.
812 This was followed by treatment with RNase A (4 μ L, 10mg/mL) at 37°C for 30 minutes,
813 phenol:chloroform:IAA extraction, and precipitation (1/10 NaAc, 3ul of glycogen and 2.5 volumes of
814 EtOH 100%) at -80°C during 30 minutes. Chromatin was then washed with 1ml EtOH 80%. Finally, the
815 chromatin was eluted in 100 μ L H₂O. Na-Butyrate (5 mM) was added to all buffers. Then, libraries were
816 prepared by the iGE3 Genomic Platform. Briefly, ChIP-enriched DNA (<10 ng) was used to prepare
817 libraries with the Illumina TruSeq ChIP kit, following the manufacturer's guidelines. Libraries were
818 validated on a Tapestation 2200 (Agilent) and a Qubit fluorimeter (Invitrogen – Thermo Fisher
819 Scientific). Libraries were pooled at 2 nM and loaded for clustering on a Single-read Illumina Flow cell.
820 Reads of 50 bases were generated using the TruSeq SBS chemistry on an Illumina HiSeq 4000 or an
821 Illumina NovaSeq 6000 sequencer.
822

823 **C-HiC and library preparation**

824 To prepare C-HiC libraries 1×10^6 fixed frozen nuclei were used per sample. Nuclei were taken up in
825 520 μ l of 1 \times DpnII buffer (NEB, R0543M) and incubated with 7.5 μ l of 20% SDS for 1 hour shaking at
826 600 r.p.m. at 37 °C. Subsequently, 75 μ l of 20% Triton X-100 was added and incubated by shaking at
827 600 r.p.m. at 37 °C for another hour. A 40- μ l aliquot was preserved as a control for undigested
828 chromatin (stored at -20 °C). Chromatin digestion was initiated using 600 μ l of DpnII buffer and 400
829 Units of DpnII, shaking at 600 r.p.m. at 37 °C for 6 hours; then, 400 Units of DpnII were added, and the
830 samples were incubated overnight, shaking at 600 r.p.m. at 37 °C. The following morning, 200 Units
831 more of DpnII were added, and the samples were incubated 4 hours shaking at 600 r.p.m. at 37 °C. A
832 80- μ l aliquot was extracted to assess digestion efficiency (stored at -20 °C). DpnII restriction enzyme
833 was subsequently inactivated at 65 °C for 25 minutes. Next, the digested chromatin was diluted and
834 religated in 5.1 ml H₂O, 700 μ l of 10 \times ligation buffer (1M Tris-HCl pH 7.5; 500mM DTT; 500mM MgCl₂;
835 100mM ATP), and 100 Units (Weiss units) T4 DNA ligase (Thermo Fisher Scientific, #EL0013), incubated
836 at 16 °C for 4 hours. The ligated samples were further incubated for 30 minutes at room temperature.
837 De-crosslinking of samples and test aliquots occurred overnight by adding 30 μ l and 5 μ l proteinase K
838 (10mg/ml), respectively, and incubating at 65 °C. On the following day, 30 μ l or 5 μ l of 10 mg/ml RNase
839 was added to the samples and test aliquots, respectively, and incubated for 45 minutes at 37 °C.
840 Chromatin was then precipitated by adding 1 volume of phenol-chloroform to the samples and test
841 aliquots, vigorously shaking them, followed by centrifugation at 2200g at room temperature for 15
842 minutes. The upper phase containing the chromatin was transferred to a new tube. Samples were
843 then prepared for precipitation by adding 7ml of H₂O; 1 ml of 3M NaAc pH 5.2 and 35ml of 100% EtOH
844 and incubated over weekend at -20 °C. The precipitated chromatin was isolated by centrifugation at
845 2200g for 45 minutes at 4 °C. The chromatin pellet was washed with 70% ethanol and further
846 centrifuged at 2200g for 15 minutes at 4 °C. Finally, the 3C library chromatin pellet was dried at room
847 temperature and resuspended in 150ul of 10 mM Tris-HCl pH 7.5. Quantification of total re-ligated

848 product was performed using the Qubit High Sensitivity DNA Assay (Q32851). To assess the 3C library
849 5ul of the re-ligated sample was loaded on a 1.5% agarose gel along with the undigested and digested
850 aliquots. Then, libraries were prepared by the iGE3 Genomic Platform. Briefly, the 3C library was then
851 sheared using a Covaris sonicator (duty cycle: 10%; intensity: 5; cycles per burst: 200; time: 6 cycles of
852 60 s each; set mode: frequency sweeping; temperature: 4–7 °C). Adaptors were added to the sheared
853 DNA and amplified according to the manufacturer's instructions for Illumina sequencing (Agilent).
854 Subsequently, the library was hybridized to custom-designed SureSelect beads and indexed for
855 sequencing (50–100 bp paired-end) following the manufacturer's instructions (Agilent). Libraries were
856 sequenced an Illumina HiSeq 4000 or Illumina NovaSeq 6000 sequencer. *Shox2* C-HiC SureSelect
857 library was designed using the GOPHER Java desktop application, version 0.5.7 (Hansen et al., 2019),
858 for the genomic interval mm39:chr3:65103500-68603411 covering the *Shox2* locus and adjacent
859 TADs.

860

861 **Custom genome for NGS analyses**

862 All NGS datasets generated in this study were aligned to a customized version of the GRCm39/mm39
863 assembly (Cunningham et al., 2022) incorporating the dmCherry-P2A-CRE and floxed-SV40pASTOP-
864 EYFP cassettes as artificial chromosomes, that we termed as GRCmm39/
865 mm39_dsmCherry_P2A_CRE_EYFP genome. NGS datasets downloaded from GEO and re-analyzed in
866 this study (Andrey et al., 2017; Sheth et al., 2016) were aligned to the normal GRCm39/mm39
867 assembly (Cunningham et al., 2022). For annotation, GTF files sourced from ENSEMBL GRCm39 release
868 104 (Cunningham et al., 2022) were used, with a filtering process applied to exclude read-
869 through/overlapping transcripts. Only transcripts annotated as 'protein-coding' for their respective
870 genes were retained, while those flagged as 'retained_intron', 'nonsense-mediated decay', etc., were
871 discarded. This filtration aimed to retain only unambiguous exons, mitigating potential quantitative
872 biases during data analysis conducted using STAR/Cufflinks (Amandio et al., 2016).

873

874 **Single-cell analysis**

875 *Processing of sequenced reads:* Demultiplexing, alignment, filtering of barcodes, and UMI counting of
876 two replicates for each stage of interest E10.5, E11.5 and E12.5 , except from E13.5 that only one
877 replicate was produced, were executed using the 10x Genomics Cell Ranger software (version 6.1.2)
878 in accordance with the manufacturer's guidelines, default settings and custom genome GRCmm39/
879 mm39_dsmCherry_P2A_CRE_EYFP built following using the cellranger mkref pipeline. Cell Ranger
880 output files for each dataset were further processed using the velocyto run10x command from the
881 velocyto.py tool (version 0.17.17) (La Manno et al., 2018) in Python (version 3.9.12) with our custom
882 genome and the UCSC genome browser repeat masker.gtf file to mask expressed repetitive elements
883 to generate a loom file for each sample. Each resulting loom matrix, comprising
884 spliced/unspliced/ambiguous reads, was individually imported into R (version 4.1.2) using the Read
885 Velocity function from the Seurat Wrappers package (version 0.3.0). Simultaneously, feature-filtered
886 output matrices obtained from Cell Ranger were loaded into R separately through the Read10X
887 function of the Seurat package (version 4.2.1) (Stuart et al., 2019). Subsequently, the spliced,
888 unspliced, ambiguous, and RNA feature data were combined into a single matrix for each dataset.
889 Following this, each matrix was transformed into a Seurat object using the Seurat package.
890 Consequently, for each sample, a single Seurat object was obtained, encompassing four assays. Three
891 of these assays (spliced, unspliced, and ambiguous) were used for downstream RNA velocities

892 estimations, while the RNA feature assay was employed for subsequent gene expression analysis
893 among the samples, as detailed below.

894 *Quality control and filtering:* Quality control and pre-processing of each Seurat object for our samples
895 were conducted based on the following criteria. Cells expressing fewer than 200 genes or exhibiting
896 more than 7500 features were excluded from the analysis. Additionally, we calculated the proportion
897 of reads mapping to the mitochondrial genome, filtering out cells with a mitochondrial content
898 exceeding 5%, as elevated levels of mitochondrial mRNA have been linked to cell death. Conversely,
899 cells with a mitochondrial content lower than 0.5% were also excluded, as our observations suggest
900 that these cells likely originate from blood cells, possibly due to the dissection protocol. After this step
901 we decided to continue the analysis with only one replicate per stage. The replicate with the best
902 quality control for each stage was selected.

903 *Individual dataset normalization, scaling, and dimensional reduction:* After filtering each dataset was
904 individually normalized using the default parameters provided by Seurat for the LogNormalize method
905 and applying it to the RNA features assay. Subsequently, we calculated the most variable features
906 excluding the *CRE*, *EYFP* and *dmCherry* artificial genes added on our custom genome from the list of
907 variable genes to avoid that they drive the PCA. Then, scaling was performed via linear transformation
908 and scaled data were then employed for principal component analysis (PCA), utilizing the default 50
909 principal components (PCs). Additionally, non-linear dimensional reduction was conducted using
910 Uniform Manifold Approximation Projection (UMAP) (Leland McInnes et al., 2018), with 1:50
911 dimensions utilized as input.

912 *Cell doublet identification and features annotation:* Pre-processed and normalized datasets were
913 individually examined to detect putative doublet cells. Doublets identified in each dataset were
914 subsequently excluded using the DoubletFinder R package (version 2.0.3) (McGinnis et al., 2019). The
915 doublet rate (nExp parameter) utilized was estimated based on the number of cells captured and pK
916 parameter was estimated following the strategy defined in the package, resulting in the following
917 values: *Shox2*^{trac} Hindlimb E10.5, nExp= 89, pK=0.3; E11.5 nExp= 98, pK=0.16; E12.5 nExp= 71, pK=0.25;
918 E13.5 nExp= 88, pK=0.1. After removing doublets, counts for *CRE*, *dmCherry*, *Shox2*, and *EYFP* per cell
919 were estimated. Given the low counts for *dmCherry* (likely a limitation due to the 10X single-cell
920 technique where transcripts are only sequenced from the 3' poly-A end, which does not allow for
921 adequately cover the *dmCherry* sequence), we proceeded with further cell classification using only
922 *Shox2*, *EYFP*, and *CRE* counts. Moreover, from that point on, we referred to *CRE* counts as *dmCherry*-
923 *P2A-CRE*, since we assumed that could be used as a proxy for both *dmCherry* and *CRE* genes. Of note,
924 due to the shared SV40polyA tail between *dmCherry-P2A-CRE* and *EYFP*, many reads were ambiguous,
925 leading to a limited number of reads assignable to *dmCherry-P2A-CRE*, which we anticipated to be
926 lower in expression than *EYFP* (as constitutively expressed from the *ROSA26* promoter). Cells were
927 then classified as positive for each of these genes if they had at least one count, and negative
928 otherwise. Cells positive for *Shox2*, negative for *EYFP*, and either positive or negative for *dmCherry*-
929 *P2A-CRE* were classified as *initiating*. Those positive for both *Shox2* and *EYFP*, regardless of *dmCherry*-
930 *P2A-CRE* status, were classified as *maintaining*. Cells negative for both *Shox2* and *dmCherry-P2A-CRE*
931 but positive for *EYFP* were considered *decommissioned*. Cells negative for all three genes were marked
932 as inactive, and any remaining combinations of gene expression fell under the class "other". A new
933 metadata column containing the classification of the cells was then created.

934 *Merge of all datasets and normalization:* All datasets were then merged into a single Seurat object
935 without undergoing integration, allowing for ensemble downstream analysis of the four datasets.
936 Subsequently, no batch effect was observed in this merged dataset. A new column of the metadata

937 was created at this step to label samples based on the stage, to keep this information for downstream
938 analysis. Afterward, we applied the SCTransform normalization protocol (Hafemeister and Satija,
939 2019) to our newly merged Seurat object, utilizing default parameters, over the spliced assay.

940 *Cell-cycle scoring and cell-cycle and stage regression:* Since we observed, during individual dataset
941 analysis, that a portion of the variance was attributable to cell-cycle genes, we assigned cell cycle score
942 using the CellCycleScoring function implemented in Seurat. As we also observed that sample variance
943 by a stage effect we regress out the cell-cycle heterogeneity and stage variability by applying
944 SCTransform normalization method to our merged object, using the spliced assay as the source, and
945 incorporating the calculated cell-cycle scores (S.Score and G2M.Scores) and the stage metadata
946 information as variables to regress, in addition to the default settings. Subsequently, we excluded
947 *dmCherry*, *CRE* and *EYFP*, if they were present from the variable genes to avoid that they drive the
948 PCA.

949 *Clustering:* Following the regression step, cells were clustered using the standard steps of the
950 SCTransform Seurat workflow. Briefly, PCA (npcs = 50), UMAP (dims = 1:50, n.neighbors = 50), and
951 nearest neighbors were calculated. Clusters were identified using the Seurat FindClusters function
952 with default parameters and a resolution of 0.7, resulting in the definition of 21 clusters. Cluster
953 identity was determined by assessing the expression difference of each gene between each cluster
954 and the rest of the clusters using the FindMarkers function. Clusters presenting similar features
955 profiles were combined, reducing the final number of clusters identified to 6 clusters (**Supplementary**
956 **Fig. S2A**). The mesenchyme (comprising 13 out of the 21 clusters), epithelium (consisting of 3 out of
957 21), muscle (comprising 2 out 21), and endothelium, immune Cells, and blood Cells clusters each
958 represented by only 1 cluster. The presence of expected identity markers in the new clustering was
959 confirmed by running the FindMarkers function with default parameters and using grouping.var =
960 "stage" and only.pos = TRUE.

961 *Subsetting and re-clustering:* Given the focus of this study on populations expressing *Shox2*, we
962 subsetted and re-clustering the mesenchyme cluster. To do, after applying subset function to the
963 "Mesenchyme" UMAP embedding was computed with the following parameters: dims = c(1:10),
964 n.neighbors = 30L, min.dist = 0.5, metric = "euclidean", spread = 1, while keeping all other parameters
965 at their default values. Subsequently, the cluster resolution after finding neighbors was set at 1.1 to
966 reveal subpopulations. We observed 18 mesenchyme subpopulations, each named based on their
967 identity genes. Identity markers were identified using the FindMarkers function on the RNA assay,
968 with grouping.var = "stage", only.pos = TRUE, logfc.threshold = 0.3, min.diff.pct = 0.1, and all other
969 parameters set to default values. Clusters presenting similar features profiles were combined,
970 reducing the final number of clusters identified to 15 clusters (**Fig. 2B**), late proximal progenitors
971 (comprised 3 out of the 18 clusters) and irregular connective tissue (contained 2 out the 18) the other
972 clusters remained represented by 1 cluster. Final identity markers for the new clustering was assessed
973 by running the FindMarkers function on the RNA assay, only.pos = TRUE, logfc.threshold = 0.5,
974 pseudocount.use = 0, min.diff.pct = 0.1, and all other parameters set to default values
975 (**Supplementary Table S2**).

976 *RNA-velocity analysis:* For the RNA-velocity analysis, we used the unspliced (immature) and spliced
977 (mature) abundances calculated for each replicate of our datasets, as described earlier (see Material
978 and Methods, Single-cell analysis, Processing of sequenced reads). We then performed RNA-velocity
979 analysis on all combined datasets by exporting Seurat object as h5Seurat files using the SeuratDisk
980 package (version 0.0.0.90) and for using it as input in Scvelo (version 0.2.5) (Bergen et al., 2020) in
981 Python (version 3.9.16). Then the standard protocol described in scVelo was followed, with the

982 exception of using `npcs = 10` and `n.neighbors = 30`, to match the parameters used for UMAP
983 embedding in Seurat. *Shox2* velocity was computed by running `velocyto` package for R (version 0.6)
984 (La Manno et al., 2018) with default parameters on the Seurat Object to generate an embedding file
985 from which *Shox2* was only plotted using `ggplot2` (version 3.4.4).

986 *Graphical plots*: `FeaturePlot` and `VlnPlot` were generated from the RNA assay of the Seurat objects.
987 `FeaturePlot` and `Dimplot` were produced using default Seurat parameters. Density UMAP plots were
988 produced using the `Nebulosa` v1.4.0 package (Alquicira-Hernandez and Powell, 2021). Cell proportions
989 were calculated using the `prop.table` tool from the base R package (version 4.1.2) followed by plotting
990 using `ggplot2` (version 3.4.4).

991

992 **RNA-seq analysis**

993 *RNA-seq reads processing*: FASTQ files from FACS-sorted cells or entire limbs generated in this study
994 were processed using `CutAdapt` v1.18 to trim NextSeq adapter sequences and low-quality bases
995 (Martin, 2011), employing the adapter sequence `-a CTGCTCTTATACACATCTCCGAGCCCACGAGAC`
996 with a quality cutoff of 30 (`-q30`) and a minimum length requirement of 15 bases (`-m15`). In the case
997 of the samples from GEO datasets that we wanted to reanalyze (Andrey et al., 2017) `CutAdapt` was
998 used to trim TruSeq adapter sequences and low-quality bases, using the following parameters `-a`
999 `GATCGGAAGAGCACACGTCTGAAGTCAC`, `-q30` and `-m15`). Unstranded reads were then mapped
1000 on the customized genome `GRCm39/ mm39_dsmCherry_P2A_CRE_EYFP`, in the case of the datasets
1001 produced in this study, or to the `GRCm39/mm39`, in the case of the reanalyzed dataset. The `STAR`
1002 version 2.7.2b (Dobin et al., 2013) was then used together with the filtered GTF file generated for this
1003 study (see Custom genome for NGS analyses in this Material and Methods section) for accurate gene
1004 quantification using tailored settings (`--outSAMstrandField intronMotif --sjdbOverhang '99'` --
1005 `sjdbGTFfile $gtfFile --quantMode GeneCounts --outFilterType BySJout --outFilterMultimapNmax 20` --
1006 `outFilterMismatchNmax 999 --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20` --
1007 `alignIntronMax 1000000 --alignMatesGapMax 1000000 --alignSjoverhangMin 8` --
1008 `alignSJDBoverhangMin 1`). FPKM values were then determined by `Cufflinks` version 2.2.1 (Roberts et
1009 al., 2011) using the filtered GTF file generated for this study (see Custom genome for NGS analyses in
1010 this Material and Methods section) and tailored settings (`--max-bundle-length 10000000` --
1011 `max-bundle-frags 100000000` -- multi-read-correct --library-type "fr-firststrand" --no-effective-length-
1012 correction `-M MTmouse.gtf`). Then, Normalized FPKM were computed by determining coefficients
1013 extrapolated from a set of 1000 house-keeping genes stably expressed across the series of compared
1014 RNA-seq datasets (Brawand et al., 2011). Differential expression analysis was performed using `DEseq2`
1015 (Love et al., 2014) R package (version 1.34.0) with the Wald test for comparisons across samples and
1016 multiple test correction using the FDR/Benjamini-Hochberg test.

1017

1018 **ChIP-seq analysis**

1019 *ChIP-seq reads processing*: Reads from ChIP-seq sequencing either from dataset generated for this
1020 study or from GEO datasets that we wanted to reanalyze (Andrey et al., 2017; Sheth et al., 2016) were
1021 processed first using `CutAdapt` version 1.18 (Martin, 2011) to trim TruSeq adapter sequences and low-
1022 quality bases, specifying the adapter sequence with `-a GATCGGAAGAGCACACGTCTGAAGTCAC`,
1023 a quality threshold of 30 with `-q30`, and a minimum length of 15 bases with `-m15`. Then reads were
1024 mapped to our `GRCm39/mm39_dsmCherry_P2A_CRE_EYFP` customized mouse genome, in the case
1025 of the datasets generated for this study, or to the `GRCm39/mm39`, in the case of the reanalyzed
1026 datasets using `Bowtie2` version 2.3.5.1 (Langmead and Salzberg, 2012) with its default settings.

1027 Subsequently, only reads with a mapping quality score (MAPQ) of 30 or higher were retained, as
1028 filtered with SAMtools view version 1.10 (Danecek et al., 2021). For coverage and peak analysis, reads
1029 were extended by 200 base pairs and processed using MACS2 version 2.2.7.1 (Zhang et al., 2008) with
1030 the parameters --broad --nolambda --broad-cutoff 0.05 --nomodel --gsize mm --extsize 200 -B 2 for
1031 broad peak calling, in the case of H3K27ac ChIP produced from the FACS sorted cells for this study. For
1032 reanalyzed datasets coverage and peak analysis, reads were extended by 200 base pairs and
1033 processed using MACS2 version 2.2.7.1 (Zhang et al., 2008) with the parameters --call-summits --
1034 nomodel --extsize 200 -B 2 for narrow peak calling. The coverage normalization was performed by
1035 MACS2, adjusting for the total millions of tags used in the analysis.

1036 *ChIP-seq reads visualization:* For the reprocessed *Hoxa13* and *Hoxd13* ChIP-seq (Sheth et al., 2016),
1037 when a peak with a score >100 (MACS2) overlap one of our enhancers, we considered the region
1038 bound.

1039 *Early, common, late putative enhancers classification on entire forelimb datasets:* RNA-seq FASTQ files
1040 from two replicates of entire forelimbs at E10.5 and E13.5 (Andrey et al., 2017) were re-analyzed
1041 following the RNA-seq pipeline previously described (see RNA-seq analysis in this Material and
1042 Methods section). Genes related to limb development were selected for downstream analysis.
1043 Average of normalized FPKM values was calculated and used to compute the ratio among E10.5 and
1044 E13.5 datasets. Then, since we were interested in genes having stable expression between E10.5 and
1045 E13.5, they were filtered to keep those with FPKM values bigger than 5, at both stages, and we
1046 excluded genes having a fold change larger than 3 between the two stages. By applying this filtering
1047 90 genes were selected (**Supplementary Table S1**). To analyze putative enhancers ChIP-seq H3K27Ac
1048 datasets of entire forelimbs at E10.5 and E13.5 (Andrey et al., 2017) were first reanalyzed following
1049 the ChIP-seq pipeline previously described in this material and methods section. H3K27ac MACS2
1050 narrowpeaks were then restricted within the interaction domain defined by promoter Capture-C
1051 (Andrey et al., 2017) of the 90 filtered genes, using bedtools (version v2.30.0) intersect function
1052 (Quinlan and Hall, 2010). Then, H3K27Ac peaks around gene promoters were excluded by filtering
1053 against a -2kb/500bp window centered at the transcription start site of coding genes using again
1054 bedtools intersect. Remaining peaks were extended by +/- 300bp, using bedtools slope and merge
1055 function (Quinlan and Hall, 2010). H3K27Ac peaks were then classified as putative common enhancers
1056 when present in both E10.5 and E13.5 using bedtools intersect. H3K27Ac peaks present only in the
1057 E10.5 dataset were classified as putative early enhancers while H3K27Ac peaks present only in the
1058 E13.5 dataset were classified as putative late enhancers. Putative enhancers were then assigned to
1059 gene interaction domain (**Supplementary Table S1**). In those cases, where putative enhancers were
1060 within the overlapping region of two domains putative enhancers were assigned to the two loci.

1061 *Early, common, late putative enhancers classification on FACS sorted maintaining forelimb datasets*
1062 MACS2 BroadPeak files from FACS sorted maintaining cells from forelimbs at E10.5, E11.5, E12.5 and
1063 E13.5 were used to build bed files. These files were used to merge peaks within 600bp of each other
1064 using bedtools (Quinlan and Hall, 2010). Then, bedops (version 2.4.41) (Neph et al., 2012) --merge
1065 operation was used to flatten all disjoint, overlapping, and adjoining element regions into contiguous,
1066 disjoint regions peaks among the four different stages. Subsequently, peaks were extended by +/-
1067 300bp, using bedtools slope function. Since, we wanted only to explore the putative enhancers of
1068 *Shox2* locus using bedtools intersect we selected only the region with the following coordinates mm39
1069 chr3:65,885,132-67,539,263, in that way we created a list of peaks of interest. Peaks falling on gene
1070 promoters were manually excluded. Then as we wanted to establish our new early, late, common
1071 enhancer classification having into consideration the scores assigned to each peak for each stage

1072 analyzed, we used deeptools (Ramirez et al., 2016) multiBigwigSummary function to compute the
1073 average scores for each peak in our curated list at each stage. Subsequently, peaks with a coverage
1074 lower than 0.3 and peaks smaller than 600bp were excluded. Finally, we analyze the slope of H3K27ac
1075 coverage across the four stages and we classified enhancers as early (<-0.6), common (>-0.6, <0.6), or
1076 late (>0.6).

1077

1078 **C-HiC analysis**

1079 The preprocessing and alignment of paired-end sequencing data, along with the filtering of mapped
1080 di-tags, were conducted using HiCUP pipeline (version 0.6.1) (Wingett et al., 2015) using default
1081 parameters for the configuration file and adding Nofill: 1 parameter. Bowtie2 (version
1082 2.3.4.2)(Langmead and Salzberg, 2012) was used by the pipeline for mapping. Subsequently, filtered
1083 di-tags were processed with Juicer Tools (v1.9.9) (Durand et al., 2016) to generate binned contact
1084 maps (5kb and 10kb) from valid and unique reads pairs with MAPQ \geq 30 and normalized maps using
1085 Knights and Ruiz matrix balancing (Knight and Ruiz, 2013). For binning and normalization, only the
1086 genomic region mm39:chr3:65103500-68603411 covering the *Shox2* locus and adjacent TADs was
1087 considered. Subtraction maps were produced from the KR normalized maps and scaled together
1088 across their subdiagonals. CHiC maps of count values, as well as subtraction maps, were visualized as
1089 heatmaps in which values above the 99-th percentile were truncated for visualization purposes.

1090

1091 **Data availability**

1092 Sequencing data are available in the GEO repository under the accession number GSE262006.

1093 **Acknowledgements**

1094 We thank Mylène Docquier, Brice Petit, Didier Chollet and Christelle Barraclough from the iGE3
1095 sequencing facility. We thank Grégory Schneiter, Lan Tran and Cécile Gameiro from the Flow
1096 Cytometry facility. We thank Olivier Fazio, Angélique Vincent and Fabrizio Thorel from the Transgenic
1097 facility. We thank Lucille Delisle for bioinformatic support. We thank Nicolas Liaudet from the
1098 Bioimaging facility and Stéphane Pàges, Laura Batti and Ivana Gantar from Advanced Light Sheet
1099 Imaging Center (ALICe) at the Wyss Center for Bio and Neuroengineering, Geneva. We thank Frank
1100 Costantini and Shankar Srinivas for sharing the map and plasmid sequence of their R26R-YFP targeting
1101 construct. We thank John Cobb for providing the plasmid for the *Shox2* probe. We thank the Duboule
1102 lab for discussions. The computations were performed at University of Geneva using Baobab HPC
1103 service. This study was supported by grants from the Swiss National Science Foundation
1104 PP00P3_176802, PP00P3_210996.

1105 **Author contributions**

1106 G.A. conceived the project. R.R.G. designed the targeting constructs and deletion experiments. R.R.G.
1107 and G.A performed embryo imaging. R.R.G., A.R. and O.B. performed single dissociation and fixation
1108 for scRNA-seq, ChIP-seq and C-HiC. R.R.G. performed the scRNA-seq, RNA-seq ChIP-seq, C-HiC and
1109 associated bioinformatic analyses. F.D. performed the limb-wide analysis of early-late enhancers.
1110 R.R.G. and A.R. performed mESC targetings and prepared the cells for tetraploid aggregation. G.S.

1111 cloned and targeted the Rosa26 EYFP construct in mESCs. A.R. performed the WISH. G.A. and R.R.G.
1112 wrote the manuscript with input from the remaining authors.

1113 **Competing interests**

1114 The authors declare no competing interests.

1115

1116

1117 **References**

1118

1119 Abassah-Oppong, S., Mannion, B.J., Zoia, M., Rouco, R., Tissieres, V., Spurrell, C.H., Roland, V.,
1120 Darbellay, F., Ljubojevic, A., Gamart, J., *et al.* (2023). A gene desert required for regulatory control of
1121 pleiotropic *Shox2* expression and embryonic survival. *bioRxiv*, 2020.2011.2022.393173.

1122 Akhtar, W., de Jong, J., Pindyurin, A.V., Pagie, L., Meuleman, W., de Ridder, J., Berns, A., Wessels,
1123 L.F., van Lohuizen, M., and van Steensel, B. (2013). Chromatin position effects assayed by thousands
1124 of reporters integrated in parallel. *Cell* 154, 914-927.

1125 Alquicira-Hernandez, J., and Powell, J.E. (2021). Nebulosa recovers single-cell gene expression signals
1126 by kernel density estimation. *Bioinformatics* 37, 2485-2487.

1127 Amandio, A.R., Necsulea, A., Joye, E., Mascrez, B., and Duboule, D. (2016). Hotair Is Dispensable for
1128 Mouse Development. *PLoS Genet* 12, e1006232.

1129 Andrey, G., Montavon, T., Mascrez, B., Gonzalez, F., Noordermeer, D., Leleu, M., Trono, D., Spitz, F.,
1130 and Duboule, D. (2013). A switch between topological domains underlies HoxD genes collinearity in
1131 mouse limbs. *Science* 340, 1234167.

1132 Andrey, G., and Mundlos, S. (2017). The three-dimensional genome: regulating gene expression
1133 during pluripotency and development. *Development* 144, 3646-3658.

1134 Andrey, G., Schopflin, R., Jerkovic, I., Heinrich, V., Ibrahim, D.M., Paliou, C., Hochradel, M.,
1135 Timmermann, B., Haas, S., Vingron, M., *et al.* (2017). Characterization of hundreds of regulatory
1136 landscapes in developing limbs reveals two regimes of chromatin folding. *Genome Res* 27, 223-233.

1137 Andrey, G., and Spielmann, M. (2017). CRISPR/Cas9 Genome Editing in Embryonic Stem Cells.
1138 *Methods Mol Biol* 1468, 221-234.

1139 Artus, J., and Hadjantonakis, A.K. (2011). Generation of chimeras by aggregation of embryonic stem
1140 cells with diploid or tetraploid mouse embryos. *Methods Mol Biol* 693, 37-56.

1141 Beccari, L., Yakushiji-Kaminatsui, N., Woltering, J.M., Necsulea, A., Lonfat, N., Rodriguez-Carballo, E.,
1142 Mascrez, B., Yamamoto, S., Kuroiwa, A., and Duboule, D. (2016). A role for HOX13 proteins in the
1143 regulatory switch between TADs at the HoxD locus. *Genes Dev* 30, 1172-1186.

1144 Bergen, V., Lange, M., Peidli, S., Wolf, F.A., and Theis, F.J. (2020). Generalizing RNA velocity to
1145 transient cell states through dynamical modeling. *Nat Biotechnol* 38, 1408-1414.

1146 Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A.,
1147 Wernig, M., Plath, K., *et al.* (2006). A bivalent chromatin structure marks key developmental genes in
1148 embryonic stem cells. *Cell* 125, 315-326.

1149 Blaschke, R.J., Hahurij, N.D., Kuijper, S., Just, S., Wisse, L.J., Deissler, K., Maxelon, T., Anastassiadis,
1150 K., Spitzer, J., Hardt, S.E., *et al.* (2007). Targeted mutation reveals essential functions of the
1151 homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. *Circulation*
1152 115, 1830-1838.

1153 Blaschke, R.J., Monaghan, A.P., Schiller, S., Schechinger, B., Rao, E., Padilla-Nash, H., Ried, T., and
1154 Rappold, G.A. (1998). SHOT, a SHOX-related homeobox gene, is implicated in craniofacial, brain,
1155 heart, and limb development. *Proc Natl Acad Sci U S A* 95, 2406-2411.

1156 Bolt, C.C., Lopez-Delisle, L., Mascrez, B., and Duboule, D. (2021). Mesomelic dysplasias associated
1157 with the HOXD locus are caused by regulatory reallocations. *Nature communications* 12, 5013.

1158 Brawand, D., Soumillon, M., Necsulea, A., Julien, P., Csardi, G., Harrigan, P., Weier, M., Liechti, A.,
1159 Aximu-Petri, A., Kircher, M., *et al.* (2011). The evolution of gene expression levels in mammalian
1160 organs. *Nature* 478, 343-348.

1161 Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D.M., Hill, A.J., Zhang, F., Mundlos, S.,
1162 Christiansen, L., Steemers, F.J., *et al.* (2019). The single-cell transcriptional landscape of mammalian
1163 organogenesis. *Nature* 566, 496-502.

1164 Chen, A., Liao, S., Cheng, M., Ma, K., Wu, L., Lai, Y., Qiu, X., Yang, J., Xu, J., Hao, S., *et al.* (2022).
1165 Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays.
1166 *Cell* 185, 1777-1792 e1721.

1167 Clement-Jones, M., Schiller, S., Rao, E., Blaschke, R.J., Zuniga, A., Zeller, R., Robson, S.C., Binder, G.,
1168 Glass, I., Strachan, T., *et al.* (2000). The short stature homeobox gene SHOX is involved in skeletal
1169 abnormalities in Turner syndrome. *Hum Mol Genet* 9, 695-702.

1170 Cobb, J., Dierich, A., Huss-Garcia, Y., and Duboule, D. (2006). A mouse model for human short-
1171 stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone
1172 development. *Proc Natl Acad Sci U S A* 103, 4511-4515.

1173 Cobb, J., and Duboule, D. (2005). Comparative analysis of genes downstream of the Hoxd cluster in
1174 developing digits and external genitalia. *Development* 132, 3055-3067.

1175 Cooper, K.L., Hu, J.K., ten Berge, D., Fernandez-Teran, M., Ros, M.A., and Tabin, C.J. (2011). Initiation
1176 of proximal-distal patterning in the vertebrate limb by signals and growth. *Science* 332, 1083-1086.

1177 Cunningham, F., Allen, J.E., Allen, J., Alvarez-Jarreta, J., Amode, M.R., Armean, I.M., Austine-
1178 Orimoloye, O., Azov, A.G., Barnes, I., Bennett, R., *et al.* (2022). Ensembl 2022. *Nucleic Acids Res* 50,
1179 D988-D995.

1180 Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane, T.,
1181 McCarthy, S.A., Davies, R.M., *et al.* (2021). Twelve years of SAMtools and BCFtools. *GigaScience* 10.

1182 Desanlis, I., Paul, R., and Kmita, M. (2020). Transcriptional Trajectories in Mouse Limb Buds Reveal
1183 the Transition from Anterior-Posterior to Proximal-Distal Patterning at Early Limb Bud Stage. *J Dev
1184 Biol* 8.

1185 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., and
1186 Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics (Oxford, England)* 29,
1187 15-21.

1188 Durand, N.C., Shamim, M.S., Machol, I., Rao, S.S., Huntley, M.H., Lander, E.S., and Aiden, E.L. (2016).
1189 Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell Syst* 3, 95-
1190 98.

1191 Espinoza-Lewis, R.A., Yu, L., He, F., Liu, H., Tang, R., Shi, J., Sun, X., Martin, J.F., Wang, D., Yang, J., *et
1192 al.* (2009). Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5.
1193 *Dev Biol* 327, 376-385.

1194 Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., and Stern, D.L. (2010). Phenotypic robustness
1195 conferred by apparently redundant transcriptional enhancers. *Nature* 466, 490-493.

1196 Furlong, E.E.M., and Levine, M. (2018). Developmental enhancers and chromosome topology.
1197 *Science* 361, 1341-1345.

1198 Gianfrancesco, F., Sanges, R., Esposito, T., Tempesta, S., Rao, E., Rappold, G., Archidiacono, N.,
1199 Graves, J.A., Forabosco, A., and D'Urso, M. (2001). Differential divergence of three human
1200 pseudoautosomal genes and their mouse homologs: implications for sex chromosome evolution.
1201 *Genome Res* 11, 2095-2100.

1202 Glaser, A., Arora, R., Hoffmann, S., Li, L., Gretz, N., Papaioannou, V.E., and Rappold, G.A. (2014). Tbx4
1203 interacts with the short stature homeobox gene Shox2 in limb development. *Dev Dyn* 243, 629-639.

1204 Goel, V.Y., Huseyin, M.K., and Hansen, A.S. (2023). Region Capture Micro-C reveals coalescence of
1205 enhancers and promoters into nested microcompartments. *Nat Genet* 55, 1048-1056.

1206 Gross, S., Krause, Y., Wuelling, M., and Vortkamp, A. (2012). Hoxa11 and Hoxd11 regulate
1207 chondrocyte differentiation upstream of Runx2 and Shox2 in mice. *PLoS One* 7, e43553.

1208 Gu, S., Wei, N., Yu, L., Fei, J., and Chen, Y. (2008). Shox2-deficiency leads to dysplasia and ankylosis of
1209 the temporomandibular joint in mice. *Mech Dev* 125, 729-742.

1210 Hafemeister, C., and Satija, R. (2019). Normalization and variance stabilization of single-cell RNA-seq
1211 data using regularized negative binomial regression. *Genome Biol* 20, 296.

1212 Hansen, P., Ali, S., Blau, H., Danis, D., Hecht, J., Kornak, U., Lupianez, D.G., Mundlos, S., Steinhaus, R.,
1213 and Robinson, P.N. (2019). GOPHER: Generator Of Probes for capture Hi-C Experiments at high
1214 Resolution. *BMC Genomics* 20, 40.

1215 He, P., Williams, B.A., Trout, D., Marinov, G.K., Amrhein, H., Berghella, L., Goh, S.T., Plajzer-Frick, I.,
1216 Afzal, V., Pennacchio, L.A., *et al.* (2020). The changing mouse embryo transcriptome at whole tissue
1217 and single-cell resolution. *Nature* 583, 760-767.

1218 Herault, Y., Fraudeau, N., Zakany, J., and Duboule, D. (1997). Ulnaless (Ul), a regulatory mutation
1219 inducing both loss-of-function and gain-of-function of posterior Hoxd genes. *Development* 124,
1220 3493-3500.

1221 Knight, P.A., and Ruiz, D. (2013). A fast algorithm for matrix balancing. *IMA J Numer Anal* 33, 1029-
1222 1047.

1223 Kondo, T., and Duboule, D. (1999). Breaking colinearity in the mouse HoxD complex. *Cell* 97, 407-
1224 417.

1225 Kraft, K., Geuer, S., Will, A.J., Chan, W.L., Paliou, C., Borschiwer, M., Harabula, I., Wittler, L., Franke,
1226 M., Ibrahim, D.M., *et al.* (2015). Deletions, Inversions, Duplications: Engineering of Structural
1227 Variants using CRISPR/Cas in Mice. *Cell Rep* 10, 833-839.

1228 Kragsteen, B.K., Spielmann, M., Paliou, C., Heinrich, V., Schopflin, R., Esposito, A., Annunziatella, C.,
1229 Bianco, S., Chiariello, A.M., Jerkovic, I., *et al.* (2018). Dynamic 3D chromatin architecture contributes
1230 to enhancer specificity and limb morphogenesis. *Nat Genet* 50, 1463-1473.

1231 Kvon, E.Z., Kazmar, T., Stampfel, G., Yanez-Cuna, J.O., Pagani, M., Schernhuber, K., Dickson, B.J., and
1232 Stark, A. (2014). Genome-scale functional characterization of *Drosophila* developmental enhancers
1233 in vivo. *Nature* 512, 91-95.

1234 Kvon, E.Z., Waymack, R., Gad, M., and Wunderlich, Z. (2021). Enhancer redundancy in development
1235 and disease. *Nat Rev Genet* 22, 324-336.

1236 La Manno, G., Soldatov, R., Zeisel, A., Braun, E., Hochgerner, H., Petukhov, V., Lidschreiber, K.,
1237 Kastriti, M.E., Lonnerberg, P., Furlan, A., *et al.* (2018). RNA velocity of single cells. *Nature* 560, 494-
1238 498.

1239 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature methods*
1240 9, 357-359.

1241 Leland McInnes, John Healy, Nathaniel Saul, and Großberger, L. (2018). UMAP: Uniform Manifold
1242 Approximation and Projection for Dimension Reduction. *The Journal of Open Source Software*.

1243 Li, D., Sakuma, R., Vakili, N.A., Mo, R., Puvindran, V., Deimling, S., Zhang, X., Hopyan, S., and Hui, C.C.
1244 (2014). Formation of proximal and anterior limb skeleton requires early function of Irx3 and Irx5 and
1245 is negatively regulated by Shh signaling. *Dev Cell* 29, 233-240.

1246 Lopez-Delisle, L., and Delisle, J.-B. (2022). baredSC: Bayesian approach to retrieve expression
1247 distribution of single-cell data. *BMC Bioinformatics* 23.

1248 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
1249 RNA-seq data with DESeq2. *Genome Biol* 15, 550.

1250 Maeda, R.K., and Karch, F. (2006). The ABC of the BX-C: the bithorax complex explained.
1251 *Development* 133, 1413-1422.

1252 Malkmus, J., Ramos Martins, L., Jhanwar, S., Kircher, B., Palacio, V., Sheth, R., Leal, F., Duchesne, A.,
1253 Lopez-Rios, J., Peterson, K.A., *et al.* (2021). Spatial regulation by multiple Gremlin1 enhancers
1254 provides digit development with cis-regulatory robustness and evolutionary plasticity. *Nature
1255 communications* 12, 5557.

1256 Marinic, M., Aktas, T., Ruf, S., and Spitz, F. (2013). An integrated holo-enhancer unit defines tissue
1257 and gene specificity of the Fgf8 regulatory landscape. *Dev Cell* 24, 530-542.

1258 Markman, S., Zada, M., David, E., Giladi, A., Amit, I., and Zelzer, E. (2023). A single-cell census of
1259 mouse limb development identifies complex spatiotemporal dynamics of skeleton formation. *Dev
1260 Cell* 58, 565-581 e564.

1261 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
1262 *EMBnetjournal* 17, 10.

1263 Martin, P. (1990). Tissue patterning in the developing mouse limb. *Int J Dev Biol* 34, 323-336.

1264 Mas, G., Blanco, E., Ballare, C., Sanso, M., Spill, Y.G., Hu, D., Aoi, Y., Le Dily, F., Shilatifard, A., Marti-
1265 Renom, M.A., *et al.* (2018). Promoter bivalency favors an open chromatin architecture in embryonic
1266 stem cells. *Nat Genet* 50, 1452-1462.

1267 McGinnis, C.S., Murrow, L.M., and Gartner, Z.J. (2019). DoubletFinder: Doublet Detection in Single-
1268 Cell RNA Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* 8, 329-337 e324.

1269 Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman,
1270 W., Kim, T.K., Koche, R.P., *et al.* (2007). Genome-wide maps of chromatin state in pluripotent and
1271 lineage-committed cells. *Nature* **448**, 553-560.

1272 Neph, S., Kuehn, M.S., Reynolds, A.P., Haugen, E., Thurman, R.E., Johnson, A.K., Rynes, E., Maurano,
1273 M.T., Vierstra, J., Thomas, S., *et al.* (2012). BEDOPS: high-performance genomic feature operations.
1274 *Bioinformatics* **28**, 1919-1920.

1275 Neufeld, S.J., Wang, F., and Cobb, J. (2014). Genetic interactions between Shox2 and Hox genes
1276 during the regional growth and development of the mouse limb. *Genetics* **198**, 1117-1126.

1277 Osterwalder, M., Barozzi, I., Tissieres, V., Fukuda-Yuzawa, Y., Mannion, B.J., Afzal, S.Y., Lee, E.A., Zhu,
1278 Y., Plajzer-Frick, I., Pickle, C.S., *et al.* (2018). Enhancer redundancy provides phenotypic robustness in
1279 mammalian development. *Nature* **554**, 239-243.

1280 Perry, M.W., Boettiger, A.N., Bothma, J.P., and Levine, M. (2010). Shadow enhancers foster
1281 robustness of *Drosophila* gastrulation. *Curr Biol* **20**, 1562-1567.

1282 Petit, F., Sears, K.E., and Ahituv, N. (2017). Limb development: a paradigm of gene regulation. *Nat
1283 Rev Genet* **18**, 245-258.

1284 Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
1285 features. *Bioinformatics* **26**, 841-842.

1286 Rada-Iglesias, A., Bajpai, R., Swigut, T., Brugmann, S.A., Flynn, R.A., and Wysocka, J. (2011). A unique
1287 chromatin signature uncovers early developmental enhancers in humans. *Nature* **470**, 279-283.

1288 Ramirez, F., Ryan, D.P., Gruning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dundar, F., and
1289 Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis.
1290 *Nucleic Acids Res* **44**, W160-165.

1291 Respuela, P., Nikolic, M., Tan, M., Frommolt, P., Zhao, Y., Wysocka, J., and Rada-Iglesias, A. (2016).
1292 Foxd3 Promotes Exit from Naive Pluripotency through Enhancer Decommissioning and Inhibits
1293 Germline Specification. *Cell Stem Cell* **18**, 118-133.

1294 Roberts, A., Trapnell, C., Donaghey, J., Rinn, J.L., and Pachter, L. (2011). Improving RNA-Seq
1295 expression estimates by correcting for fragment bias. *Genome Biol* **12**, R22.

1296 Robson, M.I., Ringel, A.R., and Mundlos, S. (2019). Regulatory Landscaping: How Enhancer-Promoter
1297 Communication Is Sculpted in 3D. *Mol Cell* **74**, 1110-1122.

1298 Rosin, J.M., Abassah-Oppong, S., and Cobb, J. (2013). Comparative transgenic analysis of enhancers
1299 from the human SHOX and mouse Shox2 genomic regions. *Hum Mol Genet* **22**, 3063-3076.

1300 Rosin, J.M., Kurrasch, D.M., and Cobb, J. (2015). Shox2 is required for the proper development of the
1301 facial motor nucleus and the establishment of the facial nerves. *BMC Neurosci* **16**, 39.

1302 Rouco, R., Bompardre, O., Rauseo, A., Fazio, O., Peraldi, R., Thorel, F., and Andrey, G. (2021). Cell-
1303 specific alterations in Pitx1 regulatory landscape activation caused by the loss of a single enhancer.
1304 *Nature communications* **12**, 7235.

1305 Ruf, S., Symmons, O., Uslu, V.V., Dolle, D., Hot, C., Ettwiller, L., and Spitz, F. (2011). Large-scale
1306 analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor.
1307 *Nat Genet* 43, 379-386.

1308 Saiz-Lopez, P., Chinnaiya, K., Campa, V.M., Delgado, I., Ros, M.A., and Towers, M. (2015). An intrinsic
1309 timer specifies distal structures of the vertebrate limb. *Nature communications* 6, 8108.

1310 Scott, A., Hasegawa, H., Sakurai, K., Yaron, A., Cobb, J., and Wang, F. (2011). Transcription factor
1311 short stature homeobox 2 is required for proper development of tropomyosin-related kinase B-
1312 expressing mechanosensory neurons. *J Neurosci* 31, 6741-6749.

1313 Semina, E.V., Reiter, R.S., and Murray, J.C. (1998). A new human homeobox gene OGI2X is a member
1314 of the most conserved homeobox gene family and is expressed during heart development in mouse.
1315 *Hum Mol Genet* 7, 415-422.

1316 Sheth, R., Barozzi, I., Langlais, D., Osterwalder, M., Nemec, S., Carlson, H.L., Stadler, H.S., Visel, A.,
1317 Drouin, J., and Kmita, M. (2016). Distal Limb Patterning Requires Modulation of cis-Regulatory
1318 Activities by HOX13. *Cell Rep* 17, 2913-2926.

1319 Spitz, F., and Furlong, E.E. (2012). Transcription factors: from enhancer binding to developmental
1320 control. *Nat Rev Genet* 13, 613-626.

1321 Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., and Costantini, F. (2001).
1322 Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. *BMC
1323 Dev Biol* 1, 4.

1324 Stadhouders, R., Filion, G.J., and Graf, T. (2019). Transcription factors and 3D genome conformation
1325 in cell-fate decisions. *Nature* 569, 345-354.

1326 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., 3rd, Hao, Y., Stoeckius,
1327 M., Smibert, P., and Satija, R. (2019). Comprehensive Integration of Single-Cell Data. *Cell* 177, 1888-
1328 1902 e1821.

1329 Sun, C., Zhang, T., Liu, C., Gu, S., and Chen, Y. (2013). Generation of Shox2-Cre allele for tissue
1330 specific manipulation of genes in the developing heart, palate, and limb. *Genesis* 51, 515-522.

1331 Symmons, O., Pan, L., Remeseiro, S., Aktas, T., Klein, F., Huber, W., and Spitz, F. (2016). The Shh
1332 Topological Domain Facilitates the Action of Remote Enhancers by Reducing the Effects of Genomic
1333 Distances. *Dev Cell* 39, 529-543.

1334 Verheyden, J.M., and Sun, X. (2008). An Fgf/Gremlin inhibitory feedback loop triggers termination of
1335 limb bud outgrowth. *Nature* 454, 638-641.

1336 Voigt, F.F., Kirschenbaum, D., Platonova, E., Pages, S., Campbell, R.A.A., Kastli, R., Schaettin, M.,
1337 Egolf, L., van der Bourg, A., Bethge, P., *et al.* (2019). The mesoSPIM initiative: open-source light-
1338 sheet microscopes for imaging cleared tissue. *Nat Methods* 16, 1105-1108.

1339 Werner, T., Hammer, A., Wahlbuhl, M., Bosl, M.R., and Wegner, M. (2007). Multiple conserved
1340 regulatory elements with overlapping functions determine Sox10 expression in mouse
1341 embryogenesis. *Nucleic Acids Res* 35, 6526-6538.

1342 Whyte, W.A., Bilodeau, S., Orlando, D.A., Hoke, H.A., Frampton, G.M., Foster, C.T., Cowley, S.M., and
1343 Young, R.A. (2012). Enhancer decommissioning by LSD1 during embryonic stem cell differentiation.
1344 *Nature* 482, 221-225.

1345 Will, A.J., Cova, G., Osterwalder, M., Chan, W.L., Wittler, L., Brieske, N., Heinrich, V., de Villartay, J.P.,
1346 Vingron, M., Klopocki, E., *et al.* (2017). Composition and dosage of a multipartite enhancer cluster
1347 control developmental expression of Ihh (Indian hedgehog). *Nat Genet* 49, 1539-1545.

1348 Wingett, S., Ewels, P., Furlan-Magaril, M., Nagano, T., Schoenfelder, S., Fraser, P., and Andrews, S.
1349 (2015). HiCUP: pipeline for mapping and processing Hi-C data. *F1000Res* 4, 1310.

1350 Wu, X., Wu, X., and Xie, W. (2023). Activation, decommissioning, and dememorization: enhancers in
1351 a life cycle. *Trends in biochemical sciences* 48, 673-688.

1352 Ye, W., Song, Y., Huang, Z., Osterwalder, M., Ljubojevic, A., Xu, J., Bobick, B., Abassah-Oppong, S.,
1353 Ruan, N., Shamby, R., *et al.* (2016). A unique stylopod patterning mechanism by Shox2-controlled
1354 osteogenesis. *Development* 143, 2548-2560.

1355 Yu, L., Gu, S., Alappat, S., Song, Y., Yan, M., Zhang, X., Zhang, G., Jiang, Y., Zhang, Z., Zhang, Y., *et al.*
1356 (2005). Shox2-deficient mice exhibit a rare type of incomplete clefting of the secondary palate.
1357 *Development* 132, 4397-4406.

1358 Yu, L., Liu, H., Yan, M., Yang, J., Long, F., Muneoka, K., and Chen, Y. (2007). Shox2 is required for
1359 chondrocyte proliferation and maturation in proximal limb skeleton. *Dev Biol* 306, 549-559.

1360 Zhang, S., Ubelmesser, N., Barbieri, M., and Papantonis, A. (2023). Enhancer-promoter contact
1361 formation requires RNAPII and antagonizes loop extrusion. *Nat Genet* 55, 832-840.

1362 Zhang, Y., Liu, T., Meyer, C.A., Eeckhoute, J., Johnson, D.S., Bernstein, B.E., Nusbaum, C., Myers,
1363 R.M., Brown, M., Li, W., *et al.* (2008). Model-based analysis of ChIP-Seq (MACS). *Genome biology* 9,
1364 R137.

1365 Zhu, J., Patel, R., Trofka, A., Harfe, B.D., and Mackem, S. (2022). Sonic hedgehog is not a limb
1366 morphogen but acts as a trigger to specify all digits in mice. *Dev Cell* 57, 2048-2062 e2044.
1367
1368