bioRxiv preprint doi: https://doi.org/10.1101/2024.03.21.586041; this version posted March 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Cancer-cell derived S100A11 promotes macrophage recruitment in ER+

breast cancer

Sanghoon Lee!**, Youngbin Cho**#, Yiting Li*# Ruxuan Li*°, Daniel Brown>*, Priscilla
McAuliffe’#, Adrian V Lee®#, Steffi Oesterreich®*, Ioannis K. Zervantonakis®>*, Hatice Ulku

Osmanbeyoglu!->>-*

"Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh,
15206, U.S.A.

2UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, 15213 U.S.A.

3Women's Cancer Research Center, University of Pittsburgh Medical Center (UPMC) Hillman
Cancer Center (HCC), Magee-Womens Research Institute, Pittsburgh, PA, 15213, U.S.A.
“Department of Pharmacology and Chemical Biology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, 15213, U.S.A.

SDepartment of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA,
15213, U.S.A.

# These authors contributed equally to this work
* Correspondence to: loannis K. Zervantonakis (I0Z1@pitt.edu) ORCID ID: 0000-0003-2386-

9553 and Hatice Ulku Osmanbeyoglu (osmanbeyogluhu@pitt.edu)
ORCID ID: 0000-0002-4972-4347

Abstract

Macrophages are pivotal in driving breast tumor development, progression, and resistance to
treatment, particularly in estrogen receptor-positive (ER+) tumors, where they infiltrate the
tumor microenvironment (TME) influenced by cancer cell-secreted factors. By analyzing single-
cell RNA-sequencing data from 25 ER+ tumors, we elucidated interactions between cancer cells
and macrophages, correlating macrophage density with epithelial cancer cell density. We
identified that S100A11, a previously unexplored factor in macrophage-cancer crosstalk, predicts
high macrophage density and poor outcomes in ER+ tumors. We found that recombinant
S100A11 enhances macrophage infiltration and migration in a dose-dependent manner.

Additionally, in 3D models, we showed that ST00A11 expression levels in ER+ cancer cells
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predict macrophage infiltration patterns. Neutralizing SI0O0A11 decreased macrophage
recruitment, both in cancer cell lines and in a clinically relevant patient-derived organoid model,
underscoring its role as a paracrine regulator of cancer-macrophage interactions in the pro-
tumorigenic TME. This study offers novel insights into the interplay between macrophages and
cancer cells in ER+ breast tumors, highlighting SI00A11 as a potential therapeutic target to

modulate the macrophage-rich tumor microenvironment.

Introduction

The complex breast tumor microenvironment (TME) exhibits heterogenous cell type
composition patterns across breast cancer subtypes [1, 2]. Macrophages represent an abundant
immune cell type in the TME and have been shown in preclinical studies to promote tumor
growth and metastasis [3-10]. Clinically, estrogen receptor-positive (ER+) breast tumors with a
high macrophage density exhibit poor response rates to hormone therapy [11, 12]. Hence, there
is a strong interest in uncovering cancer-macrophage interactions that predict disease outcomes
and develop therapeutic strategies to target the pro-tumorigenic macrophage-rich ER+ breast

TME.

Previous studies have shown that chemokines CCL2 and CCL5 promote macrophage infiltration
in ER+ breast cancer [13]. The expression levels of these chemokines are regulated by estrogen
[13]. Treatment of human breast tissue explants with tamoxifen reduced macrophage trafficking,
whereas in vivo xenografts exposed to estradiol exhibited increased macrophage density [13].
Another study showed that CCL2 is regulated by the activation of NF-kB signaling in ER+
breast cancer cells, demonstrating that proinflammatory signaling pathways represent candidate
targets to limit macrophage infiltration [14]. However, these studies did not investigate cancer-
macrophage crosstalk in a physiologically relevant 3D microenvironment and only focused on

the role of the CC chemokine ligand family (CCL) in macrophage recruitment.

Single-cell RNA-seq (scRNA-seq) is a powerful tool for investigating cellular heterogeneity,
paracrine cell-cell interactions, and pathways enriched at the single-cell level in the complex
breast tumor TME. A landmark study on treatment-naive breast cancers demonstrated how

single-cell transcriptional features can be utilized to predict clinical outcomes by identifying
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distinct tumor ecosystem classes [15]. Another study utilized scRNA-seq analysis of pre- and
post-treatment biopsies to demonstrate how macrophage interactions with T cells lead to
differential responses to immune-checkpoint therapy [16]. Furthermore, spatial omics
approaches provide complementary information on cell-cell crosstalk in the native tumor
microenvironment [17-20]. For example, Onkar et al. [21] recently revealed that macrophage-T
cell-interacting neighborhoods have prognostic value in treatment-naive ER+ breast cancer.
Notably, among all immune cell types, macrophages exhibit the highest infiltration in the ER+
breast tumor microenvironment [21]. Therefore, new approaches that employ single-cell
technologies with functional perturbation studies hold promise for identifying potential

therapeutic targets in the macrophage-rich ER+ breast tumor microenvironment.

Here, we investigated cancer cell-derived factors that promote macrophage recruitment in ER+
breast cancer by combining scRNA-seq analysis with experimental validation in a 3D cancer-
macrophage co-culture. We found that tumors with high SI00A11 expression in cancer cells
exhibited a high macrophage density. Furthermore, bulk transcriptomic analysis revealed that
ER+ breast cancer tumors overexpressing SI00A11 are associated with worse survival outcomes.
Using multiple tumor models, including established ER+ breast cancer cell lines and patient-
derived organoids, we demonstrated that SIO0A 11 neutralization limits macrophage recruitment
in a 3D microenvironment. Consistent with these results, the treatment of human primary
macrophages with SI00A11 promoted cell motility and 3D infiltration in the absence of cancer
cells. Our systems biology approach presents a powerful strategy for the discovery of targetable
cancer-macrophage paracrine mechanisms that establish a pro-tumorigenic macrophage-rich

microenvironment.

Results

A single-cell cell atlas for ER+ breast tumors

We integrated two treatment-naive ER+ breast cancer single-cell RNA sequencing (scRNA-seq)
datasets obtained from Wu et al. (n=10) [15] and Bassez et al. (n=15) [16], resulting in a
combined dataset of 72,079 cells from 25 tumors (Fig. 1A and Fig. 1B). Details regarding the
breast tumor subtype composition and quality control metrics are provided in Supplementary

Table 1. We conducted principal component analysis (PCA) using the top 2,000 variably
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expressed genes across all cells. The cells were classified into transcriptionally distinct clusters
based on the top 30 principal components (Fig. 1B; Supplementary Fig. 1A). Notably, the
clustering of scRNA-seq samples, determined by nearest neighbors, did not align with clustering

by patient or study, suggesting the successful mitigation of batch effects.

Utilizing the integrated scRNA-seq dataset and canonical marker genes, we conducted
comprehensive quantification of 14 primary cell types (Fig. 2C and D). Immune cell types
include macrophages, dendritic cells (DCs), T cells (CD4" and CD8" T cells), regulatory T cells
(Tregs), B cells, natural killer (NK) cells, NKT cells, monocytes, and mast cells. Among non-
immune cells, epithelial cancer cells (ECCs), endothelial cells, fibroblasts, and myofibroblasts
were identified (Fig. 2D; Supplementary Fig. 1B and C). The clustering of immune, tumor,
and stromal cells was based on cell identity rather than on patient origin. Consequently, our ER+
breast cancer atlas incorporates a total of 72,079 single cells annotated into 14 main cell types,

including 27,014 cancer cells and 25,154 immune cells.

Next, we determined the macrophage proportion in each tumor and arranged the samples based
on the macrophage proportion, ranging from low (macrophage-poor) to high (macrophage-rich)
(Fig. 2E; Supplementary Fig. 1D). We observed a weak positive correlation between the
proportion of macrophages and the proportion of epithelial cancer cells (ECCs) because of the

small number of samples (Spearman correlation rho = 0.16) (Fig. 2F).

Transcriptional predictors of macrophage-rich ER+ breast tumors

To identify cancer cell-driven predictors of macrophage infiltration, we computed Spearman
rank correlations (rho) between the macrophage proportion and mean gene expression in cancer
cells for each tumor sample. We have identified both novel and known relationships. Of the top
eight genes whose high expression was associated with a macrophage-rich TME, only three
genes have been previously characterized to be expressed in the extracellular domain (secreted
factors), including S100A11, RGL3, and SI00A7 (Fig. 2A and Supplementary Table 2). RGL3
(RalGef-like-3) is a member of the Ral guanine nucleotide exchange factor (RalGEFs) family
that serves as a downstream effector for both Rit and Ras, which can induce oncogenic

transformation when they are constitutively active [22]. However, its function in breast cancer
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and its connection with macrophages remain unexplored. SIO0A11 and S100A7 belong to the
S100 family of calcium-binding proteins and are known to regulate cell migration and

proliferation via cytoskeleton remodeling in multiple cancer types [23-28].

To evaluate clinical relevance, we explored the association of these genes with outcomes in ER+
breast tumors using the Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) dataset [29]. The expression of RGL3 and SI00A7 was not associated with
overall survival outcomes (hazard ratio = 0.95, log-rank test p-value = 0.614 for RGL3; hazard
ratio = 1.03, log-rank test p-value = 0.786 for SI00A7) (Supplementary Figure 2A). In
contrast, high SI00A11 expression was associated with a poor survival outcome in ER+ breast
tumors, with a hazard ratio (HR) of 1.30 (Fig. 2B, log-rank test p-value = 0.006). RGL3 and
S100A7 showed no predictive value as potential therapeutic vulnerabilities; therefore, we opted
not to pursue experimental investigation for RGL3 and S100A7. Instead, we focused on further

exploring the association between secreted factor SI00A11 and macrophage recruitment.

Analysis of SIO0A11 expression at the single-cell level confirmed that cancer cells exhibited
high expression (Fig. 2C-E). We next compared immunohistochemically (IHC) stained images
for SI00A11 between ER+ breast cancer tissues and normal breast tissues obtained from the
Human Protein Atlas (HPA) database [30]. IHC images demonstrated that ST00A11 protein was
highly expressed in ER+ breast cancer tissues, but was not detected in normal breast tissues (Fig.
2F). Collectively, these survival results and the overexpression in tumors compared to normal
tissues suggest that SI0O0A11 represents a potentially actionable target in the ER" breast tumor

microenvironment.

S100A11 enhances macrophage migration speed and recruitment in 3D matrices.

We next employed cultures of primary human macrophages to investigate the role of exogenous
S100A11 in macrophage migration and infiltration in a 3D microenvironment. Using time-lapse
imaging, we evaluated the migration trajectory and speed of primary PBMC (peripheral blood
monocyte)-derived macrophages exposed to recombinant SIO0A11 (1 and 10ng/ml). We found
that SI0O0A11 treatment increased migration speed in a dose-dependent manner (Fig. 3A-B). To

further evaluate the role of SIO0A11 in macrophage migration in a 3D extracellular matrix, we
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used an inverted migration assay. The number and position of macrophages inside the 3D
environment were tracked following the establishment of a concentration gradient of SI00A11
(Fig. 3C). Consistent with the migration speed results, the number of recruited macrophages
increased in an SI00A11 dose-dependent manner compared to that in the control medium (Fig.
3C). Taken together, these results demonstrate that soluble SI00A11 potentiates both the

macrophage migration speed and macrophage infiltration in a 3D extracellular matrix.

Neutralization of cancer-derived S100A11 in multiple ER+ breast cancer models limits

macrophage recruitment.

To test whether SI00A11 secreted from cancer cells promotes macrophage recruitment, we used
both ER+ breast cancer cell lines and a clinically relevant organoid model. First, we
characterized secreted SI00A11 levels in ER" breast cancer cell lines using ELISA and found
that T47D cells secreted a higher concentration of SIO0A11 than MM330 or BT483 (Fig. 4A).
Next, we evaluated macrophage recruitment towards cancer cells embedded in a 3D extracellular
matrix in this panel of ER+ breast cancer models (Fig. 4B). Consistent with the SI00A11
secretion findings, we showed that ST00A11-high T47D cancer cells recruited a higher number
of primary human PBMC-derived macrophages compared to SI00A11-low MM330 or BT483
cancer cells (Fig. 4B). Using our 3D cancer-macrophage assay, we also visualized the kinetics of
macrophages as they infiltrated towards T47D breast cancer cells over a period of 24 h (Fig. 4C).
To functionally perturb S100A11 during cancer-macrophage coculture, we neutralized SI00A11
using a blocking antibody. SI00A 11 neutralization significantly decreased the number of
recruited macrophages in both primary PBMC-derived macrophages and the THP1 macrophage
cell line (Fig. 4D and E). To evaluate the direct effects of SI00A11 neutralization on T47D
cancer cells, we compared cancer cell viability after treatment with control (IgG) or anti-
S100A11 and found no significant differences (Supplementary Figure 3). In addition, we
investigated the effects of SIO0A 11 neutralization in a clinically relevant ER breast cancer
organoid model (Fig. 4E). Macrophage infiltration was reduced in 3D organoids treated with the
S100A11 blocking antibody compared to that in the IgG control (45% reduction, p<0.05, Fig.

4F). Collectively, our results confirm the bioinformatics findings in primary ER+ breast tumors
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and highlight the role of SIO0A11 as a regulator of macrophage recruitment in a 3D

microenvironment.

Discussion

A better understanding of cancer-macrophage crosstalk mechanisms is necessary to develop
prognostic biomarkers and new therapies to target the pro-tumorigenic tumor ecosystem. Here,
we utilized public scRNA-seq datasets to define the ER+ breast cancer TME and identified
molecular predictors of macrophage-rich ER+ breast tumors, with a focus on cancer cell-derived
factors. SIO0A11 was the top-ranked gene encoding a secreted factor and was associated with
poor patient outcomes. Using a 3D tumor-macrophage experimental platform, we demonstrated
that both exogenous and cancer cell-derived SI00A11 promoted macrophage trafficking.
Neutralization of SI00A11 using a blocking antibody reduces macrophage infiltration across
multiple macrophages and ER+ breast tumor models. These findings demonstrate the critical role
of SI00A11 in establishing a pro-tumorigenic macrophage-rich ER+ breast tumor

microenvironment and highlight its potential as a therapeutic target.

S100A11 belongs to the S100 family of calcium-binding proteins and is known to regulate cell
migration and proliferation via cytoskeletal remodeling in multiple cancer types [23-25].
Consistent with our findings in ER+ breast cancer cells, previous studies have shown that
S100A11 is heterogeneously expressed in solid tumors [31, 32]. Overexpression of SI00A11 in
cervical cancer cells increases their proliferative and migratory abilities [23]. Furthermore,
S100A11 has been previously regulates heterotypic cancer-fibroblast crosstalk in the tumor
microenvironment [33]. Fibroblast proliferation was increased in co-culture with SI00A11-high
pancreatic cancer cells, and these fibroblasts promoted tumor growth through a mechanism that
was dependent on the SI00A11 receptor RAGE [33]. Collectively, these results demonstrate the
direct effects of SIO0A11 on promoting cancer cell pro-tumorigenic functions, as well as its

indirect effects via reprogramming stromal fibroblasts in the tumor microenvironment.

S100A11 has not been previously investigated in the context of cancer-macrophage interactions
in breast cancer, unlike other S100 family members, such as SI00A8 and S100A9, which have

been shown to regulate tumor-immune crosstalk [34-38]. Previous transcriptomic and proteomic
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analyses have shown that SI00A11 is overexpressed in breast cancer tissues compared with
normal breast tissues [39, 40]. Importantly, the association between high ST00A11 gene
expression and poor survival outcomes has been previously shown across all breast cancer
subtypes [41, 42]. In agreement with our findings on cancer-macrophage crosstalk in ER+ breast
cancer, a previous study employed bulk transcriptomics in glioblastoma and found that high
expression of SIO0A11 predicted high infiltration of multiple immune cell types, including
macrophages [43]. Another glioblastoma study used scRNA-seq analysis to independently
confirm that ST00A11-high cancer cells are associated with higher immune cell numbers [44].
Although no previous study has investigated the interaction between cancer cell-derived
S100A11 and macrophages, it has been shown that knockdown of SI00A11 in cholangiocytes
(hepatic epithelial cells) reduced pro-inflammatory reprogramming of macrophages [45]. Taken
together, previous investigations of SI00A11 in other tumor types support our findings of

S100A11-mediated macrophage infiltration in ER breast tumors.

Macrophages represent the most abundant immune cell type in the ER+ breast tumor
microenvironment, and there is strong interest in targeting their interactions with cancer cells
[21]. Most investigations on cancer-macrophage paracrine factors have focused on well-known
chemokines, including CCL2 and CCLS5 [13]. Extracellular levels of these chemokines were
upregulated in breast tumors compared to normal breast tissue, and treatment with anti-CCL2
and anti-CCL5 blocking antibodies reduced breast cancer dissemination in a zebrafish model
[13]. Our findings on cancer cell-driven macrophage recruitment in a 3D matrix are supported by
a previous study that employed a 2D Transwell filter to monitor infiltration of the THP1
macrophage cell line towards the ER+ breast cancer cells T47D [46]. As an alternative approach,
this study did not evaluate the blockade of cancer-derived ligands but instead showed the
potential of IL-1RA receptor neutralization [46]. Finally, treatment with an anti-S100A11
antibody suppresses cancer growth in a subset of mesothelioma xenografts [32]. However, no

studies have investigated the effects of SI00A11 neutralization in breast cancer models.

Nonetheless, our study has some limitations. First, the relatively small sample size imposes
constraints on the flexibility of the multivariable modeling. To enable a joint analysis of public

datasets, we chose a data integration approach (for detailed information, please refer to the
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Methods section). It is important to note that each cohort entailed a batch effect due to slight
variations in sample processing and differences in sScCRNA-seq library preparation and
sequencing. However, the integration of several datasets has the advantage of mitigating biases
related to cell preparation and dissociation, such as preferential liberation of specific cell types
during tissue dissociation. Furthermore, our study lacked matching clinical data regarding
treatment allocation and treatment responses. This limitation was due to the retrospective nature
of the analysis. In addition, the complex signals in the breast tumor microenvironment and the
heterogeneous spectrum of macrophage activation pose challenges when analyzing
protumorigenic M2-like or antitumorigenic M1-like macrophage states using transcriptomic data
[47, 48]. Functional assays that evaluate the effects of tumor-associated macrophage states on
cancer cell phenotypes (e.g., growth and invasion) are best suited to address macrophage
subpopulation heterogeneity. Hence, it is important to perform future studies on dissecting
S100A11-mediated mechanisms of macrophage reprogramming that impact cancer cell
phenotypes as well as profiling cell surface marker expression (e.g., pro-tumor: CD163, CD169,

CD204, and CD206; anti-tumor: CD80, CD86, iNOS, and HLA-DR) in these macrophages.

In summary, our systems biology approach exploits the heterogeneity of macrophage infiltration
patterns in patient tumors and employs 3D tumor models to study the regulatory mechanisms of
macrophage recruitment by cancer cells. The identification of therapeutic targets that are
enriched in macrophage-rich breast tumors compared with normal breast tissue is critical for

developing effective macrophage-directed therapies.

Materials and Methods

Publicly available dataset collection

We curated two scRNA-seq human breast cancer datasets encompassing a total of 25 ER+ breast
tumor samples. Processed scRNA-seq data from Wu et al. [15] were obtained from the NCBI
Gene Expression Omnibus (GEO) under accession number GSE176078, and raw count matrices

by Bassez et al. [16] were retrieved from https://lambrechtslab.sites.vib.be/en/single-cell. Gene

expression and survival data for ER+ breast cancer patients (n=1,498) were obtained from The

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) [29] through the
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cBioPortal for Cancer Genomics (http://cbioportal.org) (http://cbioportal.org) [49]. The sample

and data are summarized in Supplementary Table 1.

Analysis of scRNA-seq data

Data preprocessing and quality control: For the Wu et al. dataset, the matrix.mtx, features.gsv,
and barcodes.tsv files were imported into a Seurat object using the Read10X function in the
Seurat R package (version 4.3.0) [50]. The count matrix for the Bassez et al. dataset was
obtained from the RData file. Subsequently, we filtered the cells exclusively from the ER+
pretreatment patients for further analyses. Cells included in the analysis met the following
criteria: they expressed fewer than 6,000 genes, with a minimum of 200 expressed genes and 400
UMI counts. Moreover, these cells exhibited less than 15% reads mapped to mitochondrial gene

expression.

Batch correction and harmony integration: We applied SCTransform to each Seurat object for
data normalization and transformation [51]. SCTransform is a technique designed to mitigate
technical variations and alleviate batch effects in scRNA-seq datasets. We merged all the Seurat
objects into a single combined dataset to increase the sample size and enhance the statistical
power of our analysis. Then, the SCTransform was applied again, regressing the mitochondrial
read percentage per cell. Principal component analysis (PCA) was performed on the filtered
feature-by-barcode matrix. Uniform Manifold Approximation and Projection (UMAP)
embeddings [52] were based on the first 30 principal components. Subsequently, data integration
was performed using R package Harmony ver. 1.0 [53] using the function RunHarmony to
remove batch effects among the samples. The integrated data contained 28,622 genes across

72,079 cell lines.

Major cell type identification: The number of dimensions for clustering was chosen based on
harmony-embedding clustering. The myeloid (TYROBP, LYZ, CD68, and IL1B) subset was first
identified to identify macrophages, monocytes, dendritic cells, and monocytes. The NK/T cell
subset was first identified to identify CD4" / CD8" T cells and NK cells. Cells were assigned into
one of the following 14 cell types based on the expression of marker genes in each cluster: (i)

immune cells (PTPRC): B cells (CD794, MZB1, MS4A41), CD4" T cells (CD3D, CD4, FOXP3),
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CD8" T cells (CD3D, CD84, CDS8B), dendritic cells (CD40, CD1C, and ITGAX), monocyte
(FCGR3Aand CD68), macrophage (CD14, CD68, and FCGR1A), myeloid (TYROBP, LYZ, and
CD68), mast cells (CPA3, TPSABI, and TPSB2) and natural killer (T) cells (CD3D"*, KLRBI,
AREG, and IL2RB); (i) tumor cells (EPCAM) or epithelial cancer cells (KRT18, and KRT19);
(ii1) Stromal cells (COL1A41): myofibroblasts (4CTA2), and fibroblasts (COLIA1 and PDGFRB);
(iv) endothelial cells (PECAM]I).

Macrophage proportion calculation: Following cell type identification, we determined the
macrophage proportion for each patient and arranged them in ascending order based on this
fraction. Similarly, we computed the fraction of each cell type in individual patients and utilized
these proportions to assess the correlation between different cell types. Spearman correlation was
calculated, and the correlation coefficient (rho) was visualized in a heatmap. We calculated the
mean gene expression in individual patients and calculated the Spearman correlation between

gene expression and macrophage proportions in different cell types.

Survival analysis

METABRIC ER+ RNA-seq and clinical data were used for survival analysis. Patients with the
top 25% and bottom 25% S100A11, LY6G6C, and PDIA4 expression were defined as high and
low groups, respectively. A Cox proportional hazards regression model was fitted against the

groups, and Kaplan—Meier survival curves were drawn using the R package survival (ver. 3.5-5)

(https://cran.r-project.org/web/packages/survival/)

Human protein atlas

The Human Protein Atlas (https://www.proteinatlas.org) is a public resource that extracts

information, including images of immunohistochemistry (IHC), protein profiling, and pathologic
information, from specimens and clinical material from cancer patients to determine global
protein expression [30]. Here, we compared the protein expression of SI00A11 in tumor and

normal breast tissues using IHC.

Cell culture
The T47D and BT483 cell lines were cultured in RPMI medium, and the MM330 cell line was
cultured in DMEM/L15 media supplemented with 10% FBS and 1% penicillin-streptomycin.
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Human peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors and
CD14+ cells were isolated using CD14 microbeads (Cat# 130-050-201, Miltenyi Biotec). THP1
cells were cultured in RPMI medium supplemented with 10% FBS and 1% penicillin-
streptomycin. THP1 cells were treated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA) for
24 h to differentiate into macrophages. Patient-derived breast cancer organoids (BO#129,
ER+/PR+ breast tumor) were generated at the Institute of Precision Medicine (Pitt/UPMC) and
cultured in 40 pL of Cultrex Basement Membrane Extract (Cat. 343200101, R&D Systems™) in

24 well plate in organoid medium (recipe and culture procedures in ) [54].

Live imaging and migration assay

CD14+ monocytes were seeded in 96 well plate (50,000 cells per well) and treated with 25 ng/ml
macrophage colony-stimulating factor in RPMI supplemented with 10% FBS and 1% penicillin-
streptomycin for six days to differentiate them into macrophages. For cell migration analysis,
macrophages were stained with CellTracker Green 5-chloromethylfluorescein diacetate
(CMFDA) dye (Cat. C7025, Invitrogen™) and imaged every 2 min for 60 min using a Zeiss
LSM700 confocal microscope. Migration trajectories and average speeds were quantified using

the Trackmate plugin in Imagel.

3D Inverted invasion assay in the presence of S100A11 concentration gradients

Following CD14+ differentiation into macrophages in 96 well plates, a 2 mg/ml collagen matrix
was formed on top of the cells by polymerization of collagen type I solution for 45 min at 37°C.
Next, 100 pL of medium with different concentrations of recombinant SI00A11 was added to
establish a concentration gradient. We imaged five z-stacks (20 pm interval) every 1 hour to
monitor macrophage recruitment in the 3D collagen matrix. The number of macrophages in each

z-section was quantified using Trackmate in ImageJ software.

3D tumor-macrophage droplet infiltration experiment

ER+ breast cancer cell lines or patient-derived cancer organoids were mixed with 2 mg/ml
collagen type I solution (1E6 cells/ml concentration) and seeded in each well of 96 well plate.
After 30 min, the solution was polymerized into a collagen matrix and 50k of CMFDA-stained
PBMC-derived CD14+ cells were seeded in 100 uL. of media per well. After 48 h of tumor-
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macrophage coculture, the plate was imaged using a confocal microscope to assess the number

of macrophages recruited inside the collagen matrices.

Statistical analysis and visualization

Statistical analyses and visualizations were performed using R. The statistical methods used for
each analysis are described in the text and the figure legends. Statistical significance was set p-
value < 0.05. Graphs were generated using R package ggplot2 (ver. 3.3.6) and ggpubr (ver.
0.4.0), Ggrepel, gridExtra (ver. 2.3), ComplexHeatmap (ver. 2.16.0) [55], and Fgsea (ver.
1.26.0). Violin plots of single-cell data were drawn using VInPlot in the Seurat R package (ver.
4.3.0) [50]. We used ggplot2 and geom_violin to draw a violin plot for compact display of a
continuous distribution of pathway activities in single cells. Geom _violin is a blend of
geom_boxplot and geom_density, which computes kernel density estimates. All boxplots report
the 25% (lower hinge), 50%, and 75% quantiles (upper hinge). The lower (upper) whiskers
indicate the smallest (largest) observation greater (less) than or equal to the lower (upper) hinge -

1.5 interquartile range (IQR) (+1.5'IQR) as default in the geom_boxplot function ggplot2.

Data availability

The code used to analyze the integrated scRNA-seq in this study is available in the open access
database at https://codeocean.com/capsule/6931150/tree. The raw data underlying Figs 4-5 are

presented in the Supplementary Data.
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Figures Legends

Figure 1. Characterization of ER+ breast cancer tumor microenvironment and cell types.
(A) Summary of the data integration and analysis workflow. A total of 72,079 cells analyzed by
integrated scRNA-seq across 25 ER+ primary breast tumors. The expression of SI00A11 in
cancer epithelial cells was validated in BRCA cell lines and organoid models.

(B) Uniform manifold approximation and projection (UMAP) clustering of the integrated
scRNA-seq data colored by datasets and (C) by cell types. (D) Feature plots showing the
expression levels of selected canonical cell markers that are used to identify the clusters for each
cell type. More detailed cell markers are described in Methods. (E) Stacked bar plot showing the
proportion of endothelial, immune, stromal, and tumor cell types in individual tumors relative to
the total cell count. The 25 tumors in x-axis were ordered from macrophage -poor on the left to
macrophage -rich on the right. (F) Spearman correlation pyramid plot for the 14 cell type
proportions. macrophage proportion has positive correlation with ECCs but negative correlation

with NKT cells and monocyte proportions.

Figure 2. S100A11 expression in single cells and its correlation with macrophage
infiltration. (A) Line dot plots revealing the correlation between whole gene expression and
macrophage infiltration in ECCs or in macrophages. The genes with Spearman correlation
abs(rho) > 0.5 were colored in red for positive and blue for negative correlation. The gene
symbols of abs(rho) > 0.6 were annotated. (B) Survival plot showing the high S100A11
expression in ER+ breast cancer samples is associated with a lower overall survival rate (hazard
ratio 1.30 and log-rank p-value 0.006). (C) Violin plot showing the SIO0A11 expression in
individual samples when the samples are sorted by macrophage infiltration in ascending order
from left to right. Spearman rho between macrophage infiltration and SI00A11 expression in
ECCs is 0.7. (D) Violin plot displaying the SI00A11 expression levels in the different 14 cell
types. (E) Dot plots showing the correlation between S100A11 expression and macrophage
infiltration in ECCs. The mean of the SI00A11 expression and macrophage infiltration were
calculated in each sample and the color of each dot represents ECC proportion in individual
samples. (F) Immunohistochemical staining for ESR1 and S100A11 protein expression in breast
cancer or normal breast tissue. In breast cancer tissue, the expression of ESR1 and S100A11

proteins were observed in the matched samples.
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Figure 3. S100A11 protein induces migratory phenotype of macrophages and promotes
recruitment in collagen matrix. (A) (Upper) Human macrophage migration trajectory and
average instantaneous speed is overlaid on the FITC stained macrophages under the treatment of
thS100A11. (Down) Rose plot of macrophage trajectory over 1 h. Macrophage migration was
imaged every 2 min. (n>237 tracks for each condition). (B) Quantification of average
instantaneous migration speed of macrophages under the treatment of thS100A11. SI00A11
increased macrophage migration speed. (n>237 tracks). (C) Quantification of macrophage
recruitment in collagen matrices using the inverted invasion assay. Number of macrophages
recruited to 20 um above the surface was analyzed after 6 h. Treatment of thS100A11 promoted
macrophage recruitment in the collagen matrices (n=6 wells, colors represent 2 biological

replicates).

Figure 4. ER+ breast cancer cell secreted S100A11 promotes macrophage recruitment in
the 3D collagen matrix. (A) Elisa assay to quantify SI00A11 secretion level by ER+ breast
cancer cell lines showed the highest SI00A11 secretion from T47D compared to MM330 or
BT483 (n=2 biological replicates). (B) 3D collagen droplet experiment to quantify CD14+
PBMC-derived macrophage recruitment to cancer cells. T47D cancer cells recruited highest
number of macrophages compared to MM330 or BT483 (biological replicates: n=4 for T47D,
BT483; n=3 for MM330). (C) Time-lapse images of macrophage infiltration into 3D collagen
matrices embedded with T47D for 24 h. Red dotted lines indicate the interface between media
and collagen matrices. Orange arrows indicate the infiltrated CD14+ PBMC-derived
macrophage. Neutralization of SIO0A11 by the treatment of SI00A11 antibody decreased the
recruitment of macrophages. Scale bars, 100 um. (D-E) Normalized number of infiltrated
CD14+ PBMC-derived macrophages and THP1 macrophages into the collagen matrices
embedded with T47D under the treatment of SIO0A11 Ab (n=3 biological replicates). (F)
Visualization of breast cancer organoids embedded in the collagen gel after 24 h in IgG control
or SI00A11 Ab treatment media. Scale bars, 50 pm. Red: actin staining; Green: CMFDA
macrophage staining; Blue: nuclear staining. (G) Treatment of SI00A11 antibody decreased
macrophage recruitment toward breast cancer organoids in collagen matrices (n=3 biological

replicates).
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