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Abstract  

Macrophages are pivotal in driving breast tumor development, progression, and resistance to 

treatment, particularly in estrogen receptor-positive (ER+) tumors, where they infiltrate the 

tumor microenvironment (TME) influenced by cancer cell-secreted factors. By analyzing single-

cell RNA-sequencing data from 25 ER+ tumors, we elucidated interactions between cancer cells 

and macrophages, correlating macrophage density with epithelial cancer cell density. We 

identified that S100A11, a previously unexplored factor in macrophage-cancer crosstalk, predicts 

high macrophage density and poor outcomes in ER+ tumors. We found that recombinant 

S100A11 enhances macrophage infiltration and migration in a dose-dependent manner. 

Additionally, in 3D models, we showed that S100A11 expression levels in ER+ cancer cells 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.21.586041doi: bioRxiv preprint 

mailto:IOZ1@pitt.edu
mailto:osmanbeyogluhu@pitt.edu
https://doi.org/10.1101/2024.03.21.586041
http://creativecommons.org/licenses/by-nc-nd/4.0/


predict macrophage infiltration patterns. Neutralizing S100A11 decreased macrophage 

recruitment, both in cancer cell lines and in a clinically relevant patient-derived organoid model, 

underscoring its role as a paracrine regulator of cancer-macrophage interactions in the pro-

tumorigenic TME. This study offers novel insights into the interplay between macrophages and 

cancer cells in ER+ breast tumors, highlighting S100A11 as a potential therapeutic target to 

modulate the macrophage-rich tumor microenvironment. 

 

Introduction 

The complex breast tumor microenvironment (TME) exhibits heterogenous cell type 

composition patterns across breast cancer subtypes [1, 2]. Macrophages represent an abundant 

immune cell type in the TME and have been shown in preclinical studies to promote tumor 

growth and metastasis [3-10]. Clinically, estrogen receptor-positive (ER+) breast tumors with a 

high macrophage density exhibit poor response rates to hormone therapy [11, 12]. Hence, there 

is a strong interest in uncovering cancer-macrophage interactions that predict disease outcomes 

and develop therapeutic strategies to target the pro-tumorigenic macrophage-rich ER+ breast 

TME.  

 

Previous studies have shown that chemokines CCL2 and CCL5 promote macrophage infiltration 

in ER+ breast cancer [13]. The expression levels of these chemokines are regulated by estrogen 

[13]. Treatment of human breast tissue explants with tamoxifen reduced macrophage trafficking, 

whereas in vivo xenografts exposed to estradiol exhibited increased macrophage density [13]. 

Another study showed that CCL2 is regulated by the activation of NF-κB signaling in ER+ 

breast cancer cells, demonstrating that proinflammatory signaling pathways represent candidate 

targets to limit macrophage infiltration [14]. However, these studies did not investigate cancer-

macrophage crosstalk in a physiologically relevant 3D microenvironment and only focused on 

the role of the CC chemokine ligand family (CCL) in macrophage recruitment.  

 

Single-cell RNA-seq (scRNA-seq) is a powerful tool for investigating cellular heterogeneity, 

paracrine cell-cell interactions, and pathways enriched at the single-cell level in the complex 

breast tumor TME. A landmark study on treatment-naïve breast cancers demonstrated how 

single-cell transcriptional features can be utilized to predict clinical outcomes by identifying 
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distinct tumor ecosystem classes [15]. Another study utilized scRNA-seq analysis of pre- and 

post-treatment biopsies to demonstrate how macrophage interactions with T cells lead to 

differential responses to immune-checkpoint therapy [16]. Furthermore, spatial omics 

approaches provide complementary information on cell-cell crosstalk in the native tumor 

microenvironment [17-20]. For example, Onkar et al. [21] recently revealed that macrophage-T 

cell-interacting neighborhoods have prognostic value in treatment-naïve ER+ breast cancer. 

Notably, among all immune cell types, macrophages exhibit the highest infiltration in the ER+ 

breast tumor microenvironment [21]. Therefore, new approaches that employ single-cell 

technologies with functional perturbation studies hold promise for identifying potential 

therapeutic targets in the macrophage-rich ER+ breast tumor microenvironment.  

 

Here, we investigated cancer cell-derived factors that promote macrophage recruitment in ER+ 

breast cancer by combining scRNA-seq analysis with experimental validation in a 3D cancer-

macrophage co-culture. We found that tumors with high S100A11 expression in cancer cells 

exhibited a high macrophage density. Furthermore, bulk transcriptomic analysis revealed that 

ER+ breast cancer tumors overexpressing S100A11 are associated with worse survival outcomes. 

Using multiple tumor models, including established ER+ breast cancer cell lines and patient-

derived organoids, we demonstrated that S100A11 neutralization limits macrophage recruitment 

in a 3D microenvironment. Consistent with these results, the treatment of human primary 

macrophages with S100A11 promoted cell motility and 3D infiltration in the absence of cancer 

cells. Our systems biology approach presents a powerful strategy for the discovery of targetable 

cancer-macrophage paracrine mechanisms that establish a pro-tumorigenic macrophage-rich 

microenvironment.  

 

Results 

A single-cell cell atlas for ER+ breast tumors 

We integrated two treatment-naïve ER+ breast cancer single-cell RNA sequencing (scRNA-seq) 

datasets obtained from Wu et al. (n=10) [15] and Bassez et al. (n=15) [16], resulting in a 

combined dataset of 72,079 cells from 25 tumors (Fig. 1A and Fig. 1B). Details regarding the 

breast tumor subtype composition and quality control metrics are provided in Supplementary 

Table 1. We conducted principal component analysis (PCA) using the top 2,000 variably 
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expressed genes across all cells. The cells were classified into transcriptionally distinct clusters 

based on the top 30 principal components (Fig. 1B; Supplementary Fig. 1A). Notably, the 

clustering of scRNA-seq samples, determined by nearest neighbors, did not align with clustering 

by patient or study, suggesting the successful mitigation of batch effects. 

 

Utilizing the integrated scRNA-seq dataset and canonical marker genes, we conducted 

comprehensive quantification of 14 primary cell types (Fig. 2C and D). Immune cell types 

include macrophages, dendritic cells (DCs), T cells (CD4+ and CD8+ T cells), regulatory T cells 

(Tregs), B cells, natural killer (NK) cells, NKT cells, monocytes, and mast cells. Among non-

immune cells, epithelial cancer cells (ECCs), endothelial cells, fibroblasts, and myofibroblasts 

were identified (Fig. 2D; Supplementary Fig. 1B and C). The clustering of immune, tumor, 

and stromal cells was based on cell identity rather than on patient origin. Consequently, our ER+ 

breast cancer atlas incorporates a total of 72,079 single cells annotated into 14 main cell types, 

including 27,014 cancer cells and 25,154 immune cells. 

 

Next, we determined the macrophage proportion in each tumor and arranged the samples based 

on the macrophage proportion, ranging from low (macrophage-poor) to high (macrophage-rich) 

(Fig. 2E; Supplementary Fig. 1D). We observed a weak positive correlation between the 

proportion of macrophages and the proportion of epithelial cancer cells (ECCs) because of the 

small number of samples (Spearman correlation rho = 0.16) (Fig. 2F).  

 

Transcriptional predictors of macrophage-rich ER+ breast tumors 

To identify cancer cell-driven predictors of macrophage infiltration, we computed Spearman 

rank correlations (rho) between the macrophage proportion and mean gene expression in cancer 

cells for each tumor sample. We have identified both novel and known relationships. Of the top 

eight genes whose high expression was associated with a macrophage-rich TME, only three 

genes have been previously characterized to be expressed in the extracellular domain (secreted 

factors), including S100A11, RGL3, and S100A7 (Fig. 2A and Supplementary Table 2). RGL3 

(RalGef-like-3) is a member of the Ral guanine nucleotide exchange factor (RalGEFs) family 

that serves as a downstream effector for both Rit and Ras, which can induce oncogenic 

transformation when they are constitutively active [22]. However, its function in breast cancer 
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and its connection with macrophages remain unexplored. S100A11 and S100A7 belong to the 

S100 family of calcium-binding proteins and are known to regulate cell migration and 

proliferation via cytoskeleton remodeling in multiple cancer types [23-28]. 

 

To evaluate clinical relevance, we explored the association of these genes with outcomes in ER+ 

breast tumors using the Molecular Taxonomy of Breast Cancer International Consortium 

(METABRIC) dataset [29]. The expression of RGL3 and S100A7 was not associated with 

overall survival outcomes (hazard ratio = 0.95, log-rank test p-value = 0.614 for RGL3; hazard 

ratio = 1.03, log-rank test p-value = 0.786 for S100A7) (Supplementary Figure 2A). In 

contrast, high S100A11 expression was associated with a poor survival outcome in ER+ breast 

tumors, with a hazard ratio (HR) of 1.30 (Fig. 2B, log-rank test p-value = 0.006). RGL3 and 

S100A7 showed no predictive value as potential therapeutic vulnerabilities; therefore, we opted 

not to pursue experimental investigation for RGL3 and S100A7. Instead, we focused on further 

exploring the association between secreted factor S100A11 and macrophage recruitment. 

 

Analysis of S100A11 expression at the single-cell level confirmed that cancer cells exhibited 

high expression (Fig. 2C-E). We next compared immunohistochemically (IHC) stained images 

for S100A11 between ER+ breast cancer tissues and normal breast tissues obtained from the 

Human Protein Atlas (HPA) database [30]. IHC images demonstrated that S100A11 protein was 

highly expressed in ER+ breast cancer tissues, but was not detected in normal breast tissues (Fig. 

2F). Collectively, these survival results and the overexpression in tumors compared to normal 

tissues suggest that S100A11 represents a potentially actionable target in the ER+ breast tumor 

microenvironment.  

 

S100A11 enhances macrophage migration speed and recruitment in 3D matrices. 

We next employed cultures of primary human macrophages to investigate the role of exogenous 

S100A11 in macrophage migration and infiltration in a 3D microenvironment. Using time-lapse 

imaging, we evaluated the migration trajectory and speed of primary PBMC (peripheral blood 

monocyte)-derived macrophages exposed to recombinant S100A11 (1 and 10ng/ml). We found 

that S100A11 treatment increased migration speed in a dose-dependent manner (Fig. 3A-B). To 

further evaluate the role of S100A11 in macrophage migration in a 3D extracellular matrix, we 
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used an inverted migration assay. The number and position of macrophages inside the 3D 

environment were tracked following the establishment of a concentration gradient of S100A11 

(Fig. 3C). Consistent with the migration speed results, the number of recruited macrophages 

increased in an S100A11 dose-dependent manner compared to that in the control medium (Fig. 

3C). Taken together, these results demonstrate that soluble S100A11 potentiates both the 

macrophage migration speed and macrophage infiltration in a 3D extracellular matrix.  

 

Neutralization of cancer-derived S100A11 in multiple ER+ breast cancer models limits 

macrophage recruitment. 

 

To test whether S100A11 secreted from cancer cells promotes macrophage recruitment, we used 

both ER+ breast cancer cell lines and a clinically relevant organoid model. First, we 

characterized secreted S100A11 levels in ER+ breast cancer cell lines using ELISA and found 

that T47D cells secreted a higher concentration of S100A11 than MM330 or BT483 (Fig. 4A). 

Next, we evaluated macrophage recruitment towards cancer cells embedded in a 3D extracellular 

matrix in this panel of ER+ breast cancer models (Fig. 4B). Consistent with the S100A11 

secretion findings, we showed that S100A11-high T47D cancer cells recruited a higher number 

of primary human PBMC-derived macrophages compared to S100A11-low MM330 or BT483 

cancer cells (Fig. 4B). Using our 3D cancer-macrophage assay, we also visualized the kinetics of 

macrophages as they infiltrated towards T47D breast cancer cells over a period of 24 h (Fig. 4C). 

To functionally perturb S100A11 during cancer-macrophage coculture, we neutralized S100A11 

using a blocking antibody. S100A11 neutralization significantly decreased the number of 

recruited macrophages in both primary PBMC-derived macrophages and the THP1 macrophage 

cell line (Fig. 4D and E). To evaluate the direct effects of S100A11 neutralization on T47D 

cancer cells, we compared cancer cell viability after treatment with control (IgG) or anti-

S100A11 and found no significant differences (Supplementary Figure 3). In addition, we 

investigated the effects of S100A11 neutralization in a clinically relevant ER breast cancer 

organoid model (Fig. 4E). Macrophage infiltration was reduced in 3D organoids treated with the 

S100A11 blocking antibody compared to that in the IgG control (45% reduction, p<0.05, Fig. 

4F). Collectively, our results confirm the bioinformatics findings in primary ER+ breast tumors 
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and highlight the role of S100A11 as a regulator of macrophage recruitment in a 3D 

microenvironment.  

 

Discussion 

A better understanding of cancer-macrophage crosstalk mechanisms is necessary to develop 

prognostic biomarkers and new therapies to target the pro-tumorigenic tumor ecosystem. Here, 

we utilized public scRNA-seq datasets to define the ER+ breast cancer TME and identified 

molecular predictors of macrophage-rich ER+ breast tumors, with a focus on cancer cell-derived 

factors. S100A11 was the top-ranked gene encoding a secreted factor and was associated with 

poor patient outcomes. Using a 3D tumor-macrophage experimental platform, we demonstrated 

that both exogenous and cancer cell-derived S100A11 promoted macrophage trafficking. 

Neutralization of S100A11 using a blocking antibody reduces macrophage infiltration across 

multiple macrophages and ER+ breast tumor models. These findings demonstrate the critical role 

of S100A11 in establishing a pro-tumorigenic macrophage-rich ER+ breast tumor 

microenvironment and highlight its potential as a therapeutic target.  

 

S100A11 belongs to the S100 family of calcium-binding proteins and is known to regulate cell 

migration and proliferation via cytoskeletal remodeling in multiple cancer types [23-25]. 

Consistent with our findings in ER+ breast cancer cells, previous studies have shown that 

S100A11 is heterogeneously expressed in solid tumors [31, 32]. Overexpression of S100A11 in 

cervical cancer cells increases their proliferative and migratory abilities [23]. Furthermore, 

S100A11 has been previously regulates heterotypic cancer-fibroblast crosstalk in the tumor 

microenvironment [33]. Fibroblast proliferation was increased in co-culture with S100A11-high 

pancreatic cancer cells, and these fibroblasts promoted tumor growth through a mechanism that 

was dependent on the S100A11 receptor RAGE [33]. Collectively, these results demonstrate the 

direct effects of S100A11 on promoting cancer cell pro-tumorigenic functions, as well as its 

indirect effects via reprogramming stromal fibroblasts in the tumor microenvironment. 

 

S100A11 has not been previously investigated in the context of cancer-macrophage interactions 

in breast cancer, unlike other S100 family members, such as S100A8 and S100A9, which have 

been shown to regulate tumor-immune crosstalk [34-38]. Previous transcriptomic and proteomic 
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analyses have shown that S100A11 is overexpressed in breast cancer tissues compared with 

normal breast tissues [39, 40]. Importantly, the association between high S100A11 gene 

expression and poor survival outcomes has been previously shown across all breast cancer 

subtypes [41, 42]. In agreement with our findings on cancer-macrophage crosstalk in ER+ breast 

cancer, a previous study employed bulk transcriptomics in glioblastoma and found that high 

expression of S100A11 predicted high infiltration of multiple immune cell types, including 

macrophages [43]. Another glioblastoma study used scRNA-seq analysis to independently 

confirm that S100A11-high cancer cells are associated with higher immune cell numbers [44]. 

Although no previous study has investigated the interaction between cancer cell-derived 

S100A11 and macrophages, it has been shown that knockdown of S100A11 in cholangiocytes 

(hepatic epithelial cells) reduced pro-inflammatory reprogramming of macrophages [45]. Taken 

together, previous investigations of S100A11 in other tumor types support our findings of 

S100A11-mediated macrophage infiltration in ER breast tumors.  

 

Macrophages represent the most abundant immune cell type in the ER+ breast tumor 

microenvironment, and there is strong interest in targeting their interactions with cancer cells 

[21]. Most investigations on cancer-macrophage paracrine factors have focused on well-known 

chemokines, including CCL2 and CCL5 [13]. Extracellular levels of these chemokines were 

upregulated in breast tumors compared to normal breast tissue, and treatment with anti-CCL2 

and anti-CCL5 blocking antibodies reduced breast cancer dissemination in a zebrafish model 

[13]. Our findings on cancer cell-driven macrophage recruitment in a 3D matrix are supported by 

a previous study that employed a 2D Transwell filter to monitor infiltration of the THP1 

macrophage cell line towards the ER+ breast cancer cells T47D [46]. As an alternative approach, 

this study did not evaluate the blockade of cancer-derived ligands but instead showed the 

potential of IL-1RΑ receptor neutralization [46]. Finally, treatment with an anti-S100A11 

antibody suppresses cancer growth in a subset of mesothelioma xenografts [32]. However, no 

studies have investigated the effects of S100A11 neutralization in breast cancer models.    

Nonetheless, our study has some limitations. First, the relatively small sample size imposes 

constraints on the flexibility of the multivariable modeling. To enable a joint analysis of public 

datasets, we chose a data integration approach (for detailed information, please refer to the 
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Methods section). It is important to note that each cohort entailed a batch effect due to slight 

variations in sample processing and differences in scRNA-seq library preparation and 

sequencing. However, the integration of several datasets has the advantage of mitigating biases 

related to cell preparation and dissociation, such as preferential liberation of specific cell types 

during tissue dissociation. Furthermore, our study lacked matching clinical data regarding 

treatment allocation and treatment responses. This limitation was due to the retrospective nature 

of the analysis. In addition, the complex signals in the breast tumor microenvironment and the 

heterogeneous spectrum of macrophage activation pose challenges when analyzing 

protumorigenic M2-like or antitumorigenic M1-like macrophage states using transcriptomic data 

[47, 48]. Functional assays that evaluate the effects of tumor-associated macrophage states on 

cancer cell phenotypes (e.g., growth and invasion) are best suited to address macrophage 

subpopulation heterogeneity. Hence, it is important to perform future studies on dissecting 

S100A11-mediated mechanisms of macrophage reprogramming that impact cancer cell 

phenotypes as well as profiling cell surface marker expression (e.g., pro-tumor: CD163, CD169, 

CD204, and CD206; anti-tumor: CD80, CD86, iNOS, and HLA-DR) in these macrophages.   

In summary, our systems biology approach exploits the heterogeneity of macrophage infiltration 

patterns in patient tumors and employs 3D tumor models to study the regulatory mechanisms of 

macrophage recruitment by cancer cells. The identification of therapeutic targets that are 

enriched in macrophage-rich breast tumors compared with normal breast tissue is critical for 

developing effective macrophage-directed therapies.  

 

 

Materials and Methods 

Publicly available dataset collection 

We curated two scRNA-seq human breast cancer datasets encompassing a total of 25 ER+ breast 

tumor samples. Processed scRNA-seq data from Wu et al. [15] were obtained from the NCBI 

Gene Expression Omnibus (GEO) under accession number GSE176078, and raw count matrices 

by Bassez et al. [16] were retrieved from https://lambrechtslab.sites.vib.be/en/single-cell. Gene 

expression and survival data for ER+ breast cancer patients (n=1,498) were obtained from The 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) [29] through the 
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cBioPortal for Cancer Genomics (http://cbioportal.org) (http://cbioportal.org) [49]. The sample 

and data are summarized in Supplementary Table 1. 

 

Analysis of scRNA-seq data 

Data preprocessing and quality control: For the Wu et al. dataset, the matrix.mtx, features.gsv, 

and barcodes.tsv files were imported into a Seurat object using the Read10X function in the 

Seurat R package (version 4.3.0) [50]. The count matrix for the Bassez et al. dataset was 

obtained from the RData file. Subsequently, we filtered the cells exclusively from the ER+ 

pretreatment patients for further analyses. Cells included in the analysis met the following 

criteria: they expressed fewer than 6,000 genes, with a minimum of 200 expressed genes and 400 

UMI counts. Moreover, these cells exhibited less than 15% reads mapped to mitochondrial gene 

expression. 

 

Batch correction and harmony integration: We applied SCTransform to each Seurat object for 

data normalization and transformation [51]. SCTransform is a technique designed to mitigate 

technical variations and alleviate batch effects in scRNA-seq datasets. We merged all the Seurat 

objects into a single combined dataset to increase the sample size and enhance the statistical 

power of our analysis. Then, the SCTransform was applied again, regressing the mitochondrial 

read percentage per cell. Principal component analysis (PCA) was performed on the filtered 

feature-by-barcode matrix. Uniform Manifold Approximation and Projection (UMAP) 

embeddings [52] were based on the first 30 principal components. Subsequently, data integration 

was performed using R package Harmony ver. 1.0 [53] using the function RunHarmony to 

remove batch effects among the samples. The integrated data contained 28,622 genes across 

72,079 cell lines.  

 

Major cell type identification: The number of dimensions for clustering was chosen based on 

harmony-embedding clustering. The myeloid (TYROBP, LYZ, CD68, and IL1B) subset was first 

identified to identify macrophages, monocytes, dendritic cells, and monocytes. The NK/T cell 

subset was first identified to identify CD4+ / CD8+ T cells and NK cells. Cells were assigned into 

one of the following 14 cell types based on the expression of marker genes in each cluster: (i) 

immune cells (PTPRC): B cells (CD79A, MZB1, MS4A1), CD4+ T cells (CD3D, CD4, FOXP3), 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 26, 2024. ; https://doi.org/10.1101/2024.03.21.586041doi: bioRxiv preprint 

http://cbioportal.org/
http://cbioportal.org/
https://doi.org/10.1101/2024.03.21.586041
http://creativecommons.org/licenses/by-nc-nd/4.0/


CD8+ T cells (CD3D, CD8A, CD8B), dendritic cells (CD40, CD1C, and ITGAX), monocyte 

(FCGR3Aand CD68), macrophage (CD14, CD68, and FCGR1A), myeloid (TYROBP, LYZ, and 

CD68), mast cells (CPA3, TPSAB1, and TPSB2) and natural killer (T) cells (CD3D-/+, KLRB1, 

AREG, and IL2RB); (ii) tumor cells (EPCAM) or epithelial cancer cells (KRT18, and KRT19); 

(iii) Stromal cells (COL1A1): myofibroblasts (ACTA2), and fibroblasts (COL1A1 and PDGFRB); 

(iv) endothelial cells (PECAM1).  

 

Macrophage proportion calculation: Following cell type identification, we determined the 

macrophage proportion for each patient and arranged them in ascending order based on this 

fraction. Similarly, we computed the fraction of each cell type in individual patients and utilized 

these proportions to assess the correlation between different cell types. Spearman correlation was 

calculated, and the correlation coefficient (rho) was visualized in a heatmap. We calculated the 

mean gene expression in individual patients and calculated the Spearman correlation between 

gene expression and macrophage proportions in different cell types.  

 

Survival analysis 

METABRIC ER+ RNA-seq and clinical data were used for survival analysis. Patients with the 

top 25% and bottom 25% S100A11, LY6G6C, and PDIA4 expression were defined as high and 

low groups, respectively. A Cox proportional hazards regression model was fitted against the 

groups, and Kaplan–Meier survival curves were drawn using the R package survival (ver. 3.5-5) 

(https://cran.r-project.org/web/packages/survival/) 

Human protein atlas 
The Human Protein Atlas (https://www.proteinatlas.org) is a public resource that extracts 

information, including images of immunohistochemistry (IHC), protein profiling, and pathologic 

information, from specimens and clinical material from cancer patients to determine global 

protein expression [30]. Here, we compared the protein expression of S100A11 in tumor and 

normal breast tissues using IHC. 

 

Cell culture 

The T47D and BT483 cell lines were cultured in RPMI medium, and the MM330 cell line was 

cultured in DMEM/L15 media supplemented with 10% FBS and 1% penicillin-streptomycin. 
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Human peripheral blood mononuclear cells (PBMCs) were isolated from healthy donors and 

CD14+ cells were isolated using CD14 microbeads (Cat# 130-050-201, Miltenyi Biotec). THP1 

cells were cultured in RPMI medium supplemented with 10% FBS and 1% penicillin-

streptomycin. THP1 cells were treated with 10 ng/ml phorbol 12-myristate 13-acetate (PMA) for 

24 h to differentiate into macrophages. Patient-derived breast cancer organoids (BO#129, 

ER+/PR+ breast tumor) were generated at the Institute of Precision Medicine (Pitt/UPMC) and 

cultured in 40 µL of Cultrex Basement Membrane Extract (Cat. 343200101, R&D Systems™) in 

24 well plate in organoid medium (recipe and culture procedures in ) [54].  

 

Live imaging and migration assay 

CD14+ monocytes were seeded in 96 well plate (50,000 cells per well) and treated with 25 ng/ml 

macrophage colony-stimulating factor in RPMI supplemented with 10% FBS and 1% penicillin-

streptomycin for six days to differentiate them into macrophages. For cell migration analysis, 

macrophages were stained with CellTracker Green 5-chloromethylfluorescein diacetate 

(CMFDA) dye (Cat. C7025, Invitrogen™) and imaged every 2 min for 60 min using a Zeiss 

LSM700 confocal microscope. Migration trajectories and average speeds were quantified using 

the Trackmate plugin in ImageJ.  

 

3D Inverted invasion assay in the presence of S100A11 concentration gradients 

Following CD14+ differentiation into macrophages in 96 well plates, a 2 mg/ml collagen matrix 

was formed on top of the cells by polymerization of collagen type I solution for 45 min at 37°C. 

Next, 100 µL of medium with different concentrations of recombinant S100A11 was added to 

establish a concentration gradient. We imaged five z-stacks (20 µm interval) every 1 hour to 

monitor macrophage recruitment in the 3D collagen matrix. The number of macrophages in each 

z-section was quantified using Trackmate in ImageJ software.  

 

3D tumor-macrophage droplet infiltration experiment 

ER+ breast cancer cell lines or patient-derived cancer organoids were mixed with 2 mg/ml 

collagen type I solution (1E6 cells/ml concentration) and seeded in each well of 96 well plate. 

After 30 min, the solution was polymerized into a collagen matrix and 50k of CMFDA-stained 

PBMC-derived CD14+ cells were seeded in 100 µL of media per well. After 48 h of tumor-
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macrophage coculture, the plate was imaged using a confocal microscope to assess the number 

of macrophages recruited inside the collagen matrices.  

 

Statistical analysis and visualization 

Statistical analyses and visualizations were performed using R. The statistical methods used for 

each analysis are described in the text and the figure legends. Statistical significance was set p-

value < 0.05. Graphs were generated using R package ggplot2 (ver. 3.3.6) and ggpubr (ver. 

0.4.0), Ggrepel, gridExtra (ver. 2.3), ComplexHeatmap (ver. 2.16.0) [55], and Fgsea (ver. 

1.26.0). Violin plots of single-cell data were drawn using VlnPlot in the Seurat R package (ver. 

4.3.0) [50]. We used ggplot2 and geom_violin to draw a violin plot for compact display of a 

continuous distribution of pathway activities in single cells. Geom _violin is a blend of 

geom_boxplot and geom_density, which computes kernel density estimates. All boxplots report 

the 25% (lower hinge), 50%, and 75% quantiles (upper hinge). The lower (upper) whiskers 

indicate the smallest (largest) observation greater (less) than or equal to the lower (upper) hinge -

1.5´ interquartile range (IQR) (+1.5´IQR) as default in the geom_boxplot function ggplot2. 

 

Data availability 

The code used to analyze the integrated scRNA-seq in this study is available in the open access 

database at https://codeocean.com/capsule/6931150/tree. The raw data underlying Figs 4-5 are 

presented in the Supplementary Data.  
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Figures Legends 
 
Figure 1. Characterization of ER+ breast cancer tumor microenvironment and cell types.  

(A) Summary of the data integration and analysis workflow. A total of 72,079 cells analyzed by 

integrated scRNA-seq across 25 ER+ primary breast tumors. The expression of S100A11 in 

cancer epithelial cells was validated in BRCA cell lines and organoid models. 

 (B) Uniform manifold approximation and projection (UMAP) clustering of the integrated 

scRNA-seq data colored by datasets and (C) by cell types. (D) Feature plots showing the 

expression levels of selected canonical cell markers that are used to identify the clusters for each 

cell type. More detailed cell markers are described in Methods. (E) Stacked bar plot showing the 

proportion of endothelial, immune, stromal, and tumor cell types in individual tumors relative to 

the total cell count. The 25 tumors in x-axis were ordered from macrophage -poor on the left to 

macrophage -rich on the right. (F) Spearman correlation pyramid plot for the 14 cell type 

proportions. macrophage proportion has positive correlation with ECCs but negative correlation 

with NKT cells and monocyte proportions. 

 

Figure 2. S100A11 expression in single cells and its correlation with macrophage 

infiltration. (A) Line dot plots revealing the correlation between whole gene expression and 

macrophage infiltration in ECCs or in macrophages. The genes with Spearman correlation 

abs(rho) > 0.5 were colored in red for positive and blue for negative correlation. The gene 

symbols of abs(rho) > 0.6 were annotated. (B) Survival plot showing the high S100A11 

expression in ER+ breast cancer samples is associated with a lower overall survival rate (hazard 

ratio 1.30 and log-rank p-value 0.006). (C) Violin plot showing the S100A11 expression in 

individual samples when the samples are sorted by macrophage infiltration in ascending order 

from left to right. Spearman rho between macrophage infiltration and S100A11 expression in 

ECCs is 0.7. (D) Violin plot displaying the S100A11 expression levels in the different 14 cell 

types. (E) Dot plots showing the correlation between S100A11 expression and macrophage 

infiltration in ECCs. The mean of the S100A11 expression and macrophage infiltration were 

calculated in each sample and the color of each dot represents ECC proportion in individual 

samples. (F) Immunohistochemical staining for ESR1 and S100A11 protein expression in breast 

cancer or normal breast tissue. In breast cancer tissue, the expression of ESR1 and S100A11 

proteins were observed in the matched samples.  
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Figure 3. S100A11 protein induces migratory phenotype of macrophages and promotes 

recruitment in collagen matrix. (A) (Upper) Human macrophage migration trajectory and 

average instantaneous speed is overlaid on the FITC stained macrophages under the treatment of 

rhS100A11. (Down) Rose plot of macrophage trajectory over 1 h. Macrophage migration was 

imaged every 2 min. (n>237 tracks for each condition). (B) Quantification of average 

instantaneous migration speed of macrophages under the treatment of rhS100A11. S100A11 

increased macrophage migration speed. (n>237 tracks). (C) Quantification of macrophage 

recruitment in collagen matrices using the inverted invasion assay. Number of macrophages 

recruited to 20 µm above the surface was analyzed after 6 h.  Treatment of rhS100A11 promoted 

macrophage recruitment in the collagen matrices (n=6 wells, colors represent 2 biological 

replicates). 

 

Figure 4. ER+ breast cancer cell secreted S100A11 promotes macrophage recruitment in 

the 3D collagen matrix. (A) Elisa assay to quantify S100A11 secretion level by ER+ breast 

cancer cell lines showed the highest S100A11 secretion from T47D compared to MM330 or 

BT483 (n=2 biological replicates). (B) 3D collagen droplet experiment to quantify CD14+ 

PBMC-derived macrophage recruitment to cancer cells. T47D cancer cells recruited highest 

number of macrophages compared to MM330 or BT483 (biological replicates: n=4 for T47D, 

BT483; n=3 for MM330). (C) Time-lapse images of macrophage infiltration into 3D collagen 

matrices embedded with T47D for 24 h. Red dotted lines indicate the interface between media 

and collagen matrices. Orange arrows indicate the infiltrated CD14+ PBMC-derived 

macrophage. Neutralization of S100A11 by the treatment of S100A11 antibody decreased the 

recruitment of macrophages. Scale bars, 100 µm. (D-E) Normalized number of infiltrated 

CD14+ PBMC-derived macrophages and THP1 macrophages into the collagen matrices 

embedded with T47D under the treatment of S100A11 Ab (n=3 biological replicates). (F) 

Visualization of breast cancer organoids embedded in the collagen gel after 24 h in IgG control 

or S100A11 Ab treatment media. Scale bars, 50 µm. Red: actin staining; Green: CMFDA 

macrophage staining; Blue: nuclear staining. (G) Treatment of S100A11 antibody decreased 

macrophage recruitment toward breast cancer organoids in collagen matrices (n=3 biological 

replicates).  
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Figure 4
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