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Abstract

Motivation: Blood-based profiling of tumor DNA (“liquid biopsy”) has offered great prospects for non-
invasive early cancer diagnosis, treatment monitoring, and clinical guidance, but require further advances
in computational methods to become a robust quantitative assay of tumor clonal evolution. We propose
new methods to better characterize tumor clonal dynamics from circulating tumor DNA (ctDNA), through
application to two specific questions: 1) How to apply longitudinal ctDNA data to refine phylogeny models
of clonal evolution, and 2) how to quantify changes in clonal frequencies that may be indicative of treatment
response or tumor progression. We pose these questions through a probabilistic framework for optimally
identifying maximum likelihood markers and applying them to characterizing clonal evolution.

Results: We first estimate a distribution over plausible clonal lineage models, using bootstrap samples over
pre-treatment tissue-based sequence data. We then refine these lineage models and the clonal frequencies
they imply over successive longitudinal samples. We use the resulting framework for modeling and refining
tree distributions to pose a set of optimization problems to select ctDNA markers to maximize measures of
utility capturing ability to solve the two questions of reducing uncertain in phylogeny models or quantifying
clonal frequencies given the models. We tested our methods on synthetic data and showed them to be
effective at refining distributions of tree models and clonal frequencies so as to minimize measures of tree
distance relative to the ground truth. Application of the tree refinement methods to real tumor data further
demonstrated their effectiveness in refining a clonal lineage model and assessing its clonal frequencies. The
work shows the power of computational methods to improve marker selection, clonal lineage reconstruction,
and clonal dynamics profiling for more precise and quantitative assays of tumor progression.

Availability: https://github.com/CMUSchwartzLab/Mase-phi.git.
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Introduction

The discovery of circulating free DNA (cfDNA) in human blood
and the observation that tumor-derived ¢fDNA may occur at
greatly elevated levels compared to DNA of healthy cells —
due to elevated release of tumor cell DNA, abnormal clearance
for DNA debris from cell death, or circulating tumor cells in
blood — established the potential for liquid biopsy, i.e., blood-
based profiling of solid tumor genomics (Crowley et al., 2013;
Wan et al., 2017). The prospect of rapid, non-invasive profiling
of tumor states offers many possibilities for improving cancer
diagnosis and treatment (Cescon et al., 2020) including early
prognosis (Phallen et al., 2017b; Connal et al., 2023) and detecting
residual disease and relapse(Mattox et al., 2019; Ignatiadis et al.,
2021). Liquid biopsy methods have now been studied widely in
various cancer types (Maia et al., 2020; Kemper et al., 2023).

The technology has technical limitations, however, mainly due to
the challenge of separating tumor signals from the influence of
much larger numbers of healthy cells and the consequent need for
highly sensitive genomic assays. Deep sequencing on liquid biopsy
samples with low signal-to-noise ratio is one option but can be
too costly and time-consuming for repeated use. As a a result,
alternative molecular testing methods have been used, including
multiplex-PCR (Abbosh et al., 2017) and droplet digital PCR
(ddPCR) (Huerta et al., 2021), as well as strategies for enriching
for tumor DNA with targeted sequencing (Kurtz et al., 2021;
Phallen et al., 2017a). These technologies offer a path to highly
sensitive quantitation of somatic variants found at low levels in
the blood, although with the tradeoff of allowing for profiling of
relatively few pre-selected markers.
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Despite its broad potential, current clinical application of liquid
biopsy has primarily been for prognosis or recurrence detection
(Reinert et al., 2019; Sanz-Garcia et al., 2022), rather than more
precise quantitative analysis of tumor genetics. While there is now
a rich literature on characterizing tumor evolutionary trajectories
from numerous forms of genomic assays (c.f., (Beerenwinkel et al.,
2015; Schwartz and Schéffer, 2017)), the need to work typically
with low precision or relatively limited blood-based marker sets
makes it infeasible to incorporate longitudinal blood samples in a
straightforward way into current methods for multi-sample tumor
phylogenetics. Yet there is also little work to date on developing
new classes of inference method suitable for effectively bringing
liquid biopsy into tumor phylogeny models. One notable exception
has been recent work from the TRACERx Consortium using
a tumour-specific phylogenetic method to profile ctDNA from
non-small-cell lung cancer patients (Abbosh et al., 2017). That
study inferred a base phylogenetic tree for each patient with
primary multi-regional sequencing and then used PCR on liquid
biopsy samples, preoperative and post-operative, to track clonal
and subclonal populations. The same team later investigated a
larger cohort with metastasis and used a new PCR technique
and a bioinformatics tool tailored for ctDNA to track the clonal
lineages longitudinally (Abbosh et al., 2023). Their work showed
that liquid biopsy samples can identify mutations arising in
distinct subclones and characterize clonal population changes in
metastases or relapses, provided they can draw on an accurate
model of clonal lineages. However, much remains unaddressed
with regard to how to identify optimal markers for use in such
analyses and how to use these most effectively to determine the
clonal lineage model and how its population frequencies evolve
over time.

The present work is aimed at developing methods to better
characterize clonal dynamics of tumors from liquid biopsy data.
We focus on challenges that have not, to our knowledge, been
addressed in prior work. First, we examine the question of how
we can leverage liquid biopsy data using small marker sets to
refine phylogenetic models from the primary tumor so as to
correct errors, reduce uncertainty in inference, or expand a tree
to accommodate variants or clones not seen in earlier samples.
Second, we consider the question of optimal marker selection:
for typical scenarios in which one must select a small subset of
markers to profile with high sensitivity, which markers are likely
to be most informative? We examine this question for selecting
markers to optimally refine the tumor phylogeny model and for
measures of optimally characterizing changes in clonal frequency
or tumor heterogeneity over time. We then show on simulated and
real data that our methods allow one to apply liquid biopsy so
as to accurately capture dynamics of clonal population changes
in tumors, with potential application to various tasks in tumor
diagnostics and clinical decision-making.

Method

In this section, we consider variants of the problem of marker
selection for liquid biopsy. For each, we assume we need to select a
small marker set for high-precision assays, such as by ddPCR. Our
goal is to develop personalized assays that allow rapid longitudinal
corrections on a patient-specific basis. Note that we solve the
problem for the general case of assuming that we might select
from any observed marker for each specific subject, however the
problem is conceptually the same if we are limited to choosing

a subset of markers from a larger predefined set for which PCR
probes are already available. We first consider the problem of
choosing markers so as to refine a phylogenetic model and reduce
uncertainty in clonal lineage inference. We then consider selection
with the goal of characterizing changes in clonal frequencies given
a known tree. The overall workflow for simultaneously addressing
these questions is shown in Fig 1.

Selecting mutation markers to minimize uncertainty in
phylogenetic inference

We first consider the problem of choosing liquid biopsy markers
so as to reduce uncertainty in the tree inference. Due to the low
signal-to-noise of liquid biopsy samples, we can expect genomic
measurements from liquid biopsy to yield poor results with
standard phylogenetic inference tools. Fig 2 demonstrates this
with simulated data. As a result, we assume there will be high
uncertainty in tree inference and pose phylogenetic inference in
terms of distributions of trees rather than a single optimum.
For the present purpose, we estimate this distribution through
bootstrapping over sequence reads, an approach chosen because
it allows us to use existing tumor phylogeny methods that are
designed to return a single optimal tree. Bayesian phylogeny
methods might provide a more principled alternative than our
bootstrapping approach to capture the initial tree distribution,
although designing an efficient Bayesian sampler for non-trivial
tumor phylogeny models is a challenging problem in itself. Once
we have an initial tree density, we then seek in part to select liquid
biopsy markers that will allow us to reduce uncertainty in the tree
inference by facilitating comparisons that can reject some subset of
the topologies. For this purpose, we want to find marker sets that
are to best distinguish between possible high-frequency models in
the initial tree distribution.

Problem formulation

We first establish a general probabilitic framework for defining a
tree density and posing optimal marker selection problems over it.
In subsequent sections, we adapt this to distinct solutions to the
problem. At a high level, each variant of the method described
below works by estimating a density over trees and optimizing
marker selection for a desired objective over that density. The
notation below is a formalization of this basic idea, then adapted
to different problem assumptions and objectives.

Given a candidate (bootstrapped) tree set 7 = {T*}p—1, .k
we define a clonal tree structure matrix E¥* that specifies possible
structures for a set of defined tumor clones. For each tree k,
E'f] = 1 if clone (tree node) ¢ is the parent of node j and otherwise
0. We define a mutation assignment matrix M* where MZ.’“J =1if
mutation g; belongs to node i for each tree k and otherwise 0. We
define a clonal frequency array F* = (Fik)izl,,“,N, encoding the
variant allele frequency (VAF) of each of N observed mutations
in each clone i for each tree k. We further define the set of
mutations G = {¢;}i=1...nv. We want to select n < N gene
markers Qn = {gfn(j)}j=1...n by finding a mapping f™ such
that the Ezae7Ers e\ (743 108 E(rsn sy orr P(RT", 87" |T9) is
minimized, where Rf" = (ri,72...7n) is a family of random

variables describing ddPCR read counts for a set of probes
and Sf" is a binary matrix mapping biomarkers to clones in
the tree structure for an underlying ground truth tree T%. In
the model, we assume that the generation of read counts is
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Fig. 1: The overall inference pipeline. (1). We assume we have first sequenced tissue and liquid biopsy sample(s), obtaining reference
germline and ctDNA. (2) We create bootstrapped samples over reads for each sequence set. (3) We infer a set of possible trees from the
bootstrapped samples, serving as an estimated empirical tree distribution. (4) We then seek a set of optimal biomarkers of mutations
to best reduce the tree uncertainty and (5) apply these in biological assays (e.g. ddPCR). (6) We then use the results of these assays to
update the empirical tree distributions. (7) We further seek a set of optimal biomarkers to track subclone frequencies efficiently and (8)
assay these biomarkers. (9) Finally, we then use the results of the assays to estimate clonal fractions at each sampled timepoint.

i.i.d. and independent from the generation of the tree structures
for simplicity of calculation.

We split the likelihood of a given set of data into the probability
of observing the read counts and the probability of observing the
tree structures. Assume that the read count for each gene marker
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Since the ddPCR is assumed to have high sequencing depth, we
assume that the probability of observing the read counts is close
to a normal distribution instead of a binomial for computational
convenience. Assume the read depth is D. Then assuming r; ~
k(s k)2 ko k V2 K
N(va(oj) )7 Uj - DFMk(f(j))? (Uj) - DFMk(f(J))(l

k .
Frreron):

For the probabilistic modeling for structural perturbations, we
use the ancestor-descendant distance (Govek et al., 2020) to model
the distance between subtrees. We define a subtree Sgn of Tk
given a set of marker genes @, using their ancestor-descendent
matrix A. For T®, Ak = 1,i,j = 1,... N if mutation i is the

ancestor of j. Then for SE , A*(f); ; =1 if Ak sy =L =
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1,...,n. For each unit change of AD distance, the probability is
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After combining the two components, we get an objective
function that we seek to minimize in marker selection:

nflinnIEquTETkeT\{Tq} logE(gim gimymre P(R", ST |T7)

K K 1 n
- 5 2 log(2n((e))* + (o))
a=1k=1k#q = j=1
A e 55 (0 -] e
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Effectively, this objective function provides a way of evaluating
the utility of a given marker set for reducing a measure of
uncertainty in expectation over the tree density and sampling of
sequence reads.

Refining tumor phylogenetic tree distribution after liquid
biopsy assays on selected markers

For the ddPCR counts tested for selected marker genes g1 and g2,
suppose without loss of generality that g; is the ancestor of g2
in a proposed tree structure. We then refine the tree structure by
testing which trees are consistent with all the possible relationships
among g1 and g2 consistent with the new data. While one might
build this into the tree likelihood and solve de novo for the tree
density, for efficiency reasons we instead apply new marker data
by posing it as a problem of refining an existing density over
trees. We consider two variants: first posing this as a simpler
statistical hypothesis testing problem and then as a series of
Bayesian updates.

We assume in the discussion below that the read depths
for each tree are described by binomial variables based on
the allele frequencies and overall read depth: {R},Ri...Rl ~
Bin(deptha, fq,)}, {R2, R%...R2 ~ Bin(depthz, fg,)}.

Significance testing method

One straightforward approach to using ctDNA to refine a tree
distribution is to accept or reject potential candidate trees
based on whether the measured marker frequencies are plausibly
consistent with a given tree topology. We assume here that
frequencies of clones may change over time in ways that reveal
some trees to be implausible that were initially plausible, but
the set of clones and their tree topology are unchanged over the
course of the follow-up. Given a pair of markers, we can pose the
question of whether their read counts at a specific point in time
are consistent with a given tree topology as a statistical hypothesis
test, here using a Wald test with the test statistic

9 for = fa,

se fo Q=) | fn (=)
depth, depthy

W =

with size a. We reject the hypothesis when W > z,,, with a = 0.05
in the present work. For each pair of markers, we perform the
Wald test with a Bonferroni-corrected o and then remove from
the density all tree structures that are rejected by any pairwise
marker test. Repeating this for all pairs of markers in a set then
gives a general test to reject a portion of the tree density and lead
to a refined density consistent with both the original sequence and
subsequent ctDNA data. This test may thus be applied serially
for multiple longitudinal assays, provided the original density was
sufficiently well sampled that the correct tree is found within it.

Bayesian update method

Statistical hypothesis testing might be too strict for some uses, in
allowing us only to accept or reject a given tree and the latter only
with compelling evidence. ct DNA data might still give evidence for
or against certain trees without being able to definitively accept
or reject them. We therefore also develop a Bayesian approach to
capture more nuanced changes in our inferred tree distribution by
updating the weights for each possible topology in the distribution
to reflect its plausibility given all of the data seen to date. Since
we used bootstrapping trees to approximate the tree distribution
from the observed data, we define the initial weight of each tree
structure to be the count of that tree structure observed in the
bootstrapping. Note that these counts are normalized to produce
a probability density over trees but are represented initially as
integers here. We keep our prior notation S to represent the
tree structure, RY for the observed read counts from the original
primary tissue sequencing, and R' for the observed PCR counts
from the liquid biopsy samples. Then:

P(S|R', R°) xP(S, R*|R°) = P(R'|S, R°)P(S|R°)

=P(31IS)P(S|R°)=/fg(Rlvf\S)P(SIR°) (4)

where P(S|R', R®) defines the updated weights, P(S|R°) is the
original weights,f describes the possible VAFs for the mutation
markers from liquid biopsy, and g(R!, f|S) is the probability
density of a particular set of clonal VAFs f and the corresponding
read counts, given a structure S.

We develop the special case of two markers to derive the basic
method for refining the tree topology and for use in subsequent
illustration. We can generalize the method to multiple independent
marker pairs through sequential application of pairwise updates.
A more rigorous but tractable generalization to k& markers for
arbitrary k is less trivial and left as an exercise for future work.

For two markers, there are four types of relationship those
markers might take on in a tree structure: (a) marker 1 is an
ancestor of marker 2, which means that f1 > f2. (b) marker 2
is an ancestor of marker 1, meaning f1 < f2, (¢) marker 1 and
marker 2 belongs to the same clone, meaning f1 = fo = f, (d)
marker 1 and marker 2 belong to different branches of the tree,
meaning f1 + f2 < 1. Therefore, let Ri, R} be the read counts of
marker 1 and 2 from liquid biopsy and D}, D3 be the read depths.
Then:

1
1

[ oniasis - G
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Equation 4 provides a formula to update the weight of each
possible tree by multiplying each by the above integral. We then
normalize the overall updated weights of all possible structures to
sum to 1 in order to yield an updated tree density. We perform
marker selection for the purpose of optimal tree refinement by
integer linear programming (ILP) over possible choices of markers
and over trees in the tree density to find a marker set optimizing
for the objective function (3), as described in more detail below.

Selecting mutation markers to track the changes in subclonal
populations

We next consider another important criterion for marker selection:
effectively tracking changes in subclonal populations. We would
typically assume that our purpose in conducting liquid biopsy
is to track changes in clonal frequencies or changes in overall
heterogeneity that might be indicative, e.g., of recurrence after
treatment, growth of a resistant clone, or metastasis. Intuitively,
to optimize for this criterion, we want to avoid choosing redundant
markers but rather find a set of markers that are distributed
across the phylogeny so as to provide as much power as possible
to monitor changes in distinct clonal frequencies.

To facilitate our explanation, we first derive a method
for solving this problem under the assumption that we have
determined a specific lineage tree and we want to select a set of
markers to accurately track the clonal dynamics of the tumor as a
whole. We later generalize that to the actual case where we assume
a distribution over trees rather than a single known tree.

Deterministic Trees:

Problem Statement: Given the same input as 2.1, and an index
k which indicates the most likely tree, select n gene markers
{9f@)}i=1...n by finding a mapping f(j) such that the sum of
weighted tracked clones by the markers in 7 is maximized.

Here, we set the weights to be the estimated clonal fractions
from the previous time point, posing the problem so as to maximize
the estimated fraction of the tumor tracked. However, the weights
here could be any arbitrary design, for example if we wanted to
bias the selection to favor particular probes based on measures
of their expected clinical utility, ease of probe design, preference
for probes already available, or some other application of expert
knowledge.

For computational convenience, we define the weight for a
tree node to be the weight of each the mutations first appearing
in that node. We then create a clonal frequency array F =
(Fik)izl,,..,Clone:num from the most recent estimate of the
variant allele fractions for each clone F' = (Fik)izl,...,c‘lone,num,
where FF = FF — Zj Ff,j € Children(¢). In normal use in
longitudinal sampling, these weights would then update with each
longitudinal time point to provide a best guess as to the weights
at the next time point. S* is the matrix of pairwise “same-node”
relationship of the k*" bootstrapped tree. Sfj = 1 if mutations
i and j belongs to the same node in the k! tree and Sfj =0
otherwise, where 7 > j.

We further define a binarization operation Z as follows

- 1,
T =
07

We then define a binary output vector z to identify the chosen

z >0
z=0

markers as above. Let = M¥*z, = be an array where x; = 1
indicates the node j has been tracked and z; = 0 if not. 27 F is
the total proportion of the tracked clones that we minimize.

Measuring clonal frequencies is not entirely straightforward,
though, because the mutations acquired in any node will be
inherited by its descendent nodes. Therefore we can only identify
the actual frequency of a given clone by measuring a marker of
that clone as well as markers of its children’s clones. We call this
the “complete information assumption” and call the previously
illustrated scenario the “partial information assumption”. Under
the complete information assumption, we create a matrix EF =
Ef 471 mapping clones to mutations whose VAFs would allow us
to identify the clonal fraction. We define a pairwise product ®
between matrix A and array b such that (A ® b);; = ai; * bj.
We define a row-wise sum of a matrix A as o(A) where o(A); =
Zj ai;. We can then pose the problem of finding the optimal
marker set to correspond to solving the constrained optimization
problem max, tTFF such that y* = U(EA]’AC ok — Ek) where
t =abs(1l— ’g’;)A

Candidate tree set

We next extend the simplified model, which assumes a known tree,
to consider uncertainty in tree inferences, in which we assume we
have a density over either a subset of candidate trees or the full
tree space. Assume that 7 = {T’;}Eesc{Lm,K} C T is the
tree set over which we want to optimize. Our objective function
would be max, Y ;g (ac’;)TFE, where zF = M*2 under the

partial information assumption. Under the complete information

assumption, the constrained optimization problem is transformed
to max, g (tk)TFk such that t* = abs(1 — §*) where y* =
o(EF ® 2% — EF) similar to the deterministic tree case.

Tracking tumor subclonal population using the selected markers

After refining the tumor phylogenetic tree distribution, we track
the subclonal population by using the chosen markers. We infer
the frequency of a clone using the mean VAF of markers appearing
in the given clone minus the sum of mean VAFs of markers inferred
for its child clones. We note that this model does assume that we
are only choosing from markers in copy number neutral regions
and thus can treat VAF as a proxy for cancer cell fraction (CCF).

Simulations

We create simulated phylogenetic tree structures parameterized
by the number of subclones and the maximum degree of each
subclone to control how many child subclones a parent node
can have, randomizing subclone distributions to set up the total
tree structure. Then we use a beta distribution to generate true
allele frequencies for each subclone in this tumor tree. Based
on the assumption that clones will have different frequencies
at different tumor sites or in tissue versus blood, we used a
Dirichlet probability distribution to randomize clonal frequencies
with tumor tissues. Yo mimic observations on real tumor and blood
samples, we added a masking step so that only part of the total
subclones that are nearer the root are observed in tissue samples
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and the rest can only be observed in liquid biopsy samples. We
normalize the fractions of observed clones in each tissue sample
so that the fractions add up to one. However, in liquid biopsy
tumor blood samples, normal cells may dilute the mutated alleles
in the blood, which will lead to a higher frequency in the normal
cell. Therefore, we add a frequency of 0.9 to the normal cell with
a subsequent Dirichlet random variable to randomize the rest of
the frequency for each subclone. We use an additional Poisson
random variable to randomly assign a number of mutations to
each subclonal node in the tree.

Since we already simulate the total structure of the tree, the
assignment of mutations, and their corresponding variant allele
frequency, we are able to assign a depth of total reads for both
tissue tumor samples and blood tumor samples. We then use
a Poisson random variable to select for a total read count for
each variant in each sample based on those numbers and use a
binomial distribution with the probability equal to their variant
allele frequency to determine the number of variant reads and
reference reads.

To model sampled ddPCR measurements from this clonal
growth model, we assign a number of droplets collected and
determine the number of these detected to be the mutant based on
the normalized real data, using the mean of droplets in the given
real sample and the known variant allele frequency to simulate the
number of droplets detected as mutant positive.

Implementation of the optimization methods

All the probe optimization problems are solved by formulating
them as integer linear programs (ILPs). We create a variable
z € {0,1}N*1 50 that z; = 1 if ith mutation is selected as a
marker and z; = 0 otherwise. We constrain vazl z; = n to
impose the marker number constraint. We then optimize for each
objective function with z as the variable, establishing an ILP. We
use Python with Gurobi for the solver. We tested our problem
with two tumor phylogeny methods, the MCMC-based method
PhyloWGS (Deshwar et al., 2015) and a simplified version of our
own ILP method, TUSV-ext (Fu et al., 2022), restricted to only
consider SNVs. ILPs were all solved using Gurobi Ver.9 in the
present testing.

Results

Simulated data

Before directly assessing our methods for marker selection and
application, we first assessed how accurately we can determine
phylogenies by different tumor phylogeny methods using simulated
tissue and blood samples. Many tools have been developed for
tumor phylogentics from tissue samples, including multiregional
samples, yet none to our knowledge are designed specifically
for including high noise-to-signal ratio liquid biopsy samples or
have been tested on comparable data. We compared results using
PhyloWGS (Deshwar et al., 2015) and an SNV-only version of
TUSV-ext (Fu et al., 2022), which we refer to as deconv. We
also applied two methods for measuring phylogenetic distance
specialized to tumor phylogenies, CASet and DISC (Dinardo et al.,
2020), for tree distance evaluation. For the present purposes, we
assumed an initial liquid biopsy sample was sequenced along with
one or more tissue samples. The results show that PhyloWGS
yields good results even with only a single tissue sample, although
accuracy is better the more tissue samples are included (Fig.

2). deconv performs poorly by the CASet measure, although
comparably to PhyloWGS by the DISC measure. These results
show that there is substantial room for improvement in tree
inference, supporting the value of refining the tree model using
subsequent ctDNA samples.

We then tested the whole analysis pipeline of Fig. 1 on the
simulated data. We first generated 100 bootstrapped samples
for each simulation case and inferred a tree for each bootstrap
replicate. Since PhyloWGS performed better in the earlier tests,
we use it subsequently to generate bootstrap trees. We then
apply our marker selection methods on the bootstrap tree sets
before applying the chosen markers to adjust the tree distribution
according to the simulated ddPCR data. Our simulation results
show that using even limited numbers of markers can shift the tree
distribution towards the ground truth tree; almost all cases yield
refined trees below the diagonal in 3(a) and (b), meaning that the
updated weighted distance of the tree distribution to the ground
truth tree is reduced by the update. The weights of the bests
tree relative to alternatives are also improved, as we see in Fig
3(c). We compare each of these measures between markers chosen
for the purpose of reducing uncertainty against those chosen for
optimally characterizing clonal frequencies and against randomly
selected markers. We see that markers chosen to optimize their
ability to reduce uncertainty in the tree structure indeed perform
substantially better at this task. Selecting markers for their utility
in estimating clonal frequencies yields a marker set that performs
more poorly at refining trees than one selected for the purpose
of refining trees, as we would expect. Randomly chosen markers
similarly perform poorly at updating tree topology, with instances
where random markers outperform markers chosen for inferring
clonal frequencies at the task of refining trees and vice versa.

We also evaluated the ability of the methods to monitor
clonal fractions. We visualize the results for ten simulation
cases in Fig 4, showing increasing ability to characterize clonal
frequencies with larger numbers of optimally chosen markers. By
comparison, inferences from randomly selected marker sets are
typically unstable and require more markers to achieve minimal
accuracy.

Application to a lung cancer case from the TRACERx study

Abbosh et al. (2017) assayed ctDNA for the first 100 TRACERx
research participants, which Abbosh et al. (2023) expanded to
additional participants. To demonstrate our methods, we selected
one TRACERx case, CRUK0044, for which three primary tumor
multi-regional samples were sequenced followed by six consecutive
temporal liquid biopsy samples. Our simulation study suggested
optimizing for tree structures provides a more informative basis
for selecting markers than does optimizing for clonal frequencies,
so we applied only tree structure based selection for this real
data case. We iteratively selected markers for each time point,
selecting a subset of a larger marker set actually profiled by
the TRACERx study, and used these to update the empirical
tree distributions (Fig. 5(a)). The blood samples (shown in the
thick blue line) reinforced the the tree structure originally most
frequently observed in bootstrap replicates from primary sequence,
suggesting that the initial multiregional sequencing had likely
given highest weight to the correct inference. Nonetheless, the
ctDNA allowed us to increase our confidence in that inference
by providing evidence against other possible topologies that were
consistent with the original data. The first sample after the
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surgery tends to have the least ctDNA remaining, as we might
expect, making the tree distribution adjustment less stable and
temporarily leading to an inference that a lower-weight tree
(green line in Fig 5(a)) was the most plausible. However, the
tree distribution stabilizes after the first few blood draws with
enhanced confidence in the initial most likely tree.

We then apply the second marker selection strategy to track
the clonal subpopulations, using the most probable tree structure
(Fig 5(b)) as the presumed correct tree. Since we have three multi-
regional samples, we have an initial candidate list of markers from
all three fraction sets. We select the top five markers among those
occurring in at least two of the three sets. We tracked the fraction
of each subclonal population for each time point of the collected
liquid biopsy samples (Fig 5(c)). Our method is able to use just a
small subset of markers to capture an overall trend of gradual and
then accelerating expansion of several subclones after surgery. This
trend was apparent in the sampling by day 91, although several
of the clones that came to dominate in relapse were seemingly
present at negligible levels in the blood until day 174. We also note
a sharp rise of the initially rare subclone 5, which then becomes
the dominant clone by day 259, post relapse. The data do reveal
some imprecision in inferences, however, most prominently in the
inference of a negative clonal frequency for the once-common clone
1. A negative clonal frequency indicates that markers identifying
the descendants of clone 1 are observed at higher frequency than
the markers for clone 1 itself, an impossible result if the tree and
marker frequencies are exact (El-Kebir et al., 2015) but one that
can occur due to imprecision in marker frequencies or error in the
tree topology.

Discussion

In this paper, we develop and apply a computational framework
for interpreting ctDNA data for refining phylogenetic tree models
and tracing clonal frequencies in tumor phylogenetic models. We
further use this framework to develop optimization methods for
selecting limited numbers of high-sensitivity markers for liquid
biopsy in tracking cancer progression. We pose and solve for two
optimization variants of the marker selection problem: selecting

markers to refine tumor phylogeny models and to track clonal
frequencies. Application to simulated data shows the methods
yield good accuracy at both tasks with limited numbers of markers,
substantially improved over markers selected randomly or for a
different task. Application to real data further demonstrates the
potential of the methods to bring liquid biopsy more effectively
to studies of clonal lineage trees and to clinical applications that
depend on precisely and quantitatively tracking changes in clonal
dynamics over time.

The present work is largely a proof of concept of a general
approach to phylogeny-assisted marker selection for liquid biopsy
that might be extended in a number of ways. The modeling
framework could be adapted to more sophisticated Bayesian
models of tree space, for example to develop more principled
but tractable strategies for handling larger marker sets. Other
objective functions for defining optimal marker sets or interpreting
their results might also be considered, more specifically tuned
to specific clinical questions of interest. We also note that the
present application focused on SNVs, but in future work it will be
important to consider both structural variations (SVs), which are
likely to be high impact and also make effective probes for tumor
tracking, and copy number alterations (CNAs), which are often
the mechanism of action of tumor driver genes and can confound
interpretation of SNV VAFs. Finally, considerable work remains to
be done to take advantage of the new capabilities informatics can
enable for liquid biopsy to lead to improvements in the practice of
public health interventions and clinical treatment of cancers.
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