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Abstract

Motivation: Blood-based profiling of tumor DNA (“liquid biopsy”) has offered great prospects for non-

invasive early cancer diagnosis, treatment monitoring, and clinical guidance, but require further advances

in computational methods to become a robust quantitative assay of tumor clonal evolution. We propose

new methods to better characterize tumor clonal dynamics from circulating tumor DNA (ctDNA), through

application to two specific questions: 1) How to apply longitudinal ctDNA data to refine phylogeny models

of clonal evolution, and 2) how to quantify changes in clonal frequencies that may be indicative of treatment

response or tumor progression. We pose these questions through a probabilistic framework for optimally

identifying maximum likelihood markers and applying them to characterizing clonal evolution.

Results: We first estimate a distribution over plausible clonal lineage models, using bootstrap samples over

pre-treatment tissue-based sequence data. We then refine these lineage models and the clonal frequencies

they imply over successive longitudinal samples. We use the resulting framework for modeling and refining

tree distributions to pose a set of optimization problems to select ctDNA markers to maximize measures of

utility capturing ability to solve the two questions of reducing uncertain in phylogeny models or quantifying

clonal frequencies given the models. We tested our methods on synthetic data and showed them to be

effective at refining distributions of tree models and clonal frequencies so as to minimize measures of tree

distance relative to the ground truth. Application of the tree refinement methods to real tumor data further

demonstrated their effectiveness in refining a clonal lineage model and assessing its clonal frequencies. The

work shows the power of computational methods to improve marker selection, clonal lineage reconstruction,

and clonal dynamics profiling for more precise and quantitative assays of tumor progression.

Availability: https://github.com/CMUSchwartzLab/Mase-phi.git.

Contact: russells@andrew.cmu.edu
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Introduction

The discovery of circulating free DNA (cfDNA) in human blood

and the observation that tumor-derived cfDNA may occur at

greatly elevated levels compared to DNA of healthy cells —

due to elevated release of tumor cell DNA, abnormal clearance

for DNA debris from cell death, or circulating tumor cells in

blood — established the potential for liquid biopsy, i.e., blood-

based profiling of solid tumor genomics (Crowley et al., 2013;

Wan et al., 2017). The prospect of rapid, non-invasive profiling

of tumor states offers many possibilities for improving cancer

diagnosis and treatment (Cescon et al., 2020) including early

prognosis (Phallen et al., 2017b; Connal et al., 2023) and detecting

residual disease and relapse(Mattox et al., 2019; Ignatiadis et al.,

2021). Liquid biopsy methods have now been studied widely in

various cancer types (Maia et al., 2020; Kemper et al., 2023).

The technology has technical limitations, however, mainly due to

the challenge of separating tumor signals from the influence of

much larger numbers of healthy cells and the consequent need for

highly sensitive genomic assays. Deep sequencing on liquid biopsy

samples with low signal-to-noise ratio is one option but can be

too costly and time-consuming for repeated use. As a a result,

alternative molecular testing methods have been used, including

multiplex-PCR (Abbosh et al., 2017) and droplet digital PCR

(ddPCR) (Huerta et al., 2021), as well as strategies for enriching

for tumor DNA with targeted sequencing (Kurtz et al., 2021;

Phallen et al., 2017a). These technologies offer a path to highly

sensitive quantitation of somatic variants found at low levels in

the blood, although with the tradeoff of allowing for profiling of

relatively few pre-selected markers.
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Despite its broad potential, current clinical application of liquid

biopsy has primarily been for prognosis or recurrence detection

(Reinert et al., 2019; Sanz-Garcia et al., 2022), rather than more

precise quantitative analysis of tumor genetics. While there is now

a rich literature on characterizing tumor evolutionary trajectories

from numerous forms of genomic assays (c.f., (Beerenwinkel et al.,

2015; Schwartz and Schäffer, 2017)), the need to work typically

with low precision or relatively limited blood-based marker sets

makes it infeasible to incorporate longitudinal blood samples in a

straightforward way into current methods for multi-sample tumor

phylogenetics. Yet there is also little work to date on developing

new classes of inference method suitable for effectively bringing

liquid biopsy into tumor phylogeny models. One notable exception

has been recent work from the TRACERx Consortium using

a tumour-specific phylogenetic method to profile ctDNA from

non-small-cell lung cancer patients (Abbosh et al., 2017). That

study inferred a base phylogenetic tree for each patient with

primary multi-regional sequencing and then used PCR on liquid

biopsy samples, preoperative and post-operative, to track clonal

and subclonal populations. The same team later investigated a

larger cohort with metastasis and used a new PCR technique

and a bioinformatics tool tailored for ctDNA to track the clonal

lineages longitudinally (Abbosh et al., 2023). Their work showed

that liquid biopsy samples can identify mutations arising in

distinct subclones and characterize clonal population changes in

metastases or relapses, provided they can draw on an accurate

model of clonal lineages. However, much remains unaddressed

with regard to how to identify optimal markers for use in such

analyses and how to use these most effectively to determine the

clonal lineage model and how its population frequencies evolve

over time.

The present work is aimed at developing methods to better

characterize clonal dynamics of tumors from liquid biopsy data.

We focus on challenges that have not, to our knowledge, been

addressed in prior work. First, we examine the question of how

we can leverage liquid biopsy data using small marker sets to

refine phylogenetic models from the primary tumor so as to

correct errors, reduce uncertainty in inference, or expand a tree

to accommodate variants or clones not seen in earlier samples.

Second, we consider the question of optimal marker selection:

for typical scenarios in which one must select a small subset of

markers to profile with high sensitivity, which markers are likely

to be most informative? We examine this question for selecting

markers to optimally refine the tumor phylogeny model and for

measures of optimally characterizing changes in clonal frequency

or tumor heterogeneity over time. We then show on simulated and

real data that our methods allow one to apply liquid biopsy so

as to accurately capture dynamics of clonal population changes

in tumors, with potential application to various tasks in tumor

diagnostics and clinical decision-making.

Method

In this section, we consider variants of the problem of marker

selection for liquid biopsy. For each, we assume we need to select a

small marker set for high-precision assays, such as by ddPCR. Our

goal is to develop personalized assays that allow rapid longitudinal

corrections on a patient-specific basis. Note that we solve the

problem for the general case of assuming that we might select

from any observed marker for each specific subject, however the

problem is conceptually the same if we are limited to choosing

a subset of markers from a larger predefined set for which PCR

probes are already available. We first consider the problem of

choosing markers so as to refine a phylogenetic model and reduce

uncertainty in clonal lineage inference. We then consider selection

with the goal of characterizing changes in clonal frequencies given

a known tree. The overall workflow for simultaneously addressing

these questions is shown in Fig 1.

Selecting mutation markers to minimize uncertainty in

phylogenetic inference

We first consider the problem of choosing liquid biopsy markers

so as to reduce uncertainty in the tree inference. Due to the low

signal-to-noise of liquid biopsy samples, we can expect genomic

measurements from liquid biopsy to yield poor results with

standard phylogenetic inference tools. Fig 2 demonstrates this

with simulated data. As a result, we assume there will be high

uncertainty in tree inference and pose phylogenetic inference in

terms of distributions of trees rather than a single optimum.

For the present purpose, we estimate this distribution through

bootstrapping over sequence reads, an approach chosen because

it allows us to use existing tumor phylogeny methods that are

designed to return a single optimal tree. Bayesian phylogeny

methods might provide a more principled alternative than our

bootstrapping approach to capture the initial tree distribution,

although designing an efficient Bayesian sampler for non-trivial

tumor phylogeny models is a challenging problem in itself. Once

we have an initial tree density, we then seek in part to select liquid

biopsy markers that will allow us to reduce uncertainty in the tree

inference by facilitating comparisons that can reject some subset of

the topologies. For this purpose, we want to find marker sets that

are to best distinguish between possible high-frequency models in

the initial tree distribution.

Problem formulation

We first establish a general probabilitic framework for defining a

tree density and posing optimal marker selection problems over it.

In subsequent sections, we adapt this to distinct solutions to the

problem. At a high level, each variant of the method described

below works by estimating a density over trees and optimizing

marker selection for a desired objective over that density. The

notation below is a formalization of this basic idea, then adapted

to different problem assumptions and objectives.

Given a candidate (bootstrapped) tree set T = {Tk}k=1,...,K

we define a clonal tree structure matrix Ek that specifies possible

structures for a set of defined tumor clones. For each tree k,

Ek
i,j = 1 if clone (tree node) i is the parent of node j and otherwise

0. We define a mutation assignment matrix Mk where Mk
i,l = 1 if

mutation gl belongs to node i for each tree k and otherwise 0. We

define a clonal frequency array Fk = (Fk
i )i=1,...,N , encoding the

variant allele frequency (VAF) of each of N observed mutations

in each clone i for each tree k. We further define the set of

mutations G = {gl}l=1...N . We want to select n ≤ N gene

markers Qn = {gfn(j)}j=1...n by finding a mapping fn such

that the ET q∈T ET k∈T \{T q} logE(Rfn
,Sfn

)∼T kP (Rfn

, Sfn |T q) is

minimized, where Rfn

= (r1, r2 . . . rn) is a family of random

variables describing ddPCR read counts for a set of probes

and Sfn

is a binary matrix mapping biomarkers to clones in

the tree structure for an underlying ground truth tree Tk. In

the model, we assume that the generation of read counts is
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Fig. 1: The overall inference pipeline. (1). We assume we have first sequenced tissue and liquid biopsy sample(s), obtaining reference

germline and ctDNA. (2) We create bootstrapped samples over reads for each sequence set. (3) We infer a set of possible trees from the

bootstrapped samples, serving as an estimated empirical tree distribution. (4) We then seek a set of optimal biomarkers of mutations

to best reduce the tree uncertainty and (5) apply these in biological assays (e.g. ddPCR). (6) We then use the results of these assays to

update the empirical tree distributions. (7) We further seek a set of optimal biomarkers to track subclone frequencies efficiently and (8)

assay these biomarkers. (9) Finally, we then use the results of the assays to estimate clonal fractions at each sampled timepoint.

i.i.d. and independent from the generation of the tree structures

for simplicity of calculation.

We split the likelihood of a given set of data into the probability

of observing the read counts and the probability of observing the

tree structures. Assume that the read count for each gene marker

gfn(j) is rj . Then letting Mk(l) = i when Mk
i,l = 1:

E(Rfn
,Sfn

)∼T kP (Rfn

, Sfn

|T q)

= E(Rfn
,Sfn

)∼T kP (Rfn

|F q,Mq)P (Sfn

|Eq)

= ERfn∼T kP (R|F q,Mq)ESfn∼T kP (S|Eq)

ERfn∼T kP (R|F q,Mq) =
∑
rj

n∏
j=1

P (rj |F q
Mq(f(j))

) = 1 (1)

Since the ddPCR is assumed to have high sequencing depth, we

assume that the probability of observing the read counts is close

to a normal distribution instead of a binomial for computational

convenience. Assume the read depth is D. Then assuming rj ∼
N (µk

j , (σ
k
j )

2), µk
j = DFk

Mk(f(j))
, (σk

j )
2 = DFk

Mk(f(j))
(1 −

Fk
Mk(f(j))

):

P (rj |F q
Mq(f(j))

) =
1√

2π(σq
j )

2
exp

(
−
(rj − µq

j )
2

2(σq
j )

2

)

where µq
j = DF q

Mq(f(j))
, (σq

j )
2 = DF q

Mq(f(j))
(1− F q

Mq(f(j))
)

Then:

1 =

∫
r1,...,rn

n∏
j=1

P (rj |F q
Mq(f(j))

)d(r1, . . . , rn)

=
n∏

j=1

1√
2π((σq

j )
2 + (σk

j )
2)

exp

(
−

(µk
j − µq

j )
2

2((σq
j )

2 + (σk
j )

2)

)

log( 1 ) =−
1

2

n∑
j=1

log(2π((σq
j )

2 + (σk
j )

2))−
1

2

n∑
j=1

(µk
j − µq

j )
2

(σq
j )

2 + (σk
j )

2

For the probabilistic modeling for structural perturbations, we

use the ancestor-descendant distance (Govek et al., 2020) to model

the distance between subtrees. We define a subtree Sk
Qn

of Tk

given a set of marker genes Qn using their ancestor-descendent

matrix A. For Tk, Ak
i,j = 1, i, j = 1, . . . N if mutation i is the

ancestor of j. Then for Sk
Qn

, Âk(f)i,j = 1 if Ak
f(i),f(j)

= 1, i, j =
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1, . . . , n. For each unit change of AD distance, the probability is

λ. Therefore

ESfn∼T kP (Sfn

|Eq) =ESfn∼T kP (Âk(f)|Âq(f))

=λ|Âk(f)−Âq(f)| (2)

logESfn∼T kP (Sfn

|Eq(f)) =
n∑

i=1

n∑
j=1

(∣∣∣Âk
i,j(f)− Âq

i,j(f)
∣∣∣) log λ

After combining the two components, we get an objective

function that we seek to minimize in marker selection:

min
fn

ET q∈T ET k∈T \{T q} logE(Rfn
,Sfn

)∼T kP (Rfn

, Sfn

|T q)

= −
K∑

q=1

K∑
k=1,k ̸=q

1

2

n∑
j=1

log(2π((σq
j )

2 + (σk
j )

2))

−
1

2

n∑
j=1

(µk
j − µq

j )
2

(σq
j )

2 + (σk
j )

2
+

n∑
i=0

n∑
j=0

(∣∣∣Âk
i,j(f)− Âq

i,j(f)
∣∣∣) log λ

(3)

Effectively, this objective function provides a way of evaluating

the utility of a given marker set for reducing a measure of

uncertainty in expectation over the tree density and sampling of

sequence reads.

Refining tumor phylogenetic tree distribution after liquid

biopsy assays on selected markers

For the ddPCR counts tested for selected marker genes g1 and g2,

suppose without loss of generality that g1 is the ancestor of g2
in a proposed tree structure. We then refine the tree structure by

testing which trees are consistent with all the possible relationships

among g1 and g2 consistent with the new data. While one might

build this into the tree likelihood and solve de novo for the tree

density, for efficiency reasons we instead apply new marker data

by posing it as a problem of refining an existing density over

trees. We consider two variants: first posing this as a simpler

statistical hypothesis testing problem and then as a series of

Bayesian updates.

We assume in the discussion below that the read depths

for each tree are described by binomial variables based on

the allele frequencies and overall read depth: {R1
1, R

1
2...R

1
n ∼

Bin(depth1, fg1
)}, {R2

1, R
2
2...R

2
n ∼ Bin(depth2, fg2

)}.

Significance testing method

One straightforward approach to using ctDNA to refine a tree

distribution is to accept or reject potential candidate trees

based on whether the measured marker frequencies are plausibly

consistent with a given tree topology. We assume here that

frequencies of clones may change over time in ways that reveal

some trees to be implausible that were initially plausible, but

the set of clones and their tree topology are unchanged over the

course of the follow-up. Given a pair of markers, we can pose the

question of whether their read counts at a specific point in time

are consistent with a given tree topology as a statistical hypothesis

test, here using a Wald test with the test statistic

W =
δ̂

ŝe
=

f̂g2
− f̂g1√

f̂g1
(1−f̂g1

)

depth1
+

f̂g2
(1−f̂g2

)

depth2

with size α. We reject the hypothesis when W > zα, with α = 0.05

in the present work. For each pair of markers, we perform the

Wald test with a Bonferroni-corrected α and then remove from

the density all tree structures that are rejected by any pairwise

marker test. Repeating this for all pairs of markers in a set then

gives a general test to reject a portion of the tree density and lead

to a refined density consistent with both the original sequence and

subsequent ctDNA data. This test may thus be applied serially

for multiple longitudinal assays, provided the original density was

sufficiently well sampled that the correct tree is found within it.

Bayesian update method

Statistical hypothesis testing might be too strict for some uses, in

allowing us only to accept or reject a given tree and the latter only

with compelling evidence. ctDNA data might still give evidence for

or against certain trees without being able to definitively accept

or reject them. We therefore also develop a Bayesian approach to

capture more nuanced changes in our inferred tree distribution by

updating the weights for each possible topology in the distribution

to reflect its plausibility given all of the data seen to date. Since

we used bootstrapping trees to approximate the tree distribution

from the observed data, we define the initial weight of each tree

structure to be the count of that tree structure observed in the

bootstrapping. Note that these counts are normalized to produce

a probability density over trees but are represented initially as

integers here. We keep our prior notation S to represent the

tree structure, R0 for the observed read counts from the original

primary tissue sequencing, and R1 for the observed PCR counts

from the liquid biopsy samples. Then:

P (S|R1, R0) ∝P (S,R1|R0) = P (R1|S,R0)P (S|R0)

=P (R1|S)P (S|R0) =

∫
f

g(R1, f |S)P (S|R0) (4)

where P (S|R1, R0) defines the updated weights, P (S|R0) is the

original weights,f describes the possible VAFs for the mutation

markers from liquid biopsy, and g(R1, f |S) is the probability

density of a particular set of clonal VAFs f and the corresponding

read counts, given a structure S.

We develop the special case of two markers to derive the basic

method for refining the tree topology and for use in subsequent

illustration. We can generalize the method to multiple independent

marker pairs through sequential application of pairwise updates.

A more rigorous but tractable generalization to k markers for

arbitrary k is less trivial and left as an exercise for future work.

For two markers, there are four types of relationship those

markers might take on in a tree structure: (a) marker 1 is an

ancestor of marker 2, which means that f1 > f2. (b) marker 2

is an ancestor of marker 1, meaning f1 < f2, (c) marker 1 and

marker 2 belongs to the same clone, meaning f1 = f2 = f , (d)

marker 1 and marker 2 belong to different branches of the tree,

meaning f1 + f2 < 1. Therefore, let R1
1, R

1
2 be the read counts of

marker 1 and 2 from liquid biopsy and D1
1 , D

1
2 be the read depths.

Then:

∫
f1,f2

g(R1
1, R

1
2, f1, f2|S) =

(D1
1

R1
1

)(D1
2

R1
2

)
×
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

∫ 1
0

∫ f1

0
f
R1

1

1 (1− f1)
D1

1
−R1

1f
R1

2

2 (1− f2)
D1

2
−R1

2df1df2, case(a)∫ 1
0

∫ 1
f1

f
R1

1

1 (1− f1)
D1

1
−R1

1f
R1

2

2 (1− f2)
D1

2
−R1

2df1df2, case(b)∫ 1
0
fR1

1 (1− f)D
1
1
−R1

1fR1
2 (1− f)D

1
2
−R1

2df, case(c)∫ 1
0

∫ 1−f1

0
f
R1

1

1 (1− f1)
D1

1
−R1

1f
R1

2

2 (1− f2)
D1

2
−R1

2df1df2, case(d)

Equation 4 provides a formula to update the weight of each

possible tree by multiplying each by the above integral. We then

normalize the overall updated weights of all possible structures to

sum to 1 in order to yield an updated tree density. We perform

marker selection for the purpose of optimal tree refinement by

integer linear programming (ILP) over possible choices of markers

and over trees in the tree density to find a marker set optimizing

for the objective function (3), as described in more detail below.

Selecting mutation markers to track the changes in subclonal

populations

We next consider another important criterion for marker selection:

effectively tracking changes in subclonal populations. We would

typically assume that our purpose in conducting liquid biopsy

is to track changes in clonal frequencies or changes in overall

heterogeneity that might be indicative, e.g., of recurrence after

treatment, growth of a resistant clone, or metastasis. Intuitively,

to optimize for this criterion, we want to avoid choosing redundant

markers but rather find a set of markers that are distributed

across the phylogeny so as to provide as much power as possible

to monitor changes in distinct clonal frequencies.

To facilitate our explanation, we first derive a method

for solving this problem under the assumption that we have

determined a specific lineage tree and we want to select a set of

markers to accurately track the clonal dynamics of the tumor as a

whole. We later generalize that to the actual case where we assume

a distribution over trees rather than a single known tree.

Deterministic Trees:

Problem Statement: Given the same input as 2.1, and an index

k̂ which indicates the most likely tree, select n gene markers

{gf(j)}j=1...n by finding a mapping f(j) such that the sum of

weighted tracked clones by the markers in T is maximized.

Here, we set the weights to be the estimated clonal fractions

from the previous time point, posing the problem so as to maximize

the estimated fraction of the tumor tracked. However, the weights

here could be any arbitrary design, for example if we wanted to

bias the selection to favor particular probes based on measures

of their expected clinical utility, ease of probe design, preference

for probes already available, or some other application of expert

knowledge.

For computational convenience, we define the weight for a

tree node to be the weight of each the mutations first appearing

in that node. We then create a clonal frequency array F̄ =

(F̄k
i )i=1,...,Clone num from the most recent estimate of the

variant allele fractions for each clone F = (Fk
i )i=1,...,Clone num,

where F̄k
i = Fk

i −
∑

j F
k
j , j ∈ Children(i). In normal use in

longitudinal sampling, these weights would then update with each

longitudinal time point to provide a best guess as to the weights

at the next time point. Sk is the matrix of pairwise “same-node”

relationship of the kth bootstrapped tree. Sk
ij = 1 if mutations

i and j belongs to the same node in the kth tree and Sk
ij = 0

otherwise, where i > j.

We further define a binarization operation x̄ as follows

x̄ =

{
1, x > 0

0, x = 0

We then define a binary output vector z to identify the chosen

markers as above. Let x = M k̂z, x be an array where xj = 1

indicates the node j has been tracked and xj = 0 if not. xT F̄ is

the total proportion of the tracked clones that we minimize.

Measuring clonal frequencies is not entirely straightforward,

though, because the mutations acquired in any node will be

inherited by its descendent nodes. Therefore we can only identify

the actual frequency of a given clone by measuring a marker of

that clone as well as markers of its children’s clones. We call this

the “complete information assumption” and call the previously

illustrated scenario the “partial information assumption”. Under

the complete information assumption, we create a matrix Êk̂ =

Ek̂ + I mapping clones to mutations whose VAFs would allow us

to identify the clonal fraction. We define a pairwise product ⊙
between matrix A and array b such that (A ⊙ b)ij = aij ∗ bj .

We define a row-wise sum of a matrix A as σ(A) where σ(A)i =∑
j aij . We can then pose the problem of finding the optimal

marker set to correspond to solving the constrained optimization

problem maxz tT F̄ k̂ such that yk̂ = σ(Êk̂ ⊙ xk̂ − Êk̂) where

t = abs(1− ȳk̂).

Candidate tree set

We next extend the simplified model, which assumes a known tree,

to consider uncertainty in tree inferences, in which we assume we

have a density over either a subset of candidate trees or the full

tree space. Assume that T ′
= {T k̄}k̄∈S⊂{1,...,K} ⊂ T is the

tree set over which we want to optimize. Our objective function

would be maxz
∑

k̄∈S (xk̄)
T
F̄ k̄, where xk̄ = M k̄z under the

partial information assumption. Under the complete information

assumption, the constrained optimization problem is transformed

to maxz
∑

k̄ (tk̄)
T
F̄ k̄ such that tk̄ = abs(1 − ȳk̄) where yk̄ =

σ(Êk̄ ⊙ xk̄ − Êk̄) similar to the deterministic tree case.

Tracking tumor subclonal population using the selected markers

After refining the tumor phylogenetic tree distribution, we track

the subclonal population by using the chosen markers. We infer

the frequency of a clone using the mean VAF of markers appearing

in the given clone minus the sum of mean VAFs of markers inferred

for its child clones. We note that this model does assume that we

are only choosing from markers in copy number neutral regions

and thus can treat VAF as a proxy for cancer cell fraction (CCF).

Simulations

We create simulated phylogenetic tree structures parameterized

by the number of subclones and the maximum degree of each

subclone to control how many child subclones a parent node

can have, randomizing subclone distributions to set up the total

tree structure. Then we use a beta distribution to generate true

allele frequencies for each subclone in this tumor tree. Based

on the assumption that clones will have different frequencies

at different tumor sites or in tissue versus blood, we used a

Dirichlet probability distribution to randomize clonal frequencies

with tumor tissues. Yo mimic observations on real tumor and blood

samples, we added a masking step so that only part of the total

subclones that are nearer the root are observed in tissue samples
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and the rest can only be observed in liquid biopsy samples. We

normalize the fractions of observed clones in each tissue sample

so that the fractions add up to one. However, in liquid biopsy

tumor blood samples, normal cells may dilute the mutated alleles

in the blood, which will lead to a higher frequency in the normal

cell. Therefore, we add a frequency of 0.9 to the normal cell with

a subsequent Dirichlet random variable to randomize the rest of

the frequency for each subclone. We use an additional Poisson

random variable to randomly assign a number of mutations to

each subclonal node in the tree.

Since we already simulate the total structure of the tree, the

assignment of mutations, and their corresponding variant allele

frequency, we are able to assign a depth of total reads for both

tissue tumor samples and blood tumor samples. We then use

a Poisson random variable to select for a total read count for

each variant in each sample based on those numbers and use a

binomial distribution with the probability equal to their variant

allele frequency to determine the number of variant reads and

reference reads.

To model sampled ddPCR measurements from this clonal

growth model, we assign a number of droplets collected and

determine the number of these detected to be the mutant based on

the normalized real data, using the mean of droplets in the given

real sample and the known variant allele frequency to simulate the

number of droplets detected as mutant positive.

Implementation of the optimization methods

All the probe optimization problems are solved by formulating

them as integer linear programs (ILPs). We create a variable

z ∈ {0, 1}N×1 so that zi = 1 if ith mutation is selected as a

marker and zi = 0 otherwise. We constrain
∑N

i=1 zi = n to

impose the marker number constraint. We then optimize for each

objective function with z as the variable, establishing an ILP. We

use Python with Gurobi for the solver. We tested our problem

with two tumor phylogeny methods, the MCMC-based method

PhyloWGS (Deshwar et al., 2015) and a simplified version of our

own ILP method, TUSV-ext (Fu et al., 2022), restricted to only

consider SNVs. ILPs were all solved using Gurobi Ver.9 in the

present testing.

Results

Simulated data

Before directly assessing our methods for marker selection and

application, we first assessed how accurately we can determine

phylogenies by different tumor phylogeny methods using simulated

tissue and blood samples. Many tools have been developed for

tumor phylogentics from tissue samples, including multiregional

samples, yet none to our knowledge are designed specifically

for including high noise-to-signal ratio liquid biopsy samples or

have been tested on comparable data. We compared results using

PhyloWGS (Deshwar et al., 2015) and an SNV-only version of

TUSV-ext (Fu et al., 2022), which we refer to as deconv. We

also applied two methods for measuring phylogenetic distance

specialized to tumor phylogenies, CASet and DISC (Dinardo et al.,

2020), for tree distance evaluation. For the present purposes, we

assumed an initial liquid biopsy sample was sequenced along with

one or more tissue samples. The results show that PhyloWGS

yields good results even with only a single tissue sample, although

accuracy is better the more tissue samples are included (Fig.

2). deconv performs poorly by the CASet measure, although

comparably to PhyloWGS by the DISC measure. These results

show that there is substantial room for improvement in tree

inference, supporting the value of refining the tree model using

subsequent ctDNA samples.

We then tested the whole analysis pipeline of Fig. 1 on the

simulated data. We first generated 100 bootstrapped samples

for each simulation case and inferred a tree for each bootstrap

replicate. Since PhyloWGS performed better in the earlier tests,

we use it subsequently to generate bootstrap trees. We then

apply our marker selection methods on the bootstrap tree sets

before applying the chosen markers to adjust the tree distribution

according to the simulated ddPCR data. Our simulation results

show that using even limited numbers of markers can shift the tree

distribution towards the ground truth tree; almost all cases yield

refined trees below the diagonal in 3(a) and (b), meaning that the

updated weighted distance of the tree distribution to the ground

truth tree is reduced by the update. The weights of the bests

tree relative to alternatives are also improved, as we see in Fig

3(c). We compare each of these measures between markers chosen

for the purpose of reducing uncertainty against those chosen for

optimally characterizing clonal frequencies and against randomly

selected markers. We see that markers chosen to optimize their

ability to reduce uncertainty in the tree structure indeed perform

substantially better at this task. Selecting markers for their utility

in estimating clonal frequencies yields a marker set that performs

more poorly at refining trees than one selected for the purpose

of refining trees, as we would expect. Randomly chosen markers

similarly perform poorly at updating tree topology, with instances

where random markers outperform markers chosen for inferring

clonal frequencies at the task of refining trees and vice versa.

We also evaluated the ability of the methods to monitor

clonal fractions. We visualize the results for ten simulation

cases in Fig 4, showing increasing ability to characterize clonal

frequencies with larger numbers of optimally chosen markers. By

comparison, inferences from randomly selected marker sets are

typically unstable and require more markers to achieve minimal

accuracy.

Application to a lung cancer case from the TRACERx study

Abbosh et al. (2017) assayed ctDNA for the first 100 TRACERx

research participants, which Abbosh et al. (2023) expanded to

additional participants. To demonstrate our methods, we selected

one TRACERx case, CRUK0044, for which three primary tumor

multi-regional samples were sequenced followed by six consecutive

temporal liquid biopsy samples. Our simulation study suggested

optimizing for tree structures provides a more informative basis

for selecting markers than does optimizing for clonal frequencies,

so we applied only tree structure based selection for this real

data case. We iteratively selected markers for each time point,

selecting a subset of a larger marker set actually profiled by

the TRACERx study, and used these to update the empirical

tree distributions (Fig. 5(a)). The blood samples (shown in the

thick blue line) reinforced the the tree structure originally most

frequently observed in bootstrap replicates from primary sequence,

suggesting that the initial multiregional sequencing had likely

given highest weight to the correct inference. Nonetheless, the

ctDNA allowed us to increase our confidence in that inference

by providing evidence against other possible topologies that were

consistent with the original data. The first sample after the
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Fig. 2: Assessment of accuracy of tree inference using paired liquid biopsy and multi-regional tissue samples. The figure shows distance

between true and inferred trees as function of number of samples for the PhyloWGS and deconv methods. (a) CASet distance (Dinardo

et al., 2020). (b) DISC distance (Dinardo et al., 2020).

surgery tends to have the least ctDNA remaining, as we might

expect, making the tree distribution adjustment less stable and

temporarily leading to an inference that a lower-weight tree

(green line in Fig 5(a)) was the most plausible. However, the

tree distribution stabilizes after the first few blood draws with

enhanced confidence in the initial most likely tree.

We then apply the second marker selection strategy to track

the clonal subpopulations, using the most probable tree structure

(Fig 5(b)) as the presumed correct tree. Since we have three multi-

regional samples, we have an initial candidate list of markers from

all three fraction sets. We select the top five markers among those

occurring in at least two of the three sets. We tracked the fraction

of each subclonal population for each time point of the collected

liquid biopsy samples (Fig 5(c)). Our method is able to use just a

small subset of markers to capture an overall trend of gradual and

then accelerating expansion of several subclones after surgery. This

trend was apparent in the sampling by day 91, although several

of the clones that came to dominate in relapse were seemingly

present at negligible levels in the blood until day 174. We also note

a sharp rise of the initially rare subclone 5, which then becomes

the dominant clone by day 259, post relapse. The data do reveal

some imprecision in inferences, however, most prominently in the

inference of a negative clonal frequency for the once-common clone

1. A negative clonal frequency indicates that markers identifying

the descendants of clone 1 are observed at higher frequency than

the markers for clone 1 itself, an impossible result if the tree and

marker frequencies are exact (El-Kebir et al., 2015) but one that

can occur due to imprecision in marker frequencies or error in the

tree topology.

Discussion

In this paper, we develop and apply a computational framework

for interpreting ctDNA data for refining phylogenetic tree models

and tracing clonal frequencies in tumor phylogenetic models. We

further use this framework to develop optimization methods for

selecting limited numbers of high-sensitivity markers for liquid

biopsy in tracking cancer progression. We pose and solve for two

optimization variants of the marker selection problem: selecting

markers to refine tumor phylogeny models and to track clonal

frequencies. Application to simulated data shows the methods

yield good accuracy at both tasks with limited numbers of markers,

substantially improved over markers selected randomly or for a

different task. Application to real data further demonstrates the

potential of the methods to bring liquid biopsy more effectively

to studies of clonal lineage trees and to clinical applications that

depend on precisely and quantitatively tracking changes in clonal

dynamics over time.

The present work is largely a proof of concept of a general

approach to phylogeny-assisted marker selection for liquid biopsy

that might be extended in a number of ways. The modeling

framework could be adapted to more sophisticated Bayesian

models of tree space, for example to develop more principled

but tractable strategies for handling larger marker sets. Other

objective functions for defining optimal marker sets or interpreting

their results might also be considered, more specifically tuned

to specific clinical questions of interest. We also note that the

present application focused on SNVs, but in future work it will be

important to consider both structural variations (SVs), which are

likely to be high impact and also make effective probes for tumor

tracking, and copy number alterations (CNAs), which are often

the mechanism of action of tumor driver genes and can confound

interpretation of SNV VAFs. Finally, considerable work remains to

be done to take advantage of the new capabilities informatics can

enable for liquid biopsy to lead to improvements in the practice of

public health interventions and clinical treatment of cancers.
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(c)

Fig. 3: Simulation result from 10 random tumor clonal trees with 7

clones, mutation rate of 50 and mask proportion of 0.5 for tissue,

with one liquid biopsy sample and two tissue samples. (a) The

updated weighted distance after the tree adjustment versus the

original weighted distance between the estimated tree and the

ground truth tree, whose weights are the frequencies of each tree

structure in the bootstrapped trees. CASet(Dinardo et al., 2020)

is used as the distance metric. (b) The updated weighted distance

after the tree adjustment versus the original weighted distance

using DISC (Dinardo et al., 2020) as metric. (c) The updated

weights versus the original weights for the best tree structure,

with the lowest distance compared to the ground truth tree. We

compared the three marker selection strategies: optimizing for

inferring clonal fractions (frac), inferring tree structures (struct),

and random selection (random).

content is solely the responsibility of the authors and does not

necessarily represent the official views of the National Institutes
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Fig. 5: Results of applying our tree refinement and clonal tracking methods on the CRUK0044 sample from the TRACERx data. (a)

Changes in tree weights for each topology identified in bootstrap sampling, after adjusting the tree distribution using the selected markers

at each time point. (b) The inferred most likely tree after all serial samples, corresponding to the blue line in (a). (c) Inferred clonal

frequencies as of each longitudinal sample derived from the selected marker set as of each day of sampling, with lines representing the

clones color-coded as in the tree at left.
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