

1 **Ecogeographic signals of local adaptation in a wild relative help to identify variants
2 associated with improved wheat performance under drought stress**

3

4 Moses Nyine^{1,2}, Dwight Davidson^{1,2}, Elina Adhikari^{1,3}, Marshall Clinesmith^{4,7}, Huan Wang^{1,5},
5 Alina Akhunova^{1,6}, Allan Fritz⁷, Eduard Akhunov^{1,2}

6

7 ¹ Department of Plant Pathology, Kansas State University, Manhattan, USA

8 ² Wheat Genetics Resource Center, Kansas State University, Manhattan, USA

9 ³ Bayer, Chesterfield, USA

10 ⁴ Syngenta, Junction City, USA

11 ⁵ Broad Institute, Cambridge, Boston, USA

12 ⁶ Integrated Genomics Facility, Kansas State University, Manhattan, USA

13 ⁷ Department of Agronomy, Kansas State University, Manhattan, USA

14

15 **Author for correspondence**

16 Eduard Akhunov

17 Tel: +1 (785) 532-1342

18 Email: eakhunov@ksu.edu

19

20

21 **Summary**

22 Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone
23 environments is challenging. Here, we combined the genome-wide environmental scans (GWES)
24 in wheat diploid ancestor *Aegilops tauschii* with allele testing in the genetic backgrounds of
25 adapted cultivars to identify new diversity for improving wheat adaptation to water-limiting
26 conditions. Evaluation of adaptive allele effects was carried out in *Ae. tauschii*-wheat introgression
27 lines (ILs) phenotyped for multiple agronomic traits under irrigated and water-limiting conditions
28 using both UAS-based imaging and conventional approaches. The GWES showed that climatic
29 gradients alone explain most (57.8%) of genomic variation in *Ae. tauschii*, with many alleles

30 associated with climatic factors in *Ae. tauschii* being linked with improved performance of ILs
31 under water-limiting conditions. The most significant GWES SNP located on chromosome 4D and
32 associated with temperature annual range was linked with reduced canopy temperature in ILs. Our
33 results suggest that (i) introgression of climate-adaptive alleles from *Ae. tauschii* have potential to
34 improve wheat performance under water-limiting conditions, (ii) variants controlling physiological
35 processes responsible for maintaining leaf temperature are likely among the targets of adaptive
36 selection in a wild relative, and (iii) adaptive variation uncovered by GWES in wild relatives has
37 potential to improve climate resilience of crop varieties.

38

39 **Introduction**

40 The wild relatives of modern crops are a valuable source of adaptive diversity for
41 developing improved varieties (Gill *et al.* 2006; Sohail *et al.* 2011; Kishii 2019). However, only a
42 small fraction of wild relative diversity from the germplasm collections is utilized in breeding. The
43 size of these collections, which may include thousands of accessions, complicates the selection of
44 the most relevant genotypes for improving traits of interest. The prioritization of genebank
45 germplasm for breeding climate adapted varieties is especially challenging due to the polygenic
46 nature of adaptation to local environments (Araus *et al.* 2007; Exposito-Alonso *et al.* 2019).
47 Therefore, the development of effective strategies, which are aimed at prioritizing wild relative
48 germplasm for specific breeding applications, remains critical (Bohra *et al.* 2022).

49 The allopolyploid bread wheat, the second most important crop worldwide, originated by
50 the hybridization of three wild grass species from the *Triticum* and *Aegilops* genera (Kihara 1944;
51 Nesbitt and Samuel 1996; Dvorak *et al.* 1998; Tanno and Willcox 2006; Luo *et al.* 2007; Ozkan *et*
52 *al.* 2011; Avni *et al.* 2017). Since its origin 10,000 years ago, wheat was disseminated by human
53 migration and trade to diverse geographic regions with distinct climatic conditions (Balfourier *et al.*
54 2019). Archeological records and analyses of ancient DNA samples suggest that wheat reached
55 Britain about 8,000 years ago (YA) (Smith *et al.*, 2015) and China and Africa about 3,000 YA
56 (Shewry 2009). Selection for performance in these diverse environments enriched local wheat
57 populations for alleles contributing to adaptation to new climatic conditions (He *et al.* 2019; Zhao
58 *et al.* 2023). However, the future climate change scenarios predict that climatic conditions in many

59 wheat growing areas could be outside of the adaptive range of existing genotypes and lead to
60 severe yield reduction (Tack et al., 2015; Ortiz-Bobea et al., 2019). The results of climate
61 modeling suggest that nearly 40% of crop growing areas might require new varieties to sustain
62 crop production (Schlenker and Roberts 2009; Zabel et al., 2021). Leveraging the genetic diversity
63 of multiple wild ancestors of wheat, which are evolved to grow in diverse environments, is one of
64 the promising strategies for broadening the climate adaptive potential of modern wheat.

65

66 The direct ancestors of wheat, *Aegilops tauschii* and *Triticum turgidum* ssp. *dicoccoides*
67 (wild emmer), are two most broadly distributed species among the wheat wild relatives (Dvorak *et*
68 *al.* 1998; Avni *et al.* 2017). These species are also among the most represented in germplasm
69 collections, some of which host thousands of accessions of *Ae. tauschii* and *T. turgidum* (Sharma
70 *et al.* 2021). Because these wild ancestors of wheat share homologous genomes, their
71 chromosomes could easily recombine, facilitating introgression of allelic diversity from *Ae.*
72 *tauschii* and wild emmer into wheat (Nyine *et al.* 2020). By using the synthetic hexaploid wheat
73 (SHW) lines, which are hybrids of tetraploid wheat and *Ae. tauschii*, the allelic diversity of these
74 ancestors was introduced into multiple international breeding programs from CIMMYT, ICARDA,
75 China, Australia, United Kingdom, and United States (Pestsova *et al.*, 2004; Börner *et al.*, 2015).
76 For example, it was demonstrated that these ancestors of wheat have potential to improve
77 adaptation to water limiting conditions and heat, and increase biomass and harvest index (Singh *et*
78 *al.*, 2019; Molero *et al.*, 2023). However, considering the broad adaptive potential of these species
79 reflected in their wide geographic distribution, the question remains of how effective these efforts
80 were at capturing adaptive diversity of *Ae. tauschii* and wild emmer.

81

82 The prioritization of wild relative accessions for pre-breeding of climate resilient crops
83 remains challenging. Wild relatives could be phenotypically pre-screened for target traits.
84 However, this screening could be performed only for simple traits, and has limited utility for
85 complex adaptive traits if phenotypic evaluation was not performed in the genetic background of
86 adapted cultivars. Another approach to prioritize accessions is the development of “core
87 collections” assembled from a large number of genotypes selected to maximize the genetic
88 diversity of the sample (Frankel 1984). While this strategy could effectively reduce the number of
89 accessions, its major disadvantage in application to large collections is that it targets only common

90 adaptive alleles, removing rare alleles or allelic complexes. The third approach is based on
91 selection of wild relative accessions based on environmental parameters at the site of accession's
92 origin (Turner et al., 2010; Jones et al., 2012; Lasky et al., 2015) (Bari *et al.* 2012). However,
93 while this strategy could capture alleles contributing to an adaptive phenotype of small number of
94 accessions, its ability to maximize the recovery of adaptive genetic diversity at species-wide level
95 would be limited.

96 A combination of genome diversity analyses with the geographic patterns of environmental
97 variation for detecting adaptive diversity is another strategy that so far had limited usage in crop
98 breeding. The cost-efficiency of next-generation sequencing (NGS) genotyping approaches made
99 possible generating genome-wide variation for geographically diverse populations. By combining
100 genomic data with eco-geographic variables, it became possible to identify alleles associated with
101 adaptive phenotypes. These approaches, referred to as genome-wide environmental scans (GWES),
102 identify loci involved in local adaptation based on a high correlation between allele frequencies
103 and eco-geographic variables. In an early GWES study, a number of climate-associated alleles
104 (CAA) were mapped in *Arabidopsis* by using 13 climatic variables, among others including
105 extremes and seasonality of temperature and precipitation (Hancock et al., 2011). The CAA
106 identified by GWES allowed for accurate prediction of the relative fitness of *Arabidopsis*
107 accessions in local environments (Turner et al., 2010; Hancock et al., 2011; Frachon et al., 2018).
108 The GWES in sorghum and Mexican white oak detected adaptive variants that also produced
109 reliable phenotypic predictions (Lasky et al., 2015; Martins et al., 2018). These studies suggest that
110 adaptive alleles identified using the GWES have potential to predict agronomic phenotypes in
111 target environments.

112
113 Though GWES were shown to be effective at identifying loci contributing to
114 environmental adaptation, it remains unclear whether these loci could be used to prioritize wild
115 relative accessions for introgression into modern crop varieties to improve their adaptive potential
116 in extreme environments. To address this question, we used a diverse collection of *Ae. tauschii* to
117 conduct GWES and identified variants contributing to climatic adaptation. We specifically focused
118 on those variants that correlate with precipitation and temperature gradients during growth season.
119 Then, we selected a geographically diverse set of *Ae. tauschii* accessions to develop introgression
120 populations by crossing them with the adapted wheat varieties. The developed introgression

121 population was grown for several seasons across diverse environments and agronomic
122 performance of introgression lines (ILs) was assessed by measuring agronomic and physiological
123 traits. The physiological status and growth of ILs were evaluated using the UAS-based
124 phenotyping with the RGB and thermal cameras. The wheat productivity was assessed by
125 measuring yield and yield component traits (thousand grain weight, grain area, grain width and
126 grain length). The relationship between phenotypic data and climate adaptive alleles introgressed
127 from *Ae. tauschii* was investigated to better understand the value of GWES in wild relatives as a
128 tool for selecting wild relative accessions to improve the adaptive potential of wheat varieties.

129

130 **Materials and methods**

131 **Plant materials**

132 A diverse set of 137 geo-referenced *Ae. tauschii* accessions collected over a geographic
133 range of species distribution and representing locations with diverse historic climatic and
134 bioclimatic characteristics was acquired from the USDA NSGC to identify the CAAs (Table S1).
135 A subset of 21 geographically diverse accessions was selected from this population and crossed
136 with hard red winter wheat varieties to generate *Ae. tauschii*-wheat amphiploids. The amphiploids
137 were then crossed with six hard red winter wheat cultivars adapted to grow in the US Great Plains
138 to develop *Ae. tauschii*-wheat ILs (Nyine et al., 2020, Nyine et al., 2021). A total of 351 BC₁F_{3:5}
139 introgression lines that had phenology similar to that of the recurrent parents were used to study
140 the impact of introgressed CAA on the adaptative traits.

141

142 **Genotyping and imputation**

143 DNA was extracted from two-week old seedling leaf tissues of the diverse *Ae. tauschii*
144 accessions and the derived introgression population using DNeasy 96 Plant DNA extraction kit
145 (Qiagen) following the manufacturer's protocol. The quality and concentration of the DNA was
146 assessed using PicoGreen dsDNA assay kit (Life Technologies). The extracted DNA was
147 normalized to 400 ng (20ul of 20ng/ul) using the Qiagility robot (Qiagen). Genotyping by
148 sequencing (GBS) included a library size selection step performed using the Pippin Prep system

149 (Sage Scientific) to enrich the library for 270-330 bp fragments, as described in Saintenac et al.
150 (2013). The prepared libraries were sequenced on Illumina NextSeq 500. Variant calling was done
151 using the TASSEL v5.0 GBS v2 pipeline (Glaubitz et al., 2014).

152 To increase the density of SNP markers in both populations, we re-sequenced the panel of
153 21 *Ae. tauschii* accessions and the six recurrent hexaploid wheat lines using whole-genome
154 sequencing approach. PCR-free genomic libraries were constructed using Illumina protocol at the
155 Integrated Genomic Facility (IGF) at Kansas State University. Paired-end sequences (2 x 150 bp)
156 were generated using NovaSeq at Kansas University Medical Center and NextSeq 500 at IGF. The
157 data were combined and processed as described by Nyine et al. (2021). Missing and ungenotyped
158 SNPs in the *Ae. tauschii* diversity panel and the introgression population were imputed from the
159 parental genotypes using Beagle v5.0 (Browning and Browning 2013). After imputation and
160 filtering out SNPs with genotype probability below 0.7, we retained 6,365,631 SNPs in *Ae.*
161 *tauschii* diversity panel and 5,208,054 SNPs in the introgression population.

162

163 **Population structure and variance partitioning of SNP diversity in *Ae. tauschii***

164 To understand the level of genetic diversity within the *Ae. tauschii* population and how
165 both geography and climate shaped the SNP variation in the population, we pruned the 6.3 million
166 SNPs based on linkage disequilibrium (LD) using PLINK v1.9 and retained 109,627 SNPs that had
167 $r^2 < 0.5$ in 50 kb sliding window with step size of 5 kb. The proportion of ancestry shared between
168 accessions was estimated from the LD pruned SNPs and the geographical coordinates for the
169 accessions' collection sites using the tess3r R package (Caye et al. 2016). The maximum number
170 of ancestral populations tested was eight (K = 1:8). Each K was run 10 times for 200 iterations (rep
171 = 10, max.iteration = 200) and the spatial projection of ancestral coefficients was based on least
172 squares method (method = "projected.ls"). The optimal number of ancestral populations selected
173 based on cross-validation scores was K = 4 because it split the *Ae. tauschii* population into two
174 lineages and four sub-lineages that coincided with previous findings by Wang et al., (2013). A plot
175 showing the population admixture and the spatial distribution of accessions from different
176 subspecies at the sites of sample collection was generated.

177 The proportion of SNP variance in the *Ae. tauschii* accessions was partitioned into those explained
178 by geographic distance and climate using the ‘varpart’ function in R package ‘vegan’. The
179 geographic distances were calculated using the ‘distVicentyEllipsoid’ function in R package
180 ‘geosphere’ using the GPS coordinates from the accessions’ collection sites and the results were
181 presented in a Venn diagram.

182

183 **Redundancy analysis**

184 The diverse set of *Ae. tauschii* accessions used in this study came from a wide range of
185 geographical locations with distinct climatic and bioclimatic conditions suggesting that certain
186 genetic factors are involved in local adaptation. Based on this hypothesis we modeled the
187 relationship between response variables (SNPs) and explanatory variables (climatic and
188 bioclimatic factors, and geographic distance) using the redundancy analysis (RDA) (Van den
189 Wollenberg 1977; Lasky et al., 2015) and mixed linear models to identify variants contributing to
190 local adaptation. Variables were ranked to identify those that contribute most to SNP diversity in
191 the *Ae. tauschii* population. To achieve this, the ordiR2step function was applied on the RDA
192 results with adjusted R^2 using the forward selection method from 10,000 permutations. Type 1
193 error was minimized during the selection of the most important factors contributing to SNP
194 diversity by following the rules proposed by Blanchet et al., (2008). The full RDA model based on
195 all climatic and bioclimatic variables with the calculated adjusted R^2 values was evaluated to
196 determine variables that (1) significantly improved the explained variation of SNP diversity
197 distribution in *Ae. tauschii* population at alpha 0.05, and (2) whose total adjusted R^2 did not exceed
198 the adjusted R^2 value of the full model. Based on the aforementioned conditions, the most
199 important variables identified were projected on the first two principal components as a biplot. To
200 illustrate the variation of temperature annual range (BIO7) from the *Ae. tauschii* accessions’
201 collection sites, a heatmap was plotted using the ‘heat_point’ function provided in R package
202 ‘autoimage’ and an overview of the variation of the most important variables at the collection sites
203 for the sub-lineages was compared using boxplots. All variables were scaled to range between 0
204 and 1 by dividing with the highest value within the dataset and then squaring them to eliminate the
205 negatives before generating the boxplots with ggplot2 in R.

206

207

208 **Identification of climate associated alleles (CAAs) in *Ae. tauschii***

209 To determine the genetic basis of local adaptation in *Ae. tauschii*, we used both RDA and
210 GWAS to identify SNPs that were significantly associated with geographic, climatic and
211 bioclimatic variables. We extracted the first three RDA loadings for each SNP from the RDA
212 model described above and transformed them to Z-scores. The mean Z-score was calculated from
213 all SNPs and any SNP with three standard deviations from the mean was considered a candidate
214 CAA SNP. Pearson's correlation coefficients were used to determine the variable with the
215 strongest association to each SNP, thus each CAA SNP was assigned to only one variable. To
216 capture most CAA, we also performed a GWAS using a compressed mixed linear model in GAPIT
217 (Lipka et al., 2012). The geographic, climatic and bioclimatic variables were used as phenotypes.
218 The population structure was accounted for by including PCAs calculated from the marker data as
219 covariates in the model. Multiple test correction was performed using the Benjamini-Hochberg's
220 method (FDR ≤ 0.05).

221

222 **Phenotyping of *Ae. tauschii* introgression population**

223 The population of ILs was phenotyped under field conditions for three seasons between
224 2018 and 2020 to evaluate the adaptive potential of CAAs introgressed in the winter wheat. In
225 2018 and 2019, phenotyping was done at Colby (Kansas, USA) under irrigated and non-irrigated
226 conditions. In 2020, phenotyping was done at Ashland (Kansas, USA) under non-irrigated
227 conditions. The experimental layout at all locations followed an augmented design with six
228 recurrent hexaploid wheat parents and three additional winter wheat lines adapted to Kansas
229 weather as controls. Experimental plots were 2.5 m x 0.5 m consisting of three rows separated by
230 18 cm. During planting, granular 18-46-0 diammonium phosphate (DAP) fertilizer was applied at a
231 rate of 168.1 kg/ha and liquid 28-0-0 urea ammonium nitrate (UAN) was applied at a rate of 67.3
232 kg/ha in the spring to supply additional nitrogen to the plants. The lateral irrigation system was
233 used to maintain the soil moisture in the irrigated block.

234 The ILs were phenotyped for yield and the component traits such as spikelet number per
235 spike (SNS), thousand grain weight (TGW), grain area (GA), grain width (GW) and grain length
236 (GL). During the growing season, remote sensing data including RGB, NDVI and canopy
237 temperature (CT) were collected at multiple time points during growth seasons using unmanned
238 aerial system (UAS) mounted with specific sensors for each data type to evaluate the physiological
239 status and growth trend of the introgression lines. The RGB and NDVI imagery data were
240 processed in Agisoft software (version) to generate orthomosaics and digital elevation models
241 (DEM) whereas the thermal data were processed in Pix4D to generate the CT orthomosaics. The
242 raster files generated by Agisoft and Pix4D were imported into QGIS v3.4 software for plot level
243 data extraction. Shape files consisting of rectangular polygons that overlaid each plot in the
244 experimental block were created and the mean pixel values for each color band within the polygon
245 were calculated using raster zonal statistics tools and saved as a comma separated values (csv) file.
246 Other indices such as visible atmospherically resistant index (VARI) and triangular greenness
247 index (TGI) were derived from the RGB data whereas NDVI was derived from near infrared and
248 red color bands using the following equations:

249
$$VARI = \frac{G - R}{G + R - B}$$
 eqn. 1

250
$$TGI = G - 0.39 * R - 0.61 * B$$
 eqn. 2

251
$$NDVI = \frac{1.236 * NIR - 0.188 * R}{NIR + 0.044 * R}$$
 eqn. 3

252

253 where R, G, B and NIR are the mean pixel values for the red, green, blue and near infrared color
254 bands.

255 Heading data were collected in 2020 at Ashland and validated in 2022 at RockyFord,
256 Manhattan, Kansas USA. Heading date was recorded when 50 % of spikes fully emerged from the
257 flag leaf. The number of days to heading (DTH) were calculated by subtracting the planting date
258 from the heading date. To understand how much the heading date for the introgression lines varies
259 from the controls, we calculated the mean DTH for the controls and subtracted the DTH for each
260 introgression to generate the deviation in days to heading (DDTH).

261 **Best linear unbiased predictions (BLUPs)**

262 Best linear unbiased predictions for yield and yield component traits were obtained from a
263 mixed linear model implemented in R package. Given that the experimental layout followed an
264 augmented design all controls were given a code 1, and the test introgression lines were assigned a
265 0. Each introgression line was assigned a unique numeric code which was used as a group identifier
266 in all experiments whereas the controls were assigned a 999 regardless of the accession as the
267 group identifier. A mixed linear model was run for different traits. For example, BLUPs for the
268 number of days to heading, used in GWAS analysis were estimated from the following model:

269 $DTH \sim Loc + Check, \text{random} = \sim Acc + Acc:range/row + Acc:LocName,$

270 where DTH is number of days to heading, Loc is the field trial location, Check defined lines
271 whether they are controls or test lines and Acc is the accessions.

272 Canopy temperature data were collected over multiple time points (aka flights) in the two
273 years. Spatial correction was performed using SpATS implemented in MrBean, a shiny based R
274 package. Variance due to genotype and environment were estimated as well as narrow sense
275 heritability. After excluding outliers, BLUPs were predicted for the test lines based on the variance
276 in the controls. All flights and blocks with heritability less than 0.2 were excluded from the linear
277 mixed model. The remaining data were used to estimate genotype BLUPs across flights, treatment
278 blocks and years. In the model, experimental treatment and flights were considered as fixed effects
279 whereas genotypes were considered as random effects.

280 **Association between CAAs and phenotypic traits in introgression population**

281 The frequency spectra of CAAs derived from *Ae. tauschii* was estimated for groups of ILs
282 that have trait values falling into the tails of phenotype distributions. Our expectation was that if
283 the CAAs are associated with variation in phenotypic traits in the introgression population, the
284 phenotypic value tails should show CAA frequency spectra distinct from the CAA frequency
285 spectra for the whole population. For this purpose, we ranked the ILs based on trait values and
286 compared the CAA frequency spectrum in the whole population (WP) and the lower and upper 5th
287 percentile of the phenotype distributions. Lines were considered to belong to the lower or upper

288 tail groups if they were ranked as outliers in at least two trials. The frequency spectrum was built
289 using 5,675 CAAs in the introgression population by counting alleles in 9 allele frequency bins.

290 Allele frequency of all CAA sites was calculated for the whole population and for the
291 introgression lines that ranked in the lower and upper 5% tails of phenotype distribution using
292 vcftools. Differentiation in allele frequency was determined by calculating the fold change (FC) in
293 allele frequency between the introgression lines in the tails and the whole population. SNPs with
294 $FC \geq 2$ were considered to strongly differentiated. For some traits, where the allele frequency FC
295 was less than two across all sites, the threshold was adjusted accordingly.

296 To determine the relationship between recombination rate gradient and allelic
297 differentiation, we split the chromosome arms into three equal parts. The number of differentiated
298 CAAs within each chromosome segment was counted using the ‘bedmap’ function of BEDOPS
299 tools. The redundant CAA sites showing the high levels of LD were removed using PLINK. We
300 retained only those SNPs that had $r^2 < 0.5$ within the 50 kb window with a step size of 5 kb. The
301 total number of differentiated alleles was aggregated for all traits and chromosomes.

302 To confirm the contribution of CAAs to adaptation traits a linear regression of yield on CT
303 was performed to determine the proportion of variance in yield explained by the variation in CT.
304 Introgression lines that ranked in the 5th and 95th percentiles of CT distribution were compared for
305 yield performance relative to the recurrent parents. GWAS was performed on the traits phenotyped
306 in the BC₁F_{3.5} *A. tauschii*-wheat introgression population including CT, heading date, yield and
307 component traits to determine loci with significant associations. Multiple GWAS models were
308 tested on each trait with varying number of principal components to correct for population
309 structure. GWAS analysis was implemented in GAPIT v3.0. CAAs significantly associated with
310 traits in the introgression population at the FDR value 0.05 were considered adaptive in the winter
311 wheat background.

312

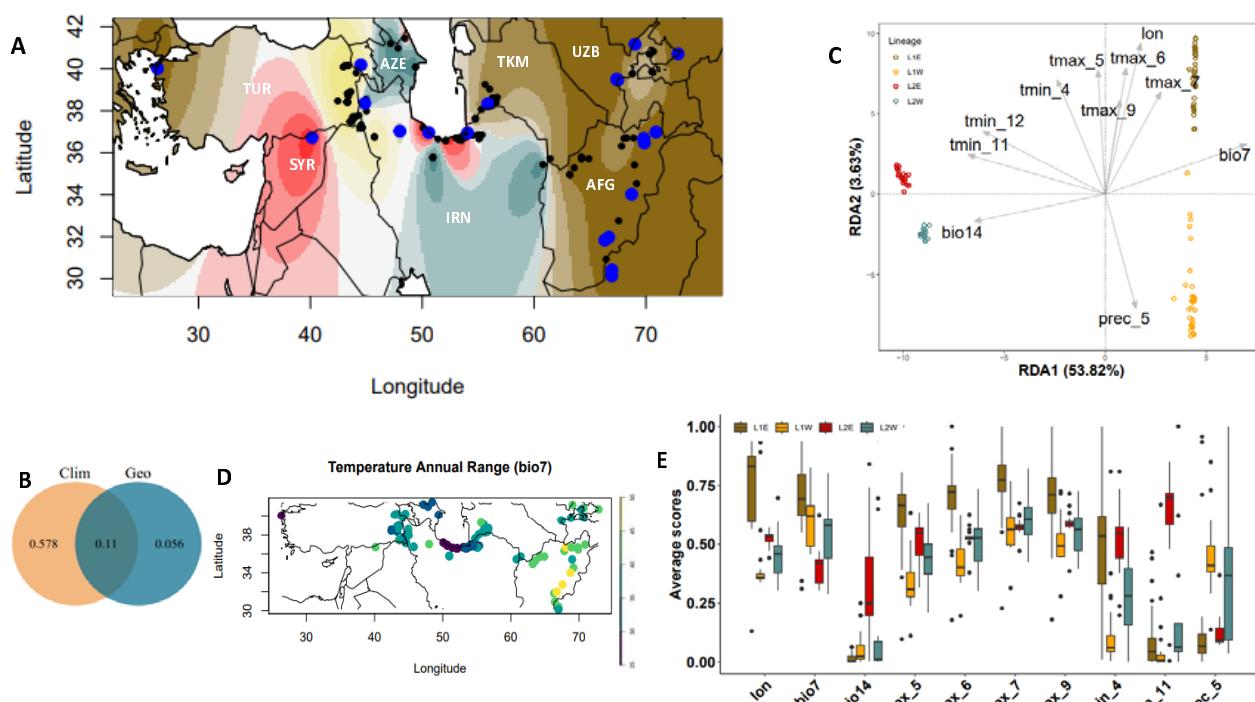
313

314

315 **Results**

316 **Environmental scans in *Aegilops tauschii***

317 The genetic basis of *Ae. tauschii* adaptation to diverse climatic conditions across a broad
318 geographic range extending from Eastern Europe to China remains poorly understood. To identify
319 genetic loci contributing to adaptation, we conducted genotype-environment association analyses
320 using 109,627 SNPs identified in a geographically diverse panel of 137 accessions. This set of
321 SNPs was selected by LD-based pruning from a larger set including 6,365,631 genotyped and
322 imputed SNPs. Using this data, we explored the population structure of our samples and its
323 correspondence to the previously identified four main lineages (L1W, L1E, L2E, L2W) of *Ae.*
324 *tauschii* (Wang et al. 2013) (Fig. 1A). The inferred population structure of *Ae. tauschii* accessions
325 was consistent with the results of previous studies (Wang et al. 2013), showing the split between
326 L1 and L2 lineages, where L1 was composed of *Ae. tauschii* ssp. *tauschii* and L2 included
327 accessions of *Ae. tauschii* ssp. *strangulata*, the closest ancestor of the wheat D genome (Wang et
328 al. 2013), (Fig. S1A). The first two principal components, separating L1 and L2 lineages,
329 accounted for 78.4% of the variation in our samples (Fig. S1B). The split between the L1W and
330 L1E and between the L2E and L2WE was also obvious in our panel.



331

332 **Fig. 1** Ecogeographic distribution of 137 diverse *Ae. tauschii* accessions. **A)** Map shows the
333 geographic locations and the ancestry coefficients of 137 accessions. Twenty-one accessions used
334 to develop the *Ae. tauschii*-wheat introgression population are shown in blue. **B)** Proportion of
335 SNP variance explained by climate (Clim) and geographical distance (Geo) between accessions.
336 **C)** Redundancy analysis (RDA) plot showing the 11 best explanatory variables for SNP variance
337 in *Ae. tauschii* accessions including temperature annual range (bio7), precipitation of driest month
338 (bio14), precipitation in May (prec_5), minimum temperature in April, November and December
339 (tmin_4, tmin_11 and tmin_12, respectively), maximum temperature in May, June, July and
340 September (tmax_5, tmax_6, tmax_7 and tmax_9, respectively) and longitude (lon). **D)** Heatpoint
341 map showing the variation in temperature annual range (bio7) at the sampling locations of the *Ae.*
342 *tauschii* accessions. **E)** Boxplots showing the variation in lon, bio7, bio14, tmax_5, tmax_6,
343 tmax_7, tmax_9, tmin_4, tmin_11 and prec_5 in the ecogeographic locations of different *Ae.*
344 *tauschii* lineages. Lineage 1 East (L1E) and Lineage 1 West (L1W) belong to *Ae. tauschii* ssp.
345 *tauschii* whereas Lineage 2 East (L2E) and Lineage 2 West (L2W) belong to *Ae. tauschii* ssp.
346 *strangulata*.

347

348 To identify variants contributing to local adaptation, we modeled the relationship between
349 response variables (SNPs) and explanatory variables (climatic and bioclimatic factors, and
350 geographic distance) using redundancy analysis (RDA) (Van den Wollenberg 1977; Mcardle and
351 Anderson 2001; Lasky et al. 2015). For this purpose, we used historical data for the bioclimatic
352 and climatic factors estimated for the geographic locations at the accession collection sites. The
353 total SNP variance explained by both geographic distance and climatic and bioclimatic factors was
354 85.2% (Fig.1B), with the adjusted R^2 value being 69.6%. Climate alone accounted for 57.8% of the
355 SNP variation in *Ae. tauschii*, whereas geographic distance between accessions and the interaction
356 between geographic distance and climate accounted for 5.6% and 11% of SNP variation,
357 respectively. These results indicate that the distribution of SNP variation among *Ae. tauschii*
358 accessions is primarily driven by gradient in climatic and bioclimatic factors rather than by *Ae.*
359 *tauschii* geographic dispersal.

360 Depending on their impact on adaptive traits, individual climatic factors could have distinct
361 effects of SNP variation among accessions (Hancock et al., 2011; Lasky et al., 2015; Li et al.,

362 2021; Chang et al., 2022). The first two RDAs accounted for 22.58% of the total SNP variation in
363 the population. A triplot with two RDAs shows separation of the population into four distinct
364 groups (Fig. S1C) coinciding with the previously detected split between the L1E, L1W, L2E and
365 L2W subpopulations. Among the geographic variables, longitude and altitude showed the strongest
366 effect on SNP distribution between the two subspecies of *Ae. tauschii* followed by latitude (Fig.
367 S1D). The environmental variables contributing most to SNP variation were determined using the
368 ‘ordiR2step’ function in R package ‘vegan’ using the forward selection method and 10,000
369 permutations (Blanchet et al., 2008). A total of 11 variables were detected, including temperature
370 annual range (bio7), precipitation of driest month (bio14), precipitation in May (prec_5), minimum
371 temperature in April, November and December (tmin_4, tmin_11 and tmin_12, respectively), and
372 maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9,
373 respectively) and longitude (lon) (Table 1, Fig. 1C). The tmin_11, tmin_12, bio7, and bio_14
374 contributed most to RDA1 that explains most of the genetic differentiation between the two
375 subspecies of *Ae. tauschii*. The prec_5, tmin_4, tmax_5, tmax_6, tmax_7 and tmax_9 factors
376 contributed to RDA2 that explains most of the genetic differentiation between the Eastern (L1E,
377 L2E) and Western (L1W, L2W) populations of the two *Ae. tauschii* lineages. These results indicate
378 that temperature and precipitation gradients during the growth periods coinciding with flowering,
379 grain filling and maturation were the main factors that shaped SNP diversity in *Ae. tauschii* and
380 likely contributed to genetic differentiation among the four lineages.

381 Two subspecies of *Ae. tauschii*, ssp. *strangulata* and ssp. *tauschii* appear to show different levels
382 of adaptation to distinct climatic conditions. We compared the distribution of the main climatic and
383 geographic factors (lon, bio7, bio14, tmax_5, tmax_6, tmax_7, tmax_9, tmin_4, tmin_11, tmin_12
384 and prec_5) between the two subspecies of *Ae. tauschii* (Fig. 1E). Analysis of variance showed
385 significant differences between the accessions from these subspecies (Table 2). Results suggest
386 that L1E lineage is adapted to warmer and drier conditions of Eastern Iran, Afghanistan,
387 Turkmenistan, Uzbekistan, Tajikistan and Kyrgyzstan (Table S1), indicating that these *Ae. tauschii*
388 accessions could be a good source of drought and heat stress tolerance. The lowest precipitation of
389 driest month characterized by high maximum temperature from May up to September was one of
390 the major differentiating ecogeographic factors for L1E. In contrast, L1W is represented by
391 accessions mostly from Eastern Turkey and Northwestern Iran where a high precipitation is
392 recorded in May and significantly lower maximum temperature from May to September. The

393 factors that contribute most to the genetic differentiation of this sublineage are tmin_4, tmax_5 and
394 prec_5.

395 **Table 1** The geographic, climatic and bioclimatic variables that contributed most to SNP variation
396 in *Ae. tauschii*. The R².adj are cumulative values.

Variable	R ² .adj*	Df	AIC	F	Pr(>F)	
Temperature annual range (bio7)	0.27664	1	1236.8	43.4509	1.00E-04	***
Min temperature in November (tmin_11)	0.35655	1	1224.7	14.6606	1.00E-04	***
Max temperature in July (tmax_7)	0.39818	1	1218.2	8.5394	0.0008	***
Max temperature in June (tmax_6)	0.43887	1	1211.3	8.832	0.0011	**
Min temperature in December (tmin_12)	0.49921	1	1199.5	13.8934	0.0002	***
Longitude (lon)	0.52234	1	1195.1	6.1326	0.0043	**
Max temperature in September (tmax_9)	0.53963	1	1191.9	4.9424	0.0093	**
Precipitation of driest month (bio14)	0.55291	1	1189.6	4.0891	0.0148	*
Min temperature in April (tmin_4)	0.57148	1	1185.7	5.4646	0.004	**
Max temperature in May (tmax_5)	0.59765	1	1179.6	7.6331	0.0017	**
Precipitation in May (prec_5)	0.60705	1	1177.8	3.4162	0.025	*

397

398 Generally, *Ae. tauschii* ssp. *strangulata* lineages are found around the Caspian Sea with
399 some accessions found in Syria and Turkey. L2E is adapted to a relatively uniform precipitation
400 and mild temperature which are characteristic of the Southern Caspian Sea in Northern Iran. The
401 L2W accessions are mostly found near Western Caspian Sea in Azerbaijan and parts of
402 Northwestern Iran. The region is characterized by moderate to high variation in climatic and
403 bioclimatic factors. Amongst the main variables differentiating L2W from other sublineages are
404 tmin_4 and prec_5 (Table 2).

405 **Table 2** Comparison of geographic and climatic factors between the main sub-lineages of *Ae.*
406 *tauschii*.

Variable	Lineage 1 East (L1E)	Lineage 1 West (L1W)	Lineage 2 East (L2E)	Lineage 2 West (L2W)
lon	62.83 ^a	45.98 ^c	52.69 ^b	49.09 ^{bc}
bio7	40.08 ^a	37.01 ^b	30.11 ^c	34.88 ^b
bio14	3.13 ^c	7.10 ^b	19.90 ^a	10.16 ^b
tmax_5	269.44 ^a	195.90 ^c	244.45 ^b	221.77 ^b
tmax_6	324.80 ^a	251.92 ^b	283.60 ^b	273.94 ^{bc}
tmax_7	345.08 ^a	295.97 ^b	300.45 ^b	305.41 ^b
tmax_9	292.64 ^a	253.33 ^c	272.45 ^b	262.71 ^{bc}
tmin_4	80.82 ^a	32.77 ^c	84.80 ^a	53.00 ^b
tmin_11	18.26 ^b	0.03 ^c	78.25 ^a	28.65 ^b
tmin_12	-17.46 ^b	-49.28 ^c	42.35 ^a	-23.00 ^b
prec_5	26.72 ^c	58.36 ^a	30.60 ^c	46.41 ^b

407 Means with the same superscript letters are not significantly different. The following factors were
408 considered: longitude (lon), temperature annual range (bio7), precipitation of driest month (bio14),
409 maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9),
410 minimum temperature in April, November and December (tmin_4, tmin_11 and tmin_12) and
411 precipitation in May (prec_5). Statistical significance is based on Tukey's honestly significant
412 difference test at 95% confidence level.

413

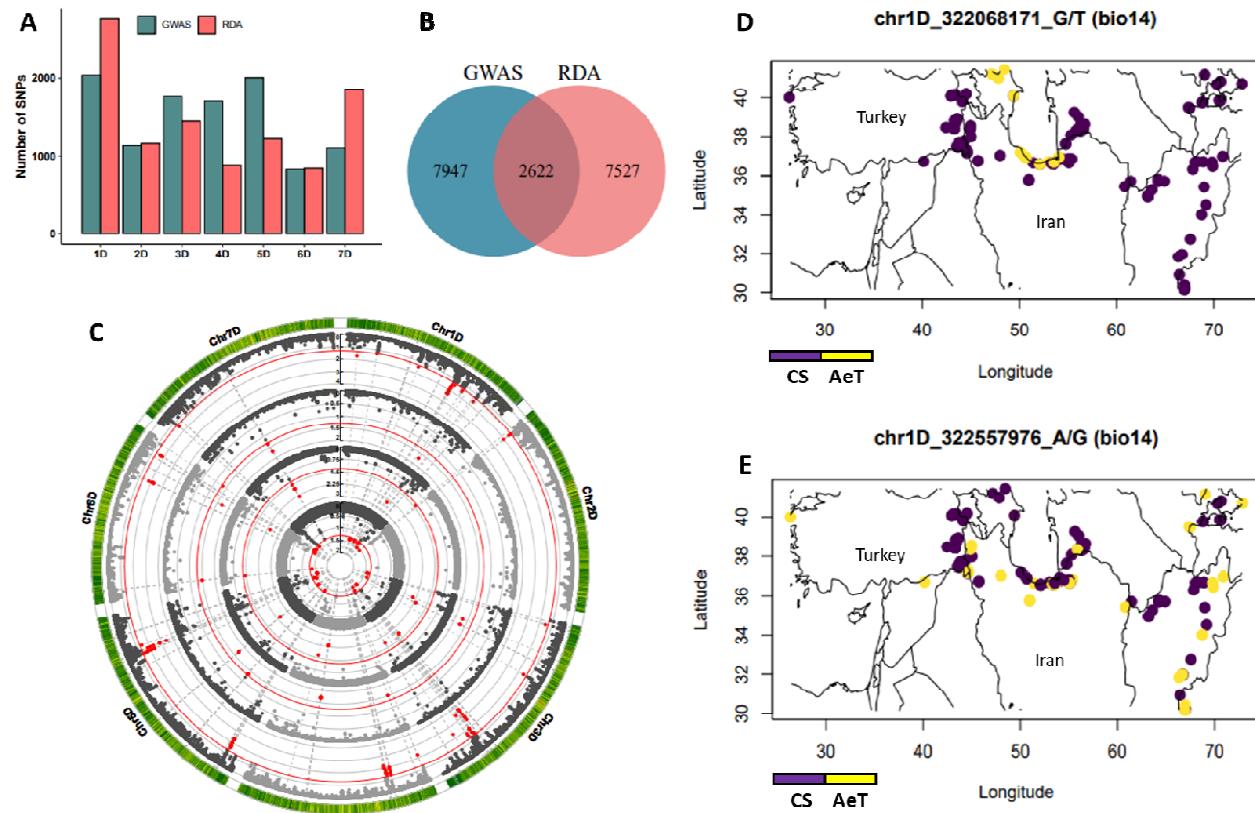
414

415 **Mapping adaptive SNPs in *Ae. tauschii***

416 The results of both redundancy analysis (RDA) and genome-wide association mapping
417 (GWAS) were used combined to identify SNPs that are significantly associated with variation in
418 geographic, climatic and bioclimatic variables across the *Ae. tauschii* sampling locations. The first
419 three RDA loadings for each SNP were extracted from the RDA model, transformed to Z-scores,
420 and climate associated alleles (CAA) were defined as outlier SNPs with three standard deviations
421 from the mean Z-score. After removing duplicate SNPs, a total of 10,149 D-genome SNPs showed
422 a positive correlation (mean = 0.58, range 0.14-0.82) with 51 out of 58 variables analyzed in our
423 study (Table S2, Table S3).

424 Temperature annual range (bio7) was ranked as the most significant variable accounting for
425 27.66% of the SNP variation in *Ae. tauschii* population based on the adjusted R^2 values ($P <$
426 0.001). It had the highest number of correlated SNPs (747) amongst other most significant
427 variables. Chromosomes 1D and 7D had the highest number of SNPs showing significant
428 correlation with the geographic, climatic and bioclimatic variables (Fig. 2A). Genome-wide
429 association mapping is another approach that was previously used for studying genome-by-
430 environment interactions (Wallace et al. 2016). By using a compressed mixed linear model, we
431 identified a total of 10,569 D-genome SNPs significantly associated with 42 out of 58 variables
432 (Table S2, Fig. 2B). Most of these variants were located on chromosomes 1D and 5D (Fig. 2A and
433 Table S4). Unlike in RDA analysis, where each SNP was assigned to a single highly correlated
434 variable, in GWAS, many SNPs were associated with more than one variable at $FDR \leq 0.05$.
435 Combined, RDA and GWAS identified 18,096 SNPs with significant association to geographic,
436 climatic and bioclimatic variables (Table S5). Among the SNPs identified, a set of 2,622 SNPs
437 were detected using both methods (Fig. 2C, Table S6). The functional annotation of these SNPs
438 using SnpEff (Cingolani et al., 2012) showed that only 29 of them were stop codon gain, missense,
439 synonymous, intronic or splice region variants (Table S6). The majority of SNPs (2,316) were
440 intergenic variants, and 277 SNPs were located 5 kb upstream or downstream of gene models.

441



442

443 **Fig. 2** Number of climate associated SNPs per chromosome identified by the redundancy analysis
444 (RDA) and genome-wide association analysis (GWAS), and the geographical distribution of SNP
445 alleles associated with precipitation of driest month (bio14). A) Chromosome distribution of SNPs
446 identified through RDA and GWAS that were associated with different geographic, climatic and
447 bioclimatic variables. B) Venn diagram showing the total number of climate associated SNPs
448 identified by RDA and GWAS. C) Circular Manhattan plot showing GWAS for four of the most
449 significant variables. Starting from the innermost circle outward are minimum temperature in
450 April, maximum temperature in May and June (tmax_5 and tmax_6) and bio14. The red lines show
451 an FDR threshold of 0.05 and the red dots are the significant SNPs on each chromosome. D) *Ae.*
452 *tauschii* (AeT) specific allele (yellow) on chromosome 1D showing adaptation to areas with high
453 precipitation of driest month near the Caspian Sea. E) *Ae. tauschii* specific allele (yellow) on
454 chromosome 1D showing adaptation to areas with a wide range of reduced precipitation in the
455 driest month. The purple color shows the reference allele similar to Chinese Spring (CS).

456 Consistent with prior studies, the geographic extent of CAAs could primarily be explained
457 by the distribution of climatic factors (Hancock et al., 2011). For example, among SNPs
458 significantly associated with bio14, there is an *Ae. tauschii* allele (chr1D_322068171) that was
459 found only in accessions from the region near the Caspian Sea (Fig. 2D), which shows a high
460 precipitation of driest month (Table 1). Another bio14-associated SNP (chr1D_322557976) had an
461 allele identified in accessions from a broad geographic region characterized by low precipitation of
462 driest month experiencing extreme drought stress due to high temperature from May up to
463 September (Fig. 2E, Table 1). These results suggest that *Ae. tauschii* could be the source of
464 adaptive alleles to a broad range of climatic factors useful for addressing the impact of climate
465 change on wheat productivity.

466

467 **Evaluation of the adaptive potential of *Ae. tauschii* CAAs in winter wheat**

468 To evaluate the ability of CAAs from *Ae. tauschii* to improve the adaptive potential of
469 bread wheat, we developed a wild relative introgression population using a set of 21 diverse
470 accessions that were selected to capture the ecogeographical and allelic diversity of species (Nyine
471 et al., 2020; Nyine et al., 2021). To facilitate comparison with parental lines, ILs in the populations
472 were selected to match development and phenology of hexaploid wheat parents (Nyine et al.,
473 2020). Out of 18,096 climate adaptive SNPs identified by RDA and GWAS, 31.4% (5,675 CAA
474 SNPs) were present in the introgression population. It is likely that loss of some of the CAAs in
475 introgression population could be caused by their linkage with deleterious alleles selected against
476 during population development (Nyine et al., 2020) (Fig. 3). Among the introgressed CAAs, a total
477 of 1,089 SNPs were detected using both environmental association scan methods.

478 Introgression of beneficial alleles occurs in both high and low recombining regions of the
479 genome. While introgressions found in high recombining regions become shorter after a few
480 generations of recombination, those in the low recombining regions tend to persist as large linkage
481 blocks. The large introgression blocks in the pericentromeric regions of the chromosome could
482 have unintended consequences on non-targeted traits due to linkage with deleterious alleles linked
483 to adaptive SNPs and epistatic interactions with adapted genetic background. When selection is
484 applied, the frequency of adaptive alleles in the high recombining regions usually increases

485 whereas the frequency of adaptive alleles in low recombining regions may (i) increase if SNP
486 effect on an adaptive trait is stronger than the combined negative effects of linked alleles or (ii)
487 reduce if the combined negative effects of linked alleles are stronger than the effects of adaptive
488 SNPs. In a breeding population, shifts in allele frequency are best observed in the tails of
489 distributions for phenotypes targeted by selection. We compared the frequency spectra of CAAs
490 derived from *Ae. tauschii* in the tails of phenotype distributions in the introgression population.
491 Our expectation was that if CAAs affect wheat performance, the tails of distribution for yield and
492 yield component, CT and DDTH traits should show distinct frequency spectra. For this purpose,
493 we ranked the ILs based on trait values and compared the CAA frequency spectrum in the whole
494 population (WP) with CCA frequency spectra in the lower and upper 5th percentile tails of the
495 phenotype distribution. The frequency spectra were generated for the 5,675 CAAs in the
496 introgression population by counting *Ae. tauschii* alleles in the 9 allele frequency bins. Lines in the
497 tails of the trait distribution were filtered to retain only those that ranked in the same percentile
498 group for at least two traits.

499 A significant shift from the mean CAA frequency (0.226) in the WP was observed in the
500 tails of phenotype distribution for various traits (Fig 3). The shift in the CAA frequency spectrum
501 in the tails of yield distribution was significantly different from WP mean (Kolmogorov-Smirnov
502 test: lower tail $P < 2.2e-16$; upper tail $P < 2.2e-16$). In the lower tail of yield distribution, the
503 frequency of CAAs was high suggesting that lines with large introgression segments that had many
504 CAAs that are likely in LD with deleterious alleles contributed to yield penalty. The top yielding
505 lines showed a bimodal distribution of CAA frequency, suggesting the occurrence of both negative
506 and positive selection at different CAA loci in these lines. For SNS however, a decrease in the *Ae.*
507 *tauschii* allele frequency was linked with low spikelet number per spike whereas a combination of
508 both low and high frequency *Ae. tauschii* alleles were associated with higher SNS
509 (Kolmogorov-Smirnov test: lower tail $P < 2.2e-16$; upper tail $P < 2.2e-16$).

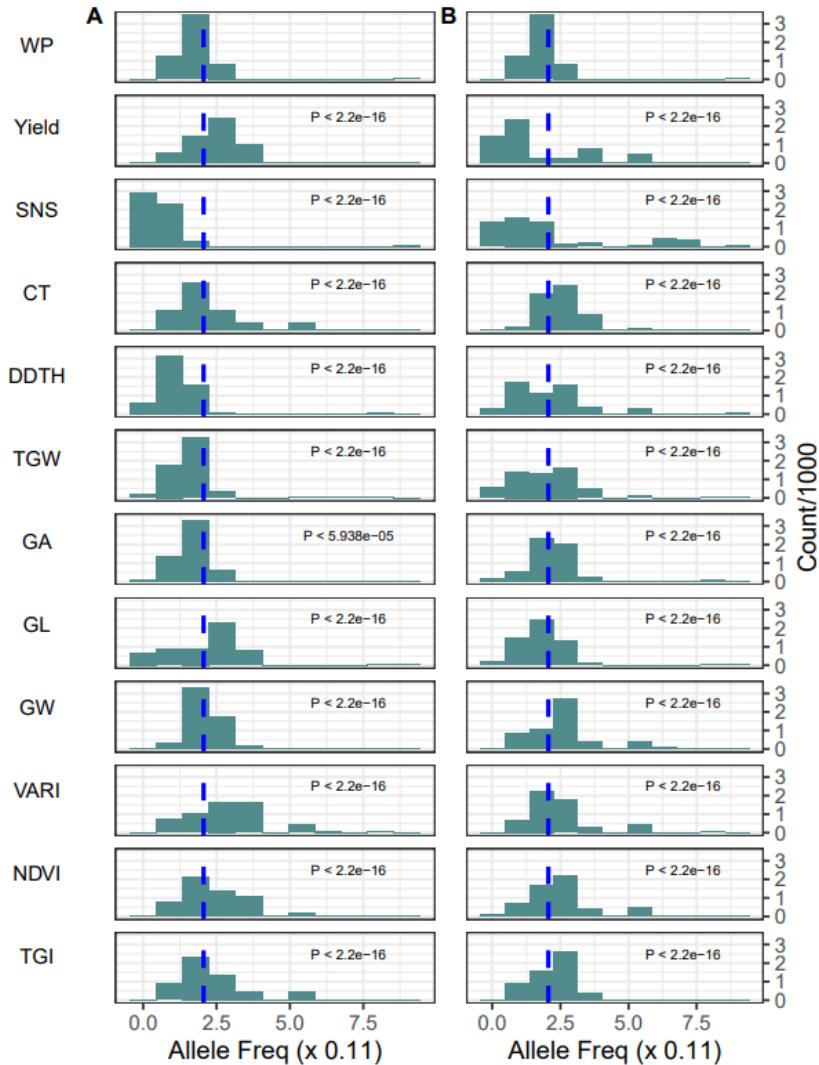
510 Previous studies have shown a positive relationship between yield and SNS, especially if
511 all spikelets are fertile and produce seeds (Rawson 1970; Zhang et al., 2018, Kuzay et al., 2019).
512 However, yield is a complex trait modulated by changes heading date and yield component traits,
513 such as grain area, width and length. The shift in the CAA frequency spectrum for the deviation in
514 days to heading (DDTH) distribution from the WP mean followed the same pattern as that

515 observed for SNS (Kolmogorov-Smirnov test: lower tail $P < 2.2\text{e-}16$; upper tail $P < 2.2\text{e-}16$)
516 suggestive of the shared biological pathways between these two traits. These results are as
517 expected because longer development period and hence delayed heading have been associated with
518 increase in SNS (Rawson 1970). Guo et al. (2018) attributed the increase in spikelet number to
519 delayed spikelet initiation and transition from double-ridge phase to terminal spikelet which
520 coincided with delayed heading date.

521 Canopy temperature (CT) is one of the critical physiological traits that reflects the adaptive
522 potential of plants in local environments (Kumar et al., 2017) (Still *et al.* 2021) and could be used
523 to identify drought and heat stress tolerant plant genotypes. Previous studies demonstrated that CT
524 in wheat is a complex quantitative trait mostly linked to QTLs that control root architecture
525 necessary for improved water use efficiency and maintenance of transpiration rate (Pinto and
526 Reynolds 2015). While in the low CT tail, most CAAs had lower than average allele frequency, we
527 detected some CAAs that significantly increased in frequency compared to population mean
528 suggestive of their contribution to regulation of CT. CT negatively correlated with yield under
529 drought stress ($r = -0.45$, $P = 0.0$) which agreed with the previous studies that showed the
530 importance of CT depression for increasing yield in wheat (Pinter et al. 1990; Amani et al. 1996).
531 Introgression from *Ae. tauschii* into spring wheat was associated with low CT and improved yield
532 under heat stress (Molero et al., 2023). Previously, we showed that the difference in mean yield of
533 some *Ae. tauschii* introgression lines in our population reached 57% when compared to the checks
534 under drought stress conditions (Nyine et al., 2021).

535 Besides CT, both visible atmospherically resistant index (VARI) and normalized difference
536 vegetation index (NDVI) are correlated vegetation indices used to monitor plant health and
537 biomass accumulation. Lines in both lower and upper tails showed a significant shift towards high
538 frequency CAAs. The latter shows that some CAAs could be associated with the positive impact
539 on vegetation indices and physiological status of the plants under stress. The finding of CAAs
540 showing strong shift in the lower tails of both traits suggest that some CAAs or linked
541 introgression variants could be associated with the negative impact on these traits. The triangular
542 greenness index (TGI) is an indicator of total chlorophyll content in the leaves (Hunt et al., 2013)
543 which is useful for estimating the stay green characteristics in wheat (Lopes and Reynolds 2012).

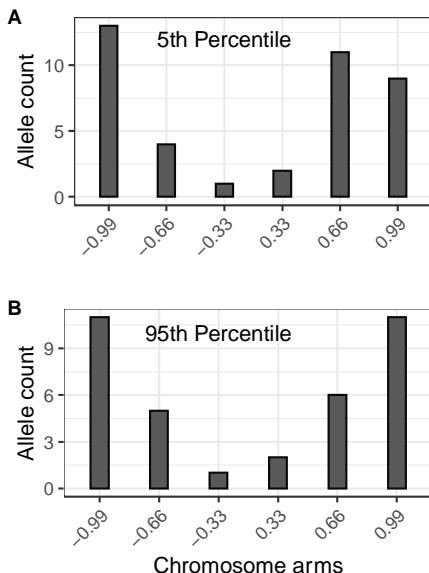
544 In this population, lines that matured late were those with the highest number of *Ae. tauschii*
545 alleles thus the TGI values were also high during the growing season.



546
547 **Fig. 3** Frequency spectra of climate associated alleles (CAA) in the tails of phenotype distribution
548 relative to the allele frequency spectra in the whole population (WP). The A and B panels show the
549 5th and 95th percentiles of the yield, spikelet number per spike (SNS), canopy temperature (CT)
550 deviation in days to heading (DDTH) from the control mean DTH, thousand grain weight (TGW),
551 grain area (GA), grain length (GL), grain width (GW), visible atmospherically resistant index
552 (VARI), normalized difference vegetation index (NDVI) and triangular greenness index (TGI)
553 traits.
554

555 Both natural and artificial selection results in genetic differentiation at target loci between
556 the selected and non-selected populations. Since the efficiency of selection at target loci is higher
557 in the high recombining regions, for CAAs linked with trait variation, we expect to observe higher
558 frequency differentiation between the lines in phenotypic tails in the high-recombining terminal
559 regions of chromosomes rather than in the low-recombining pericentromeric regions. By plotting
560 CAAs identified for eleven most significant climatic and bioclimatic variables along the
561 chromosomes, we show that differentiated CAAs are enriched in the high-recombining regions of
562 chromosomes (Figs. 4C and 4D). These results suggest that 1) selection of lines in the phenotypic
563 extremes of agronomic and physiological traits prioritizes those that carry CAAs located within the
564 high-recombining regions of the genome likely due to the reduced linkage to deleterious alleles,
565 and 2) introgressed CAAs are associated with variation in phenotypic traits linked with wheat
566 performance in both irrigated and water-limiting conditions.

567



568

569 **Fig. 4** Chromosome distribution of CAAs differentiated between the tails of phenotypic extremes
570 in introgression population. The CAAs detected for most significant climatic and bioclimatic
571 variables were included into the analyses. Each chromosome arm was split into three regions with
572 each region representing 33.3% of arm length. The counts of CAAs in each region across all
573 chromosomes in the wheat genome was combined. The A and B panels show chromosome
574 distributions for differentiated CAAs in the 5th and 95th percentile tails of phenotype distribution,
575 respectively.

576 **CAAs are linked with variation in adaptive traits in the introgression population.**

577 Association analyses were performed in the introgression population using a set of 5,675
578 climate-adaptive SNPs to determine variants that contribute to improved performance of
579 introgression lines under the water-limiting and irrigated conditions. The CT, heading date, yield
580 and yield component traits were used as plant performance metrics. Significant CAA-trait
581 associations with heading date, spikelet number per spike, grain width and length were observed in
582 the introgression population (Supplementary File S1). Considering the importance of CT for
583 assessing the physiological response of plants to drought stress (Pinto and Reynolds 2015; Kumar
584 et al., 2017), we focused on the results of association analyses between CAAs and CT.

585 The CT data were collected using unmanned aerial system (UAS)-based thermal imaging
586 from both irrigated and non-irrigated field trials at multiple time points during the growing season
587 in 2018 and 2019. Variation in CT was influenced by both genotype and environment (Table 3). In
588 the 2018 growing season, narrow sense heritability (h^2) for CT varied between 0.54 and 0.85
589 whereas in 2019 it ranged from 0.24 to 0.78. In the 2019 growing season, residual variance in CT
590 was much higher than due to genotype effect. This could be linked to the fact that in 2019, Colby
591 experienced high precipitation and low temperature conditions during the growing season. Best
592 linear unbiased predictors for spatially corrected CT varied from -0.57 to 1.8 suggesting that some
593 introgression lines were able to lower CT compared to others that had higher CT (Figure 5A). A
594 comparison of yield and CT showed a strong negative relationship with CT accounting for 30% of
595 yield variation in the *Ae. tauschii* introgression population (Fig. 5B). This result was confirmed by
596 performing phenomic predictions using the random forest model with CT and yield component
597 traits as predictors of yield (Fig. S2). These analyses showed that CT is the most significant factor
598 for predicting yield followed by grain length and thousand grain weight in this population,
599 consistent with previous observations (Wardlaw et al. 1989).

600 To further understand the impact of introgressed alleles from *Ae. tauschii* into hexaploid
601 wheat background on yield, we identified ILs in the 5th and 95th percentiles of CT distribution and
602 compared them to recurrent parents. The average yield for ILs in the 5th percentile of CT was 50
603 bpa, which was higher but not significantly different from the recurrent parents (48 bpa, P =
604 0.825). The lack of significant difference could be attributed to high variation in yield in ILs

605 showing low CT, suggesting that other genetic factors could contribute to final yield. The
606 introgression lines in the 95th percentile however, showed significant yield reduction (39 bpa)
607 relative to the recurrent parents (Tukey HSD, P < 0.008), confirming the importance of CT trait for
608 predicting grain yield in wheat.

609 **Table 3:** Effect of genotype and environment on canopy temperature variation and its heritability
610 in the *Ae. tauschii* introgression population.

Year	Flight date	Experiment	varG	varE	h ²	outliers	r ²	cv
2018	20180511	Irrigated	0.129	0.027	0.72	0	0.996	0.59
		Rainfed	0.342	0.101	0.69	1	0.977	1.1
	20180525	Irrigated	2.025	0.113	0.85	0	0.997	0.44
		Rainfed	2.552	0.608	0.73	1	0.966	1.17
	20180531	Irrigated	0.451	0.132	0.71	1	0.971	0.76
		Rainfed	0.442	0.289	0.54	2	0.895	1.26
2019	20190513	Irrigated	0.298	0.036	0.75	1	0.995	0.34
		Rainfed	0.061	0.083	0.37	2	0.967	1.04
	20190522	Irrigated	0.059	0.051	0.38	3	0.998	1.54
		Rainfed	0.084	0.051	0.53	2	0.996	1.06
	20190601	Irrigated	0.572	0.051	0.78	1	0.996	0.38
		Rainfed	0.077	0.221	0.24	5	0.837	1.78

20190607	Irrigated	0.612	0.082	0.76	1	0.99	0.51
	Rainfed*	0.002	0.166	0.01	4	0.793	1.49

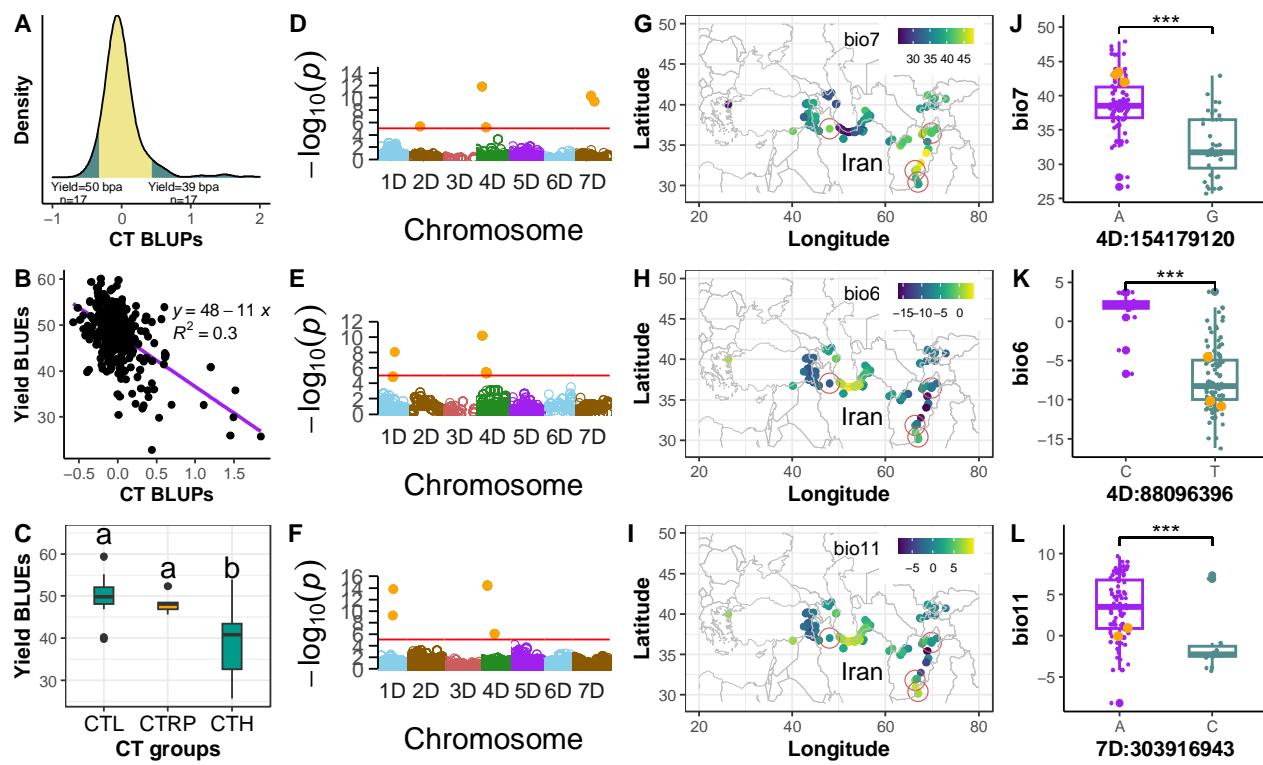
611 *Excluded from downstream analysis

612 To identify the genomic loci associated with CT depression, we performed GWAS using
613 genotypes at CAAs (Segura et al., 2012; Wang and Zhang 2021). The multiple-locus mixed linear
614 model (MLMM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway
615 (BLINK) revealed significant SNP-trait associations on chromosomes 1D, 2D, 4D and 7D (Fig.
616 5D, Table S7). Some of the most significant SNPs associated with CT on chromosomes 1D and 4D
617 (chr1D_265243957 and chr4D_154179120) showed the highest correlation with temperature
618 annual range (bio7, $r = 0.59$). Based on the RDA analyses, bio7 was identified as the most
619 significant variable shaping SNP variation in *Ae. tauschii*. Other SNPs significantly associated
620 with CT in introgression population correlated with the minimum temperature in the coldest month
621 (bio6, $r = 0.67$), mean temperature in the coldest quarter (bio11, $r = 0.6$), longitude and
622 precipitation in the driest months (August to October) (Table S7).

623 Besides using only SNP sites with CAAs for GWAS, 5.3 million SNPs from *Ae. tauschii*
624 introgression population were pruned based on LD resulting in 99,529 SNPs with $r^2 \leq 0.5$. When
625 GWAS was performed using this set of SNPs, the MLMM model revealed three QTLs that were
626 associated with CT, including one on chromosome 1D and two on 4D. The significant SNPs on 1D
627 were chr1D_254646871 and chr1D_265399733 (Fig 5F, Table S7). Although these SNPs were not
628 part of the SNP set detected in the environmental scans of *Ae. tauschii* accessions, they were
629 located within the same genomic intervals identified by genome-wide association mapping in the
630 introgression population using the climate-associated SNPs. Within the interval 254 – 266 Mb,
631 there were 191 CAA SNPs (Table S3) that highly correlated with mean diurnal range (bio2),
632 temperature annual range (bio7), mean temperature of driest quarter (bio9), minimum temperature
633 in March (tmin_3), precipitation in September (prec_9) and longitude (lon). Similarly, the first
634 QTL on 4D contains SNP chr4D_92689640 (Table S7), and in the interval 90 – 94 Mb on 4D, four
635 CAA SNPs identified in *Ae. tauschii* accessions were strongly correlated with bio7. The second
636 QTL contains SNP chr4D_229986737 (Table S7), and a search for CAA SNPs 5 Mb to the left and

637 right of the significant QTN identified 31 SNPs that were correlated with prec_9, tmin3 and lon
638 variables.

639 The source of alleles lowering CT in the introgression lines were mostly from *Ae. tauschii*
640 ssp. *tauschii* accessions (TA2388, TA2536, TA2521 and TA10177), collected from areas such as
641 Afghanistan, Iran and Pakistan known for high bio7 (43), on average with nearly no precipitation
642 in the driest quarter of the year (Figs. 5G, 5J). These results suggest that, *Ae. tauschii* growing in
643 high temperature and low precipitation conditions could improve wheat adaptation to water-
644 limiting conditions when introgressed into adapted wheat background.



645

646

647 **Fig. 5.** Relationship between canopy temperature (CT) and yield performance of the introgression
648 lines, the genomic loci associated with CT and origin of *Ae. tauschii* providing CT lowering alleles
649 in hexaploid wheat background. (A) CT distribution for the introgression population at Colby in
650 2018 and 2019 growing seasons. The shaded tails represent the 5th and 95th percentiles. (B)
651 Regression of yield on CT, (C) Yield of ILs showing low CT (CTL) and high CT (CTH) relative to
652 recurrent parents CT (CTRP). Different letters on top of the box plots indicate significant

653 differences at 95% confidence level, (D-F) Manhattan plots showing the quantitative trait
654 nucleotides (QTN) associated with CT. Where D and E are based CAA SNPs with MLMM and
655 BLINK models, respectively and F is based LD pruned SNPs with MLMM. The red line in the
656 Manhattan plot indicates the P-value corresponding to a threshold FDR 0.05. (F-H) Heatpoint
657 maps showing temperature annual range (bio7), min temperature in the coldest month (bio6) and
658 mean temperature in coldest quarter (bio11) in the geographic origin of *Ae. tauschii* accessions.
659 Accessions in red circles are the parents for introgression lines with low CT. (I-K) Distribution of
660 bioclimatic variables (bio7, bio6 and bio11) in geographical origin of 137 *Ae. tauschii* accessions.
661 Orange dots represent *Ae. tauschii* accessions used to generate introgression lines that rank in the
662 5th percentile for CT distribution.

663

664 **Discussion**

665 The lineages of *Ae. tauschii* are spread over a large geographic area with a wide range of
666 variation in climatic factors, including some of the locations with extremely dry and hot
667 environments (Dvorak *et al.* 1998; Wang *et al.* 2013; Gaurav *et al.* 2022). The existence of strong
668 SNP-climate correlations reported here provides effective means for detecting climate adaptive
669 variants in diploid *Ae. tauschii* using environmental genome scans. The range of geographic
670 distribution for adaptive variants varied broadly with some alleles showing narrow geographic
671 distribution, and other alleles showing broad distribution across large geographic areas. Consistent
672 with prior studies, these spatial patterns of allele distribution can primarily be explained by the
673 distribution of climatic factors (Hancock *et al.*, 2011) (Lasky *et al.* 2012, 2015). In our analyses the
674 environmental and bio-climatic factors alone accounted for a substantial proportion (57.8%) of
675 spatial genetic variation in *Ae. tauschii* with relatively small contribution from geographic
676 dispersal (5.6%). These results suggest consistent environmental gradients across the *Ae. tauschii*
677 distribution range likely shaped the spatial structure of genomic variation in this wild ancestor of
678 wheat and contributed to genetic differentiation between its main lineages.

679 Correlations between genomic diversity and climatic factors indicate that the temperature
680 and precipitation gradients during the growth periods coinciding with flowering, grain filling and
681 maturation contributed to genetic differentiation among the four main lineages of *Ae. tauschii* and

682 its two subspecies, *strangulata* and *tauschii*. The lowest precipitation in driest month was one of
683 the major differentiating ecogeographic factors for L1E, whereas temperature and precipitation
684 gradients in April and May contributed most to the genetic differentiation of L1W lineage. The
685 variation in precipitation and temperature in April and May were among the main ecogeographic
686 factors explaining differentiation between the L2W and L2E lineages of *Ae. tauschii* ssp.
687 *strangulata*. The lineage L2E of *Ae. tauschii* ssp. *strangulata*, which contributed 10,000 years ago
688 to the origin of bread wheat (Wang et al., 2013; Luo et al., 2017), grows in a narrow geographic
689 region south of the Caspian Sea with limited variation in climatic factors characteristic of the humid
690 mild subtropical environments. As a result, adaptive diversity captured by the D genome of bread
691 wheat is primarily restricted to those alleles that are represented in this region. The limited levels
692 of gene flow detected between wheat and *Ae. tauschii* ssp. *strangulata* did not have dramatic
693 impact on the genetic diversity of the D genome (Wang et al. 2013; He et al. 2019; Zhou et al.
694 2020; Gaurav et al. 2022). Thus, the polyploidization bottleneck associated with wheat origin
695 resulted in not only the overall loss of genetic diversity in the wheat D genome (He et al., 2019;
696 Gaurav et al., 2022) but also in the massive loss of adaptive alleles represented in all four
697 sublineages of *Ae. tauschii*. While the consequences of the loss of these alleles in wheat are hard to
698 predict, we might expect that it had a negative impact on the adaptive potential of hexaploid wheat
699 and offset progress with development of drought-resilient wheat varieties.

700 Introgression from *Ae. tauschii* into hexaploid wheat had positive effects on traits playing
701 an important role in increasing crop productivity and improving adaptation to drought. In our
702 previous study, we showed that 3.2% of introgression lines carrying *Ae. tauschii* haplotypes
703 outperformed parental lines in drought trials (Nyine et al., 2021). Consistent with these results,
704 several high-yielding drought tolerant cultivars have been derived from synthetic wheat lines
705 created using *Ae. tauschii* as one of the parents (Rosyara et al. 2019; Molero et al., 2023; Pinto and
706 Reynolds 2015). Our analyses suggest that improved performance of wheat introgression lines
707 could be largely attributed to introduction of climate-adaptive alleles that show association with
708 environmental variation in *Ae. tauschii*. Statistically significant shifts in allele frequency in the
709 extreme tails of phenotypic trait distributions and significant associations detected for climate-
710 adaptive alleles in GWAS for canopy temperature and productivity traits support this conclusion.

711 The signatures of adaptation detected by environmental scans in the genome could be
712 driven by complex historic gradients of environments and associated with diverse adaptive
713 mechanisms (Lasky *et al.* 2012; Anderson and Song 2020). As a result, it is difficult to establish
714 relationships between adaptive alleles from environmental scans and specific phenotypic traits
715 measured for introgression populations in field trials. The temperature annual range (bio7) was
716 among the main bio-climatic factors that contributed most to shaping the spatial genomic variation
717 in *Ae. tauschii*. The SNP locus located on chromosome 4D showing strongest association with
718 bio7 in environmental scans also showed strongest association with variation in canopy
719 temperature in introgression lines. This result indicates that among the targets of selection imposed
720 by variation in bio7 are variants associated with pathways controlling physiological processes
721 responsible for maintaining canopy temperature under drought stress (Jackson *et al.* 1981). In the
722 field trials, lines carrying *Ae. tauschii* alleles at loci associated with reduced canopy temperature
723 were among the top yielding introgression lines suggesting that these *Ae. tauschii* alleles improve
724 adaptation to drought stress and likely act as the main drivers of increased yield. Likewise,
725 detection of *Ae. tauschii* introgression into chromosome 6D associated with reduction in canopy
726 temperature and increased yield under dry conditions, confirms the importance of this adaptive
727 mechanism for drought tolerance (Molero *et al.*, 2023) (Still *et al.* 2021). These results indicate
728 that environmental scans focusing on the relevant bio-climatic variables are an effective means for
729 uncovering variants in wild relatives to improve wheat adaptation to water-limiting conditions and
730 increase its yield potential.

731 Our study shows that whole genome sequencing of diverse collections of wild relatives
732 integrated with environmental scans could provide an effective strategy for prioritizing wild
733 relatives from germplasm banks for introgression into wheat. Continued reduction in the cost of
734 genome sequencing and availability of reference genomes for the increasing number of wild
735 relative species makes this strategy an attractive option for even large genebank collections
736 including tens of thousands of lines (Mascher *et al.* 2019; Bohra *et al.* 2022). These approaches
737 could quickly help to detect accessions enriched for alleles providing adaptation to target
738 environments (Brunazzi *et al.* 2018; Anderson and Song 2020). As it was shown in our study,
739 genome-wide introgression of prioritized diversity into adapted germplasm followed by fast high-
740 throughput phenotyping using UAS-based imaging platforms could help to quickly identify
741 promising germplasm for improving the adaptive potential of wheat. Expansion of these efforts

742 from direct ancestors of bread wheat to include more distant *Aegilops* and *Triticum* species have
743 potential to further broaden adaptive diversity accessible to wheat breeders for climate-proofing
744 food production systems.

745

746 **Acknowledgements**

747 This research was supported by the Agriculture and Food Research Initiative Competitive Grants
748 2022-68013-36439 (WheatCAP) and 2020-68013-30905 (USDA NIFA WWBI Hub) from the
749 USDA National Institute of Food and Agriculture.

750

751 **Author contribution**

752 MN - data collection, analysis and interpretation, manuscript writing; DD - field data collection,
753 UAS based phenotyping; EAd - population development, data analysis and field data collection;
754 MC - population development and field data collection; HW - UAS imaging data analysis; AA -
755 next-generation sequencing; AF - population development, data collection, experimental design;
756 EAk - data analysis and interpretation, conceptualization, conceiving idea, manuscript writing.

757

758 **References**

759 Amani, I., Fischer, R.A. and Reynolds, M.P., 1996. Canopy temperature depression association
760 with yield of irrigated spring wheat cultivars in a hot climate. *Journal of Agronomy and*
761 *Crop Science*, 176(2), pp.119-129.

762 Balfourier, F., Bouchet, S., Robert, S., De Oliveira, R., Rimbert, H., Kitt, J., Choulet, F.,
763 International Wheat Genome Sequencing Consortium, BreedWheat Consortium and Paux,
764 E., 2019. Worldwide phylogeography and history of wheat genetic diversity. *Science*
765 *advances*, 5(5), p.eaav0536.

766 Blanchet, F.G., Legendre, P. and Borcard, D., 2008. Forward selection of explanatory variables.
767 Ecology, 89(9), pp.2623-2632.

768 Börner, A., Ogbonnaya, F.C., Röder, M.S., Rasheed, A., Periyannan, S., Lagudah, E.S. 2015.
769 Aegilops tauschii Introgressions in Wheat. In: Molnár-Láng, M., Ceoloni, C., Doležel, J.
770 (eds) Alien Introgression in Wheat. Springer, Cham. https://doi.org/10.1007/978-3-319-23494-6_10.

772 Caye, K., Deist, T.M., Martins, H., Michel, O. and François, O., 2016. TESS3: fast inference of
773 spatial population structure and genome scans for selection. Molecular Ecology Resources,
774 16(2), pp.540-548.

775 Cingolani, P., Platts, A., Wang, L.L., Coon, M., Nguyen, T., Wang, L., Land, S.J., Lu, X. and
776 Ruden, D.M., 2012. A program for annotating and predicting the effects of single nucleotide
777 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-
778 2; iso-3. fly, 6(2), pp.80-92.

779 Chang, C.W., Fridman, E., Mascher, M., Himmelbach, A. and Schmid, K., 2022. Physical
780 geography, isolation by distance and environmental variables shape genomic variation of
781 wild barley (*Hordeum vulgare* L. ssp. *spontaneum*) in the Southern Levant. Heredity,
782 128(2), pp.107-119.

783 Frachon, L., Bartoli, C., Carrère, S., Bouchez, O., Chaubet, A., Gautier, M., Roby, D. and Roux,
784 F., 2018. A genomic map of climate adaptation in *Arabidopsis thaliana* at a micro-
785 geographic scale. Frontiers in plant science, 9, p.967.

786 Frankel, O.H., 1984. Genetic perspectives of germplasm conservation. In: W. K. Arber, K.
787 Llimensee, W. J. Peacock, and P. Starlinger, Eds., Genetic manipulation: impact on man
788 and society, Cambridge University Press, Cambridge, 161, p.170.

789 Gaurav, K., Arora, S., Silva, P., Sánchez-Martín, J., Horsnell, R., Gao, L., Brar, G.S., Widrig, V.,
790 John Raupp, W., Singh, N. and Wu, S., 2022. Population genomic analysis of Aegilops
791 tauschii identifies targets for bread wheat improvement. Nature biotechnology, 40(3),
792 pp.422-431.

793 Guo, Z., Chen, D., Röder, M.S., Ganal, M.W. and Schnurbusch, T., 2018. Genetic dissection of
794 pre-anthesis sub-phase durations during the reproductive spike development of wheat.
795 The Plant Journal, 95(5), pp.909-918.

796 Hancock, A.M., Brachi, B., Faure, N., Horton, M.W., Jarymowycz, L.B., Sperone, F.G.,
797 Toomajian, C., Roux, F. and Bergelson, J., 2011. Adaptation to climate across the
798 *Arabidopsis thaliana* genome. Science, 334(6052), pp.83-86.

799 Hao, M., Zhang, L., Ning, S., Huang, L., Yuan, Z., Wu, B., Yan, Z., Dai, S., Jiang, B., Zheng, Y.
800 and Liu, D., 2020. The resurgence of introgression breeding, as exemplified in wheat
801 improvement. Frontiers in plant science, 11, p.252.

802 He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Hucl, P.,
803 Wiebe, K. and Knox, R., 2019. Exome sequencing highlights the role of wild-relative
804 introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics,
805 51(5), pp.896-904.

806 Hunt Jr, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S., Perry, E.M. and Akhmedov,
807 B., 2013. A visible band index for remote sensing leaf chlorophyll content at the canopy
808 scale. International journal of applied earth observation and Geoinformation, 21, pp.103-
809 112.

810 International Wheat Genome Sequencing Consortium, 2018. Shifting the limits in wheat research
811 and breeding through a fully annotated and anchored reference genome sequence. Science,
812 361.

813 Jones, F.C., Grabherr, M.G., Chan, Y.F., Russell, P., Mauceli, E., Johnson, J., Swofford, R.,
814 Pirun, M., Zody, M.C., White, S. and Birney, E., 2012. The genomic basis of adaptive
815 evolution in threespine sticklebacks. Nature, 484(7392), pp.55-61.

816 Kumar, M., Govindasamy, V., Rane, J., Singh, A.K., Choudhary, R.L., Raina, S.K., George, P.,
817 Aher, L.K. and Singh, N.P., 2017. Canopy temperature depression (CTD) and canopy
818 greenness associated with variation in seed yield of soybean genotypes grown in semi-arid
819 environment. South African Journal of Botany, 113, pp.230-238.

820 Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., Fraser, M., Anderson, J.A., Brown-
821 Guedira, G., DeWitt, N. and Peters Haugrud, A., 2019. Identification of a candidate gene for
822 a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution
823 genetic mapping. *Theoretical and Applied Genetics*, 132, pp.2689-2705.

824 Lasky, J.R., Upadhyaya, H.D., Ramu, P., Deshpande, S., Hash, C.T., Bonnette, J., Juenger, T.E.,
825 Hyma, K., Acharya, C., Mitchell, S.E. and Buckler, E.S., 2015. Genome-environment
826 associations in sorghum landraces predict adaptive traits. *Science advances*, 1(6),
827 p.e1400218.

828 Li, Y., Cao, K., Li, N., Zhu, G., Fang, W., Chen, C., Wang, X., Guo, J., Wang, Q., Ding, T. and
829 Wang, J., 2021. Genomic analyses provide insights into peach local adaptation and
830 responses to climate change. *Genome research*, 31(4), pp.592-606.

831 Lipka, A.E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P.J., Gore, M.A., Buckler, E.S. and
832 Zhang, Z., 2012. GAPIT: genome association and prediction integrated tool. *Bioinformatics*,
833 28(18), pp.2397-2399.

834 Lopes, M.S. and Reynolds, M.P., 2012. Stay-green in spring wheat can be determined by spectral
835 reflectance measurements (normalized difference vegetation index) independently from
836 phenology. *Journal of experimental botany*, 63(10), pp.3789-3798.

837 Luo, M.C., Gu, Y.Q., Puiu, D., Wang, H., Twardziok, S.O., Deal, K.R., Huo, N., Zhu, T., Wang,
838 L., Wang, Y. and McGuire, P.E., 2017. Genome sequence of the progenitor of the wheat D
839 genome *Aegilops tauschii*. *Nature*, 551(7681), pp.498-502.

840 Martins, K., Gugger, P.F., Llanderal-Mendoza, J., González-Rodríguez, A., Fitz-Gibbon, S.T.,
841 Zhao, J.L., Rodríguez-Correa, H., Oyama, K. and Sork, V.L., 2018. Landscape genomics
842 provides evidence of climate-associated genetic variation in Mexican populations of
843 *Quercus rugosa*. *Evolutionary Applications*, 11(10), pp.1842-1858.

844 McArdle, B.H. and Anderson, M.J., 2001. Fitting multivariate models to community data: a
845 comment on distance-based redundancy analysis. *Ecology*, 82(1), pp.290-297.

846 Molero, G., Coombes, B., Joynson, R., Pinto, F., Piñera-Chávez, F.J., Rivera-Amado, C., Hall, A.
847 and Reynolds, M.P., 2023. Exotic alleles contribute to heat tolerance in wheat under field
848 conditions. *Communications Biology*, 6(1), p.21.

849 Nyine, M., Adhikari, E., Clinesmith, M., Jordan, K.W., Fritz, A.K. and Akhunov, E., 2020.
850 Genomic patterns of introgression in interspecific populations created by crossing wheat
851 with its wild relative. *G3: Genes, Genomes, Genetics*, 10(10), pp.3651-3661.

852 Nyine, M., Adhikari, E., Clinesmith, M., Aiken, R., Betzen, B., Wang, W., Davidson, D., Yu, Z.,
853 Guo, Y., He, F. and Akhunova, A., 2021. The haplotype-based analysis of *Aegilops tauschii*
854 introgression into hard red winter wheat and its impact on productivity traits. *Frontiers in*
855 *Plant Science*, 12, p.716955.

856 Ortiz-Bobea, A., Wang, H., Carrillo, C.M. and Ault, T.R., 2019. Unpacking the climatic drivers of
857 US agricultural yields. *Environmental Research Letters*, 14(6), p.064003.

858 Pestsova, E.G., Börner, A. and Röder, M.S., 2001. Development of a set of *Triticum*
859 *aestivum*–*Aegilops tauschii* introgression lines. *Hereditas*, 135(2–3), pp.139-143.

860 Pinter Jr, P.J., Zipoli, G., Reginato, R.J., Jackson, R.D., Idso, S.B. and Hohman, J.P., 1990.
861 Canopy temperature as an indicator of differential water use and yield performance among
862 wheat cultivars. *Agricultural Water Management*, 18(1), pp.35-48.

863 Pinto, R.S. and Reynolds, M.P., 2015. Common genetic basis for canopy temperature depression
864 under heat and drought stress associated with optimized root distribution in bread wheat.
865 *Theoretical and Applied Genetics*, 128, pp.575-585.

866 Rawson, H.M., 1970. Spikelet number, its control and relation to yield per ear in wheat.
867 *Australian Journal of Biological Sciences*, 23(1), pp.1-16.

868 Rosyara, U., Kishii, M., Payne, T., Sansaloni, C.P., Singh, R.P. and Braun, H.J., 2019. Genetic
869 contribution of synthetic hexaploid wheat to CIMMYT's spring bread wheat breeding
870 germplasm. *Sci Rep.* 2019.

871 Schlenker, W. and Roberts, M.J., 2009. Nonlinear temperature effects indicate severe damages to
872 US crop yields under climate change. *Proceedings of the National Academy of sciences*,
873 106(37), pp.15594-15598.

874 Segura, V., Vilhjálmsdóttir, B.J., Platt, A., Korte, A., Seren, Ü., Long, Q. and Nordborg, M., 2012.
875 An efficient multi-locus mixed-model approach for genome-wide association studies in
876 structured populations. *Nature genetics*, 44(7), pp.825-830.

877 Singh, N., Wu, S., Tiwari, V., Sehgal, S., Raupp, J., Wilson, D., Abbasov, M., Gill, B. and
878 Poland, J., 2019. Genomic analysis confirms population structure and identifies inter-
879 lineage hybrids in *Aegilops tauschii*. *Frontiers in Plant Science*, 10, p.9.

880 Smith, O., Momber, G., Bates, R., Garwood, P., Fitch, S., Pallen, M., Gaffney, V. and Allaby,
881 R.G., 2015. Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000
882 years ago. *Science*, 347(6225), pp.998-1001.

883 Shewry, P.R., 2009. Wheat. *Journal of experimental botany*, 60(6), pp.1537-1553.

884 Tack, J., Barkley, A. and Nalley, L.L., 2015. Effect of warming temperatures on US wheat yields.
885 *Proceedings of the National Academy of Sciences*, 112(22), pp.6931-6936.

886 Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T. and Nuzhdin, S.V., 2010. Population
887 resequencing reveals local adaptation of *Arabidopsis lyrata* to serpentine soils. *Nature
888 genetics*, 42(3), pp.260-263.

889 Van Den Wollenberg, A.L., 1977. Redundancy analysis an alternative for canonical correlation
890 analysis. *Psychometrika*, 42(2), pp.207-219.

891 Wallace, J.G., Zhang, X., Beyene, Y., Semagn, K., Olsen, M., Prasanna, B.M. and Buckler, E.S.,
892 2016. Genome-wide association for plant height and flowering time across 15 tropical
893 maize populations under managed drought stress and well-watered conditions in
894 Sub-Saharan Africa. *Crop Science*, 56(5), pp.2365-2378.

895 Wang, J., Luo, M.C., Chen, Z., You, F.M., Wei, Y., Zheng, Y. and Dvorak, J., 2013. *Aegilops
896 tauschii* single nucleotide polymorphisms shed light on the origins of wheat D-genome

897 genetic diversity and pinpoint the geographic origin of hexaploid wheat. *New phytologist*,
898 198(3), pp.925-937.

899 Wang, J. and Zhang, Z., 2021. GAPIT version 3: boosting power and accuracy for genomic
900 association and prediction. *Genomics, proteomics & bioinformatics*, 19(4), pp.629-640.

901 Wardlaw, I.F., Dawson, I.A., Munibi, P. and Fewster, R., 1989. The tolerance of wheat to high
902 temperatures during reproductive growth. I. Survey procedures and general response
903 patterns. *Australian Journal of Agricultural Research*, 40(1), pp.1-13.

904 Zabel, F., Müller, C., Elliott, J., Minoli, S., Jägermeyr, J., Schneider, J.M., Franke, J.A., Moyer,
905 E., Dury, M., Francois, L. and Folberth, C., 2021. Large potential for crop production
906 adaptation depends on available future varieties. *Global Change Biology*, 27(16), pp.3870-
907 3882.

908 Zhang, J., Gizaw, S.A., Bossolini, E., Hegarty, J., Howell, T., Carter, A.H., Akhunov, E. and
909 Dubcovsky, J., 2018. Identification and validation of QTL for grain yield and plant water
910 status under contrasting water treatments in fall-sown spring wheats. *Theoretical and
911 Applied Genetics*, 131, pp.1741-1759.

912

913 **Supporting Information**

914 **Fig. S1** The effect of geographic, climatic and bioclimatic variables on the SNP diversity in *Ae.*
915 *tauschii* population.

916 **Fig. S2** Importance of canopy temperature and yield component traits for yield prediction based on
917 random forest model in *Ae. tauschii*-Wheat introgression population.

918 **Table S1** Average historical climatic and bioclimatic data from the geographic origin of the
919 diverse *Ae. tauschii*.

920 **Table S2** Number of climate associated SNPs for geographic climatic and bioclimatic variables
921 discovered through redundancy analysis and genome-wide association analysis in *Ae. tauschii*
922 population.

923 **Table S3** SNPs showing the highest correlation with geographic, climatic and bioclimatic
924 variables in *Ae. tauschii* population.

925 **Table S4** Effect of SNPs that are significantly associated with geographic, climatic and bioclimatic
926 variables in *Ae. tauschii* population based on genome-wide association analysis.

927 **Table S5** SNPs identified by redundancy analysis (RDA) and/or genome-wide association
928 (GWAS) to be involved in *Ae. tauschii* ecogeographic adaptation.

929 **Table S6** High confidence climate associated SNPs identified by both redundancy analysis (RDA)
930 and genome-wide association (GWAS) analysis in *Ae. tauschii* population.

931 **Table S7** SNPs significantly associated with canopy temperature in *Ae. tauschii* introgression
932 population.

933 **File S1** Genome-wide association mapping of CAAs for adaptive traits in *Ae. tauschii*-wheat
934 introgression population.

935

936 **Additional References.**

937

938 Anderson, J. T., and B. H. Song, 2020 Plant adaptation to climate change—Where are we? *J. Syst.*
939 *Evol.* 58: 533–545.

940 Araus, J. L., J. P. Ferrio, R. Buxó, and J. Voltas, 2007 The historical perspective of dryland
941 agriculture: lessons learned from 10,000 years of wheat cultivation. *J. Exp. Bot.* 58: 131–45.

942 Avni, R., M. Nave, O. Barad, K. Baruch, S. O. Twardziok *et al.*, 2017 Wild emmer genome
943 architecture and diversity elucidate wheat evolution and domestication. *Science* (80-.). 357:.

944 Balfourier, F., S. Bouchet, S. Robert, R. DeOliveira, H. Rimbert *et al.*, 2019 Worldwide
945 phylogeography and history of wheat genetic diversity. *Sci. Adv.* 5: eaav0536.

946 Bari, A., K. Street, M. Mackay, D. T. F. Endresen, E. de Pauw *et al.*, 2012 Focused identification

947 of germplasm strategy (FIGS) detects wheat stem rust resistance linked to environmental
948 variables. *Genet. Resour. Crop Evol.* 59: 1465–1481.

949 Bohra, A., B. Kilian, S. Sivasankar, M. Caccamo, C. Mba *et al.*, 2022 Reap the crop wild relatives
950 for breeding future crops. *Trends Biotechnol.* 40: 412–431.

951 Brunazzi, A., D. Scaglione, R. F. Talini, M. Miculan, F. Magni *et al.*, 2018 Molecular diversity
952 and landscape genomics of the crop wild relative *Triticum urartu* across the Fertile Crescent.
953 *Plant J.* 94: 670–684.

954 Dvorak, J., M. C. Luo, Z. L. Yang, and H. B. Zhang, 1998 The structure of the *Aegilops tauschii*
955 genepool and the evolution of hexaploid wheat. *Theor. Appl. Genet.* 97: 657–670.

956 Exposito-Alonso, M., H. A. Burbano, O. Bossdorf, R. Nielsen, and D. Weigel, 2019 Natural
957 selection on the *Arabidopsis thaliana* genome in present and future climates. *Nature*.

958 Gaurav, K., S. Arora, P. Silva, J. Sánchez-Martín, R. Horsnell *et al.*, 2022 Population genomic
959 analysis of *Aegilops tauschii* identifies targets for bread wheat improvement. *Nat. Biotechnol.*
960 40: 422–431.

961 Gill, B. S., B. Friebe, W. J. Raupp, D. L. Wilson, T. S. Cox *et al.*, 2006 Wheat Genetics Resource
962 Center: The First 25 Years. *Adv. Agron.* 89: 73–136.

963 He, F., R. Pasam, F. Shi, S. Kant, G. Keeble-Gagnere *et al.*, 2019 Exome sequencing highlights the
964 role of wild relative introgression in shaping the adaptive landscape of the wheat genome.
965 *Nat. Genet.* 51: 896–904.

966 Jackson, R. D., S. B. Idso, R. J. Reginato, and P. J. Pinter, 1981 Canopy temperature as a crop
967 water stress indicator. *Water Resour. Res.* 17: 1133–1138.

968 Kihara, H., 1944 Discovery of the DD-analyser, one of the ancestors of *Triticum vulgare*.
969 *Agriculture Hortic.* 19: 889–890.

970 Kishii, M., 2019 An Update of Recent Use of *Aegilops* Species in Wheat Breeding. *Front. Plant*
971 *Sci.* 10:.

972 Lasky, J. R., D. L. Des Marais, J. K. McKay, J. H. Richards, T. E. Juenger *et al.*, 2012
973 Characterizing genomic variation of *Arabidopsis thaliana*: the roles of geography and climate.
974 *Mol. Ecol.* 21: 5512–29.

975 Lasky, J. R., H. D. Upadhyaya, P. Ramu, S. Deshpande, C. T. Hash *et al.*, 2015 Genome-
976 environment associations in sorghum landraces predict adaptive traits. *Sci. Adv.* 1:
977 e1400218–e1400218.

978 Luo, M.-C., Z.-L. Yang, F. M. You, T. Kawahara, J. G. Waines *et al.*, 2007 The structure of wild
979 and domesticated emmer wheat populations, gene flow between them, and the site of emmer
980 domestication. *Theor. Appl. Genet.* 114: 947–59.

981 Mascher, M., M. Schreiber, U. Scholz, A. Graner, J. C. Reif *et al.*, 2019 Genebank genomics
982 bridges the gap between the conservation of crop diversity and plant breeding. *Nat. Genet.* 51:
983 1076–1081.

984 Nesbitt, M., and D. Samuel, 1996 From staple crop to extinction? The archaeology and history of
985 hulled wheats., pp. 41–100 in *International Workshop on Hulled Wheats*, edited by S.
986 Padulosi, K. Hammer, and J. Heller. Italy International Plant Genetic Resources Institute,
987 Rome.

988 Nyine, M., E. Adhikari, M. Clinesmith, K. W. Jordan, A. K. Fritz *et al.*, 2020 Genomic patterns of
989 introgression in interspecific populations created by crossing wheat with its wild relative. *G3
990 Genes, Genomes, Genet.* 10: 3651–3661.

991 Ozkan, H., G. Willcox, A. Graner, F. Salamini, and B. Kilian, 2011 Geographic distribution and
992 domestication of wild emmer wheat (*Triticum dicoccoides*). *Genet. Resour. Crop Evol.* 58:
993 11–53.

994 Sharma, S., A. W. Schulthess, F. M. Bassi, E. D. Badaeva, K. Neumann *et al.*, 2021 *Introducing
995 beneficial alleles from plant genetic resources into the wheat germplasm.*

996 Sohail, Q., T. Inoue, H. Tanaka, A. E. Eltayeb, Y. Matsuoka *et al.*, 2011 Applicability of *Aegilops
997 tauschii* drought tolerance traits to breeding of hexaploid wheat. *Breed. Sci.* 61: 347–57.

998 Still, C. J., B. Rastogi, G. F. M. Page, D. M. Griffith, A. Sibley *et al.*, 2021 Imaging canopy
999 temperature: shedding (thermal) light on ecosystem processes. *New Phytol.* 230: 1746–1753.

1000 Tanno, K.-I., and G. Willcox, 2006 How fast was wild wheat domesticated? *Science* 311: 1886.

1001 Wang, J., M.-C. Luo, Z. Chen, F. M. You, Y. Wei *et al.*, 2013 *Aegilops tauschii* single nucleotide
1002 polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint
1003 the geographic origin of hexaploid wheat. *New Phytol.* 198: 925–937.

1004 Zhao, X., Y. Guo, L. Kang, C. Yin, A. Bi *et al.*, 2023 Population genomics unravels the Holocene
1005 history of bread wheat and its relatives. *Nat. Plants* 9: 403–419.

1006 Zhou, Y., X. Zhao, Y. Li, J. Xu, A. Bi *et al.*, 2020 *Triticum* population sequencing provides
1007 insights into wheat adaptation. *Nat. Genet.* 52: 1412–1422.

1008