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Summary

Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone
environments is challenging. Here, we combined the genome-wide environmental scans (GWES)
in wheat diploid ancestor Aegilops tauschii with allele testing in the genetic backgrounds of
adapted cultivars to identify new diversity for improving wheat adaptation to water-limiting
conditions. Evaluation of adaptive allele effects was carried out in Ae. tauschii-wheat introgression
lines (ILs) phenotyped for multiple agronomic traits under irrigated and water-limiting conditions
using both UAS-based imaging and conventional approaches. The GWES showed that climatic
gradients alone explain most (57.8%) of genomic variation in Ae. tauschii, with many aleles
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associated with climatic factorsin Ae. tauschii being linked with improved performance of ILs
under water-limiting conditions. The most significant GWES SNP located on chromosome 4D and
associated with temperature annual range was linked with reduced canopy temperaturein ILs. Our
results suggest that (i) introgression of climate-adaptive alleles from Ae. tauschii have potential to
improve wheat performance under water-limiting conditions, (ii) variants controlling physiological
processes responsible for maintaining leaf temperature are likely among the targets of adaptive
selection in awild relative, and (iii) adaptive variation uncovered by GWES in wild relatives has

potential to improve climate resilience of crop varieties.

I ntroduction

The wild relatives of modern crops are a valuable source of adaptive diversity for
developing improved varieties (Gill et al. 2006; Sohail et al. 2011; Kishii 2019). However, only a
small fraction of wild relative diversity from the germplasm collectionsis utilized in breeding. The
size of these collections, which may include thousands of accessions, complicates the selection of
the most relevant genotypes for improving traits of interest. The prioritization of genebank
germplasm for breeding climate adapted varieties is especially challenging due to the polygenic
nature of adaptation to local environments (Araus et al. 2007; Exposito-Alonso et al. 2019).
Therefore, the development of effective strategies, which are aimed at prioritizing wild relative
germplasm for specific breeding applications, remains critical (Bohraet al. 2022).

The allopolyploid bread wheat, the second most important crop worldwide, originated by
the hybridization of three wild grass species from the Triticum and Aegilops genera (Kihara 1944;
Neshitt and Samuel 1996; Dvorak et al. 1998; Tanno and Willcox 2006; Luo et al. 2007; Ozkan et
al. 2011; Avni et al. 2017). Sinceits origin 10,000 years ago, wheat was disseminated by human
migration and trade to diverse geographic regions with distinct climatic conditions(Balfourier et al.
2019). Archeological records and analyses of ancient DNA samples suggest that wheat reached
Britain about 8,000 years ago (Y A) (Smith et a., 2015) and Chinaand Africa about 3,000 YA
(Shewry 2009). Selection for performance in these diverse environments enriched local wheat
populations for alleles contributing to adaptation to new climatic conditions (He et al. 2019; Zhao
et al. 2023). However, the future climate change scenarios predict that climatic conditionsin many
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wheat growing areas could be outside of the adaptive range of existing genotypes and lead to
severe yield reduction (Tack et al., 2015; Ortiz-Bobea et a., 2019). The results of climate
modeling suggest that nearly 40% of crop growing areas might require new varieties to sustain
crop production (Schlenker and Roberts 2009; Zabel et al., 2021). Leveraging the genetic diversity
of multiple wild ancestors of wheat, which are evolved to grow in diverse environments, is one of
the promising strategies for broadening the climate adaptive potential of modern wheat.

The direct ancestors of wheat, Aegilops tauschii and Triticum turgidum ssp. dicoccoides
(wild emmer), are two most broadly distributed species among the wheat wild relatives (Dvorak et
al. 1998; Avni et al. 2017). These species are a'so among the most represented in germplasm
collections, some of which host thousands of accessions of Ae. tauschii and T. turgidum (Sharma
et al. 2021). Because these wild ancestors of wheat share homologous genomes, their
chromosomes could easily recombine, facilitating introgression of alelic diversity from Ae.
tauschii and wild emmer into wheat (Nyine et al. 2020). By using the synthetic hexaploid wheat
(SHW) lines, which are hybrids of tetraploid wheat and Ae. tauschii, the allelic diversity of these
ancestors was introduced into multiple international breeding programs from CIMMY T, ICARDA,
China, Australia, United Kingdom, and United States (Pestsova et al., 2004; Borner et al., 2015).
For example, it was demonstrated that these ancestors of wheat have potential to improve
adaptation to water limiting conditions and heat, and increase biomass and harvest index (Singh et
a., 2019; Molero et al., 2023). However, considering the broad adaptive potential of these species
reflected in their wide geographic distribution, the question remains of how effective these efforts

were at capturing adaptive diversity of Ae. tauschii and wild emmer.

The prioritization of wild relative accessions for pre-breeding of climate resilient crops
remains challenging. Wild relatives could be phenotypically pre-screened for target traits.
However, this screening could be performed only for simple traits, and has limited utility for
complex adaptive traitsif phenotypic evaluation was not performed in the genetic background of
adapted cultivars. Another approach to prioritize accessions is the development of “core
collections’ assembled from a large number of genotypes selected to maximize the genetic
diversity of the sample (Frankel 1984). While this strategy could effectively reduce the number of
accessions, itsmgjor disadvantage in application to large collections is that it targets only common
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90 adaptive dlees, removing rare alleles or allelic complexes. The third approach is based on

91  selection of wild relative accessions based on environmental parameters at the site of accession’s
92  origin (Turner et al., 2010; Jones et a., 2012; Lasky et al., 2015) (Bari et al. 2012). However,

93  whilethis strategy could capture alleles contributing to an adaptive phenotype of small number of
94  accessions, its ability to maximize the recovery of adaptive genetic diversity at species-wide level
95  would belimited.

96 A combination of genome diversity analyses with the geographic patterns of environmental
97 variation for detecting adaptive diversity is another strategy that so far had limited usage in crop
98  breeding. The cost-efficiency of next-generation sequencing (NGS) genotyping approaches made
99  possible generating genome-wide variation for geographically diverse populations. By combining
100  genomic data with eco-geographic variables, it became possible to identify alleles associated with
101  adaptive phenotypes. These approaches, referred to as genome-wide environmental scans (GWES),
102 identify loci involved in local adaptation based on a high correlation between allele frequencies
103  and eco-geographic variables. In an early GWES study, a number of climate-associated alleles
104 (CAA) were mapped in Arabidopsis by using 13 climatic variables, among others including
105 extremes and seasonality of temperature and precipitation (Hancock et al., 2011). The CAA
106 identified by GWES allowed for accurate prediction of the relative fitness of Arabidopsis
107 accessionsin local environments (Turner et a., 2010; Hancock et al., 2011; Frachon et al., 2018).
108  The GWES in sorghum and Mexican white oak detected adaptive variants that also produced
109 reliable phenotypic predictions (Lasky et al., 2015; Martins et al., 2018). These studies suggest that
110 adaptive alelesidentified using the GWES have potential to predict agronomic phenotypesin
111 target environments.

112

113 Though GWES were shown to be effective at identifying loci contributing to

114  environmental adaptation, it remains unclear whether these loci could be used to prioritize wild
115 relative accessions for introgression into modern crop varieties to improve their adaptive potential
116  in extreme environments. To address this question, we used a diverse collection of Ae. tauschii to
117  conduct GWES and identified variants contributing to climatic adaptation. We specifically focused
118  onthose variantsthat correlate with precipitation and temperature gradients during growth season.
119  Then, we selected a geographically diverse set of Ae. tauschii accessionsto develop introgression

120  populations by crossing them with the adapted wheat varieties. The developed introgression
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121  population was grown for several seasons across diverse environments and agronomic

122  performance of introgression lines (ILs) was assessed by measuring agronomic and physiological
123  traits. The physiological status and growth of ILs were evaluated using the UAS-based

124  phenotyping with the RGB and thermal cameras. The wheat productivity was assessed by

125 measuring yield and yield component traits (thousand grain weight, grain area, grain width and
126  grain length). The relationship between phenotypic data and climate adaptive alleles introgressed
127  from Ae. tauschii wasinvestigated to better understand the value of GWES in wild relatives asa

128  tool for selecting wild relative accessions to improve the adaptive potential of wheat varieties.

129
130 Materialsand methods
131 Plant materials

132 A diverse set of 137 geo-referenced Ae. tauschii accessions collected over a geographic
133  range of species distribution and representing locations with diverse historic climatic and

134  bioclimatic characteristics was acquired from the USDA NSGC to identify the CAAs (Table S1).
135 A subset of 21 geographically diverse accessions was selected from this population and crossed
136  with hard red winter wheat varieties to generate Ae. tauschii-wheat amphiploids. The amphiploids
137  werethen crossed with six hard red winter wheat cultivars adapted to grow in the US Great Plains
138 todevelop Ae. tauschii-whesat ILs (Nyine et al., 2020, Nyine et al., 2021). A total of 351 BCiFs5
139 introgression lines that had phenology similar to that of the recurrent parents were used to study
140 theimpact of introgressed CAA on the adaptative traits.

141
142  Genotyping and imputation

143 DNA was extracted from two-week old seedling leaf tissues of the diverse Ae. tauschii
144  accessions and the derived introgression population using DNeasy 96 Plant DNA extraction kit
145  (Qiagen) following the manufacturer’s protocol. The quality and concentration of the DNA was
146  assessed using PicoGreen dsDNA assay kit (Life Technologies). The extracted DNA was

147  normalized to 400 ng (20ul of 20ng/ul) using the Qiagility robot (Qiagen). Genotyping by

148  sequencing (GBS) included a library size selection step performed using the Pippin Prep system
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149  (Sage Scientific) to enrich the library for 270-330 bp fragments, as described in Saintenac et al.
150 (2013). The prepared libraries were sequenced on Illumina NextSeq 500. Variant calling was done
151 using the TASSEL v5.0 GBS V2 pipdine (Glaubitz et al., 2014).

152 To increase the density of SNP markers in both populations, we re-sequenced the panel of
153 21 Ae. tauschii accessions and the six recurrent hexaploid wheat lines using whole-genome

154  sequencing approach. PCR-free genomic libraries were constructed using Illumina protocol at the
155 Integrated Genomic Facility (IGF) at Kansas State University. Paired-end sequences (2 x 150 bp)
156  were generated using NovaSeq at Kansas University Medical Center and NextSeq 500 at IGF. The
157  data were combined and processed as described by Nyine et al. (2021). Missing and ungenotyped
158  SNPsin the Ae. tauschii diversity panel and the introgression population were imputed from the
159 parental genotypes using Beagle v5.0 (Browning and Browning 2013). After imputation and

160  filtering out SNPs with genotype probability below 0.7, we retained 6,365,631 SNPsin Ae.

161  tauschii diversity panel and 5,208,054 SNPs in the introgression population.

162
163  Population structure and variance partitioning of SNP diversity in Ae. tauschii

164 To understand the level of genetic diversity within the Ae. tauschii population and how

165  both geography and climate shaped the SNP variation in the population, we pruned the 6.3 million
166  SNPs based on linkage disequilibrium (LD) using PLINK v1.9 and retained 109,627 SNPs that had
167 r?<0.5in 50 kb sliding window with step size of 5 kb. The proportion of ancestry shared between
168  accessions was estimated from the LD pruned SNPs and the geographical coordinates for the

169 accessions collection sites using the tess3r R package (Caye et a. 2016). The maximum number
170  of ancestral populationstested was eight (K = 1:8). Each K was run 10 times for 200 iterations (rep
171 =10, max.iteration = 200) and the spatial projection of ancestral coefficients was based on |east
172 sguares method (method = “projected.Is’). The optimal number of ancestral populations selected
173  based on cross-validation scores was K = 4 because it split the Ae. tauschii population into two
174  lineages and four sub-lineages that coincided with previous findings by Wang et al., (2013). A plot
175  showing the population admixture and the spatial distribution of accessions from different

176  subspecies at the sites of sample collection was generated.


https://doi.org/10.1101/2024.03.20.585976
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.585976; this version posted March 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

177  The proportion of SNP variance in the Ae. tauschii accessions was partitioned into those explained
178 by geographic distance and climate using the ‘varpart’ function in R package ‘vegan'. The

179  geographic distances were calculated using the ‘distVicentyEllipsoid’ function in R package

180 ‘geosphere’ using the GPS coordinates from the accessions' collection sites and the results were

181  presented in aVenn diagram.
182
183 Redundancy analysis

184 The diverse set of Ae. tauschii accessions used in this study came from awide range of

185  geographical locations with distinct climatic and bioclimatic conditions suggesting that certain

186  genetic factors areinvolved in local adaptation. Based on this hypothesis we modeled the

187  relationship between response variables (SNPs) and explanatory variables (climatic and

188  bioclimatic factors, and geographic distance) using the redundancy analysis (RDA) (Van den

189  Wollenberg 1977; Lasky et al., 2015) and mixed linear models to identify variants contributing to
190 local adaptation. Variables were ranked to identify those that contribute most to SNP diversity in
191 the Ae. tauschii population. To achieve this, the ordiR2step function was applied on the RDA

192  results with adjusted R? using the forward selection method from 10,000 permutations. Type 1

193  eror was minimized during the selection of the most important factors contributing to SNP

194  diversity by following the rules proposed by Blanchet et al., (2008). The full RDA model based on
195  all climatic and bioclimatic variables with the calculated adjusted R? values was evaluated to

196  determine variables that (1) significantly improved the explained variation of SNP diversity

197  distribution in Ae. tauschii population at alpha 0.05, and (2) whose total adjusted R? did not exceed
198  the adjusted R? value of the full model. Based on the aforementioned conditions, the most

199 important variables identified were projected on thefirst two principal components asabiplot. To
200 illustrate the variation of temperature annual range (B1O7) from the Ae. tauschii accessions

201  collection sites, a heatmap was plotted using the “heat_point’ function provided in R package

202 ‘autoimage and an overview of the variation of the most important variables at the collection sites
203  for the sub-lineages was compared using boxplots. All variables were scaled to range between 0
204  and 1 by dividing with the highest value within the dataset and then squaring them to eliminate the
205 negatives before generating the boxplots with ggplot2 in R.
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206
207
208 Identification of climate associated alleles (CAAS) in Ae. tauschii

209 To determine the genetic basis of local adaptation in Ae. tauschii, we used both RDA and
210 GWASto identify SNPs that were significantly associated with geographic, climatic and

211  bioclimatic variables. We extracted the first three RDA loadings for each SNP from the RDA

212  model described above and transformed them to Z-scores. The mean Z-score was calculated from
213  all SNPsand any SNP with three standard deviations from the mean was considered a candidate
214  CAA SNP. Pearson’s correlation coefficients were used to determine the variable with the

215  strongest association to each SNP, thus each CAA SNP was assigned to only one variable. To

216  capture most CAA, we also performed a GWAS using a compressed mixed linear model in GAPIT
217 (Lipkaet a., 2012). The geographic, climatic and bioclimatic variables were used as phenotypes.
218  The population structure was accounted for by including PCAs calculated from the marker data as
219 covariatesin the model. Multiple test correction was performed using the Benjamini-Hochberg's
220  method (FDR < 0.05).

221
222  Phenotyping of Ae. tauschii introgression population

223 The population of ILs was phenotyped under field conditions for three seasons between
224 2018 and 2020 to evaluate the adaptive potential of CAAs introgressed in the winter wheat. In
225 2018 and 2019, phenotyping was done at Colby (Kansas, USA) under irrigated and non-irrigated
226  conditions. In 2020, phenotyping was done at Ashland (Kansas, USA) under non-irrigated

227  conditions. The experimental layout at all locations followed an augmented design with six

228  recurrent hexaploid wheat parents and three additional winter wheat lines adapted to Kansas

229  weather as controls. Experimental plots were 2.5 m x 0.5 m consisting of three rows separated by
230 18 cm. During planting, granular 18-46-0 diammonium phosphate (DAP) fertilizer was applied at a
231 rateof 168.1 kg/ha and liquid 28-0-0 urea ammonium nitrate (UAN) was applied at arate of 67.3
232  kg/hain the spring to supply additional nitrogen to the plants. The lateral irrigation system was
233  used to maintain the soil moisture in theirrigated block.
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234 The ILs were phenotyped for yield and the component traits such as spikelet number per
235 gpike (SNYS), thousand grain weight (TGW), grain area (GA), grain width (GW) and grain length
236  (GL). During the growing season, remote sensing data including RGB, NDV | and canopy

237  temperature (CT) were collected at multiple time points during growth seasons using unmanned
238 ageria system (UAS) mounted with specific sensors for each data type to evaluate the physiological
239  statusand growth trend of theintrogression lines. The RGB and NDV I imagery data were

240  processed in Agisoft software (version) to generate orthomosaics and digital e evation models

241 (DEM) whereas the thermal data were processed in Pix4D to generate the CT orthomosaics. The
242  raster files generated by Agisoft and Pix4D were imported into QGIS v3.4 software for plot level
243  dataextraction. Shape files consisting of rectangular polygons that overlaid each plot in the

244  experimental block were created and the mean pixel values for each color band within the polygon
245  were calculated using raster zonal statisticstools and saved as a comma separated values (csv) file.
246  Other indices such as visible amospherically resistant index (VARI) and triangular greenness

247  index (TGI) were derived from the RGB data whereas NDV | was derived from near infrared and
248  red color bands using the following equations:

G—R
G+R-B

249 VARI] =

250 TGl = G — 039*R —0.61*B eqgn. 2

251 NDVI = 1.236+«NIR — 0.188%R eqn. 3

NIR + 0.044%R

252

253 whereR, G, B and NIR are the mean pixel values for the red, green, blue and near infrared color
254  bands.

255 Heading data were collected in 2020 at Ashland and validated in 2022 at RockyFord,

256  Manhattan, Kansas USA. Heading date was recorded when 50 % of spikes fully emerged from the
257  flagleaf. The number of daysto heading (DTH) were calculated by subtracting the planting date
258 from the heading date. To understand how much the heading date for the introgression lines varies
259  from the controls, we calculated the mean DTH for the controls and subtracted the DTH for each
260 introgression to generate the deviation in daysto heading (DDTH).
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Best linear unbiased predictions (BL UPs)

Best linear unbiased predictions for yield and yield component traits were obtained from a
mixed linear model implemented in R package. Given that the experimental layout followed an
augmented design all controls were given a code 1, and the test introgression lines were assigned a
0. Each introgession line was assigned a unique numeric code which was used as a group identifier
in all experiments whereas the controls were assigned a 999 regardless of the accession as the
group identifier. A mixed linear modd was run for different traits. For example, BLUPs for the

number of days to heading, used in GWAS analysis were estimated from the following model:
DTH~Loc+Check, random= ~ Acc + Acc:.range/row + Acc.LocName,

where DTH is number of days to heading, Loc isthefield trial location, Check defined lines

whether they are controls or test lines and Acc is the accessions.

Canopy temperature data were collected over multiple time points (aka flights) in the two
years. Spatial correction was performed using SpATS implemented in MrBean, a shiny based R
package. Variance due to genotype and environment were estimated as well as narrow sense
heritability. After excluding outliers, BLUES were predicted for the test lines based on the variance
in the controls. All flights and blocks with heritability less than 0.2 were excluded from the linear
mixed model. The remaining data were used to estimate genotype BLUPs across flights, treatment
blocks and years. In the model, experimental treatment and flights were considered as fixed effects
whereas genotypes were considered as random effects.

Association between CAAs and phenotypic traitsin introgression population

The frequency spectra of CAAs derived from Ae. tauschii was estimated for groups of ILs
that have trait values falling into the tails of phenotype distributions. Our expectation was that if
the CAAs are associated with variation in phenotypic traitsin the introgression population, the
phenotypic value tails should show CAA frequency spectra distinct from the CAA frequency
spectrafor the whole population. For this purpose, we ranked the ILs based on trait values and
compared the CAA frequency spectrum in the whole population (WP) and the lower and upper 5th

percentile of the phenotype distributions. Lines were considered to belong to the lower or upper

10
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288 tail groupsif they were ranked as outliersin at least two trials. The frequency spectrum was built
289 using 5,675 CAAsin the introgression population by counting allelesin 9 allele frequency bins.

290 Allele frequency of all CAA sites was calculated for the whole population and for the

291 introgression lines that ranked in the lower and upper 5% tails of phenotype distribution using
292  vcftools. Differentiation in alele frequency was determined by calculating the fold change (FC) in
293 allelefrequency between theintrogression linesin the tails and the whole population. SNPs with
294  FC> 2 were considered to strongly differentiated. For some traits, where the allele frequency FC

295 waslessthan two across al sites, the threshold was adjusted accordingly.

296 To determine the relationship between recombination rate gradient and alelic

297  differentiation, we split the chromosome arms into three equal parts. The number of differentiated
298  CAAswithin each chromosome segment was counted using the ‘bedmap’ function of BEDOPs
299 tools. The redundant CAA sites showing the high levels of LD were removed using PLINK. We
300 retained only those SNPs that had r?< 0.5 within the 50 kb window with a step size of 5 kb. The
301 total number of differentiated alleles was aggregated for all traits and chromosomes.

302 To confirm the contribution of CAASs to adaptation traits a linear regression of yield on CT
303  was performed to determine the proportion of variance in yield explained by the variation in CT.
304 Introgression linesthat ranked in the 5th and 95th percentiles of CT distribution were compared for
305 vyield performance relative to the recurrent parents. GWAS was performed on the traits phenotyped
306 inthe BC; F3;5 A. tauschii-wheat introgression population including CT, heading date, yield and
307 component traits to determine loci with significant associations. Multiple GWAS models were

308 tested on each trait with varying number of principal components to correct for population

309  structure. GWAS analysis was implemented in GAPIT v3.0. CAAs significantly associated with
310 traitsin theintrogression population at the FDR value 0.05 were considered adaptive in the winter
311  wheat background.

312
313

314

11
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315 Results
316  Environmental scansin Aegilopstauschii

317 The genetic basis of Ae. tauschii adaptation to diverse climatic conditions across a broad
318  geographic range extending from Eastern Europe to China remains poorly understood. To identify
319 genetic loci contributing to adaptation, we conducted genotype-environment association analyses
320 using 109,627 SNPsidentified in a geographically diverse panel of 137 accessions. This set of
321  SNPswas selected by LD-based pruning from alarger set including 6,365,631 genotyped and
322  imputed SNPs. Using this data, we explored the population structure of our samples and its

323  correspondence to the previously identified four main lineages (L1W, L1E, L2E, L2W) of Ae.
324  tauschii (Wang et a. 2013) (Fig. 1A). Theinferred population structure of Ae. tauschii accessions
325  wasconsistent with the results of previous studies (Wang et al. 2013), showing the split between
326 L1andL2 lineages, where L1 was composed of Ae. tauschii ssp. tauschii and L2 included

327 accessions of Ae. tauschii ssp. strangulata, the closest ancestor of the wheat D genome (Wang et
328 a. 2013), (Fig. S1A). Thefirst two principal components, separating L1 and L2 lineages,

329  accounted for 78.4% of the variation in our samples (Fig. S1B). The split between the L1W and
330 L1E and between the L2E and L2WE was also obvious in our panel.
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332  Fig. 1 Ecogeographic distribution of 137 diverse Ae. tauschii accessions. A) Map shows the

333  geographic locations and the ancestry coefficients of 137 accessions. Twenty-one accessions used
334  todevelop the Ae. tauschii-wheat introgression population are shown in blue. B) Proportion of
335  SNPvariance explained by climate (Clim) and geographical distance (Geo) between accessions.
336 C) Redundancy analysis (RDA) plot showing the 11 best explanatory variables for SNP variance
337 in Ae. tauschii accessionsincluding temperature annual range (bio7), precipitation of driest month
338  (biol4), precipitation in May (prec_5), minimum temperature in April, November and December
339  (tmin_4, tmin_11 and tmin_12, respectively), maximum temperature in May, June, July and

340  September (tmax_5, tmax_6, tmax_7 and tmax_9, respectively) and longitude (Ion). D) Heatpoint
341  map showing the variation in temperature annual range (bio7) at the sampling locations of the Ae.
342  tauschii accessions. E) Boxplots showing the variation in lon, bio7, biol4, tmax_5, tmax_6,

343 tmax_7,tmax_9, tmin_4, tmin_11 and prec_5 in the ecogeographic locations of different Ae.

344  tauschii lineages. Lineage 1 East (L1E) and Lineage 1 West (L1W) belong to Ae. tauschii ssp.
345  tauschii whereas Lineage 2 East (L2E) and Lineage 2 West (L2W) belong to Ae. tauschii ssp.

346  strangulata.

347

348 To identify variants contributing to local adaptation, we modeled the relationship between
349  response variables (SNPs) and explanatory variables (climatic and bioclimatic factors, and

350 geographic distance) using redundancy analysis (RDA) (Van den Wollenberg 1977; Mcardle and
351  Anderson 2001; Lasky et al. 2015). For this purpose, we used historical data for the bioclimatic
352  and climatic factors estimated for the geographic locations at the accession collection sites. The
353 total SNP variance explained by both geographic distance and climatic and bioclimatic factors was
354  85.2% (Fig.1B), with the adjusted R? value being 69.6%. Climate alone accounted for 57.8% of the
355  SNPvariation in Ae. tauschii, whereas geographic distance between accessions and the interaction
356  between geographic distance and climate accounted for 5.6% and 11% of SNP variation,

357  respectively. These results indicate that the distribution of SNP variation among Ae. tauschii

358 accessionsis primarily driven by gradient in climatic and bioclimatic factors rather than by Ae.
359 tauschii geographic dispersal.

360 Depending on their impact on adaptive traits, individual climatic factors could have distinct
361 effects of SNP variation among accessions (Hancock et al., 2011; Lasky et al., 2015; Li et al.,
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362  2021; Chang et al., 2022). Thefirst two RDAs accounted for 22.58% of the total SNP variation in
363  thepopulation. A triplot with two RDAS shows separation of the population into four distinct

364 groups (Fig. S1C) coinciding with the previously detected split between the L1E, L1W, L2E and
365 L2W subpopulations. Among the geographic variables, longitude and altitude showed the strongest
366  effect on SNP distribution between the two subspecies of Ae. tauschii followed by latitude (Fig.
367 SI1D). The environmental variables contributing most to SNP variation were determined using the
368 ‘ordiR2step’ function in R package ‘vegan’ using the forward selection method and 10,000

369 permutations (Blanchet et al., 2008). A total of 11 variables were detected, including temperature
370 annual range (bio7), precipitation of driest month (biol4), precipitation in May (prec_5), minimum
371  temperaturein April, November and December (tmin_4, tmin_11 and tmin_12, respectively), and
372  maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9,
373  respectively) and longitude (lon) (Table 1, Fig. 1C). Thetmin_11, tmin_12, bio7, and bio_14

374  contributed most to RDA1 that explains most of the genetic differentiation between the two

375  subspecies of Ae. tauschii. The prec_5, tmin_4, tmax_5, tmax_6, tmax_7 and tmax_9 factors

376  contributed to RDA2 that explains most of the genetic differentiation between the Eastern (L1E,
377  L2E) and Western (L1W, L2W) populations of the two Ae. tauschii lineages. These results indicate
378  that temperature and precipitation gradients during the growth periods coinciding with flowering,
379 grainfilling and maturation were the main factors that shaped SNP diversity in Ae. tauschii and
380 likely contributed to genetic differentiation among the four lineages.

381  Two subspecies of Ae. tauschii, ssp. strangulata and ssp. tauschii appear to show different levels
382  of adaptation to distinct climatic conditions. We compared the distribution of the main climatic and
383  geographic factors (lon, bio7, biol4, tmax_5, tmax_6, tmax_7, tmax_9, tmin_4, tmin_11, tmin_12
384  and prec_5) between the two subspecies of Ae. tauschii (Fig.1E). Analysis of variance showed
385 gignificant differences between the accessions from these subspecies (Table 2). Results suggest
386 that L1E lineageis adapted to warmer and drier conditions of Eastern Iran, Afghanistan,
387  Turkmenistan, Uzbekistan, Tgjikistan and Kyrgyzstan (Table S1), indicating that these Ae. tauschii
388  accessions could be a good source of drought and heat stress tolerance. The lowest precipitation of
389  driest month characterized by high maximum temperature from May up to September was one of
390 themagor differentiating ecogeographic factorsfor L1E. In contrast, L1W is represented by
391  accessions mostly from Eastern Turkey and Northwestern Iran where a high precipitation is
392  recorded in May and significantly lower maximum temperature from May to September. The
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393 factorsthat contribute most to the genetic differentiation of this sublineage aretmin_4, tmax_5 and
394  prec 5.

395 Table 1l The geographic, climatic and bioclimatic variables that contributed most to SNP variation
396 in Ae. tauschii. The R%.adj are cumulative values.

Variable R%adj* Df AIC F Pr(>F)

Temperature annual range (bio7) 0.27664 1 1236.8 434509 1.00E-04 ***
Min temperature in November (tmin_11) 0.35655 1 12247 14.6606 1.00E-04 ***
Max temperature in July (tmax_7) 039818 1 12182 85394 0.0008 ***
Max temperature in June (tmax_6) 043887 1 12113 8.832 0.0011 **

Min temperature in December (tmin_12) 049921 1 11995 13.8934 0.0002 ***

Longitude (lon) 052234 1 11951  6.1326 0.0043 **
Max temperature in September (tmax_9) 053963 1 11919 49424 0.0093 **
Precipitation of driest month (biol4) 055291 1 1189.6  4.0891 0.0148 *
Min temperature in April (tmin_4) 057148 1 11857 5.4646 0.004 **
Max temperature in May (tmax_5) 059765 1 11796  7.6331 0.0017 **
Precipitation in May (prec_5) 0.60705 1 1177.8 34162 0.025 *

397

398 Generally, Ae. tauschii ssp. strangulata lineages are found around the Caspian Seawith

399 someaccessions found in Syriaand Turkey. L2E is adapted to arelatively uniform precipitation
400 and mild temperature which are characteristic of the Southern Caspian Seain Northern Iran. The
401  L2W accessions are mostly found near Western Caspian Seain Azerbaijan and parts of

402  Northwestern Iran. The region is characterized by moderate to high variation in climatic and

403  bioclimatic factors. Amongst the main variables differentiating L2W from other sublineages are
404  tmin_4 and prec 5 (Table 2).
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405  Table 2 Comparison of geographic and climatic factors between the main sub-lineages of Ae.
406  tauschii.

Lineage 1 East Lineage 1 Lineage 2 East Lineage 2 West

Variable (L1E) West (L1W) (L2E) (L2W)
lon 62.83° 45.98° 52.69° 49.09"
bio7 40.08° 37.01° 30.11° 34.88°
biol4 3.13° 7.10° 19.90° 10.16"
tmax_5 269.44° 195.90° 244 45" 221.77°
tmax_6 324.80° 251.92° 283.60° 273.94
tmax_7 345.08° 295.97° 300.45° 305.41°
tmax_9 292.64° 253.33° 272.45° 262.71™
tmin 4 80.82° 32.77° 84.80° 53.00°
tmin_11 18.26° 0.03° 78.25° 28.65"
tmin_12 -17.46° -49.28° 42.35° -23.00°
prec 5 26.72° 58.36° 30.60° 46.41°

407  Means with the same superscript letters are not significantly different. The following factors were
408  considered: longitude (Ion), temperature annual range (bio7), precipitation of driest month (biol4),
409  maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9),
410  minimum temperature in April, November and December (tmin_4, tmin_11 and tmin_12) and

411  precipitationin May (prec_5). Statistical significance is based on Tukey’s honestly significant

412  differencetest at 95% confidence level.

413

414
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415 Mapping adaptive SNPsin Ae. tauschii

416 The results of both redundancy analysis (RDA) and genome-wide association mapping
417 (GWAS) were used combined to identify SNPs that are significantly associated with variation in
418  geographic, climatic and bioclimatic variables across the Ae. tauschii sampling locations. The first
419  three RDA loadings for each SNP were extracted from the RDA model, transformed to Z-scores,
420 and climate associated alleles (CAA) were defined as outlier SNPs with three standard deviations
421  from the mean Z-score. After removing duplicate SNPs, atotal of 10,149 D-genome SNPs showed
422  apodgtive correlation (mean = 0.58, range 0.14-0.82) with 51 out of 58 variables analyzed in our
423  study (Table S2, Table S3).

424 Temperature annual range (bio7) was ranked as the most significant variable accounting for
425  27.66% of the SNP variation in Ae. tauschii population based on the adjusted R? values (P <

426  0.001). It had the highest number of correlated SNPs (747) amongst other most significant

427  variables. Chromosomes 1D and 7D had the highest number of SNPs showing significant

428  correlation with the geographic, climatic and bioclimatic variables (Fig. 2A). Genome-wide

429  association mapping is another approach that was previously used for studying genome-by-

430  environment interactions (Wallace et al. 2016). By using a compressed mixed linear model, we
431 identified atotal of 10,569 D-genome SNPs significantly associated with 42 out of 58 variables
432  (Table S2, Fig. 2B). Most of these variants were located on chromosomes 1D and 5D (Fig. 2A and
433 Table$4). Unlikein RDA analysis, where each SNP was assigned to asingle highly correlated
434  variable, in GWAS, many SNPs were associated with more than one variable at FDR < 0.05.

435 Combined, RDA and GWAS identified 18,096 SNPs with significant association to geographic,
436  climatic and bioclimatic variables (Table S5). Among the SNPsidentified, a set of 2,622 SNPs
437  were detected using both methods (Fig. 2C, Table S6). The functional annotation of these SNPs
438  using SnpEff (Cingolani et al., 2012) showed that only 29 of them were stop codon gain, missense,
439  synonymous, intronic or splice region variants (Table S6). The mgjority of SNPs (2,316) were

440 intergenic variants, and 277 SNPs were located 5 kb upstream or downstream of gene models.

441
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Fig. 2 Number of climate associated SNPs per chromosome identified by the redundancy analysis
(RDA) and genome-wide association analysis (GWAS), and the geographical distribution of SNP
alleles associated with precipitation of driest month (biol4). A) Chromosome distribution of SNPs
identified through RDA and GWAS that were associated with different geographic, climatic and
bioclimatic variables. B) Venn diagram showing the total number of climate associated SNPs
identified by RDA and GWAS. C) Circular Manhattan plot showing GWAS for four of the most
significant variables. Starting from the innermost circle outward are minimum temperature in
April, maximum temperature in May and June (tmax_5 and tmax_6) and biol4. The red lines show
an FDR threshold of 0.05 and the red dots are the significant SNPs on each chromosome. D) Ae.
tauschii (AeT) specific allele (yellow) on chromosome 1D showing adaptation to areas with high
precipitation of driest month near the Caspian Sea. E) Ae. tauschii specific alele (yellow) on
chromosome 1D showing adaptation to areas with a wide range of reduced precipitation in the
driest month. The purple color shows the reference allele similar to Chinese Spring (CS).
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456 Consistent with prior studies, the geographic extent of CAAs could primarily be explained
457 by the distribution of climatic factors (Hancock et al., 2011). For example, among SNPs

458  significantly associated with biol4, thereis an Ae. tauschii allele (chrlD_322068171) that was
459  found only in accessions from the region near the Caspian Sea (Fig. 2D), which shows a high

460  precipitation of driest month (Table 1). Another biol4-associated SNP (chrlD_322557976) had an
461  aleeidentified in accessions from abroad geographic region characterized by low precipitation of
462  driest month experiencing extreme drought stress due to high temperature from May up to

463  September (Fig. 2E, Table 1). These results suggest that Ae. tauschii could be the source of

464  adaptive alleles to abroad range of climatic factors useful for addressing the impact of climate

465  change on wheat productivity.

466
467  Evaluation of the adaptive potential of Ae. tauschii CAAsin winter wheat

468 To evaluate the ability of CAAs from Ae. tauschii to improve the adaptive potential of

469  bread wheat, we developed awild relative introgression population using a set of 21 diverse

470  accessions that were selected to capture the ecogeographical and alelic diversity of species (Nyine
471 etal., 2020; Nyineet a., 2021). To facilitate comparison with parental lines, ILs in the populations
472  were selected to match development and phenology of hexaploid wheat parents (Nyineet al.,

473  2020). Out of 18,096 climate adaptive SNPs identified by RDA and GWAS, 31.4% (5,675 CAA
474  SNPs) were present in the introgression population. It is likely that loss of some of the CAAsIn
475  introgression population could be caused by their linkage with deleterious alleles selected against
476  during population development (Nyine et al., 2020) (Fig. 3). Among the introgressed CAAS, atotal
477  of 1,089 SNPs were detected using both environmental association scan methods.

478 Introgression of beneficial alleles occurs in both high and low recombining regions of the
479  genome. Whileintrogressions found in high recombining regions become shorter after afew

480  generations of recombination, those in the low recombining regions tend to persist as large linkage
481  blocks. Thelarge introgression blocks in the pericentromeric regions of the chromosome could
482  have unintended conseguences on non-targeted traits due to linkage with deleterious alleles linked
483  to adaptive SNPs and epistatic interactions with adapted genetic background. When selection is
484  applied, the frequency of adaptive alleles in the high recombining regions usually increases
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485  whereas the frequency of adaptive allelesin low recombining regions may (i) increase if SNP
486  effect on an adaptivetrait is stronger than the combined negative effects of linked alleles or (ii)
487  reduceif the combined negative effects of linked alleles are stronger than the effects of adaptive
488  SNPs. In abreeding population, shiftsin allele frequency are best observed in the tails of

489  distributions for phenotypes targeted by selection. We compared the frequency spectra of CAAs
490  derived from Ae. tauschii in thetails of phenotype distributions in the introgression population.
491  Our expectation was that if CAAs affect wheat performance, the tails of distribution for yield and
492  yield component, CT and DDTH traits should show distinct frequency spectra. For this purpose,
493  weranked the ILs based on trait values and compared the CAA frequency spectrum in the whole
494  population (WP) with CCA frequency spectrain the lower and upper 5th percentile tails of the
495  phenotype distribution. The frequency spectra were generated for the 5,675 CAAsin the

496  introgression population by counting Ae. tauschii allelesin the 9 allele frequency bins. Linesin the
497  tailsof the trait distribution were filtered to retain only those that ranked in the same percentile
498  group for at least two traits.

499 A significant shift from the mean CAA freguency (0.226) in the WP was observed in the
500 tails of phenotype distribution for various traits (Fig 3). The shift in the CAA frequency spectrum
501 inthetailsof yield distribution was significantly different from WP mean (Kolmogorov-Smirnov
502 test: lower tail P < 2.2e-16; upper tail P < 2.2e-16). In the lower tail of yield distribution, the

503 freguency of CAAs was high suggesting that lines with large introgression segments that had many
504 CAAsthat arelikely in LD with deleterious alleles contributed to yield penalty. The top yielding
505 lines showed abimodal distribution of CAA frequency, suggesting the occurrence of both negative
506 and positive selection at different CAA loci in these lines. For SNS however, a decrease in the Ae.
507  tauschii allele frequency was linked with low spikelet number per spike whereas a combination of
508  both low and high frequency Ae. tauschii alleles were associated with with higher SNS

509 (Kolmogorov-Smirnov test: lower tail P < 2.2e-16; upper tail P < 2.2e-16).

510 Previous studies have shown a positive relationship between yield and SNS, especidly if
511  all spikelets are fertile and produce seeds (Rawson 1970; Zhang et al., 2018, Kuzay et al., 2019).
512 However, yield isacomplex trait modulated by changes heading date and yield component traits,
513 suchasgrain area, width and length. The shift in the CAA frequency spectrum for the deviation in
514  daysto heading (DDTH) distribution from the WP mean followed the same pattern as that
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515  observed for SNS (Kolmogorov-Smirnov test: lower tail P < 2.2e-16; upper tail P < 2.2e-16)

516  suggestive of the shared biological pathways between these two traits. These results are as

517  expected because longer development period and hence delayed heading have been associated with
518 increasein SNS (Rawson 1970). Guo et al. (2018) attributed the increase in spikelet number to
519 delayed spikelet initiation and transition from double-ridge phase to terminal spikelet which

520 coincided with delayed heading date.

521 Canopy temperature (CT) is one of the critical physiological traits that reflects the adaptive
522  potentia of plantsinlocal environments (Kumar et al., 2017) (Still et al. 2021) and could be used
523  toidentify drought and heat stress tolerant plant genotypes. Previous studies demonstrated that CT
524  inwheat isacomplex quantitative trait mostly linked to QTLs that control root architecture

525 necessary for improved water use efficiency and maintenance of transpiration rate (Pinto and

526  Reynolds 2015). Whilein the low CT tail, most CAAs had lower than average allele frequency, we
527  detected some CAAs that significantly increased in frequency compared to population mean

528  suggestive of their contribution to regulation of CT. CT negatively correlated with yield under

529  drought stress (r = -0.45, P = 0.0) which agreed with the previous studies that showed the

530 importance of CT depression for increasing yield in wheat (Pinter et al. 1990; Amani et al. 1996).
531 Introgression from Ae. tauschii into spring wheat was associated with low CT and improved yield
532  under heat stress (Molero et a., 2023). Previously, we showed that the difference in mean yield of
533  some Ae. tauchii introgression linesin our population reached 57% when compared to the checks
534  under drought stress conditions (Nyine et al., 2021).

535 Besides CT, both visible atmospherically resistant index (VARI) and normalized difference
536  vegetationindex (NDVI) are correlated vegetation indices used to monitor plant health and

537  biomass accumulation. Linesin both lower and upper tails showed a significant shift towards high
538 frequency CAAs. The latter shows that some CAAs could be associated with the positive impact
539  on vegetation indices and physiological status of the plants under stress. The finding of CAAs

540  showing strong shift in the lower tails of both traits suggest that some CAAs or linked

541  introgression variants could be associated with the negative impact on these traits. The triangular
542  greennessindex (TGI) isan indicator of total chlorophyll content in the leaves (Hunt et al., 2013)
543  whichisuseful for estimating the stay green characteristics in wheat (Lopes and Reynolds 2012).
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544  Inthispopulation, linesthat matured late were those with the highest number of Ae. tauschii
545  alelesthusthe TGI values were aso high during the growing season.

WPAJ! BJ!

Yield |! P < 22e-16 ! | P <22e-16 L

SNS L P<22e-16 1 P<22e-16
| .

cT ! P < 2.2e-16 |! P <22e-16
DDTH ! | P < 2.28-16 1 P <22e-16

TGW P <22e-18 1 P <22e-18 g

=L = = <

—

=

L2 C

. 038e—  Je— 3

GA P < 5.938a-05 P <22e-16 L5 3

F1 O

GL I P <22e-16 I P <2.2e-16
P <228-16 |! P <22e-16 E
P <22e-16 | P <2.2e-16 ;
NDVI | P <22e-16 | P <22e-16 ;

|

GW

I

VARI

|

T T T T T T T T T T T T T T T — T T T T
O=MNW O=2NW O=MNW O=2NW O=MNW O=NW O=NW O=NW O=NW O=NW O=NW O=MNWwW

TGI P <228-16 I P<27e-16
0.0 25 5.0 75 0.0 25 5.0 7.5
546 Allele Freq (x 0.11) Allele Freq (x 0.11)

547  Fig. 3 Frequency spectra of climate associated alleles (CAA) in the tails of phenotype distribution
548 relativeto the allele frequency spectrain the whole population (WP). The A and B panels show the
549 5™ and 95™ percentiles of the yield, spikelet number per spike (SN'S), canopy temperature (CT)
550  deviation in daysto heading (DDTH) from the control mean DTH, thousand grain weight (TGW),
551 grainarea(GA), grain length (GL), grain width (GW), visible atmospherically resistant index

552  (VARI), normalized difference vegetation index (NDV1) and triangular greenness index (TGlI)

553  traits.
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Both natural and artificial selection resultsin genetic differentiation at target loci between
the selected and non-selected populations. Since the efficiency of selection at target loci is higher
in the high recombining regions, for CAAs linked with trait variation, we expect to observe higher
frequency differentiation between the lines in phenotypic tailsin the high-recombining terminal
regions of chromosomes rather than in the low-recombining pericentromeric regions. By plotting
CAAs identified for eleven most significant climatic and bioclimatic variables along the
chromosomes, we show that differentiated CAAs are enriched in the high-recombing regions of
chromosomes (Figs. 4C and 4D). These results suggest that 1) selection of lines in the phenotypic
extremes of agronomic and physiological traits prioritizes those that carry CAAs |ocated within the
high-recombining regions of the genome likely due to the reduced linkage to deleterious alleles,
and 2) introgressed CAASs are associated with variation in phenotypic traits linked with wheat

performance in both irrigated and water-limiting conditions.
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Fig. 4 Chromosome distribution of CAAs differentiated between the tails of phenotypic extremes
in introgression population. The CAAs detected for most significant climatic and bioclimatic
variables were included into the analyses. Each chromosome arm was split into three regions with
each region representing 33.3% of arm length. The counts of CAAsin each region across al
chromosomes in the wheat genome was combined. The A and B panels show chromosome
distributions for differentiated CAAsin the 5™ and 95™ percentile tails of phenotype distribution,
respectively.
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CAAsarelinked with variation in adaptive traitsin theintrogression population.

Association analyses were performed in the introgression population using a set of 5,675
climate-adaptive SNPs to determine variants that contribute to improved performance of
introgression lines under the water-limiting and irrigated conditions. The CT, heading date, yield
and yield component traits were used as plant performance metrics. Significant CAA-trait
associations with heading date, spikelet number per spike, grain width and length were observed in
the introgression population (Supplementary File S1). Considering the importance of CT for
assessing the physiological response of plants to drought stress (Pinto and Reynolds 2015; Kumar
et al., 2017), we focused on the results of association analyses between CAAsand CT.

The CT data were collected using unmanned aerial system (UAS)-based thermal imaging
from both irrigated and non-irrigated field trials at multiple time points during the growing season
in 2018 and 2019. Variation in CT was influenced by both genotype and environment (Table 3). In
the 2018 growing season, narrow sense heritability (h?) for CT varied between 0.54 and 0.85
whereasin 2019 it ranged from 0.24 to 0.78. In the 2019 growing season, residual variancein CT
was much higher than due to genotype effect. This could be linked to the fact that in 2019, Colby
experienced high precipitation and low temperature conditions during the growing season. Best
linear unbiased predictors for spatially corrected CT varied from -0.57 to 1.8 suggesting that some
introgression lines were able to lower CT compared to others that had higher CT (Figure 5A). A
comparison of yield and CT showed a strong negative relationship with CT accounting for 30% of
yield variation in the Ae. tauschii introgression population (Fig. 5B). This result was confirmed by
performing phenomic predictions using the random forest model with CT and yield component
traits as predictors of yield (Fig. S2). These analyses showed that CT isthe most significant factor
for predicting yield followed by grain length and thousand grain weight in this population,

consistent with previous observations (Wardlaw et al. 1989).

To further understand the impact of introgressed alleles from Ae. tauschii into hexaploid
wheat background on yield, we identified ILs in the 5™ and 95" percentiles of CT distribution and
compared them to recurrent parents. The average yield for ILsin the 5™ percentile of CT was 50
bpa, which was higher but not significantly different from the recurrent parents (48 bpa, P =
0.825). Thelack of significant difference could be attributed to high variation in yield in ILs
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605 showing low CT, suggesting that other genetic factors could contribute to final yield. The

606 introgression linesin the 95™ percentile however, showed significant yield reduction (39 bpa)

607  relative to the recurrent parents (Tukey HSD, P < 0.008), confirming the importance of CT trait for
608  predicting grain yield in wheat.

609 Table 3: Effect of genotype and environment on canopy temperature variation and its heritability
610 inthe Ae. tauschii introgression population.

Y ear Flight Experiment varG varE h? outliers r? cv
date
2018 20180511  Irrigated 0129 0027 072 O 0996 0.59
Rainfed 0342 0101 069 1 0977 11
20180525  Irrigated 2025 0113 08 O 0997 0.44
Rainfed 2552 0608 073 1 0966 1.17
20180531 Irrigated 0451 0132 071 1 0971 0.76
Rainfed 0442 0289 054 2 0.895 1.26
2019 20190513  Irrigated 0298 0036 075 1 099 034
Rainfed 0061 0083 037 2 0967 1.04
20190522  Irrigated 0.059 0051 038 3 0998 154
Rainfed 0.084 0051 053 2 0996 1.06
20190601  Irrigated 0572 0051 078 1 0996 0.38
Rainfed 0077 0221 024 5 0.837 1.78
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20190607  Irrigated 0612 0082 076 1 0.99 0.51

Rainfed* 0002 0166 001 4 0.793 149

611  *Excluded from downstream analysis

612 To identify the genomic loci associated with CT depression, we performed GWAS using
613  genotypesat CAAs (Seguraet al., 2012; Wang and Zhang 2021). The multiple-locus mixed linear
614 model (MLMM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway
615 (BLINK) revealed significant SNP-trait associations on chromosomes 1D, 2D, 4D and 7D (Fig.
616 5D, Table S7). Some of the most significant SNPs associated with CT on chromosomes 1D and 4D
617 (chrlD_ 265243957 and chr4D_154179120) showed the highest correlation with temperature

618 annual range (bio7, r = 0.59). Based on the RDA analyses, bio7 was identified as the most

619  significant variable shaping SNP variation in Ae. tauschii. Other SNPs significantly associated

620  with CT inintrogression population correlated with the minimum temperature in the coldest month
621 (bio6, r = 0.67), mean temperature in the coldest quarter (bioll, r = 0.6), longitude and

622  precipitation in the driest months (August to October) (Table S7).

623 Besides using only SNP siteswith CAAsfor GWAS, 5.3 million SNPs from Ae. tauschii
624  introgression population were pruned based on LD resulting in 99,529 SNPs with r? < 0.5. When
625 GWAS was performed using this set of SNPs, the MLMM model revealed three QTLs that were
626  associated with CT, including one on chromosome 1D and two on 4D. The significant SNPs on 1D
627 werechrlD 254646871 and chrlD 265399733 (Fig 5F, Table S7). Although these SNPs were not
628  part of the SNP set detected in the environmental scans of Ae. tauschii accessions, they were

629 located within the same genomic intervals identified by genome-wide association mapping in the
630 introgression population using the climate-associated SNPs. Within the interval 254 — 266 Mb,

631 therewere 191 CAA SNPs (Table S3) that highly correlated with mean diurnal range (bio2),

632 temperature annual range (bio7), mean temperature of driest quarter (bio9), minimum temperature
633  inMarch (tmin_3), precipitation in September (prec_9) and longitude (lon). Similarly, the first
634  QTL on 4D contains SNP chrdD_92689640 (Table S7), and in the interval 90 — 94 Mb on 4D, four
635 CAA SNPsidentified in Ae. tauschii accessions were strongly correlated with bio7. The second
636  QTL contains SNP chr4dD_229986737 (Table S7), and a search for CAA SNPs 5 Mb to the left and

26


https://doi.org/10.1101/2024.03.20.585976
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.20.585976; this version posted March 23, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

637  right of the significant QTN identified 31 SNPs that were correlated with prec_9, tmin3 and lon
638 variables.

639 The source of alleles lowering CT in the introgression lines were mostly from Ae. tauschii
640  ssp. tauschii accessions (TA2388, TA2536, TA2521 and TA10177), collected from areas such as
641  Afghanistan, Iran and Pakistan known for high bio7 (43), on average with nearly no precipitation
642 inthedriest quarter of the year (Figs. 5G, 5J). These results suggest that, Ae. tauschii growing in

643  high temperature and low precipitation conditions could improve wheat adaptation to water-

644  limiting conditions when introgressed into adapted wheat background.
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647  Fig. 5. Relationship between canopy temperature (CT) and yield performance of the introgression
648 lines, the genomic loci associated with CT and origin of Ae. tauschii providing CT lowering alleles
649 in hexaploid wheat background. (A) CT distribution for the introgression population at Colby in
650 2018 and 2019 growing seasons. The shaded tails represent the 5th and 95th percentiles. (B)

651 Regression of yield on CT, (C) Yield of ILs showing low CT (CTL) and high CT (CTH) relative to
652 recurrent parents CT (CTRP). Different letters on top of the box plots indicate significant
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653 differences at 95% confidence level, (D-F) Manhattan plots showing the quantitative trait

654  nucleotides (QTN) associated with CT. Where D and E are based CAA SNPswith MLMM and
655 BLINK models, respectively and F isbased LD pruned SNPswith MLMM. Thered linein the
656  Manhattan plot indicates the P-value corresponding to a threshold FDR 0.05. (F-H) Heatpoint
657  maps showing temperature annual range (bio7), min temperature in the coldest month (bio6) and
658 mean temperaturein coldest quarter (bioll) in the geographic origin of Ae. tauschii accessions.
659 Accessionsin red circles are the parents for introgression lines with low CT. (I-K) Distribution of
660  bioclimatic variables (bio7, bio6 and bioll) in geographical origin of 137 Ae. tauschii accessions.
661  Orange dots represent Ae. tauschii accessions used to generate introgression lines that rank in the
662  5th percentile for CT distribution.

663
664 Discussion

665 The lineages of Ae. tauschii are spread over alarge geographic area with a wide range of
666  variation in climatic factors, including some of the locations with extremely dry and hot

667  environments (Dvorak et al. 1998; Wang et al. 2013; Gaurav et al. 2022). The existence of strong
668  SNP-climate correlations reported here provides effective means for detecting climate adaptive
669 variantsin diploid Ae. tauschii using environmental genome scans. The range of geographic

670 distribution for adaptive variants varied broadly with some alleles showing narrow geographic
671  distribution, and other alleles showing broad distribution across large geographic areas. Consistent
672  with prior studies, these spatial patterns of allele distribution can primarily be explained by the
673  digribution of climatic factors (Hancock et al., 2011) (Lasky et al. 2012, 2015). In our analyses the
674  environmental and bio-climatic factors alone accounted for a substantial proportion (57.8%) of
675 gpatia genetic variation in Ae. tauschii with relatively small contribution from geographic

676  dispersal (5.6%). These results suggest consistent environmental gradients across the Ae. tauschii
677  distribution range likely shaped the spatial structure of genomic variation in this wild ancestor of
678  wheat and contributed to genetic differentiation between its main lineages.

679 Correlations between genomic diversity and climatic factors indicate that the temperature
680  and precipitation gradients during the growth periods coinciding with flowering, grain filling and

681  maturation contributed to genetic differentiation among the four main lineages of Ae. tauschii and
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682  itstwo subspecies, strangulata and tauschii. The lowest precipitation in driest month was one of
683 the mgor differentiating ecogeographic factors for L1E, whereas temperature and precipitation
684  gradientsin April and May contributed most to the genetic differentiation of L1W lineage. The
685 variation in precipitation and temperature in April and May were among the main ecogeographic
686  factors explaining differentiation between the L2W and L2E lineages of Ae. tauschii ssp.

687  strangulata. The lineage L2E of Ae. tauschii ssp. strangulata, which contributed 10,000 years ago
688 totheorigin of bread wheat (Wang et a., 2013; Luo et a., 2017), grows in a narrow geographic
689  region south of the Caspian Seawith limited variation in climatic factors characteric of the humid
690 mild subtropical environments. As aresult, adaptive diversity captured by the D genome of bread
691  wheat is primarily restricted to those alleles that are represented in thisregion. The limited levels
692  of geneflow detected between wheat and Ae. tauschii ssp. strangulata did not have dramatic

693  impact on the genetic diversity of the D genome (Wang et al. 2013; He et al. 2019; Zhou et al.
694  2020; Gaurav et al. 2022). Thus, the polyploidization bottleneck associated with wheat origin

695 resulted in not only the overall loss of genetic diversity in the wheat D genome (He et al., 2019;
696 Gaurav et a., 2022) but also in the massive loss of adaptive alleles represented in all four

697  sublineages of Ae. tauschii. While the consequences of the loss of these alleles in wheat are hard to
698  predict, we might expect that it had a negative impact on the adaptive potential of hexaploid wheat
699  and offset progress with development of drought-resilient wheat varieties.

700 Introgression from Ae. tauschii into hexaploid wheat had positive effects on traits playing
701  animportant rolein increasing crop productivity and improving adaptation to drought. In our
702  previous study, we showed that 3.2% of introgression lines carrying Ae. tauschii haplotypes

703  outperformed parental lines in drought trials (Nyine et al., 2021). Consistent with these results,
704  several high-yielding drought tolerant cultivars have been derived from synthetic wheat lines
705  created using Ae. tauschii as one of the parents (Rosyara et al. 2019; Molero et al., 2023; Pinto and
706  Reynolds 2015). Our analyses suggest that improved performance of wheat introgression lines
707  could belargely attributed to introduction of climate-adaptive alleles that show association with
708  environmental variation in Ae. tauschii. Statistically significant shiftsin allele frequency in the
709 extremetails of phenotypic trait distributions and significant associations detected for climate-
710 adaptive alldesin GWAS for canopy temperature and productivity traits support this conclusion.
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711 The signatures of adaptation detected by environmental scansin the genome could be

712  driven by complex historic gradients of environments and associated with diverse adaptive

713  mechanisms (Lasky et al. 2012; Anderson and Song 2020). As aresult, it isdifficult to establish
714  relationships between adaptive alleles from environmental scans and specific phenotypic traits
715  measured for introgression populationsin field trials. The temperature annual range (bio7) was
716  among the main bio-climatic factors that contributed most to shaping the spatial genomic variation
717  in Ae. tauschii. The SNP locus located on chromosome 4D showing strongest association with
718  bio7 in environmental scans also showed strongest association with variation in canopy

719 temperaturein introgression lines. This result indicates that among the targets of selection imposed
720 by variation in bio7 are variants associated with pathways controlling physiological processes

721  responsible for maintaining canopy temperature under drought stress (Jackson et al. 1981). In the
722  fiddtrails, lines carrying Ae. tauschii alleles at loci associated with reduced canopy temperature
723  were among the top yielding introgression lines suggesting that these Ae. tauschii allelesimprove
724  adaptation to drought stress and likely act as the main drivers of increased yield. Likewise,

725  detection of Ae.tauschii introgression into chromosome 6D associated with reduction in canopy
726  temperature and increased yield under dry conditions, confirms the importance of this adaptive
727  mechanism for drought tolerance (Molero et al., 2023) (Still et al. 2021). These results indicate
728  that environmental scans focusing on the relevant bio-climatic variables are an effective means for
729  uncovering variantsin wild relatives to improve wheat adaptation to water-limiting conditions and

730 increaseitsyield potential.

731 Our study shows that whole genome sequencing of diverse collections of wild relatives

732  integrated with environmental scans could provide an effective strategy for prioritizing wild

733 relatives from germplasm banks for introgression into wheat. Continued reduction in the cost of

734  genome sequencing and availability of reference genomes for the increasing number of wild

735  relative species makes this strategy an attractive option for even large genebank collections

736  including tens of thousands of lines (Mascher et al. 2019; Bohra et al. 2022). These approaches

737  could quickly help to detect accessions enriched for alleles providing adaptation to target

738  environments (Brunazzi et al. 2018; Anderson and Song 2020). As it was shown in our study,

739  genome-wide introgression of prioritized diversity into adapted germplasm followed by fast high-

740  throughput phenotyping using UAS-based imaging platforms could help to quickly identify

741  promising germplasm for improving the adaptive potential of wheat. Expansion of these efforts
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742  from direct ancestors of bread wheat to include more distant Aegilops and Triticum species have
743  potential to further broaden adaptive diversity accessible to wheat breeders for climate-proofing
744  food production systems.
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