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Summary 21 

Prioritizing wild relative diversity for improving crop adaptation to emerging drought-prone 22 

environments is challenging. Here, we combined the genome-wide environmental scans (GWES) 23 

in wheat diploid ancestor Aegilops tauschii with allele testing in the genetic backgrounds of 24 

adapted cultivars to identify new diversity for improving wheat adaptation to water-limiting 25 

conditions. Evaluation of adaptive allele effects was carried out in Ae. tauschii-wheat introgression 26 

lines (ILs) phenotyped for multiple agronomic traits under irrigated and water-limiting conditions 27 

using both UAS-based imaging and conventional approaches. The GWES showed that climatic 28 

gradients alone explain most (57.8%) of genomic variation in Ae. tauschii, with many alleles 29 
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associated with climatic factors in Ae. tauschii being linked with improved performance of ILs 30 

under water-limiting conditions. The most significant GWES SNP located on chromosome 4D and 31 

associated with temperature annual range was linked with reduced canopy temperature in ILs. Our 32 

results suggest that (i) introgression of climate-adaptive alleles from Ae. tauschii have potential to 33 

improve wheat performance under water-limiting conditions, (ii) variants controlling physiological 34 

processes responsible for maintaining leaf temperature are likely among the targets of adaptive 35 

selection in a wild relative, and (iii) adaptive variation uncovered by GWES in wild relatives has 36 

potential to improve climate resilience of crop varieties. 37 

 38 

Introduction 39 

The wild relatives of modern crops are a valuable source of adaptive diversity for 40 

developing improved varieties (Gill et al. 2006; Sohail et al. 2011; Kishii 2019). However, only a 41 

small fraction of wild relative diversity from the germplasm collections is utilized in breeding. The 42 

size of these collections, which may include thousands of accessions, complicates the selection of 43 

the most relevant genotypes for improving traits of interest. The prioritization of genebank 44 

germplasm for breeding climate adapted varieties is especially challenging due to the polygenic 45 

nature of adaptation to local environments (Araus et al. 2007; Exposito-Alonso et al. 2019). 46 

Therefore, the development of effective strategies, which are aimed at prioritizing wild relative 47 

germplasm for specific breeding applications, remains critical (Bohra et al. 2022). 48 

The allopolyploid bread wheat, the second most important crop worldwide, originated by 49 

the hybridization of three wild grass species from the Triticum and Aegilops genera (Kihara 1944; 50 

Nesbitt and Samuel 1996; Dvorak et al. 1998; Tanno and Willcox 2006; Luo et al. 2007; Ozkan et 51 

al. 2011; Avni et al. 2017). Since its origin 10,000 years ago, wheat was disseminated by human 52 

migration and trade to diverse geographic regions with distinct climatic conditions(Balfourier et al. 53 

2019). Archeological records and analyses of ancient DNA samples suggest that wheat reached 54 

Britain about 8,000 years ago (YA) (Smith et al., 2015) and China and Africa about 3,000 YA 55 

(Shewry 2009). Selection for performance in these diverse environments enriched local wheat 56 

populations for alleles contributing to adaptation to new climatic conditions (He et al. 2019; Zhao 57 

et al. 2023). However, the future climate change scenarios predict that climatic conditions in many 58 
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wheat growing areas could be outside of the adaptive range of existing genotypes and lead to 59 

severe yield reduction (Tack et al., 2015; Ortiz-Bobea et al., 2019). The results of climate 60 

modeling suggest that nearly 40% of crop growing areas might require new varieties to sustain 61 

crop production (Schlenker and Roberts 2009; Zabel et al., 2021). Leveraging the genetic diversity 62 

of multiple wild ancestors of wheat, which are evolved to grow in diverse environments, is one of 63 

the promising strategies for broadening the climate adaptive potential of modern wheat. 64 

 65 

The direct ancestors of wheat, Aegilops tauschii and Triticum turgidum ssp. dicoccoides 66 

(wild emmer), are two most broadly distributed species among the wheat wild relatives (Dvorak et 67 

al. 1998; Avni et al. 2017). These species are also among the most represented in germplasm 68 

collections, some of which host thousands of accessions of Ae. tauschii and T. turgidum (Sharma 69 

et al. 2021). Because these wild ancestors of wheat share homologous genomes, their 70 

chromosomes could easily recombine, facilitating introgression of allelic diversity from Ae. 71 

tauschii and wild emmer into wheat (Nyine et al. 2020). By using the synthetic hexaploid wheat 72 

(SHW) lines, which are hybrids of tetraploid wheat and Ae. tauschii, the allelic diversity of these 73 

ancestors was introduced into multiple international breeding programs from CIMMYT, ICARDA, 74 

China, Australia, United Kingdom, and United States (Pestsova et al., 2004; Börner et al., 2015). 75 

For example, it was demonstrated that these ancestors of wheat have potential to improve 76 

adaptation to water limiting conditions and heat, and increase biomass and harvest index (Singh et 77 

al., 2019; Molero et al., 2023). However, considering the broad adaptive potential of these species 78 

reflected in their wide geographic distribution, the question remains of how effective these efforts 79 

were at capturing adaptive diversity of Ae. tauschii and wild emmer. 80 

 81 

The prioritization of wild relative accessions for pre-breeding of climate resilient crops 82 

remains challenging. Wild relatives could be phenotypically pre-screened for target traits. 83 

However, this screening could be performed only for simple traits, and has limited utility for 84 

complex adaptive traits if phenotypic evaluation was not performed in the genetic background of 85 

adapted cultivars. Another approach to prioritize accessions is the development of “core 86 

collections” assembled from a large number of genotypes selected to maximize the genetic 87 

diversity of the sample (Frankel 1984). While this strategy could effectively reduce the number of 88 

accessions, its major disadvantage in application to large collections is that it targets only common 89 
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adaptive alleles, removing rare alleles or allelic complexes. The third approach is based on 90 

selection of wild relative accessions based on environmental parameters at the site of accession’s 91 

origin (Turner et al., 2010; Jones et al., 2012; Lasky et al., 2015) (Bari et al. 2012). However, 92 

while this strategy could capture alleles contributing to an adaptive phenotype of small number of 93 

accessions, its ability to maximize the recovery of adaptive genetic diversity at species-wide level 94 

would be limited.  95 

A combination of genome diversity analyses with the geographic patterns of environmental 96 

variation for detecting adaptive diversity is another strategy that so far had limited usage in crop 97 

breeding. The cost-efficiency of next-generation sequencing (NGS) genotyping approaches made 98 

possible generating genome-wide variation for geographically diverse populations. By combining 99 

genomic data with eco-geographic variables, it became possible to identify alleles associated with 100 

adaptive phenotypes. These approaches, referred to as genome-wide environmental scans (GWES), 101 

identify loci involved in local adaptation based on a high correlation between allele frequencies 102 

and eco-geographic variables. In an early GWES study, a number of climate-associated alleles 103 

(CAA) were mapped in Arabidopsis by using 13 climatic variables, among others including 104 

extremes and seasonality of temperature and precipitation (Hancock et al., 2011). The CAA 105 

identified by GWES allowed for accurate prediction of the relative fitness of Arabidopsis 106 

accessions in local environments (Turner et al., 2010; Hancock et al., 2011; Frachon et al., 2018). 107 

The GWES in sorghum and Mexican white oak detected adaptive variants that also produced 108 

reliable phenotypic predictions (Lasky et al., 2015; Martins et al., 2018). These studies suggest that 109 

adaptive alleles identified using the GWES have potential to predict agronomic phenotypes in 110 

target environments.  111 

 112 

Though GWES were shown to be effective at identifying loci contributing to 113 

environmental adaptation, it remains unclear whether these loci could be used to prioritize wild 114 

relative accessions for introgression into modern crop varieties to improve their adaptive potential 115 

in extreme environments. To address this question, we used a diverse collection of Ae. tauschii to 116 

conduct GWES and identified variants contributing to climatic adaptation. We specifically focused 117 

on those variants that correlate with precipitation and temperature gradients during growth season. 118 

Then, we selected a geographically diverse set of Ae. tauschii accessions to develop introgression 119 

populations by crossing them with the adapted wheat varieties. The developed introgression 120 
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population was grown for several seasons across diverse environments and agronomic 121 

performance of introgression lines (ILs) was assessed by measuring agronomic and physiological 122 

traits. The physiological status and growth of ILs were evaluated using the UAS-based 123 

phenotyping with the RGB and thermal cameras. The wheat productivity was assessed by 124 

measuring yield and yield component traits (thousand grain weight, grain area, grain width and 125 

grain length). The relationship between phenotypic data and climate adaptive alleles introgressed 126 

from Ae. tauschii was investigated to better understand the value of GWES in wild relatives as a 127 

tool for selecting wild relative accessions to improve the adaptive potential of wheat varieties.  128 

 129 

Materials and methods 130 

Plant materials 131 

A diverse set of 137 geo-referenced Ae. tauschii accessions collected over a geographic 132 

range of species distribution and representing locations with diverse historic climatic and 133 

bioclimatic characteristics was acquired from the USDA NSGC to identify the CAAs (Table S1). 134 

A subset of 21 geographically diverse accessions was selected from this population and crossed 135 

with hard red winter wheat varieties to generate Ae. tauschii-wheat amphiploids. The amphiploids 136 

were then crossed with six hard red winter wheat cultivars adapted to grow in the US Great Plains 137 

to develop Ae. tauschii-wheat ILs (Nyine et al., 2020, Nyine et al., 2021). A total of 351 BC1F3:5 138 

introgression lines that had phenology similar to that of the recurrent parents were used to study 139 

the impact of introgressed CAA on the adaptative traits.  140 

 141 

Genotyping and imputation 142 

DNA was extracted from two-week old seedling leaf tissues of the diverse Ae. tauschii 143 

accessions and the derived introgression population using DNeasy 96 Plant DNA extraction kit 144 

(Qiagen) following the manufacturer’s protocol. The quality and concentration of the DNA was 145 

assessed using PicoGreen dsDNA assay kit (Life Technologies). The extracted DNA was 146 

normalized to 400 ng (20ul of 20ng/ul) using the Qiagility robot (Qiagen). Genotyping by 147 

sequencing (GBS) included a library size selection step performed using the Pippin Prep system 148 
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(Sage Scientific) to enrich the library for 270-330 bp fragments, as described in Saintenac et al. 149 

(2013). The prepared libraries were sequenced on Illumina NextSeq 500. Variant calling was done 150 

using the TASSEL v5.0 GBS v2 pipeline (Glaubitz et al., 2014).  151 

To increase the density of SNP markers in both populations, we re-sequenced the panel of 152 

21 Ae. tauschii accessions and the six recurrent hexaploid wheat lines using whole-genome 153 

sequencing approach. PCR-free genomic libraries were constructed using Illumina protocol at the 154 

Integrated Genomic Facility (IGF) at Kansas State University. Paired-end sequences (2 x 150 bp) 155 

were generated using NovaSeq at Kansas University Medical Center and NextSeq 500 at IGF. The 156 

data were combined and processed as described by Nyine et al. (2021). Missing and ungenotyped 157 

SNPs in the Ae. tauschii diversity panel and the introgression population were imputed from the 158 

parental genotypes using Beagle v5.0 (Browning and Browning 2013). After imputation and 159 

filtering out SNPs with genotype probability below 0.7, we retained 6,365,631 SNPs in Ae. 160 

tauschii diversity panel and 5,208,054 SNPs in the introgression population.   161 

  162 

Population structure and variance partitioning of SNP diversity in Ae. tauschii 163 

To understand the level of genetic diversity within the Ae. tauschii population and how 164 

both geography and climate shaped the SNP variation in the population, we pruned the 6.3 million 165 

SNPs based on linkage disequilibrium (LD) using PLINK v1.9 and retained 109,627 SNPs that had 166 

r2 < 0.5 in 50 kb sliding window with step size of 5 kb. The proportion of ancestry shared between 167 

accessions was estimated from the LD pruned SNPs and the geographical coordinates for the 168 

accessions’ collection sites using the tess3r R package (Caye et al. 2016). The maximum number 169 

of ancestral populations tested was eight (K = 1:8). Each K was run 10 times for 200 iterations (rep 170 

= 10, max.iteration = 200) and the spatial projection of ancestral coefficients was based on least 171 

squares method (method = “projected.ls”). The optimal number of ancestral populations selected 172 

based on cross-validation scores was K = 4 because it split the Ae. tauschii population into two 173 

lineages and four sub-lineages that coincided with previous findings by Wang et al., (2013). A plot 174 

showing the population admixture and the spatial distribution of accessions from different 175 

subspecies at the sites of sample collection was generated.  176 
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The proportion of SNP variance in the Ae. tauschii accessions was partitioned into those explained 177 

by geographic distance and climate using the ‘varpart’ function in R package ‘vegan’. The 178 

geographic distances were calculated using the ‘distVicentyEllipsoid’ function in R package 179 

‘geosphere’ using the GPS coordinates from the accessions’ collection sites and the results were 180 

presented in a Venn diagram.  181 

 182 

Redundancy analysis 183 

The diverse set of Ae. tauschii accessions used in this study came from a wide range of 184 

geographical locations with distinct climatic and bioclimatic conditions suggesting that certain 185 

genetic factors are involved in local adaptation. Based on this hypothesis we modeled the 186 

relationship between response variables (SNPs) and explanatory variables (climatic and 187 

bioclimatic factors, and geographic distance) using the redundancy analysis (RDA) (Van den 188 

Wollenberg 1977; Lasky et al., 2015) and mixed linear models to identify variants contributing to 189 

local adaptation. Variables were ranked to identify those that contribute most to SNP diversity in 190 

the Ae. tauschii population. To achieve this, the ordiR2step function was applied on the RDA 191 

results with adjusted R2 using the forward selection method from 10,000 permutations. Type 1 192 

error was minimized during the selection of the most important factors contributing to SNP 193 

diversity by following the rules proposed by Blanchet et al., (2008). The full RDA model based on 194 

all climatic and bioclimatic variables with the calculated adjusted R2 values was evaluated to 195 

determine variables that (1) significantly improved the explained variation of SNP diversity 196 

distribution in Ae. tauschii population at alpha 0.05, and (2) whose total adjusted R2 did not exceed 197 

the adjusted R2 value of the full model. Based on the aforementioned conditions, the most 198 

important variables identified were projected on the first two principal components as a biplot. To 199 

illustrate the variation of temperature annual range (BIO7) from the Ae. tauschii accessions’ 200 

collection sites, a heatmap was plotted using the ‘heat_point’ function provided in R package 201 

‘autoimage’ and an overview of the variation of the most important variables at the collection sites 202 

for the sub-lineages was compared using boxplots. All variables were scaled to range between 0 203 

and 1 by dividing with the highest value within the dataset and then squaring them to eliminate the 204 

negatives before generating the boxplots with ggplot2 in R. 205 
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 206 

 207 

Identification of climate associated alleles (CAAs) in Ae. tauschii 208 

To determine the genetic basis of local adaptation in Ae. tauschii, we used both RDA and 209 

GWAS to identify SNPs that were significantly associated with geographic, climatic and 210 

bioclimatic variables. We extracted the first three RDA loadings for each SNP from the RDA 211 

model described above and transformed them to Z-scores. The mean Z-score was calculated from 212 

all SNPs and any SNP with three standard deviations from the mean was considered a candidate 213 

CAA SNP. Pearson’s correlation coefficients were used to determine the variable with the 214 

strongest association to each SNP, thus each CAA SNP was assigned to only one variable. To 215 

capture most CAA, we also performed a GWAS using a compressed mixed linear model in GAPIT 216 

(Lipka et al., 2012). The geographic, climatic and bioclimatic variables were used as phenotypes. 217 

The population structure was accounted for by including PCAs calculated from the marker data as 218 

covariates in the model. Multiple test correction was performed using the Benjamini-Hochberg’s 219 

method (FDR ≤ 0.05). 220 

 221 

Phenotyping of Ae. tauschii introgression population 222 

The population of ILs was phenotyped under field conditions for three seasons between 223 

2018 and 2020 to evaluate the adaptive potential of CAAs introgressed in the winter wheat. In 224 

2018 and 2019, phenotyping was done at Colby (Kansas, USA) under irrigated and non-irrigated 225 

conditions. In 2020, phenotyping was done at Ashland (Kansas, USA) under non-irrigated 226 

conditions. The experimental layout at all locations followed an augmented design with six 227 

recurrent hexaploid wheat parents and three additional winter wheat lines adapted to Kansas 228 

weather as controls. Experimental plots were 2.5 m x 0.5 m consisting of three rows separated by 229 

18 cm. During planting, granular 18-46-0 diammonium phosphate (DAP) fertilizer was applied at a 230 

rate of 168.1 kg/ha and liquid 28-0-0 urea ammonium nitrate (UAN) was applied at a rate of 67.3 231 

kg/ha in the spring to supply additional nitrogen to the plants. The lateral irrigation system was 232 

used to maintain the soil moisture in the irrigated block. 233 
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The ILs were phenotyped for yield and the component traits such as spikelet number per 234 

spike (SNS), thousand grain weight (TGW), grain area (GA), grain width (GW) and grain length 235 

(GL). During the growing season, remote sensing data including RGB, NDVI and canopy 236 

temperature (CT) were collected at multiple time points during growth seasons using unmanned 237 

aerial system (UAS) mounted with specific sensors for each data type to evaluate the physiological 238 

status and growth trend of the introgression lines. The RGB and NDVI imagery data were 239 

processed in Agisoft software (version) to generate orthomosaics and digital elevation models 240 

(DEM) whereas the thermal data were processed in Pix4D to generate the CT orthomosaics. The 241 

raster files generated by Agisoft and Pix4D were imported into QGIS v3.4 software for plot level 242 

data extraction. Shape files consisting of rectangular polygons that overlaid each plot in the 243 

experimental block were created and the mean pixel values for each color band within the polygon 244 

were calculated using raster zonal statistics tools and saved as a comma separated values (csv) file. 245 

Other indices such as visible atmospherically resistant index (VARI) and triangular greenness 246 

index (TGI) were derived from the RGB data whereas NDVI was derived from near infrared and 247 

red color bands using the following equations: 248 

���� �  
� � �

� � � � �
                               eqn. 1 249 

��� �  � 	  0.39 � � 	 0.61 � �                      eqn. 2 250 

 ���� �
 �.	
��
�� � �.�����


�� � �.�����
                             eqn. 3 251 

 252 

where R, G, B and NIR are the mean pixel values for the red, green, blue and near infrared color 253 

bands. 254 

Heading data were collected in 2020 at Ashland and validated in 2022 at RockyFord, 255 

Manhattan, Kansas USA. Heading date was recorded when 50 % of spikes fully emerged from the 256 

flag leaf. The number of days to heading (DTH) were calculated by subtracting the planting date 257 

from the heading date. To understand how much the heading date for the introgression lines varies 258 

from the controls, we calculated the mean DTH for the controls and subtracted the DTH for each 259 

introgression to generate the deviation in days to heading (DDTH).  260 
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Best linear unbiased predictions (BLUPs) 261 

Best linear unbiased predictions for yield and yield component traits were obtained from a 262 

mixed linear model implemented in R package. Given that the experimental layout followed an 263 

augmented design all controls were given a code 1, and the test introgression lines were assigned a 264 

0. Each introgession line was assigned a unique numeric code which was used as a group identifier 265 

in all experiments whereas the controls were assigned a 999 regardless of the accession as the 266 

group identifier. A mixed linear model was run for different traits. For example, BLUPs for the 267 

number of days to heading, used in GWAS analysis were estimated from the following model: 268 

DTH~Loc+Check, random= ~ Acc + Acc:range/row + Acc:LocName, 269 

where DTH is number of days to heading, Loc is the field trial location, Check defined lines 270 

whether they are controls or test lines and Acc is the accessions. 271 

Canopy temperature data were collected over multiple time points (aka flights) in the two 272 

years. Spatial correction was performed using SpATS implemented in MrBean, a shiny based R 273 

package. Variance due to genotype and environment were estimated as well as narrow sense 274 

heritability. After excluding outliers, BLUEs were predicted for the test lines based on the variance 275 

in the controls. All flights and blocks with heritability less than 0.2 were excluded from the linear 276 

mixed model. The remaining data were used to estimate genotype BLUPs across flights, treatment 277 

blocks and years. In the model, experimental treatment and flights were considered as fixed effects 278 

whereas genotypes were considered as random effects. 279 

Association between CAAs and phenotypic traits in introgression population 280 

The frequency spectra of CAAs derived from Ae. tauschii was estimated for groups of ILs 281 

that have trait values falling into the tails of phenotype distributions. Our expectation was that if 282 

the CAAs are associated with variation in phenotypic traits in the introgression population, the 283 

phenotypic value tails should show CAA frequency spectra distinct from the CAA frequency 284 

spectra for the whole population. For this purpose, we ranked the ILs based on trait values and 285 

compared the CAA frequency spectrum in the whole population (WP) and the lower and upper 5th 286 

percentile of the phenotype distributions. Lines were considered to belong to the lower or upper 287 
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tail groups if they were ranked as outliers in at least two trials. The frequency spectrum was built 288 

using 5,675 CAAs in the introgression population by counting alleles in 9 allele frequency bins. 289 

Allele frequency of all CAA sites was calculated for the whole population and for the 290 

introgression lines that ranked in the lower and upper 5% tails of phenotype distribution using 291 

vcftools. Differentiation in allele frequency was determined by calculating the fold change (FC) in 292 

allele frequency between the introgression lines in the tails and the whole population. SNPs with 293 

FC ≥ 2 were considered to strongly differentiated. For some traits, where the allele frequency FC 294 

was less than two across all sites, the threshold was adjusted accordingly. 295 

To determine the relationship between recombination rate gradient and allelic 296 

differentiation, we split the chromosome arms into three equal parts. The number of differentiated 297 

CAAs within each chromosome segment was counted using the ‘bedmap’ function of BEDOPs 298 

tools. The redundant CAA sites showing the high levels of LD were removed using PLINK. We 299 

retained only those SNPs that had r2 < 0.5 within the 50 kb window with a step size of 5 kb. The 300 

total number of differentiated alleles was aggregated for all traits and chromosomes.  301 

To confirm the contribution of CAAs to adaptation traits a linear regression of yield on CT 302 

was performed to determine the proportion of variance in yield explained by the variation in CT. 303 

Introgression lines that ranked in the 5th and 95th percentiles of CT distribution were compared for 304 

yield performance relative to the recurrent parents. GWAS was performed on the traits phenotyped 305 

in the BC1F3:5 A. tauschii-wheat introgression population including CT, heading date, yield and 306 

component traits to determine loci with significant associations. Multiple GWAS models were 307 

tested on each trait with varying number of principal components to correct for population 308 

structure. GWAS analysis was implemented in GAPIT v3.0. CAAs significantly associated with 309 

traits in the introgression population at the FDR value 0.05 were considered adaptive in the winter 310 

wheat background. 311 

 312 

 313 

 314 
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Results 315 

Environmental scans in Aegilops tauschii 316 

The genetic basis of Ae. tauschii adaptation to diverse climatic conditions across a broad 317 

geographic range extending from Eastern Europe to China remains poorly understood. To identify 318 

genetic loci contributing to adaptation, we conducted genotype-environment association analyses 319 

using 109,627 SNPs identified in a geographically diverse panel of 137 accessions. This set of 320 

SNPs was selected by LD-based pruning from a larger set including 6,365,631 genotyped and 321 

imputed SNPs. Using this data, we explored the population structure of our samples and its 322 

correspondence to the previously identified four main lineages (L1W, L1E, L2E, L2W) of Ae. 323 

tauschii (Wang et al. 2013) (Fig. 1A). The inferred population structure of Ae. tauschii accessions 324 

was consistent with the results of previous studies (Wang et al. 2013), showing the split between 325 

L1 and L2 lineages, where L1 was composed of Ae. tauschii ssp. tauschii and L2 included 326 

accessions of Ae. tauschii ssp. strangulata, the closest ancestor of the wheat D genome (Wang et 327 

al. 2013), (Fig. S1A). The first two principal components, separating L1 and L2 lineages, 328 

accounted for 78.4% of the variation in our samples (Fig. S1B). The split between the L1W and 329 

L1E and between the L2E and L2WE was also obvious in our panel. 330 
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Fig. 1 Ecogeographic distribution of 137 diverse Ae. tauschii accessions. A) Map shows the 332 

geographic locations and the ancestry coefficients of 137 accessions. Twenty-one accessions used 333 

to develop the Ae. tauschii-wheat introgression population are shown in blue. B) Proportion of 334 

SNP variance explained by climate (Clim) and geographical distance (Geo) between accessions. 335 

C) Redundancy analysis (RDA) plot showing the 11 best explanatory variables for SNP variance 336 

in Ae. tauschii accessions including temperature annual range (bio7), precipitation of driest month 337 

(bio14), precipitation in May (prec_5), minimum temperature in April, November and December 338 

(tmin_4, tmin_11 and tmin_12, respectively), maximum temperature in May, June, July and 339 

September (tmax_5, tmax_6, tmax_7 and tmax_9, respectively) and longitude (lon). D) Heatpoint 340 

map showing the variation in temperature annual range (bio7) at the sampling locations of the Ae. 341 

tauschii accessions. E) Boxplots showing the variation in lon, bio7, bio14, tmax_5, tmax_6, 342 

tmax_7, tmax_9, tmin_4, tmin_11 and prec_5 in the ecogeographic locations of different Ae. 343 

tauschii lineages. Lineage 1 East (L1E) and Lineage 1 West (L1W) belong to Ae. tauschii ssp. 344 

tauschii whereas Lineage 2 East (L2E) and Lineage 2 West (L2W) belong to Ae. tauschii ssp. 345 

strangulata.   346 

 347 

To identify variants contributing to local adaptation, we modeled the relationship between 348 

response variables (SNPs) and explanatory variables (climatic and bioclimatic factors, and 349 

geographic distance) using redundancy analysis (RDA) (Van den Wollenberg 1977; Mcardle and 350 

Anderson 2001; Lasky et al. 2015). For this purpose, we used historical data for the bioclimatic 351 

and climatic factors estimated for the geographic locations at the accession collection sites. The 352 

total SNP variance explained by both geographic distance and climatic and bioclimatic factors was 353 

85.2% (Fig.1B), with the adjusted R2 value being 69.6%. Climate alone accounted for 57.8% of the 354 

SNP variation in Ae. tauschii, whereas geographic distance between accessions and the interaction 355 

between geographic distance and climate accounted for 5.6% and 11% of SNP variation, 356 

respectively. These results indicate that the distribution of SNP variation among Ae. tauschii 357 

accessions is primarily driven by gradient in climatic and bioclimatic factors rather than by Ae. 358 

tauschii geographic dispersal. 359 

Depending on their impact on adaptive traits, individual climatic factors could have distinct 360 

effects of SNP variation among accessions (Hancock et al., 2011; Lasky et al., 2015; Li et al., 361 
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2021; Chang et al., 2022). The first two RDAs accounted for 22.58% of the total SNP variation in 362 

the population. A triplot with two RDAs shows separation of the population into four distinct 363 

groups (Fig. S1C) coinciding with the previously detected split between the L1E, L1W, L2E and 364 

L2W subpopulations. Among the geographic variables, longitude and altitude showed the strongest 365 

effect on SNP distribution between the two subspecies of Ae. tauschii followed by latitude (Fig. 366 

S1D). The environmental variables contributing most to SNP variation were determined using the 367 

‘ordiR2step’ function in R package ‘vegan’ using the forward selection method and 10,000 368 

permutations (Blanchet et al., 2008). A total of 11 variables were detected, including temperature 369 

annual range (bio7), precipitation of driest month (bio14), precipitation in May (prec_5), minimum 370 

temperature in April, November and December (tmin_4, tmin_11 and tmin_12, respectively), and 371 

maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9, 372 

respectively) and longitude (lon) (Table 1, Fig. 1C). The tmin_11, tmin_12, bio7, and bio_14 373 

contributed most to RDA1 that explains most of the genetic differentiation between the two 374 

subspecies of Ae. tauschii. The prec_5, tmin_4, tmax_5, tmax_6, tmax_7 and tmax_9 factors 375 

contributed to RDA2 that explains most of the genetic differentiation between the Eastern (L1E, 376 

L2E) and Western (L1W, L2W) populations of the two Ae. tauschii lineages. These results indicate 377 

that temperature and precipitation gradients during the growth periods coinciding with flowering, 378 

grain filling and maturation were the main factors that shaped SNP diversity in Ae. tauschii and 379 

likely contributed to genetic differentiation among the four lineages. 380 

Two subspecies of Ae. tauschii, ssp. strangulata and ssp. tauschii appear to show different levels 381 

of adaptation to distinct climatic conditions. We compared the distribution of the main climatic and 382 

geographic factors (lon, bio7, bio14, tmax_5, tmax_6, tmax_7, tmax_9, tmin_4, tmin_11, tmin_12 383 

and prec_5) between the two subspecies of Ae. tauschii (Fig.1E). Analysis of variance showed 384 

significant differences between the accessions from these subspecies (Table 2). Results suggest 385 

that L1E lineage is adapted to warmer and drier conditions of Eastern Iran, Afghanistan, 386 

Turkmenistan, Uzbekistan, Tajikistan and Kyrgyzstan (Table S1), indicating that these Ae. tauschii 387 

accessions could be a good source of drought and heat stress tolerance. The lowest precipitation of 388 

driest month characterized by high maximum temperature from May up to September was one of 389 

the major differentiating ecogeographic factors for L1E. In contrast, L1W is represented by 390 

accessions mostly from Eastern Turkey and Northwestern Iran where a high precipitation is 391 

recorded in May and significantly lower maximum temperature from May to September. The 392 
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factors that contribute most to the genetic differentiation of this sublineage are tmin_4, tmax_5 and 393 

prec_5. 394 

Table 1 The geographic, climatic and bioclimatic variables that contributed most to SNP variation 395 

in Ae. tauschii. The R2.adj are cumulative values.  396 

Variable R2.adj* Df AIC F Pr(>F)  

Temperature annual range (bio7) 0.27664 1 1236.8 43.4509 1.00E-04 *** 

Min temperature in November (tmin_11) 0.35655 1 1224.7 14.6606 1.00E-04 *** 

Max temperature in July (tmax_7) 0.39818 1 1218.2 8.5394 0.0008 *** 

Max temperature in June (tmax_6) 0.43887 1 1211.3 8.832 0.0011 ** 

Min temperature in December (tmin_12) 0.49921 1 1199.5 13.8934 0.0002 *** 

Longitude (lon) 0.52234 1 1195.1 6.1326 0.0043 ** 

Max temperature in September (tmax_9) 0.53963 1 1191.9 4.9424 0.0093 ** 

Precipitation of driest month (bio14) 0.55291 1 1189.6 4.0891 0.0148 * 

Min temperature in April (tmin_4) 0.57148 1 1185.7 5.4646 0.004 ** 

Max temperature in May (tmax_5) 0.59765 1 1179.6 7.6331 0.0017 ** 

Precipitation in May (prec_5) 0.60705 1 1177.8 3.4162 0.025 * 

 397 

Generally, Ae. tauschii ssp. strangulata lineages are found around the Caspian Sea with 398 

some accessions found in Syria and Turkey. L2E is adapted to a relatively uniform precipitation 399 

and mild temperature which are characteristic of the Southern Caspian Sea in Northern Iran. The 400 

L2W accessions are mostly found near Western Caspian Sea in Azerbaijan and parts of 401 

Northwestern Iran. The region is characterized by moderate to high variation in climatic and 402 

bioclimatic factors. Amongst the main variables differentiating L2W from other sublineages are 403 

tmin_4 and prec_5 (Table 2). 404 
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Table 2 Comparison of geographic and climatic factors between the main sub-lineages of Ae. 405 

tauschii. 406 

Variable 

Lineage 1 East 

(L1E) 

Lineage 1 

West (L1W) 

Lineage 2 East 

(L2E) 

Lineage 2 West 

(L2W) 

lon 62.83a 45.98c 52.69b 49.09bc 

bio7 40.08a 37.01b 30.11c 34.88b 

bio14 3.13c 7.10b 19.90a 10.16b 

tmax_5 269.44a 195.90c 244.45b 221.77b 

tmax_6 324.80a 251.92b 283.60b 273.94bc 

tmax_7 345.08a 295.97b 300.45b 305.41b 

tmax_9 292.64a 253.33c 272.45b 262.71bc 

tmin_4 80.82a 32.77c 84.80a 53.00b 

tmin_11 18.26b 0.03c 78.25a 28.65b 

tmin_12 -17.46b -49.28c 42.35a -23.00b 

prec_5 26.72c 58.36a 30.60c 46.41b 

Means with the same superscript letters are not significantly different. The following factors were 407 

considered: longitude (lon), temperature annual range (bio7), precipitation of driest month (bio14), 408 

maximum temperature in May, June, July and September (tmax_5, tmax_6, tmax_7 and tmax_9), 409 

minimum temperature in April, November and December (tmin_4, tmin_11 and tmin_12) and 410 

precipitation in May (prec_5). Statistical significance is based on Tukey’s honestly significant 411 

difference test at 95% confidence level. 412 

 413 

 414 
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Mapping adaptive SNPs in Ae. tauschii 415 

The results of both redundancy analysis (RDA) and genome-wide association mapping 416 

(GWAS) were used combined to identify SNPs that are significantly associated with variation in 417 

geographic, climatic and bioclimatic variables across the Ae. tauschii sampling locations. The first 418 

three RDA loadings for each SNP were extracted from the RDA model, transformed to Z-scores, 419 

and climate associated alleles (CAA) were defined as outlier SNPs with three standard deviations 420 

from the mean Z-score. After removing duplicate SNPs, a total of 10,149 D-genome SNPs showed 421 

a positive correlation (mean = 0.58, range 0.14-0.82) with 51 out of 58 variables analyzed in our 422 

study (Table S2, Table S3).  423 

Temperature annual range (bio7) was ranked as the most significant variable accounting for 424 

27.66% of the SNP variation in Ae. tauschii population based on the adjusted R2 values (P < 425 

0.001). It had the highest number of correlated SNPs (747) amongst other most significant 426 

variables. Chromosomes 1D and 7D had the highest number of SNPs showing significant 427 

correlation with the geographic, climatic and bioclimatic variables (Fig. 2A). Genome-wide 428 

association mapping is another approach that was previously used for studying genome-by-429 

environment interactions (Wallace et al. 2016). By using a compressed mixed linear model, we 430 

identified a total of 10,569 D-genome SNPs significantly associated with 42 out of 58 variables 431 

(Table S2, Fig. 2B). Most of these variants were located on chromosomes 1D and 5D (Fig. 2A and 432 

Table S4). Unlike in RDA analysis, where each SNP was assigned to a single highly correlated 433 

variable, in GWAS, many SNPs were associated with more than one variable at FDR ≤ 0.05. 434 

Combined, RDA and GWAS identified 18,096 SNPs with significant association to geographic, 435 

climatic and bioclimatic variables (Table S5). Among the SNPs identified, a set of 2,622 SNPs 436 

were detected using both methods (Fig. 2C, Table S6). The functional annotation of these SNPs 437 

using SnpEff (Cingolani et al., 2012) showed that only 29 of them were stop codon gain, missense, 438 

synonymous, intronic or splice region variants (Table S6). The majority of SNPs (2,316) were 439 

intergenic variants, and 277 SNPs were located 5 kb upstream or downstream of gene models.  440 

 441 
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442 

Fig. 2 Number of climate associated SNPs per chromosome identified by the redundancy analysis443 

(RDA) and genome-wide association analysis (GWAS), and the geographical distribution of SNP444 

alleles associated with precipitation of driest month (bio14). A) Chromosome distribution of SNP445 

identified through RDA and GWAS that were associated with different geographic, climatic and 446 

bioclimatic variables. B) Venn diagram showing the total number of climate associated SNPs 447 

identified by RDA and GWAS. C)  Circular Manhattan plot showing GWAS for four of the most 448 

significant variables. Starting from the innermost circle outward are minimum temperature in 449 

April, maximum temperature in May and June (tmax_5 and tmax_6) and bio14. The red lines sho450 

an FDR threshold of 0.05 and the red dots are the significant SNPs on each chromosome. D) Ae. 451 

tauschii (AeT) specific allele (yellow) on chromosome 1D showing adaptation to areas with high 452 

precipitation of driest month near the Caspian Sea. E) Ae. tauschii specific allele (yellow) on 453 

chromosome 1D showing adaptation to areas with a wide range of reduced precipitation in the 454 

driest month. The purple color shows the reference allele similar to Chinese Spring (CS).  455 
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Consistent with prior studies, the geographic extent of CAAs could primarily be explained 456 

by the distribution of climatic factors (Hancock et al., 2011). For example, among SNPs 457 

significantly associated with bio14, there is an Ae. tauschii allele (chr1D_322068171) that was 458 

found only in accessions from the region near the Caspian Sea (Fig. 2D), which shows a high 459 

precipitation of driest month (Table 1). Another bio14-associated SNP (chr1D_322557976) had an 460 

allele identified in accessions from a broad geographic region characterized by low precipitation of 461 

driest month experiencing extreme drought stress due to high temperature from May up to 462 

September (Fig. 2E, Table 1). These results suggest that Ae. tauschii could be the source of 463 

adaptive alleles to a broad range of climatic factors useful for addressing the impact of climate 464 

change on wheat productivity. 465 

  466 

Evaluation of the adaptive potential of Ae. tauschii CAAs in winter wheat 467 

To evaluate the ability of CAAs from Ae. tauschii to improve the adaptive potential of 468 

bread wheat, we developed a wild relative introgression population using a set of 21 diverse 469 

accessions that were selected to capture the ecogeographical and allelic diversity of species (Nyine 470 

et al., 2020; Nyine et al., 2021). To facilitate comparison with parental lines, ILs in the populations 471 

were selected to match development and phenology of hexaploid wheat parents (Nyine et al., 472 

2020). Out of 18,096 climate adaptive SNPs identified by RDA and GWAS, 31.4% (5,675 CAA 473 

SNPs) were present in the introgression population. It is likely that loss of some of the CAAs in 474 

introgression population could be caused by their linkage with deleterious alleles selected against 475 

during population development (Nyine et al., 2020) (Fig. 3). Among the introgressed CAAs, a total 476 

of 1,089 SNPs were detected using both environmental association scan methods.  477 

Introgression of beneficial alleles occurs in both high and low recombining regions of the 478 

genome. While introgressions found in high recombining regions become shorter after a few 479 

generations of recombination, those in the low recombining regions tend to persist as large linkage 480 

blocks. The large introgression blocks in the pericentromeric regions of the chromosome could 481 

have unintended consequences on non-targeted traits due to linkage with deleterious alleles linked 482 

to adaptive SNPs and epistatic interactions with adapted genetic background. When selection is 483 

applied, the frequency of adaptive alleles in the high recombining regions usually increases 484 
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whereas the frequency of adaptive alleles in low recombining regions may (i) increase if SNP 485 

effect on an adaptive trait is stronger than the combined negative effects of linked alleles or (ii) 486 

reduce if the combined negative effects of linked alleles are stronger than the effects of adaptive 487 

SNPs. In a breeding population, shifts in allele frequency are best observed in the tails of 488 

distributions for phenotypes targeted by selection. We compared the frequency spectra of CAAs 489 

derived from Ae. tauschii in the tails of phenotype distributions in the introgression population. 490 

Our expectation was that if CAAs affect wheat performance, the tails of distribution for yield and 491 

yield component, CT and DDTH traits should show distinct frequency spectra. For this purpose, 492 

we ranked the ILs based on trait values and compared the CAA frequency spectrum in the whole 493 

population (WP) with CCA frequency spectra in the lower and upper 5th percentile tails of the 494 

phenotype distribution. The frequency spectra were generated for the 5,675 CAAs in the 495 

introgression population by counting Ae. tauschii alleles in the 9 allele frequency bins. Lines in the 496 

tails of the trait distribution were filtered to retain only those that ranked in the same percentile 497 

group for at least two traits. 498 

A significant shift from the mean CAA frequency (0.226) in the WP was observed in the 499 

tails of phenotype distribution for various traits (Fig 3). The shift in the CAA frequency spectrum 500 

in the tails of yield distribution was significantly different from WP mean (Kolmogorov-Smirnov 501 

test: lower tail P < 2.2e-16; upper tail P < 2.2e-16). In the lower tail of yield distribution, the 502 

frequency of CAAs was high suggesting that lines with large introgression segments that had many 503 

CAAs that are likely in LD with deleterious alleles contributed to yield penalty. The top yielding 504 

lines showed a bimodal distribution of CAA frequency, suggesting the occurrence of both negative 505 

and positive selection at different CAA loci in these lines. For SNS however, a decrease in the Ae. 506 

tauschii allele frequency was linked with low spikelet number per spike whereas a combination of 507 

both low and high frequency Ae. tauschii alleles were associated with with higher SNS 508 

(Kolmogorov-Smirnov test: lower tail P < 2.2e-16; upper tail P < 2.2e-16).  509 

Previous studies have shown a positive relationship between yield and SNS, especially if 510 

all spikelets are fertile and produce seeds (Rawson 1970; Zhang et al., 2018, Kuzay et al., 2019). 511 

However, yield is a complex trait modulated by changes heading date and yield component traits, 512 

such as grain area, width and length. The shift in the CAA frequency spectrum for the deviation in 513 

days to heading (DDTH) distribution from the WP mean followed the same pattern as that 514 
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observed for SNS (Kolmogorov-Smirnov test: lower tail P < 2.2e-16; upper tail P < 2.2e-16) 515 

suggestive of the shared biological pathways between these two traits. These results are as 516 

expected because longer development period and hence delayed heading have been associated with 517 

increase in SNS (Rawson 1970). Guo et al. (2018) attributed the increase in spikelet number to 518 

delayed spikelet initiation and transition from double-ridge phase to terminal spikelet which 519 

coincided with delayed heading date.  520 

Canopy temperature (CT) is one of the critical physiological traits that reflects the adaptive 521 

potential of plants in local environments (Kumar et al., 2017) (Still et al. 2021) and could be used 522 

to identify drought and heat stress tolerant plant genotypes. Previous studies demonstrated that CT 523 

in wheat is a complex quantitative trait mostly linked to QTLs that control root architecture 524 

necessary for improved water use efficiency and maintenance of transpiration rate (Pinto and 525 

Reynolds 2015). While in the low CT tail, most CAAs had lower than average allele frequency, we 526 

detected some CAAs that significantly increased in frequency compared to population mean 527 

suggestive of their contribution to regulation of CT. CT negatively correlated with yield under 528 

drought stress (r = -0.45, P = 0.0) which agreed with the previous studies that showed the 529 

importance of CT depression for increasing yield in wheat (Pinter et al. 1990; Amani et al. 1996). 530 

Introgression from Ae. tauschii into spring wheat was associated with low CT and improved yield 531 

under heat stress (Molero et al., 2023). Previously, we showed that the difference in mean yield of 532 

some Ae. tauchii introgression lines in our population reached 57% when compared to the checks 533 

under drought stress conditions (Nyine et al., 2021). 534 

Besides CT, both visible atmospherically resistant index (VARI) and normalized difference 535 

vegetation index (NDVI) are correlated vegetation indices used to monitor plant health and 536 

biomass accumulation. Lines in both lower and upper tails showed a significant shift towards high 537 

frequency CAAs. The latter shows that some CAAs could be associated with the positive impact 538 

on vegetation indices and physiological status of the plants under stress. The finding of CAAs 539 

showing strong shift in the lower tails of both traits suggest that some CAAs or linked 540 

introgression variants could be associated with the negative impact on these traits. The triangular 541 

greenness index (TGI) is an indicator of total chlorophyll content in the leaves (Hunt et al., 2013) 542 

which is useful for estimating the stay green characteristics in wheat (Lopes and Reynolds 2012). 543 
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In this population, lines that matured late were those with the highest number of Ae. tauschii 544 

alleles thus the TGI values were also high during the growing season.    545 

 546 

Fig. 3 Frequency spectra of climate associated alleles (CAA) in the tails of phenotype distribution547 

relative to the allele frequency spectra in the whole population (WP). The A and B panels show th548 

5th and 95th percentiles of the yield, spikelet number per spike (SNS), canopy temperature (CT) 549 

deviation in days to heading (DDTH) from the control mean DTH, thousand grain weight (TGW)550 

grain area (GA), grain length (GL), grain width (GW), visible atmospherically resistant index 551 

(VARI), normalized difference vegetation index (NDVI) and triangular greenness index (TGI) 552 

traits. 553 
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Both natural and artificial selection results in genetic differentiation at target loci between 555 

the selected and non-selected populations. Since the efficiency of selection at target loci is higher 556 

in the high recombining regions, for CAAs linked with trait variation, we expect to observe higher 557 

frequency differentiation between the lines in phenotypic tails in the high-recombining terminal 558 

regions of chromosomes rather than in the low-recombining pericentromeric regions. By plotting 559 

CAAs identified for eleven most significant climatic and bioclimatic variables along the 560 

chromosomes, we show that differentiated CAAs are enriched in the high-recombing regions of 561 

chromosomes (Figs. 4C and 4D). These results suggest that 1) selection of lines in the phenotypic 562 

extremes of agronomic and physiological traits prioritizes those that carry CAAs located within the 563 

high-recombining regions of the genome likely due to the reduced linkage to deleterious alleles, 564 

and 2) introgressed CAAs are associated with variation in phenotypic traits linked with wheat 565 

performance in both irrigated and water-limiting conditions. 566 

 567 

 568 

Fig. 4 Chromosome distribution of CAAs differentiated between the tails of phenotypic extremes 569 

in introgression population. The CAAs detected for most significant climatic and bioclimatic 570 

variables were included into the analyses. Each chromosome arm was split into three regions with 571 

each region representing 33.3% of arm length. The counts of CAAs in each region across all 572 

chromosomes in the wheat genome was combined. The A and B panels show chromosome 573 

distributions for differentiated CAAs in the 5th and 95th percentile tails of phenotype distribution, 574 

respectively. 575 
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CAAs are linked with variation in adaptive traits in the introgression population. 576 

Association analyses were performed in the introgression population using a set of 5,675 577 

climate-adaptive SNPs to determine variants that contribute to improved performance of 578 

introgression lines under the water-limiting and irrigated conditions. The CT, heading date, yield 579 

and yield component traits were used as plant performance metrics. Significant CAA-trait 580 

associations with heading date, spikelet number per spike, grain width and length were observed in 581 

the introgression population (Supplementary File S1). Considering the importance of CT for 582 

assessing the physiological response of plants to drought stress (Pinto and Reynolds 2015; Kumar 583 

et al., 2017), we focused on the results of association analyses between CAAs and CT.   584 

The CT data were collected using unmanned aerial system (UAS)-based thermal imaging 585 

from both irrigated and non-irrigated field trials at multiple time points during the growing season 586 

in 2018 and 2019. Variation in CT was influenced by both genotype and environment (Table 3). In 587 

the 2018 growing season, narrow sense heritability (h2) for CT varied between 0.54 and 0.85 588 

whereas in 2019 it ranged from 0.24 to 0.78. In the 2019 growing season, residual variance in CT 589 

was much higher than due to genotype effect. This could be linked to the fact that in 2019, Colby 590 

experienced high precipitation and low temperature conditions during the growing season. Best 591 

linear unbiased predictors for spatially corrected CT varied from -0.57 to 1.8 suggesting that some 592 

introgression lines were able to lower CT compared to others that had higher CT (Figure 5A). A 593 

comparison of yield and CT showed a strong negative relationship with CT accounting for 30% of 594 

yield variation in the Ae. tauschii introgression population (Fig. 5B). This result was confirmed by 595 

performing phenomic predictions using the random forest model with CT and yield component 596 

traits as predictors of yield (Fig. S2). These analyses showed that CT is the most significant factor 597 

for predicting yield followed by grain length and thousand grain weight in this population, 598 

consistent with previous observations (Wardlaw et al. 1989).  599 

To further understand the impact of introgressed alleles from Ae. tauschii into hexaploid 600 

wheat background on yield, we identified ILs in the 5th and 95th percentiles of CT distribution and 601 

compared them to recurrent parents. The average yield for ILs in the 5th percentile of CT was 50 602 

bpa, which was higher but not significantly different from the recurrent parents (48 bpa, P = 603 

0.825). The lack of significant difference could be attributed to high variation in yield in ILs 604 
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showing low CT, suggesting that other genetic factors could contribute to final yield. The 605 

introgression lines in the 95th percentile however, showed significant yield reduction (39 bpa) 606 

relative to the recurrent parents (Tukey HSD, P < 0.008), confirming the importance of CT trait for 607 

predicting grain yield in wheat. 608 

Table 3: Effect of genotype and environment on canopy temperature variation and its heritability 609 

in the Ae. tauschii introgression population. 610 

Year Flight 

date 

Experiment varG varE h2 outliers r2 cv 

2018 20180511 Irrigated 0.129 0.027 0.72 0 0.996 0.59 

Rainfed 0.342 0.101 0.69 1 0.977 1.1 

20180525 Irrigated 2.025 0.113 0.85 0 0.997 0.44 

Rainfed 2.552 0.608 0.73 1 0.966 1.17 

20180531 Irrigated 0.451 0.132 0.71 1 0.971 0.76 

Rainfed 0.442 0.289 0.54 2 0.895 1.26 

2019 20190513 Irrigated 0.298 0.036 0.75 1 0.995 0.34 

Rainfed 0.061 0.083 0.37 2 0.967 1.04 

20190522 Irrigated 0.059 0.051 0.38 3 0.998 1.54 

Rainfed 0.084 0.051 0.53 2 0.996 1.06 

20190601 Irrigated 0.572 0.051 0.78 1 0.996 0.38 

Rainfed 0.077 0.221 0.24 5 0.837 1.78 
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20190607 Irrigated 0.612 0.082 0.76 1 0.99 0.51 

Rainfed* 0.002 0.166 0.01 4 0.793 1.49 

*Excluded from downstream analysis 611 

To identify the genomic loci associated with CT depression, we performed GWAS using 612 

genotypes at CAAs (Segura et al., 2012; Wang and Zhang 2021). The multiple-locus mixed linear 613 

model (MLMM) and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway 614 

(BLINK) revealed significant SNP-trait associations on chromosomes 1D, 2D, 4D and 7D (Fig. 615 

5D, Table S7). Some of the most significant SNPs associated with CT on chromosomes 1D and 4D 616 

(chr1D_265243957 and chr4D_154179120) showed the highest correlation with temperature 617 

annual range (bio7, r = 0.59). Based on the RDA analyses, bio7 was identified as the most 618 

significant variable shaping SNP variation in Ae. tauschii. Other SNPs significantly associated 619 

with CT in introgression population correlated with the minimum temperature in the coldest month 620 

(bio6, r = 0.67), mean temperature in the coldest quarter (bio11, r = 0.6), longitude and 621 

precipitation in the driest months (August to October) (Table S7). 622 

Besides using only SNP sites with CAAs for GWAS, 5.3 million SNPs from Ae. tauschii 623 

introgression population were pruned based on LD resulting in 99,529 SNPs with r2 ≤ 0.5. When 624 

GWAS was performed using this set of SNPs, the MLMM model revealed three QTLs that were 625 

associated with CT, including one on chromosome 1D and two on 4D. The significant SNPs on 1D 626 

were chr1D_254646871 and chr1D_265399733 (Fig 5F, Table S7). Although these SNPs were not 627 

part of the SNP set detected in the environmental scans of Ae. tauschii accessions, they were 628 

located within the same genomic intervals identified by genome-wide association mapping in the 629 

introgression population using the climate-associated SNPs. Within the interval 254 – 266 Mb, 630 

there were 191 CAA SNPs (Table S3) that highly correlated with mean diurnal range (bio2), 631 

temperature annual range (bio7), mean temperature of driest quarter (bio9), minimum temperature 632 

in March (tmin_3), precipitation in September (prec_9) and longitude (lon). Similarly, the first 633 

QTL on 4D contains SNP chr4D_92689640 (Table S7), and in the interval 90 – 94 Mb on 4D, four 634 

CAA SNPs identified in Ae. tauschii accessions were strongly correlated with bio7. The second 635 

QTL contains SNP chr4D_229986737 (Table S7), and a search for CAA SNPs 5 Mb to the left and 636 
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right of the significant QTN identified 31 SNPs that were correlated with prec_9, tmin3 and lon 637 

variables.    638 

The source of alleles lowering CT in the introgression lines were mostly from Ae. tauschii 639 

ssp. tauschii accessions (TA2388, TA2536, TA2521 and TA10177), collected from areas such as 640 

Afghanistan, Iran and Pakistan known for high bio7 (43), on average with nearly no precipitation 641 

in the driest quarter of the year (Figs. 5G, 5J). These results suggest that, Ae. tauschii growing in 642 

high temperature and low precipitation conditions could improve wheat adaptation to water-643 

limiting conditions when introgressed into adapted wheat background.  644 

 645 

 646 

Fig. 5. Relationship between canopy temperature (CT) and yield performance of the introgression 647 

lines, the genomic loci associated with CT and origin of Ae. tauschii providing CT lowering alleles 648 

in hexaploid wheat background. (A) CT distribution for the introgression population at Colby in 649 

2018 and 2019 growing seasons. The shaded tails represent the 5th and 95th percentiles. (B) 650 

Regression of yield on CT, (C) Yield of ILs showing low CT (CTL) and high CT (CTH) relative to 651 

recurrent parents CT (CTRP). Different letters on top of the box plots indicate significant 652 
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differences at 95% confidence level, (D-F) Manhattan plots showing the quantitative trait 653 

nucleotides (QTN) associated with CT. Where D and E are based CAA SNPs with MLMM and 654 

BLINK models, respectively and F is based LD pruned SNPs with MLMM. The red line in the 655 

Manhattan plot indicates the P-value corresponding to a threshold FDR 0.05. (F-H) Heatpoint 656 

maps showing temperature annual range (bio7), min temperature in the coldest month (bio6) and 657 

mean temperature in coldest quarter (bio11) in the geographic origin of Ae. tauschii accessions. 658 

Accessions in red circles are the parents for introgression lines with low CT. (I-K) Distribution of 659 

bioclimatic variables (bio7, bio6 and bio11) in geographical origin of 137 Ae. tauschii accessions. 660 

Orange dots represent Ae. tauschii accessions used to generate introgression lines that rank in the 661 

5th percentile for CT distribution.   662 

 663 

Discussion 664 

The lineages of Ae. tauschii are spread over a large geographic area with a wide range of 665 

variation in climatic factors, including some of the locations with extremely dry and hot 666 

environments (Dvorak et al. 1998; Wang et al. 2013; Gaurav et al. 2022). The existence of strong 667 

SNP-climate correlations reported here provides effective means for detecting climate adaptive 668 

variants in diploid Ae. tauschii using environmental genome scans. The range of geographic 669 

distribution for adaptive variants varied broadly with some alleles showing narrow geographic 670 

distribution, and other alleles showing broad distribution across large geographic areas. Consistent 671 

with prior studies, these spatial patterns of allele distribution can primarily be explained by the 672 

distribution of climatic factors (Hancock et al., 2011) (Lasky et al. 2012, 2015). In our analyses the 673 

environmental and bio-climatic factors alone accounted for a substantial proportion (57.8%) of 674 

spatial genetic variation in Ae. tauschii with relatively small contribution from geographic 675 

dispersal (5.6%). These results suggest consistent environmental gradients across the Ae. tauschii 676 

distribution range likely shaped the spatial structure of genomic variation in this wild ancestor of 677 

wheat and contributed to genetic differentiation between its main lineages. 678 

Correlations between genomic diversity and climatic factors indicate that the temperature 679 

and precipitation gradients during the growth periods coinciding with flowering, grain filling and 680 

maturation contributed to genetic differentiation among the four main lineages of Ae. tauschii and 681 
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its two subspecies, strangulata and tauschii. The lowest precipitation in driest month was one of 682 

the major differentiating ecogeographic factors for L1E, whereas temperature and precipitation 683 

gradients in April and May contributed most to the genetic differentiation of L1W lineage. The 684 

variation in precipitation and temperature in April and May were among the main ecogeographic 685 

factors explaining differentiation between the L2W and L2E lineages of Ae. tauschii ssp. 686 

strangulata. The lineage L2E of Ae. tauschii ssp. strangulata, which contributed 10,000 years ago 687 

to the origin of bread wheat (Wang et al., 2013; Luo et al., 2017), grows in a narrow geographic 688 

region south of the Caspian Sea with limited variation in climatic factors characteric of the humid 689 

mild subtropical environments. As a result, adaptive diversity captured by the D genome of bread 690 

wheat is primarily restricted to those alleles that are represented in this region. The limited levels 691 

of gene flow detected between wheat and Ae. tauschii ssp. strangulata did not have dramatic 692 

impact on the genetic diversity of the D genome (Wang et al. 2013; He et al. 2019; Zhou et al. 693 

2020; Gaurav et al. 2022). Thus, the polyploidization bottleneck associated with wheat origin 694 

resulted in not only the overall loss of genetic diversity in the wheat D genome (He et al., 2019; 695 

Gaurav et al., 2022) but also in the massive loss of adaptive alleles represented in all four 696 

sublineages of Ae. tauschii. While the consequences of the loss of these alleles in wheat are hard to 697 

predict, we might expect that it had a negative impact on the adaptive potential of hexaploid wheat 698 

and offset progress with development of drought-resilient wheat varieties. 699 

Introgression from Ae. tauschii into hexaploid wheat had positive effects on traits playing 700 

an important role in increasing crop productivity and improving adaptation to drought. In our 701 

previous study, we showed that 3.2% of introgression lines carrying Ae. tauschii haplotypes 702 

outperformed parental lines in drought trials (Nyine et al., 2021). Consistent with these results, 703 

several high-yielding drought tolerant cultivars have been derived from synthetic wheat lines 704 

created using Ae. tauschii as one of the parents (Rosyara et al. 2019; Molero et al., 2023; Pinto and 705 

Reynolds 2015). Our analyses suggest that improved performance of wheat introgression lines 706 

could be largely attributed to introduction of climate-adaptive alleles that show association with 707 

environmental variation in Ae. tauschii. Statistically significant shifts in allele frequency in the 708 

extreme tails of phenotypic trait distributions and significant associations detected for climate-709 

adaptive alleles in GWAS for canopy temperature and productivity traits support this conclusion.  710 
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The signatures of adaptation detected by environmental scans in the genome could be 711 

driven by complex historic gradients of environments and associated with diverse adaptive 712 

mechanisms (Lasky et al. 2012; Anderson and Song 2020). As a result, it is difficult to establish 713 

relationships between adaptive alleles from environmental scans and specific phenotypic traits 714 

measured for introgression populations in field trials. The temperature annual range (bio7) was 715 

among the main bio-climatic factors that contributed most to shaping the spatial genomic variation 716 

in Ae. tauschii. The SNP locus located on chromosome 4D showing strongest association with 717 

bio7 in environmental scans also showed strongest association with variation in canopy 718 

temperature in introgression lines. This result indicates that among the targets of selection imposed 719 

by variation in bio7 are variants associated with pathways controlling physiological processes 720 

responsible for maintaining canopy temperature under drought stress (Jackson et al. 1981). In the 721 

field trails, lines carrying Ae. tauschii alleles at loci associated with reduced canopy temperature 722 

were among the top yielding introgression lines suggesting that these Ae. tauschii alleles improve 723 

adaptation to drought stress and likely act as the main drivers of increased yield. Likewise, 724 

detection of Ae.tauschii introgression into chromosome 6D associated with reduction in canopy 725 

temperature and increased yield under dry conditions, confirms the importance of this adaptive 726 

mechanism for drought tolerance (Molero et al., 2023) (Still et al. 2021). These results indicate 727 

that environmental scans focusing on the relevant bio-climatic variables are an effective means for 728 

uncovering variants in wild relatives to improve wheat adaptation to water-limiting conditions and 729 

increase its yield potential.    730 

Our study shows that whole genome sequencing of diverse collections of wild relatives 731 

integrated with environmental scans could provide an effective strategy for prioritizing wild 732 

relatives from germplasm banks for introgression into wheat. Continued reduction in the cost of 733 

genome sequencing and availability of reference genomes for the increasing number of wild 734 

relative species makes this strategy an attractive option for even large genebank collections 735 

including tens of thousands of lines (Mascher et al. 2019; Bohra et al. 2022). These approaches 736 

could quickly help to detect accessions enriched for alleles providing adaptation to target 737 

environments (Brunazzi et al. 2018; Anderson and Song 2020). As it was shown in our study, 738 

genome-wide introgression of prioritized diversity into adapted germplasm followed by fast high-739 

throughput phenotyping using UAS-based imaging platforms could help to quickly identify 740 

promising germplasm for improving the adaptive potential of wheat. Expansion of these efforts 741 
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from direct ancestors of bread wheat to include more distant Aegilops and Triticum species have 742 

potential to further broaden adaptive diversity accessible to wheat breeders for climate-proofing 743 

food production systems.  744 
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