

1

2 Higher prevalence of sacbrood virus in highbush 3 blueberry pollination units

4 Alison McAfee^{1,2,a}, Sarah K. French³, Nadejda Tsvetkov¹, Heather Higo¹, Julia Common¹, Stephen F.
5 Pernal⁴, Pierre Giovenazzo⁵, Shelley E. Hoover⁶, Ernesto Guzman-Novoa⁷, Robert W Currie⁸, Patricia Wolf
6 Veiga⁹, Ida M. Conflitti³, Mateus Pepinelli³, Lan Tran⁴, Amro Zayed³, M. Marta Guarna^{4,b} and Leonard J.
7 Foster^{1,a,b}

8 1. Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of
9 British Columbia, Vancouver, British Columbia V6T1Z4, Canada

10 2. Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA

11 3. Department of Biology, York University, Toronto, ON M3J 1P3, Canada

12 4. Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB T0H 0C0,
13 Canada

14 5. Département de biologie, Université Laval, Ville de Québec, QC G1V 0A6, Canada

15 6. Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada

16 7. School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada

17 8. Department of Entomology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada

18 9. Northwestern Polytechnic, National Bee Diagnostic Centre, Beaverlodge, AB T0H 0C0, Canada

19 ^aCorresponding authors: alison.n.mcafee@gmail.com, foster@msl.ubc.ca

20 ^bAuthors contributed equally

21 **Abstract**

22 Highbush blueberry pollination depends on managed honey bees (*Apis mellifera*) for adequate fruit set;
23 however, beekeepers have raised concerns about poor health of colonies after pollinating this crop.
24 Postulated causes include agrochemical exposure, nutritional deficits, and interactions with parasites
25 and pathogens, particularly *Melisococcus plutonius* (the causal agent of European foulbrood disease),
26 but other pathogens could be involved. To broadly investigate common honey bee pathogens in relation
27 to blueberry pollination, we sampled adult honey bees from colonies at time points corresponding to
28 before (t1), during (t2), at the end (t3), and after (t4) highbush blueberry pollination in British Columbia
29 (BC), Canada, across two years (2020 and 2021). Nine viruses as well as *M. plutonius*, *Vairimorpha*
30 *ceranae* and *V. apis* (formerly *Nosema ceranae* and *N. apis*) were detected by PCR and microscopy and
31 compared among colonies located near and far from blueberry fields. We found a significant interactive
32 effect of time and blueberry proximity on the multivariate pathogen community, mainly due to
33 differences at t4 (corresponding to roughly six weeks after the beginning of the pollination period). Post-
34 hoc comparisons of pathogens in near and far groups at t4 showed that detections of sacbrood virus
35 (SBV), which was significantly higher in the exposed group, was the primary driver. The association of
36 SBV with highbush blueberry pollination may be contributing to the health decline that beekeepers
37 observe after pollinating this crop, likely in combination with other factors.

38 **Introduction**

39 Highbush blueberry (*Vaccinium corymbosum*) is a major crop in Canada and the United States (Protzman
40 2021, Agriculture and Agri-Food Canada 2023) and fruit production is enhanced by insect pollination,
41 which increases fruit weight by approximately 75% (Eeraerts et al. 2023). Many native bee species,
42 especially those capable of “buzz-pollination” (vibrational disturbance of pollen) are more efficient
43 pollinators of blueberry flowers than honey bees (*Apis mellifera*), per individual (Rogers et al. 2013,

44 2014, Hoffman et al. 2018, Cortés-Rivas et al. 2023). However, honey bees – though not native to the
45 Americas – can be stocked at high densities and moved to specific locations, making them a common
46 commercial pollinator (Isaacs and Kirk 2010, Gibbs et al. 2016, Hoffman et al. 2018). British Columbia
47 accounts for 95% of Canada's total highbush blueberry production, with particularly high densities of
48 blueberry fields occurring in the Fraser Valley (Agriculture and Agri-Food Canada 2023).

49 Blueberry pollination contracts are an important source of income for beekeepers (Bixby et al. 2023).
50 However, some beekeepers and researchers have raised concerns that colony health deteriorates after
51 engaging in highbush blueberry pollination (Wardell 1982, Higo et al. 2019, Thebeau et al. 2022,
52 Thebeau et al. 2023). Several sources have postulated that European foulbrood (EFB, caused by
53 *Melissococcus plutonius*), exposure to fungicides, nutritional deficits, and their interactions could be the
54 underlying causes of poor colony health outcomes perceived to be associated with highbush blueberry
55 pollination (Wardell 1982, Graham et al. 2021, Graham et al. 2022, Thebeau et al. 2023).

56 Fungicides and their adjuvants (non-active ingredients that enhance pesticide performance, such as
57 surfactants) can increase honey bee susceptibility to pathogens, such as *Vairimorpha ceranae* (a
58 microsporidian parasite, formerly known as *Nosema ceranae* (Tokarev et al. 2020)) (Pettis et al. 2013),
59 viruses (Degrandi-Hoffman et al. 2015, Fine et al. 2017, O'Neal et al. 2019), and, in some cases, *M.*
60 *plutonius* (Thebeau et al. 2023). Although honey bees can also be exposed to fungicides and other
61 agrochemicals while foraging on non-blueberry plants (Pettis et al. 2013, Graham et al. 2022), these
62 interactions between fungicides and pathogens broadly highlight the utility of analyzing multivariate
63 pathogen responses in crop exposure trials.

64 EFB is a bacterial disease affecting honey bee larvae (Forsgren 2010, Lewkowski and Erler 2019). It is
65 thought to be a highly prevalent, but opportunistic pathogen with symptoms tending to appear during
66 spring in association with additional stressors (Wardell 1982, Bailey and Ball 1991, Fünfhaus et al. 2018,

67 Grant et al. 2021). EFB presentation is sometimes associated with blueberry pollination (Gregoris A
68 2019, Grant et al. 2021), but a recent study in Michigan calls that association into question (Fowler et al.
69 2023). In addition, while deformed wing virus loads appear not to influence a colony's likelihood of
70 developing EFB (Fowler et al. 2023), relationships with other diseases have not been fully explored.

71 Here, we conducted an experiment evaluating twelve pathogens, which are among those most
72 commonly observed in honey bee colonies (Evans and Schwarz 2011, Borba et al. 2022), in colonies at
73 different proximities to highbush blueberry fields in British Columbia. Colonies were placed in or near
74 highbush blueberry fields ("near" sites) or at least 500 m away from blueberry fields ("far" sites) and
75 sampled over time, starting immediately before the highbush blueberry pollination period and ending
76 approximately two weeks after the pollination period. We hypothesized that pathogen profiles in
77 colonies placed near and far from blueberries would differ over time, and that *M. plutonius* detections in
78 particular would be higher in colonies placed near blueberries after pollination concluded.

79 **Methods**

80 *Honey bee colonies and blueberry field sites*

81 The honey bees used in the highbush blueberry study consisted of 40 colonies in 2020 and 40 different
82 colonies in 2021. In 2020, the experimental colonies were produced on-site from overwintered colonies
83 headed by queens overwintered in British Columbia, Canada. The donor colonies were treated for
84 *Varroa* mites in early April with Formic Pro™ in according to manufacturer's instructions. In 2021,
85 experimental colonies were produced from nucleus colonies headed by locally mated, overwintered BC
86 queens and allowed to grow until the beginning of the experiment. Each colony was initially housed in a
87 single-box, deep Langstroth hive, with additional boxes added as needed to suppress swarming as the
88 population expanded over time. Colony sizes followed conventions used for blueberry pollination units

89 (minimum of 4 frames of brood and 8 frames of adult bees), and colonies received no supplemental
90 feeding or medications during the course of the experiment.

91 Sites near and far from blueberry fields were chosen such that no two sites were within 3 km of one
92 another, with the exception of two exposed sites which were 2 km apart. Before the pollination period,
93 the colonies destined for different exposure sites were held in the same four yards in 2020 or three
94 yards in 2021; then, colonies at each initial site were randomly assigned to five sites “near” highbush
95 blueberry or five sites “far” from highbush blueberry with equal numbers of colonies (n=4) at each site
96 (where each site formed one replicate). The colonies were moved to near and far sites on the same day
97 where possible, or within a maximum of 24 hours of each other, when the blueberry bloom reached
98 approximately 5-10% (as is conventional for pollinating this crop). See **Table 1** for a timeline of sampling
99 and moving events. In both years, colonies were then relocated to post-pollination yards. In cases where
100 some colonies remained at the same location for consecutive sampling events but other colonies were
101 moved, a “sham” movement procedure was followed, such that all colonies were treated as if they were
102 moving (*i.e.*, they were screened, strapped, and driven in the back of a vehicle for similar durations of
103 time), except that the colonies remaining in place were dropped off at the same location they were at
104 previously. See **Figure 1** for a map of field sites at each time point.

105 *Landscape data for t2 sites*

106 We obtained land cover data for British Columbia from Agriculture and Agri-Food Canada’s (AAFC) 2020
107 and 2021 Annual Crop Inventory (Agriculture and Agri-Food Canada 2020, 2021). We used QGIS (version
108 3.26.0) to identify land cover categories and area within a 1500-m buffer surrounding each site. These
109 categories, as defined by AAFC, included: barley, beans, blueberry, broadleaf, coniferous, corn,
110 cranberry, exposed land or barren (excluding fallow agriculture), fallow, grassland, greenhouses, hops,
111 mixedwood, nursery, oats, orchards, other berries, other crops, other fruits, other vegetables, pasture

112 or forage (may include tame grasses, alfalfa, and clover), peas, potatoes, shrubland, sod, urban or
113 developed (predominantly built-up/developed land, including associated vegetation), vineyards, water
114 (freshwater and/or marine), and wetlands. These data were then sorted into categories comprising $\geq 1\%$
115 and $< 1\%$ of the total 1500 m radius area around each site, and areas for those with $< 1\%$ coverage were
116 summed and labelled “other”. These data are available in **Supplementary Data 1**.

117 *Sampling methods*

118 Each colony was sampled at four time points: before pollination (t1), during pollination (t2), at the end
119 of pollination (t3), and two weeks after the end of pollination (t4). Each time point was approximately
120 two weeks apart (see **Table 1** for exact dates). Samples at t1 were taken immediately before moving
121 colonies to their respective near and far field sites, t2 samples were taken at peak bloom, t3 samples
122 were taken at the end of pollination (immediately before moving to t4 sites in 2021 and immediately
123 after moving to t4 sites in 2020), and t4 samples were taken two weeks after the end of the pollination
124 period. At each time point, adult bees were sampled from an open brood frame into a 50 mL conical
125 tube, placed immediately on dry ice, and transported to the University of British Columbia laboratory
126 where they were stored at -70°C until all samples were collected. Bees were also sampled into a urine
127 vial (~ 120 mL, with an average of 260 bees per sample), which was then filled with 70% ethanol for
128 conducting mite counts by the alcohol wash method as previously described (Borba et al. 2022).
129 Samples for pathogen analysis were shipped on dry ice to York University (Toronto, ON, Canada), where
130 they were centrally stored at -70°C and then shipped to National Bee Diagnostic Center (NBDC) in
131 Beaverlodge, AB, Canada. Before submission of the samples to the NBDC for pathogen analysis, bees
132 from colonies belonging to the same site and replicate were pooled to create two composite samples
133 (15 bees per colony, 60 bees in total in each sample). The final replication was therefore $n = 5$ near and
134 $n = 5$ far replicates in each year, where each replicate is represented by a pool of bees from four
135 colonies at each replicate site.

136 *Pathogen detection*

137 From the pooled samples described above, the NBDC conducted pathogen testing of Israeli acute
138 paralysis virus (IAPV), deformed wing virus A (DWV-A), varroa destructor virus (VDV; also known as
139 deformed wing virus B or DWV-B), acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), chronic bee
140 paralysis virus (CBPV), black queen cell virus (BQCV), sacbrood virus (SBV), *M. plutonius*, *V. apis* and *V.*
141 *ceranae* (Tokarev et al. 2020)). For *Vairimorpha* spore counts, 60 bees were homogenized in 60 mL of
142 70% ethanol and a 6 µL aliquot was loaded into a counting chamber (hemocytometer) with Thoma
143 ruling and a cell depth of 20 µm. Samples were examined for *Vairimorpha* spores twice under phase
144 contrast, at 400 x magnification (Eclipse Ci-L, Nikon, Tokyo, Japan), with spores counted from all 16
145 squares of the gridded area. The average number of spores per bee are reported (**Supplementary Data**
146 **2**).

147 For *V. ceranae*, *V. apis*, and *M. plutonius* detection, DNA was extracted from a 200 µL aliquot of the
148 homogenized sample described above. The samples were pelleted by centrifugation, the liquid was
149 aspirated, and the pellet was allowed to dry at room temperature. Genomic (g)DNA was extracted and
150 purified using the NucleoSpin®Tissue kit following the manufacturer's instructions (Macherey-Nagel
151 GmbH & Co. KG, Düren, Germany). Primers used for the detection of all pathogens are found in
152 **Supplementary Data 3**.

153 Identification of *Vairimorpha* species was performed by end-point PCR using AccuStart™ II PCR Supermix
154 (Quanta Bioscience, USA). Amplification assays were performed using 60 ng of gDNA in an Applied
155 Bioscience Veriti 96-well Thermal Cycler (Applied Bioscience, Singapore). PCR conditions were 5 min at
156 95°C for initial denaturation/enzyme activation followed by 35 cycles of 1 min at 94°C, 1 min at 58°C and
157 1 min at 72°C, with a final extension of 10 min at 72°C. Amplicons were visualized by gel electrophoresis.

158 *M. plutonius* was detected by performing quantitative PCR using SsoAdvanced™ Universal Probe (Bio-
159 Rad Laboratories, Hercules, USA). Amplification assays were performed in triplicate with 60 ng of gDNA
160 on an ABS 7500 Fast System (Applied Biosystems, Foster City, USA) using a program of 2 min at 50°C, 10
161 min at 95°C, and 40 cycles of 15 s at 95°C and 1 min at 60°C. B-actin was used as the reference gene.

162 Standard curves were prepared from plasmids harboring the target amplicons with copy numbers
163 diluted serially over five orders of magnitude. Results were analyzed with the 7500 Software v2.3 and
164 exported to calculate copy numbers per bee.

165 All viruses were detected and quantified using RT-qPCR following sample preparation methods as
166 previously described (Borba et al. 2022). Briefly, total RNA was extracted from the second pooled
167 sample of 60 bees using a NucleoSpin®RNA kit (Macherey-Nagel GmbH & Co.), cDNA was synthesized
168 from 800 ng total RNA using the iScript cDNA synthesis kit (Bio-Rad Laboratories), and reactions were
169 assembled with sSoAdvanced™ Universal SYBR® Green Supermix (Bio-Rad Laboratories). Each virus was
170 tested in triplicate for each sample using 3.75% of the cDNA reaction product, and absolute quantitation
171 was performed by comparing sample values against a standard curve (generated from serially-diluted,
172 amplicon-containing plasmids). PCR conditions were 3 min at 95°C for initial denaturation/enzyme
173 activation followed by 40 cycles of 10 seconds at 95°C and 30 seconds at 60°C (except IAPV, where
174 annealing/extension was 45 seconds at 60°C). Specificity was checked by performing a melt-curve
175 analysis (65-95°C with increments of 0.5°C and 2 s/step). Results were analyzed with the CFX Manager™
176 Software and exported.

177 *Multivariate community analysis*

178 Statistical analyses were conducted in R (version 4.3.0) using R Studio (version 2023.09.1+494) (R Core
179 Team 2023). To determine if exposure to blueberry fields affected the composite pathogen profiles over
180 time, we combined 2020 and 2021 data and conducted a PERMANOVA analysis using the adonis2

181 function within the R package vegan (version 2.6-4) (Oksanen et al. 2022). Similarity was calculated using
182 the Jaccard index, since some of the pathogens (*V. ceranae*, *V. apis*, and *M. plutonius*) are limited to a
183 presence/absence data type. We first evaluated the pathogens at time point 1 to determine if the
184 multivariate pathogen structure among colonies destined to be distributed to different site types was
185 indeed similar. This model included a pathogen matrix of twelve response variables (nine viruses, *M.*
186 *plutonius*, *V. ceranae*, and *V. apis*), and explanatory variables of site type (levels: near and far), and year
187 (levels: 2020 and 2021). Varroa load was initially considered in the model, but was dropped as it was not
188 a significant explanatory factor. The pathogen data and sample metadata are available in

189 **Supplementary Data 2.**

190 After confirming that site type groups were indeed similar before being moved into their respective
191 control and exposed locations, we tested for effects of exposure on multivariate pathogen structure for
192 the remaining time points. This model included the same twelve response variables, and explanatory
193 factors site type (levels: near and far), and time (levels: t2, t3, and t4), as well as their interaction. We
194 conducted a restricted permutation test, which only allows samples to be permuted within replicates, to
195 account for repeated measures over time. Varroa load was again initially considered, but dropped from
196 the final model as it was not a significant explanatory factor. Because an interactive effect between site
197 type and time point was identified, we conducted *post hoc* tests at each time point individually to
198 identify the patterns driving the interaction, again using a reductive modelling approach similar to the
199 examples above.

200 *Visualization of data and assessment of specific pathogens*

201 To visualize the multivariate data at each time point, we used the metaMDS function (package: vegan,
202 version 2.6-4; specifying k = 2, trymax = 500, and distance = "jaccard") (Oksanen et al. 2022) and plotted
203 the resulting scores using ggplot2 (Wickham 2016). Differences in individual pathogen detections at t4

204 were also evaluated statistically using a generalized linear model (package: stats, base R) (R Core Team
205 2023) with a binomial vector of pathogen presence/absence as the response variable, site type and year
206 as fixed factors, and a binomial distribution specified. Here and subsequently, we ensured
207 appropriateness of fit by checking simulated residual plots, as enabled by the package DHARMA (version
208 0.4.6) (Hartig 2022). *M. plutorius* and SBV detections were also analyzed over time using a generalized
209 linear mixed effects model (package: lme4, version 1.1-33) (Bates et al. 2015), with the respective
210 binomial presence/absence vector as the response variable, year as a fixed factor, site type and time
211 point as an interactive term, and replicate as a random intercept term. In both cases, year was not
212 influential and was dropped from the final model. Summary statistics for main effects were extracted
213 using the Anova function (package: car, version 3.1-2) (Fox and Weisberg 2019).

214 **Results**

215 *Landscape descriptions*

216 Although our original goal was to compare colonies near and far from blueberries, with far colonies
217 being at least 1.5 km away from blueberry fields, due to the extreme prevalence of blueberries where
218 this experiment took place (the Fraser Valley of British Columbia), choices for sites far from blueberries
219 were limited. Eight out of ten far sites still had some blueberry cropland occurring within 1.5 km of the
220 site; however, only 3 out of 10 had blueberry coverage representing > 1% of the total 1.5 km radius area
221 (**Figure 2**). While the far sites were not completely devoid of blueberry cropland, they are still biased
222 toward lower coverage and the blueberry fields that did exist were, by definition, farther away.

223 *Multivariate community analysis*

224 Nondimensional scaling plots of the pathogen profiles at each time point show that data points appear
225 to cluster most strongly by year (**Figure 3**). To investigate multivariate profiles further, we first checked if
226 profiles in replicates destined to be moved to exposure yards (n = 10 each across years, representing 80

227 contributing colonies) were similar at t1, before being moved to sites near to and far from highbush
228 blueberries, and, as expected, found no significant differences (PERMANOVA, index = Jaccard; Site type:
229 $F = 0.89$; $df = 1, 17$; $p = 0.54$; Year: $F = 1.4$; $df = 1, 17$; $p = 0.18$). Evaluating profiles at t2, t3, and t4
230 together, we identified a significant interactive effect of site type and time point (PERMANOVA, index =
231 Jaccard; Interaction: $F = 1.7$; $df = 2, 53$; $p = 0.021$) as well as significant main effects of site type ($F = 1.4$;
232 $df = 1, 53$; $p = 0.013$), time point ($F = 1.6$, $df = 2, 53$, $p = 0.031$), and year ($F = 2.1$; $df = 1, 53$; $p = 0.021$).
233 Post hoc comparisons within each time point show that the site type effects are driven by differences at
234 t4, the only individual time point for which pathogen profiles are significantly linked to site type ($F = 2.2$;
235 $df = 1, 17$; $p = 0.028$) and year ($F = 3.0$; $df = 1, 17$; $p = 0.004$).

236 Next, we evaluated detections of each pathogen at t4 to determine what individual profiles were driving
237 the site type effects (logistic regression; fixed factors: site type and year) (**Figure 4**). Sacbrood virus was
238 the pathogen most significantly linked to site type (near versus far) ($\chi^2 = 8.2$; $df = 1$; $p = 0.0042$; $\alpha/n =$
239 0.0045 for Bonferroni correction), with higher frequency of detections in the samples near highbush
240 blueberries. The next leading pathogen linked to site type was *V. apis*, but differences were not
241 significant with Bonferroni correction ($\chi^2 = 5.2$; $df = 1$; $p = 0.022$; $\alpha/n = 0.0045$).

242 *Assessment of M. plutonius and SBV over time*

243 While we did not identify a significant effect of site type at any time point except t4 in the multivariate
244 pathogen analysis, we were still interested in patterns of *M. plutonius* and SBV detections over time,
245 specifically. We found that *M. plutonius* detections increased over time ($\chi^2 = 6.18$; $df = 3$; $p = 0.013$), with
246 no effect of site type ($\chi^2 = 0.14$; $df = 1$; $p = 0.71$) and, although detections in near samples did tend to
247 increase at a faster rate than far samples, the interaction term was not significant ($\chi^2 = 3.04$; $df = 1$; $p =$
248 0.081; generalized linear model; factors: site type, time point, and their interaction; random variable:
249 pooled sampling unit) (**Figure 5**). Using the same model structure, we found that SBV detections were

250 not significantly linked to site type ($\chi^2 = 2.98$; df = 1; p = 0.084), time point ($\chi^2 = 0.14$; df = 1; p = 0.71) or
251 their interaction ($\chi^2 = 2.54$; df = 1; p = 0.11). The significant effect of site type identified at t4 is therefore
252 not sufficiently strong to drive an effect in this larger model.

253 **Discussion**

254 There has been ongoing concern among beekeepers in British Columbia and elsewhere in North America
255 that engaging in highbush blueberry pollination may lead to higher prevalence of EFB disease in their
256 colonies (Wardell 1982, Higo et al. 2019). In this study, we evaluated *M. plutonius* detections as well as
257 nine viruses and two microsporidian parasites in honey bee colonies located far from and near to
258 highbush blueberry fields. In a top-down approach, we analyzed all pathogen and parasite variables
259 together (PERMANOVA, Jaccard index) and identified a significant interaction between blueberry
260 exposure and time point.

261 *Post hoc* testing showed that this interaction was driven by differences at t4, and analysis of individual
262 pathogens revealed SBV, not *M. plutonius*, to be the main driver of this pattern. Our data are consistent
263 with Fowler et al. (2023), who found no relationship between EFB prevalence and blueberry pollination
264 in Michigan. Investigating patterns of SBV over time, we found that at the end of the pollination period,
265 both near and far groups had the same SBV detection frequency (90% of colonies tested positive), but at
266 t4, the far group dropped to 20% while the near group remained high at 80%. This suggests that the
267 differences observed at t4 are due to far colonies disproportionately recovering from prior SBV
268 infections compared to near colonies. Some potential mechanisms underlying these patterns are
269 hereupon discussed.

270 Like other honey bee viruses, SBV can spread between colonies as a result of robbing, drifting, and
271 possibly through contact between bees at forage sources (Chen et al. 2006, Alger et al. 2019) – the latter
272 two of which could be amplified to some degree when colonies are moved into pollination yards.

273 However, the near and far colonies in this study had the same number of SBV detections at t3, the end
274 of the pollination period, so the difference we found at t4 is not driven by dispersal. Previous research
275 has identified a link between fungicide exposure and increased susceptibility to some viral infections
276 (Degrandi-Hoffman et al. 2015, O'Neal et al. 2019); for example, Degrandi-Hoffman *et al.* (2015) found
277 that boscalid and pyraclostrobin exposure affected DWV levels more than BQCV. We did not analyze
278 agrochemical data here, but this concept offers a potential mechanism for how some viruses may be
279 more affected than others by crop exposure. To our knowledge, interactions between SBV infections
280 and agrochemical exposure has not yet been investigated, but it is possible that the colonies near
281 highbush blueberry fields were less able to clear existing SBV infections due to differences in prior
282 agrochemical exposure.

283 Within colonies, SBV is transmitted horizontally (between adult workers through trophallaxis, for
284 example), vertically (from queen to offspring via eggs), and diagonally (from nurse to larva during
285 feeding, or larva to nurse during hygienic behavior) (Chen et al. 2006, Wei et al. 2022). As with other
286 viruses, *V. destructor* mites act as a vector, and we were somewhat surprised to detect no relationship
287 between mite loads and SBV detections. However, previously reported correlations are, while
288 significant, not strong (with Pearson coefficients of 0.17 and 0.24, for example) (Borba et al. 2022). We
289 speculate that our pooled sampling approach, smaller sample sizes, and differences in seasonal timing of
290 samples compared to Borba et al. (2022) contribute to our observed lack of relationship between mite
291 loads and SBV.

292 While our experimental design allowed us to investigate patterns of pathogen prevalence in relation to
293 the regional timing of blueberry pollination, it does have limitations. As noted, one limitation in this
294 study is that our statistical power was low. While the effective sample size is relatively small ($n = 5$
295 unique replicates per year, per site type), since each replicate represents a pooled sample of 4 colonies,
296 this means that a total of 80 colonies participated in this study across years. Despite this limitation, the

297 magnitude of the SBV effect was still large enough to detect at t4. We and others have anecdotally
298 observed that colony health tends to decline around this time point after engaging in blueberry
299 pollination, and we argue that SBV may be an underappreciated pathogen contributing to this
300 observation.

301 A second limitation is that the high prevalence of highbush blueberry fields in the region limited our
302 ability to place colonies in the far group such that highbush blueberry fields were completely outside of
303 the foraging range. Average foraging distances from colonies reported in the literature is variable,
304 ranging from 0.4-0.6 km (Schneider and McNally 1993), 0.5-1.1 km (Waddington et al. 1994), 1.1-1.4 km
305 (Schneider and Hall 1997), 1.2 km (Schneider 1989), 2.3 km (Visscher and Seeley 1982), and 5.5 km
306 (Beekman and Ratnieks 2000), for example. However, foraging ranges may be reduced to less than 1 km
307 in areas of intense agricultural production, where flower resources are high (Couvillon et al. 2014,
308 Balfour and Ratnieks 2017).

309 In our case, we chose the near and far field sites we did for two main reasons: 1) blueberry occurrence
310 in the study location is so high that finding field sites outside of longer foraging radii (e.g., where 95% of
311 foraging activity would take place) was impractical, and 2) the farther the distance between sites, the
312 larger the differences in other variables would be (e.g., other landscape and land use parameters,
313 microclimates, density of other beehives, etc.). Although some contact with blueberries may have
314 occurred at far sites (three far study sites had highbush blueberries making up $\geq 1\%$ of land cover within
315 a 1.5 km radius), the chosen sites strike a balance between proximity to blueberries and minimizing
316 extraneous variables. Moreover, the near sites have the key difference of being located within or
317 immediately next to blueberry fields, as opposed to far sites for which the immediate vicinity around the
318 colonies is blueberry-free; therefore, the near sites were still more exposed.

319 In this study we did not measure prevalence of EFB disease symptoms in colonies, which is distinct from
320 detections of *M. plutonius*, as testing positive for *M. plutonius* does not necessarily mean that the colony
321 is symptomatic (Milbrath et al. 2021). Additionally, since larval samples were not part of this
322 experiment, we are unable to determine to what extent SBV may or may not contribute to disease
323 manifestation or appearance. Future experiments investigating *M. plutonius* and blueberry pollination
324 should include SBV analysis of symptomatic and asymptomatic larvae to better understand the possible
325 relationship between these two pathogens and disease presentation, as there is some degree of overlap
326 in their symptoms.

327 Like EFB, SBV symptoms are thought to occur most frequently in the spring (Bailey 1969), and like EFB
328 and American foulbrood (AFB), dried SBV-infected larvae can also have a scale-like appearance and
329 larvae may die after cell capping, which can lead to a similar presentation of spotty brood patterns and
330 perforated cell caps (Grabensteiner et al. 2001, Milbrath 2021, Milbrath et al. 2021). But unlike these
331 two bacterial diseases, SBV can replicate in adult bees and decrease their lifespan (Wang and Mofller
332 1970, Bailey and Fernando 1972). SBV is highly prevalent in Canada (National Bee Diagnostic Center
333 2017), and SBV levels in adult bees sampled in fall are associated with smaller fall and spring cluster
334 sizes (Borba et al. 2022) as well as increased winter mortality of colonies (Desai and Currie 2016). This
335 may in part explain the delayed appearance of site type effects in blueberry pollination units, if
336 cascading effects of shorter-lived adults are influencing susceptibility to subsequent opportunistic
337 pathogens.

338 All this is not to say that SBV detections are higher as a result of blueberry pollination, specifically.
339 Stressors affecting disease prevalence may also originate not only from the pollinated crop but also from
340 surrounding landscapes. Indeed, pesticide risk associated with blueberry pollination may not be driven
341 by the crop itself, but by other crops present in the surrounding landscape (Graham et al. 2022). We
342 speculate that there could be a broader effect of agricultural landscape exposure in general, the

343 influence of which may or may not manifest depending on the presence or absence of additional
344 extraneous variables.

345 SBV, amongst a plethora of other stressors, is generally not considered to be a major concern for honey
346 bee health in North America. However, our data suggest that it may be an underappreciated pathogen.
347 Relatively little research has been conducted on SBV relative to, *e.g.*, *M. plutonius*, *Paenibacillus larvae*
348 (the agent causing American foulbrood disease), *Vairimorpha spp.*, and DWV. Given that we show
349 significant associations between SBV detections and highbush blueberry exposure, our findings suggest
350 that this is an agriculturally-relevant virus that deserves further attention.

351 **Author Contributions**

352 Conceptualization – SEH, RWC, LJF, MMG, IMC, SF, SFP, EG, PG, AZ

353 Data curation – IMC, SF, PWV, MP

354 Formal analysis – AM

355 Funding acquisition – SEH, RWC, LJF, MMG, IMC, SFP, LT, EG, AZ

356 Investigation – PWV, JC, HH

357 Methodology – RWC, MMG, IMC, SFP, HH, NT, MP, AZ

358 Project administration – RWC, LJF, MMG, IMC, SFP, LT, AZ

359 Resources – JC, HH

360 Supervision – LJF, IMC, MP, AZ

361 Visualization – AM

362 Writing – original draft – AM

363 Writing – review & editing – SEH, RWC, LJF, MMG, SF, SFP, LT, EG, PG, NT, AZ

364 **Acknowledgements**

365 We would like to thank Abigail Chapman, Bradford Vinson, Rhonda Thygesen, and Renee Teo for
366 assisting with sampling honey bee colonies in BC, Bradford Vinson and Renee Teo for conducting mite
367 washes for BC colonies. We also deeply appreciate the crop growers that cooperated with this study by
368 providing field sites.

369 This work was conducted as part of the BeeCSI project, which was funded and supported by the Ontario
370 Genomics Institute (OGI-185), Genome Canada (LSARP #16420), the Ontario Research Fund, Genome
371 Quebec, Genome BC through the Genomic Innovation for Regenerative Agriculture, Food, and Fisheries
372 program, and the Government of Canada through Agriculture and Agri-Food Canada (AAFC) Genomics
373 Research and Development Initiative (GRDI) funding (AAFC J-002368).

374 **Data Availability**

375 All data presented in this manuscript are available in **Supplementary Data 1 and 2**. Supplementary Data
376 1 includes landscape coverage data for t2 sites. **Supplementary Data 2** includes all pathogen and
377 parasite data recorded for in near and far replicates. Primer sequences for PCR detections are included
378 in **Supplementary Data 3**.

379 **References**

380 **Agriculture and Agri-Food Canada. 2020.** Annual Crop Inventory 2020. GeoTIFF files, Retrieved from
381 <https://open.canada.ca/data/en/dataset/32546f7b-55c2-481e-b300-83fc16054b95>.

382 **Agriculture and Agri-Food Canada. 2021.** Annual Crop Inventory 2021. GeoTIFF files, Retrieved from
383 <https://open.canada.ca/data/en/dataset/199e4ab6-832b-4434-ac39-e4887d7cc4e5>.

384 **Agriculture and Agri-Food Canada. 2023.** Statistical Overview of the Canadian Fruit Industry 2022.
385 Horticulture Section, Crops and Horticulture Division, Agriculture and Agri-Food Canada.
386 Catalogue No.: A71-33E-PDF, <https://agriculture.canada.ca/en/sector/horticulture/reports>.

387 **Alger, S. A., P. A. Burnham, H. F. Boncristiani, and A. K. Brody. 2019.** RNA virus spillover from managed
388 honeybees (*Apis mellifera*) to wild bumblebees (*Bombus* spp.). PLoS One 14: e0217822.

389 **Bailey, L. 1969.** The multiplication and spread of sacbrood virus of bees. Annals of Applied Biology 63:
390 483-491.

391 **Bailey, L., and E. Fernando. 1972.** Effects of sacbrood virus on adult honey-bees. *Annals of Applied*
392 *Biology* 72: 27-35.

393 **Bailey, L., and B. Ball. 1991.** Honey bee pathology, 2nd ed. Academic Press, London.

394 **Balfour, N. J., and F. L. Ratnieks. 2017.** Using the waggle dance to determine the spatial ecology of
395 honey bees during commercial crop pollination. *Agricultural and Forest Entomology* 19: 210-
396 216.

397 **Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015.** Fitting Linear Mixed-Effects Models Using
398 *{lme4}*. *Journal of Statistical Software* 67: 1-48.

399 **Beekman, M., and F. Ratnieks. 2000.** Long-range foraging by the honey-bee, *Apis mellifera* L. *Functional*
400 *Ecology* 14: 490-496.

401 **Bixby, M., R. Scarlett, and S. E. Hoover. 2023.** Winter mortality, diversification, and self-sufficiency
402 affect honey bee (Hymenoptera: Apidae) colony profit in Canada: a model of commercial
403 Alberta beekeepers. *Journal of Economic Entomology* 116: 686-696.

404 **Borba, R. S., S. E. Hoover, R. W. Currie, P. Giovenazzo, M. M. Guarna, L. J. Foster, A. Zayed, and S. F.**
405 *Pernal. 2022.* Phenomic analysis of the honey bee pathogen-web and its dynamics on colony
406 productivity, health and social immunity behaviors. *PLoS One* 17: e0263273.

407 **Chen, Y., J. S. Pettis, A. Collins, and M. F. Feldlaufer. 2006.** Prevalence and transmission of honeybee
408 viruses. *Applied and Environmental Microbiology* 72: 606-611.

409 **Cortés-Rivas, B., V. H. Monzón, J. O. Rego, and J. N. Mesquita-Neto. 2023.** Pollination by native bees
410 achieves high fruit quantity and quality of highbush blueberry: a sustainable alternative to
411 managed pollinators. *Frontiers in Sustainable Food Systems* 7: 1142623.

412 **Couvillon, M. J., R. Schürch, and F. L. Ratnieks. 2014.** Waggle dance distances as integrative indicators
413 of seasonal foraging challenges. *PLoS One* 9: e93495.

414 **Degrandi-Hoffman, G., Y. Chen, E. Watkins DeJong, M. L. Chambers, and G. Hidalgo. 2015.** Effects of
415 oral exposure to fungicides on honey bee nutrition and virus levels. *Journal of Economic*
416 *Entomology* 108: 2518-2528.

417 **Desai, S. D., and R. W. Currie. 2016.** Effects of wintering environment and parasite-pathogen
418 interactions on honey bee colony loss in north temperate regions. *PLoS One* 11: e0159615.

419 **Eeraerts, M., L. W. DeVetter, P. Batáry, J. J. Ternest, R. Mallinger, M. Arrington, F. E. Benjamin, B. R.**
420 *Blaauw, J. W. Campbell, and P. Cavigliasso. 2023.* Synthesis of highbush blueberry pollination
421 research reveals region-specific differences in the contributions of honeybees and wild bees.
422 *Journal of Applied Ecology*.

423 **Evans, J. D., and R. S. Schwarz. 2011.** Bees brought to their knees: microbes affecting honey bee health.
424 *Trends Microbiol* 19: 614-620.

425 **Fine, J. D., D. L. Cox-Foster, and C. A. Mullin. 2017.** An inert pesticide adjuvant synergizes viral
426 pathogenicity and mortality in honey bee larvae. *Scientific Reports* 7: 40499.

427 **Forsgren, E. 2010.** European foulbrood in honey bees. *Journal of Invertebrate Pathology* 103: S5-S9.

428 **Fowler, P. D., D. C. Schroeder, J. L. Kevill, and M. O. Milbrath. 2023.** No impact of hygienic behavior and
429 viral coinfection on the development of European foulbrood in honey bee (*Apis mellifera*)
430 colonies during blueberry pollination in Michigan. *Journal of Insect Science* 23: 21.

431 **Fox, J., and S. Weisberg. 2019.** An R Companion to Applied Regression, Third ed. Sage, Thousand Oaks,
432 CA.

433 **Fünfhaus, A., J. Ebeling, and E. Genersch. 2018.** Bacterial pathogens of bees. *Current Opinion in Insect*
434 *Science* 26: 89-96.

435 **Gibbs, J., E. Elle, K. Bobiwash, T. Haapalainen, and R. Isaacs. 2016.** Contrasting pollinators and
436 pollination in native and non-native regions of highbush blueberry production. *PLoS One* 11:
437 e0158937.

438 **Grabensteiner, E., W. Ritter, M. J. Carter, S. Davison, H. Pechhacker, J. Kolodziejek, O. Boecking, I.**
439 **Derakhshifar, R. Moosbeckhofer, and E. Licek. 2001.** Sacbrood virus of the honeybee (*Apis*
440 *mellifera*): rapid identification and phylogenetic analysis using reverse transcription-PCR. Clinical
441 Diagnostic Laboratory Immunology 8: 93-104.

442 **Graham, K. K., M. O. Milbrath, Y. Zhang, N. Baert, S. McArt, and R. Isaacs. 2022.** Pesticide risk to
443 managed bees during blueberry pollination is primarily driven by off-farm exposures. Scientific
444 Reports 12: 7189.

445 **Graham, K. K., M. O. Milbrath, Y. Zhang, A. Soehnlen, N. Baert, S. McArt, and R. Isaacs. 2021.**
446 Identities, concentrations, and sources of pesticide exposure in pollen collected by managed
447 bees during blueberry pollination. Scientific Reports 11: 16857.

448 **Grant, K. J., L. DeVetter, and A. Melathopoulos. 2021.** Honey bee (*Apis mellifera*) colony strength and
449 its effects on pollination and yield in highbush blueberries (*Vaccinium corymbosum*). PeerJ 9:
450 e11634.

451 **Gregoris A, H. H., Wolf Veiga P, Ibrahim A, McAfee A, Common J, Vinson B, Pernal SF, Foster L, Guarna**
452 **MM 2019.** Investigating incidences of European foulbrood and other pathogens in highbush
453 blueberry-pollinating honey bees, 46th Apimondia International Apiculture Congress, p. 195, 8-
454 12 Sep 2019, Montréal, QC.
455 https://www.apimondia.org/uploads/7/6/4/3/76436993/api_abstractbook.pdf.

456 **Hartig, F. 2022.** Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models, R package
457 version 0.4.6. <https://CRAN.R-project.org/package=DHARMa>.

458 **Higo, H., J. Common, A. Ibrahim, P. Wolf Veiga, A. Gregoris, S. F. Pernal, A. McAfee, B. Vinson, J. S.**
459 **Pettis, L. J. Foster, and M. M. Guarna. 2019.** Towards best farming practices in BC blueberries to
460 ensure bee health and good pollination, pp. 66, Apimondia International Apiculture Congress,
461 Montreal, QC. https://www.apimondia.org/uploads/7/6/4/3/76436993/api_abstractbook.pdf.

462 **Hoffman, G. D., C. Lande, and S. Rao. 2018.** A Novel Pollen Transfer Mechanism by Honey Bee Foragers
463 on Highbush Blueberry (Ericales: Ericaceae). Environmental Entomology 47: 1465-1470.

464 **Isaacs, R., and A. K. Kirk. 2010.** Pollination services provided to small and large highbush blueberry fields
465 by wild and managed bees. Journal of Applied Ecology 47: 841-849.

466 **Lewkowski, O., and S. Erler. 2019.** Virulence of *Melissococcus plutonius* and secondary invaders
467 associated with European foulbrood disease of the honey bee. Microbiology Open 8: e00649.

468 **Milbrath, M. 2021.** Honey bee bacterial diseases, pp. 277-293. In T. R. Kane and C. M. Faux (eds.), Honey
469 Bee Medicine for the Veterinary Practitioner, First Edn. John Wiley & Sons, Inc, New York.

470 **Milbrath, M. O. G., P. D. Fowler, S. K. Abban, D. Lopez, and J. D. Evans. 2021.** Validation of diagnostic
471 methods for European foulbrood on commercial honey bee colonies in the United States.
472 Journal of Insect Science 21: 6.

473 **National Bee Diagnostic Center. 2017.** Canadian National Honey Bee Health Survey, pp. 1-33.

474 **O'Neal, S. T., A. M. Reeves, R. D. Fell, C. C. Brewster, and T. D. Anderson. 2019.** Chlorothalonil exposure
475 alters virus susceptibility and markers of immunity, nutrition, and development in honey bees.
476 Journal of Insect Science 19: 14.

477 **Oksanen, J. S., G; Blanchet, F; Kindt, R; Legendre, P; Minchin, P; O'Hara, R;, P. S. Solymos, M; Szoecs, E;**
478 **Wagner, H; Barbour, M; Bedward, M; Bolker, B; D. C. Borcard, G; Chirico, M; De Caceres, M;**
479 **Durand, S; Evangelista, H; R. F. FitzJohn, M; Furneaux, B; Hannigan, G; Hill, M; Lahti, L;**
480 **McGlinn, D; and M. R. Ouellette, CE; Smith, T; Stier, A; Ter, BC; Weedon, J. 2022.** Vegan:
481 Community ecology package, R package version 2.6-4. <https://CRAN.R-project.org/package=vegan>.

482 **Pettis, J. S., E. M. Lichtenberg, M. Andree, J. Stitzinger, R. Rose, and D. Vanengelsdorp. 2013.** Crop
483 pollination exposes honey bees to pesticides which alters their susceptibility to the gut
484 pathogen *Nosema ceranae*. PLoS One 8: e70182.

486 **Protzman, E. 2021.** Blueberries around the globe - Past, present, and future, International Agricultural
487 Trade Report. United States Department of Agriculture.
488 <https://www.fas.usda.gov/data/blueberries-around-globe-past-present-and-future>.

489 **R Core Team. 2023.** R: A Language and Environment for Statistical Computing., version 4.3.0.
490 <http://www.R-project.org/>. R Foundation for Statistical Computing, Vienna, Austria.

491 **Rogers, S. R., D. R. Tarpy, and H. J. Burrack. 2013.** Multiple criteria for evaluating pollinator
492 performance in highbush blueberry (Ericales: Ericaceae) agroecosystems. *Environmental*
493 *Entomology* 42: 1201-1209.

494 **Rogers, S. R., D. R. Tarpy, and H. J. Burrack. 2014.** Bee species diversity enhances productivity and
495 stability in a perennial crop. *PloS one* 9: e97307.

496 **Schneider, S., and H. G. Hall. 1997.** Diet selection and foraging distances of African and
497 European-African hybrid honey bee colonies in Costa Rica. *Insectes Sociaux* 44: 171-187.

498 **Schneider, S. S. 1989.** Spatial foraging patterns of the African honey bee, *Apis mellifera scutellata*.
499 *Journal of Insect Behavior* 2: 505-521.

500 **Schneider, S. S., and L. C. McNally. 1993.** Spatial foraging patterns and colony energy status in the
501 African honey bee, *Apis mellifera scutellata*. *Journal of Insect Behavior* 6: 195-210.

502 **Thebeau, J. M., D. Liebe, F. Masood, I. V. Kozii, C. D. Klein, M. W. Zabrodski, I. Moshynskyy, L.**
503 **Sobchishin, G. Wilson, and M. M. Guarna. 2022.** Investigation of *Melissococcus plutonius*
504 isolates from 3 outbreaks of European foulbrood disease in commercial beekeeping operations
505 in western Canada. *The Canadian Veterinary Journal* 63: 935.

506 **Thebeau, J. M., A. Cloet, D. Liebe, F. Masood, I. V. Kozii, C. D. Klein, M. W. Zabrodski, S. Biganski, I.**
507 **Moshynskyy, and L. Sobchishin. 2023.** Are fungicides a driver of European foulbrood disease in
508 honey bee colonies pollinating blueberries? *Frontiers in Ecology and Evolution* 11: 1073775.

509 **Tokarev, Y. S., W.-F. Huang, L. F. Solter, J. M. Malysh, J. J. Becnel, and C. R. Vossbrinck. 2020.** A formal
510 redefinition of the genera *Nosema* and *Vairimorpha* (Microsporidia: Nosematidae) and
511 reassignment of species based on molecular phylogenetics. *Journal of Invertebrate Pathology*
512 169: 107279.

513 **Visscher, P. K., and T. D. Seeley. 1982.** Foraging strategy of honeybee colonies in a temperate deciduous
514 forest. *Ecology* 63: 1790-1801.

515 **Waddington, K. D., T. J. Herbert, P. K. Visscher, and M. R. Richter. 1994.** Comparisons of forager
516 distributions from matched honey bee colonies in suburban environments. *Behavioral Ecology*
517 and Sociobiology

35: 423-429.

518 **Wang, D.-I., and F. Mofller. 1970.** The division of labor and queen attendance behavior of *Nosema*-
519 infected worker honey bees. *Journal of Economic Entomology* 63: 1539-1541.

520 **Wardell, G. 1982.** European foulbrood: Association with Michigan blueberry pollination, and control.
521 Doctoral Thesis, Michigan State University.

522 **Wei, R., L. Cao, Y. Feng, Y. Chen, G. Chen, and H. Zheng. 2022.** Sacbrood virus: a growing threat to
523 honeybees and wild pollinators. *Viruses* 14: 1871.

524 **Wickham, H. 2016.** *ggplot2: elegant graphics for data analysis*, Springer-Verlag New York.

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559 **Table 1. Sampling dates for the highbush blueberry field experiment**

Year	Activity	Sampling date	Days from latest t1
2020	t1 sampling	April 27-28	0
	Move to blueberry exposed/control yards	April 29	1
	t2 sampling	May 11	14
	Move to post-pollination yards	May 25	27
	t3 sampling	May 26	28
	t4 sampling	June 11	44
2021	t1 sampling	April 23	0
	Move to blueberry exposed/control yards	April 24-25	1-2
	t2 sampling	May 10	17
	t3 sampling	May 21	28
	Move to post-pollination yards	May 22-23	29-30
	t4 sampling	June 2	40

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580 **Figure 1. Experimental sites.** N = 10 pooled samples (5 sites near highbush blueberries and 5 sites far
581 from highbush blueberries), representing 40 colonies, were evaluated in 2020. T1, t2, t3, and t4 samples
582 were taken at approximately two-week intervals. Large blue dots represent pre-pollination holding yards
583 where colonies were maintained prior to being moved into blueberry fields at t1. Orange and
584 red dots show the locations of near and far site locations. Small yellow dots show the locations of
585 colonies at t3 sampling, after the pollination period, and small dark blue dots show locations at t4
586 sampling. In 2020, t3 samples were taken immediately after moving out of pollination yards.

587

588 **Figure 2. Landscape coverage.** Description of land cover categories within a 1.5 km radius of t2 sites.
589 Only categories contributing at least 1% of total coverage are shown. Data were obtained from 2020 and
590 2021 Annual Crop Inventory (Agriculture and Agri-Food Canada 2020, 2021).

591

592 **Figure 3. Non-dimensional scaling plots illustrating honey bee pathogen matrices.** Overall differences
593 in multivariate pathogen profiles before (t1), during (t2), after (t3), and at the end (t4) of highbush
594 blueberry pollination were evaluated using a PERMANOVA (Jaccard index) with site type (levels: control
595 and near) and time point (levels: t2, t3, and t4) as interactive effects, year (levels: 2020 and 2021) as a
596 fixed factor, and replicate as a blocking factor to account for repeated measures. Data originated from N
597 = 20 replicates (each representing a pooled sample from 4 colonies) distributed across site types and
598 years. *Post hoc* PERMANOVA tests at each time point show that the effects are driven by t4, in
599 particular, the separation of near and control groups from 2020.

600 **Figure 4. Pathogen detections at time point t4.** Pooled samples (4 colonies per sample, n = 5 samples
601 per condition, per year) were taken approximately 6 weeks after the beginning of the highbush
602 blueberry pollination period. All pathogens were detected with qPCR or PCR. CBPV = chronic bee

603 paralysis virus, ABPV = acute bee paralysis virus, KBV = Kashmir bee virus, IAPV = Israeli acute paralysis
604 virus, VDV = varroa destructor virus (also known as DWV-B), SBV = sacbrood virus, LSV = Lake Sinai virus,
605 and BQCV = black queen cell virus. Asterisks indicate significant differences determined by logistic
606 regression with site type and year as fixed factors. BQCV was present in all samples at t4 and thus not
607 included in post-hoc comparisons, but is still visualized here.

608

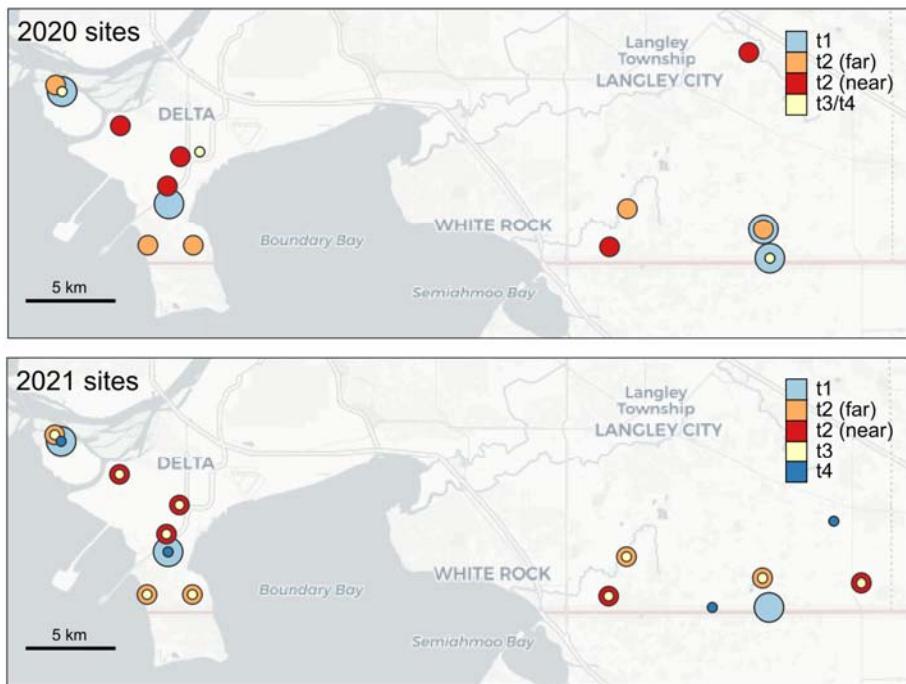
609 **Figure 5. Percent prevalence of *M. plutonius* and SBV at near versus far sites over time. A) *M. plutonius***
610 and B) SBV percent prevalence in replicates near and far (n = 10 each) from highbush blueberries. There
611 was no effect of year for these pathogens so data from 2020 and 2021 are pooled to show overall
612 trends. Numbers above dots indicate replicates, each representing a pooled sample from four colonies.
613 *M. plutonius* detections are significantly linked to time point ($\chi^2 = 6.18$, $p = 0.013$) but no other
614 significant relationships were identified (logistic regression, factors: site type, time point, and their
615 interaction). Weeks from initial sampling are approximate and correspond to 14, 28, and 44 days in 2020
616 and 17, 28, and 40 days in 2021.

617

618

619

620


621

622

623

624

Figure 1

625

626

627

628

629

630

631

632

633

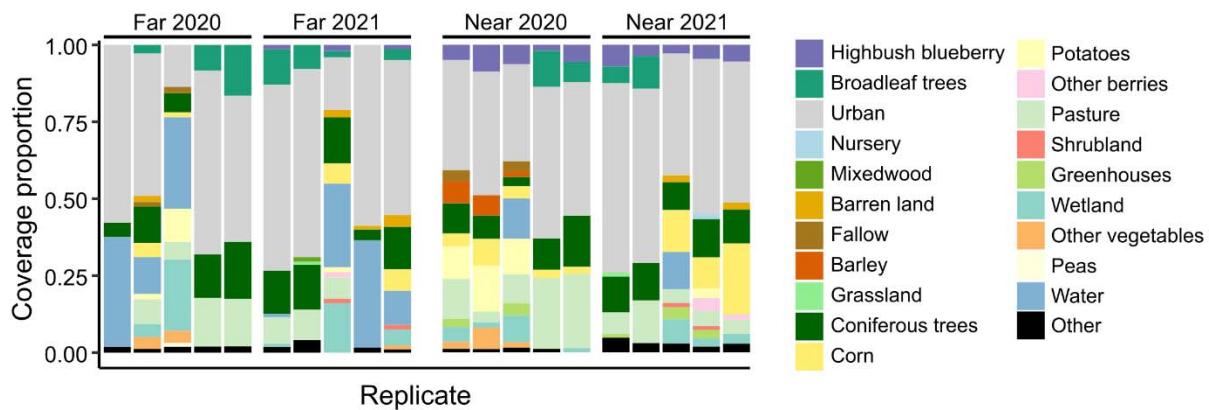
634

635

636

637

638


639

640

641

642

Figure 2

643

644

645

646

647

648

649

650

651

652

653

654

655

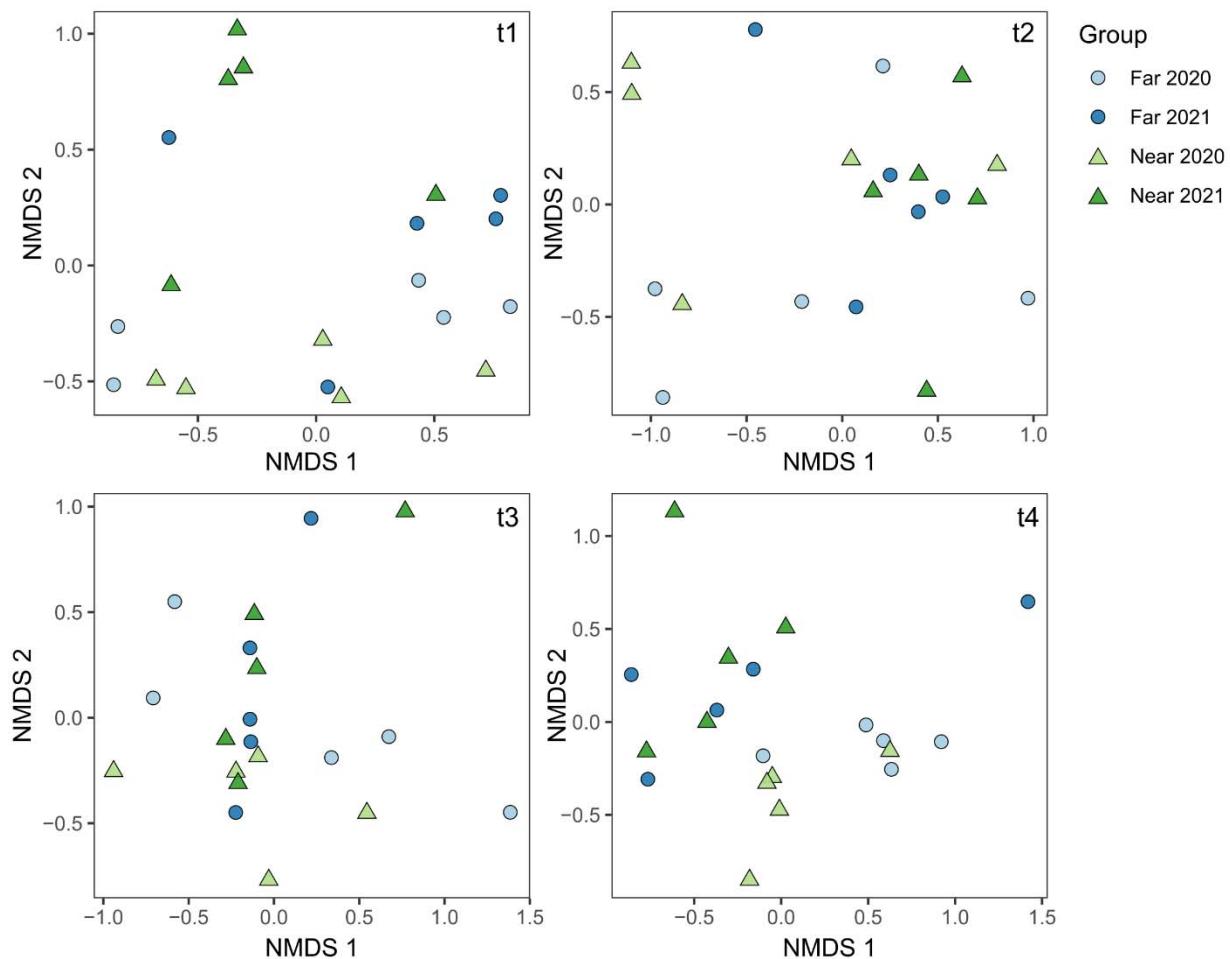
656

657

658

659

660


661

662

663

664

Figure 3

665

666

667

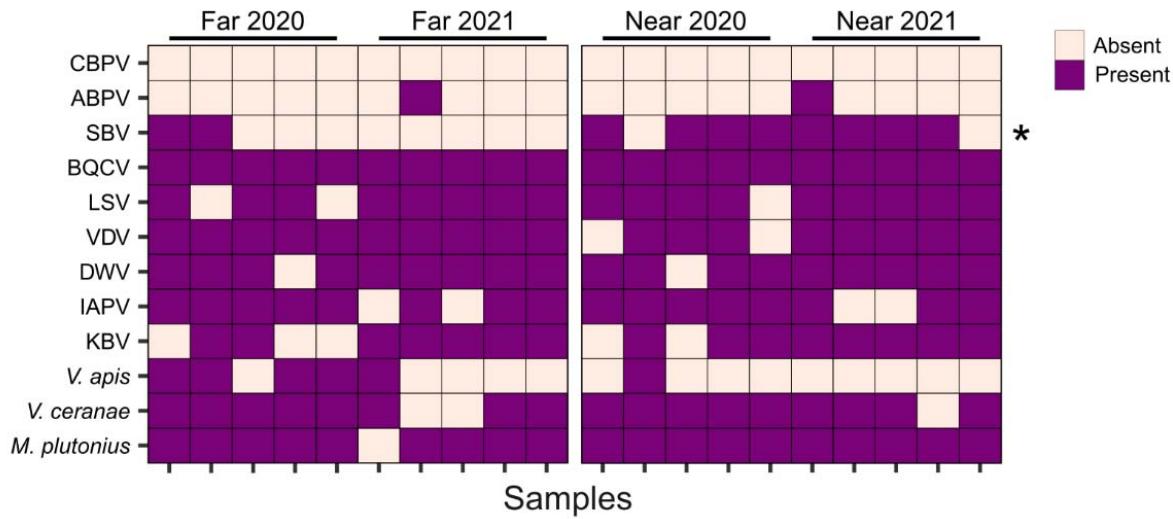
668

669

670

671

672


673

674

675

676

Figure 4

677

678

679

680

681

682

683

684

685

686

687

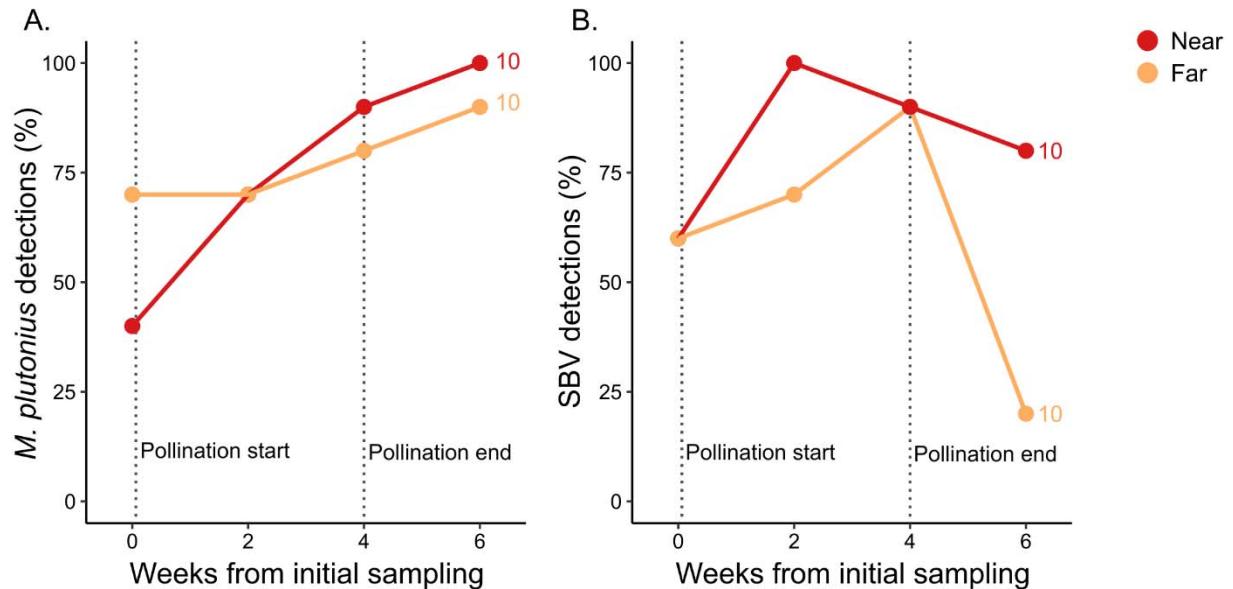
688

689

690

691

692


693

694

695

696

Figure 5

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Supplementary Data

716 All supplementary data indicated in the data availability statement have been uploaded as separate
717 Excel files through the manuscript submission portal. If you wish to inspect the supplementary data,
718 please refer to those, and not to subsequent pdf tables (which are automatically rendered by the
719 submission system).