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Abstract: 
The Blood Oxygenation Level Dependent (BOLD) signal, as measured using functional 

magnetic resonance imaging (fMRI), is known to vary in sensitivity across the brain due to 
magnetic susceptibility artefacts. In particular, the ventral anterior temporal lobes (vATL) 
have been implicated with semantic cognition using convergent methods (i.e., 
neuropsychology, PET, MEG, brain stimulation) but less so with fMRI using conventional 
gradient-echo protocols. There are methods to alleviate signal loss but multi-echo fMRI has 
gained popularity. Here, additional volumes are collected that span across a range of T2* 
values, however, this results sub-optimum parameters (i.e., repetition times, resolution, 
acceleration). “Multi-band” imaging has been used with multi-echo to speed up data 
acquisition; however, it is unclear how these modifications contribute to fMRI sensitivity 
across the brain and for univariate/multivariate analyses. In the current study, we used a 
factorial design where we manipulated the echo and/or band to assess how well the semantic 
network can be detected. When comparing the precision with which activations were 
detected (i.e, average T-statistics), we found that multi-band protocols were beneficial, with 
no evidence of signal leakage artefacts. When comparing the magnitude of activations, multi-
echo protocols increased activations in regions prone to susceptibility artefacts (specifically 
the anterior temporal lobes, ATLs). Both multi-banding and independent component analysis 
(ICA)-denoising of multi-echo data tended to improve multi-voxel decoding of conditions. 
However, multi-echo protocols reduced activation magnitude in more central regions, such 
as the medial temporal lobes, possibly due to higher in-plane acceleration required to collect 
multiple-echoes. Nonetheless, the multi-echo multi-band protocol is a promising default 
option for fMRI on most regions, particularly those that suffer from susceptibility artefacts, 
as well as offering the potential to apply advanced post-processing methods to take 
advantage of the increased temporal (or spatial) resolution of multi-band protocols and more 
principled ICA-denoising based on TE-dependence of BOLD signals. 
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1. Introduction 
 

Gradient-echo functional magnetic resonance imaging (fMRI) using the Blood 
Oxygenation Level Dependent (BOLD) signal has become the dominant non-invasive tool for 
studying how the brain operates; however, its ability to detect signal across the whole brain 
is not homogenous. This can lead studies to be blind to activation within the ventral anterior 
temporal lobes (ATL) and orbito-frontal cortices. Bilateral ATLs have been implicated with 
semantic cognition across multiple convergent methods (i.e., neuropsychology, PET, MEG, 
brain stimulation) but less so with fMRI (see Lambon Ralph, Jefferies, Patterson, & Rogers, 
2017 for a review). There have been multiple attempts to overcome these issues with fMRI, 
and recently multi-echo fMRI has gained popularity (see Kundu et al., 2017 for a review). 
Typical fMRI studies collect a single echo, which results in sensitivity to a narrow range of T2* 
values (ideally for maximal sensitivity to BOLD contrast); however, T2* is known to vary across 
the brain and between participants (Hagberg, Indovina, Sanes, & Posse, 2002). Therefore, 
taking multiple echoes can improve sensitivity to a range of T2* values, which is particularly 
important for areas with susceptibility artefacts, where signal can be detected before it 
dephases. There have been a number of studies comparing multi-echo with typical or 
modified fMRI approaches, which have reported evidence in favour of multi-echo 
approaches. However, there are a number of caveats associated with this literature, as 
discussed below.  
 

Firstly, many studies use only a multi-echo protocol, and compare multi-echo results with 
those from analysing just one of the TEs derived from that protocol (usually the TE optimal 
for BOLD, e.g., 25-35ms for 3T; Amemiya, Yamashita, Takao, & Abe, 2019; Bhavsar, 
Zvyagintsev, & Mathiak, 2014; Caballero-Gaudes, Moia, Panwar, Bandettini, & Gonzalez-
Castillo, 2019; Cohen, Nencka, Marc Lebel, & Wang, 2017; Cohen, Nencka, & Wang, 2018; 
Cohen & Wang, 2019; Dipasquale et al., 2017; Evans, Kundu, Horovitz, & Bandettini, 2015; 
Fernandez, Leuchs, Sämann, Czisch, & Spoormaker, 2017; Gilmore, Agron, González-Araya, 
Gotts, & Martin, 2022; Halai, Parkes, & Welbourne, 2015; Halai, Welbourne, Embleton, & 
Parkes, 2014; Heunis et al., 2021; Kovářová, Gajdoš, Rektor, & Mikl, 2022). However, while 
the single-echo timeseries extracted from a multi-echo sequence resembles a ‘typical’ fMRI 
dataset, it is likely to be inferior in quality to data from an optimised single-echo sequence. 
This is because multi-echo acquisition requires sequence parameters that are not necessarily 
optimal for a single-echo data (e.g., higher in-plane acceleration, reduced k-space sampling, 
etc.), which can result in aliasing or noise enhancement (e.g., Deshmane, Gulani, Griswold, & 
Seiberlich, 2012). Thus while comparing results from a single versus multiple echoes from the 
same multi-echo sequence provides tight control of other sequence parameters, thereby 
isolating the advantage of multi-echoes, it is not a fair comparison for practical decisions 
about whether to use a multi-echo versus standard single-echo protocol. Critically, we found 
only two studies that compared a multi-echo protocol against a typical single-echo protocol 
(Poser, Versluis, Hoogduin, & Norris, 2006; Kirilina, Lutti, Poser, Blankenburg, & Weiskopf, 
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2016); remaining studies used a multi-band accelerated single-echo protocol (Cohen, Chang, 
& Wang, 2021; Cohen, Jagra, Visser, et al., 2021; Cohen, Jagra, Yang, et al., 2021; Cohen, Yang, 
Fernandez, Banerjee, & Wang, 2021; Fazal et al., 2023; Lynch et al., 2020) and/or compared 
different denoising strategies (Lombardo et al., 2016). Using resting-state fMRI (rsfMRI), 
Poser et al. (2006) demonstrated that multi-echo data had better functional contrast-to-noise 
ratio (CNR) across the brain than a typical protocol, particularly in susceptibility-prone 
regions. In a follow up study, Kirilina et al., (2016) showed greater task activation during 
emotional and reward-based learning in orbitofrontal cortices, most likely due to effective 
recovery of signal in these susceptible areas, but less activation in deep brain regions, most 
likely due to higher acceleration and/or smaller voxel size. Similarly, Fazal et al., (2023) 
showed that multi-echo multi-band had greater sensitivity in areas affected by signal 
inhomogeneity but multi-band only did show greater sensitivity in visual areas (not deep brain 
regions).  

Secondly, another recent advance in echo planar imaging (EPI), often referred to as 
simultaneous multi-slice (SMS) or “multi-band” imaging, has made it possible to acquire 
whole-brain fMRI datasets with spatial and/or temporal resolution that are several times 
higher than typical protocols (Moeller et al., 2010; Setsompop et al., 2012). Multi-band 
imaging has been shown to reduce temporal aliasing of high frequency noise sources, 
increase statistical power, and improve resting-state network estimation/reliability (Feinberg 
et al., 2010; Griffanti et al., 2014; Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, 
Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, 
Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uǧurbil, et al., 2013). Studies have also 
shown that higher temporal resolution leads to a greater number of independent 
components identified in resting state data, and this benefit is lost when down-sampling the 
multiband series to match a typical protocol (Olafsson, Kundu, Wong, Bandettini, & Liu, 2015). 
However, fMRI sequences with very high multi-banding acceleration can also impair SNR  
(e.g., Chen et al., 2015; Smith et al., 2013; Demetriou et al., 2018). Moreover, while multi-
band modifications have mainly been promoted for improved estimation of resting-state 
connectivity (Smith, Beckmann, Andersson, Auerbach, Bijsterbosch, Douaud, Duff, Feinberg, 
Griffanti, Harms, Kelly, Laumann, Miller, Moeller, Petersen, Power, Salimi-Khorshidi, Snyder, 
Vu, Woolrich, Xu, Yacoub, Uğurbil, et al., 2013; Uğurbil et al., 2013), their benefit for task-
based fMRI analysis has been less clear (Demetriou et al., 2018; Todd et al., 2017), since low-
frequency fMRI noise is unlikely to be correlated (phase-locked) with the task regressors, and 
so can be removed by high-pass filtering the data. Moreover, a potential disadvantage of 
multi-band acquisition is false-positives due to signal leakage across simultaneously excited 
slices (Xu et al., 2013). Todd et al. (2016) found that slice leakage was particularly apparent 
during multi-band factors greater than 4. Despite these caveats, studies have combined multi-
band with multi-echo imaging, to compensate for the decreased spatial and/or temporal 
resolution resulting from collecting additional TEs. This may partially explain why most studies 
focus on comparing a multi-band, multi-echo protocol to a multi-band, single-echo protocol. 
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However, it is difficult to disentangle the effects of echo and band without both elements 
being manipulated independently. 

Thirdly, the criteria used to determine whether multi-echo protocols add benefit varies in 
the literature. Many studies use rs-fMRI to estimate signal quality through measures like 
temporal signal-to-noise ratio (tSNR) or CNR, although some studies have investigated 
changes to functional connectivity/networks. In contrast, task-based fMRI studies have 
focused on statistical results in primary sensory cortices (using, e.g., visual checkerboard, 
finger tapping, breath hold). However, when comparing fMRI protocols, it is important to 
employ tasks that are known to produce reliable activations across many brain regions, in 
order to span regions with both high and low levels of susceptibility artefacts. Semantic 
cognition is one such function, because it activates a large language-related network across 
bilateral temporal and frontal lobes, in particular the anterior lateral temporal lobe (ATL; see 
Lambon Ralph et al., 2017 for a review). Both PET (Devlin et al., 2000) and distortion-
corrected, spin-echo fMRI studies (e.g., Binney, Embleton, Jefferies, Parker, & Lambon Ralph, 
2010; Humphreys, Hoffman, Visser, Binney, & Lambon Ralph, 2015; Visser, Embleton, 
Jefferies, Parker, & Ralph, 2010) have shown ATL activation during semantic cognition tasks 
that is harder to detect with gradient-echo fMRI, owing to high levels of susceptibility artefact 
in this region.  

 
Here we examined the effects of protocol both on activation magnitude (e.g., percent 

signal change difference between two task conditions) and activation “precision”, which is a 
noise-normalised measure, i.e. difference in activation magnitude divided by an estimate of 
uncertainty in the estimate of that difference (equivalent to a T-statistic). A priori, we would 
expect ME protocols to recover signal in regions prone to susceptibility artefacts, which 
should be apparent in greater effects of task on activation magnitude (which may also 
translate into higher activation precision too, if noise is unaffected by the protocol). MB 
protocols, on the other hand, should improve activation precision by virtue of a greater 
number of volumes (data points) and reduced aliasing of high-frequency noise, but should 
not affect magnitude (since the signal magnitude is independent of how often it is sampled). 
We tested the reliability of any differences between protocols in terms of T-tests across 
participants on both activation magnitude and activation precision estimates within each 
participant. Note that group-level statistics are normally performed on activation 
magnitudes, but sometimes individual-level statistics (activation precisions) are also 
important to optimise, e.g., in single case-studies.  

 
Finally, all studies to date have focused on univariate activations for task-based 

paradigms. This approach is the most widely-used method for identifying brain regions 
activated during a cognitive process, in terms of differences between conditions at each voxel, 
or after averaging over voxels within a region. In contrast, multivariate methods (such as 
multivoxel pattern analysis [MVPA]) utilise patterns of activation across many voxels (often 
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irrespective of their mean level of activation) to determine if those patterns differ between 
conditions (e.g., Coutanche, 2013; Davis & Poldrack, 2013). Here we estimated the ability of 
multi-voxel patterns to distinguish (“decode”) two conditions. There is a growing literature 
suggesting that MVPA can be more powerful than univariate analysis because it exploits 
variance and covariance between voxels, which is discarded in univariate analyses, and can 
allow for participant-specific differences in the patterns by analysing derived measures across 
participants, such as decoding ability (Davis et al., 2014).  

In this study, we evaluate the performance of different fMRI protocols to detect both 
univariate activation and multivariate decoding during a semantic task. The study is unique in 
four important aspects. First, the “baseline” comparison comes from an independent run 
using a typical protocol that is optimised for single-band, single-echo fMRI. Second, we 
manipulate number of echoes and bands independently, resulting in a 2 x 2 factorial design 
to better separate the effects of multi-echoes and multi-banding (and any potential 
interaction between these factors). Third, our semantic judgement task is known to activate 
a network spanning areas that typically have both good and poor image quality. Fourth, we 
investigate the effects of fMRI protocol on activation magnitude, activation precision and 
MVPA. Finally, we also investigated whether multiple bands resulted in false-positives due to 
slice leakage, for both univariate and multivariate analyses.  

 
2. Materials and Methods 

2.1. Participants 
 

We recruited 21 healthy native English speakers (13 females, mean age = 28.9 +- 8.75 
years, range 19 to 50 years). All participants were right-handed, had normal or corrected to 
normal vision and no known neurological disorders (i.e., dyslexia, neurodegeneration, etc). 
The experiment was approved by the Cambridge Psychology Research Ethics Committee 
(CPREC).  
 

2.2. Stimuli design 
Participants completed a semantic “triad” task, variants of which have previously been 

shown to produce robust activation the ventral anterior temporal lobes using dual-echo fMRI 
(Jung, Williams, Sanaei Nezhad, & Lambon Ralph, 2017) and spin-echo fMRI (Humphreys et 
al., 2015). In each trial, three pictures are presented for a matching task (Figure 1). In the 
semantic condition, the participant is required to press a left or right button to indicate which 
of the two pictures on the bottom of the screen has a semantic relationship with the (probe) 
picture on the top. For example, if the probe is stool and the options are cow and chicken, 
one would select the cow. In the control condition, the pictures are scrambled, and the task 
is a perceptual rather than semantic match, i.e., to indicate which bottom image is identical 
to the top image. The pictures were extracted from the Pyramid and Palm Trees test (Howard 
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& Patterson, 1992) and Camel and Cactus test (Bozeat, Lambon Ralph, Patterson, Garrard, & 
Hodges, 2000). EPRIME software was used to display the stimuli and record responses.  

We used a block design consisting of 12 replications of 3 types of blocks: semantic (S), 
control (C) and rest (R). The task started after a 16 s delay after the MR protocol. The 36 blocks 
were ordered S-C-R-C-S-R (x6) (except for the first two participants for whom the order was 
S-C-R x12). Each block contained four trials with the following structure: fixation for 500 ms 
followed by a triad for 3500 ms, resulting in a total block length of 16 s. The paradigm lasted 
592 s in total including rest and was repeated for each fMRI protocol. Accuracy and reaction 
time were measured for each trial. 

We performed a 2x2x2 ANOVA (condition x multiband x multi-echo) for accuracy and 
reaction time separately to test for differences in behavioural performance. 

 

 
2.3. Data acquisition 

Data were acquired using a 3T Siemens Prisma FIT scanner with a 32-channel RF head 
coil. The gradient-echo planar imaging (EPI) field of view (FOV) was placed approximately 30° 
degrees from the AC-PC line (angled away from the eyes) and full coverage of the temporal 
lobes was ensured by lowering the FOV at a cost of missing the top of the brain (i.e., superior 
parietal lobe).  

We matched the four EPI protocols as much as possible across multiple parameters, 
while manipulating echoes and/or banding. For all EPI protocols, 80 x 80 pixel slices of 3mm 

 

 
Figure 1. Semantic (left) and control (right) blocks of the triad task. Each block lasted 16 
s that included four trials, where each trial had a 500 ms fixation and 3500 ms stimulus 
presentation. Participant were given a probe at the top and were asked to press the 
left/right button to indicate which of the two pictures below matched the probe. 
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x 3mm were acquired in a descending, sequential order, with a 0.45mm gap between slices 
(i.e., final voxel size 3 x 3 x 3.45 mm3). A partial Fourier = 7/8th acquisition was used.  

The parameters that then differed across protocols are shown in Table 1. For the  MB 
protocols, we used a MB factor of 2, and matched spatial parameters (i.e., same slice 
thickness), resulting in better temporal resolution, i.e., halved TR. The flip angle was 
optimised for each TR. For the ME protocols, we acquired three echoes (13.00ms, 25.85ms 
and 38.70ms), and used a GRAPPA acceleration of 3, resulting in a slightly faster acquisition, 
so we increased the number of slices from 28 to 30 in order to better match the TR. 

An MPRAGE structural image was acquired with the following parameters: TR = 2250 
ms, TE = 3.02 ms, TI = 900 ms, GRAPPA = 2, FOV = 256 mm*256 mm*192 mm, voxel size = 
1mm3, flip angle (FA) = 9°. 
 
 
Table 1. Parameters for the four EPI protocols compared in a 2x2 factorial design. 

Abbreviations: repetition time (TR); echo time (TE) 

  

Single Echo 
Single Band 

(SESB) 

Single Echo 
Multi Band 

(SEMB) 

Multi Echo 
Single Band 

(MESB) 

Multi Echo 
Multi Band 

(MEMB) 
Echoes 1 1 3 3 
Multi band factor 1 2 1 2 
TR (ms) 2000 1000 2000 1000 
TE 1 (ms) 30.00 30.00 13.00 13.00 
TE 2 (ms) - - 25.85 25.85 
TE 3 (ms) - - 38.70 38.70 
GRAPPA acceleration off off 3 3 
Flip angle (degrees) 78 62 78 62 
Slices 28 28 30 30 
Z-coverage (mm) 96.6 96.6 103.5 103.5 

 
 

2.4. Data analysis 
Data will be made publicly available upon peer review and acceptance. Code is publicly 

available at https://github.com/AjayHalai/Sensitivity_of_MEMB. 
2.4.1. Preprocessing 
For reproducibility and data sharing, we converted all DICOMs to BIDS format (K. J. 

Gorgolewski et al., 2016) using the HeuDiConv tool (v0.9.0; Halchenko et al., 2020) and used 
an fMRIprep (v22.0.0) (Esteban et al., 2019; K. Gorgolewski et al., 2011) singularity container 
to process all imaging data. The only exception was for the multi-echo datasets, which were 
re-processed using the tedana tool (v0.0.11) (DuPre et al., 2021) (details below).  

The T1-weighted (T1w) image was corrected for intensity non-uniformity with 
N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs (v2.3.3) (Avants, Epstein, 
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Grossman, & Gee, 2008), and used as T1w-reference throughout the workflow. The T1w-
reference was then skull-stripped with a Nipype implementation of the 
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. Brain 
tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and grey-matter (GM) 
was performed on the brain-extracted T1w using fast (FSL v6.0.5.1, Zhang, Brady, & Smith, 
2001). Volume-based spatial normalization to standard space (TemplateFlow ID: 
MNI152NLin2009cAsym; Fonov, Evans, McKinstry, Almli, & Collins, 2009) was performed 
through nonlinear registration with antsRegistration (from ANTs), using brain-extracted 
versions of both T1w and the T1w template. 

For each of the functional runs, the following pre-processing was performed. First, a 
BOLD reference volume (from the shortest echo) and its skull-stripped version were 
generated using a custom methodology in fMRIPrep. Head-motion parameters with respect 
to the BOLD reference (transformation matrices, and six corresponding rotation and 
translation parameters) are estimated before any spatiotemporal filtering using mcflirt 
(Jenkinson et al. 2002). BOLD runs were slice-time corrected to the middle slice using 3dTshift 
from AFNI (Cox & Hyde, 1997). The slice-time corrected data were corrected for head-motion 
(referred to as preprocessed BOLD). The BOLD reference was then co-registered to the T1w 
reference using mri_coreg (FreeSurfer) followed by flirt (Jenkinson & Smith, 2001) with the 
boundary-based registration (Greve & Fischl, 2009) cost-function with six degrees of freedom. 
Several additional confounding time-series were calculated (i.e., framewise displacement 
(FD), DVARS and three region-wise global signals, anatomical/temporal component-based 
noise correction) but we only used the six motion (translation and rotation) parameters in 
this study, therefore the other metrics are not described further.  

For multi-echo data, we used tedana to reprocess the minimally pre-processed BOLD 
data (slice time and motion corrected) from the fMRIprep pipeline in order to obtain the ICA-
denoised timeseries. A whole brain mask derived from the T1 was used to define brain space, 
to which a two-stage adaptive masking procedure was implemented. First, a liberal mask 
(including voxels with good data in at least the first echo) was used for optimal combination, 
T2*/S0 estimation, and denoising, while a more conservative mask (restricted to voxels with 
good data in at least the first three echoes) was used for the component classification 
procedure. A mono-exponential model was fit to the data at each voxel using nonlinear model 
fitting in order to estimate T2* and S0 maps, using T2*/S0 estimates from a log-linear fit as 
initial values. For each voxel, the value from the adaptive mask was used to determine which 
echoes would be used to estimate T2* and S0. In cases of model fit failure, T2*/S0 estimates 
from the log-linear fit were retained instead. Multi-echo data were then optimally combined 
using the T2* combination method (Posse et al., 1999). Principal component analysis based 
on the PCA component estimation with a Moving Average (stationary Gaussian) process (Li, 
Adalı, & Calhoun, 2007) was applied to the optimally combined data for dimensionality 
reduction. Next, an independent component analysis (ICA) was then used to decompose the 
dimensionally reduced dataset from the PCA. Kappa (kappa) and Rho (rho) values were 
calculated as measures of TE-dependence and TE-independence, respectively for both PCA 
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and ICA reduced datasets. Finally, component selection was performed to identify BOLD (TE-
dependent), non-BOLD (TE-independent), and uncertain (low-variance) components using 
the Kundu decision tree (v2.5; Kundu et al., 2013). This workflow used numpy (Walt, Colbert, 
& Varoquaux, 2011), scipy (Jones, Oliphant, & Peterson, 2001), pandas (McKinney, 2010), 
scikit-learn (Pedregosa et al., 2011), nilearn, and nibabel (Brett et al., 2019). This workflow 
also used the Dice similarity index (Dice, 1945; Sørensen, 1948). We retained two final 
timeseries from this pipeline: optimally combined T2* (t2star); and ICA-denoised (ICA-
denoised).  

The BOLD time-series from all protocols were resampled into standard space, 
generating a pre-processed BOLD run in MNI152NLin2009cAsym space. All resamplings can 
be performed with a single interpolation step by composing all the pertinent transformations 
(i.e. head-motion transform matrices and co-registrations to anatomical and output spaces). 
Volumetric resampling were performed using antsApplyTransforms (ANTs), configured with 
Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). All 
images in MNI space were smoothed using 8 mm3 kernel in SPM12. 
 

2.4.2. 1st level (within-participant) GLM 
Statistical analysis was carried out using used SPM12 (v) in MATLAB r2019a to create 

1st level general linear models (GLM) for each protocol of interest. To be explicit, we had a 
2x2 factorial design (SESB, SEMB, MESB, MEMB) but we also investigated specific effects for 
1) ICA-denoised data (with “dn” suffix) and 2) a reduced multi-band dataset by extracting only 
odd volumes to match the number of time points in the non-accelerated protocol (with “odd” 
suffix); resulting in SEMBodd, MESBdn, MEMBdn and MEMBodd. For each participant and 
protocol, we created a contrast to identify regions associated with semantic processing 
(semantic > control). Additionally for the decoding analysis, we modelled each block using 
separate regressors (12 semantic and 12 control) to obtain beta images per block.  

The following additional parameters were applied to all models: six motion 
parameters as regressors of no interest; micro-time resolution set to number of slices and 
micro-time onset to number of slices/2; highpass filter of 128 s; AR(1) model to account for 
serial correlations; and we turned off SPMs automated mask threshold and supplied a brain 
mask extracted from individual T1. 
  

2.4.3. 2nd level (between-participant) analysis 
2.4.3.1. Region of interest (ROI) analysis 

2.4.3.1.1. Univariate analysis 
We had an a priori hypothesis that the semantic network would be activated during 

the semantic > control contrast. We took regions of interest from a large-scale spin-echo fMRI 
study that incorporates multi-model (visual and auditory) language tasks (Humphreys et al., 
2015); however, given the large number of ROIs, we only inspected ones that had any overlap 
with the overall main effect in the present study (an F-test across all protocols).  We used a 
custom MATALB script to extract ROI information built on SPM tools (‘roi_extract.m’ from 
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https://github.com/MRC-CBU/riksneurotools/Util). For each ROI, we extracted two metrics: 
1) activation magnitude, i.e., the difference in GLM parameter estimates (“betas”) for 
semantic minus control blocks, and 2) activation precision, i.e., the t-statistic for that 
difference, i.e., the activation magnitude scaled by an estimate of the uncertainty of that 
difference, which also depends on the noise in the data. Then to determine the reliability of 
these two metrics, we performed planned t-tests across participants to compare protocol 
choices, i.e.: ME > SE (main effect of echo, i.e. [MEMB+MESB] - [SEMB+SESB]), MB > SB (main 
effect of band, i.e., [MEMB+SEMB] - [MESB+SESB]), the interaction between echo and band 
(i.e., [MEMB-SEMB] - [SEMB-SESB]), MEdn > ME (effect of denoising, i.e. [MEdnMB+MEdnSB] 
- [MEMB+MESB]) and MBodd > SB (effect of sampling rate, i.e. [MEMBodd + SEMBodd] - 
[MESB+SESB]). 

  
We focused on two univariate effects: the effect of MR protocol on 1) activation 

magnitude (BOLD signal change) and 2) activation precision (reliability of BOLD change, 
analogous to CNR). The former was tested by comparing across MRI protocols the difference 
between the 1st-level betas for Semantic > Control conditions for each participant; the latter 
was tested by comparing the 1st-level T-statistic for this contrast instead (i.e., activation 
magnitude normalised by estimate of residual error across scans). A priori, one would expect 
ME to improve activation magnitude in regions prone to susceptibility artefacts by recovering 
signal drop-out, while one would expect MB to improve activation precision by having more 
data (effective degrees of freedom, dfs) and less aliasing of low-frequency fMRI noise (with 
little difference in activation magnitude). Downsampling the MB data (by dropping every even 
volume) should attenuate the MB advantage in activation precision due to higher dfs, but a 
residual advantage might remain owing to reduced noise aliasing. Likewise, reducing noise by 
removing using TE-dependent ICs from ME data should improve activation precision for ME 
protocols (but not affect activation magnitude, unless signal is removed by mistake). 

 
2.4.3.1.2. Decoding analysis 

We also tested whether the protocols affected multivariate effects, namely decoding 
of condition using multivoxel pattern analysis (MVPA). For this, we extracted beta values 
within each ROI for each task block, which resulted in a 24 (12 semantic and 12 control blocks) 
x 280 (voxels per ROI) matrix. From this, we estimated the dissimilarity (using a cosine 
measure) between the patterns for every pair of blocks, and then averaged those according 
to whether they were within the same condition or from different conditions. We then 
subtracted the mean between-condition dissimilarity from the mean within-condition 
dissimilarity (which should be positive if decoding is possible), and used a non-parametric t-
test to test whether this decoding metric differed for the contrasts across MR protocols 
described in the univariate section above. Decoding should be sensitive to factors that affect 
activation magnitude and activation precision (at individual voxels), and is potentially more 
sensitive than univariate analyses (Davis et al., 2014). 
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2.4.3.2. Whole brain analysis 
In order to determine if any effects were observed outside the a priori semantic 

network ROIs, we calculated whole brain effects using a 2x2 ANOVA to test for main effects 
of echoes and band. We used a custom MATLAB script built on SPM tools 
(‘batch_spm_anova.m’ from https://github.com/MRC-CBU/riksneurotools/GLM) and 
extracted the following group level contrasts for semantics: 1) ME>SE; 2) SE>ME; 3) MB>SB; 
4) SB>MB; and 5) the overall main effect of all protocols together. We applied a voxel-height 
threshold of p<0.001 uncorrected to define clusters, and then used a cluster-wise Family-
Wise-Error corrected p<0.05 for statistical inference. 
 

2.4.3.3. Slice leakage analysis 
To evaluate the potential impact of slice-leakage artefacts on this dataset, candidate 

artefact locations (artefact voxels) were identified for the MEMB and SEMB protocols, using 
a modified version of the MATLAB scripts developed for McNabb et al. 2016 
(https://github.com/DrMichaelLindner/MAP4SL) (implemented in MATLAB 2020b). We 
conducted two types of analyses: 1) comparing univariate t-values; and 2) comparing 
multivariate decoding.  

For the univariate analysis, we created GLMs on the pre-processed native EPI data (i.e., 
no normalisation or smoothing) and identified the voxel corresponding to the maximum t-
value for each participant, separately for the SEMB and the MEMB data (seed voxels). For the 
SEMB protocol, GRAPPA was not used for in-plane acceleration and therefore only one alias 
location was expected per slice due to the MB protocol, with a phase-shift of FOV/2 (Figure 2 
left). For the MEMB protocol, there were two alias locations per slice due to multi-banding 
and in-plane acceleration (Figure 2 right). An ROI of 3x3x3 voxels was then defined around 
each seed and corresponding artefact locations from which the mean t-value calculated for 
each ROI. The seed ROIs are labelled ‘A’ and the candidate artefact location due to multi-band 
is labelled ‘B’. ‘Ag’ represents the expected artefact location for ROI ‘A‘ due to GRAPPA, and 
‘Bg’ is the equivalent artefact location for ROI ‘B’. 

For the multivariate analysis, we create GLMs on the EPI data in MNI space (but no 
smoothing), in order to have a greater number of voxels per ROI. The left vATL was used as 
the seed as this area showed successful decoding and is a key area of interest for the paradigm 
(see results in Table 2). Artefact locations were created in the same way as described above 
for the univariate analysis (i.e., in native EPI space) but all final ROIs were projected to MNI 
space and fixed as a sphere with 8mm radius.  

To assess whether false positive activations/decoding due to slice-leakage could be 
observed in the multi-band data, the corresponding single-band data (SESB and MESB, 
respectively) were used as controls since no aliasing artefacts are expected. For this purpose, 
we generated seed and artefact ROIs (as defined for SEMB) in the SESB data and extracted t-
values/dissimilarity. Similarly, the seed and artefact ROIs generated for the MEMB data were 
used to extract t-values/dissimilarity from the MESB data 
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3. Results 

3.1. Behavioural data 
We identified four participants who had poor behavioural performance (2SD away from group 
mean, where mean accuracy of all conditions < 73% across all runs), and therefore removed 
them from further analysis. We also excluded an additional participant who had poor EPI 
coverage of the temporal lobes. The final sample of 16 participants had good and comparable 
performance (Supplementary Materials 1). The results for the ANOVA’s showed that 
behavioural performance was consistent across all protocols, even though the semantic task 
was less accurate than the control task. The ANOVA for accuracy revealed a main effect of 
condition (F(1,15)=131.086, p<0.001) (78.46 [SD=6.37] vs 94.03 [SD=7.13]% for semantic and 
control trials, respectively). Both conditions were significantly above chance (p’s<0.001). No 
other effects or interactions were observed for accuracy. We did observe a 3-way interaction 
for RT (F(1,15)=6.566, p=0.022); however, follow-on ANOVAs broken down by one of the 
factors showed no significant effects, so this 3-way interaction is difficult to interpret further 
and no other effects were significant.  
 

3.2. ROI results 
The ROIs from Humphreys et al. (2015) that overlapped with significant clusters for the 

contrast of Semantic vs Control conditions, averaged across MR protocols, are shown in 
Figure 3. These included left ventral anterior temporal lobe (vATL), right inferior temporal 

 
Figure 2. Example location of seed and artefact ROIs. Seed ROI [A, blue] and expected 
artefact locations for an individual participant. ROI B [green] represents the artefact 
location due to the multi-band protocol (phase shift of FOV/2), while ROI Ag [red] and 
Bg [yellow] represent the artefact locations due to in-plane acceleration (GRAPPA 
factor of 2). ROIs are shown for single echo and multi echo data. 

SEMB MEMB

Slice leakage regions of interest: A (seed)
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gyrus (ITG), left inferior frontal gyrus (IFG), left posterior middle temporal gyrus (pMTG) and 
left frontal pole (FP).  

 

 
The planned contrasts of interest and resultant statistical p-values are shown in Table 2 

(note see Supplementary Materials 1 for an extended table of comparisons, including reverse 
contrasts). For activation magnitude (contrasts on the mean across participants of the 
difference between S and C betas), ME was marginally higher than SE in left vATL and right 
ITG. This would be expected if these regions suffer from susceptibility artefacts, causing 
greater “drop-out” of signal for the SE with non-optimal TE for those regions. For MB, we also 
found a significant benefit over SB in the left vATL. The ICA-denoising (MEdn) did not improve 
on the basic ME data. The interaction between echo and band was not significant in any ROI. 
We show results across a wider ROI network and the reverse contrast in Supplementary 
Materials 1; note we found one effect in the opposite direction, where ME > MEdn in right 
ITG (p=0.021) (see Supplementary Materials 1).  
 
 

 
 
 
 
 
 
 

 
Figure 3. Semantic network regions of interest (ROI; 8mm spheres) defined using 
Humphreys et al. (2015) and selecting ones that overlap with overall main effect of 
semantics in the current study. Inferior frontal pole (red), left ventral anterior 
temporal lobe (blue), left inferior frontal gyrus pars triangularis (green), left posterior 
middle temporal gyrus (purple), right inferior temporal gyrus (cyan) 
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For activation precision (comparisons across participants of their T-statistics), there were 

advantages for MB vs SB for all 5 ROIs, but no differences for ME vs SE. The former main effect 
of MB is expected from the greater sampling rate (i.e, shorter TR), resulting in more effective 
degrees of freedom in the data and less aliasing of low-frequency noise. As expected, when 
removing one half of the (even) volumes (MBodd), this advantage disappeared for most 
regions, though a MB advantage remained in lvATL. Though there was no evidence for a basic 
advantage of ME versus SE, once ICA-denoising was applied (enabled by having more than 
one TE), the activation precision increased (for MEdn versus ME) in two of the ROIs, 
suggesting that noise sources are successfully being removed. We did not find any significant 
results for reverse comparisons for these ROIs (see Supplementary Materials 1).  

Finally, the decoding results were very similar to the activation precision results, with no 
evidence for a benefit for ME over SE protocols, but superior decoding for MB over SB 
protocols in the left vATL, left IFGtri, and left pMTG. Similarly, ICA-denoising improved data 
decoding effects in the left vATL, left IFGtri, and right ITG. The matched sampling MB data 
marginally outperformed the SB protocols in the left IFGtri only. As above, the reverse 
comparisons showed fewer differences, with an SB advantage observed over the reduced MB 
time-series only in the rITG (p=0.030). 

Table 2. Showing t-test statistical comparisons between different planned contrasts using 
semantic network regions of interest (ROI) for activation magnitude (contrast of betas), 
activation precision (statistical T-values) and decoding (cosine dissimilarity). [*p<0.05, 
**p<0.05 corrected for 20 tests (5 ROIs x 4 comparisons)]. Abbreviations: inferior frontal  
pole (IFP), left ventral anterior temporal lobe (lvATL), left inferior frontal gyrus pars 
triangularis (lIFGtri), left posterior middle temporal gyrus (lpMTG), right inferior temporal 
gyrus (rITG), multi-echo (ME), single-echo (SE), multi-echo ICA denoised (MEdn), multi-band 
odd volumes (MBodd) 
 

Metric Contrast lFP lvATL lIFGtri lpMTG rITG 
Activation 
magnitude ME>SE 0.797 0.046* 0.418 0.716 0.040* 

 MB>SB 0.579 0.016* 0.102 0.196 0.574 

 MEdn>ME 0.146 0.848 0.683 0.387 0.979 
 MBodd>SB 0.665 0.083 0.150 0.252 0.392 
Activation 
precision ME>SE 0.804 0.402 0.285 0.616 0.576 

 MB>SB 0.045* 0.000** 0.002* 0.002* 0.001** 

 MEdn>ME 0.076 0.000** 0.001** 0.070 0.090 

 MBodd>SB 0.344 0.001** 0.177 0.280 0.164 
Decoding 
  ME>SE 0.889 0.581 0.162 0.143 0.697 
 MB>SB 0.310 0.001** 0.004* 0.006* 0.509 
 MEdn>ME 0.865 0.001** 0.024* 0.245 0.047* 

 MBodd>SB 0.281 0.119 0.051 0.138 0.970 
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3.3. Whole-brain results 
For activation magnitude, Figure 5a shows whole-brain results for the semantic>control 

contrast, averaged across all protocols (the results for individual protocols are provided in 
Supplementary Material 3). Activations are largely bilateral, and include the core semantic 
regions in the temporal and frontal cortices. Results for the main effects of ME and of MB in 
the 2x2 ANOVA are shown in Figure 5b and 5c, with peak information is summarised in 
Supplementary Materials 4. The main effect of Echo identified three clusters with greater 
activation magnitude for ME than SE: 1) left inferior temporal/fusiform cortex, 2) left anterior 
cingulate gyrus and 3) right frontal pole. By contrast, clusters in bilateral medial temporal 
fusiform, parahippocampal and hippocampal regions showed the opposite effect of greater 
magnitude for SE than ME. Finally, the main effect of band revealed greater activation 
magnitude for MB than SB in similar bilateral medial temporal structures such as temporal 
fusiform cortex, with no significant clusters for the reverse contrast. No voxels survived 
correction for the ME-by-MB interaction. 

The results using activation precision (Figure 6) were largely similar to those for activation 
magnitude. The main noticeable difference was that MB was significantly better than SB in 
almost all parts of the semantic network, including extending into the ventral anterior 
temporal fusiform cortex.  

We also ran a 2x2 ANOVA on the multi-echo data only to test the effect of ICA-denoising 
and whether this interacted with multi-band. We observed only one cluster surviving 
correction for activation magnitude, where the main effect of band (MB>SB) identified left 
posterior fusiform cortex clusters extending up into the right calcarine sulcus (Supplementary 
Materials 5a). Differences in activation precision were similar to those shown in Figure 6, 
where the MB>SB contrast showed clusters across the semantic network (Supplementary 
Materials 5b). Overall, this analysis replicated results showing that MB offers improvements 
over SB across the entire semantic network; in contrast ICA-denoising did not show specific 
improvements but was not significantly worse than the t2star dataset (i.e., with no ICA).  
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Figure 5. Whole brain analysis comparing activation magnitude (contrast betas) for 
Semantic > Control in a 2x2 ANOVA manipulating echo and band fMRI protocols. a) 
average effect across all protocols [t-value 3.28-32.8]; b) directed effects of echo 
(ME>SE [red] and SE>ME [blue]); and c) directed effects of band (MB>SB [red]; SB>MB 
not significant) 
 

 
Figure 6. Whole brain analysis comparing activation precision fit (statistical t-values) 
during semantic activation (semantic>control) in a 2x2 ANOVA manipulating echo and 
band fMRI protocols. a) overall main effect of all protocols [t-value 3.28-32.8]; b) 
directed effects of echo (ME>SE [red] and SE>ME [blue]); and c) directed effects of 
band (MB>SB [red] and SB>MB [blue]) 
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3.4. Slice leakage results 
Supplementary materials 6(i) shows the mean t-value per participant for seed and 

artefacts ROIs for the single-echo protocols, and Supplementary materials 6(ii) shows the data 
for the multi-echo protocols. For both univariate and multivariate analysis, we used paired t-
tests to compare the mean t-values/dissimilarity between corresponding ROIs for single-echo 
protocols (tA,SEMB – tA,SESB and tB,SEMB – tB,SESB), and for multi-echo protocols (tA,MEMB – tA,MESB, 
tB,MEMB – tB,MESB, tAg,MEMB – tAg,MESB and tBg,MEMB – tBg,MESB). 

For the univariate analysis, the difference for the seed ROI (A) is significant between SEMB 
and SESB (t=5.817, df=20, p<0.001) and also between MEMB and MESB (t=4.405, df=20, 
p<0.001), reiterating the previous results where MB results in higher t-values than SB 
protocols. For the artefact locations, no comparison was significant, with the exception of ROI 
Bg for the multi-echo data, where the mean t-values were found to be significantly greater 
for MESB when compared to MEMB (t=-2.096, df=20, p=0.048). However, the directionality 
is opposite to what we might expect for slice-leakage artefacts, and the comparison does not 
survive correction for multiple comparisons.  

For the multivariate analysis, the difference for the seed ROI (A) is significant between 
SEMB and SESB (t=3.295, df=20, p<0.005) but not between MEMB and MESB (t=0.2488, 
df=20, p<0.8069). For the artefact locations, no comparison was significant. Therefore, overall 
the results suggest no evidence of slice-leakage effects for univariate or multivariate analysis 
in the current dataset.   
 

 
4. Discussion 

Gradient-echo BOLD sensitivity varies across the brain. In particular, the presence of air 
cavities near the front and lateral sides of the head result in magnetic susceptibility artefacts 
(signal loss and distortions). Many methods have tried to improve signal detection in such 
areas while retaining sufficient sensitivity to the rest of the brain, and this study provides the 
first systematic comparison of a typical imaging protocol with multi-echo and multi-band 
modifications. When comparing the precision with which activations were detected during a 
semantic task (i.e, average T-statistics), we found that multi-band protocols were generally 
beneficial, with no evidence of signal leakage artefacts, at least for a multi-band factor of 2. 
This increased precision is to be expected given the higher number of volumes and hence 
additional degrees of freedom with which to estimate activation. Also as expected, when 
comparing the magnitude of activations, multi-echo protocols increased activations in regions 
prone to susceptibility artefacts (specifically the anterior temporal lobes, ATLs), and the 
addition of ICA-denoising (enabled by measuring multiple echoes) further improved the 
precision of those activations. Both multi-banding and ICA-denoising of ME data also tended 
to improve multi-voxel decoding of experimental conditions. However, multi-echo protocols 
reduced activation magnitude in more central regions, such as the medial temporal lobes 
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(MTLs), presumably due to the higher in-plane acceleration (GRAPPA) required to record 
multiple echoes.  

 
4.1 Advantages and disadvantages of multi-echo protocols 

 
In the current study, we probed semantic cognition with task-based fMRI. There is 

substantial evidence supporting the hub-and-spoke theory of semantic representation, 
where the ATLs serve to integrate information from multiple modality specific spokes 
(Lambon Ralph et al., 2017). Detecting fMRI activation for semantics in the ventral and lateral 
ATLs has been challenging, due to a number of factors (reviewed in Visser, Jefferies, & Lambon 
Ralph, 2010) and chief among them is likely to be signal loss with conventional TEs ~30-35ms. 
As noted in the Introduction, modified protocols have been successful at detecting activity 
using spin-echo fMRI (Binney et al., 2010; Humphreys et al., 2015; Visser, Embleton, et al., 
2010) and dual gradient-echo fMRI (Halai et al., 2015, 2014). In the current study, all protocols 
were able to detect robust activations in bilateral ventral ATL as well as inferior frontal 
regions. Nonetheless, we demonstrated that certain modifications can lead to further 
improvements.  

A priori, we expected multi-echo to improve activation magnitude in regions prone to 
susceptibility artefacts by recovering signal drop-out, compared to single-echo protocols. In 
our ROI analysis, we observed such a benefit in the left ATL and right ITG for activation 
magnitude. Interestingly, this increased signal was not accompanied by higher T-statistics 
(activation precision) – nor better multivoxel decoding – in these ROIs, suggesting that the 
ME protocol also increased noise (e.g, due to the in-plane acceleration required to reduce 
echo train length). Nonetheless, when leveraging the multiple echoes to improve ICA-
denoising, these ROIs did now show increased activation precision and multivoxel decoding 
(see Supplementary Materials 2).  

Signal recovery in areas near susceptible artefacts are expected with multi-echo protocols 
because the shorter TEs are better able to capture signal before it dephases. This is in-line 
with current language literature using similar modified protocols (i.e., Halai et al., 2014; Jung 
et al., 2017). When using a whole-brain search, we did see increased activation magnitude 
and precision in a few other clusters, most notably left posterior inferior temporal gyrus, 
which is also prone to susceptibility artefacts. Improvements were also seen in left anterior 
cingulate gyrus and right frontal pole, though the reason for this is less clear, given that these 
regions are not normally associated with susceptibility artefacts. Importantly, we also 
observed a significant reduction in both activation magnitude and activation precision in 
more central brain regions, such as the MTL. This is most likely due to lower tSNR in brain 
regions that are further from the receiver coils, which is exaggerated when using higher g-
factors for in-plane acceleration (Kirilina et al., 2016). Although, Fazal et al., (2023) showed 
that multi-echo multi-band had reduced sensitivity in visual and anterior cingulate regions 
compared to multi-band only during a Stroop task. 
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Finally, we hypothesised that removing noise from the timeseries should improve 
activation precision and decoding (but not affect activation magnitude, unless signal is 
removed by mistake). MR physics dictates that there is a positive linear relationship between 
TE and BOLD signal amplitude, but not noise amplitude, and this fact is used by automated 
techniques that deploy ICA and machine learning to separate components likely to be signal 
from those likely to be noise, such that noise components can then be projected out of the 
data (DuPre et al., 2021; Kundu et al., 2013; Kundu, Inati, Evans, Luh, & Bandettini, 2012). 
Many studies have demonstrated the benefit of this “ME-ICA” approach for resting-state fMRI 
connectivity (e.g., Cohen, Yang, et al., 2021; Lombardo et al., 2016; Lynch et al., 2020); few 
however have demonstrated this benefit in task-based fMRI. Here we also failed to find any 
clusters in our whole-brain analysis that survived correction for the main effect of ICA-
denoising (for ME protocols averaged across SB/MB; Supplementary Material 5). This 
suggests that effects of ICA-denoising are generally weak in this task. Nonetheless, we did 
find evidence that ICA-denoising improves task-related activation precision and decoding 
when using more sensitive tests within some of our a priori ROIs. These improvements 
presumably reflect a reduction in overall residual error (noise). Interestingly, one ROI (right 
ITG) actually showed a reduction in activation magnitude after ICA denoising (see 
Supplementary Material 2), suggesting that some signal of interest may have been removed 
by mistake. In sum, we propose that automated ICA denoising methods that use the TE-
dependence of BOLD enabled by ME protocols can improve task-based statistics, but only 
modestly, and the risk of also removing signal should be kept in mind. 

 
4.2 Advantages of multi-band data 

 
For the multi-band modification, we expected improvements to activation precision 

owing to having more data and less aliasing of high-frequency fMRI noise, without any impact 
on activation magnitude. There is some evidence that multi-band protocols can impair 
sensitivity when combined with in-plane acceleration or reduced k-space sampling (e.g., Chen 
et al., 2015), but here we were careful to match these to the single-band protocols (apart 
from the flip-angle, which was reduced so as to maximise BOLD sensitivity for the 
corresponding TR). Multi-band modifications have mainly been promoted for improved 
estimation of resting-state connectivity (Smith, Beckmann, Andersson, Auerbach, 
Bijsterbosch, Douaud, Duff, Feinberg, Griffanti, Harms, Kelly, Laumann, Miller, Moeller, 
Petersen, Power, Salimi-Khorshidi, Snyder, Vu, Woolrich, Xu, Yacoub, Uğurbil, et al., 2013; 
Uğurbil et al., 2013); their benefit for task-based fMRI analysis has been less clear (Demetriou 
et al., 2018; Todd et al., 2017), since the reduced low-frequency noise is unlikely to be 
correlated (phase-locked) with the task regressors, and so can be removed by standard high-
pass filtering. Nonetheless, the present multi-band modification led to consistent benefits in 
activation precision, but not activation magnitude, across all a priori ROIs (Table 2). It also 
improved multivoxel decoding in many of them. Consistent with the hypothesis that this 
advantage arises primarily from more volumes (Constable & Spencer, 2001; Miller, Bartsch, 
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& Smith, 2015), these improvements were largely removed when we sub-sampled only odd-
numbered volumes. The only exception to this pattern was lvATL, which showed increased 
activation precision for MB protocols. The same increase in activation magnitude with multi-
banding was also seen in MTL in the whole-brain analysis. The reason for these increased 
signal magnitudes is unclear – it could reflect an interaction between MB and ME 
modifications, but tests of this interaction did not reach significance.  

Another known issue with increasingly high multi-band acceleration is slice leakage 
artefacts (Todd et al., 2016). However, we found no evidence of signal deviations (for both 
univariate or multivariate analyses) in areas expected to exhibit leakage for either single or 
multi-echo protocols. This could be due to the fact that an acceleration factor of 2 was used 
in this study, where Todd and colleagues reported significant leakage with acceleration 
factors greater than 4.  

Finally, it is interesting that we found no significant interactions between ME and MB 
modifications, in either the ROI or whole-brain analyses. Thus there was no evidence that ME 
and MB are synergistic; their effects appear to be additive.  
 
5. Conclusions  

We showed that modifications to a typical fMRI protocol can lead to benefits in activation 
magnitude, precision and decoding through multi-echo and/or multi-band methods. In 
general, we found that multi-band proved to be beneficial for activation precision (T-
statistics) and multivoxel decoding across many ROIs, whereas the multi-echo was mainly 
beneficial in areas affected by susceptibility, and improved activation magnitude. We 
observed some loss in quality for multi-echo methods in more central parts of the brain. 
Nonetheless, the MEMB protocol used here is a promising default option for fMRI on most 
brain regions, particularly those that suffer from susceptibility artefacts, as well as offering 
the potential to apply advanced post-processing methods to take advantage of the increased 
temporal (or spatial) resolution of MB protocols and more principled ICA-denoising based on 
TE-dependence of BOLD signals.  
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Supplementary Materials 
 
Supplementary Materials 1 

 

 

 
Supplementary Materials 1. Accuracy and reaction time data for semantic and control 
trials. Overall, the figure shows consistent behavioural performance across protocols. 
The top row shows lower accuracy for semantic compared to control trials, whereas 
reaction time did not differ. Abbreviations: Single echo single band (SESB), single echo 
multi band (SEMB), multi echo single band (MESB), multi echo multi band (MEMB). 
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Supplementary Materials 2 
 
Table. Showing statistical comparisons across semantic network regions of interest (ROI) for activation magnitude (contrast of betas), activation 
precision (statistical T-values) and decoding (cosine dissimilarity). Note, columns here are ROIs from the full semantic network identified in 
Humphreys et al., 2015. [*p<0.05, **p<0.05 corrected] 
 

  IFP lvATL lIFGtri lpMTG rITG lmMTG ITP rSTG rPCG 
Activation 
magnitude ME>SE 0.797 0.046* 0.418 0.716 0.040* 0.393 0.606 0.168 0.300 

 MB>SB 0.579 0.016* 0.102 0.196 0.574 0.197 0.406 0.585 0.228 

 MEdn>ME 0.146 0.848 0.683 0.387 0.979 0.200 0.446 0.485 0.939 

 MBodd>SB 0.665 0.083 0.150 0.252 0.392 0.214 0.433 0.567 0.246 
 MEdn>SE 0.685 0.100 0.458 0.695 0.226 0.289 0.594 0.170 0.441 

 SE>ME 0.203 0.954 0.582 0.284 0.960 0.607 0.394 0.832 0.700 

 SB>MB 0.421 0.984 0.898 0.804 0.426 0.803 0.594 0.415 0.772 

 ME>MEdn 0.854 0.152 0.317 0.613 0.021* 0.800 0.554 0.515 0.061 

 SB>MBodd 0.335 0.917 0.850 0.748 0.608 0.786 0.567 0.433 0.754 
 SE>MEdn 0.315 0.900 0.542 0.305 0.774 0.711 0.406 0.830 0.559 

Activation 
precision ME>SE 0.804 0.402 0.285 0.616 0.576 0.343 0.506 0.112 0.149 

 MB>SB 0.045* 0.000** 0.002* 0.002* 0.001* 0.271 0.490 0.911 0.220 

 MEdn>ME 0.076 0.011* 0.019* 0.070 0.090 0.360 0.339 0.926 0.988 

 MBodd>SB 0.344 0.001* 0.177 0.280 0.164 0.239 0.491 0.580 0.171 
 MEdn>SE 0.677 0.058 0.066 0.394 0.379 0.307 0.482 0.305 0.398 

 SE>ME 0.196 0.598 0.715 0.384 0.424 0.657 0.494 0.888 0.851 

 SB>MB 0.955 1.000 0.998 0.998 0.999 0.729 0.510 0.089 0.780 

 ME>MEdn 0.924 0.989 0.981 0.930 0.910 0.640 0.661 0.074 0.012* 

 SB>MBodd 0.656 0.999 0.823 0.720 0.836 0.761 0.509 0.420 0.829 
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 SE>MEdn 0.323 0.942 0.934 0.606 0.621 0.693 0.518 0.695 0.602 
Decoding ME>SE 0.889 0.581 0.162 0.143 0.697 0.712 0.516 0.939 0.524 

 MB>SB 0.272 0.029* 0.011* 0.003* 0.510 0.095 0.018* 0.265 0.101 

 MEdn>ME 0.856 0.027* 0.015* 0.239 0.038* 0.128 0.505 0.322 0.768 

 MBodd>SB 0.243 0.182 0.042* 0.140 0.981 0.075 0.043* 0.417 0.124 
 MEdn>SE 0.946 0.047* 0.020* 0.091 0.196 0.535 0.517 0.904 0.712 

 SE>ME 0.111 0.419 0.838 0.857 0.303 0.288 0.484 0.061 0.476 

 SB>MB 0.728 0.971 0.989 0.997 0.490 0.905 0.982 0.735 0.899 

 ME>MEdn 0.144 0.973 0.985 0.761 0.962 0.872 0.495 0.678 0.232 

 SB>MBodd 0.757 0.818 0.958 0.860 0.019* 0.925 0.957 0.583 0.876 
 SE>MEdn 0.054 0.953 0.980 0.909 0.804 0.465 0.483 0.096 0.288 
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Supplementary Materials 3 
 

 
Supplementary Materials 3. Whole brain results for the Semantic>Control contrast for each 
protocol [t-value 3.28-32.8], thresholded at p<0.001 voxel height FWE-cluster corrected 
p<0.05. Abbreviations: Single echo single band (SESB), single echo multi band (SEMB), multi 
echo single band (MESB), multi echo multi band (MEMB). 
 
Supplementary Materials 4 
 
Table. Showing significant cluster and peak information for select contrasts of interest when 
comparing activation magnitude.  

Contrast 

Cluster 
extent 
(voxels) 

z-
value x y z Anatomy 

ANOVA 
effect of 
interest 979 6.05 -32 -42 -8 Left lingual gyrus 

  3.53 -24 -16 -22 Left Hippocampus 

  3.45 -32 -26 -30 Left temporal fusiform cortex pos 

 689 5.15 30 -26 -18 Right parahippocampal gyrus pos 

  5.13 28 -44 -6 Right lingual gyrus 

  5.08 34 -38 -12 Right temporal fusiform cortex pos 

ME>SE 395 4.89 -44 -48 -32 
Left temporal occipital fusiform 
cortex 
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  4.84 -50 -42 -26 Left inferior temporal gyrus post 

 522 4.27 6 30 -2 Forceps minor 

  4.14 -4 34 0 Left cingulate gyrus ant 

  4.06 12 38 2 Forceps minor 

  3.59 -16 40 4 Forceps minor 

 488 3.97 24 50 14 Right frontal pole 

  3.96 18 56 -2 Forceps minor 

  3.82 30 46 4 Right Inferior frontal occipital fas 

SE>ME 918 5.47 -34 -44 -14 
Left temporal occipital fusiform 
cortex 

  4.99 -26 -42 -6 Left lingual gyrus 

  4.88 -24 -36 -12 Left parahippocampal gyrus pos 

  4.52 -36 -28 -16 Left temporal fusiform cortex pos 

 613 5.11 28 -26 -18 Right parahippocampal gyrus pos 

  4.5 36 -42 -14 
Right temporal occipital fusiform 
cortex 

  4.45 28 -44 -4 Right lingual gyrus 

  3.3 40 -52 -16 
Right temporal occipital fusiform 
cortex 

MB>SB 912 6.07 -32 -42 -8 Left lingual gyrus 

  4.53 -32 -32 -22 Left temporal fusiform cortex pos 

  4.11 -24 -18 -22 Left Hippocampus 

 579 5.14 34 -38 -12 Right temporal fusiform cortex pos 

  4.81 34 -30 -18 Right temporal fusiform cortex pos 
SB>MB N/A           
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Supplementary Materials 5 
 

 
Supplementary Materials 5. Whole brain results for the effect of ICA-denoising and band (2x2 
ANOVA) on the multi-echo data. 4a) Results for activation magnitude (contrast betas) and 4b) 
for activation precision (statistical t-values) for semantic>control. Both sections show the 
average effect across all protocols [t-value 3.28-32.8] and directed effects of band (MB>SB 
[red] and SB>MB [blue]). Note that no clusters survived correction for the main effect of ICA-
denoising. Abbreviations: Multi band (MB), single band (SB).  
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Supplementary Materials 6 
 

 
 
 
 
 
 

 
Supplementary Materials 6. Mean t-values obtained for each subject, per seed and 
artefact ROI. Mean t-values for (i) SEMB and SESB, and (ii) MEMB and MESB data. 
Abbreviations: Single echo single band (SESB), single echo multi band (SEMB), multi echo 
single band (MESB), multi echo multi band (MEMB). 
 

(i) Single echo data: SEMB vs SESB 

(ii) Multi echo data: MEMB vs MESB 
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