

1

2 **Single cell RNA sequencing of nc886, a non-coding RNA transcribed by RNA**
3 **polymerase III, with a primer spike-in strategy**

4

5 Gyeong-Jin Shin^{*,1,2}, Byung-Han Choi^{*,3}, Hye Hyeon Eum¹, Areum Jo¹, Nayoung Kim¹, Huiram Kang^{1,2},
6 Dongwan Hong^{2,4}, Jiyoung Joan Jang³, Hwi-Ho Lee³, Yeon-Su Lee⁵, Yong Sun Lee^{#,3}, and Hae-Ock
7 Lee^{#,1,2}

8

9 1. Department of Microbiology, The Catholic University of Korea, Seoul 06591, Korea

10 2. Department of Biomedicine and Health Sciences, The Catholic University of Korea, Seoul 06591,
11 Korea

12 3. Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National
13 Cancer Center, Goyang 10408, Korea

14 4. Department of Medical Informatics, The Catholic University of Korea, Seoul 06591, Korea

15 5. Division of Rare Cancer, Research Institute, National Cancer Center, Goyang, 10408, Korea

16

17

18 * equal contribution

19 # corresponding authors:

20 YS Lee: +82-31-920-2748 (phone), +82-31-920-2759 (fax), yslee@ncc.re.kr (email)

21 H Lee: +82-2-3147-8365 (phone), haeocklee@catholic.ac.kr (email)

22

23 Abstract

24 Single cell RNA sequencing (scRNA-seq) has emerged as a versatile tool in biology, enabling
25 comprehensive genomic-level characterization of individual cells. Currently, most scRNA-seq methods
26 generate barcoded cDNAs by capturing polyA tails of mRNAs, which excludes many non-coding RNAs
27 (ncRNAs), especially those transcribed by RNA polymerase III (Pol III). Although previously thought to
28 be expressed constitutively, Pol III-transcribed ncRNAs are expressed variably in healthy and disease
29 states and play important roles therein, necessitating their profiling at the single cell level. In this study,
30 we have developed a measurement protocol for nc886 as a model case, as an initial step for scRNA-
31 seq for Pol III-transcribed ncRNAs. Specifically, we spiked in an oligo-tagged nc886-specific primer
32 during the polyA tail capture process for the 5'-reading in scRNA-seq. We then produced sequencing
33 libraries for standard 5' gene expression and oligo-tagged nc886 separately, to accommodate different
34 cDNA sizes and ensure undisturbed transcriptome analysis. We applied this protocol in three cell lines
35 which express high, low, and zero levels of nc886, respectively. Our results show that the identification
36 of oligo tags exhibited limited target specificity, and sequencing reads of nc886 enabled the correction
37 of non-specific priming. These findings suggest that gene-specific primers (GSPs) can be employed to
38 capture RNAs lacking a polyA tail, with subsequent sequence verification ensuring accurate gene
39 expression counting. Moreover, we embarked on an analysis of differentially expressed genes in cell
40 line sub-clusters with differential nc886 expression, demonstrating variations in gene expression
41 phenotypes. Collectively, the primer spike-in strategy allows us for a combined analysis of ncRNAs and
42 gene expression phenotype.

43

44

45 Introduction

46 During the past two decades, non-coding RNAs (ncRNAs) and next-generation sequencing
47 (NGS) technologies have been among the greatest advances in biology (1, 2). Numerous studies have
48 documented the diverse biological roles of ncRNAs, with the most prominent ones being the gene-
49 regulatory functions of microRNAs and long ncRNAs (lncRNAs). NGS techniques, which offer
50 unprecedented high-throughput capabilities, have generated enormous amounts of genomic,
51 epigenomic, and transcriptomic data. Additionally, NGS has greatly advanced the field of ncRNAs by
52 enabling the capture of low-copy RNAs, many of which have been identified to be non-coding (3). More
53 recently, NGS has been applied at the single cell level.

54 Single cell RNA sequencing (scRNA-seq) technologies continue to advance, with the
55 fundamental principle being the creation of barcoded cDNAs that allow for the differentiation of
56 individual cells (4, 5). Particularly, droplet-based approaches such as the Chromium system (10X
57 genomics) provide a combination of simplicity and cost-effectiveness, and they currently constitute the
58 majority of scRNA-seq data (6). A limitation of the system arises from the utilization of oligo-dT
59 sequences during cDNA synthesis, restricting the focus to mRNAs with a polyA tail. Analogous
60 constraints have also been observed in bulk RNA sequencing analysis. Consequently, various
61 strategies are employed to investigate RNA molecules that are typically excluded, such as non-polyAed
62 lncRNAs and small RNAs (7). In bulk RNA sequencing, adaptor ligation or random primers may be
63 applied following the removal of ribosomal RNAs (rRNAs) (8, 9). The addition of polyA or polyU tails
64 also allows for the sequencing of non-polyAed RNAs (10). Several research groups have reported
65 methods for quantifying non-polyAed RNAs at the single cell level (11-13). These methods modified
66 techniques used in total RNA-seq in bulk, including random priming, polyA tailing, and/or rRNA removal.
67 While showing promise, they are developed for C1 microfluidic devices or SMART-seq, which are costly
68 compared with the droplet-based methods.

69 Despite the increase in research on ncRNAs, a subset of ncRNAs remains underexplored.
70 These are medium-sized ncRNAs that are transcribed by RNA polymerase III (Pol III). They include

71 transfer RNAs (tRNAs), 5S rRNA, and U6 small nuclear RNA. The roles of these RNAs are so
72 fundamental that it is challenging to imagine their dynamic expression. Therefore, Pol III-transcribed
73 ncRNAs (Pol III-ncRNAs) attracted minimal attention during the application and analysis of NGS.
74 However, this view of Pol III-ncRNAs has recently changed. The repertoire of Pol III-ncRNAs are more
75 diverse than previously thought (14). Pol III transcriptomes vary depending on biological situations (15).
76 The best examples are nc886 and tRNA-derived RNA Fragments, which are dynamically expressed
77 and control gene expression (16, 17). Thus, it is essential to obtain Pol III transcriptomes and analyze
78 them in comparison to other -omics data.

79 As an initial attempt, here we developed a protocol for measuring nc886 in droplet-based
80 scRNA-seq. We chose nc886 for the following reasons (18): Firstly, nc886 is transcribed from a single
81 genomic locus, unlike most other Pol III genes which have identical or highly similar sequences
82 scattered at multiple loci across the genome. Secondly, nc886 has no post-transcriptional modifications,
83 unlike tRNAs. Thirdly, nc886 expression is highly abundant in some cancer cells but is completely
84 silenced in others. These features provide unambiguity in mapping and a set of cell lines for comparison,
85 making nc886 an ideal ncRNA for initially establishing a new sequencing protocol. Furthermore, a single
86 cell expression profile of nc886 will provide valuable information, given its important roles in cancer and
87 immunity

88

89

90 **Materials and methods**

91 **Cell culture, RNA isolation, and qRT-PCR**

92 WPMY-1 and Hep3B cell lines were purchased from the American Type Culture Collection
93 (Manassas, VA). HEK293T was our laboratory stock. We made nc886-expressing Hep3B cells
94 (designated “Hep3B-886” hereafter) by a lentiviral plasmid “pLL3.7.Puro.U6:nc886”. This plasmid was
95 derived from the original lentiviral plasmid, pLL3.7 (Addgene, Watertown, MA), and contains the nc886
96 gene (a 102 nucleotide (nt)-long DNA fragment) under the U6 promoter (19). Lentivirus production,
97 infection, and selection of puromycin-resistant cells were performed per standard laboratory procedures.
98 From the three cell lines, total RNA was isolated by TRIzol™ Reagent (Invitrogen, Carlsbad, CA) and
99 nc886 was measured by qRT-PCR and Northern hybridization as described previously (20).

100

101 **nc886 specific primer design and sequencing library 102 construction**

103 For the generation of a nc886 feature library, a gene-specific primer (GSP) was designed to
104 have 3' nc886 sequences, flanked by a feature barcode and a sequencing adaptor (Table 1). The
105 sequence is 5'-
106 CGGAGATGTGTATAAGAGACAGNNNNNNNNNNTATGTCCGCTCGATNNNNNNNNAGGGTCA
107 GTAAGCACCCGCG-3'. The first underlined 22 nts represent a Read2N adaptor (10X genomics); the
108 second 15 nts, a feature barcode (TotalSeqTM-C0182, BioLegend); and the third 20 nts,
109 complementary 3' nc886 sequences. The three nucleotide blocks are separated by 10 or 9 nts spacer
110 sequences. Reverse transcription by this nc886-GSP will generate a 1st strand cDNA consisting of
111 CCC-nc886-spacer-feature barcode-spacer-Read2N sequences. Second strand synthesis will be
112 accomplished by the template switching oligos (TSOs) attached to the gel bead of 5' scRNA-seq
113 reagent.

114

115 **Optimization of Reagent Volumes and Primer Concentration**

116 **for GEM in nc886 transcript analysis**

117 In the generation of Gel Bead in Emulsion (GEM), we used RT Reagent B, Poly-dT RT Primer,
118 Reducing Agent B and RT Enzyme C, along with nc886-GSP. The reaction contains cell suspension,
119 RT Reagent B (18.8 μ l), Poly-dT RT Primer (7.3 μ l), Reducing Agent B (1.9 μ l), RT Enzyme C (8.3 μ l),
120 10 μ M nc886-GSP (0.75 μ l, resulting in a final concentration of 0.1 μ M), supplemented with nuclease-
121 free water to adjust the total reaction volume to 75 μ l.

122

123 **5' single cell RNA sequencing and read processing**

124 Single cell suspensions of WPMY-1, Hep3B-886, and HEK293T cell lines were mixed in equal
125 numbers and subjected to scRNA-Seq using Chromium Next GEM Single Cell V(D)J Reagent Kits v2
126 (10 \times Genomics, Pleasanton, CA). We set the cell recovery rate to 5000 per library and followed the
127 manufacturer's instructions with a slight modification. During the GEM generation & barcoding step, we
128 added 0.1 μ M nc886-GSP to the master mix. In addition to the 5' gene expression (GEX) library, nc886
129 feature library was constructed using the 5' Feature Barcode Kit (10 \times Genomics). Both libraries were
130 sequenced on an Illumina Hiseq X as 100 bp paired-end. Sequencing reads were mapped to the
131 GRCh38 human reference genome using Cell Ranger toolkit (v5.0.0).

132

133 **Processing of oligo-tagged sequences**

134 In raw paired-end reads, preprocessing was performed separately for Read 1 (R1) and Read
135 2 (R2). For R1, reads containing the nc886 sequence were selected using seqkit (command: seqkit
136 grep -s -p <nc886 sequence>) (21). R2 was filtered for reads containing both the feature barcode

137 sequence and nc886 sequence (command: seqkit grep -s -p <feature barcode sequence> | seqkit grep
138 -s -p <nc886 sequence>). When selecting reads containing the nc886 sequence and allowing
139 mismatches, the number of allowable mismatches was specified using the -m option (e.g., allowing one
140 mismatch: -m 1). After preprocessing R1 and R2 separately, it was possible to encounter cases where
141 the read pairs in R1 and R2 did not match. To address this, a custom python script was used on the
142 preprocessed R1 and R2 to extract only the paired reads. In brief, overlapping read IDs between R1
143 and R2 were extracted, and the corresponding sequence and quality score information for each ID were
144 extracted to generate new paired reads. These new paired reads were subsequently used in
145 downstream analyses.

146

147 **DNA isolation and SNP genotyping array**

148 Genomic DNA was extracted from the three cell lines using PureLinkTM Genomic DNA Mini
149 kit (Invitrogen). Total of 778,783 single nucleotide polymorphisms (SNPs) were genotyped on Infinium
150 Global Screening Array MG v3.0 (Illumina, San Diego, CA) by the local service provider (Macrogen,
151 Seoul, Korea) following the standard Illumina procedures. Normalized signal intensity and genotype
152 were computed using the Illumina/BeadArray Files: Python library. Variant calling format (VCF)
153 genotype file was generated using the GRCh38 reference genome.

154

155 **Demultiplexing**

156 To demultiplex three cell line data from pooled scRNA-seq, we followed the freemuxlet
157 (<http://github.com/statgen/popsicle>) workflow (22). Briefly, the popsicle tool dsc-pileup was run on the
158 bam file generated by Cell Ranger toolkit and reference vcf file. The reference data was downloaded
159 from Demuxafy (<https://demultiplexing-doublet-detectingdocs.readthedocs.io/en/latest/index.html>), a
160 supplemental tools that enhances accuracy and subsequent analyses in multiple demultiplexing and

161 doublet detecting methods. Subsequently, the freemuxlet tool, set to its default parameters, was utilized
162 to deconvolve the identities of the sample. Each of three different cell lines (HEK293T, Hep3B-886,
163 WPMY-1) has a distinct VCF file that contains information related to chromosomal positions. The cell
164 lines were distinguished by the similarities between freemuxlet-annotated genotypes and genotypes
165 detected by SNP arrays. During the step, doublets (DBL) and ambiguous (AMB) barcodes are removed
166 (Excluded AMB+DBL : 4,172 cells; HEK293T : 1,687 cells; Hep3B-886 : 2,001 cells; WPMY-1 : 4,738
167 cells).

168

169 **Single cell RNA sequencing analysis using Seurat**

170 From the Cell Ranger outputs, raw gene-cell-barcode matrix was processed using Seurat
171 v4.2.2 R package (23). Low-quality cells were filtered with the criteria nCount>2000 and percent.mito
172 <15. Potential multiplets were predicted by Scrublet and removed (24). After the QC filtering process,
173 the unique molecular identifier (UMI) count matrix was log-normalized and scaled by z-transform.
174 Utilizing the PC ElbowPlot functions of Seurat, PC 7 was selected as a distinct subset of principal
175 components. Subsequently, cell clustering and Uniform Manifold Approximation and Projection (UMAP)
176 visualization were conducted using the 'FindClusters' and 'RunUMAP' functions. The resolution was set
177 to 0.3 or 0.6, segregating three or six clusters respectively.

178

179 **Pathway enrichment analysis and data visualization**

180 Subcluster analysis for WPMY-1 cells was conducted using the 'enrichGO' function of the
181 'clusterProfiler' R package (version 4.6.2), focusing on the top differentially expressed genes (DEGs).
182 Genes were filtered based on the adjusted p-value and q-value (< 0.05). The 'org.Hs.eg.db' annotation
183 package (version 3.15.0) was utilized for organism-specific categorization. Data filtering was applied as
184 GeneRatios greater than 0.10, and the results were organized in ascending order of adjusted p-values,
185 specifically targeting the 'biological process' category in the Gene Ontology.

186

187

188 **Results**

189 **Generation of nc886 feature library using an oligo-tagged**
190 **gene-specific primer**

191 To test the feasibility of using a GSP during droplet-based scRNA-seq procedures (10x
192 genomics chromium system), we selected nc886 as the model gene and three cell lines with different
193 levels of nc886 expression (Fig 1A). To capture nc886 transcripts which have no polyA tail, we used a
194 GSP with additional feature barcode and adaptor sequences (Fig 1B). The modifications implemented
195 in the GEM generation and the Barcoding reaction mix are detailed in the Methods section. Addition of
196 the GSP allows extension of the nc886 transcript, yielding cDNA containing the nc886 sequence flanked
197 by adaptors to enable library construction. According to our design, the resulting nc886 feature barcode
198 library is expected to contain Read 1 sequences, 10x cell barcode, UMI, and TSO at the 5' end as well
199 as 15 nts-feature barcode and 'Read 2' sequences. In parallel, a 5' scRNA-seq library for gene
200 expression analysis was produced as a separate sequencing material.

201

202 **Determining cell line identities using SNP and gene**
203 **expression profiles**

204 In this study, we pooled three cell lines with differential nc886 expression to generate multiplex
205 data. WPMY-1 is a myofibroblast cell line derived from a prostate cancer patient (25). Hep3B-886 was
206 derived from a liver cancer cell line, Hep3B, with epithelial morphology and hepatitis B virus integration
207 (26). The HEK293T cell line originated from the human embryonic kidney (27, 28). The first step in our
208 data analysis was to systematically assign pooled scRNA-seq data into respective cell lines using SNP
209 patterns. This segregation was a prerequisite for the investigation of phenotypic alterations in gene
210 expression, especially regarding nc886 expression levels. We utilized Freemuxlet, a tool recommended

211 by the 10x Genomics Analysis Guide (<https://www.10xgenomics.com/resources/analysis-guides/bioinformatics-tools-for-sample-demultiplexing>), to categorize cells into three distinct clusters.
212 Overlap between SNPs detected in genomic DNA and scRNA-seq data provided cell line identity for
213 each SNP cluster (Fig 2A). Cells corresponding to doublets and ambiguous categories in SNP
214 expression were excluded from subsequent analyses.

216 In the second step, we performed clustering analysis based on the 5' gene expression after
217 further quality control (QC) filtration to select cells with a minimum UMI count of 2,000, a minimum gene
218 count of 200, and a maximum mitochondrial gene proportion of 15 % (Fig 2B, left). Adhering to these
219 criteria, we obtained three clusters assigned as WPMY-1 cells (1,886 cells), Hep3B-886 (1,782 cells),
220 and HEK293T (1,457 cells) (CLUST0, 1, and 2 respectively in the right panel of Fig 2B). Comparison
221 of DEGs in each cluster revealed gene expression characteristics of the three cell lines (Fig 2C). Cluster
222 0 showed prominent expression of mesenchymal genes such as COL1A1, SPARC and CCN1, which
223 characterize WPMY-1 cells of myofibroblast origin (29). In the Hep3B-886 cluster, liver-specific genes
224 such as ALB, RBP4 and AHSG were highly expressed (30, 31). In the cluster of nc886-silenced
225 HEK293T cells, high expression levels of XIST, TSC22D3 and RPS4X were noted. These expression
226 patterns were consistent with those observed in the original parental cell line (32). These gene
227 expression characteristics confirmed the successful implementation of multiplexing and demultiplexing
228 strategies in scRNA-seq analysis.

229

230 **Assessing nc886 gene expression using feature barcoding 231 and sequence alignment strategies**

232 Next, we estimated nc886 expression levels using feature barcode expression data (Fig 3A). However,
233 this method resulted in unexpectedly high nc886 expression in the silenced HEK293T cell cluster (Fig
234 3B, left). This inconsistency might have been caused by limited primer specificity in our initial feature
235 barcoding approach. To apply higher stringency during mapping nc886 sequences, we analyzed Read
236 2 (see Fig 1B) from the feature barcode library and specifically extracted nc886 reads (Fig 3A). Using

237 nc886-specific sequences from the untrimmed feature barcode data dramatically reduced the total
238 number of reads (Fig 3A, right), indicating that non-specific priming indeed occurred. The problem of
239 reduction of read numbers was solved by the allowance of a single nucleotide mismatch. This rectified
240 procedure, extraction of nc886 sequence from Read 2 with up to 1 nt mismatch, yielded a result aligned
241 well with the known nc886 expression levels: they were markedly higher in WPMY-1, lower in Hep3B-
242 886, and absent in HEK293T (Fig 3B, right).

243

244 **Clustering analysis demonstrating diversity in gene 245 expression patterns and nc886 levels**

246 To determine whether each cell line shows heterogeneity in gene expression and nc886 levels,
247 we re-performed clustering analysis with a higher resolution setting. Clustering in the UMAP space
248 revealed the presence of two distinct clusters for each cell line (Fig 4A, upper UMAPs and a heat map).
249 Subsequently, we checked whether the cluster separation reflects differential cell cycle phases (Fig 4A,
250 lower UMAP and bar graph). Hep3B-886 (Hep 1 and Hep 2) and HEK293T cell (HEK 1 and HEK 2)
251 clusters showed different cell cycle distribution between clusters. In contrast, WPMY-1 clusters (W1
252 and W2) manifested similar cell cycle phases. Thereafter, we performed DEG analysis using the
253 Wilcoxon Rank Sum test (Fig 4A, right), with a particular focus on the WPMY-1 cell line. Comparison of
254 nc886 expression levels between W1 and W2 clusters showed enrichment of nc886 high cells in the
255 W2 cluster (Fig 4B). In the W2 cluster, DEGs include POSTN, MFAP4, DCN, and LUM (Fig 4C), which
256 are closely involved in the extracellular matrix organization as well as in cancer invasiveness (33, 34).
257 By comparison, the W1 cluster DEGs contained CAV1, MT2A, KCNMA1, and CCND1 curated in the
258 response to the metal ion pathway as well as FABP5, SPHK1, and CCN in the regulation of lipid
259 metabolic process (35-38). Consistently, Gene Set Enrichment Analysis (GSEA) annotated protein
260 folding and stability for W1 DEGs and extracellular matrix organization and stimulus for W2 DEGs (Fig
261 4D). Overall, this combined analysis of gene expression phenotype and nc886 levels suggested that

262 nc886 expression are variable among cells and that this variability contributed to the functional
263 heterogeneity among cells.

264

265

266 Discussion

267 Improving nc886 detection in Feature Barcoding: 268 Overcoming inefficiency and non-specific binding

269 In our study, we used a Feature Barcoding technology to capture nc886, an ncRNA lacking a
270 polyA tail. However, our procedure yielded non-specific sequences in addition to nc886. Although we
271 were able to filter out nc886 sequences and perform subsequent analysis, we should conclude that
272 scRNA-seq of nc886 had limited specificity and was not as effective. A significant proportion of the non-
273 specifically captured sequences were rRNAs.

274 The main reason for this limitation may be the intrinsic fact that nc886 is a short RNA
275 transcribed by Pol III. This feature made the design of a GSP very challenging. Most Pol III genes have
276 4-6 consecutive thymidylates at the 3' end. As a type 2 Pol III gene, nc886 has two intragenic promoter
277 elements, box A and B, each about 15 nts long. Therefore, >30% of the nc886 sequence is potentially
278 homologous to several hundred type 2 Pol III genes. A GSP must lie outside these common sequence
279 motifs and should be located at the 3' side. The design of a satisfactory primer was very limited and it
280 was almost impractical to design several primers and select the best one. The nc886-GSP used here,
281 which was inevitably designed, may not have been a suitable one. Although it was predicted to be
282 specific in silico, the primer may have been inefficient in recognizing nc886, possibly because of its
283 secondary structures (39). The excessive use of additional sequences in the nc886-GSP may have
284 contributed to compromising specificity in favor of binding to highly abundant rRNAs.

285 To overcome the limitation found in this study, several improvement strategies can be
286 considered. First, the use of rRNA depletion methods may improve the results since a significant portion
287 of the non-specific sequences were rRNA sequences. Second, cDNA synthesis at high temperature
288 with a thermophilic reverse transcriptase might be a solution for the secondary structure problem. In
289 addition, utilizing a hybridization approach rather than primer extension could potentially yield better

290 results in this non-specific issue. Fixed RNA Seq method developed by the 10X genomics employs the
291 hybridization technique for the gene expression analysis, which may be adopted for the detection of
292 nc886. However, the limited choices in primer design still remain a major obstacle when we recall that
293 our goal in this nc886 study was to lay the groundwork for other Pol III genes and ultimately to obtain
294 single cell Pol III transcriptomes.

295

296 **Impact of nc886 on the phenotypic characteristics of cell 297 lines through cluster examination**

298 In this study, we employed SNP data for cluster-based classification of cell lines, aiming to
299 investigate the impact of nc886 expression levels on gene expression patterns.

300 Within a cell line, we expected nc886 expression levels to be highly variable among individual
301 cells because nc886 has a short half-life (1~2 hours) and its expression is affected by growth conditions.
302 We observed that nc886 levels became low when we cultured cells in low serum or at high density
303 (YSL, unpublished data). Thus, local variation in cell density would result in different nutrient status of
304 individual cells. Indeed, we observed variable expression levels of nc886 in our scRNA-seq data on
305 WPMY-1 (Fig 4B). We speculate that this difference is not due to a clonal character of each cell, but
306 reflects a temporally transient variation of each cell. This transient variation appeared to have a marginal
307 effect on gene expression, based on our data that two DEG clusters did not show a large difference in
308 nc886 expression levels.

309 Moving to actual samples, such as those from colon cancer, may reveal further differences in
310 gene expression phenotypes and functionality related to nc886 expression. We aim to improve the
311 methods we have conducted to apply scRNA-seq analysis to samples with higher cellular and functional
312 heterogeneity.

313

314 **Acknowledgements**

315 This research was supported by the National Research Foundation of Korea (NRF) funded by the
316 Ministry of Science, ICT & Future Planning (RS-2023-00220840 to HL) and by grants from the National
317 Cancer Center, Korea (NCC-2210320 and NCC-2311362 to YSL and NCC-2210360 to Y-SL). We also
318 acknowledge the Basic Medical Science Facilitation Program, through the Catholic Medical Center of
319 the Catholic University of Korea funded by the Catholic Education Foundation and the
320 KREONET/GLORIAD service provided by KISTI (Korea Institute of Science and Technology
321 Information).

322 **References**

323 1. Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones.
324 Cell. 2014;157(1):77-94.

325 2. van Dijk EL, Jaszczyzyn Y, Naquin D, Thermes C. The Third Revolution in Sequencing
326 Technology. Trends Genet. 2018;34(9):666-81.

327 3. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of
328 transcription in human cells. Nature. 2012;489(7414):101-8.

329 4. Haque A, Engel J, Teichmann SA, Lonnberg T. A practical guide to single-cell RNA-
330 sequencing for biomedical research and clinical applications. Genome Med. 2017;9(1):75.

331 5. Baysoy A, Bai Z, Satija R, Fan R. The technological landscape and applications of single-cell
332 multi-omics. Nat Rev Mol Cell Biol. 2023;24(10):695-713.

333 6. Liao Y, Raghu D, Pal B, Mielke LA, Shi W. cellCounts: an R function for quantifying 10x

334 1 Chromium single-cell RNA sequencing data. *Bioinformatics*. 2023;39(7).

335 7. Kukurba KR, Montgomery SB. RNA Sequencing and Analysis. *Cold Spring Harb Protoc*.

336 2015;2015(11):951-69.

337 8. Cui P, Lin Q, Ding F, Xin C, Gong W, Zhang L, et al. A comparison between ribo-minus

338 RNA-sequencing and polyA-selected RNA-sequencing. *Genomics*. 2010;96(5):259-65.

339 9. Huang R, Jaritz M, Guenzl P, Vlakovic I, Sommer A, Tamir IM, et al. An RNA-Seq strategy

340 to detect the complete coding and non-coding transcriptome including full-length imprinted macro

341 ncRNAs. *PLoS One*. 2011;6(11):e27288.

342 10. Li X, Yu K, Li F, Lu W, Wang Y, Zhang W, et al. Novel Method of Full-Length RNA-seq That

343 Expands the Identification of Non-Polyadenylated RNAs Using Nanopore Sequencing. *Anal Chem*.

344 2022;94(36):12342-51.

345 11. Sheng K, Cao W, Niu Y, Deng Q, Zong C. Effective detection of variation in single-cell

346 transcriptomes using MATQ-seq. *Nat Methods*. 2017;14(3):267-70.

347 12. Isakova A, Neff N, Quake SR. Single-cell quantification of a broad RNA spectrum reveals

348 unique noncoding patterns associated with cell types and states. *Proc Natl Acad Sci U S A*.

349 2021;118(51).

350 13. Kouno T, Carninci P, Shin JW. Complete Transcriptome Analysis by 5'-End Single-Cell RNA-

351 Seq with Random Priming. *Methods Mol Biol*. 2022;2490:141-56.

352 14. Dieci G, Fiorino G, Castelnuovo M, Teichmann M, Pagano A. The expanding RNA

353 polymerase III transcriptome. *Trends Genet.* 2007;23(12):614-22.

354 15. Yeganeh M, Hernandez N. RNA polymerase III transcription as a disease factor. *Genes Dev.*

355 2020;34(13-14):865-82.

356 16. Lee YS, Lee YS. nc886, an RNA Polymerase III-Transcribed Noncoding RNA Whose

357 Expression Is Dynamic and Regulated by Intriguing Mechanisms. *Int J Mol Sci.* 2023;24(10).

358 17. Wilson B, Dutta A. Function and Therapeutic Implications of tRNA Derived Small RNAs.

359 *Front Mol Biosci.* 2022;9:888424.

360 18. Park JL, Lee YS, Song MJ, Hong SH, Ahn JH, Seo EH, et al. Epigenetic regulation of RNA

361 polymerase III transcription in early breast tumorigenesis. *Oncogene.* 2017;36(49):6793-804.

362 19. Lee K, Kunkeaw N, Jeon SH, Lee I, Johnson BH, Kang GY, et al. Precursor miR-886, a novel

363 noncoding RNA repressed in cancer, associates with PKR and modulates its activity. *RNA.*

364 2011;17(6):1076-89.

365 20. Kunkeaw N, Lee YS, Im WR, Jang JJ, Song MJ, Yang B, et al. Mechanism mediated by a

366 noncoding RNA, nc886, in the cytotoxicity of a DNA-reactive compound. *Proc Natl Acad Sci U S A.*

367 2019;116(17):8289-94.

368 21. Shen W, Le S, Li Y, Hu F. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File

369 Manipulation. *PLoS One.* 2016;11(10):e0163962.

370 22. Kang HM, Subramaniam M, Targ S, Nguyen M, Maliskova L, McCarthy E, et al. Multiplexed

371 droplet single-cell RNA-sequencing using natural genetic variation. *Nat Biotechnol.* 2018;36(1):89-

372 94.

373 23. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, 3rd, et al.

374 Comprehensive Integration of Single-Cell Data. *Cell*. 2019;177(7):1888-902 e21.

375 24. Wolock SL, Lopez R, Klein AM. Scrublet: Computational Identification of Cell Doublets in

376 Single-Cell Transcriptomic Data. *Cell Syst*. 2019;8(4):281-91 e9.

377 25. Webber MM, Trakul N, Thraves PS, Bello-DeOcampo D, Chu WW, Storto PD, et al. A human

378 prostatic stromal myofibroblast cell line WPMY-1: a model for stromal-epithelial interactions in

379 prostatic neoplasia. *Carcinogenesis*. 1999;20(7):1185-92.

380 26. Aden DP, Fogel A, Plotkin S, Damjanov I, Knowles BB. Controlled synthesis of HBsAg in a

381 differentiated human liver carcinoma-derived cell line. *Nature*. 1979;282(5739):615-6.

382 27. Subedi GP, Johnson RW, Moniz HA, Moremen KW, Barb AW. High Yield Expression of

383 Recombinant Human Proteins with the Transient Transfection of HEK293 Cells in Suspension. *J Vis*

384 *Exp*. 2015(106):e53568.

385 28. Tan E, Chin CSH, Lim ZFS, Ng SK. HEK293 Cell Line as a Platform to Produce Recombinant

386 Proteins and Viral Vectors. *Front Bioeng Biotechnol*. 2021;9:796991.

387 29. Yu L, Wang CY, Shi J, Miao L, Du X, Mayer D, et al. Estrogens promote invasion of prostate

388 cancer cells in a paracrine manner through up-regulation of matrix metalloproteinase 2 in prostatic

389 stromal cells. *Endocrinology*. 2011;152(3):773-81.

390 30. Segal JM, Kent D, Wesche DJ, Ng SS, Serra M, Oules B, et al. Single cell analysis of human

391 foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. *Nat Commun.*
392 2019;10(1):3350.

393 31. Sun N, Lee YT, Zhang RY, Kao R, Teng PC, Yang Y, et al. Purification of HCC-specific
394 extracellular vesicles on nanosubstrates for early HCC detection by digital scoring. *Nat Commun.*
395 2020;11(1):4489.

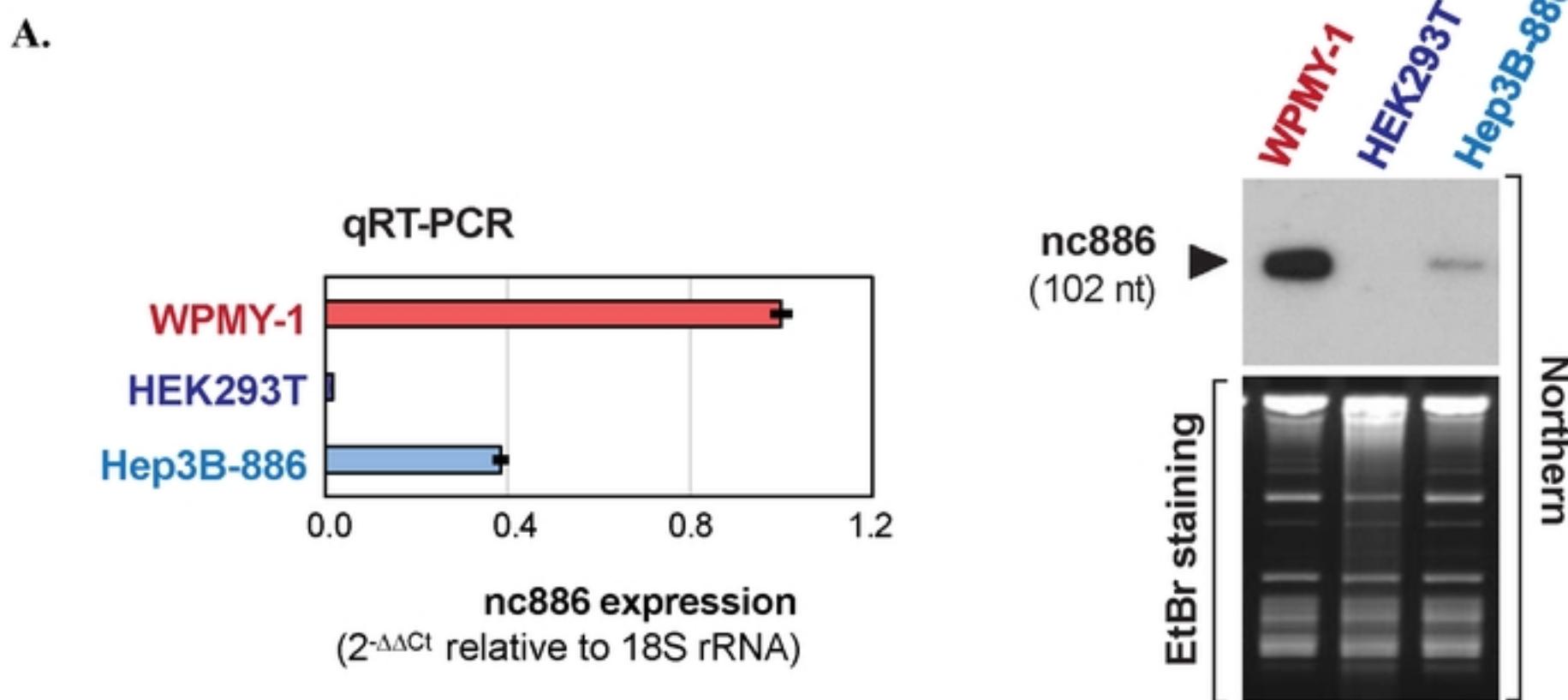
396 32. Wu C, Macleod I, Su AI. BioGPS and MyGene.info: organizing online, gene-centric
397 information. *Nucleic Acids Res.* 2013;41(Database issue):D561-5.

398 33. Buechler MB, Pradhan RN, Krishnamurty AT, Cox C, Calviello AK, Wang AW, et al. Cross-
399 tissue organization of the fibroblast lineage. *Nature.* 2021;593(7860):575-9.

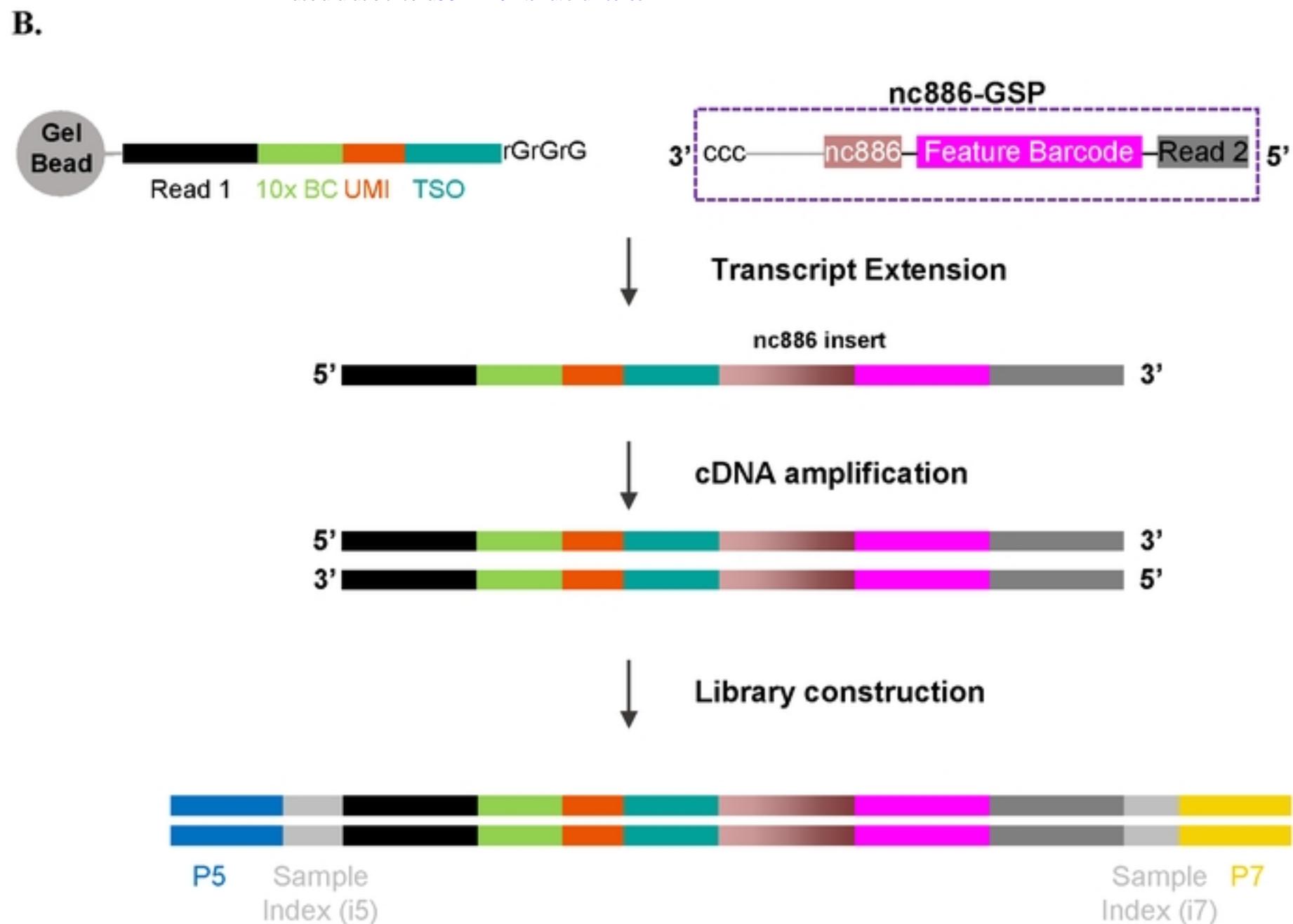
400 34. Zhu K, Cai L, Cui C, de Los Toyos JR, Anastassiou D. Single-cell analysis reveals the pan-
401 cancer invasiveness-associated transition of adipose-derived stromal cells into COL11A1-expressing
402 cancer-associated fibroblasts. *PLoS Comput Biol.* 2021;17(7):e1009228.

403 35. Wang L, Yin YL, Liu XZ, Shen P, Zheng YG, Lan XR, et al. Current understanding of metal
404 ions in the pathogenesis of Alzheimer's disease. *Transl Neurodegener.* 2020;9:10.

405 36. Ling XB, Wei HW, Wang J, Kong YQ, Wu YY, Guo JL, et al. Mammalian Metallothionein-2A
406 and Oxidative Stress. *Int J Mol Sci.* 2016;17(9).


407 37. Seo J, Jeong DW, Park JW, Lee KW, Fukuda J, Chun YS. Fatty-acid-induced FABP5/HIF-1
408 reprograms lipid metabolism and enhances the proliferation of liver cancer cells. *Commun Biol.*
409 2020;3(1):638.

410 38. Zhao L, Wang Z, Xu Y, Zhang P, Qiu J, Nie D, et al. Sphingosine kinase 1 regulates lipid
411 metabolism to promote progression of kidney renal clear cell carcinoma. *Pathol Res Pract.*
412 2023;248:154641.


413 39. Calderon BM, Conn GL. Human noncoding RNA 886 (nc886) adopts two structurally distinct
414 conformers that are functionally opposing regulators of PKR. *RNA.* 2017;23(4):557-66.

415

Figure 1.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.20.585884>; this version posted March 23, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

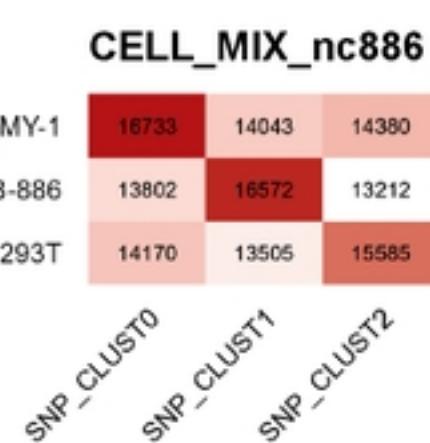


Fig 1. Modification of 5' scRNA-seq for nc886 detection

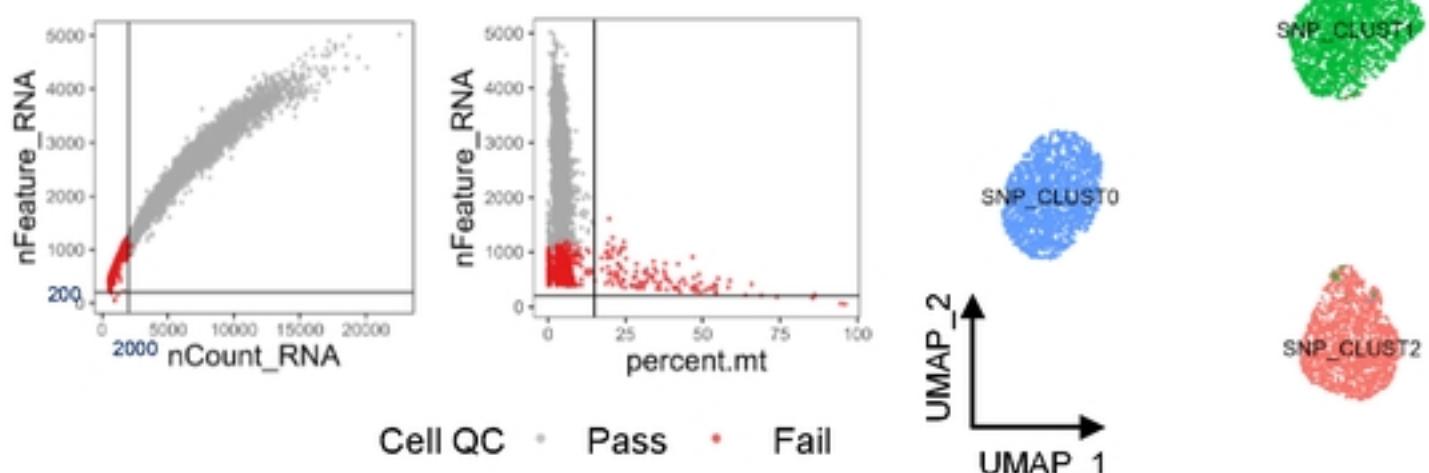
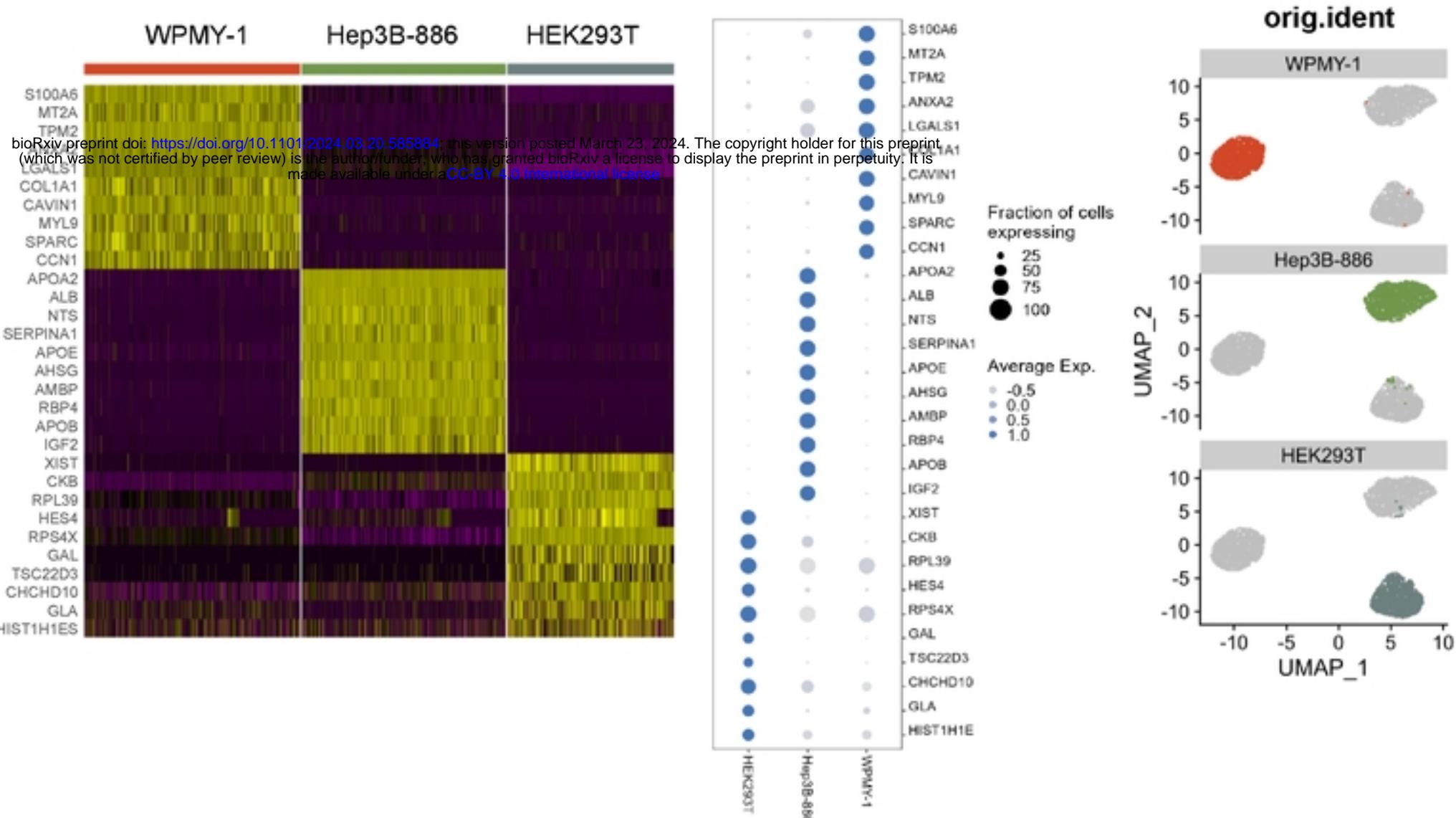
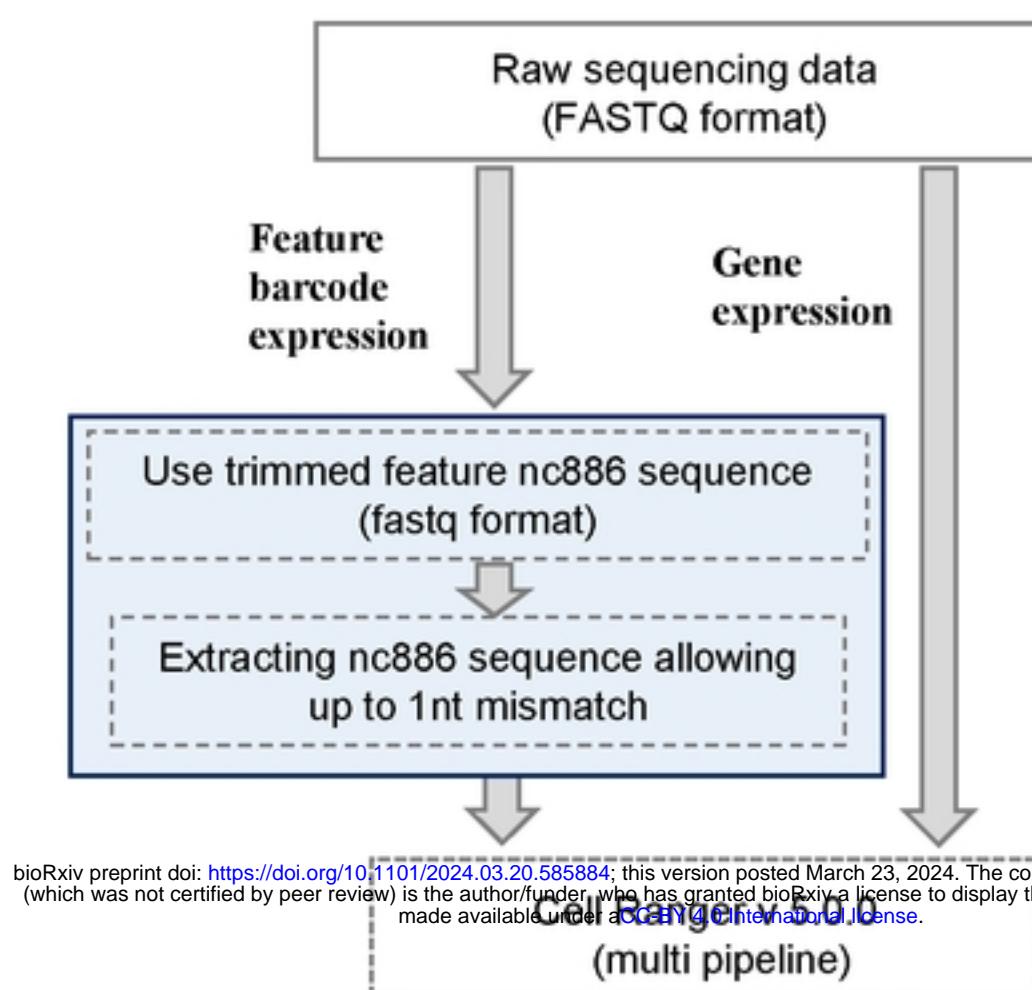

(A) nc886 gene expression levels in three cell lines, measured by qRT-PCR (left panel) and by Northern hybridization (right panel). In qRT-PCR, each bar represents an average of triplicate samples, with the standard deviation indicated. (B) A cartoon depicting the procedure for library preparation in which nc886 gene-specific primer (nc886-GSP) was spiked-in. Diagrams are drawn to show nc886-GSP and products (whose actual sequences are listed in Table 1) in each step. The final library contains sample index and sequencing adaptors P5 and P7.

Figure 2.


A.

B.

C.


Fig 2. Gene expression profiling of each cell line.

(A) Cells were classified into three distinct clusters using ‘freemuxlet’. Number of overlapping SNPs between the clusters and SNP arrays for each cell line are indicated. Based on the SNP expression, doublets and ambiguous cells are excluded. **(B)** After freemuxlet runs and doublet/ambiguous cell removal, additional QC filtration was applied: UMI counts($nCount_RNA > 2,000$), number of genes expressed ($nFeature_RNA > 200$), and proportions of mitochondrial gene expression ($percent.mt < 15$) (left). The UMAP shows SNP clusters within 3 Seurat clusters: SNP_CLUST0 = “WPMY-1”, SNP_CLUST1 = “Hep3B-886”, SNP_CLUST2 = “HEK293T” (right). **(C)** DEG analysis showing gene expression characteristics for each cell line, shown as Heatmap (left), DotPlot (middle). UMAP cluster designation to each cell line (right).

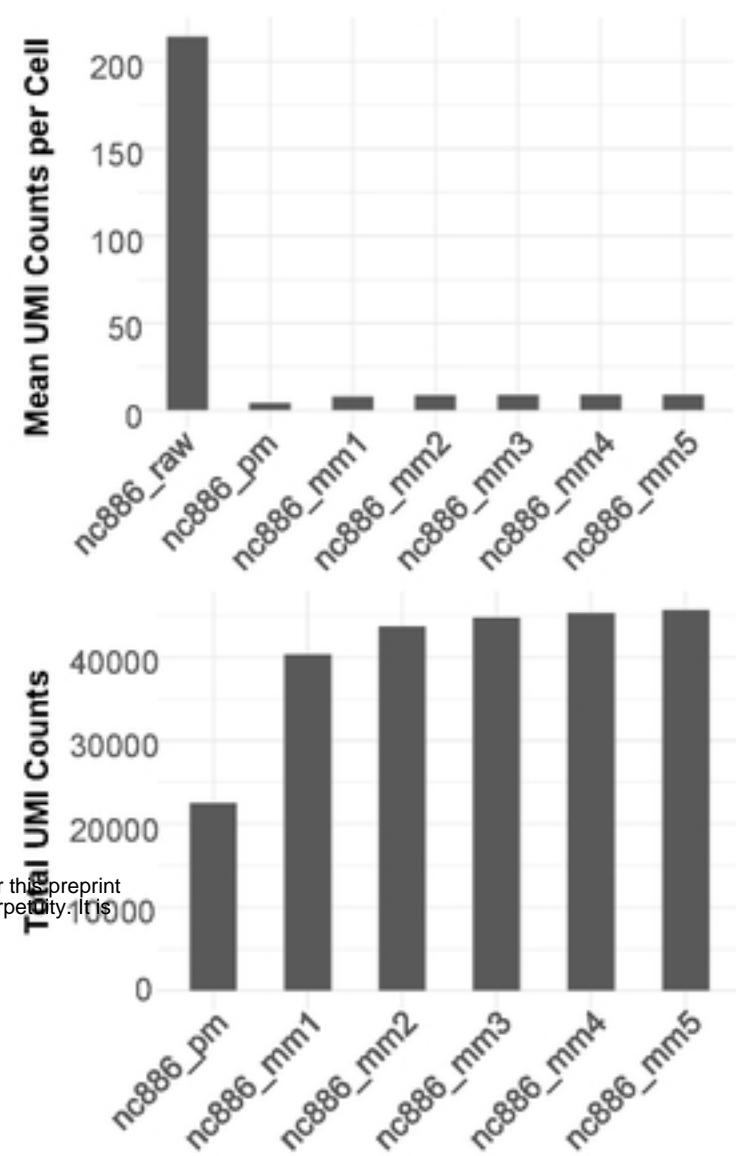
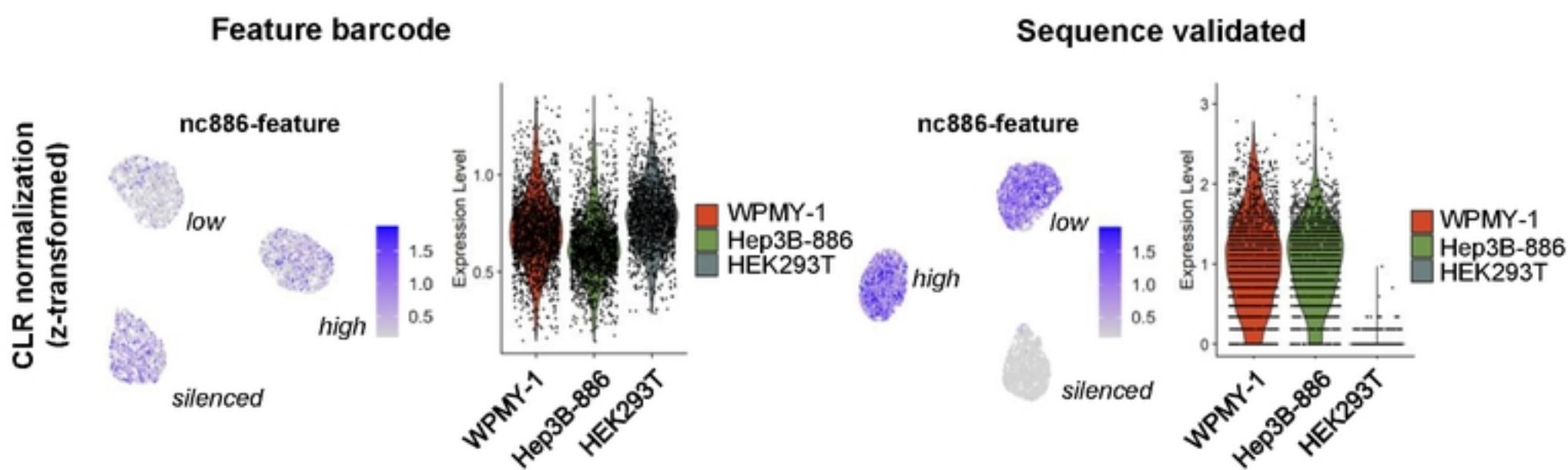

Figure 2

Figure 3.


A.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.20.585884>; this version posted March 23, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [CC-BY 4.0 International license](#).

B.

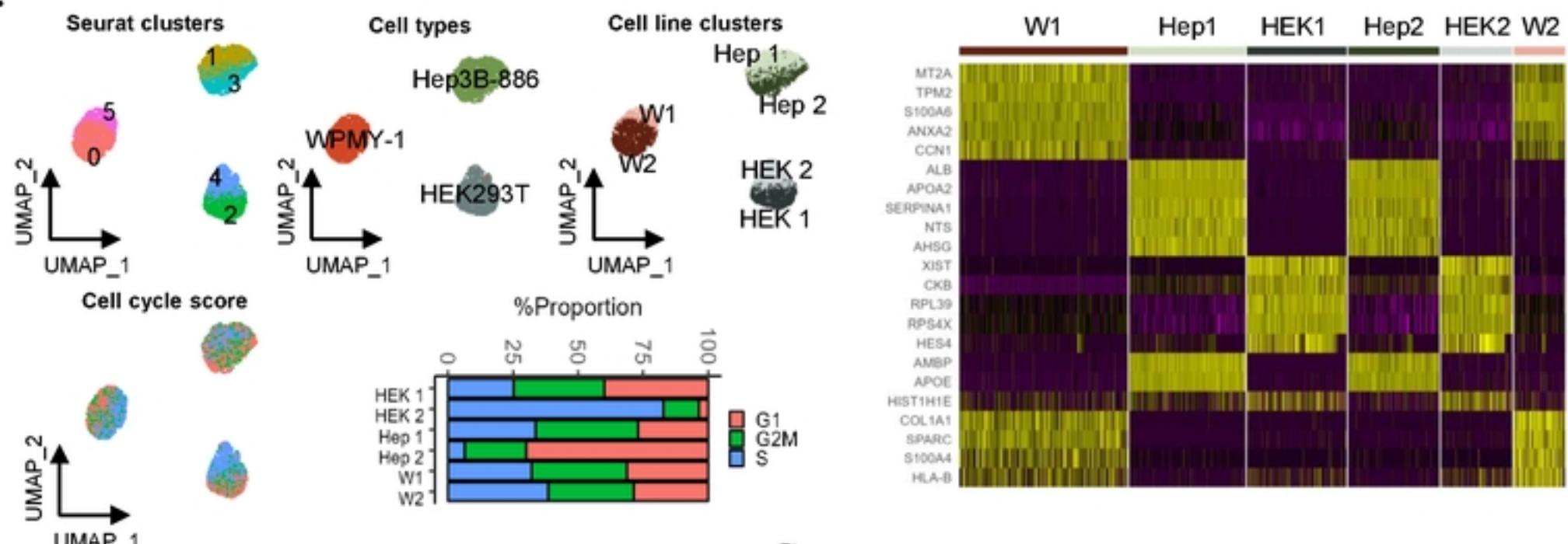


Fig 3. Assessment of nc886 expression level across the cell lines, employing feature barcoding and a sequence alignment strategy.

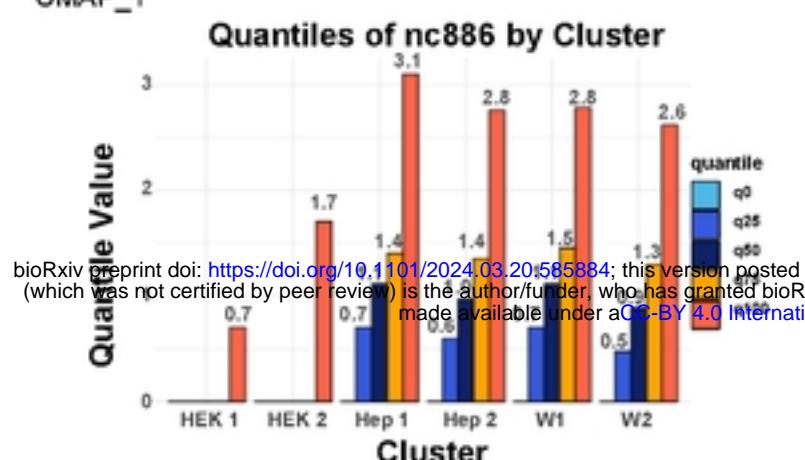
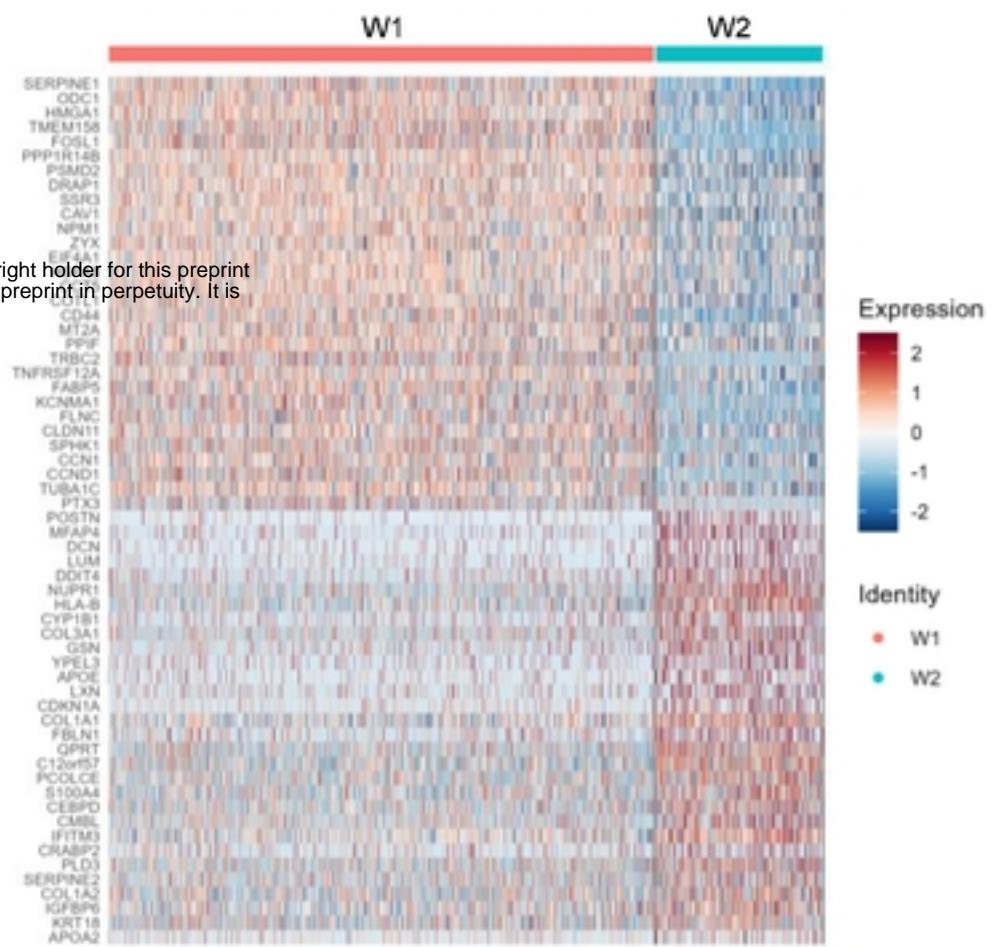
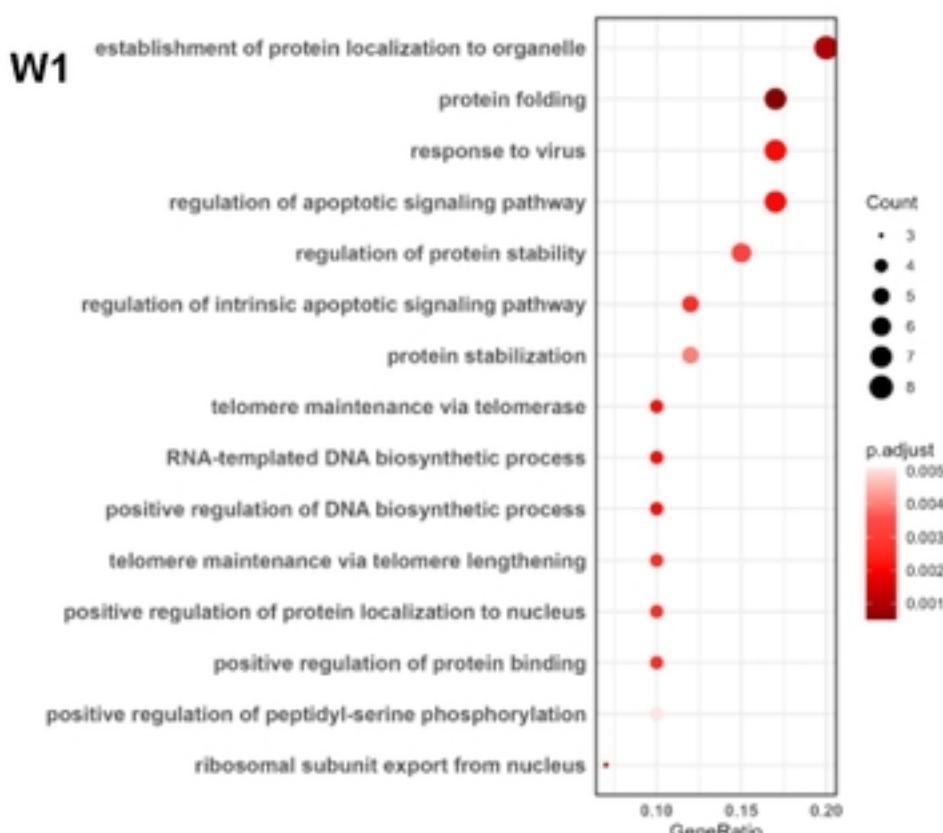

(A) Overview of the estimation of nc886 gene expression in comparison to transcriptome analysis (left). To assess nc886 gene expression, the feature barcode or nc886 sequence aligned reads were counted. nc886 gene expression and transcriptome data were processed by the CellRanger multi pipeline. Bar plots quantify UMI counts for the feature barcode or nc886 sequence alignments, with mismatch counts ranging from one to five nts: “nc886_pm” and “nc886_mm1-5” denote perfect match to nc886 and the number of mismatches (mm) respectively (right). **(B)** The expression level of nc886 across cell lines in z-transform values of the feature barcode (left) or nc886-aligned counts (right) using ‘FeaturePlot’ and ‘ViolinPlot’.

Figure 4.

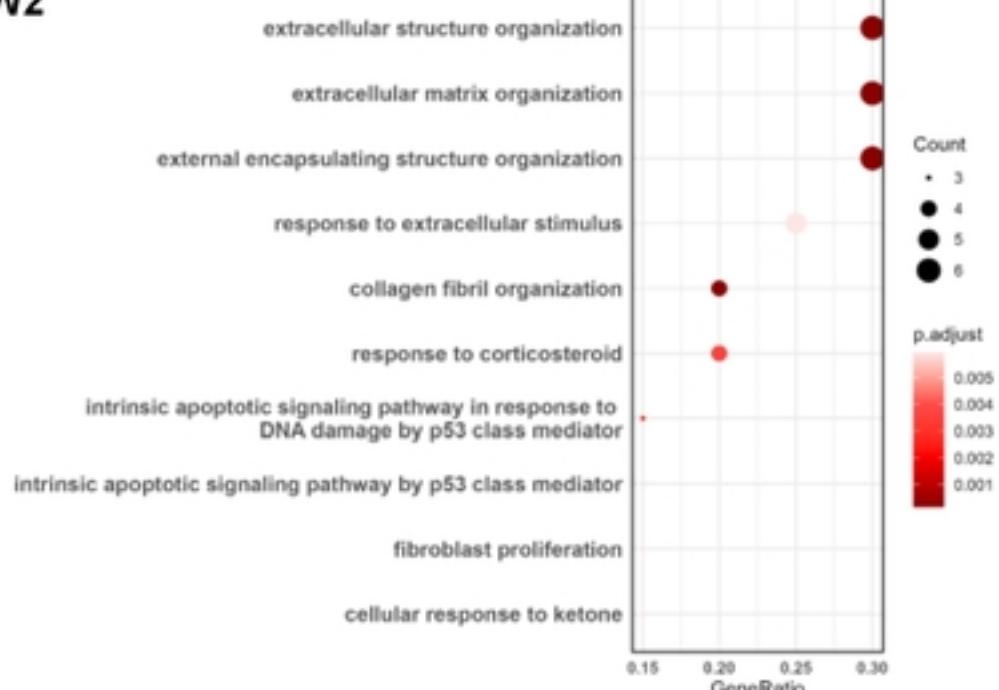
A.



B.



bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.20.585884>; this version posted March 23, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


C.

D.

W2

Fig 4. Phenotypic features and nc886 expression levels in sub-clusters in each of the cell lines.

(A) UMAP visualization of two distinct clusters per cell line and cell cycle scores. Bar plot; Proportion of cell cycle score distribution in each of the 6 clusters (left). (Cluster 0, W1; Cluster 1, Hep1; Cluster 2, HEK1; Cluster 3, Hep2; Cluster 4, HEK2; Cluster 5, W2). A heatmap visualization of cluster-specific DEGs obtained from the Wilcox test (right) **(B)** Distribution of nc886 expression analyzed using Quantile and Histogram in the cell line clusters. **(C)** A heatmap showing gene expression of two clusters, W1 and W2, in the WPMY-1 cell line. **(D)** GSEA performed on the WPMY-1 clusters, ordered by Gene ratio and adjusted p-value. (cutoff GeneRatio >0.15, p-value <0.005, q-value <0.05).