

1 **Bivalent COVID-19 vaccines boost the capacity of pre-existing SARS-CoV-2-specific**
2 **memory B cells to cross-recognize Omicron subvariants**
3

4 Holly A. Fryer¹, Daryl Geers², Lennert Gommers², Luca M. Zaeck², Ngoc H. Tan³,
5 Bernadette Jones-Freeman¹, Abraham Goorhuis^{4,5}, Douwe F. Postma⁶, Leo G. Visser⁷, P.
6 Mark Hogarth^{1,8}, Marion P. G. Koopmans², Corine H. GeurtsvanKessel², Robyn E.
7 O'Hehir^{1,9}, P. Hugo M. van der Kuy³, Rory D. de Vries², and Menno C. van Zelm^{1,4,10*}
8

9 ¹ *Dept. Immunology, School of Translational Medicine, Monash University, Melbourne,*
10 *Victoria, Australia;* ² *Dept. Viroscience, Erasmus MC, University Medical Center,*
11 *Rotterdam, the Netherlands;* ³ *Dept. Hospital Pharmacy, Erasmus MC, University Medical*
12 *Center, Rotterdam, the Netherlands;* ⁴ *Center of Tropical Medicine and Travel Medicine,*
13 *Department of Infectious Diseases, Amsterdam University Medical Centers, Amsterdam, the*
14 *Netherlands;* ⁵ *Infection and Immunity, Amsterdam Public Health, University of Amsterdam,*
15 *Amsterdam, the Netherlands;* ⁶ *Department of Internal Medicine and Infectious Diseases,*
16 *University Medical Center Groningen, Groningen, the Netherlands;* ⁷ *Department of*
17 *Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands;* ⁸ *Immune*
18 *Therapies Group, Burnet Institute, Melbourne, Victoria, Australia;* ⁹ *Allergy, Asthma and*
19 *Clinical Immunology Service, Alfred Hospital, Melbourne, Victoria, Australia;* ¹⁰ *Dept.*
20 *Immunology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands*
21

22 *Corresponding author: Menno C. van Zelm, email: m.vanzelm@erasmusmc.nl
23

24 **Keywords:** COVID-19 vaccine; memory B cells; bivalent vaccine; mRNA vaccine; adenoviral
25 vector vaccine; neutralizing antibodies.

26 **Abstract**

27 Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or
28 BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. We
29 characterized the memory B-cell (Bmem) response following a fourth dose with a BA.1 or BA.5
30 bivalent vaccine, and compared the immunogenicity with a WH1 monovalent fourth dose.
31 Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines
32 were sampled before and one-month after a monovalent, BA.1 or BA.5 bivalent fourth dose
33 COVID-19 vaccine. RBD-specific Bmem were quantified with an in-depth spectral flow cytometry
34 panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5
35 variants. All recipients had slightly increased WH1 RBD-specific Bmem numbers. Recognition of
36 Omicron subvariants was not enhanced following monovalent vaccination, while both bivalent
37 vaccines significantly increased WH1 RBD-specific Bmem cross-recognition of all Omicron
38 subvariants tested by flow cytometry. Thus, Omicron-based bivalent vaccines can improve
39 recognition of descendent Omicron subvariants by pre-existing, WH1-specific Bmem, beyond that
40 of a conventional, monovalent vaccine. This provides new insights into the capacity of variant-
41 based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2
42 variants.

43 **INTRODUCTION**

44 The mRNA- and adenoviral vector-based COVID-19 vaccines, encoding the Spike (S) protein of
45 the ancestral Wuhan-Hu-1 lineage (WH1), are highly effective at preventing severe disease and
46 hospitalization from SARS-CoV-2 (1, 2). However, the emergence of antigenically distinct
47 Omicron subvariants in 2022 required the use of updated booster vaccinations to overcome reduced
48 vaccine-induced neutralizing antibody (NAb) responses and maintain efficacy against emerging
49 variants (3-6). Therefore, in addition to monovalent WH1 vaccines, fourth dose vaccinations were
50 performed with bivalent vaccines that contain equal parts of mRNA encoding the WH1 and
51 Omicron BA.1 or BA.5 S protein (6-10).

52 Bivalent vaccines proved significantly more effective at preventing infection and particularly
53 severe disease or death from Omicron variants compared to monovalent WH1 vaccines (11-13).
54 Bivalent boosters elicited equivalent levels of NAb against WH1 compared to monovalent vaccines,
55 and increased NAb levels against the Omicron subvariant encoded by the bivalent vaccine, as well
56 as descendant subvariants (14-17). Despite the induction of Omicron-specific immune responses,
57 NAb levels against emerging subvariants are still significantly lower compared to WH1 (14, 15,
58 18). While NAb levels were initially considered a correlate of protection against COVID-19, the
59 durable protection against severe disease is suggestive of a more prominent role for memory T- and
60 B-cells. As the S receptor-binding domain (RBD) is the major target for NAb, quantification of
61 RBD-specific memory B cells (Bmem) can be used as a correlate of long-term protection against
62 severe COVID-19 (2, 19-21).

63 Circulating antigen-specific Bmem, detected in peripheral blood by flow cytometry, can be
64 used to define the kinetics and phenotype of the S- and RBD-specific Bmem response to SARS-
65 CoV-2 infection and vaccination (19, 22-27). Our group recently showed that a third monovalent
66 mRNA dose boosted the frequency of WH1-specific Bmem binding Omicron BA.2 and BA.5 (27).
67 Thus, the question remains whether the use of bivalent booster vaccines for the fourth dose
68 enhances the recognition of Omicron subvariants compared to a monovalent WH1 vaccine, thereby

69 broadening the SARS-CoV-2-specific immune responses. Here, we characterized and compared the
70 NAb and Bmem responses following WH1 monovalent, BA.1 or BA.5 bivalent vaccination in a
71 cohort of healthcare workers (HCW) from the Dutch SWITCH-ON study (28) and the Monash
72 Immunology cohort.

73 **RESULTS**

74 **Cohort characteristics**

75 HCW were recruited from the Dutch SWITCH-ON study (28) and the Monash Immunology cohort
76 (25, 27) for direct comparison of antibody and Bmem responses to monovalent, BA.1 bivalent, or
77 BA.5 bivalent fourth dose COVID-19 vaccination (**Table 1**). Eighteen recipients of a monovalent
78 booster (BNT162b2 or mRNA-1273), 33 BA.1 bivalent booster recipients (BNT162b2.BA1 or
79 mRNA-1273.214), and 21 BA.5 bivalent booster recipients (BNT162b2.BA5 or mRNA-1273.222)
80 were included (**Figure 1A**). The monovalent group comprised entirely Monash Immunology
81 donors, while both bivalent groups were a combination of Monash and SWITCH-ON donors
82 (**Table 1, Figure 1A**). Peripheral blood was sampled pre-dose four- and 28-days post-dose four
83 (median 28 days, 27-49; **Table 1, Figure 1A**).

84 There were no significant differences in the age and sex demographics between each of the
85 three vaccine groups, with similar female preponderance. A significantly higher proportion of
86 participants in the monovalent booster group had received primary vaccination (doses 1-2; 83%)
87 with an adenoviral vector vaccine rather than with an mRNA vaccine as compared to both bivalent
88 groups (48-55%). The time interval between the third and fourth vaccine doses was significantly
89 different between the three groups, ranging from a median of 220 days (range 133-267) for the
90 monovalent group, 310 days (194-454) for BA.1 bivalent and 365 (214-533) for BA.5 bivalent
91 (**Table 1**). More donors in both bivalent groups had experienced a confirmed breakthrough
92 infection (BTI) prior to dose four than the monovalent group, likely because the bivalent recipients
93 had longer time intervals between third and fourth doses and thus more chance of infection (**Table**
94 **1**). The majority of these BTIs were reported between late 2021 and 2023, when Omicron
95 subvariants were dominant (4). Whilst failing to reach significance, the median interval between
96 BTIs and the pre-dose four sampling was slightly shorter in the BA.1 group than the BA.5 group,
97 likely because the BA.5 group received their booster at a later timepoint due to the delayed
98 introduction of the BA.5 bivalent vaccines (29).

99

100 **Increased neutralization of SARS-CoV-2 Omicron subvariants after a fourth dose booster**

101 Plasma NAb titers against the SARS-CoV-2 WH1, Omicron BA.1, and BA.5 viruses were
102 measured using a plaque reduction neutralization test (PRNT) before and four weeks after dose
103 four. All donors, irrespective of vaccine type, had detectable NAb against WH1, BA.1, and BA.5
104 after dose four (**Figure 1B-D**). The monovalent vaccine elicited a significant increase in NAb titers
105 against WH1 and BA.1 (**Figure 1B**), while the BA.1 and BA.5 bivalent vaccines elicited significant
106 increases in NAb against WH1, BA.1 and BA.5. (**Figure 1C-D**). WH1 NAb titers were ~3-4-fold
107 higher after either monovalent or bivalent vaccination (**Figure 1E**). In contrast, the fold increases in
108 BA.5 NAb titers were greater after the bivalent boosters than the monovalent booster, with the BA.5
109 bivalent booster eliciting the largest fold increases in all NAb titers (**Figure 1E**).

110 At baseline (pre-dose four), we observed higher NAb titers in the BA.1 bivalent cohort than
111 both the monovalent and BA.5 bivalent cohorts. Due to the SWITCH-ON trial structure, the BA.1
112 bivalent cohort received their fourth dose booster three months earlier than the BA.5 bivalent
113 cohort, which accounts for the higher titers (30). Individuals with a confirmed SARS-CoV-2 BTI
114 within six months before a sampling timepoint tended to have higher NAb titers against WH1,
115 BA.1, and BA.5, which may be contributing to the higher baseline and post-dose four NAb levels in
116 the bivalent groups (**Figure 1B-D**). Overall, robust neutralization of WH1 as well as Omicron
117 subvariants four weeks after a monovalent, BA.1 or BA.5 bivalent fourth dose booster was detected,
118 with the bivalent BA.5 vaccine eliciting the greatest increases in NAb against Omicron BA.1 and
119 BA.5.

120

121 **Bivalent vaccines boosted RBD-specific Bmem recognizing the vaccine Omicron subvariant**

122 To evaluate the capacity of each vaccine to boost Bmem specific for the variants encoded by each
123 vaccine, total, WH1, Omicron BA.1, and BA.5 RBD-specific Bmem were quantified and compared
124 pre- and four-weeks post-dose four using flow cytometry (**Figure 2; Supplementary Figure 1**). In

125 the monovalent and BA.1 bivalent booster groups, B cells specific for WH1 and BA.1 RBDs were
126 identified through double-discrimination to exclude any B cells binding to a fluorochrome. In the
127 BA.5 bivalent booster group, double-discrimination was performed for WH1 and BA.5 RBDs
128 (**Figure 2A**). Within RBD-specific B cells, mature Bmem were defined as CD38^{dim} and through
129 subsequent exclusion of naive IgD⁺CD27⁻ B-cells (**Figure 2B**). The BA.1 bivalent group had more
130 WH1 RBD-specific Bmem cells than the monovalent and BA.5 bivalent group, both at baseline
131 (pre-dose four) and at four-weeks post-dose four (**Figure 2C**). This is potentially due to the higher
132 frequency of recent BTIs, which may have impacted RBD-specific Bmem numbers
133 (**Supplementary Figure 2**). Absolute numbers of WH1 RBD-specific Bmem significantly
134 increased after both the BA.1 and BA.5 bivalent boosters (**Figure 2C**), but not after the monovalent
135 booster. The median fold changes in WH1 RBD-specific Bmem numbers were similar between the
136 three booster vaccine types (**Supplementary Table 1**), suggesting similar effects, which might not
137 be significant in the monovalent group due to the smaller sample size.

138 The BA.1 and BA.5 bivalent boosters significantly increased the numbers of BA.1 or BA.5
139 RBD-specific Bmem, respectively (**Figure 2D, E**). There was no significant change in BA.1 RBD-
140 specific Bmem after a monovalent booster, but the fold changes in median BA.1 RBD-specific
141 Bmem after a monovalent and BA.1 bivalent booster were similar (**Supplementary Table 1**). The
142 fold increase in BA.1 RBD-specific Bmem after a BA.1 bivalent booster was similar to the increase
143 in BA.5 RBD-specific Bmem after a BA.5 bivalent booster (**Supplementary Table 1**).
144

145 **RBD-specific Bmem showed signs of recent activation after monovalent and bivalent boosters**
146 The activation profile of RBD-specific Bmem was defined pre- and post-dose four through
147 expression of cell-surface markers (**Figure 3; Supplemental Figure 3**). CD71 expression on Bmem
148 is a marker of recent activation and proliferation, as is low CD21 expression due to downregulation
149 upon antigen recognition (31, 32). Four weeks after a monovalent, BA.1 bivalent, or BA.5 bivalent
150 booster, frequencies of CD71⁺CD38^{dim} WH1 RBD-specific Bmem increased significantly in the

151 BA.1 and BA.5 bivalent booster recipients (**Figure 3A, B**). Frequencies of CD71⁺CD38^{dim} WH1
152 RBD-specific Bmem were not different between monovalent, BA.1 bivalent, and BA.5 bivalent
153 booster recipients at either timepoint. Frequencies of CD21^{lo} WH1 RBD-specific Bmem increased
154 after all fourth dose boosters, and there were no significant differences between the groups at either
155 timepoint (**Figure 3C, D**).

156 Within IgG⁺ WH1 RBD-specific Bmem, CD27 expression was measured as a marker of
157 mature, germinal center (GC)-experienced, class-switched Bmem (**Figure 3E**) (33). The
158 frequencies of CD27⁺IgG⁺ WH1 RBD-specific Bmem were higher after all three booster types,
159 although not significant (p=0.054) for the monovalent group (**Figure 3F**). CD27⁺IgG⁺ WH1 RBD-
160 specific Bmem frequencies before booster vaccination were significantly higher in the monovalent
161 group than in both bivalent groups. The BA.1 and BA.5 bivalent boosters yielded similar increases
162 in frequencies of CD38^{dim}CD71⁺, CD21^{lo}, and IgG⁺CD27⁺ BA.1 or BA.5 RBD-specific Bmem,
163 respectively (**Figure 3B, D, F**).

164 Within the total Bmem population, no changes were observed in the frequencies of
165 CD38^{dim}CD71⁺, CD21^{lo}, or IgG⁺CD27⁺ total Bmem (**Supplementary Figure 3C-E**). Thus,
166 recipients of all three vaccines showed activation in their Bmem compartments with slightly higher
167 increases following the bivalent boosters.

168

169 **mRNA-based priming had a sustained effect on IgG4⁺ Bmem after dose four**

170 The Ig isotype and IgG subclass distributions of RBD-specific Bmem were evaluated pre- and four-
171 weeks post-dose four booster (**Figure 4A**). At both timepoints in all booster type groups the
172 majority of WH1 RBD-specific Bmem expressed IgG1 (70-88%; **Figure 4B**). The proportions of
173 IgG1⁺ within WH1 RBD-specific Bmem were significantly higher than within total Bmem at both
174 timepoints and in all groups (**Supplementary Figure 3F**). The monovalent and BA.1 bivalent
175 boosters did not elicit any significant changes in Ig isotype distribution; however, the IgG3⁺
176 frequency tended to decrease in both groups, likely due to the slight expansion of the IgG1⁺ subset

177 (Figure 4B). Within BA.1-specific Bmem following a BA.1 bivalent booster, the significant
178 increase in IgG1⁺ BA.1-specific Bmem was accompanied by significant decreases in IgG3⁺, IgA⁺,
179 and IgM⁺IgD⁺ subsets (Figure 4B). Following a BA.5 bivalent booster, the proportions of IgA⁺
180 Bmem within both WH1 and BA.5 RBD-specific Bmem were significantly lower, also likely due to
181 the slight increase in IgG1⁺ frequencies (Figure 4B).

182 We and others have recently reported that a third dose mRNA booster after double-dose mRNA
183 priming elicits RBD-specific serum IgG4 and an IgG4⁺ Bmem population, which are both absent
184 after mRNA boosting of an adenoviral vector-primed cohort (27, 34, 35). To evaluate if this effect
185 is sustained after a fourth dose boost, we stratified all donors based on primary vaccination type
186 (Figure 4C). mRNA-primed donors had significantly higher numbers of IgG4⁺ WH1 RBD-specific
187 Bmem than adenoviral vector vaccine recipients before dose four (Figure 4C). These numbers were
188 not affected by a fourth dose in mRNA recipients, but were significantly higher after dose four in
189 adenoviral vector recipients, although still significantly lower than in mRNA-primed donors.
190 Similar patterns were observed within BA.1 and BA.5 RBD-specific Bmem (Figure 4D, E).

191

192 **Bivalent vaccines broadened the recognition of Omicron subvariants by pre-existing WH1
193 RBD-specific Bmem**

194 Next, we evaluated the capacity of WH1 RBD-specific Bmem to bind Omicron subvariants BA.1
195 and BA.5, as well as more recent sublineages BQ.1.1 (sublineage of BA.5) and XBB.1.5
196 (recombinant of two BA.2 subvariants) (4, 36, 37). The monovalent and BA.1 bivalent donors were
197 evaluated for BA.1, BA.5, and BQ.1.1 binding within WH1-specific Bmem (Figure 5A,
198 **Supplementary Table 2 -Tube 2a**). For BA.5 bivalent donors, the panel was expanded to detect
199 BA.1, BA.5, BQ.1.1, and XBB.1.5 binding within WH1-specific Bmem (Figure 5B,
200 **Supplementary Table 2 - Tube 2b**). The numbers of WH1 RBD-specific Bmem that bound
201 Omicron subvariant RBDs were significantly increased after both bivalent boosters, but not after a
202 monovalent booster (Figure 5C, D).

203 As the BA.1 bivalent group was confounded by higher numbers of RBD-specific Bmem both
204 pre- and post-dose four (**Figure 5C**), likely due to more recent Omicron BTIs (as discussed above),
205 the fold increases were evaluated as well (**Figure 5D**). The BA.1 and BA.5 bivalent vaccines
206 elicited similar fold increases for most variants, except for a larger increase in BA.5 binding for the
207 BA.5 bivalent cohort. Thus, both the BA.1 and BA.5 bivalent vaccines elicited a greater capacity of
208 WH1 RBD-specific Bmem to recognize Omicron subvariants, compared to the monovalent
209 boosters.

210

211 **Omicron-only Bmem are increased by a BA.5 bivalent fourth dose booster**

212 An early report indicated that boosting with a bivalent vaccine elicited Bmem with variant-only
213 specificity, suggesting the recruitment of naive B cells with unique specificities into the booster
214 response (17). We evaluated this for the BA.1 and BA.5 bivalent vaccines by detection of BA.1 and
215 BA.5 specific Bmem, respectively, and then evaluation of the fraction that was negative for WH1
216 binding (**Figure 6A-C**). Pre-dose four, the BA.1 bivalent booster recipients had significantly higher
217 numbers of BA.1-specific Bmem that did not bind WH1 compared to the monovalent group
218 (**Figure 6D**). This was associated with the higher frequencies of BTIs during Omicron's circulation
219 prior to their fourth dose. The absolute number of BA.1⁺WH1⁻ Bmem did not change by four-weeks
220 post-monovalent or BA.1 bivalent booster (**Figure 6D**). In contrast, the number of BA.5⁺WH1⁻
221 Bmem in was significantly increased following the fourth dose BA.5 bivalent booster (**Figure 6E**).
222 Thus, in addition to expansion of WH1-specific Bmem with the capacity to bind BA.5, the BA.5
223 bivalent vaccine elicited expansion of BA.5-only binding Bmem.

224 **DISCUSSION**

225 We here performed for the first time, to our knowledge, a comparative evaluation of the capacity of
226 monovalent WH1, bivalent BA.1 and bivalent BA.5 mRNA-based COVID-19 booster vaccinations
227 to elicit Bmem responses that recognize emerging Omicron subvariants. Provided as fourth dose
228 boosters, all three vaccine types boosted NAb levels against WH1, BA.1, and BA.5 variants.
229 Monovalent and bivalent boosters similarly activated RBD-specific Bmem, and increased WH1
230 RBD-specific Bmem numbers. While recognition of Omicron subvariants was not increased in
231 monovalent booster recipients, binding of BA.1, BA.5 and BQ.1.1 subvariants by WH1 RBD-
232 specific Bmem was increased by both bivalent boosters, as was XBB.1.5 binding by the BA.5
233 bivalent booster. BA.5-only binding Bmem numbers were also boosted by the BA.5 vaccine
234 booster, indicating its capacity to recruit new variant-only specific Bmem.

235 The WH1, BA.1, and BA.5 NAb titers of the bivalent vaccine recipients in our report displayed
236 similar patterns as those from the SWITCH-ON trial (30, 38). We here extended these findings to
237 report that both bivalent boosters elicited greater antibody responses than a monovalent booster,
238 resulting in higher BA.1 and BA.5 NAb titers. This finding aligns with trials of the mRNA-
239 1273.214 BA.1 bivalent vaccine, which was found to elicit superior NAb titers against its target
240 antigen, Omicron BA.1, compared to the monovalent mRNA-1273 vaccine (15, 16). We also found
241 that the BA.5 bivalent booster broadened variant NAb recognition the most, eliciting higher BA.5
242 NAb titers than the BA.1 bivalent and monovalent boosters, which confirms previous findings for
243 this vaccine (14, 15, 38-40).

244 We found increases in the proportion of CD27⁺IgG⁺ RBD-specific Bmem at four-weeks after a
245 monovalent or bivalent fourth dose, similar to trends we have shown following dose two and up to
246 six-months post-dose three (27, 41). This indicates a continued maturation of Bmem to become
247 resting over time after booster vaccination. We also report significant increases in the frequencies of
248 CD21^{lo} and CD71⁺CD38^{dim} activated RBD-specific Bmem, illustrating the capacity of fourth dose
249 boosters to re-activate a proportion of antigen-specific Bmem from quiescence. Others have

250 observed a similar peak in CD21^{lo} S-specific B cells at four-weeks post-vaccination (42). It has
251 been shown that CD21^{lo} Bmem have improved antigen-presenting capacity, which suggests that this
252 CD21^{lo} RBD-specific Bmem population may be contributing to the vaccine response by activating
253 T cells (43).

254 Our group previously reported a significantly larger proportion of IgG4⁺ Bmem in mRNA
255 primary vaccine recipients compared to adenoviral vector recipients (44). Others have corroborated
256 this expanded IgG4 response after two and three mRNA vaccine doses (34, 35). Notably, we now
257 show a continued manifestation of this effect after an mRNA fourth dose, in the expression of IgG4
258 by WH1, BA.1, and BA.5 RBD-specific Bmem. One factor influencing this differential
259 development of class-switching may be the difference in dosing interval, as mRNA-based primary
260 vaccines were received three weeks apart compared to 12 weeks between ChAdOx1 adenoviral
261 vector vaccines, and only a single dose was given to most Ad26.COV2.S recipients (1, 45, 46).
262 Additionally, the mRNA-encoded S protein is stabilized by proline residues, while in adenoviral
263 vector vaccines the DNA-encoded S protein can be truncated, and the S1 and S2 subunits are not
264 stabilized and can be cleaved (47). As the S1 subunit contains the RBD, this difference in antigen
265 structure may influence the development of the RBD-specific Bmem response (17, 48).

266 Overall, we found that the activation phenotypes and isotypes of RBD-specific Bmem were
267 similar following either a monovalent or bivalent fourth dose booster. Therefore, the key difference
268 in the Bmem response elicited by the bivalent boosters, compared to the conventional monovalent
269 boosters, is the increase in breadth of variant binding. We found no significant increase in Bmem
270 recognition of any Omicron subvariant RBD four weeks after a monovalent fourth dose booster.
271 Our group previously observed that the frequency of Omicron BA.2 and BA.5 binding only
272 increased by six-months post-dose three, so it is possible that measuring at the later timepoint is
273 required to allow for Bmem maturation (25, 27). However, we found that four-weeks post-dose four
274 the BA.1 and BA.5 bivalent vaccines boosted the ability of WH1 RBD-specific Bmem to bind
275 antigenically distinct subvariants including those not contained in the bivalent vaccines, BQ.1.1 and

276 XBB.1.5. This expands on previous analyses of NAb, which showed improved recognition of XBB
277 and other related subvariants following the BA.5 bivalent mRNA vaccine or an Omicron BTI (14,
278 15, 39, 49). Therefore, we reveal novel evidence that cross-reactive Bmem binding both WH1 and
279 Omicron subvariants are boosted by a bivalent fourth dose.

280 The enhanced ability of cross-reactive Bmem to bind Omicron after bivalent vaccination may be
281 due to ongoing GC reactions that increase BCR affinity for variant RBDs. Exposure to viral variants
282 through infection or vaccination is known to improve variant recognition by Bmem through
283 continued maturation in the GC, linked to increased somatic hypermutations and higher cross-
284 reactive BCR affinity (50, 51). There is evidence that this mechanism may be the cause of improved
285 Bmem recognition of Omicron following booster vaccination, as bivalent vaccines have been
286 shown to elicit prolonged GC B cell responses as well as BA.1- and BA.5-specific CD4⁺ T cells (5,
287 17, 52-54).

288 Neither the monovalent nor BA.1 bivalent boosters increased WH1-negative Omicron-specific
289 Bmem, but BA.5-only Bmem did increase after a BA.5 bivalent booster. This is in line with the
290 observed increase in neutralization breadth that was greatest following the BA.5 bivalent booster.
291 There is previous evidence of a rare *de novo* Omicron-only binding Bmem population following
292 Omicron-based monovalent vaccination; however, in the same study a majority of monoclonal
293 antibodies isolated from Omicron S-specific Bmem were cross-reactive with the ancestral S protein
294 (17). Therefore, the inclusion of the WH1 S protein in current bivalent vaccines may be limiting the
295 development of these *de novo* populations, in a phenomenon known as immune imprinting or
296 original antigenic sin. Pre-existing immune memory specific for the ancestral strain of a pathogen,
297 elicited by primary vaccination or infection, can limit recruitment of naive B cells specific for
298 variant epitopes through competition upon exposures with variant antigen (11, 17, 25, 55).

299 In May 2023, the WHO recommended the use of monovalent Omicron XBB vaccines in an
300 effort to increase the breadth of SARS-CoV-2 immunity (4, 12, 17). Phase 2/3 trials found that the
301 XBB.1.5 monovalent mRNA vaccine elicited higher NAb titers against XBB.1.5 and XBB.1.16

302 than a bivalent XBB.1.5/BA.5 formulation (17, 56). Our current data show that the inclusion of
303 Omicron vaccine antigens can enhance the breadth of Bmem binding to emergent subvariants, and
304 exclusion of the WH1 antigen may reduce the limitations of immune imprinting (17, 34). Therefore,
305 our findings support the use of monovalent variant-based mRNA vaccines going forward. However,
306 preliminary data suggest that the recall of WH1-specific Bmem still dominates the response even
307 after a monovalent XBB.1.5 booster (57).

308 There are limitations in the translational capacity of the study due to the predominance of
309 females, the inclusion of only healthy adults under 65 years old, and the majority of donors being
310 Caucasian. However, the study still provides baseline with which to compare the Bmem responses
311 of high-risk populations including pediatric, elderly, immunodeficient, and immunocompromised
312 individuals, which could help tailor their vaccine regimens and optimize their protection against
313 emerging variants. Unavoidably, the monovalent cohort had a small sample size due to changes in
314 Australian booster recommendations, resulting in a lower-powered group. Our inclusion of fold
315 change analyses allowed us to detect some boosting effects of the monovalent fourth dose that may
316 have not been otherwise significant.

317 Several factors may have contributed to the higher absolute numbers and frequencies of WH1
318 and Omicron RBD-specific Bmem in the BA.1 bivalent group. Firstly, the majority of the BA.1
319 bivalent group had at least one confirmed BTI (with Omicron) in the year prior to pre-dose four
320 sampling, compared to only 22% of monovalent donors. These BTIs may have therefore elicited
321 more Omicron-specific Bmem, including Omicron-only Bmem, resulting in the higher numbers at
322 our baseline measures. Secondly, the BA.5 bivalent group received their fourth dose later than the
323 BA.1 bivalent group, resulting in a slightly longer interval between their last BTI and pre-dose four
324 sampling, which may have resulted in their lower Omicron-specific Bmem numbers.

325 Overall, Omicron BA.1 and BA.5 bivalent mRNA-based vaccines both increased the capacity of
326 WH1 RBD-specific Bmem to bind all measured Omicron subvariants beyond that of a monovalent
327 vaccine, showing that boosting with an antigenically distinct variant enhances the ability of pre-

328 existing Bmem to bind to related subvariants. Our results reveal the cellular immune memory basis
329 for understanding the higher degree of protection the bivalent boosters confer compared to
330 monovalent WH1 COVID-19 vaccines, and supports the continued use of variant-based vaccines to
331 prevent severe disease from emergent variants.

332 **MATERIALS AND METHODS**

333 **Study design**

334 From February 2021 to June 2023, healthy adults (18-65 years old, with no immunological or
335 hematological disease) who received a monovalent, BA.1 bivalent, or BA.5 bivalent fourth dose
336 COVID-19 booster were recruited to a research study conducted by Monash University at the
337 Alfred Hospital (Australia) (**Table 1**). Additionally, HCW (18-65 years old) were recruited to the
338 SWITCH-ON study, a multicenter randomized controlled trial involving four academic hospitals in
339 the Netherlands and randomized to groups who received a fourth dose BA.1 bivalent COVID-19
340 booster in October 2022, or a BA.5 bivalent booster in December 2022, respectively. Full details
341 can be found in the trial protocol (29). A combined total of 72 donors, 27 participants from the
342 Monash University project and 45 participants from the SWITCH-ON study, were analyzed in this
343 manuscript (**Table 1**). Following written informed consent, peripheral blood samples were collected
344 pre-dose four booster, and four-weeks post-dose four booster. Blood samples were processed, as
345 previously described, to perform TruCount analysis, and to isolate plasma or serum and PBMC for
346 detailed immunological analysis (see below) (24). Demographic information including age, sex,
347 prior vaccination dates and types, and SARS-CoV-2 infection status were collected throughout the
348 studies. Reported SARS-CoV-2 breakthrough infections (BTIs) were confirmed with nucleocapsid
349 protein (NCP)-specific IgG assays, as described previously (24, 25, 27, 58). The studies were
350 conducted according to the Declaration of Helsinki and approved by local human research ethics
351 committees (Monash Immunology cohort: Alfred Health ethics no. 32/21, Monash University
352 project no. 72794; SWITCH-ON trial: Erasmus Medical Center Medical Ethics Review Committee,
353 protocol no. MEC-2022-0462, and local review boards of participating centers, and registered at
354 ClinicalTrials.gov, no. NCT05471440).

355

356 **PRNT assay**

357 NAb were measured for all donor plasma samples using a plaque reduction neutralization test
358 (PRNT), as described previously (5, 30, 59). Viruses were isolated and cultured from clinical
359 specimens from the Department of Viroscience, Erasmus MC, and confirmed by next-generation
360 sequencing: D614G (ancestral; GISAID: hCov-19/Netherlands/ZH-EMC-2498), Omicron BA.1
361 (GISAID: hCoV-19/Netherlands/LI-SQD-01032/2022), and Omicron BA.5 (EVAg: 010V-04723;
362 hCovN19/Netherlands/ZHNEMCN5892) (38). Briefly, heat-inactivated serum was serially diluted
363 two-fold in OptiMEM without FBS (Gibco). Four hundred PFU of each SARS-CoV-2 variant in an
364 equal volume of OptiMEM were added to the diluted sera and incubated at 37°C for 1 hour. The
365 serum-virus mixture was transferred to human airway Calu-3 cells (ATCC HTB-55) and incubated
366 at 37°C for 8 hours. The cells were then fixed in 10% neutral-buffered formalin, permeabilized in
367 70% ethanol, and plaques stained with a polyclonal rabbit anti-SARS-CoV-2 nucleocapsid antibody
368 (Sino Biological) and a secondary peroxidase-labelled goat-anti rabbit IgG antibody (Dako). The
369 signals were developed with a precipitate-forming TMB substrate (TrueBlue, SeraCare/KPL) and
370 the number of plaques per well was quantified with an ImmunoSpot Image Analyzer (CTL Europe
371 GmbH). The 50% reduction titer (PRNT50) was estimated by calculating the proportionate distance
372 between two dilutions from which the endpoint titer was calculated. An infection control (without
373 serum) and positive serum control (Nanogam® 100 mg/mL, Sanquin) were included on every assay
374 plate. When no neutralization was detected, the sample was assigned an arbitrary PRNT50 value of
375 10.

376

377 **Protein production**

378 DNA constructs encoding the SARS-CoV-2 RBD of WH1, Omicron BA.1, BA.5, BQ.1.1, and
379 XBB.1.5 were designed incorporating an N-terminal Fel d 1 leader sequence, a C-terminal AviTag
380 for biotin ligase (BirA)-catalyzed biotinylation, and a 6-His tag for cobalt affinity column
381 purification (24, 25, 27). The DNA construct encoding the SARS-CoV-2 WH1 NCP protein was

382 generated with an N-terminal human Ig leader sequence and the same C-terminal AviTag and 6-His
383 tag (24). The DNA constructs were cloned into a pCR3 plasmid and produced using the Expi293
384 Expression system (Thermo Fisher, Waltham, MA), then purified, biotinylated, and tetramerized, as
385 described previously (24, 25, 27). This generated fluorescent tetramers [RBD WH1]₄-BUV395,
386 [RBD WH1]₄-BV421 and [RBD BQ.1.1]₄-BV650 which were used in both panel variations, as well
387 as [RBD BA.1]₄-BV480, [RBD BA.1]₄-BUV737, [RBD BA.5]₄-BUV496 for the panel used to
388 analyze monovalent and BA.1 bivalent booster recipients, and [RBD BA.5]₄-BV480, [RBD BA.5]₄-
389 BUV737, [RBD BA.1]₄-BUV496, and [RBD XBB.1.5]₄-BUV615 for the panel used to analyze
390 BA.5 bivalent booster recipients (**Supplementary Tables 2 and 3**).

391

392 **Flow cytometry**

393 *Trucount*

394 Absolute numbers of major leukocyte populations were determined for each peripheral blood
395 sample as previously described (24, 25, 60). Briefly, 50 μ L of fresh whole blood was added to a BD
396 Trucount tube (BD Biosciences, San Jose, CA, USA) and incubated with 20 μ L of the MultitestTM 6-
397 color TBNK reagent (BD Biosciences) containing CD3, CD4, CD8, CD19, CD16, CD45 and CD56
398 antibodies (**Supplementary Tables 2 and 3**) for 15 minutes at room temperature in the dark.
399 Subsequently, cells were incubated with 1X BD Lysis Solution (BD Biosciences) for 15 minutes to
400 lyse red blood cells. Samples were acquired on the BD FACSLyric analyzer and data were analyzed
401 using FlowJoTM Software v10.9.0 (BD Biosciences) as previously described (24, 60). Trucount data
402 were then used to calculate the absolute numbers of RBD-specific Bmem subsets (60).

403

404 *RBD-specific Bmem analysis*

405 Fluorescent tetramers of WH1, Omicron BA.1, BA.5, and BQ.1.1 RBDs were incorporated into a
406 19-colour spectral flow cytometry panel to characterize the RBD-specific Bmem response elicited
407 by a fourth dose booster in the monovalent and BA.1 bivalent fourth dose groups (**Supplementary**

408 **Tables 2 and 3).** Due to the emergence of subsequent Omicron subvariants including XBB.1.5 by
409 the time the BA.5 bivalent vaccine was distributed, the previous panel was modified for analysis of
410 samples from BA.5 bivalent fourth dose recipients to include WH1, BA.1, BA.5, BQ.1.1, and
411 XBB.1.5 RBD tetramers in a 20-colour panel (**Supplementary Table 2 and 3**). For each pre- and
412 four-weeks post dose four sample, $10\text{-}15 \times 10^6$ thawed PBMC were incubated at room temperature in
413 the dark for 15 minutes in a total volume of $250\mu\text{L}$ with FACS buffer (PBS with 0.1% sodium azide
414 and 0.2% BSA), fixable ViaDye Red, antibodies against surface markers and $5\mu\text{g}/\text{mL}$ each of each
415 RBD tetramer (**Supplementary Tables 2 and 3**). In a separate tube, $1\text{-}5 \times 10^6$ PBMCs were
416 incubated at room temperature in the dark for 15 minutes in a total volume of $100\mu\text{L}$ with FACS
417 buffer, fixable ViaDye Red, antibodies against surface markers and fluorochrome-conjugated
418 streptavidin controls (**Supplementary Tables 2 and 3**). Cells were then washed with FACS buffer,
419 fixed with 2% PFA for 20 minutes at room temperature in the dark, washed once more and acquired
420 on the Cytek Aurora (Cytek Biosciences) using SpectroFlo® software v3.1. Data analysis was
421 performed using FlowJo™ Software v10.9.0 (gating strategy in **Supplementary Figure 1**).
422

423 **Statistical analysis**

424 Absolute numbers of RBD-specific Bmem were calculated relative to the B cell counts measured by
425 the Trucount protocol. GraphPad Prism (v9.5.1) software was used for statistical analyses. Unpaired
426 data were analyzed using the Mann-Whitney test, paired data with the Wilcoxon signed-ranks test,
427 data across multiple groups with the Kruskal-Wallis test with Dunn's multiple comparisons, and
428 categorical data with the Chi-squared test. $p < 0.05$ was considered significant for all statistical tests.

429 **ACKNOWLEDGEMENTS**

430 We thank the ARAFlowCore staff for training and assistance with flow cytometry, Ms Sandra
431 Esparon, Ms Reema Bajaj, and Dr Bruce D Wines (Burnet Institute) for assistance with protein
432 production, Ms Pei Mun Aui, Ms Ebony Blight, Mr Jack Edwards, Dr Gemma Hartley, Ms Shir
433 Sun, Ms Alina Wang (Monash University), and Ms Susanne Bogers (Erasmus MC) for sample
434 collection and preparation, and Ms Laura van Dijk (Erasmus MC) for PRNT assays.

435

436 **FUNDING**

437 This study was supported by the Australian Government Medical Research Future Fund (MRFF,
438 Project no. 2016108; MCvZ and REO'H). The BA.5 bivalent vaccine mRNA-1273.222 was
439 provided by Moderna. Moderna had no role in study design, data collection, data analysis, data
440 interpretation, or writing of the report. The BA.1 bivalent vaccine was provided by the Dutch
441 Center for Infectious Disease Control, National Institute for Public Health and the Environment, the
442 Netherlands (RIVM). The SWITCH-ON trial is funded by the Netherlands Organization for Health
443 Research and Development ZonMw in the COVID-19 Vaccine program (project grant number:
444 10430072110001).

445

446 **AUTHORS' CONTRIBUTIONS**

447 Study design: HAF, AG, DFP, LGV, PMH, REOH, CHGvK, PHMvdK, RDdV and MCvZ;
448 Performed experiments: HAF, DG, LG, LMZ, NHT, and MCvZ; Formal analysis: HAF, DG and
449 LMZ; Subject recruitment/inclusion, vaccination, and sampling: NHT, BJF, AG, DFP, LGV and
450 PHMvdK; Supervised the work: MPGK, CHGvK, PHMvdK, RDdV, MCvZ; Wrote the manuscript:
451 HAF and MCvZ. All authors edited and approved the final version of the manuscript.

452

453 **COMPETING INTERESTS**

454 MCvZ, REO'H and PMH are inventors on a patent application related to this work. All the other
455 authors declare no conflict of interest.

456

457 **DATA AND MATERIAL AVAILABILITY**

458 Data and/or materials will be made available from the corresponding author upon reasonable
459 request.

460

461 **ETHICS APPROVAL**

462 This study was conducted according to the Declaration of Helsinki and approved by local human
463 research ethics committees. Monash Immunology cohort: Alfred Health ethics no. 32/21, Monash
464 University project no. 72794. The SWITCH ON trial study protocol was approved by the Erasmus
465 Medical Center Medical Ethics Review Committee (protocol no. MEC-2022-0462), and local
466 review boards of participating centers, and was registered at ClinicalTrials.gov (NCT05471440).

467

468 **CONSENT TO PARTICIPATE**

469 Written informed consent was obtained from all individual participants prior to inclusion in the
470 study.

471 **REFERENCES**

- 472 1. F. P. Polack, S. J. Thomas, N. Kitchin, J. Absalon, A. Gurtman, S. Lockhart, J. L. Perez, G. Pérez Marc, E. D. Moreira, C. Zerbini, R. Bailey, K. A. Swanson, S. Roychoudhury, K. Koury, P. Li, W. V. Kalina, D. Cooper, R. W. Frenck, L. L. Hammitt, Ö. Türeci, H. Nell, A. Schaefer, S. Ünal, D. B. Tresnan, S. Mather, P. R. Dormitzer, U. Şahin, K. U. Jansen, and W. C. Gruber, Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. *New England Journal of Medicine* **383**, 2603-2615 (2020).
- 473 2. P. M. Folegatti, K. J. Ewer, P. K. Aley, B. Angus, S. Becker, S. Belij-Rammerstorfer, D. Bellamy, S. Bibi, M. Bittaye, E. A. Clutterbuck, C. Dold, S. N. Faust, A. Finn, A. L. Flaxman, B. Hallis, P. Heath, D. Jenkin, R. Lazarus, R. Makinson, A. M. Minassian, K. M. Pollock, M. Ramasamy, H. Robinson, M. Snape, R. Tarrant, M. Voysey, C. Green, A. D. Douglas, A. V. S. Hill, T. Lambe, S. C. Gilbert, and A. J. Pollard, Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. *Lancet* **396**, 467-478 (2020).
- 474 3. N. Andrews, J. Stowe, F. Kirsebom, S. Toffa, T. Ricketts, E. Gallagher, C. Gower, M. Kall, N. Groves, A.-M. O'Connell, D. Simons, P. B. Blomquist, A. Zaidi, S. Nash, N. Iwani Binti Abdul Aziz, S. Thelwall, G. Dabrera, R. Myers, G. Amirthalingam, S. Gharbia, J. C. Barrett, R. Elson, S. N. Ladhani, N. Ferguson, M. Zambon, C. N. J. Campbell, K. Brown, S. Hopkins, M. Chand, M. Ramsay, and J. Lopez Bernal, Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. *New England Journal of Medicine* **386**, 1532-1546 (2022).
- 475 4. W. H. Organisation. 2023. Statement on the antigen composition of COVID-19 vaccines, Vol. 2023.
- 476 5. T. Arashiro, Y. Arima, J. Kuramochi, H. Muraoka, A. Sato, K. Chubachi, K. Oba, A. Yanai, H. Arioka, Y. Uehara, G. Ihara, Y. Kato, N. Yanagisawa, Y. Nagura, H. Yanai, A. Ueda, A. Numata, H. Kato, H. Oka, Y. Nishida, K. Ishii, T. Ooki, Y. Nidaira, T. Asami, T. Jinta, A. Nakamura, D. Taniyama, K. Yamamoto, K. Tanaka, K. Ueshima, T. Fuwa, A. Stucky, T. Suzuki, C. Smith, M. Hibberd, K. Ariyoshi, and M. Suzuki, Immune escape and waning immunity of COVID-19 monovalent mRNA vaccines against symptomatic infection with BA.1/BA.2 and BA.5 in Japan. *Vaccine* **41**, 6969-6979 (2023).
- 477 6. Australian Government Department of Health. 2022. ATAGI recommendations on the use of a booster dose of COVID-19 vaccine, Vol. 2022.
- 478 7. Australian Government Department of Health. 2023. ATAGI recommendations on use of the Pfizer bivalent (Original/Omicron BA.4/5) COVID-19 vaccine, Vol. 2023.
- 479 8. European Medicines Agency. 2022. ECDC-EMA statement on booster vaccination with Omicron adapted bivalent COVID-19 vaccines.
- 480 9. Australian Government Department of Health. 2022. ATAGI recommendations on use of the Pfizer bivalent (Original/Omicron BA.1) COVID-19 vaccine, Vol. 2023.
- 481 10. S. Chalkias, C. Harper, K. Vrbicky, S. R. Walsh, B. Essink, A. Brosz, N. McGhee, J. E. Tomassini, X. Chen, Y. Chang, A. Sutherland, D. C. Montefiori, B. Girard, D. K. Edwards, J. Feng, H. Zhou, L. R. Baden, J. M. Miller, and R. Das, A Bivalent Omicron-Containing Booster Vaccine against Covid-19. *New England Journal of Medicine*, (2022).
- 482 11. M. Aguilar-Bretones, R. A. M. Fouchier, M. P. G. Koopmans, and G. P. van Nierop, Impact of antigenic evolution and original antigenic sin on SARS-CoV-2 immunity. *The Journal of Clinical Investigation* **133**, (2023).
- 483 12. R. Arbel, A. Peretz, R. Sergienko, M. Friger, T. Beckenstein, H. Duskin-Bitan, S. Yaron, A. Hammerman, N. Bilenko, and D. Netzer, Effectiveness of a bivalent mRNA vaccine booster dose to prevent severe COVID-19 outcomes: a retrospective cohort study. *Lancet Infect Dis* **23**, 914-921 (2023).
- 484 13. N. W. Andersson, E. M. Thiesson, U. Baum, N. Pihlström, J. Starrfelt, K. Faksová, E. Poukka, H. Meijerink, R. Ljung, and A. Hviid, Comparative effectiveness of bivalent BA.4-5 and BA.1

521 mRNA booster vaccines among adults aged ≥ 50 years in Nordic countries: nationwide cohort
522 study. *BMJ* **382**, e075286 (2023).

523 14. C. Kurhade, J. Zou, H. Xia, M. Liu, H. C. Chang, P. Ren, X. Xie, and P.-Y. Shi, Low
524 neutralization of SARS-CoV-2 Omicron BA.2.75.2, BQ.1.1, and XBB.1 by 4 doses of parental
525 mRNA vaccine or a BA.5-bivalent booster. *bioRxiv*, 2022.2010.2031.514580 (2022).

526 15. S. Chalkias, N. McGhee, J. L. Whatley, B. Essink, A. Brosz, J. E. Tomassini, B. Girard, K. Wu,
527 D. K. Edwards, A. Nasir, D. Lee, L. E. Avena, J. Feng, W. Deng, D. C. Montefiori, L. R.
528 Baden, J. M. Miller, and R. Das, Safety and Immunogenicity of XBB.1.5-Containing mRNA
529 Vaccines. *medRxiv*, 2023.2008.2022.23293434 (2023).

530 16. S. Chalkias, C. Harper, K. Vrbicky, S. R. Walsh, B. Essink, A. Brosz, N. McGhee, J. E.
531 Tomassini, X. Chen, Y. Chang, A. Sutherland, D. C. Montefiori, B. Girard, D. K. Edwards, J.
532 Feng, H. Zhou, L. R. Baden, J. M. Miller, and R. Das, A Bivalent Omicron-Containing Booster
533 Vaccine against Covid-19. *New England Journal of Medicine* **387**, 1279-1291 (2022).

534 17. W. B. Alsoissi, S. K. Malladi, J. Q. Zhou, Z. Liu, B. Ying, W. Kim, A. J. Schmitz, T. Lei, S. C.
535 Horvath, A. J. Sturtz, K. M. McIntire, B. Evavold, F. Han, S. M. Scheaffer, I. F. Fox, S. F.
536 Mirza, L. Parra-Rodriguez, R. Nachbagauer, B. Nestorova, S. Chalkias, C. W. Farnsworth, M.
537 K. Klebert, I. Pusic, B. S. Strnad, W. D. Middleton, S. A. Teeffey, S. P. J. Whelan, M. S.
538 Diamond, R. Paris, J. A. O'Halloran, R. M. Presti, J. S. Turner, and A. H. Ellebedy, SARS-
539 CoV-2 Omicron boosting induces de novo B cell response in humans. *Nature* **617**, 592-598
540 (2023).

541 18. J. N. Faraone, P. Qu, N. Goodarzi, Y.-M. Zheng, C. Carlin, L. J. Saif, E. M. Oltz, K. Xu, D.
542 Jones, R. J. Gumina, and S.-L. Liu, Immune evasion and membrane fusion of SARS-CoV-2
543 XBB subvariants EG.5.1 and XBB.2.3. *Emerging Microbes & Infections* **12**, 2270069 (2023).

544 19. A. Sokal, G. Barba-Spaeth, I. Fernández, M. Broketa, I. Azzaoui, A. de La Selle, A.
545 Vandenberghe, S. Fourati, A. Roeser, A. Meola, M. Bouvier-Alias, E. Crickx, L. Languille, M.
546 Michel, B. Godeau, S. Gallien, G. Melica, Y. Nguyen, V. Zarrouk, F. Canoui-Poitrine, F.
547 Pirenne, J. Mégret, J.-M. Pawlotsky, S. Fillatreau, P. Bruhns, F. A. Rey, J.-C. Weill, C.-A.
548 Reynaud, P. Chappert, and M. Mahévas, mRNA vaccination of naive and COVID-19-
549 recovered individuals elicits potent memory B cells that recognize SARS-CoV-2 variants.
550 *Immunity* **54**, 2893-2907 (2021).

551 20. A. K. Wheatley, J. A. Juno, J. J. Wang, K. J. Selva, A. Reynaldi, H.-X. Tan, W. S. Lee, K. M.
552 Wragg, H. G. Kelly, R. Esterbauer, S. K. Davis, H. E. Kent, F. L. Mordant, T. E. Schlub, D. L.
553 Gordon, D. S. Khouri, K. Subbarao, D. Cromer, T. P. Gordon, A. W. Chung, M. P. Davenport,
554 and S. J. Kent, Evolution of immune responses to SARS-CoV-2 in mild-moderate COVID-19.
555 *Nature Communications* **12**, 1162 (2021).

556 21. N. Sherina, A. Piralla, L. Du, H. Wan, M. Kumagai-Braesch, J. Andräll, S. Braesch-Andersen,
557 I. Cassaniti, E. Percivalle, A. Sarasini, F. Bergami, R. Di Martino, M. Colaneri, M. Vecchia, M.
558 Sambo, V. Zuccaro, R. Bruno, M. Sachs, T. Oggionni, F. Meloni, H. Abolhassani, F. Bertoglio,
559 M. Schubert, M. Byrne-Steele, J. Han, M. Hust, Y. Xue, L. Hammarström, F. Baldanti, H.
560 Marcotte, and Q. Pan-Hammarström, Persistence of SARS-CoV-2-specific B and T cell
561 responses in convalescent COVID-19 patients 6 months after the infection. *Med* **2**, 281-295
562 (2021).

563 22. R. R. Goel, S. A. Apostolidis, M. M. Painter, D. Mathew, A. Pattekar, O. Kuthuru, S. Gouma,
564 P. Hicks, W. Meng, A. M. Rosenfeld, S. Dysinger, K. A. Lundgreen, L. Kuri-Cervantes, S.
565 Adamski, A. Hicks, S. Korte, D. A. Oldridge, A. E. Baxter, J. R. Giles, M. E. Weirick, C. M.
566 McAllister, J. Dougherty, S. Long, K. D'Andrea, J. T. Hamilton, M. R. Betts, E. T. Luning
567 Prak, P. Bates, S. E. Hensley, A. R. Greenplate, and E. J. Wherry, Distinct antibody and
568 memory B cell responses in SARS-CoV-2 naïve and recovered individuals following mRNA
569 vaccination. *Science immunology* **6**, (2021).

570 23. E. Piano Mortari, C. Russo, M. R. Vinci, S. Terreri, A. Fernandez Salinas, L. Piccioni, C.
571 Alteri, L. Colagrossi, L. Coltellla, S. Ranno, G. Linardos, M. Agosta, C. Albano, C. Agrati, C.
572 Castilletti, S. Meschi, P. Romania, G. Roscilli, E. Pavoni, V. Camisa, A. Santoro, R.

573 Brugaletta, N. Magnavita, A. Ruggiero, N. Cotugno, D. Amodio, M. L. Ciofi Degli Atti, D.
574 Giorgio, N. Russo, G. Salvatori, T. Corsetti, F. Locatelli, C. F. Perno, S. Zaffina, and R.
575 Carsetti, Highly Specific Memory B Cells Generation after the 2nd Dose of BNT162b2
576 Vaccine Compensate for the Decline of Serum Antibodies and Absence of Mucosal IgA. *Cells*
577 **10**, (2021).

578 24. G. E. Hartley, E. S. J. Edwards, P. M. Aui, N. Varese, S. Stojanovic, J. McMahon, A. Y. Peleg,
579 I. Boo, H. E. Drummer, P. M. Hogarth, R. E. O'Hehir, and M. C. van Zelm, Rapid generation
580 of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and
581 convalescence. *Sci Immunol* **5**, (2020).

582 25. G. E. Hartley, E. S. J. Edwards, N. Varese, I. Boo, P. M. Aui, S. J. Bornheimer, P. M. Hogarth,
583 H. E. Drummer, R. E. O'Hehir, and M. C. van Zelm, The second COVID-19 mRNA vaccine
584 dose enhances the capacity of Spike-specific memory B cells to bind Omicron BA.2. *Allergy*,
585 (2022).

586 26. J. M. Dan, J. Mateus, Y. Kato, K. M. Hastie, E. D. Yu, C. E. Faliti, A. Grifoni, S. I. Ramirez, S.
587 Haupt, A. Frazier, C. Nakao, V. Rayaprolu, S. A. Rawlings, B. Peters, F. Krammer, V. Simon,
588 E. O. Saphire, D. M. Smith, D. Weiskopf, A. Sette, and S. Crotty, Immunological memory to
589 SARS-CoV-2 assessed for up to 8 months after infection. *Science* **371**, (2021).

590 27. H. A. Fryer, G. E. Hartley, E. S. J. Edwards, N. Varese, I. Boo, S. J. Bornheimer, P. M.
591 Hogarth, H. E. Drummer, R. E. O'Hehir, and M. C. van Zelm, COVID-19 Adenoviral Vector
592 Vaccination Elicits a Robust Memory B Cell Response with the Capacity to Recognize
593 Omicron BA.2 and BA.5 Variants. *Journal of Clinical Immunology* **43**, 1506-1518 (2023).

594 28. N. H. Tan, R. S. G. Sablerolles, W. J. R. Rietdijk, A. Goorhuis, D. F. Postma, L. G. Visser, S.
595 Bogers, D. Geers, L. M. Zaeck, M. P. G. Koopmans, V. A. S. H. Dalm, N. A. Kootstra, A. L.
596 W. Huckriede, D. van Baarle, M. Lafeber, C. H. GeurtsvanKessel, R. D. de Vries, and P.-H. M.
597 van der Kuy, Analyzing the immunogenicity of bivalent booster vaccinations in healthcare
598 workers: The SWITCH ON trial protocol. *Frontiers in Immunology* **13**, (2022).

599 29. R. R. Goel, M. Painter Mark, A. Apostolidis Sokratis, D. Mathew, W. Meng, M. Rosenfeld
600 Aaron, A. Lundgreen Kendall, A. Reynaldi, S. Khoury David, A. Pattekar, S. Gouma, L. Kuri-
601 Cervantes, P. Hicks, S. Dysinger, A. Hicks, H. Sharma, S. Herring, S. Korte, E. Baxter Amy,
602 A. Oldridge Derek, R. Giles Josephine, E. Weirick Madison, M. McAllister Christopher, M.
603 Awofolaju, N. Tanenbaum, M. Drapeau Elizabeth, J. Dougherty, S. Long, K. D'Andrea, T.
604 Hamilton Jacob, M. McLaughlin, C. Williams Justine, S. Adamski, O. Kuthuru, n. null, I.
605 Frank, R. Betts Michael, A. Vella Laura, A. Grifoni, D. Weiskopf, A. Sette, E. Hensley Scott,
606 P. Davenport Miles, P. Bates, T. Luning Prak Eline, R. Greenplate Allison, and E. J. Wherry,
607 mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern.
608 *Science* **374**, (2021).

609 30. N. H. Tan, D. Geers, R. S. G. Sablerolles, W. J. R. Rietdijk, A. Goorhuis, D. F. Postma, L. G.
610 Visser, S. Bogers, L. L. A. van Dijk, L. Gommers, L. P. M. van Leeuwen, A. Boerma, S. H.
611 Nijhof, K. A. van Dort, M. P. G. Koopmans, V. Dalm, M. Lafeber, N. A. Kootstra, A. L. W.
612 Huckriede, D. van Baarle, L. M. Zaeck, C. H. GeurtsvanKessel, R. D. de Vries, and P. H. M.
613 van der Kuy, Immunogenicity of bivalent omicron (BA.1) booster vaccination after different
614 priming regimens in health-care workers in the Netherlands (SWITCH ON): results from the
615 direct boost group of an open-label, multicentre, randomised controlled trial. *Lancet Infect Dis*
616 **23**, 901-913 (2023).

617 31. A. H. Ellebedy, K. J. Jackson, H. T. Kissick, H. I. Nakaya, C. W. Davis, K. M. Roskin, A. K.
618 McElroy, C. M. Oshansky, R. Elbein, S. Thomas, G. M. Lyon, C. F. Spiropoulou, A. K. Mehta,
619 P. G. Thomas, S. D. Boyd, and R. Ahmed, Defining antigen-specific plasmablast and memory
620 B cell subsets in human blood after viral infection or vaccination. *Nat Immunol* **17**, 1226-1234
621 (2016).

622 32. D. Lau, L. Y.-L. Lan, S. F. Andrews, C. Henry, K. T. Rojas, K. E. Neu, M. Huang, Y. Huang,
623 B. DeKosky, A.-K. E. Palm, G. C. Ippolito, G. Georgiou, and P. C. Wilson, Low CD21

624 expression defines a population of recent germinal center graduates primed for plasma cell
625 differentiation. *Science immunology* **2**, (2017).

626 33. M. A. Berkowska, G. J. Driessen, V. Bikos, C. Grosserichter-Wagener, K. Stamatopoulos, A.
627 Cerutti, B. He, K. Biermann, J. F. Lange, M. van der Burg, J. J. van Dongen, and M. C. van
628 Zelm, Human memory B cells originate from three distinct germinal center-dependent and -
629 independent maturation pathways. *Blood* **118**, 2150-2158 (2011).

630 34. J. S. Buhre, T. Pongracz, I. Künsting, A. S. Lixenfeld, W. Wang, J. Nouta, S. Lehrian, F.
631 Schmelter, H. B. Lunding, L. Dühring, C. Kern, J. Petry, E. L. Martin, B. Föh, M. Steinhaus, V.
632 von Kopylow, C. Sina, T. Graf, J. Rahmöller, M. Wuhrer, and M. Ehlers, mRNA vaccines
633 against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation
634 levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine.
635 *Frontiers in Immunology* **13**, (2023).

636 35. P. Irrgang, J. Gerling, K. Kocher, D. Lapuente, P. Steininger, K. Habenicht, M. Wytopil, S.
637 Beileke, S. Schäfer, J. Zhong, G. Ssebyatika, T. Krey, V. Falcone, C. Schülein, A. S. Peter, K.
638 Nganou-Makamdop, H. Hengel, J. Held, C. Bogdan, K. Überla, K. Schober, T. H. Winkler, and
639 M. Tenbusch, Class switch toward noninflammatory, spike-specific IgG4 antibodies after
640 repeated SARS-CoV-2 mRNA vaccination. *Science Immunology* **8**, eade2798 (2023).

641 36. outbreak.info. 2023. BQ.1.1 Lineage Report, Vol. 2023. outbreak.info.

642 37. T. Tamura, J. Ito, K. Uriu, J. Zahradník, I. Kida, Y. Anraku, H. Nasser, M. Shofa, Y. Oda, S.
643 Lytras, N. Nao, Y. Itakura, S. Deguchi, R. Suzuki, L. Wang, M. S. T. M. Begum, S. Kita, H.
644 Yajima, J. Sasaki, K. Sasaki-Tabata, R. Shimizu, M. Tsuda, Y. Kosugi, S. Fujita, L. Pan, D.
645 Sauter, K. Yoshimatsu, S. Suzuki, H. Asakura, M. Nagashima, K. Sadamasu, K. Yoshimura, Y.
646 Yamamoto, T. Nagamoto, G. Schreiber, K. Maenaka, H. Ito, N. Misawa, I. Kimura, M.
647 Suganami, M. Chiba, R. Yoshimura, K. Yasuda, K. Iida, N. Ohsumi, A. P. Strange, O.
648 Takahashi, K. Ichihara, Y. Shibatani, T. Nishiuchi, M. Kato, Z. Ferdous, H. Mourí, K.
649 Shishido, H. Sawa, R. Hashimoto, Y. Watanabe, A. Sakamoto, N. Yasuhara, T. Suzuki, K.
650 Kimura, Y. Nakajima, S. Nakagawa, J. Wu, K. Shirakawa, A. Takaori-Kondo, K. Nagata, Y.
651 Kazuma, R. Nomura, Y. Horisawa, Y. Tashiro, Y. Kawai, T. Irie, R. Kawabata, C. Motozono,
652 M. Toyoda, T. Ueno, T. Hashiguchi, T. Ikeda, T. Fukuhara, A. Saito, S. Tanaka, K. Matsuno,
653 K. Takayama, K. Sato, and C. The Genotype to Phenotype Japan, Virological characteristics of
654 the SARS-CoV-2 XBB variant derived from recombination of two Omicron subvariants.
655 *Nature Communications* **14**, 2800 (2023).

656 38. L. M. Zaeck, N. H. Tan, W. J. R. Rietdijk, D. Geers, R. S. G. Sablerolles, S. Bogers, L. L. A. v.
657 Dijk, L. Gommers, L. P. M. v. Leeuwen, S. Rugebregt, A. Goorhuis, D. F. Postma, L. G.
658 Visser, V. A. S. H. Dalm, M. Lafeber, N. A. Kootstra, A. L. W. Huckriede, B. L. Haagmans, D.
659 v. Baarle, M. P. G. Koopmans, P. H. M. v. d. Kuy, C. H. GeurtsvanKessel, R. D. d. Vries, and
660 S.-O. R. Group, Distinct COVID-19 vaccine combinations result in divergent immune
661 responses. *medRxiv*, 2023.2008.2025.23294606 (2023).

662 39. M. E. Davis-Gardner, L. Lai, B. Wali, H. Samaha, D. Solis, M. Lee, A. Porter-Morrison, I. T.
663 Hentenaar, F. Yamamoto, S. Godbole, Y. Liu, D. C. Douek, F. E.-H. Lee, N. Roush, A.
664 Moreno, B. A. Pinsky, and M. S. Suthar, Neutralization against BA.2.75.2, BQ.1.1, and XBB
665 from mRNA Bivalent Booster. *New England Journal of Medicine* **388**, 183-185 (2022).

666 40. D. N. Springer, M. Bauer, I. Medits, J. V. Camp, S. W. Aberle, C. Burtscher, E. Höltl, L.
667 Weseslindtner, K. Stiasny, and J. H. Aberle, Bivalent COVID-19 mRNA booster vaccination
668 (BA.1 or BA.4/BA.5) increases neutralization of matched Omicron variants. *npj Vaccines* **8**,
669 110 (2023).

670 41. G. E. Hartley, H. A. Fryer, P. A. Gill, I. Boo, S. J. Bornheimer, P. M. Hogarth, H. E. Drummer,
671 R. E. O'Hehir, E. S. J. Edwards, and M. C. van Zelm, Third dose COVID-19 mRNA vaccine
672 enhances IgG4 isotype switching and recognition of Omicron subvariants by memory B cells
673 after mRNA but not adenovirus priming. *bioRxiv*, 2023.2009.2015.557929 (2023).

674 42. R. G. E. Krause, T. Moyo-Gwete, S. I. Richardson, Z. Makhado, N. P. Manamela, T.
675 Hermanus, N. N. Mkhize, R. Keeton, N. Benede, M. Mennen, S. Skelem, F. Karim, K. Khan,

676 C. Riou, N. A. B. Ntusi, A. Goga, G. Gray, W. Hanekom, N. Garrett, L.-G. Bekker, A. Groll,
677 A. Sigal, P. L. Moore, W. A. Burgers, and A. Leslie, Infection pre-Ad26.COV2.S-vaccination
678 primes greater class switching and reduced CXCR5 expression by SARS-CoV-2-specific
679 memory B cells. *npj Vaccines* **8**, 119 (2023).

680 43. M. E. Reincke, K. J. Payne, I. Harder, V. Strohmeier, R. E. Voll, K. Warnatz, and B. Keller,
681 The Antigen Presenting Potential of CD21low B Cells. *Frontiers in Immunology* **11**, (2020).

682 44. E. H. Gemma, A. F. Holly, A. G. Paul, B. Irene, J. B. Scott, P. M. Hogarth, E. D. Heidi, E. O.
683 H. Robyn, S. J. E. Emily, and C. v. Z. Menno, Third dose COVID-19 mRNA vaccine enhances
684 IgG4 isotype switching and recognition of Omicron subvariants by memory B cells after
685 mRNA but not adenovirus priming. *bioRxiv*, 2023.2009.2015.557929 (2023).

686 45. M. Voysey, S. A. C. Clemens, S. A. Madhi, L. Y. Weckx, P. M. Folegatti, P. K. Aley, B.
687 Angus, V. L. Baillie, S. L. Barnabas, Q. E. Bhorat, S. Bibi, C. Briner, P. Cicconi, E. A.
688 Clutterbuck, A. M. Collins, C. L. Cutland, T. C. Darton, K. Dheda, C. Dold, C. J. A. Duncan,
689 K. R. W. Emary, K. J. Ewer, A. Flaxman, L. Fairlie, S. N. Faust, S. Feng, D. M. Ferreira, A.
690 Finn, E. Galiza, A. L. Goodman, C. M. Green, C. A. Green, M. Greenland, C. Hill, H. C. Hill,
691 I. Hirsch, A. Izu, D. Jenkin, C. C. D. Joe, S. Kerridge, A. Koen, G. Kwatra, R. Lazarus, V.
692 Libri, P. J. Lillie, N. G. Marchevsky, R. P. Marshall, A. V. A. Mendes, E. P. Milan, A. M.
693 Minassian, A. McGregor, Y. F. Mujadidi, A. Nana, S. D. Padayachee, D. J. Phillips, A. Pittella,
694 E. Plested, K. M. Pollock, M. N. Ramasamy, A. J. Ritchie, H. Robinson, A. V. Schwarzbold,
695 A. Smith, R. Song, M. D. Snape, E. Sprinz, R. K. Sutherland, E. C. Thomson, M. E. Török, M.
696 Toshner, D. P. J. Turner, J. Vekemans, T. L. Villafana, T. White, C. J. Williams, A. D.
697 Douglas, A. V. S. Hill, T. Lambe, S. C. Gilbert, A. J. Pollard, M. Aban, K. W. M. Abeyskera, J.
698 Aboagye, M. Adam, K. Adams, J. P. Adamson, G. Adewatan, S. Adlou, K. Ahmed, Y.
699 Akhalwaya, S. Akhalwaya, A. Alcock, A. Ali, E. R. Allen, L. Allen, F. B. Alvernaz, F. S.
700 Amorim, C. S. Andrade, F. Andritsou, R. Anslow, E. H. Arbe-Barnes, M. P. Ariaans, B. Arns,
701 L. Arruda, L. Assad, P. D. A. Azi, L. D. A. Azi, G. Babbage, C. Bailey, K. F. Baker, M. Baker,
702 N. Baker, P. Baker, I. Baleanu, D. Bandeira, A. Bara, M. A. S. Barbosa, D. Barker, G. D.
703 Barlow, E. Barnes, A. S. Barr, J. R. Barrett, J. Barrett, K. Barrett, L. Bates, A. Batten, K.
704 Beadon, E. Beales, R. Beckley, S. Belij-Rammerstorfer, J. Bell, D. Bellamy, S. Belton, A.
705 Berg, L. Bermejo, E. Berrie, L. Berry, D. Berzenyi, A. Beveridge, K. R. Bewley, I. Bharaj, S.
706 Bhikha, A. E. Bhorat, Z. E. Bhorat, E. M. Bijkar, S. Birch, G. Birch, K. Birchall, A. Bird, O.
707 Bird, K. Bisnauthsing, M. Bittaye, L. Blackwell, R. Blacow, H. Bletchly, C. L. Blundell, S. R.
708 Blundell, P. Bodalia, E. Bolam, E. Boland, D. Bormans, N. Borthwick, F. Bowring, A. Boyd,
709 P. Bradley, T. Brenner, A. Bridges-Webb, P. Brown, C. Brown, C. Brown-O'Sullivan, S.
710 Bruce, E. Brunt, W. Budd, Y. A. Bulbulia, M. Bull, J. Burbage, A. Burn, K. R. Buttigieg, N.
711 Byard, I. Cabrera Puig, A. Calvert, S. Camara, M. Cao, F. Cappuccini, R. Cardona, J. R.
712 Cardoso, M. Carr, M. W. Carroll, A. Carson-Stevens, Y. d. M. Carvalho, H. R. Casey, P.
713 Cashen, T. R. Y. Castro, L. C. Castro, K. Cathie, A. Cavey, J. Cerbino-Neto, L. F. F. Cezar, J.
714 Chadwick, C. Chanice, D. Chapman, S. Charlton, K. S. Cheliotis, I. Chelysheva, O. Chester, E.
715 Chiplin, S. Chita, J.-S. Cho, L. Cifuentes, E. Clark, M. Clark, R. Colin-Jones, S. L. K. Collins,
716 H. Colton, C. P. Conlon, S. Connarty, N. Coombes, C. Cooper, R. Cooper, L. Cornelissen, T.
717 Corrah, C. A. Cosgrove, F. B. Costa, T. Cox, W. E. M. Crocker, S. Crosbie, D. Cullen, D. R.
718 M. F. Cunha, C. J. Cunningham, F. C. Cuthbertson, D. M. da Costa, S. N. F. Da Guarda, L. P.
719 da Silva, A. C. da Silva Moraes, B. E. Damratoski, Z. Danos, M. T. D. C. Dantas, M. S. Datoo,
720 C. Datta, M. Davids, S. L. Davies, K. Davies, H. Davies, S. Davies, J. Davies, E. J. Davis, J.
721 Davis, J. A. M. de Carvalho, J. De Jager, S. de Jesus Jnr, L. M. De Oliveira Kalid, D. Dearlove,
722 T. Demissie, A. Desai, S. Di Marco, C. Di Maso, T. Dinesh, C. Docksey, T. Dong, F. R.
723 Donnellan, T. G. Dos Santos, T. G. Dos Santos, E. P. Dos Santos, N. Douglas, C. Downing, J.
724 Drake, R. Drake-Brockman, R. Drury, J. Du Plessis, S. J. Dunachie, A. Duncan, N. J. W.
725 Easom, M. Edwards, N. J. Edwards, F. Edwards, O. M. El Muhanna, S. C. Elias, B. Ellison-
726 Handley, M. J. Elmore, M. R. English, A. Esmail, Y. M. Essack, M. Farooq, S. Fedosyuk, S.
727 Felle, S. Ferguson, C. Ferreira Da Silva, S. Field, R. Fisher, J. Fletcher, H. Fofie, H. Fok, K. J.

728 Ford, R. Fothergill, J. Fowler, P. H. A. Fraiman, E. Francis, M. M. Franco, J. Frater, M. S. M.
729 Freire, S. H. Fry, S. Fudge, R. Furlan Filho, J. Furze, M. Fuskova, P. Galian-Rubio, H. Garlant,
730 M. Gavrila, K. A. Gibbons, C. Gilbride, H. Gill, K. Godwin, K. Gokani, M. L. F. Gonçalves, I.
731 G. S. Gonzalez, J. Goodall, J. Goodwin, A. Goondiwala, K. Gordon-Quayle, G. Gorini, A.
732 Goyanna, J. Grab, L. Gracie, J. Green, N. Greenwood, J. Greffrath, M. M. Groenewald, A.
733 Gunawardene, G. Gupta, M. Hackett, B. Hallis, M. Hamaluba, E. Hamilton, J. Hamlyn, D.
734 Hammersley, A. T. Hanrath, B. Hanumunthadu, S. A. Harris, C. Harris, T. D. Harrison, D.
735 Harrison, T. A. Harris-Wright, T. C. Hart, B. Hartnell, J. Haughney, S. Hawkins, L. Y. M.
736 Hayano, I. Head, P. T. Heath, J. A. Henry, M. Hermosin Herrera, D. B. Hettle, C. Higa, J. Hill,
737 G. Hodges, S. Hodgson, E. Horne, M. M. Hou, C. F. Houlihan, E. Howe, N. Howell, J.
738 Humphreys, H. E. Humphries, K. Hurley, C. Huson, C. Hyams, A. Hyder-Wright, S. Ikram, A.
739 Ishwarbhai, P. Iveson, V. Iyer, F. Jackson, S. Jackson, S. Jaumdally, H. Jeffers, N. Jesudason,
740 C. Jones, C. Jones, K. Jones, E. Jones, M. R. Jorge, A. Joshi, E. A. M. S. Júnior, R. Kailath, F.
741 Kana, A. Kar, K. Karampatsas, M. Kasanyinga, L. Kay, J. Keen, J. Kellett Wright, E. J. Kelly,
742 D. Kelly, D. M. Kelly, S. Kelly, D. Kerr, L. Khan, B. Khoozee, A. Khurana, S. Kidd, A. Killen,
743 J. Kinch, P. Kinch, L. D. W. King, T. B. King, L. Kingham, P. Klenerman, D. M. Kluczna, F.
744 Knapper, J. C. Knight, D. Knott, S. Koleva, P. M. Lages, M. Lang, G. Lang, C. W. Larkworthy,
745 J. P. J. Larwood, R. Law, A. M. Lawrie, E. M. Lazarus, A. Leach, E. A. Lees, A. Lelliott, N.-
746 M. Lemm, A. E. R. Lessa, S. Leung, Y. Li, A. M. Lias, K. Liatsikos, A. Linder, S. Lipworth, S.
747 Liu, X. Liu, A. Lloyd, S. Lloyd, L. Loew, R. Lopez Ramon, L. B. Lora, K. G. Luz, J. C.
748 MacDonald, G. MacGregor, M. Madhavan, D. O. Mainwaring, E. Makambwa, R. Makinson,
749 M. Malahleha, R. Malamatsho, G. Mallett, N. Manning, K. Mansatta, T. Maoko, S. Marinou, E.
750 Marlow, G. N. Marques, P. Marriott, R. P. Marshall, J. L. Marshall, M. Masenya, M. Masilela,
751 S. K. Masters, M. Mathew, H. Matlebjane, K. Matshidiso, O. Mazur, A. Mazzella, H.
752 McCaughan, J. McEwan, J. McGlashan, L. McInroy, N. McRobert, S. McSwiggan, C. Megson,
753 S. Mehdipour, W. Meijs, R. N. O. Mendonça, A. J. Mentzer, A. C. F. Mesquita, P. Miralhes, N.
754 Mirtorabi, C. Mitton, S. Mnyakeni, F. Moghaddas, K. Molapo, M. Moloi, M. Moore, M.
755 Moran, E. Morey, R. Morgans, S. J. Morris, S. Morris, H. Morrison, F. Morselli, G. Morshead,
756 R. Morter, L. Mottay, A. Moultrie, N. Moyo, M. Mpelembue, S. Msomi, Y. Mugodi, E.
757 Mukhopadhyay, J. Muller, A. Munro, S. Murphy, P. Mweu, C. Myerscough, G. Naik, K.
758 Naker, E. Nastouli, B. Ndlovu, E. Nikolaou, C. Njenga, H. C. Noal, A. Noé, G. Novaes, F. L.
759 Nugent, G. L. A. Nunes, K. O'Brien, D. O'Connor, S. Oelofse, B. Oguti, V. Olchawski, N. J.
760 Oldfield, M. G. Oliveira, C. Oliveira, I. S. Q. Oliveira, A. Oommen-Jose, A. Oosthuizen, P.
761 O'Reilly, P. J. O'Reilly, P. Osborne, D. R. J. Owen, L. Owen, D. Owens, N. Owino, M.
762 Pacurar, B. V. B. Paiva, E. M. F. Palhares, S. Palmer, H. M. R. T. Parracho, K. Parsons, D.
763 Patel, B. Patel, F. Patel, M. Patrick-Smith, R. O. Payne, Y. Peng, E. J. Penn, A. Pennington, M.
764 Peralta Alvarez, B. P. Pereira Stuchi, A. L. Perez, T. Perinpanathan, J. Perring, R. Perumal,
765 S. Y. Petkar, T. Philip, J. Phillips, M. K. Phohu, L. Pickup, S. Pieterse, J. M. Pinheiro, J. Piper,
766 D. Pipini, M. Plank, S. Plant, S. Pollard, J. Pooley, A. Pooran, I. Poulton, C. Powers, F. B.
767 Presa, D. A. Price, V. Price, M. R. Primeira, P. C. Proud, S. Provstgaard-Morys, S. Pueschel,
768 D. Pulido, S. Quaid, R. Rabara, K. Radia, D. Rajapaska, T. Rajeswaran, L. Ramos, A. S. F.
769 Ramos, F. Ramos Lopez, T. Rampling, J. Rand, H. Ratcliffe, T. Rawlinson, D. Rea, B. Rees,
770 M. Resuello-Dauti, E. Reyes Pabon, S. Rhead, T. Riaz, M. Ricamara, A. Richards, A. Richter,
771 N. Ritchie, A. J. Ritchie, A. J. Robbins, H. Roberts, R. E. Robinson, S. Roche, C. Rollier, L.
772 Rose, A. L. Ross Russell, L. Rossouw, S. Royal, I. Rudiansyah, K. Ryalls, C. Sabine, S. Saich,
773 J. C. Sale, A. M. Salman, N. Salvador, S. Salvador, M. D. Sampaio, A. D. Samson, A.
774 Sanchez-Gonzalez, H. Sanders, K. Sanders, E. Santos, M. F. S. Santos Guerra, I. Satti, J. E.
775 Saunders, C. Saunders, A. B. A. Sayed, I. Schim van der Loeff, A. B. Schmid, E. Schofield, G.
776 R. Scream, S. Seddiqi, R. R. Segireddy, R. Senger, S. Serrano, I. Shaik, H. R. Sharpe, K.
777 Sharrocks, R. Shaw, A. Shea, E. Sheehan, A. Shepherd, F. Shiham, S. E. Silk, L. Silva-Reyes,
778 L. B. T. D. Silveira, M. B. V. Silveira, N. Singh, J. Sinha, D. T. Skelly, D. C. Smith, N. Smith,
779 H. E. Smith, D. J. Smith, C. C. Smith, A. S. Soares, C. Solórzano, G. L. Sorio, K. Sorley, T.

780 Sosa-Rodriguez, C. M. C. D. L. Souza, B. S. D. F. Souza, A. R. Souza, T. Souza Lopez, L.
781 Sowole, A. J. Spencer, L. Spoors, L. Stafford, I. Stamford, R. Stein, L. Stockdale, L. V.
782 Stockwell, L. H. Strickland, A. Stuart, A. Sturdy, N. Sutton, A. Szigeti, A. Tahiri-Alaoui, R.
783 Tanner, C. Taoushanis, A. W. Tarr, R. Tarrant, K. Taylor, U. Taylor, I. J. Taylor, J. Taylor, R.
784 te Water Naude, K. Templeton, Y. Themistocleous, A. Themistocleous, M. Thomas, K.
785 Thomas, T. M. Thomas, A. Thombrayil, J. Thompson, F. Thompson, A. Thompson, A.
786 Thompson, K. Thompson, V. Thornton-Jones, L. H. S. Thotusi, P. J. Tighe, L. A. Tinoco, G. F.
787 Tiongson, B. Tladinyane, M. Tomasicchio, A. Tomic, S. Tonks, J. Towner, N. Tran, J. A. Tree,
788 G. Trillana, C. Trinham, R. Trivett, A. Truby, B. L. Tsheko, P. Tubb, A. Turabi, R. Turner, C.
789 Turner, N. Turner, B. Tyagi, M. Ulaszewska, B. R. Underwood, S. van Eck, R. Varughese, D.
790 Verbart, M. K. Verheul, I. Vichos, T. A. Vieira, G. Walker, L. Walker, M. E. Wand, T.
791 Wardell, G. M. Warimwe, S. C. Warren, B. Watkins, M. E. E. Watson, E. Watson, S. Webb, A.
792 Webster, J. Welch, Z. Wellbelove, J. H. Wells, A. J. West, B. White, C. White, R. White, P.
793 Williams, R. L. Williams, S. Willingham, R. Winslow, D. Woods, M. Woodyer, A. T. Worth,
794 D. Wright, M. Wroblewska, A. Yao, Y. T. N. Yim, M. B. Zambrano, R. L. Zimmer, D. Zizi,
795 and P. Zuidewind, Single-dose administration and the influence of the timing of the booster
796 dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled
797 analysis of four randomised trials. *The Lancet* **397**, 881-891 (2021).

798 46. World Health Organisation. 2022. Interim recommendations for the use of the Janssen
799 Ad26.COV2.S (COVID-19) vaccine. In *COVID-19: Vaccines*, Vol. 2024.

800 47. F. X. Heinz, and K. Stiasny, Distinguishing features of current COVID-19 vaccines: knowns
801 and unknowns of antigen presentation and modes of action. *npj Vaccines* **6**, 104 (2021).

802 48. J. E. Bowen, Y.-J. Park, C. Stewart, J. T. Brown, W. K. Sharkey, A. C. Walls, A. Joshi, K. R.
803 Sprouse, M. McCallum, M. A. Tortorici, N. M. Franko, J. K. Logue, I. G. Mazzitelli, A. W.
804 Nguyen, R. P. Silva, Y. Huang, J. S. Low, J. Jerak, S. W. Tiles, K. Ahmed, A. Shariq, J. M.
805 Dan, Z. Zhang, D. Weiskopf, A. Sette, G. Snell, C. M. Posavac, N. T. Iqbal, J. Geffner, A.
806 Bandera, A. Gori, F. Sallusto, J. A. Maynard, S. Crotty, W. C. Van Voorhis, C. Simmerling, R.
807 Grifantini, H. Y. Chu, D. Corti, and D. Veesler, SARS-CoV-2 spike conformation determines
808 plasma neutralizing activity elicited by a wide panel of human vaccines. *Science Immunology*
809 **7**, eadf1421 (2022).

810 49. R. K. Suryawanshi, T. Y. Taha, M. McCavitt-Malvido, I. Silva, M. M. Khalid, A. M. Syed, I.
811 P. Chen, P. Saldhi, B. Sreekumar, M. Montano, K. Foresythe, T. Tabata, G. R. Kumar, A.
812 Sotomayor-Gonzalez, V. Servellita, A. Gliwa, J. Nguyen, N. Kojima, T. Arellanor, A.
813 Bussanich, V. Hess, M. Shacreaw, L. Lopez, M. Brobeck, F. Turner, Y. Wang, S. Ghazarian,
814 G. Davis, D. Rodriguez, J. Doudna, L. Spraggan, C. Y. Chiu, and M. Ott, Previous exposure to
815 Spike-providing parental strains confers neutralizing immunity to XBB lineage and other
816 SARS-CoV-2 recombinants in the context of vaccination. *Emerging Microbes & Infections* **12**,
817 2270071 (2023).

818 50. W. E. Purtha, T. F. Tedder, S. Johnson, D. Bhattacharya, and M. S. Diamond, Memory B cells,
819 but not long-lived plasma cells, possess antigen specificities for viral escape mutants. *Journal
820 of Experimental Medicine* **208**, 2599-2606 (2011).

821 51. A. Sokal, G. Barba-Spaeth, L. Hunault, I. Fernández, M. Broketa, A. Meola, S. Fourati, I.
822 Azzaoui, A. Vandenberghe, P. Lagouge-Rousse, M. Broutin, A. Roeser, M. Bouvier-Alias, E.
823 Crickx, L. Languille, M. Fournier, M. Michel, B. Godeau, S. Gallien, G. Melica, Y. Nguyen, F.
824 Canoui-Poitrine, F. Pirenne, J. Megret, J.-M. Pawlotsky, S. Fillatreau, C.-A. Reynaud, J.-C.
825 Weill, F. A. Rey, P. Bruhns, M. Mahévas, and P. Chappert, SARS-CoV-2 Omicron BA.1
826 breakthrough infection drives late remodeling of the memory B cell repertoire in vaccinated
827 individuals. *Immunity* **56**, 2137-2151.e2137 (2023).

828 52. K. Röltgen, S. C. A. Nielsen, O. Silva, S. F. Younes, M. Zaslavsky, C. Costales, F. Yang, O. F.
829 Wirz, D. Solis, R. A. Hoh, A. Wang, P. S. Arunachalam, D. Colburg, S. Zhao, E. Haraguchi, A.
830 S. Lee, M. M. Shah, M. Manohar, I. Chang, F. Gao, V. Mallajosyula, C. Li, J. Liu, M. J.
831 Shoura, S. B. Sindher, E. Parsons, N. J. Dashdorj, N. D. Dashdorj, R. Monroe, G. E. Serrano,

832 T. G. Beach, R. S. Chinthrajah, G. W. Charville, J. L. Wilbur, J. N. Wohlstadter, M. M. Davis,
833 B. Pulendran, M. L. Troxell, G. B. Sigal, Y. Natkunam, B. A. Pinsky, K. C. Nadeau, and S. D.
834 Boyd, Immune imprinting, breadth of variant recognition, and germinal center response in
835 human SARS-CoV-2 infection and vaccination. *Cell* **185**, 1025-1040.e1014 (2022).

836 53. J. S. Turner, J. A. O'Halloran, E. Kalaidina, W. Kim, A. J. Schmitz, J. Q. Zhou, T. Lei, M.
837 Thapa, R. E. Chen, J. B. Case, F. Amanat, A. M. Rauseo, A. Haile, X. Xie, M. K. Klebert, T.
838 Suessen, W. D. Middleton, P.-Y. Shi, F. Krammer, S. A. Teefey, M. S. Diamond, R. M. Presti,
839 and A. H. Ellebedy, SARS-CoV-2 mRNA vaccines induce persistent human germinal centre
840 responses. *Nature* **596**, 109-113 (2021).

841 54. C. C. Traut, and J. N. Blankson, Bivalent mRNA vaccine-elicited SARS-CoV-2 specific T cells
842 recognise the omicron XBB sublineage. *The Lancet Microbe* **4**, e388 (2023).

843 55. N. Baumgarth, How specific is too specific? B-cell responses to viral infections reveal the
844 importance of breadth over depth. *Immunological Reviews* **255**, 82-94 (2013).

845 56. N. Patel, J. F. Trost, M. Guebre-Xabier, H. Zhou, J. Norton, D. Jiang, Z. Cai, M. Zhu, A. M.
846 Marchese, A. M. Greene, R. M. Mallory, R. Kalkeri, F. Dubovsky, and G. Smith, XBB.1.5
847 spike protein COVID-19 vaccine induces broadly neutralizing and cellular immune responses
848 against EG.5.1 and emerging XBB variants. *Scientific Reports* **13**, 19176 (2023).

849 57. M. A. Tortorici, A. Addetia, A. J. Seo, J. Brown, K. R. Sprouse, J. Logue, E. Clark, N. Franko,
850 H. Chu, and D. Veesler, Persistent immune imprinting after XBB.1.5 COVID vaccination in
851 humans. *bioRxiv*, 2023.2011.2028.569129 (2023).

852 58. R. S. G. Sablerolles, W. J. R. Rietdijk, A. Goorhuis, D. F. Postma, L. G. Visser, D. Geers, K. S.
853 Schmitz, H. M. Garcia Garrido, M. P. G. Koopmans, V. A. S. H. Dalm, N. A. Kootstra, A. L.
854 W. Huckriede, M. Lafeber, D. van Baarle, C. H. GeurtsvanKessel, R. D. de Vries, and P. H. M.
855 van der Kuy, Immunogenicity and Reactogenicity of Vaccine Boosters after Ad26.COV2.S
856 Priming. *New England Journal of Medicine* **386**, 951-963 (2022).

857 59. D. Geers, M. C. Shamier, S. Bogers, G. den Hartog, L. Gommers, N. N. Nieuwkoop, K. S.
858 Schmitz, L. C. Rijsbergen, J. A. T. van Osch, E. Dijkhuizen, G. Smits, A. Comvalius, D. van
859 Mourik, T. G. Caniels, M. J. van Gils, R. W. Sanders, B. B. Oude Munnink, R. Molenkamp, H.
860 J. de Jager, B. L. Haagmans, R. L. de Swart, M. P. G. Koopmans, R. S. van Binnendijk, R. D.
861 de Vries, and C. H. GeurtsvanKessel, SARS-CoV-2 variants of concern partially escape
862 humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients.
863 *Science Immunology* **6**, eabj1750 (2021).

864 60. E. S. J. Edwards, J. J. Bosco, P. M. Aui, R. G. Stirling, P. U. Cameron, J. Chatelier, F. Hore-
865 Lacy, R. E. O'Hehir, and M. C. van Zelm, Predominantly Antibody-Deficient Patients With
866 Non-infectious Complications Have Reduced Naive B, Treg, Th17, and Tfh17 Cells. *Frontiers
867 in Immunology* **10**, (2019).

868

869 **TABLES (n=1) AND FIGURES (n=6)**870 **Table 1. Participant characteristics of the cohorts**

Cohort detail	mRNA dose 4 group			Statistical comparisons			
	Monovalent WH1	Bivalent BA.1	Bivalent BA.5	p-value			
		n=18	n=33	n=21	Overall	Mono vs BA.1	Mono vs BA.5
Recruitment center							
Monash University	100% (18/18)	21% (7/33)	9.5% (2/21)	<0.0001 ²			
Erasmus MC	0% (0/18)	79% (26/33)	90% (19/21)				
Age (years; median with range)	48.5 (32-65)	46 (24-59)	48 (22-65)	0.6291 ¹			
Sex (%F)	74	88	67	0.1519 ²			
Vaccination characteristics							
Primary vaccination/first 2 doses				0.0232 ²	0.016 ²	0.0428 ²	>0.9999 ²
- mRNA	3 (17%)	15 (45%)	11 (52%)				
- ChAdOx1	15 (83%)	-	-				
- Ad26.COV2.S*	-	18 (55%)	10 (48%)				
1st booster/3rd dose				-			
- BNT162b2	16 (89%)	33 (100%)	21 (100%)				
- ChAdOx1	2 (11%)	-	-				
2nd booster/4th dose				-			
- BNT162b2	13 (72%)	-	-				

- mRNA-1273	3 (17%)	-	-				
- Novavax	2 (11%)	-	-				
- BNT162b2.BA1	-	9 (27%)	-				
- mRNA-1273.214	-	24 (73%) ⁴	-				
- BNT162b2.BA5	-	-	11 (52%) ⁵				
- mRNA-1273.222	-	-	10 (48%) ⁶				
Timing of dose 4 (days post-dose 3; median with range)	220 (133-267)	310 (194-454)	365 (214-533)	<0.0001 ¹	0.0001 ¹	<0.0001 ¹	0.0012 ¹
Timing of sampling (days post-vaccination; median with range)							
Pre-dose 4 (since dose 3)	180.5 (129-191)	308 (176-448)	365 (214-514)	<0.0001 ¹	0.0001 ¹	<0.0001 ¹	0.0001 ¹
Post dose 4	31.5 (28-48)	28 (27-49)	28 (27-30)	<0.0001 ¹	<0.0001 ¹	<0.0001 ¹	>0.9999 ¹
Confirmed SARS-CoV-2 breakthrough infection (% infected, based on self-reporting and confirmed with NCP serology)							
Any time before pre-dose 4 sampling	22% (4/18)	70% (23/33)	81% (17/21)	0.0003 ²			
Timing of BTI (days before pre-dose 4 sampling; median with range)	131.5 (61-148)	238 (60-915)	288 (169-938)	0.0026 ¹	0.0830 ¹	0.0028 ¹	0.1319 ¹
Within 6 months of pre-dose 4 timepoint	17% (3/18)	24% (8/33)	5% (1/21)	0.1732 ² **			
Between pre- and post-dose 4 timepoint	6% (1/18)	6% (2/33)	5% (1/21)	0.9796 ² **			
Total B-cell count (absolute numbers in cells/μL; median with IQR)³							

Pre-dose 4	203 (148-276)	222 (159-288)	138 (120-212)	0.0057¹	>0.9999 ¹	0.0890 ¹	0.0047¹
Post-dose 4	225 (183-253)	189 (133-288)	142 (121-181)	0.0299¹	>0.9999 ¹	0.0425¹	0.0946 ¹
Total Bmem count (absolute numbers in cells/µL; median with IQR)³							
Pre-dose 4	90 (38-114)	77 (43-101)	47 (31-59)	0.0337¹	>0.9999 ¹	0.0793 ¹	0.0590 ¹
Post-dose 4	78 (53-104)	63 (40-106)	42 (28-64)	0.0191¹	0.9133 ¹	0.0195¹	0.1201 ¹

¹Kruskal-Wallis test with Dunn's multiple comparisons; ²Chi-squared test; ³Data in **Supplementary Figure 3A, B**

*Within BA.1 bivalent cohort, 5/18 Ad26.COV2.S recipients only received a single dose for their primary schedule, 1/18 received 2 doses, and 6 received 1 Ad26.COV.S dose followed by 1 mRNA vaccine dose. Within BA.5 bivalent cohort, 1/10 Ad26.COV2.S recipients only received a single dose for their primary schedule, 3/10 received 2 doses, and 6 received 1 Ad26.COV.S dose followed by 1 mRNA vaccine dose.

**Low expected values for chi-squared test

Significant differences (p<0.05) in **bold**

871 **Figure legends (n=6)**

872

873 **Figure 1. SARS-CoV-2 WH1, Omicron BA.1 and BA.5 neutralizing antibody responses**

874 **elicited by monovalent, BA.1 bivalent, or BA.5 bivalent 4th dose boosters. (A)** Study design.

875 Sampling was performed pre- and 4-weeks post-dose 4 (full cohort characteristics in **Table 1**). **(B)**

876 PRNT50 NAb titers against WH1, BA.1, and BA.5 pre- and 4-weeks post-monovalent 4th dose, **(C)**

877 BA.1 bivalent 4th dose, and **(D)** BA.5 bivalent 4th dose. In **(A-C)**, solid lines and values above

878 panels indicate geometric means, horizontal dotted line denotes the neutralizing cutoff value of 10

879 for PRNT50, and percentages indicate the frequency of donors producing neutralizing antibody

880 levels. **(E)** Fold changes in NAb titers against WH1, BA.1, and BA.5 4-weeks post-monovalent,

881 BA.1 bivalent, or BA.5 bivalent 4th dose. In **(E)**, bars and values above panels indicate geometric

882 means with geometric SDs. Monovalent: n=18; BA.1 bivalent: n=24, BA.5 bivalent: n=19. Green

883 values indicate confirmed SARS-CoV-2 BTI prior to sampling. Wilcoxon matched-pairs signed

884 rank test for paired data. **p<0.01, ****p<0.0001.

885

886 **Figure 2. Significant increases in RBD-specific Bmem after a BA.1 or BA.5 bivalent 4th dose**

887 **booster. (A)** Gating strategy for double-discrimination of WH1, BA.1, and BA.5 RBD-specific B

888 cells by gating B cells double-positive for WH1 RBD, BA.1 RBD, or BA.5 RBD, respectively. **(B)**

889 Sequential gating for mature B cells and memory B cells (Bmem) within RBD-specific B-cell

890 populations. **(C)** Absolute numbers of WH1 RBD-specific Bmem pre- and 4-weeks post-

891 monovalent, BA.1 bivalent, or BA.5 bivalent 4th doses. **(D)** Absolute numbers of BA.1 RBD-

892 specific Bmem pre- and 4-weeks post-monovalent or BA.1 bivalent 4th doses. **(E)** Absolute

893 numbers of BA.5 RBD-specific Bmem pre- and 4-weeks post-BA.5 bivalent 4th dose. Monovalent

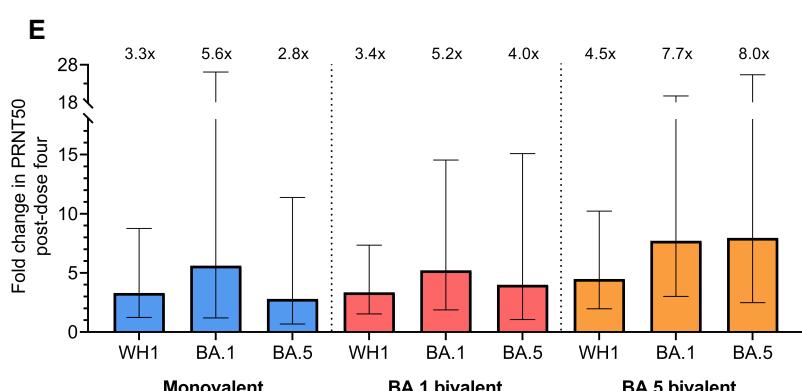
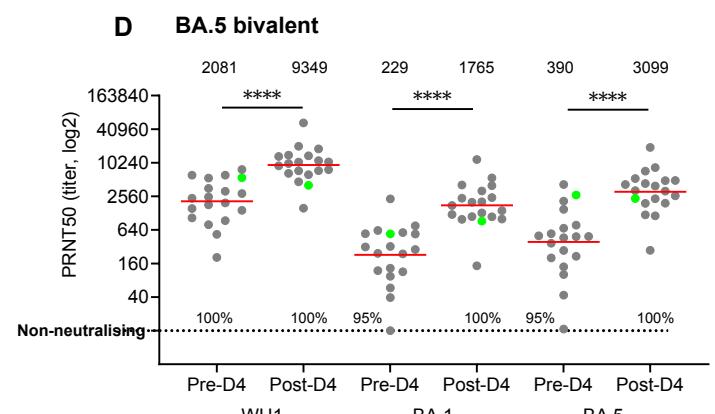
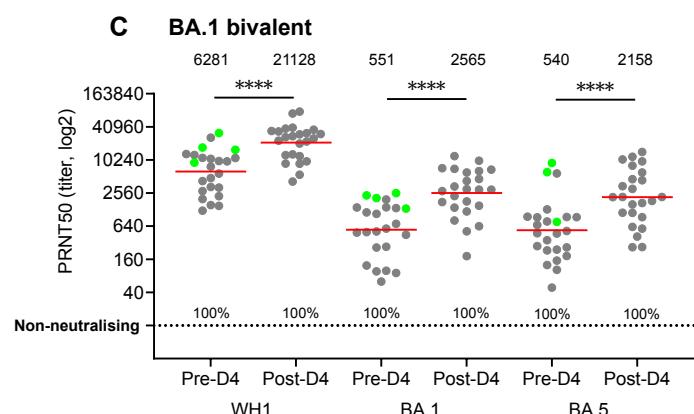
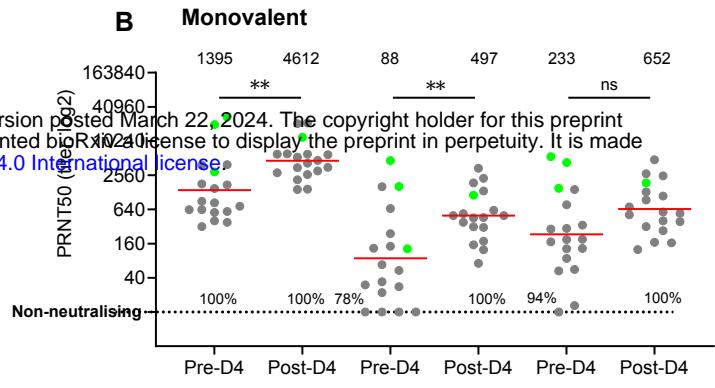
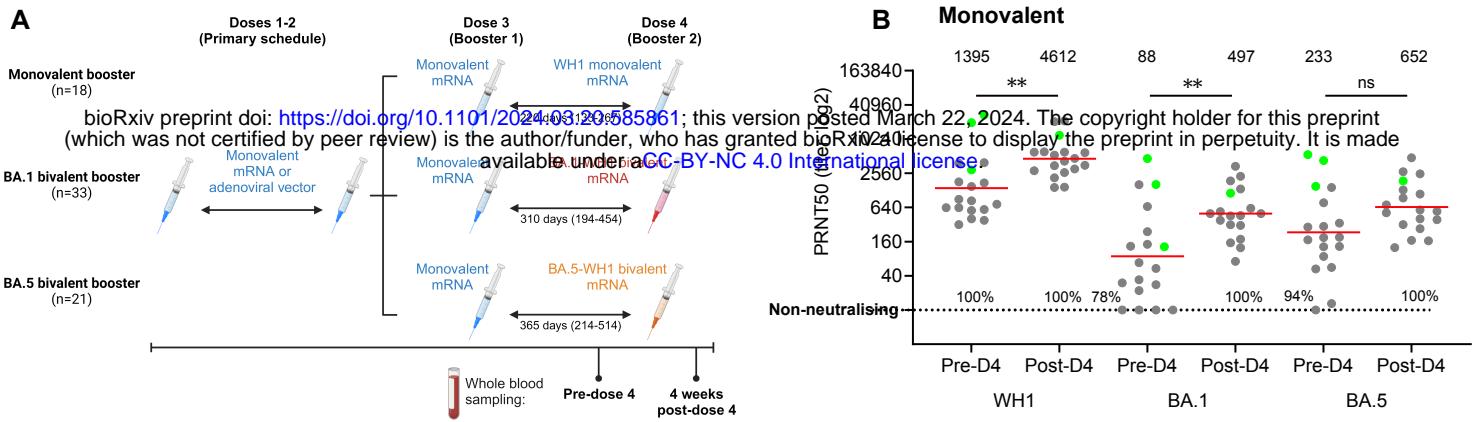
894 dose 4, n=18; BA.1 bivalent dose 4, n=33; BA.5 bivalent dose 4, n=21. Solid lines depict medians.

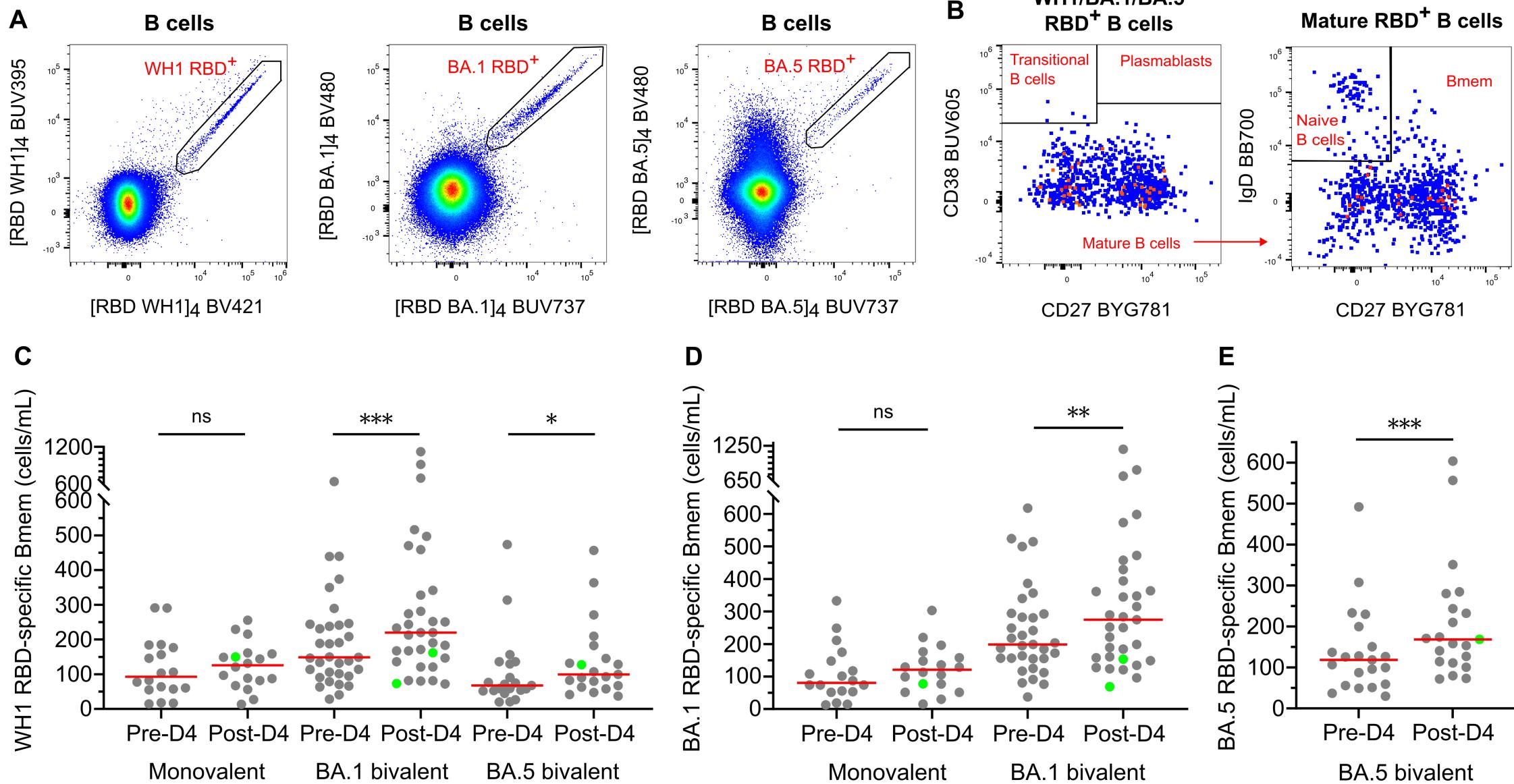
895 Green dots denote confirmed SARS-CoV-2 BTI between pre- and 4-weeks post-dose 4 sampling.

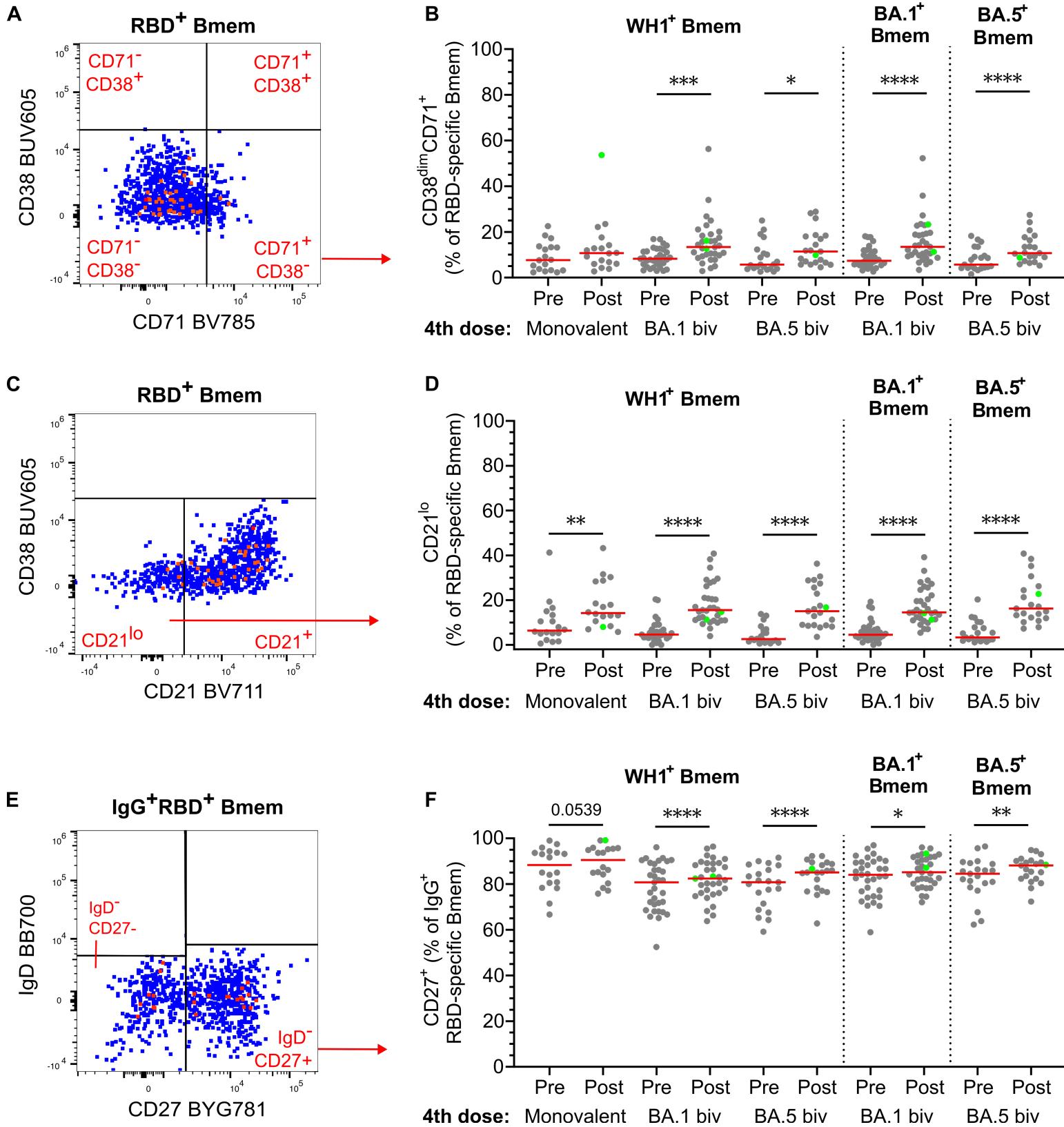
896 Wilcoxon matched-pairs signed rank test for paired data. *p<0.05, **p<0.01, ***p<0.001.

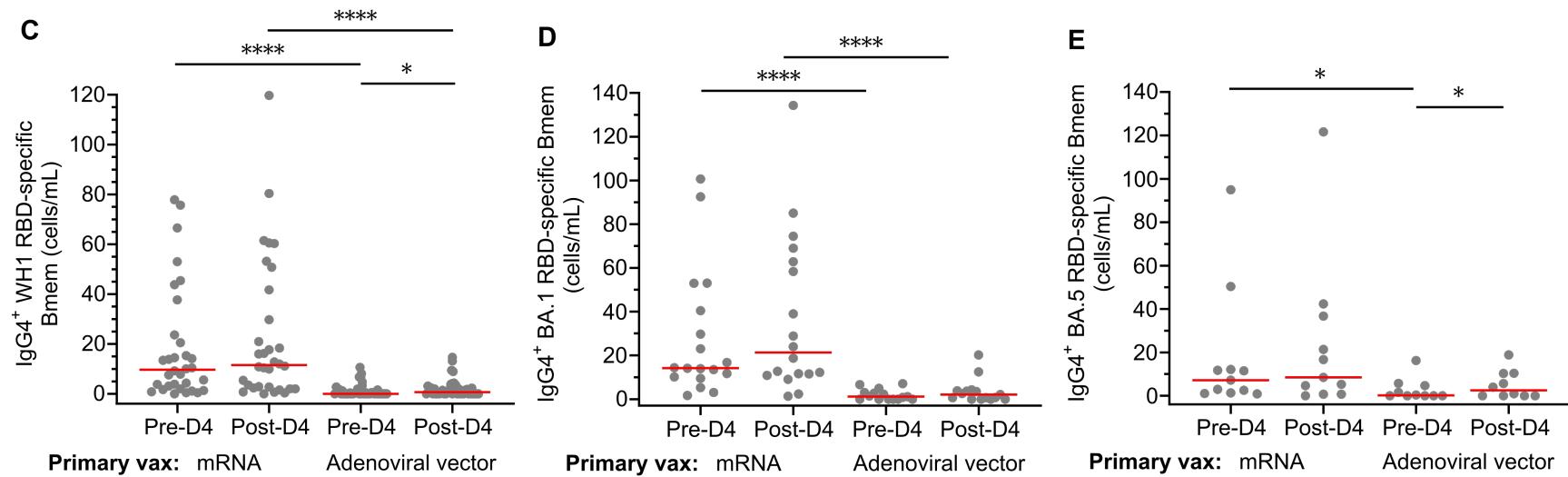
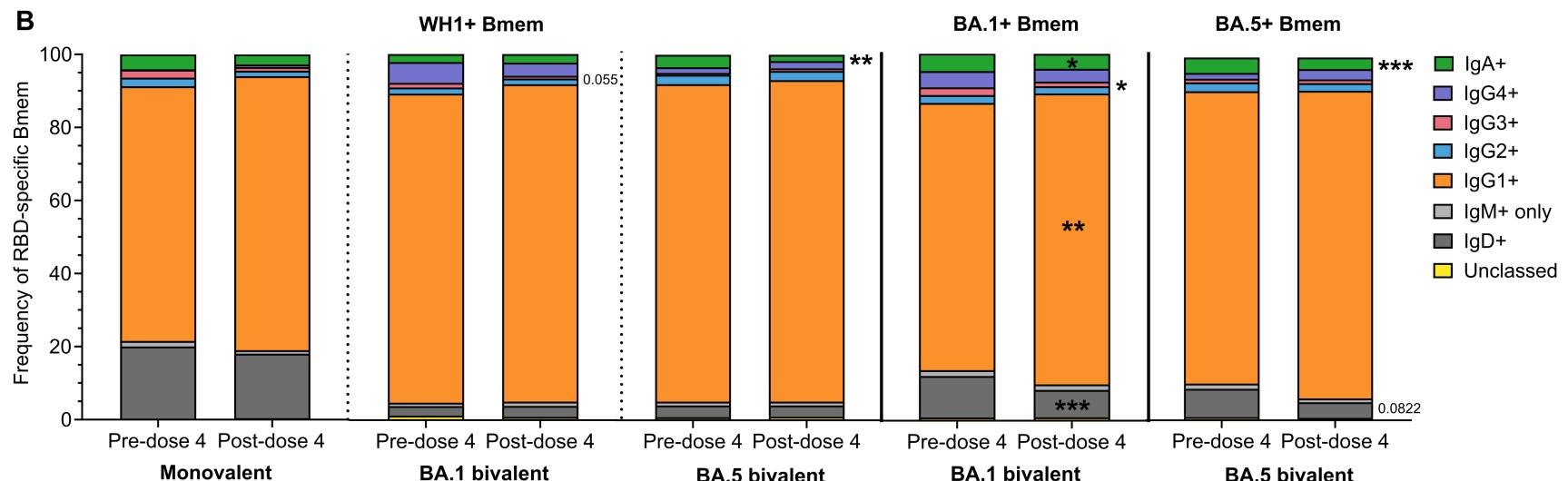
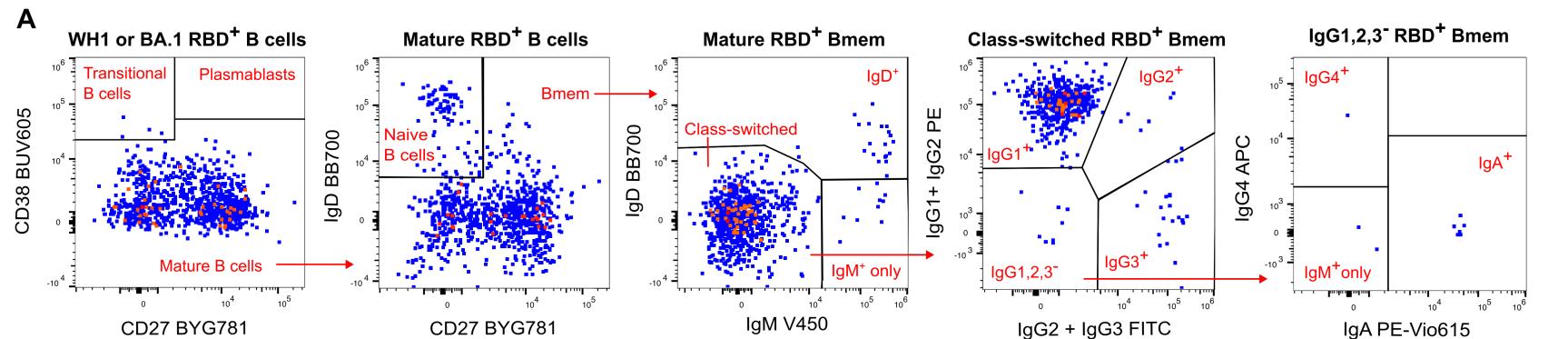
897 **Figure 3. Activated RBD-specific Bmem following monovalent, BA.1 bivalent, and BA.5**
898 **bivalent 4th dose vaccination. (A-B)** CD38^{dim}CD71⁺ events within RBD-specific Bmem. **(C-D)**
899 CD21^{lo}CD38^{dim} events within RBD-specific Bmem. **(E-F)** CD27⁺ events within IgG⁺ RBD-specific
900 Bmem. Monovalent, n=18; BA.1 bivalent, n=33; BA.5 bivalent, n=21. Solid lines depict medians.
901 Green dots denote confirmed SARS-CoV-2 BTI between pre- and 4-weeks post-dose 4 sampling.
902 Wilcoxon matched-pairs signed rank test for paired data. Only significant differences
903 shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

904






905 **Figure 4. IgG subclass expression by RBD-specific Bmem after monovalent, BA.1 bivalent, or**
906 **BA.5 bivalent 4th doses. (A)** Gating strategy of RBD-specific Bmem for Ig isotype and IgG
907 subclass expression. **(B)** Distribution of Ig isotype and IgG subclass expressing subsets within
908 WH1-specific Bmem, BA.1 RBD-specific Bmem, and BA.5 RBD-specific Bmem pre- and 4-weeks
909 post-dose 4. Monovalent, n=18; BA.1 bivalent, n=33; BA.5 bivalent, n=21. **(C)** Absolute numbers
910 of IgG4⁺ events within WH1, **(D)** BA.1, and **(E)** BA.5 RBD-specific Bmem pre- and post-dose 4 of
911 all study subjects categorized based on priming with mRNA or adenoviral vector vaccines. **(C)**
912 mRNA, n=32; adenoviral vector, n=40, **(D)** mRNA, n=18; adenoviral vector n=15, **(E)** mRNA,
913 n=11; adenoviral vector, n=10. Solid lines depict medians. Mann-Whitney test for unpaired data
914 and Wilcoxon matched-pairs signed rank test for paired data. Only significant differences
915 shown. *p<0.05, ****p<0.0001.

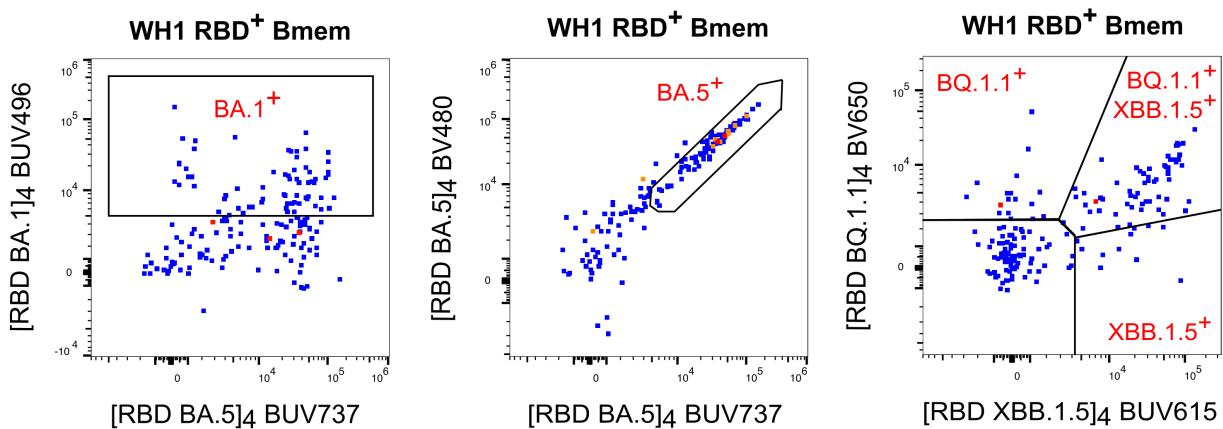

916

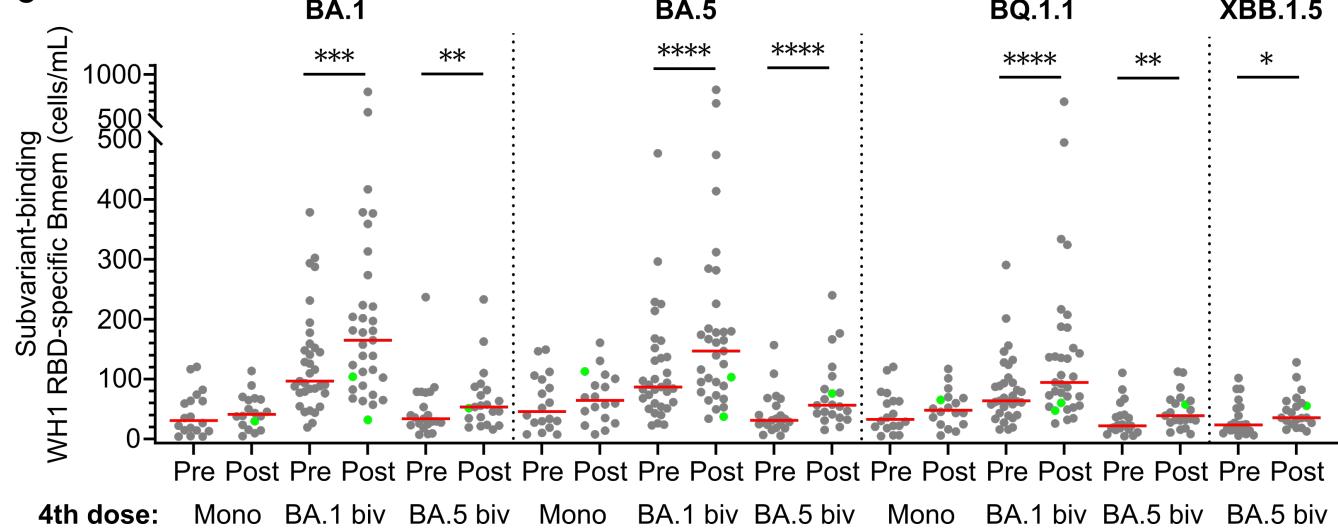

917 **Figure 5. Enhanced capacity of WH1 RBD-specific Bmem to bind Omicron subvariants after**
918 **boosting with bivalent vaccines. (A)** Gating strategy to quantify WH1 RBD-specific Bmem that
919 recognize Omicron BA.1, BA.5, and BA.1.1 in monovalent and BA.1 bivalent dose 4 recipients.
920 Representative plots from a BA.1 bivalent booster recipient post-dose 4. **(B)** Gating strategy to
921 quantify WH1 RBD-specific Bmem that recognize Omicron BA.1, BA.5, BA.1.1, and XBB.1.5 in
922 BA.5 bivalent dose 4 recipients. Representative plots from a BA.5 bivalent booster recipient post-

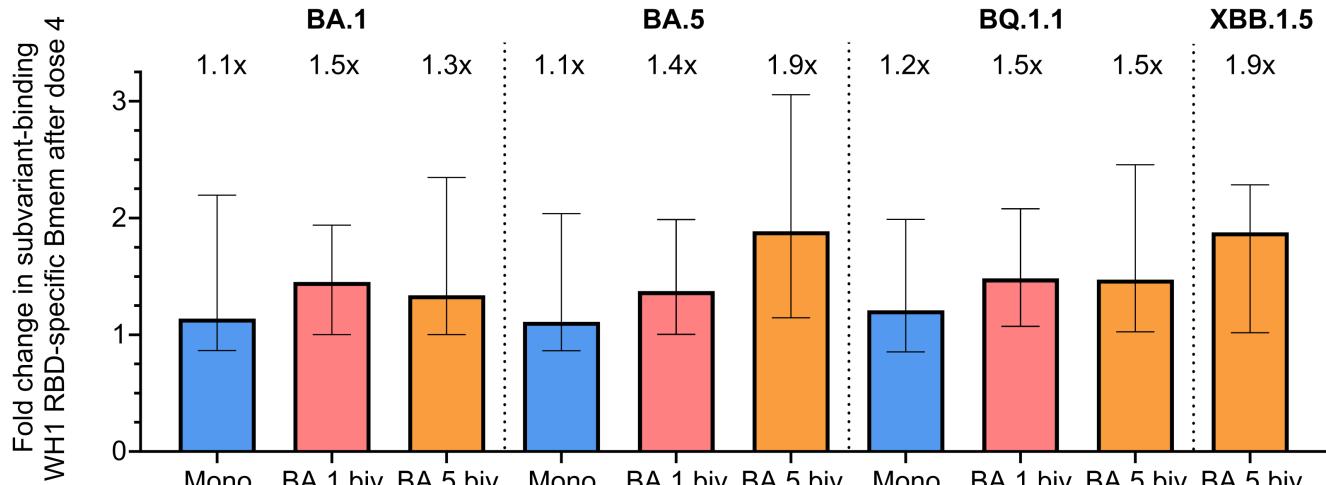



923 dose 4. **(C)** Absolute numbers of BA.1, BA.5, BQ.1.1, and XBB.1.5-specific cells within WH1
924 RBD-specific Bmem pre- and 4-weeks post-monovalent, BA.1 bivalent, or BA.5 bivalent dose 4.
925 **(D)** Fold changes in WH1 RBD-specific Bmem binding Omicron BA.1, BA.5, BQ.1.1, or XBB.1.5
926 4-weeks post-monovalent, BA.1 bivalent, or BA.5 bivalent 4th dose. In **(D)**, bars and values above
927 panels indicate medians with IQR. Monovalent, n=18; BA.1 bivalent, n=33; BA.5 bivalent, n=21.
928 Solid lines indicate medians. Wilcoxon matched-pairs signed rank test for paired data. Only
929 significant differences shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
930

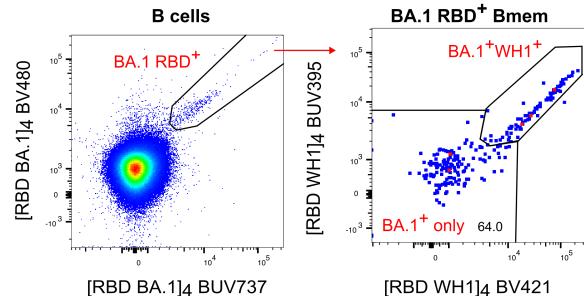
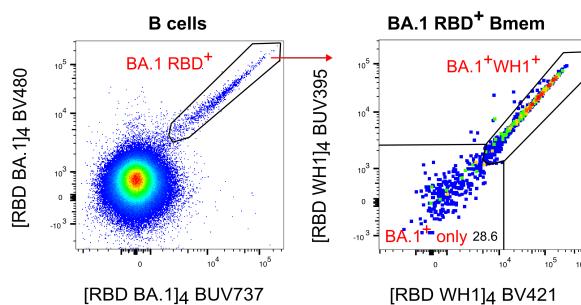
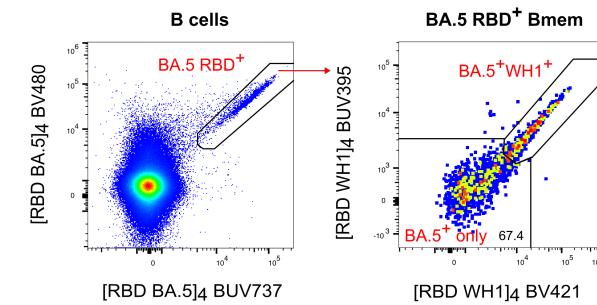
931 **Figure 6. Omicron-only Bmem are increased by a BA.5 bivalent, but not a BA.1 bivalent or**
932 **monovalent fourth dose booster (A-B)** Gating of BA.1⁺ only Bmem, negative for WH1 RBD
933 binding, within BA.1 RBD-specific Bmem. Performed on monovalent and BA.1 bivalent dose 4
934 recipients. **(C)** Gating of BA.5+ only Bmem, negative for WH1 RBD binding, within BA.5 RBD-
935 specific Bmem. Performed on BA.5 bivalent dose 4 recipients. **(D)** Absolute numbers of
936 BA.1⁺WH1⁻ Bmem before and 4-weeks post-monovalent or BA.1 bivalent dose 4. **(E)** Absolute
937 numbers of BA.5⁺WH1⁻ Bmem before and 4-weeks post-BA.5 bivalent dose 4. Monovalent, n=18;
938 BA.1 bivalent, n=33; BA.5 bivalent, n=21. Blue dots denote any confirmed SARS-CoV-2 BTI
939 before pre- or 4-weeks post-dose 4 sampling. Wilcoxon matched-pairs signed rank test for paired
940 data. **p<0.01.

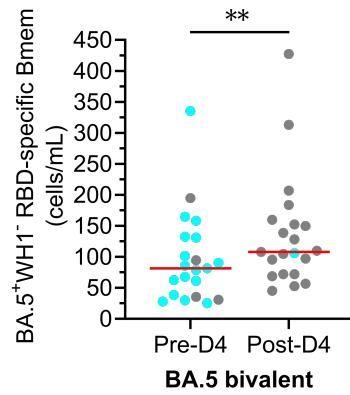





A Monovalent and BA.1 bivalent dose 4 recipients


B BA.5 bivalent dose 4 recipients



C

D

A Monovalent dose 4 recipients**B BA.1 bivalent dose 4 recipients****C BA.5 bivalent dose 4 recipients****D****E**