

1 **Chaperone-Mediated Autophagy in Fish: A Key Function Amid a Changing**
2 **Environment**

3
4 Simon Schnebert¹, Emilio J Vélez¹, Maxime Goguet¹, Karine Dias¹, Vincent Véron¹, Isabel García-
5 Pérez¹, Lisa M Radler², Emilie Cardona¹, Stéphanie Fontagné-Dicharry¹, Pierre Van Delft³,
6 Franziska Dittrich-Domergue³, Amélie Bernard³, Florian Beaumatin¹, Amaury Herpin⁴, Beth
7 Cleveland^{2, #}, Iban Seiliez^{1, #, *}

8
9 ¹Université de Pau et des Pays de l'Adour, E2S UPPA, INRAE, UMR1419 Nutrition Métabolisme et
10 Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France.

11 ²National Center for Cool and Cold Water Aquaculture, ARS/USDA, 11861 Leetown Rd, 25430
12 Kearneysville, WV, USA.

13 ³Laboratoire de Biogénèse Membranaire, UMR 5200, CNRS, Univ. Bordeaux, F-33140, Villenave d'Ornon,
14 France.

15 ⁴INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, F-35042,
16 France.

17
18 [#]These authors contributed equally to this work. ^{*} Correspondence: iban.seiliez@inrae.fr
19

21 **ABSTRACT**

22

23 Chaperone-Mediated Autophagy (CMA) is a major pathway of lysosomal proteolysis critical for
24 cellular homeostasis and metabolism. While extensively studied in mammals, CMA's existence in
25 fish has only been confirmed recently, offering exciting insights into its role in species facing
26 environmental stress. Here, we shed light on the existence of 2 genes encoding the CMA-limiting
27 factor Lamp2A (lysosomal associated membrane protein 2A) in rainbow trout (RT, *Oncorhynchus*
28 *mykiss*), revealing distinct expression patterns across various tissues. Notably, RT lacking the
29 most expressed Lamp2A exhibit profound hepatic proteome disturbances during acute nutritional
30 stress, underscoring its pivotal role as a guardian of hepatic proteostasis. Building upon these
31 findings, we introduce and validate the CMA activation score as a reliable indicator of CMA status,
32 providing a valuable tool for detecting cellular stress in fish under environmental threats. Overall,
33 our study offers new perspectives into understanding CMA from evolutionary and environmental
34 contexts.

35

36 **KEYWORDS**

37 Chaperone-mediated autophagy, fish, Rainbow Trout, metabolism, stress, environment, CMA
38 score

39 **INTRODUCTION**

40

41 The higher frequency of extreme climate events is likely to have an impact on fish populations,
42 production and fisheries by causing a shift in their physiology thus survival^{1,2}. Parameters such as
43 growth³, osmotic balance⁴, reproduction⁵, and cellular processes⁶ are directly affected. Cellular
44 homeostasis is hence key for resisting environmental stressors coming fish's way, and finding new
45 ways of gauging it have become urgent.

46 In mammals, a lysosomal degradative process called autophagy involved in the recycling of
47 proteins, damaged organelles and defense against pathogens is crucial to cellular homeostasis⁷.
48 One of the selective forms of autophagy, chaperone-mediated autophagy (CMA), begins when
49 cytosolic proteins bearing a KFERQ-like motif are recognized by the heat-shock protein family A
50 HSP70 member 8 (HSPA8/HSC70) and brought to lysosomal membrane via specific binding to
51 lysosome-associated membrane protein 2A (LAMP2A), the rate-limiting factor in CMA⁸. LAMP2A,
52 one of the three splice variants (LAMP2A, B and C) of the *lamp2* gene, is the only one involved in
53 CMA^{9,10,11}. Following the binding of the substrate/chaperone complex, LAMP2A multimerizes to
54 form a translocation complex through which the substrate translocates for intralysosomal
55 degradation¹². KFERQ-like motifs can be found in a large subset of the eukaryotic proteome in 2
56 different forms: canonical and putative. Putative motifs can be turned into KFERQ-like motifs after
57 post-translational modifications such as phosphorylation or acetylation¹³. Proteins bearing
58 canonical or putative KFERQ-like motifs have been associated with various biological processes
59 like metabolism, cell cycle, immune response and transcriptional regulation¹². Upon oxidative
60 stress, nutrient deprivation, hypoxia or pathologies, enhanced CMA activity has been shown to
61 regulate energetics and metabolic processes to maintain cellular homeostasis^{14,15}. Fine tuning of
62 the proteome and preservation of cellular homeostasis define CMA as a major cellular function in
63 vertebrates.

64 Although previously thought to be restricted to mammals and birds, CMA was recently
65 established in fish^{16,17}. This discovery brought new perspectives for a better understanding of the
66 mechanisms involved in the adaptation of organisms amid environmental stress. The rainbow trout
67 (RT, *Oncorhynchus mykiss*), a widely spread salmonid commonly found in aquaculture
68 production¹⁸, is an extensively studied model organism in physiology, genetics, behavior and
69 ecology¹⁹. In addition to stressful environmental events it has to endure²⁰, the RT also exhibits
70 distinctive metabolic features like a high dietary protein requirement and glucose intolerance²¹.
71 Therefore, it is an interesting candidate organism to study CMA and its potential role in regulating

72 the proteome, particularly proteins responsible for maintaining metabolic and cellular
73 homeostasis.

74 Recently, a homology-based search unveiled the presence of two *lamp2* paralogous genes
75 within the genome of RT, located on chromosomes 14 (C14) and 31 (C31) respectively, with both
76 genes harboring all three alternative exons (A, B, and C)^{16,17}. Furthermore, a first glimpse of
77 *lamp2a* splice variants expression in different fish species provided a clue to the potential
78 existence of CMA in the RT²².

79 In this study, we have shown that RT has all the genetic material to express CMA machinery,
80 particularly in tissues involved in major metabolic processes. We conducted a lysosome isolation
81 combined with the Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) binding/uptake assay
82 to measure CMA activity. It revealed that RT lysosomes can translocate GAPDH, a *bona fide* CMA
83 substrate, depending on the presence of HSC70 and ATP. In addition, we showed that as in
84 mammals, nutritional status regulates CMA activity. To fully unravel the physiological functions of
85 CMA in RT, we used the genome-editing tool CRISPR-Cas9 and generated a knock-out (KO) line
86 lacking LAMP2A from C31, the most expressed of both isoforms. Following LAMP2A C31 deletion,
87 RTs were significantly larger than their wild type (WT) correlates and presented heavier livers and
88 viscera weights. To further characterize the physiological roles of CMA in RT, we then used
89 quantitative proteomics and found that upon nutritional stress, CMA is crucial to the preservation
90 of cellular homeostasis by regulating oxidative stress response, energetics and metabolic
91 processes. Finally, the adaptation and validation in RT of the "CMA score", a reliable indicator of
92 the activation status of CMA based on the expression levels of key CMA effectors and regulators
93 as developed by Bourdenx et al. 2021¹⁵, not only introduces a novel biomarker for fish cellular
94 homeostasis but also enables the assessment of CMA potential in emerging models. Overall, this
95 study emphasizes the importance of considering CMA as a major function in maintaining fish
96 cellular homeostasis, particularly amid the rising occurrence of new environmental threats.

97

98 **RESULTS**

99

100 **The main CMA effectors are expressed in RT**

101

102 A homology-based investigation of sequences of main CMA effectors in RT's genome allowed
103 us to investigate their expression throughout development and in different tissues of adult
104 individuals. As presented in Fig 1A, most of core CMA genes are gradually induced from oocyte
105 stage to maximum expression at stage 22/23, during which the primitive liver and the primitive

106 hepatic portal vein develop in RT²³. Both *lamp2a* paralogs from C14 and C31 were then compared
107 and in most tissues, *lamp2a* C31 shows a higher expression (Fig 1B). Nearly all tissues displayed
108 *lamp2a* expression, particularly liver, intestine and kidney.

109 Following the high mRNA expression of both *lamp2a* paralogs in liver and intestine, we
110 conducted a BaseScope assay to address spatial expression of the transcripts. *Lamp2a*
111 transcripts quantity and distribution were analyzed in fed and starved RT, as starvation induces
112 maximal CMA activation²⁴. BaseScope signal showed that mRNA was distributed evenly across
113 sampled liver tissue (Fig 2A). Countings confirmed previous data validating a higher expression
114 of *lamp2a* C31 compared to *lamp2a* C14, regardless of nutritional status (Fig 2C).

115 In the distal part of the intestine, *lamp2a* mRNA was mostly found in enterocytes (epithelium)
116 in contrast to lamina propria, serous and submucous layer (Fig 2B). Regarding the expression of
117 *lamp2a* paralogs and effect of nutritional status, similar results were found in the intestine, with a
118 higher expression of both *lamp2a* paralogs in starved conditions and *lamp2a* C31 being the most
119 expressed transcript (Fig 2D).

120 The expression of CMA-related genes showed undisputable signs that RT carries all the
121 genetic material required to express the CMA machinery, although a demonstration of its activity
122 was required.

123

124 **RT exhibits CMA-active lysosomes able to bind and uptake GAPDH**

125

126 To truly grasp whether CMA is functional in RT, we referred to the gold standard for *in vivo*
127 CMA activity quantification, which consists of measuring the binding and uptake of a given CMA
128 substrate in isolated CMA-competent (CMA+) lysosomes²⁵. In this aim, we relied on the technique
129 described by Juste & Cuervo's²⁶ to isolate trout liver lysosomes. Four interphases were separated
130 after the ultra-centrifugation step theoretically containing, from top to bottom: CMA+ lysosomes, a
131 mix population of CMA-competent and CMA-non-competent lysosomes (CMA+/- lysosomes), a
132 mixture of lysosomes and mitochondria (Lyo/Mito) and mitochondria (Mito) (Fig 3A).

133 To ensure that each interphase contained its expected content, we conducted western blotting
134 to quantify key proteins from each fraction. We first quantified Tim23, a component of the
135 mitochondrial inner membrane²⁷. The mitochondrial fraction displayed a higher level of Tim23
136 compared to other phases (Figs 3B and C). We then quantified levels of lysosome-associated
137 membrane protein 1 (Lamp1), commonly used as a lysosomal marker²⁸ as well as the CMA-key
138 Hsc70 chaperone. We found a higher abundance of Lamp1 in fractions that contained lysosomes
139 (Figs 3B and 3D). Interestingly, Hsc70 was present at higher levels in the CMA+ fraction than in

140 its CMA- counterpart (Figs 3B and 3E), in accordance with the higher content of lysosomal Hsc70
141 in CMA+ lysosomes^{28,29}. Overall, these results clearly show that RT contains lysosomes displaying
142 characteristics of CMA+ lysosomes.

143 After confidently having isolated CMA+ lysosomes, we needed to find evidence for their
144 capacity to perform CMA. To assess CMA activity, we referred to the Juste & Cuervo's protocol,
145 which involves testing the ability of a given CMA substrate (e.g., GAPDH) to bind to and be taken
146 up by CMA+ lysosomes²⁶. Briefly, 5 different conditions were used to test CMA activity in RT (Fig
147 3F; quantification in Fig 3G). In condition 1, CMA+ lysosomes were left untreated. The thin GAPDH
148 band observed by western blotting likely stems from endogenous RT GAPDH. In condition 2, we
149 incubated CMA+ lysosomes with GAPDH. This resulted in a more pronounced band, indicating
150 the binding of the CMA substrate to the lysosomal membrane (Figs 3F and 3G). To confirm the
151 binding of GAPDH to the lysosomal membrane, we then introduced proteinase K (PK) in condition
152 3, which degraded all proteins associated with the cytosolic side of the lysosomal membrane.
153 Consequently, the band disappeared, validating that GAPDH binds specifically to the lysosomal
154 membrane (Figs 3F and 3G). In condition 4, we pre-treated CMA+ lysosomes with inhibitors of
155 lysosomal proteases to prevent the degradation of translocated substrates. This led to a stronger
156 band compared to condition 2 (Figs 3F and 3G), providing evidence that GAPDH binds to the
157 lysosomal membrane and is subsequently translocated inside CMA+ lysosomes. Lastly, in
158 condition 5, CMA+ lysosomes were pre-treated with inhibitors of lysosomal proteases and then
159 incubated with PK (Figs 3F and 3G). A thinner band appeared, which likely represents the fraction
160 of GAPDH taken up by CMA+ lysosomes. Additionally, we were able to measure the uptake by
161 calculating the difference in GAPDH quantity between conditions 4 (association) and 2 (binding)
162 or through the use of PK (condition 5). No difference was found between both uptake values (Fig
163 3H), strengthening our results and supporting that RT exhibits CMA+ lysosomes able to bind and
164 uptake GAPDH.

165 To characterize the mechanisms at play more comprehensively, we then verified whether
166 GAPDH binding and uptake by CMA+ lysosomes depend on the presence of ATP and HSC70, as
167 demonstrated in mammals²⁵. We incubated freshly isolated RT liver CMA+ lysosomes with all
168 factors required for binding/uptake of GAPDH and added PK to reveal uptake (Fig 3I, condition 1).
169 In conditions 2 and 3, we repeated the treatments, but without ATP or HSC70, respectively. Our
170 findings clearly demonstrate that GAPDH uptake was significantly diminished (if not completely
171 suppressed) in the absence of ATP or HSC70 (Figs 3I and 3J), witnessing the essential part they
172 play in the ability of RT CMA+ lysosomes to bind and translocate the added GAPDH.

173 Finally, since nutrient deprivation commonly induces CMA in mammals²⁴ and higher *lamp2a*
174 gene expression was found in starved RT (Figs 2A – 2D), we investigated the effects of starvation
175 on GAPDH uptake by RT CMA+ lysosomes. Our findings revealed that CMA+ lysosomes isolated
176 from starved RT exhibited a significantly higher ability to uptake GAPDH compared to lysosomes
177 from fed RT (Figs 3K and 3L), hinting at a higher CMA activity following nutrient deprivation akin
178 to that occurring in mammals..

179 Taken together, these results indicate that RT contains lysosomes able to perform CMA or
180 CMA-like activity.

181

182 **Lamp2a C31 deletion leads to enhanced body size, altered organ indices, and**
183 **metabolic dysregulation in RT**

184

185 Having demonstrated the existence of CMA activity in RT, we then focused on unraveling its
186 physiological role. Using the genetic tool CRISPR-Cas9, we generated RT models knocked-out
187 for *lamp2a* C31 (hereafter referred to as L2AC31-KO), as it is the most expressed of both paralogs
188 (Figs 1B and 2A - 2D), and *lamp2a* C14's contribution to CMA appears marginal, as seen in our
189 recent *in vitro* study¹⁷. More specifically, the generated fish line displayed a deletion of a 322 bp
190 region in exon 9 of the *lamp2* gene (from C31) that encodes for the specific cytosolic and
191 transmembrane domains of the Lamp2a protein (Fig 4A and S1A). As expected, levels of *lamp2a*
192 C31 mRNA were undetectable in the tissues of L2AC31-KO RTs (Fig 4B). Surprisingly, higher
193 expression of *lamp2a* C14 mRNA was found in L2AC31-KO RTs when compared to their WT
194 counterparts (Fig 4C), suggesting the existence of compensatory mechanisms. Differential
195 regulations of other *lamp2* splice variants transcripts (*lamp2b* and *lamp2c*) from both C31 and C14
196 were also observed (Figs S1B - S1E), in agreement with the reported specific regulation of
197 expression of these 2 isoforms³⁰, which do not participate in CMA.

198 To further appreciate the impact of the *lamp2a* C31 deletion on the overall CMA network, we
199 then used the CMA score, as recently defined by Bourdenx et al¹⁵. The score is a weighted
200 average of the expression level of every known effector and both positive and negative modulators
201 of CMA (Fig S2A and Table S1), with recent studies showing that it represents a reliable proxy for
202 CMA activation status^{29,31,32}. We first validated this score experimentally using RT cells expressing
203 the KFERQ-PA-mCherry1 CMA reporter, a widely utilized method for monitoring CMA in
204 mammalian cells³³ and more recently validated in fish cells^{16,17}. These cells were cultured under
205 conditions known to induce CMA activation: starvation (serum-free) and mild-oxidative stress
206 (H2O2, 25 µM) (Fig S2B). CMA activity (number of puncta/cell) was quantified after 4, 8, 16, 24

207 and 48h of treatment. The highest CMA activation was observed upon mild-oxidative stress and
208 starvation at 16 hours (Figs S2C and S2D). The CMA score was then calculated at that time point
209 using mRNA levels of all CMA network elements (Fig S2E). The significant higher CMA score
210 encountered upon these 2 CMA activators respect to the control condition (Fig S2F) ensured its
211 adequacy and the opportunity to use it as a potential proxy for CMA's functional output in RT as
212 well. After we validated the CMA activation score *in vitro*, we then calculated it for liver, intestine
213 and brain samples of WT versus L2AC31-KO RTs. We found significant decrease of the CMA
214 score in L2AC31-KO RTs in the different tissues analyzed (Fig 4D), suggesting a decline in CMA
215 activity following *lamp2a* C31 KO. Interestingly, we found no significant alteration in the steady
216 state levels of LC3-II, a well-established marker for autophagosome formation³⁴, in the livers of
217 L2AC31-KO RTs compared to WT fish (Figs 4E and 4F), highlighting the suitability of these
218 animals to study the consequences of compromised CMA activity independent of any effects
219 induced by macroautophagy compensation.

220 Considering the critical role(s) of CMA in the control of hepatic metabolism^{35,16}, we then
221 investigated the physiological consequences of *lamp2a* C31 deletion. In a first phase, we tracked
222 the biometrical parameters/growth of both L2AC31-KO and WT fish for approximately 23 weeks,
223 and observed that L2AC31-KO animals presented both significantly higher body weight and length
224 than their WT counterparts both at 97 and 159 days of rearing (Figs 4G and 4H), suggesting that
225 the lack of Lamp2a C31 induces metabolic alterations in these species. To go further, and as the
226 RT is considered a natural model for glucose intolerance³⁶, we then subjected both L2AC31-KO
227 and WT fish to a diet rich in carbohydrates (HCHO diet, 30% of the diet). This dietary challenge
228 aimed to investigate the nutritional stress response of RTs unable to perform CMA. Interestingly,
229 after 7 weeks of feeding the high carbohydrate diet, L2AC31-KO fish still presented significantly
230 higher body weights and lengths than WT (Figs 4G and 4H). Furthermore, at the last time point,
231 L2AC31-KO fish exhibited significantly higher levels of hepatosomatic (HSI) and gastosomatic
232 (GSI) indexes (Fig 4I), as well as a trend towards reduced postprandial plasma glucose levels (Fig
233 4J), suggesting defects in their metabolism. Given the important phenotypical consequences
234 observed in L2AC31-KO RTs, we inspected the specific metabolic pathways affected by *lamp2a*
235 C31 inactivation. We found that glycogen levels were unaltered upon *lamp2a* C31 inactivation (Fig
236 4K), indicating that the liver enlargement in L2AC31-KO RTs was not caused by accumulated
237 glycogen. Accordingly, we measured the hepatic lipid content and found similar levels of saturated
238 fatty acids (Sat) in WT and L2AC31-KO RTs (Fig 4L). However, L2AC31-KO RTs displayed an
239 accumulation of monounsaturated fatty acids (MUFA) and a depletion in polyunsaturated fatty
240 acids (PUFA) (Fig 4L), a fatty acid composition found in nonalcoholic fatty liver³⁷.

241

242

Lamp2a C31 deletion in RT leads to substantial remodeling of the hepatic proteome.

243

244 To unveil how Lamp2a C31 deficiency leads to the phenotypic changes observed, we first
245 measured the expression of select genes involved in glucose and lipid metabolism. We found that
246 mRNA expression levels of glucose metabolism-related enzymes in the livers of WT and L2AC31-
247 KO RTs did not differ significantly (Fig 5A). In contrast, L2AC31-KO fish exhibited a significant
248 upregulation of the genes involved in lipid metabolism (Fig 5A), hinting at an enhanced potential
249 to synthesize fatty acids.

250 To investigate whether L2AC31-KO RTs also underwent liver proteome perturbations, we
251 conducted a quantitative proteomic analysis of the liver samples obtained from both WT and
252 L2AC31-KO fish fed the HCHO diet. Overall, we identified 5489 proteins, among which 2.5% (137
253 proteins) were significantly up-regulated and 2.6% (144 proteins) were significantly down-
254 regulated in L2AC31-KO RTs compared to WT (Fig 5B, Tables S2 and S3). Remarkably, the
255 analysis of CMA-targeting motifs in these up- and down-regulated proteins revealed a higher
256 percentage of proteins containing either the canonical or a phosphorylation-generated KFERQ
257 motif in the former group compared to the latter group (Fig 5C), potentially suggesting an
258 accumulation of putative CMA substrates in L2AC31-KO RTs.

259 To obtain a global picture of pathways affected by Lamp2a inactivation in RT, we first
260 conducted an enrichment map analysis. We found that proteins up-regulated in L2AC31-KO RTs,
261 were mainly related to cellular and metabolic processes (Fig 5D and Table S2). The gene ontology
262 analysis then provided us with a closer look at specific pathways affected by Lamp2A C31
263 disruption (Fig 5E). Notably, among the proteins that were up-regulated, the biological processes
264 most prominently observed were the TCA cycle and pathways associated with glucose and
265 isocitrate metabolism. In detail, we found several proteins involved in the metabolic use of glucose
266 as well as fatty acid biosynthesis and transport (Table S2). These include notably (i) hexokinase
267 (HK) and fructose bisphosphate A (ALDOA) involved in glycolysis, (ii) isocitrate dehydrogenase
268 (IDH) and malate dehydrogenase (MDH) involved in the TCA cycle, and (iii) ATP citrate synthase
269 (ACLY), very long-chain acyl-CoA synthetase (ACSVL) and fatty-acid-binding proteins (FABP)
270 involved in fatty acid biosynthesis and transport. Although this analysis cannot reveal whether
271 these proteins (whose levels are induced in L2AC31-KO versus WT fish) are directly targeted by
272 CMA, it is worth noting that a number of them have already been described as *bona fide* CMA
273 substrates in mammals³⁸ and possess one or more KFERQ motifs in RT (Table S4). Whether this
274 upregulation of proteins involved in hepatic metabolism is direct or indirect, it supports an

275 enhanced capacity of L2AC31-KO RT liver for glucose utilization and fatty acid biosynthesis, in
276 agreement with the already mentioned reduced glucose circulating levels and altered hepatic lipid
277 profile (Figs 4J and 4L). However, a significant number of proteins associated with metabolic
278 processes were also found to be downregulated in KO fish compared to their WT counterparts
279 (Fig 5F and Table S3). Among them, we noticed the presence of Apo lipoprotein B100 (ApoB-
280 100), which is involved in the assembly and secretion of very low density lipoprotein (VLDL)
281 associated with the distribution of excess triglycerides from the liver to peripheral tissues³⁹. Thus,
282 this finding supports defects in the hepatic lipid metabolism/trafficking.

283 Another cluster identified through enrichment mapping and gene ontology analysis is
284 associated with mitochondria biogenesis and function (Figs 5D - 5G). Despite an increase in
285 proteins related to mitochondrial biogenesis (Fig 5D and Table S2), we observed a decrease in
286 the levels of electron transport chain complexes (Figs 5F and 5G, and Table S3). Specifically,
287 various subunits of mitochondrial complex I (FOXRED1, NDUFV1, NDUFA7, NDUFA12) and
288 complex IV (COX-7c) were found to be downregulated upon Lamp2a C31 inactivation (Table S3),
289 suggesting potential alterations in mitochondrial respiration within the liver of L2AC31-KO RTs.
290 Notably, our analysis also revealed elevated levels of several proteins associated with glutathione
291 (GSH) metabolism and antioxidant functions in mutant fish, including glutamate cysteine ligase
292 (GCL), Glutathione S-transferase omega (GSTO1), thioredoxin, thioredoxin reductase (TR),
293 glutaredoxin, and glucose-6-phosphate dehydrogenase (G6PD) (Fig 5D and Table S2), possibly
294 reflecting the establishment of an adaptive response to mitigate oxidative stress caused by a
295 compromised mitochondrial function. In that direction, further investigation unveiled an
296 upregulation of Glutathione-Disulfide Reductase (gsr) mRNA expression along with a decrease in
297 the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) in the liver of L2AC31-KO
298 RTs (Figs 5H and 5I), supporting a situation of compromised redox status in CMA-defect animals.

299 Finally, we turned our attention to the cluster associated with proteolytic pathways evidenced
300 by the enrichment map of the up-regulated proteins (Fig 5D). We witnessed an increase of key
301 components of the endosomal sorting complexes required for transport (ESCRT) machinery such
302 as vacuolar protein sorting 4 homolog B (VPS4B) (Table S2), considered to be an ESCRT
303 accessory protein whose expression level controls the activation of endosomal microautophagy
304 (eMI). Other proteins related to the ubiquitin-proteasome system (UPS), including Proteasome
305 26S subunit, ATPase 1 (PSMC1), UV excision repair protein RAD23 homolog A (RAD23) and
306 Ubiquitin Conjugating Enzyme E2 K UBE2K, were also up-regulated in L2AC31-KO RTs (Table
307 S2), overall suggesting that compensation of the CMA defect could occur via these two pathways.

308 Taken together, these results demonstrate that upon an acute nutritional stress such as
309 the HCHO diet, loss of CMA leads to strong perturbations of the hepatic proteome, thus
310 highlighting its critical role as a gatekeeper of hepatic proteostasis in RT.

311

312 **Use of CMA score as a prognostic tool to assess cellular homeostasis in fish exposed
313 to hypoxic conditions**

314

315 After emphasizing the critical role of CMA in the regulation of hepatic proteostasis in RT
316 exposed to an acute stress, we investigated the applicability of the CMA score as a tool to assess
317 cellular homeostasis in fish facing environmental stress. In this aim, we subjected RTs to moderate
318 hypoxic conditions (dissolved oxygen DO 5.6 ± 0.5 ppm), widely known to induce oxidative stress
319 and organ failure in fish, as established by previous studies^{40,41}. After 4 weeks of moderate
320 hypoxia, we collected the liver, gills and multiple brain parts of RT and calculated the CMA score
321 (Fig 6A). We found a significant overall increase in the CMA score in RT tissues when exposed to
322 hypoxia, suggesting the overall induction of the CMA network in response to this stressful
323 condition (Fig 6B). Collectively, these findings highlight the activation of the CMA machinery
324 following an environmental stress and emphasize the purpose of using the CMA score as an
325 indicative marker for cellular homeostasis in organisms currently exposed to a changing
326 environment.

327

328 **DISCUSSION**

329

330 While extensively documented in the current literature, CMA is primarily investigated as a
331 potential therapeutic target¹². However, recent studies opened up new avenues regarding the
332 presence of this pathway in species beyond those traditionally investigated in biomedical
333 research^{16,17}. The role of CMA in maintaining cellular homeostasis supports the idea that it could
334 also be decisive for species exposed to numerous threats and a changing environment.
335 Throughout this study, we have presented compelling evidence that supports the existence and
336 crucial role of CMA in RT.

337 Firstly, we found that most genes of the CMA network are gradually activated throughout the
338 development of the RT embryo. Then, quantification of the transcript levels of both CMA rate-
339 limiting factors *lamp2a* paralogs revealed their presence in various tissues, especially those
340 involved in metabolism, and a high heterogeneity of their expression levels, with *lamp2a* from C14
341 being very weakly expressed compared to its counterpart on C31. Interestingly, the low expression

342 level of the former paralog associated with its apparent non or limited involvement in CMA
343 activity¹⁷, suggests that it is under ongoing pseudogenization, as more than half of the genes
344 duplicated during the 4th round of WGD (100 million years ago) that occurred in the salmonids
345 ancestor⁴². Another noteworthy observation is the induction of the expression of both *lamp2a*
346 paralogs by fasting. In mammals, although nutrient deprivation is a potent activator of CMA, it
347 relies on reduced degradation of LAMP2A and relocation of this receptor at the lysosomal
348 membrane⁴³ and not on the control of *LAMP2A* transcription. Overall, these data highlight general
349 conservation of the CMA machinery in RT, but also show differences with mammals in the
350 mechanisms involved in its regulation, which remain to be further investigated.

351 To demonstrate CMA activity in RT, we then isolated CMA-active lysosomes from liver
352 samples and established their ability to bind and translocate a CMA substrate. To our knowledge,
353 this is the first *in vivo* evidence for the existence of CMA activity (or CMA-like activity) in a non-
354 mammalian organism. This finding is in line with the recent demonstration of CMA activity in
355 medaka cell lines using the CMA reporter KFERQ-mCherry1¹⁶ and provides clear evidence of that
356 the CMA mechanism is also functional in fish. Not only does the binding and uptake of GAPDH
357 show the capability of RT lysosomes to carry out CMA, it also demonstrates their capacity to
358 recognize a KFERQ-like motif. This finding raises new questions regarding the KFERQ-like motif
359 conservation throughout vertebrate evolution and whether new CMA substrates are introduced in
360 other species therefore diversifying the scope of influence of CMA.

361 To advance further into unraveling the physiological role of CMA in RT, we generated a unique
362 RT line KO for *lamp2a* C31, as our latest in cell-based knockdown experiments show that Lamp2A
363 C14 has minimal, if any, contribution to total CMA activity¹⁷. As expected, the mutant fish showed
364 a total loss of C31 *lamp2a* mRNA expression. However, they also exhibited tissue-specific
365 modulations of the expression of the other two *lamp2* splice variant transcripts (namely, C31
366 *lamp2b* and C31 *lamp2c*) compared to WT. Although encoded by the same gene, previous studies
367 reported distinct regulatory patterns for the 3 isoforms in response to various situations^{30, 44, 45, 46,}
368 ⁴⁷, providing evidence for the presence of post-transcriptional mechanisms that govern the
369 expression of *lamp2* gene(s). These mechanisms may underlie the observed variations in the
370 expression of *lamp2b* and *lamp2c* in L2AC31-KO fish and warrant further investigation. More
371 surprising was the induction of C14 *lamp2a* mRNA expression (carried by a different gene) in
372 mutant RTs, which support the existence of compensatory mechanisms whose molecular
373 determinants remain to be determined.

374 At a phenotypic level, mutant fish presented increased growth, enlarged livers, greater
375 visceral weights, and a trend of lower postprandial blood glucose levels, hinting at metabolic

376 disturbances. By investigating the state of the proteome upon *lamp2a* inactivation, we obtained a
377 closer glimpse at CMA's involvement in the regulation of the RT's metabolism. Overall, Gene
378 Ontology and network analysis highlighted clusters related to metabolic processes, mitochondrial
379 activity, antioxidant functions and proteolytic pathways, providing compelling evidence that CMA
380 plays a critical role as a gatekeeper of hepatic proteostasis in RT. Interestingly, several metabolic
381 enzymes identified as *bona fide* CMA substrates (e.g., ALDOA and MDH) in mice³⁵ were up
382 regulated upon *lamp2a* inactivation in RT, suggesting a conservation of at least some CMA targets
383 across vertebrates. In this sense, it is worth noting that these enzymes present KFERQ-like motifs
384 in RT as well. Looking ahead, it will be of major interest to determine precisely which proteins are
385 specifically targeted by CMA in this species. Another important issue will be to compare the
386 physiological consequences of the deletion of *lamp2a* C31 with that of *lamp2a* C14 or that of the
387 two *lamp2as*.

388 As we witnessed the essential role of CMA to maintain cellular homeostasis upon an external
389 stress, new questions arose as to the involvement of CMA in fish resilience and whether it could
390 be harnessed as a stress gauge. To this end, we adapted and validated in RT the CMA score, as
391 recently defined by Bourdenx et al¹⁵ to generate an index accounting for the CMA status. As CMA
392 is activated in harmful situations such as oxidative stress, genotoxic damage or hypoxia¹², we
393 subjected RTs to moderate hypoxic conditions. In response to reduced DO levels, our
394 investigation of multiple tissues consistently revealed a significant increase in the CMA score. This
395 level of precision shows that CMA machinery activation is finely tuned and depends on tissue- or
396 even cell-type, as demonstrated in mammalian cells¹⁵. Furthermore, it opens new perspectives
397 regarding the potential of quickly measuring CMA status in non-invasive tissues of fish (e.g. blood
398 or mucus) but also in uncommon species, also subjected to increasing severity of climate events,
399 especially when unable to measure CMA activity conventionally (e.g., lysosome isolation).
400 Nonetheless, further investigation is required (e.g., identification of specific CMA substrates,
401 exposure of L2AC31-KO fish to different environmental stressors) in order to truly identify the
402 mechanisms through which CMA maintains proteostasis.

403

404 **ACKNOWLEDGMENTS**

405

406 We thank Cécile Heraud (INRAe) for the GSSG:GSH measurements, Christel Poujol for
407 technical assistance at the Bordeaux Imaging Center (BIC), CNRS-INSERM and Bordeaux
408 University, member of the national infrastructure France BioImaging and supported by the French
409 National Research Agency (ANR-10-INBS-04). Lipidomic analyses were performed on the

410 Bordeaux Metabolome Facility-MetaboHUB (ANR-11-INBS-0010). We thank Alexandre Stella
411 from the ProteoToul Services - Proteomics Facility of Toulouse for the proteomics analysis. We
412 also acknowledge technical and animal caretaking contributions from NCCCWA personal Josh
413 Kretzer, Vanessa Panaway, and Joe Beach. Mention of trade names is solely to provide accurate
414 information and does not reflect endorsement by the USDA. The USDA is an equal opportunity
415 employer and provider. We would also like to thanks Lucie Marandel for kindly providing us with
416 RT samples from her experiment⁴⁸ and L. Peron for manufacturing the light emitting device. S.S.
417 received a doctoral fellowship from the E2S-UPPA.

418

419 AUTHOR CONTRIBUTIONS

420

421 I.S. and B.C. got the funding; S.S., B.C. and I.S. conceived and planned the study; S.S., K.D.,
422 V.V., I-G.P., L.M.R., E.C., B.C., F.D., P.V.D. and A.B. performed the experiments; S.S. and I.S.
423 analyzed the data; S.S., E.J.V., K.D., V.V., I-G.P., M.G., F.B., A.H., S.F-D., B.C. and I.S. discussed
424 the data and future experiments; S.S. and I.S. wrote the original draft of the manuscript; S.S.,
425 E.J.V., F.B., A.H., M.G., B.C. and I.S. reviewed and edited the final version of the manuscript; I.S.
426 and B.C. supervised the project and had primary responsibility for final content.

427

428 DECLARATION OF INTERESTS

429

430 The authors declare no competing interests.

431

432 MAIN FIGURE TITLES AND LEGENDS

433

434 **Figure 1. The expression of CMA-related genes in RT is induced during development and**
435 **shows a tissue-specific pattern.** (A) Expression of CMA-related genes throughout development
436 from oocyte (O) stage (S) to hatching (S30). mRNA levels were normalized with luciferase.
437 Parametric statistical t-tests were performed comparing all stages to oocyte stage (n=3 pools of
438 embryos, one pool of 30 embryos per spawn) (*, $p<0.05$; **, $p<0.01$; ***, $p<0.001$). (B) Expression
439 of *lamp2a* paralogs (from C14 and C31) in different tissues. mRNA levels were normalized with
440 luciferase. A parametric statistical t-test was performed comparing both *lamp2a* paralogs (n=6) (*,
441 $p<0.05$; **, $p<0.01$).

442

443 **Figure 2. The expression of both RT *lamp2a* is induced by fasting and shows a similar**
444 **spatial distribution although at different levels.** (A) Signal of *lamp2a* C14 and *lamp2a* C31
445 probes (arrows) in liver sections from fed and starved RTs (Scale bars, 200 μ m). (B) Signal of
446 *lamp2a* C14 and *lamp2a* C31 probes (arrows) in distal intestine sections from fed and starved RTs
447 (Scale bars, 200 μ m). Enlargements of the boxed region are shown to the top left of each image
448 (Scale bar, 40 μ m). (C) Quantification of liver mRNA signal between both paralogs in contrasted
449 nutritional states (n=4). (D) Quantification of distal intestine mRNA signal between both paralogs
450 in contrasted nutritional states (n=4). A Kruskal-Wallis test (C) and a one-way ANOVA (D) were
451 conducted comparing all conditions. Letters indicate a significant difference between treatments
452 ($p<0.001$). All data is presented as mean +/- SEM.

453

454 **Figure 3. RT displays CMA-active lysosomes able to bind and uptake the CMA substrate**
455 **GAPDH.** (A) Different interphases obtained after centrifugation of RT liver homogenate on a
456 discontinuous Nycodenz gradient. The mitochondria (Mito) are localized in the lowest interphase
457 of the gradient, while the subsequent interphase consists of a mixture of lysosomes and
458 mitochondria (Lyso/Mito). The third interphase from the bottom contains a heterogeneous
459 population of CMA-competent and CMA-non-competent lysosomes (CMA+/- lysosomes), and the
460 lysosomes with high CMA activity (CMA+) migrate to the upper interphase. (B) Immunoblots in
461 those four different liver fractions and densitometric quantification of TIM23 (C), LAMP1 (D), and
462 HSC70 (E) proteins. All values are shown as min. to max. (n=6). A Friedman test with multiple
463 comparisons was performed comparing all fractions. Letters indicate a significant difference
464 between treatments ($p<0.0001$). (F) Immunoblot showing RT CMA+ lysosome's ability to bind and
465 uptake GAPDH. Conditions correspond to (1) untreated CMA+ lysosomes, (2) CMA+ lysosomes
466 incubated with the CMA substrate GAPDH, (3) CMA+ lysosomes incubated with GAPDH and PK,
467 (4) CMA+ lysosomes incubated with GAPDH and inhibitors of lysosome proteases, and (5) CMA+
468 lysosomes incubated with GAPDH, Prot. Inh. and PK. (G) Densitometric quantification of the
469 Western blot shown in F. Values are expressed relative to total proteins (n=6). A t-test (**, $p<0.01$;
470 ***, $p<0.001$) was conducted to stress the differences between association, binding and uptake.
471 (H) Densitometric quantification of GAPDH uptake, comparing uptake from condition 5 and the
472 uptake obtained from the arithmetic difference between condition 2 and 4. (I) Western blot showing
473 RT's CMA activity depends on presence of Hsc-70 and ATP. (J) Densitometric quantification of
474 GAPDH uptake in absence of Hsc70 and ATP, statistically compared with a one-way ANOVA
475 ($p<0.01**$), (n=4). (K and L) GAPDH binding and uptake upon nutrient deprivation versus control
476 condition. Representative Immunoblot (K) and quantification of GAPDH uptake (L) calculated as

477 the difference between GAPDH association (+ Prot. inh.) and GAPDH binding (- Prot. inh.). A t-
478 test was conducted comparing both nutritional conditions ($p<0.001^{***}$), (n=3). All data is presented
479 as mean + SEM.

480

481 **Figure 4. Lamp2a C31 deletion leads to enhanced body size, altered organ indices, and**
482 **metabolic dysregulation in RT.** (A) Genotyping of *lamp2a* allele was performed by PCR of fish
483 fin generated by Crispr-Cas9 method. The primers used were specifically designed to bind exon
484 A. (B) Liver, intestine and brain mRNA expression of *lamp2a* C31 in WT and L2AC31-KO RTs
485 analyzed by RT-qPCR (n=7, values are mean + SEM shown by fold induction respect to WT fish).
486 (C) Liver, intestine and brain mRNA expression of *lamp2a* C14 genes in WT vs L2AC31-KO RTs
487 (n=7, values are mean + SEM shown by fold induction respect to WT fish). A Mann-Whitney test
488 was performed comparing mRNA of WT and L2AC31-KO (*, $p<0.05$; **, $p<0.01$; ***, $p<0.001$; #,
489 $p<0.0001$). (D) CMA score based on expression of liver, intestine and brain CMA network genes
490 in WT vs L2AC31-KO RTs. (n=7, all values shown min. to max.) (t-test; **, $p<0.01$; #, $p<0.0001$).
491 (E) Representative immunoblot for LC3 I and LC3 II in homogenate liver from WT and L2AC31-
492 KO RTs, quantified in (F), values are mean + SEM. (G) Body weights of WT vs L2AC31-KO RTs
493 during 209 days of experiment. Mean +/- SD (*, $p<0.05$; **, $p<0.01$; ***, $p<0.001$; #, $p<0.0001$). (H)
494 Body lengths of L2AC31-KO vs WT RTs during 209 days of experiment. Mean +/- SD (*, $p<0.05$;
495 **, $p<0.01$; ***, $p<0.001$; #, $p<0.0001$). (I) Hepatosomatic ([liver weight/body weight]x100) and
496 Gastroscopic index ([weight of gastrointestinal tract /body weight]x100) of WT vs L2AC31-KO
497 RTs sampled at day 209. Values are mean + SEM (**, $p<0.01$). (J) Postprandial plasma glucose
498 in WT vs L2AC31-KO RTs at day 209. Values are mean + SEM. (K) Hepatic glycogen content (mg
499 of glycogen per g of fresh tissue) of WT vs L2AC31-KO RTs at day 209. Values are mean + SEM.
500 (L) Hepatic lipid profile of WT and L2AC31-KO RTs at day 209. The heatmap represents the % of
501 each fatty acid type to total lipids in L2AC31-KO divided by the corresponding value from the WT
502 group. In both groups, a sum of percentages was calculated per fatty acid category: saturated
503 (Sat), monounsaturated (MUFA) and polyunsaturated (PUFA). Values are mean + SEM. A t- test
504 was performed comparing each fatty acid content between groups (**, $p<0.01$).
505

506 **Figure 5. Deletion of Lamp2a C31 in RT leads to substantial remodeling of the hepatic**
507 **proteome.** (A) mRNA levels of several enzymes related to glucose and lipid metabolisms in liver
508 homogenates from WT vs L2AC31-KO RTs (n=7, values are mean + SEM fold induction respect
509 to WT group). *gckα*, *gckβ*, glucokinase a and b; *pfk*, phosphofructokinase 1; *gapdh*,
510 glyceraldehyde 3-phosphate dehydrogenase; *pklr*, pyruvate kinase; *me1*, malic enzyme 1; *acly*,

511 ATP citrate lyase; *g6pd*, glucose-6-Phosphate dehydrogenase; *fasn*, fatty acid synthase. A Mann-
512 Whitney test was performed comparing mRNA of WT and L2AC31-KO (*, $p<0.05$; **, $p<0.01$; ***,
513 $p<0.001$). (B) Volcano plot of the quantitative proteomics analysis of liver L2AC31-KO vs WT RTs.
514 Top left: number of identified proteins (n) and significantly down-regulated hits. Top right: number
515 of significantly up-regulated hits. Blue and red dots indicate significantly down- and up-regulated
516 proteins, respectively ($p<0.05$ and fold change >1.41). (C) Proportion of differentially-regulated
517 proteins harboring distinct classes of KFERQ-like motifs. (D) Enrichment map showing
518 biologically-related protein networks up-regulated upon Lamp2a blockage. (E) Gene ontology
519 analysis of proteins up-regulated upon Lamp2a blockage. (F) Enrichment map showing
520 biologically-related protein networks down-regulated upon Lamp2a blockage. (G) Gene ontology
521 analysis of proteins down-regulated upon Lamp2a blockage. (H) Glutathione-Disulfide Reductase
522 mRNA expression in liver L2AC31-KO vs WT RTs. Values are mean + SEM (n=7) shown by fold
523 induction respect to WT group (Mann-Whitney test; *, $p<0.05$). (I) Hepatic GSSG:GSH level in
524 L2AC31-KO vs WT RTs. Values are mean \pm SEM (n=7; Mann-Whitney test; *, $p<0.05$).
525

526 **Figure 6. Use of CMA score as a prognostic tool to assess cellular homeostasis in fish**
527 **exposed to stressful conditions.** (A) Expression of CMA network genes in different tissues of
528 RT under hypoxia relative to normoxia (n=6). N= normoxia; H= hypoxia; Liv= liver; Gil= gills; Hyp=
529 hypothalamus; Tel= telencephalon; Cer= cerebellum; BS= brain stem. The CMA network
530 components are organized into functional groups. Green and red dots indicate whether the
531 element has a positive or negative impact on CMA activity, respectively. Gray squares of the
532 heatmap indicate absence of expression. (B) CMA activation score based on expression of CMA
533 network genes in different tissues of RT under hypoxia (n=6). Data represent mean \pm SEM (Two-
534 way ANOVA). T= tissue and H= hypoxia.
535

536 MATERIALS AND METHODS

537 Further information and requests for resources and reagents should be directed to the lead
538 contact, Dr. Iban Seiliez (iban.seiliez@inrae.fr)
539

540

541 Ethical statements

542 All *in vivo* experiments were conducted according to EU legal frameworks related to the protection
543 of animals used for scientific purposes (directive 2010/63/EU), the guidelines of the French
544 legislation governing the ethical treatment of animals (decree no. 2001-464, 29 May 2001) and/or

545 the Institutional Animal Care and Use Committee at the United States Department of Agriculture
546 National Center for Cool and Cold Water Aquaculture.

547

548 **Production, husbandry and treatments of L2AC31-KO fish**

549 A commercial diet was provided for general rearing (Finfish G, Zeigler Bros, Inc., Gardners, PA),
550 unless otherwise noted. Water flow was adjusted to maintain appropriate dissolved oxygen (> 8
551 ppm); water temperatures ranged from 12.5 – 13.5 °C.

552 Gene editing reagents were purchased from Integrated DNA Technologies (IDT) from the Alt-R
553 CRISPR-Cas9 System product line. Online programs (crispr.wustl.edu/crispr/index.html,
554 crispr.med.harvard.edu/sgRNAScorer/) were used to generate chromosome-specific crRNA
555 sequences (5'-CCGTGCCCACTTCTTACT-3' and 5'-AGAAGCGGCTGTGTTAACGA-3') that
556 cut on either side of the 9a exon of the lamp2a gene on C31, with the goal of excising the 9a exon
557 to disrupt Lamp2a C31 protein function. Chromosome/gene specific forward primers internal to
558 exon 9a and reverse primers within a downstream intron were used to assess whether an intact
559 exon was present (5'-TCGGGGTTGCCTTGACTT-3' and 5'-GGTCATCTGGATAATTGTTGATT-
560 3'). Two crRNAs that cut on either side of the C31 9a exons were diluted to 100 µM, as was
561 tracrRNA, in the supplied IDTE buffer. The gRNA solution was generated by combining 1.5 µL of
562 each crRNA, 6 µL tracrRNA, and 8.0 µL Duplex buffer. The solution was heated at 95 °C for 5 min
563 and cooled to room temperature. Cas9 protein was diluted to 2.0 µg/µL in Cas9 working buffer (20
564 mM HEPES, 150 mM KCl, pH 7.5) and combined with an equal volume of gRNA solution.
565 Ribonucleoprotein (RNP) complexes were assembled by incubating the gRNA + Cas9 mixture at
566 37 °C for 10 min. Phenol red was used to visualize RNP delivery.

567 Eggs and milt were collected from two and three-year broodstock held at the facility. Prior to
568 fertilization, eggs were rinsed with milt activation solution (102.8 mM NaCl, 10 mM Tris, 20 mM
569 glycine, pH 9.0, 1 mM reduced glutathione). Each fertilization lot was produced using a single
570 female crossed with a single male. The microinjection procedure was modified from previously
571 published procedures for RT and Atlantic salmon^{49,50}. Fertilized eggs (embryos) were held in milt
572 activation solution in an incubator at 10 °C and injected 3 – 7 h post-fertilization. Immediately prior
573 to injection, embryos were stabilized on a tray within a Petri dish and submerged in 10 °C isotonic
574 saline solution (155 mM NaCl, 3.22 mM KCl, 2 mM CaCl₂). A handheld positive displacement
575 microinjector was used to deliver between 100-200 nL of the RNP complex directly into the
576 blastodisc, visualized using a stereomicroscope (Nikon SMZ1000). Once injected, embryos were
577 transferred to spring water (10 – 14°C) for hatching. Injected embryos (potential mutants) and
578 untreated embryos (controls) from the same fertilization lot were combined upon hatching for

579 collective rearing. At approximately 20 g (~7 month old), fish were anesthetized with tricaine
580 methanesulfonate (MS222, 100 mg/L), adipose fin clipped for genotyping, and tagged with passive
581 integrated transponders (PIT tags) inserted in the intraperitoneal cavity. Genotyping was
582 completed during the grow-out period to distinguish between 1) WT controls, 2) mutants with
583 indels at target sites but retained the 9a exon (intact gene), and 3) mutants with excised exons at
584 the lamp2a gene on C31. Twelve fish were identified that exhibited mosaicism for excision of the
585 9a exon; these fish, including WT controls from the same fertilization lots were used to produce
586 an F1 generation. A subsample of 10 sac fry from each offspring lot were harvested after hatch to
587 screen for gene mutagenesis. Approximately 50% of the F1 offspring from a single cross exhibited
588 complete excision of the 9a exon on the C31 gene. This cross, along with the associated F1 control
589 cross, were hatched and reared separately until PIT tagging and fin clipping at approximately 20
590 g body weight. After PIT tagging, fish were comingled for grow-out under standard rearing
591 protocols.

592 At approximately one year of age, a subset of 68 fish from the F1 mutant (51 fish) and F1 control
593 (17 fish) groups were stocked into two 800 L tanks and acclimated to these conditions for two
594 weeks while consuming a commercially available diet. Feed was withheld for 18 hours before
595 recording weights and fork lengths on individual fish; for the next seven weeks fish were fed to
596 satiation with a high carbohydrate diet (Table S5A). Feed was provided using automatic feeders
597 set to dispense feed at a fixed percent of tank biomass between 08:00 h and 14:00 h, with hand
598 feeding at 14:30 h each day. Ration was adjusted so hand feeding to satiation was approximately
599 5 – 10% of the total daily ration. Weights and lengths were recorded after week 4 and at the end
600 of the study (week 7). Feed was withheld the day of sampling. At the final sampling, a subset of
601 mutants and controls (n = 9 per group, n = 4-5 per tank) were euthanized with a lethal dose of
602 MS222 (300 mg/L). Blood was collected from caudal vasculature into heparinized tubes and
603 placed on ice for subsequent processing for separation of plasma and storage at -80 °C. The
604 viscera was removed and liver and gastrointestinal tract weights were recorded. Samples of liver
605 and distal intestine were placed in histology cassettes and submerged in 10% neutral-buffered
606 formalin with 4% formaldehyde prior to paraffin embedding. Subsamples of liver, distal intestine,
607 and whole brain were frozen in liquid nitrogen and stored at -80 °C.

608

609 **Other *in vivo* experiments**

610 Samples used to investigate the expression of CMA-related genes during RT development were
611 generated in a previously published study⁴⁸. Briefly, spawns were fertilized synchronously with
612 neomale sperm and reared in separate tanks at 8°C at the INRAE experimental facilities, Lees-

613 Athas, France. Fish were sampled according to Vernier et al.1969²³ at stages 2, 5, 6, 7, 8, 10, 12,
614 15, 22 and 23. Embryos were directly snap-frozen while juveniles anaesthetized and killed in
615 benzocaine (60 mg/L). Fish were consistently sampled at 12:00 h for each ontogenetic stage, to
616 avoid potential circadian effects.

617 Samples used to investigate the tissue-specific expression of both lamp2a genes were generated
618 in a previously published study⁵¹. In details, all-female RT from a spring-spawning strain were
619 used and kept under a natural photoperiod at 17°C at the INRAE experimental facilities in
620 Donzacq, France. Twice a day, fish were manually fed ad libitum and considered to be satiated
621 when only a few pellets remained on the bottom of the tank. At the end of experiment, fish were
622 anesthetized and euthanized 6 h after the last meal. Then tissues were sampled and immediately
623 stored at -80 °C.

624 For the hypoxia experiment, monosex female RTs from a spring-spawning strain were used and
625 kept under a natural photoperiod⁵¹. The 12 fish studied were part of a pool of 240 fish (i.e., initial
626 mean weight of 288 ± 9 g) randomly distributed in 12 tanks of 150 L each, for an initial mean
627 biomass of 18 ± 1 kg/m³. A factorial experimental design was used to obtain two DO levels
628 (normoxia vs. moderate hypoxia). The treatment was applied for four weeks.

629 Hypoxic conditions were created by reducing the water flow. DO concentrations were measured
630 at the tank's outlet twice daily using an oximeter (HatchLange HQ 40D). The mean DO
631 concentrations in the hypoxia and normoxia tanks were 5.6 ± 0.5 and 7.7 ± 0.3 ppm, respectively.

632 Mean DO concentrations were higher than those needed to support positive growth, feeding and
633 swimming activities. Total ammonia nitrogen (NH₄⁺-N), nitrite-nitrogen (NO₂⁻-N) and
634 nitrate-nitrogen (NO₃⁻-N) were analyzed twice a week using a commercial kit based on
635 colorimetric method (© Tetra). No trace of these elements was recorded. The temperature
636 remained constant (17.0 ± 0.5 °C). We can therefore consider that the decrease in water level
637 only caused a decrease in oxygen.

638 Twice a day, fish were manually fed ad libitum and considered to be satiated when only a few
639 pellets remained on the bottom of the tank.

640

641 **RTgutGC cell line**

642 For in vitro experiments, the RTgutGC cell line⁵² derived from RT was routinely grown in Leibovitz's
643 L-15 medium supplemented with 10% fetal bovine serum (FBS, #10270-106), 2 mM sodium
644 pyruvate (NaPyr, #11360-070), 100 units/mL penicillin and 100 g/mL streptomycin (#14065-056),
645 all provided by Gibco (Thermo Fisher scientific) and 25 mM HEPES (#BP299-1, Fisher
646 Bioreagents, Fisher Scientific SAS, Illkirch Graffenstaden, France). Cells were maintained at 18

647 °C, the medium was replaced twice a week and cells were passaged at 80% of confluence. Cell
648 counting was achieved using a Cellometer K2 (Nexcelom Bioscience LLC, Lawrence, MA, USA)
649 to plate cells prior to the experiments. Cells were seeded at a density of 50-60% for RNA isolation.
650 Prior to the treatments, cells were washed twice with PBS before the exposure to the appropriate
651 treatment. The treatments consisted in applying a mild-oxidative stress using CT medium
652 supplemented with hydrogen peroxide (H₂O₂ 25 µM) or using a Hank's balanced salt solution
653 (HBSS) (#14025-092, Gibco) supplemented with 25 mM HEPES as a starvation medium.
654 Nucleofector 2b Device (Lonza, Colmar, France) and the Cell line Nucleofector Kit T (Lonza, VCA-
655 1002) were used for the plasmids cells transfections (1-5 µg). RTgutGC cells stably-transfected
656 with the KFERQ-PA-mCherry1 construction were selected for the resistance to the selective
657 geneticin antibiotic (G418; Gibco, 11811) before cell sorting using a FACS Aria 2-Blue 6-Violet 3-
658 Red 5-YelGr, 2 UV laser configuration (BD Biosciences, Le Pont de Claix Cedex, France) in
659 biosafety cabinet.
660

661 **RNA extraction and quantitative RT-PCR analysis**

662 To extract total RNA from individual samples, tissues were ground in TRIzol reagent (Invitrogen,
663 Carlsbad, California, USA). 50-100 mg of tissue per mL of reagent were sampled and
664 homogenized in a Precellys tissue homogenizer (Bertin Technologies, Montigny le Bretonneux,
665 France). The Super-Script III RNase H-Reverse transcriptase kit (Invitrogen) was used with
666 random primers (Promega, Charbonnières, France) to synthesize cDNA from 1µg of total RNA.
667 The primer sequences used are listed in Tables S1 and S6. Primers were validated by testing their
668 efficiency on pooled cDNA and subsequently sequencing the amplified products. A Roche
669 Lightcycler 480 system (Roche Diagnostics, Neuilly-sur-Seine, France) was used for real-time RT-
670 PCR following the protocol from Plagnes et al. 2008⁵³. Quadruplicates were analyzed and
671 standardized with luciferase (Promega) or stably expressed housekeeping genes (18S, or β-
672 actin). The E-method⁵⁴ was used for the developmental and tissue-specific expression analysis,
673 and the ΔCT method⁵⁵ for the expression of target genes in KO-RTs and CMA score calculation.
674

675 ***In situ* hybridization**

676 The liver and distal portion of the intestine of starved fish (48h) and fish fed with a commercial diet
677 were sampled and immediately fixed with 4% paraformaldehyde (PFA 4%). Samples were then
678 rinsed in PBS, dehydrated through gradual ethanol and butanol baths, embedded in paraffin and
679 cut in 7µM transversal sections. The sections were placed on superfrost adhesion slides (VWR®).
680 The following steps were performed according to the BaseScope™ Detection Reagent Kit v2 –

681 RED User Manual. Samples were deparaffinized and dried after a series of xylene and alcohol
682 baths. To facilitate target access and detection sensitivity, we applied a target retrieval, then a
683 hydrophobic barrier was set and a tissue-specific protease applied. Both BASEscope lamp2a
684 probes, designed by ACD bio® were applied before the amplification phase during which multiple
685 probes are hybridized to amplify the signal. A fast red substrate was then added to visualize the
686 target RNA. A nanozoomer - slides scanner (Hamamatsu NANOZOOMER 2.0HT) was used to
687 visualize whole tissue sections. To quantify the mRNA signal in the liver, equal size images of
688 hepatocyte-covered area were used to count the particles (mRNA). However, as the signal was
689 not evenly distributed in the distal intestine, each image was calibrated using ImageJ⁵⁶ so as to
690 only quantify the signal in epithelium area.

691

692 **Lysosome isolation and GAPDH binding/uptake assay**

693 The lysosome isolation protocol²⁶ was adapted to RT, as it is originally targeted to rat liver. A piece
694 of starved fish liver was sampled (~1-1.5 g), washed with cold PBS, minced with a clean scalpel
695 and homogenized in a conical tube. Some of the homogenate was put aside as a marker for total
696 sample proteins (TLH) and the rest was filtered through a cotton gauze. After a series of
697 centrifugation, a mix of mitochondria and the lysosomal fraction was collected. A discontinuous
698 Nycodenz® (Proteogenix) gradient was then generated and ultracentrifuged (141000 g for one
699 hour at 4°C) to create different interphases with specific content. From bottom to top were isolated
700 mitochondria, a mixture of mitochondria and lysosomes, a mix population of lysosomes and
701 lysosomes with high CMA activity. Those phases were collected with a Pasteur pipet and washed
702 by centrifugation. The third interphase was resuspended and centrifuged to only be able to collect
703 high CMA activity lysosomes.

704 For the GAPDH binding/uptake assay, protein concentrations were measured by Qubit assay
705 (Thermo Fisher Scientific). Isolated lysosomes were incubated in the uptake assay buffer: 300
706 mM sucrose, 10 mM MOPS, pH 7.2, 10 mM ATP (Sigma A2383), 0.01 µg/µL biologically active
707 HSC70 (AbCam, ab78431). For the conditions needing a CMA substrate, samples were incubated
708 with 0.025 µg/µL GAPDH (LP00008). In conditions involving PK, samples were incubated with 1
709 µL of PK (Sigma P6556). To prevent lysosomal degradation, chymostatin (Sigma C7268) was
710 used. All samples were centrifuged and the pellet was then washed and prepared for SDS-PAGE
711 and western blotting.

712 To measure lysosomal integrity, isolated lysosomes were diluted in a buffer of 300mM sucrose,
713 10 mM MOPS, pH 7.2, and 10 mM ATP. Then the sample was centrifuged to separate the pellet
714 (intact lysosomes) from the supernatant (broken lysosomes). Lysosomal integrity was measured

715 by the β -hexosaminidase assay with the fluorogenic substrate 4-methylumbelliferyl-2-acetamido-
716 2-deoxy- β -D-glucopyranoside (MUG) and only experiments with >90% intact lysosomes were
717 considered.

718

719 **Western blotting analysis**

720 To verify if RT lysosomes display known characteristics of CMA+ lysosomes, the isolated fractions
721 (CMA+ lysosomes, CMA+/- lysosomes, lysosomes/mitochondria and mitochondria) were
722 subjected to SDS-PAGE and immunoblotted using the following antibodies: LAMP1 (ab24170),
723 HSC70 (AS05 062) and TIM23 (BD611222). The total tissue homogenate was also quantified as
724 it contains the biological components of all fractions (TLH). To quantify GAPDH, GAPDH (ab8245)
725 was used. We used LC3B (CST3868S) to measure steady-state levels of autophagosome
726 component LC3. After being washed, membranes were incubated with corresponding secondary
727 antibodies such as: HRP anti-rabbit (926-80011) HRP anti-mouse (926-80010). Bands could be
728 visualized by using the Invitrogen™ iBright™ FL1500 Imaging System and analyzed with the
729 iBright analysis software (version 5.0). To ensure protein normalization, a No-Stain Protein
730 Labeling Reagent (A44717) and β Actin (sc-47778) were used.

731

732 **Plasma glucose levels**

733 Blood glucose measurements were analyzed immediately upon collection using a Prodigy
734 AutoCode glucometer (Prodigy Diabetes Care, LLC, Charlotte, NC, USA).

735

736 **Glycogen content**

737 Glycogen content of WT and L2AC31-KO RT was analyzed on lyophilized liver through a
738 hydrolysis technique described by Good et al. (1933). Each sample was homogenized in 1 mol.L-
739 1 HCl (VWR, United States) and free glucose content was measured. Another measurement of
740 free glucose occurred after a 10min centrifugation at 10.000 g using the Amplate Fluorimetric
741 Glucose Quantification Kit (AAT Bioquest, Inc., United States) according to the manufacturer's
742 instructions. The remainder ground tissue was boiled for 2.5 h at 100 °C before being neutralized
743 with 5 mol.L-1 KOH (VWR, United States). Total glucose (free glucose + glucose produced by
744 glycogen hydrolysis) was measured then free glucose levels were subtracted to determine the
745 glycogen content.

746

747 **Lipid content**

748 Lipids were extracted and purified according to Folch et al.1957⁵⁷ and Alannan et al.2022⁵⁸. Briefly,
749 the lipids from about 100 mg of fresh weight were homogenized in an Eppendorf tube with 2 x 1
750 mL of ice-cold isopropanol with a TissueLyser. The homogenates were transferred in a glass tube
751 and 1 mL of ice-cold isopropanol was used to rinse the Eppendorf tube. The samples were then
752 placed at 85 °C for 30 min to inactive lipases. After letting the samples cool down, lipids were
753 extracted with 3 mL of choloroform/methanol 2:1 for 2 h at room temperature, with 3 mL of
754 choloroform overnight at 4 °C and then with 2 mL for an additional 4 h at room temperature.
755 Between each extraction, the samples were centrifuged for 5 min at 3,500 g and the organic phase
756 was collected and transferred to a fresh tube where all organic phases were ultimately pooled
757 (final volume = 11 mL). Polar contaminants such as proteins or nucleic acids were removed by
758 adding 4 mL of NaCl 0.9 % 100 mM Tris and shaking vigorously. After phase separation by
759 centrifugation (15 min at 3.500 g) the organic phase was collected and the solvent was
760 evaporated. The lipids were then resuspended in chloroform:methanol (1:1, v/v) for a final
761 concentration of 0,1 mg equivalent fresh weight/µL. For quantification of neutral lipids, 50 µL (= 5
762 mg fresh weight) of total lipids were applied onto a silica-coated chromatography plate (Silicagel
763 60 F254, 10x 20 cm; Merck, Rahway, NJ) and developed with hexane/ethyl ether/acetic acid (21.
764 25:3.75:0.25, v/v) The plates were then immersed in a copper acetate solution (3% copper acid +
765 8 % phosphoric acid in distilled water) and heated at 115 °C for 30 min. Lipids were identified by
766 co-migration with known standards and quantified by densitometry analysis using a TLC scanner
767 3 (CAMAG, Muttenz, Switzerland). Fatty acid methyl esters were obtained by transmethylation at
768 85 °C for 1 h with 0.5 M sulfuric acid in methanol containing 2 % (v/v) dimethoxypropane and 5
769 µg/mL of heptadecanoic acid (C17:0) as internal standards. After cooling, 1 mL of NaCl (2.5 %,
770 w/v) was added, and fatty acyl chains were extracted with 1 mL hexane. GC-FID was performed
771 using an Agilent 7890 gas chromatograph equipped with a DB-WAX column (15 m x 0.53 mm, 1
772 µm; Agilent) and flame ionization detection. The temperature gradient was 160 °C for 1 min,
773 increased to 190 °C at 20 °C/min, increased to 210 °C at 5 °C/min and then remained at 210 °C
774 for 5 min. FAMES were identified by comparing their retention times with commercial fatty acid
775 standards (Sigma-Aldrich) and quantified using ChemStation (Agilent) to calculate the peak
776 surfaces, and then comparing them with the C17:0 response
777

778 **Quantification of GSH, GSSG in liver**

779 AccQ-Fluor™ borate buffer was purchased from Waters® (Massachusetts, USA). Glutathione
780 reduced (GSH), Glutathione oxidized (GSSG), EthyleneDiamineTetraacetic Acid (EDTA),
781 Phosphoric acid (H3PO4), Potassium dihydrogen phosphate (KH2PO4) and MetaPhosphoric Acid

782 (MPA) were purchased from Sigma-Aldrich® (Germany). Other reagents that used were of HPLC
783 grade. All organic solvents used were gradient HPLC grade (ADL & Prochilab, Lormont, France).
784 Ultrapure water was daily made with a MilliQ Direct8 system (Millipore, Bedford, MA, USA). Each
785 sample (almost exactly 50 mg) was homogenized with Precellys® tissue homogenizer in 300 µL
786 of 20 mM phosphate buffer, 1 mM EDTA (pH = 6.5 ± 0.05). After centrifugation (14.000 g, 20 min,
787 4 °C), deproteinization of the supernatant was performed with a volume-to-volume 10 %
788 metaphosphoric acid solution. After centrifugation (14.000 g, 5 min, 4 °C), the supernatant was
789 filtered with a 0.22 µm PVDF unit. Metabolite mixtures were stored at -20°C (no more than 1 week)
790 until LC-UV analysis. Chromatographic separation was achieved on Waters® Symmetry Shield
791 RP18 column (4.6 mm × 150 mm i.d. 3.5 µm). The column was operated at 30 °C. The injection
792 volume was 50 µL and the flow rate was set at 0.7 mL/min. A ternary solvent system was used,
793 consisting of (A) pH2.7 20 mM phosphate buffer, (B) acetonitrile, (C) methanol. The mobile phase
794 was filtered through in-line 0.2 µm membrane filters. The following gradient elution was employed:
795 0–10 min : 99.5 % A, 0 % B; 10.5 min : 40 % A, 60 % B; 10–13 min : 40 % A, 60 % B; 13.5 min :
796 99.5 % A, 0.5 % B ; 13.5 – 20 min (column equilibration) : 99.5 % A, 0.5 % B. The eluate was
797 monitored with absorbance detection at 210 nm during the whole run. Waters® Empower™ Pro
798 software was used for data acquisition. Metabolites were identified comparing their Retention Time
799 (RT) to standard ones. Quantification was based on integration of peak areas and compared to
800 the standard calibration curves (R² correlation > 0.999) of each metabolite of interest (6 biological
801 levels, 3 repetitions). Calibration curves were linear from 0.2 to ~1 000 pmol/injection for GSSG
802 and from 2 to ~10 000 pmol/injection for GSH.

803

804 **Sample preparation for label-free proteomics analysis**

805 Proteins from WT and KO25-trouts were extracted using the Thermo Scientific™ T-PER™ Tissue
806 Protein Extraction Reagent (ref 78510). Protein concentrations were then measured by
807 bicinchoninic acid (BCA) assay (Interchim; ref UP95424A). For each sample 50 µg of dried protein
808 extracts were solubilized with 25 µL of 5% SDS. Proteins were submitted to reduction and alkylation
809 of cysteine residues by addition of TCEP and chloroacetamide to a final concentration respectively
810 of 10 mM and 40 mM. Protein samples were then processed for trypsin digestion on S-trap Micro
811 devices (Protifi) according to manufacturer's protocol, with the following modifications:
812 precipitation was performed using 216 µL S-Trap buffer, 4 µg trypsin was added per sample for
813 digestion in 25 µL ammonium bicarbonate 50 mM.

814

815 **NanoLC-MS/MS analysis of proteins**

816 Tryptic peptides were resuspended in 35 μ L of 2 % acetonitrile and 0.05 % trifluoroacetic acid and
817 analyzed by nano-liquid chromatography (LC) coupled to tandem MS, using an UltiMate 3000
818 system (NCS-3500RS Nano/Cap System; Thermo Fisher Scientific) coupled to an Orbitrap
819 Exploris 480 mass spectrometer equipped with a FAIMS Pro device (Thermo Fisher Scientific). 1
820 μ g of each sample was injected into the analytical C18 column (75 μ m inner diameter \times 50 cm,
821 Acclaim PepMap 2 μ m C18 Thermo Fisher Scientific) equilibrated in 97.5 % solvent A (5 %
822 acetonitrile, 0.2 % formic acid) and 2.5 % solvent B (80 % acetonitrile, 0.2 % formic acid). Peptides
823 were eluted using a 2.5 % - 40 % gradient of solvent B over 62 min at a flow rate of 300 nL/min.
824 The mass spectrometer was operated in data-dependent acquisition mode with the Xcalibur
825 software. MS survey scans were acquired with a resolution of 60.000 and a normalized AGC target
826 of 300 %. Two compensation voltages were applied (-45 v /-60 v). For 0.8 s most intense ions
827 were selected for fragmentation by high-energy collision-induced dissociation, and the resulting
828 fragments were analyzed at a resolution of 30.000, using a normalized AGC target of 100 %.
829 Dynamic exclusion was used within 45s to prevent repetitive selection of the same peptide.
830

831 **Bioinformatics analysis of mass spectrometry raw files**

832 Raw MS files were processed with the Mascot software (version 2.7.0) for database search and
833 Proline55 for label-free quantitative analysis (version 2.1.2). Data were searched against Rainbow
834 trout entries of Uniprot protein database (46.650 sequences; 17.861.404 residues).
835 Carbamidomethylation of cysteines was set as a fixed modification, whereas oxidation of
836 methionine was set as variable modifications. Specificity of trypsin/P digestion was set for
837 cleavage after K or R, and two missed trypsin cleavage sites were allowed. The mass tolerance
838 was set to 10 ppm for the precursor and to 20 mmu in tandem MS mode. Minimum peptide length
839 was set to 7 amino acids, and identification results were further validated in Proline by the target
840 decoy approach using a reverse database at both a PSM and protein false-discovery rate of 1%.
841 For label-free relative quantification of the proteins across biological replicates and conditions,
842 cross-assignment of peptide ions peaks was enabled inside group with a match time window of 1
843 min, after alignment of the runs with a tolerance of +/- 600 s. Median Ratio Fitting computes a
844 matrix of abundance ratios calculated between any two runs from ion abundances for each protein.
845 For each pair-wise ratio, the median of the ion ratios is then calculated and used to represent the
846 protein ratio between these two runs. A least-squares regression is then performed to approximate
847 the relative abundance of the protein in each run in the dataset. This abundance is finally rescaled
848 to the sum of the ion abundances across runs. A Student t-test (two-tailed t-test, equal variances)
849 was then performed on log2 transformed values to analyze differences in protein abundance in all

850 biologic group comparisons. Significance level was set at $p = 0.05$, and ratios were considered
851 relevant if higher than $+/ - 2$. The results were ranked based on fold change (>1.41) and p -value
852 (<0.05) of t-test comparing WT and L2AC31-KO groups. Gene Ontology enrichment maps were
853 generated in CytoScape (3.9.1) using EnrichmentMAP (3.3.5) plugin, and then annotated with
854 AutoAnnotate (1.4.0) app. The presence of KFERQ motifs within the protein sequences was
855 assessed using the KFERQ finder app V0.8¹³. Furthermore, an ontology analysis was conducted
856 using Enrichr⁵⁹. Clusters are grouped by major functional association.

857

858 **CMA score**

859 Each gene of the CMA network is attributed a weight. As some genes are present in multiple
860 copies (paralogs) in RT, each paralog was attributed a weight of $1/n$, with n copies. As LAMP2A
861 is the rate-limiting factor in CMA, it was given a weight of 2 (1/paralog). Weight values for LAMP2A
862 copies were measured with the relative contribution of each paralog to CMA activity in a RT cell
863 line stably expressing the KFERQ-PA-mCherry1 reporter¹⁷. Furthermore, a modulating score (+1
864 or -1) was applied to the values, whether the gene has a positive or negative impact on CMA.
865 Finally, a sum of all values was calculated to obtain a final score.

866

867 **Quantification and Statistical analysis**

868 Data is reported as means + SEM, percentages + SEM. Normality assumptions were tested before
869 conducting statistical tests and parametric tests conducted only when they were met. Differences
870 between more than two groups were evaluated by one-way ANOVA followed by Tukey's multiple
871 comparison (same sample size) post-hoc test. In the case of non-parametric tests, Kruskal-Wallis
872 or Friedman test followed by Dunn's multiple comparisons were conducted. When comparing two
873 groups we used a parametric two-tailed unpaired Student's T-test, or a non-parametric Mann
874 Whitney test. All statistical analyses were performed using GraphPad Prism version 8.0.1 for
875 Windows (GraphPad Software, Inc., www.graphpad.com) and a p -value < 0.05 was set as a level
876 of significance. All data generated in this study and presented in the figures are provided along
877 with their statistic report in the Dataset S1.

878

879 **SUPPLEMENTAL INFORMATION**

880

881 **Table S1.** CMA score network genes and corresponding primers (forward and reverse).

882

883 **Table S2.** Up-regulated proteins in L2AC31-KO vs WT RTs. A Student t-test (two-tailed t-test,
884 equal variances) was performed on log2 transformed values to analyze differences in protein
885 abundance. The results were ranked based on fold change (>1.41) and p-value (<0.05) of t-test
886 comparing WT and L2AC31-KO groups.

887

888 **Table S3.** Down-regulated proteins in L2AC31-KO vs WT RTs. A Student t-test (two-tailed t-test,
889 equal variances) was performed on log2 transformed values to analyze differences in protein
890 abundance. The results were ranked based on fold change (>1.41) and p-value (<0.05) of t-test
891 comparing WT and L2AC31-KO groups.

892

893 **Table S4.** Occurrence of KFERQ-like motifs in differentially-regulated proteins in L2AC31-KO
894 RTs. KFERQ-like motifs were searched using the KFERQ finder app V0.8¹³ and are categorized
895 as canonical (canon.), phosphorylated (phos.) or acetylated (acet.).

896

897 **Table S5.** Formulation and proximate composition of the experimental diet used in the knock-out
898 experiment (High CHO diet). HighCHO: high-carbohydrate diet. **1** Sopropeche, Boulogne-sur-Mer,
899 France. **2** Gelatinized corn starch; Roquette, Lestrem, France. **3** Sopropeche, Boulogne-sur-Mer,
900 France. **4** Louis François, Marne-la-Vallée, France. **5** Supplied the following (/kg diet): DL-a
901 tocopherol acetate 60 IU, sodium menadione bisulphate 5 mg, retinyl acetate 15,000 IU,
902 DLcholecalciferol 3,000 IU, thiamin 15 mg, riboflavin 30 mg, pyridoxine 15 mg, vit. B12 0.05 mg,
903 nicotinic acid 175 mg, folic acid 500 mg, inositol 1,000 mg, biotin 2.5 mg, calcium pantothenate
904 50 mg, choline chloride 2000 mg. **6** Supplied the following (/kg diet): calcium carbonate (40% Ca)
905 2.15 g, magnesium oxide (60% Mg) 1.24 g, ferric citrate 0.2 g, potassium iodide (75% I) 0.4 mg,
906 zinc sulphate (36% Zn) 0.4 g, copper sulphate (25% Cu) 0.3 g, manganese sulphate (33% Mn)
907 0.3 g, dibasic calcium phosphate (20% Ca, 18% P) 5 g, cobalt sulphate 2 mg, sodium selenite
908 (30% Se) 3 mg, potassium chloride 0.9 g, sodium chloride 0.4 g.

909

910 **Table S6.** List of other primers used in study (forward and reverse).

911

912 **Figure S1. mRNA expression of *lamp2b* and *lamp2c* splice variants in WT vs L2AC31-KO
913 RTs. (A)** Sequence alignment of *lamp2a* in WT vs L2AC31-KO RT showing the loss of exon A
914 (highlighted in yellow) and the CRISPR targets (red font). (B) and (C) show the mRNA expression
915 of *lamp2b* from C31 and C14, respectively. (D) and (E) show the mRNA expression of *lamp2c*

916 from C31 and C14, respectively. Values are mean + SEM (n=7) shown by fold induction respect
917 to WT group. T-test was used to compare between groups (*, $p<0.05$; **, $p<0.01$).
918

919 **Figure S2. *In vitro* validation of the CMA score using KFERQ-PA-mCherry1 reporter in**
920 **RTgutGC cells.** (A) Graphical representation of the CMA network. Each group of proteins is based
921 on function (effectors and modulators) and localization (lysosomal and extra-lysosomal) (modified
922 from¹⁵). (B) Representative images of RT enterocytes cells visualized by fluorescence microscopy
923 (scale bars, 20 μ m) and zoomed image with scale bars of 5 μ m. Cells were transfected with a
924 photoactivable (PA) KFERQ-PA-mCherry1 fluorescent reporter (red) and then photoactivated for
925 10 min. Cells were untreated (Control), exposed to a mild-oxidative stress (H₂O₂, 25 μ M) or
926 maintained in the absence of serum (starvation) for 16 h. CMA activity was measured as the total
927 number of KFERQ-PA-mCherry1 fluorescent puncta normalized for the number of cells after 4, 8,
928 16, 24 or 48 h exposure of RT enterocytes to mild-oxidative stress (C) or starvation (D) and
929 compared with control cells using Mann-Whitney tests (*, $p<0.05$; **, $p<0.01$; ***, $p<0.001$; #,
930 $p<0.0001$) (n=3 experiments, values are means +/- SEM). (E) Heatmap representing expression
931 of CMA network genes in mild-oxidative stress and starvation conditions. mRNA levels were
932 standardized with housekeeping gene 18S. (n=3, values are mean). (F) CMA score based on
933 expression of CMA network genes under both conditions. (n=3, all values shown min. to max.). A
934 t-test was performed comparing the control condition with each treatment condition (*, $p<0.05$).

935 REFERENCES

936

937 1. Sydeman WJ, Poloczanska E, Reed TE, Thompson SA. Climate change and marine
938 vertebrates. *Science* 2015; 350:772–7.

939 2. Brander KM. Global fish production and climate change. *Proc Natl Acad Sci USA* 2007;
940 104:19709–14.

941 3. Huang M, Ding L, Wang J, Ding C, Tao J. The impacts of climate change on fish growth: A
942 summary of conducted studies and current knowledge. *Ecological Indicators* 2021;
943 121:106976.

944 4. Islam MJ, Slater MJ, Kunzmann A. What metabolic, osmotic and molecular stress responses
945 tell us about extreme ambient heatwave impacts in fish at low salinities: The case of
946 European seabass, *Dicentrarchus labrax*. *Science of The Total Environment* 2020;
947 749:141458.

948 5. Pankhurst NW, Munday PL. Effects of climate change on fish reproduction and early life
949 history stages. *Mar Freshwater Res* 2011; 62:1015.

950 6. Clarke A. Costs and consequences of evolutionary temperature adaptation. *Trends in
951 Ecology & Evolution* 2003; 18:573–81.

952 7. Rabinowitz JD, White E. Autophagy and Metabolism. *Science* 2010; 330:1344–8.

953 8. Cuervo AM, Dice JF. A Receptor for the Selective Uptake and Degradation of Proteins by
954 Lysosomes. *Science* 1996; 273:501–3.

955 9. Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y,
956 et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy
957 (Danon disease). *Nature* 2000; 406:906–10.

958 10. Saftig P, Von Figura K, Tanaka Y, Lüllmann-Rauch R. Disease model: LAMP-2 enlightens
959 Danon disease. *Trends in molecular medicine* 2001; 7:37–9.

960 11. Fujiwara Y, Furuta A, Kikuchi H, Aizawa S, Hatanaka Y, Konya C, Uchida K, Yoshimura A,
961 Tamai Y, Wada K, et al. Discovery of a novel type of autophagy targeting RNA. *Autophagy*
962 2013; 9:403–9.

963 12. Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. *Nat Rev Mol
964 Cell Biol* 2018; 19:365–81.

965 13. Kirchner P, Bourdenx M, Madrigal-Matute J, Tiano S, Diaz A, Bartholdy BA, Will B, Cuervo
966 AM. Proteome-wide analysis of chaperone-mediated autophagy targeting motifs. *PLoS Biol*
967 2019; 17:e3000301.

968 14. Tesseraud S, Avril P, Bonnet M, Bonniet A, Cassar-Malek I, Chabi B, Dessauge F, Gabillard
969 J-C, Perruchot M-H, Seiliez I. Autophagy in farm animals: current knowledge and future
970 challenges. *Autophagy* 2021; 17:1809–27.

971 15. Bourdenx M, Martín-Segura A, Scrivo A, Rodriguez-Navarro JA, Kaushik S, Tasset I, Diaz
972 A, Storm NJ, Xin Q, Juste YR, et al. Chaperone-mediated autophagy prevents collapse of
973 the neuronal metastable proteome. *Cell* 2021; 184:2696-2714.e25.

974 16. Lescat L, Véron V, Mourot B, Péron S, Chenais N, Dias K, Riera-Heredia N, Beaumatin F,
975 Pinel K, Priault M, et al. Chaperone-Mediated Autophagy in the Light of Evolution: Insight
976 from Fish. *Molecular Biology and Evolution* 2020; 37:2887-99.

977 17. Vélez EJ, Schnebert S, Goguet M, Balbuena-Pecino S, Dias K, Beauclair L, Fontagné-
978 Dicharry S, Véron V, Depincé A, Beaumatin F, et al. Chaperone-mediated autophagy
979 protects against hyperglycemic stress. *Autophagy* 2023; 15548627.2023.2267415.

980 18. European Commission. Joint Research Centre., Scientific, Technical and Economic
981 Committee for Fisheries. The EU aquaculture sector: economic report 2020 (STECF 20 12).
982 [Internet]. LU: Publications Office; 2021 [cited 2023 Jul 12]. Available from:
983 <https://data.europa.eu/doi/10.2760/441510>

984 19. Thorgaard GH, Bailey GS, Williams D, Buhler DR, Kaattari SL, Ristow SS, Hansen JD,
985 Winton JR, Bartholomew JL, Nagler JJ, et al. Status and opportunities for genomics research
986 with rainbow trout. *Comparative Biochemistry and Physiology Part B: Biochemistry and
987 Molecular Biology* 2002; 133:609-46.

988 20. Muhlfeld CC, Dauwalter DC, Kovach RP, Kershner JL, Williams JE, Epifanio J. Trout in hot
989 water: A call for global action. *Science* 2018; 360:866-7.

990 21. Wilson RP. Utilization of dietary carbohydrate by fish. *Aquaculture* 1994; 124:67-80.

991 22. Lescat L, Herpin A, Mourot B, Véron V, Guiguen Y, Bobe J, Seiliez I. CMA restricted to
992 mammals and birds: myth or reality? *Autophagy* 2018; 14:1267-70.

993 23. Vernier JM. Table chronologique du développement embryonnaire de la truite arc-en-ciel, *Salmo
994 gairdneri* Rich. *Ann Embryol Morphogenet* 1969; 2:495-520.

995 24. Cuervo AM, Knecht E, Terlecky SR, Dice JF. Activation of a selective pathway of lysosomal
996 proteolysis in rat liver by prolonged starvation. *American Journal of Physiology-Cell
997 Physiology* 1995; 269:C1200-8.

998 25. Cuervo AM, Terlecky SR, Dice JF, Knecht E. Selective binding and uptake of ribonuclease
999 A and glyceraldehyde-3-phosphate dehydrogenase by isolated rat liver lysosomes. *Journal
1000 of Biological Chemistry* 1994; 269:26374-80.

1001 26. Juste YR, Cuervo AM. Analysis of chaperone-mediated autophagy. *Autophagy: Methods and
1002 Protocols* 2019; 703-27.

1003 27. Donzeau M, Káldi K, Adam A, Paschen S, Wanner G, Guiard B, Bauer MF, Neupert W,
1004 Brunner M. Tim23 Links the Inner and Outer Mitochondrial Membranes. *Cell* 2000; 101:401-
1005 12.

1006 28. Cuervo AM, Dice JF, Knecht E. A Population of Rat Liver Lysosomes Responsible for the
1007 Selective Uptake and Degradation of Cytosolic Proteins. *Journal of Biological Chemistry*
1008 1997; 272:5606-15.

1009 29. Kuo S-H, Tasset I, Cheng MM, Diaz A, Pan M-K, Lieberman OJ, Hutten SJ, Alcalay RN, Kim
1010 S, Ximénez-Eembún P, et al. Mutant glucocerebrosidase impairs α -synuclein degradation by
1011 blockade of chaperone-mediated autophagy. *Sci Adv* 2022; 8:eabm6393.

1012 30. Pajares M, Rojo AI, Arias E, Díaz-Carretero A, Cuervo AM, Cuadrado A. Transcription factor
1013 NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of
1014 LAMP2A. *Autophagy* 2018; 14:1310–22.

1015 31. Madrigal-Matute J, de Bruijn J, van Kuijk K, Riascos-Bernal DF, Diaz A, Tasset I, Martín-
1016 Segura A, Gijbels MJJ, Sander B, Kaushik S, et al. Protective role of chaperone-mediated
1017 autophagy against atherosclerosis. *Proc Natl Acad Sci USA* 2022; 119:e2121133119.

1018 32. Gomez-Sintes R, Xin Q, Jimenez-Loygorri JI, McCabe M, Diaz A, Garner TP, Cotto-Rios XM,
1019 Wu Y, Dong S, Reynolds CA, et al. Targeting retinoic acid receptor alpha-corepressor
1020 interaction activates chaperone-mediated autophagy and protects against retinal
1021 degeneration. *Nat Commun* 2022; 13:4220.

1022 33. Koga H, Martinez-Vicente M, Macian F, Verkhusha VV, Cuervo AM. A photoconvertible
1023 fluorescent reporter to track chaperone-mediated autophagy. *Nat Commun* 2011; 2:386.

1024 34. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H,
1025 Abildgaard MH, Abudu YP, Acevedo-Arozena A. Guidelines for the use and interpretation of
1026 assays for monitoring autophagy. *autophagy* 2021; 17:1–382.

1027 35. Schneider JL, Suh Y, Cuervo AM. Deficient Chaperone-Mediated Autophagy in Liver Leads
1028 to Metabolic Dysregulation. *Cell Metabolism* 2014; 20:417–32.

1029 36. Krishnan J, Rohner N. Sweet fish: Fish models for the study of hyperglycemia and diabetes.
1030 *Journal of Diabetes* 2019; 11:193–203.

1031 37. Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ,
1032 Sanyal AJ. A lipidomic analysis of nonalcoholic fatty liver disease. *Hepatology* 2007;
1033 46:1081–90.

1034 38. Tasset I, Cuervo AM. Role of chaperone-mediated autophagy in metabolism. *The FEBS journal*
1035 2016; 283:2403–13.

1036 39. Schlegel A. Zebrafish models for dyslipidemia and atherosclerosis research. *Front Endocrinol* 7: 159. 2016.

1038 40. Wood CM, Eom J. The osmorespiratory compromise in the fish gill. *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 2021; 254:110895.

1040 41. Abdel-Tawwab M, Monier MN, Hoseinifar SH, Faggio C. Fish response to hypoxia stress:
1041 growth, physiological, and immunological biomarkers. *Fish Physiol Biochem* 2019; 45:997–
1042 1013.

1043 42. Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, Bento P, Da Silva C,
1044 Labadie K, Alberti A. The rainbow trout genome provides novel insights into evolution after
1045 whole-genome duplication in vertebrates. *Nature communications* 2014; 5:3657.

1046 43. Cuervo AM, Dice JF. Regulation of lamp2a levels in the lysosomal membrane. *Traffic* 2000;
1047 1:570–83.

1048 44. Cuervo AM, Dice JF. Unique properties of lamp2a compared to other lamp2 isoforms. *Journal*
1049 *of Cell Science* 2000; 113:4441–50.

1050 45. Pérez L, McLetchie S, Gardiner GJ, Deffit SN, Zhou D, Blum JS. LAMP-2C Inhibits MHC
1051 Class II Presentation of Cytoplasmic Antigens by Disrupting Chaperone-Mediated
1052 Autophagy. *The Journal of Immunology* 2016; 196:2457–65.

1053 46. Kiffin R, Kaushik S, Zeng M, Bandyopadhyay U, Zhang C, Massey AC, Martinez-Vicente M,
1054 Cuervo AM. Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy
1055 with age. *Journal of Cell Science* 2007; 120:782–91.

1056 47. Murphy KE, Gysbers AM, Abbott SK, Spiro AS, Furuta A, Cooper A, Garner B, Kabuta T,
1057 Halliday GM. Lysosomal-associated membrane protein 2 isoforms are differentially affected
1058 in early Parkinson's disease: Early loss of LAMP2A protein in PD. *Mov Disord* 2015;
1059 30:1639–47.

1060 48. Marandel L, Véron V, Surget A, Plagnes-Juan É, Panserat S. Glucose metabolism
1061 ontogenesis in rainbow trout (*Oncorhynchus mykiss*) in the light of the recently sequenced
1062 genome: new tools for intermediary metabolism programming. *Journal of Experimental*
1063 *Biology* 2016; :jeb.134304.

1064 49. Cleveland BM, Yamaguchi G, Radler LM, Shimizu M. Editing the duplicated insulin-like
1065 growth factor binding protein-2b gene in rainbow trout (*Oncorhynchus mykiss*). *Sci Rep* 2018;
1066 8:16054.

1067 50. Wargelius A, Leininger S, Skaftnesmo KO, Kleppe L, Andersson E, Taranger GL, Schulz
1068 RW, Edvardsen RB. Dnd knockout ablates germ cells and demonstrates germ cell
1069 independent sex differentiation in Atlantic salmon. *Sci Rep* 2016; 6:21284.

1070 51. Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L,
1071 Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to
1072 nutritional and environmental stress in rainbow trout (*Oncorhynchus mykiss*). *Science of The*
1073 *Total Environment* 2022; 853:158584.

1074 52. Kawano A, Haiduk C, Schirmer K, Hanner R, Lee LEJ, Dixon B, Bols NC. Development of a
1075 rainbow trout intestinal epithelial cell line and its response to lipopolysaccharide. *Aquaculture*
1076 *Nutrition* 2011; 17:e241–52.

1077 53. Plagnes-Juan E, Lansard M, Seiliez I, Médale F, Corraze G, Kaushik S, Panserat S, Skiba-
1078 Cassy S. Insulin regulates the expression of several metabolism-related genes in the liver
1079 and primary hepatocytes of rainbow trout (*Oncorhynchus mykiss*). *Journal of Experimental*
1080 *Biology* 2008; 211:2510–8.

1081 54. Gudrun T. The E-Method: a highly accurate technique for gene-expression analysis. *Nat*
1082 *Methods* 2006; 3:i–ii.

1083 55. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic*
1084 *Acids Res* 29: e45. Find this article online 2001;

1085 56. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
1086 Rueden C, Saalfeld S, Schmid B, et al. Fiji: an open-source platform for biological-image
1087 analysis. *Nat Methods* 2012; 9:676–82.

1088 57. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of
1089 total lipids from animal tissues. *J biol Chem* 1957; 226:497–509.

1090 58. Alannan M, Fatrouni H, Trézéguet V, Dittrich-Domergue F, Moreau P, Siegfried G, Liet B,
1091 Khatib A-M, Grosset CF, Badran B. Targeting PCSK9 in liver cancer cells triggers metabolic
1092 exhaustion and cell death by ferroptosis. *Cells* 2022; 12:62.

1093 59. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins
1094 SL, Jagodnik KM, Lachmann A, et al. Enrichr: a comprehensive gene set enrichment analysis
1095 web server 2016 update. *Nucleic Acids Res* 2016; 44:W90–7.

1096

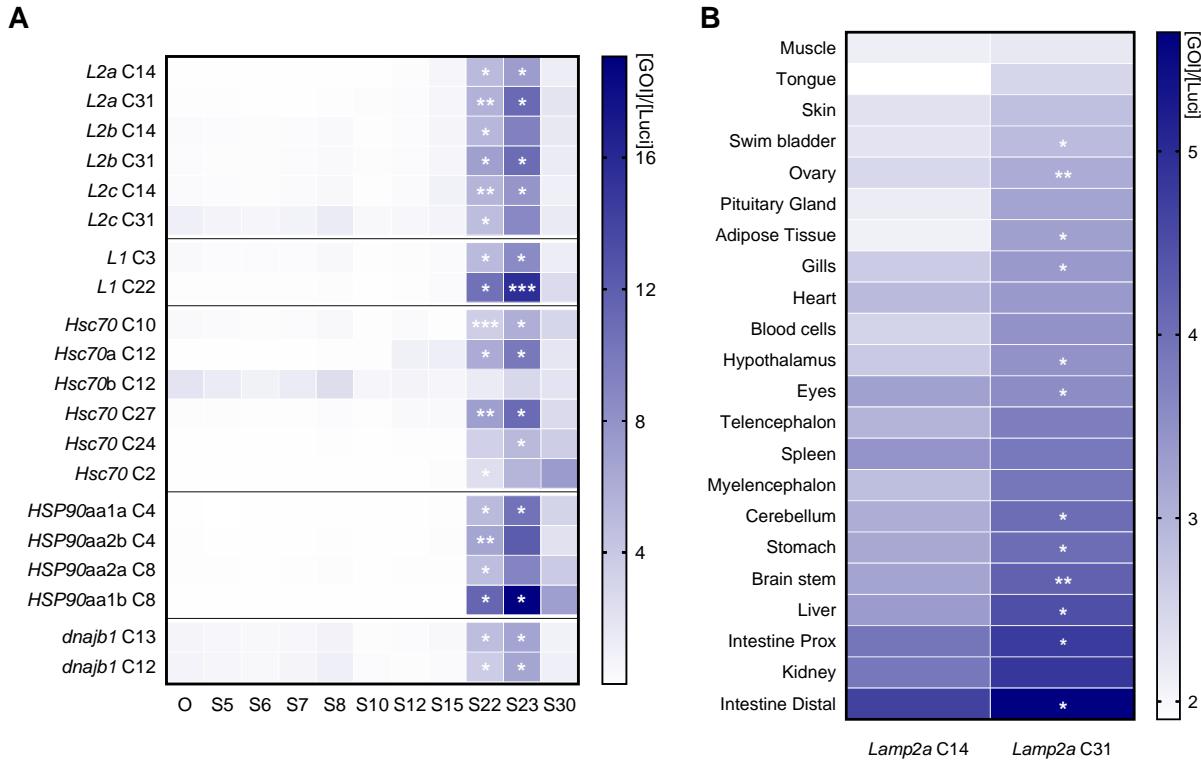


Fig1

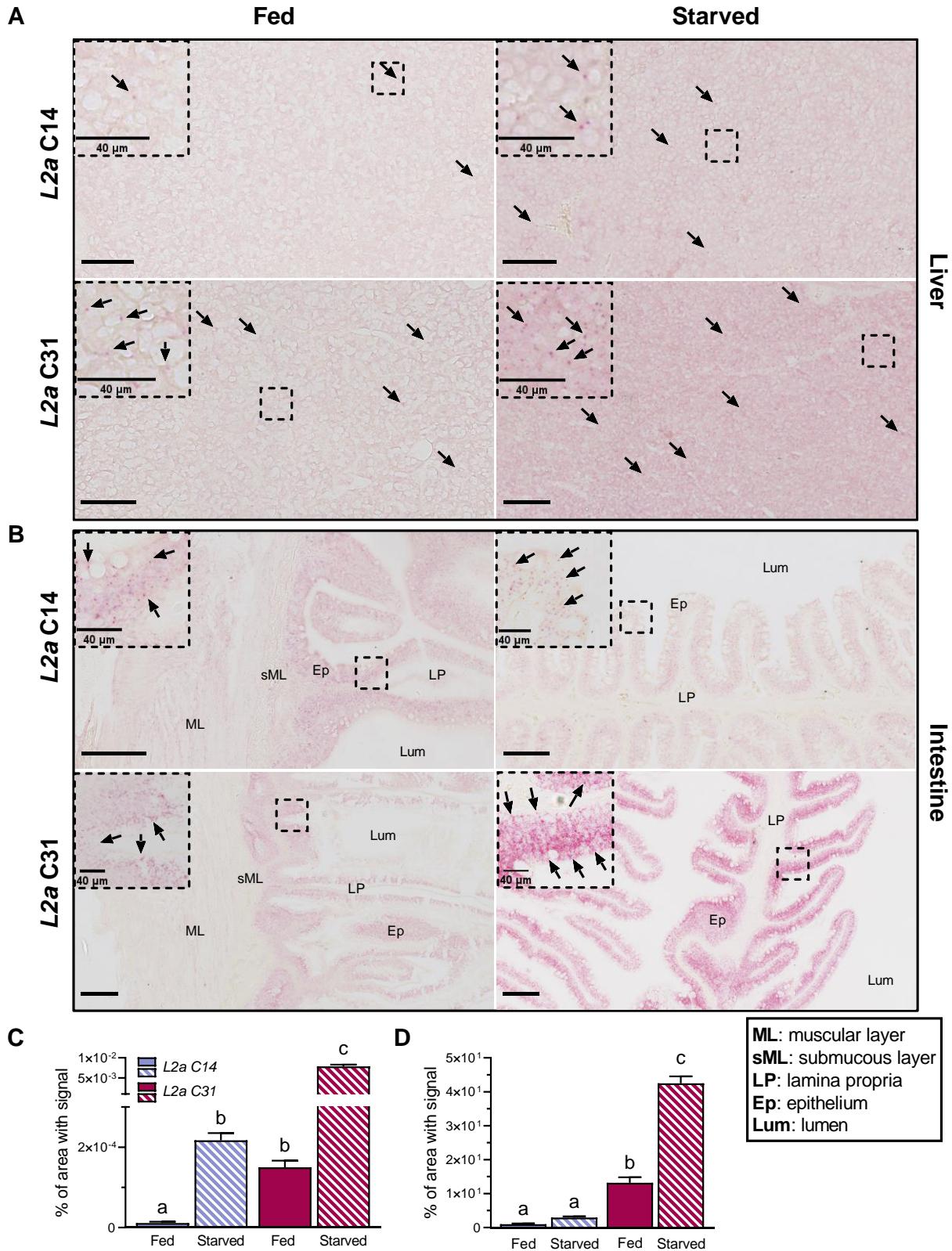


Fig2

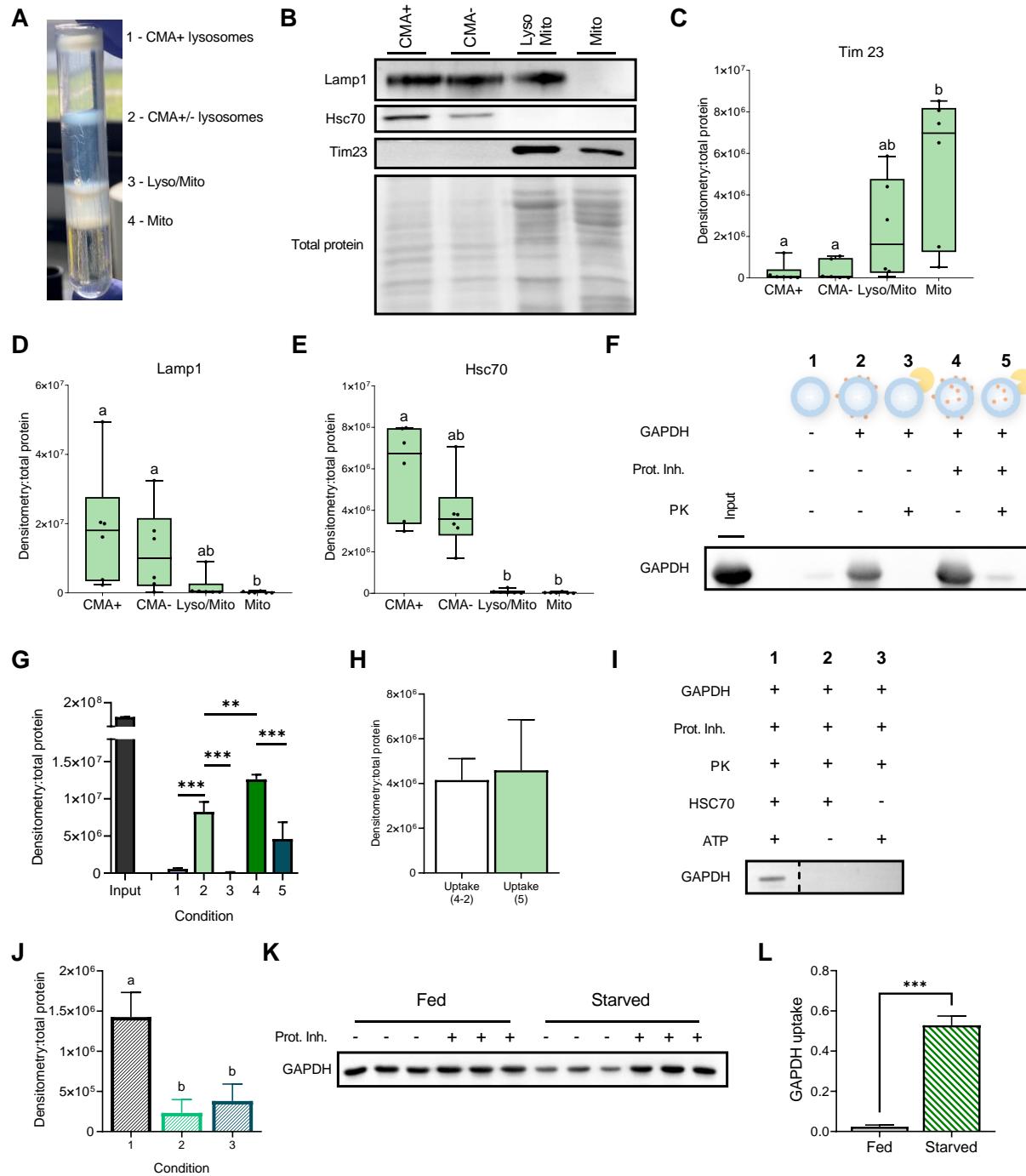


Fig3

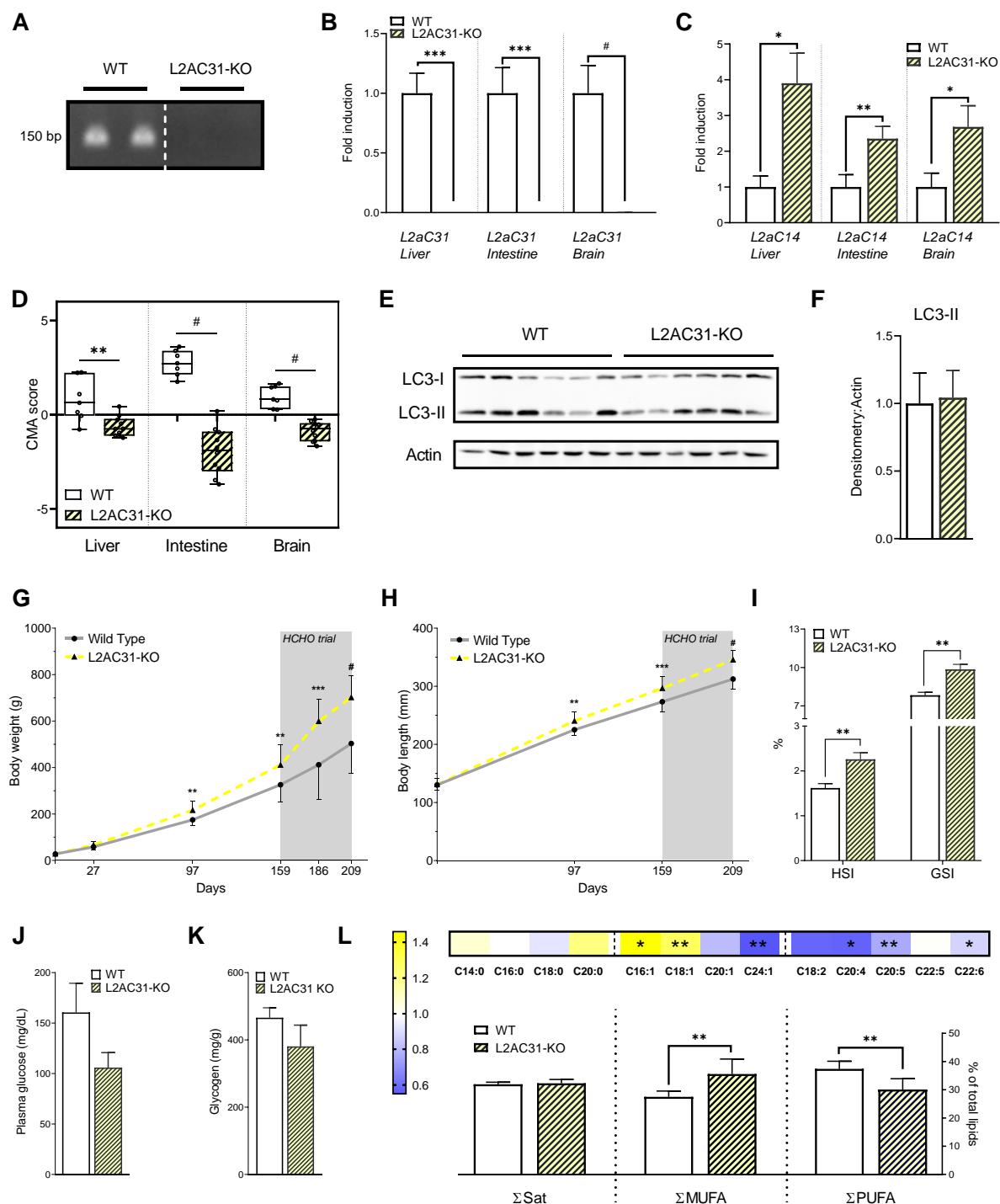


Fig4

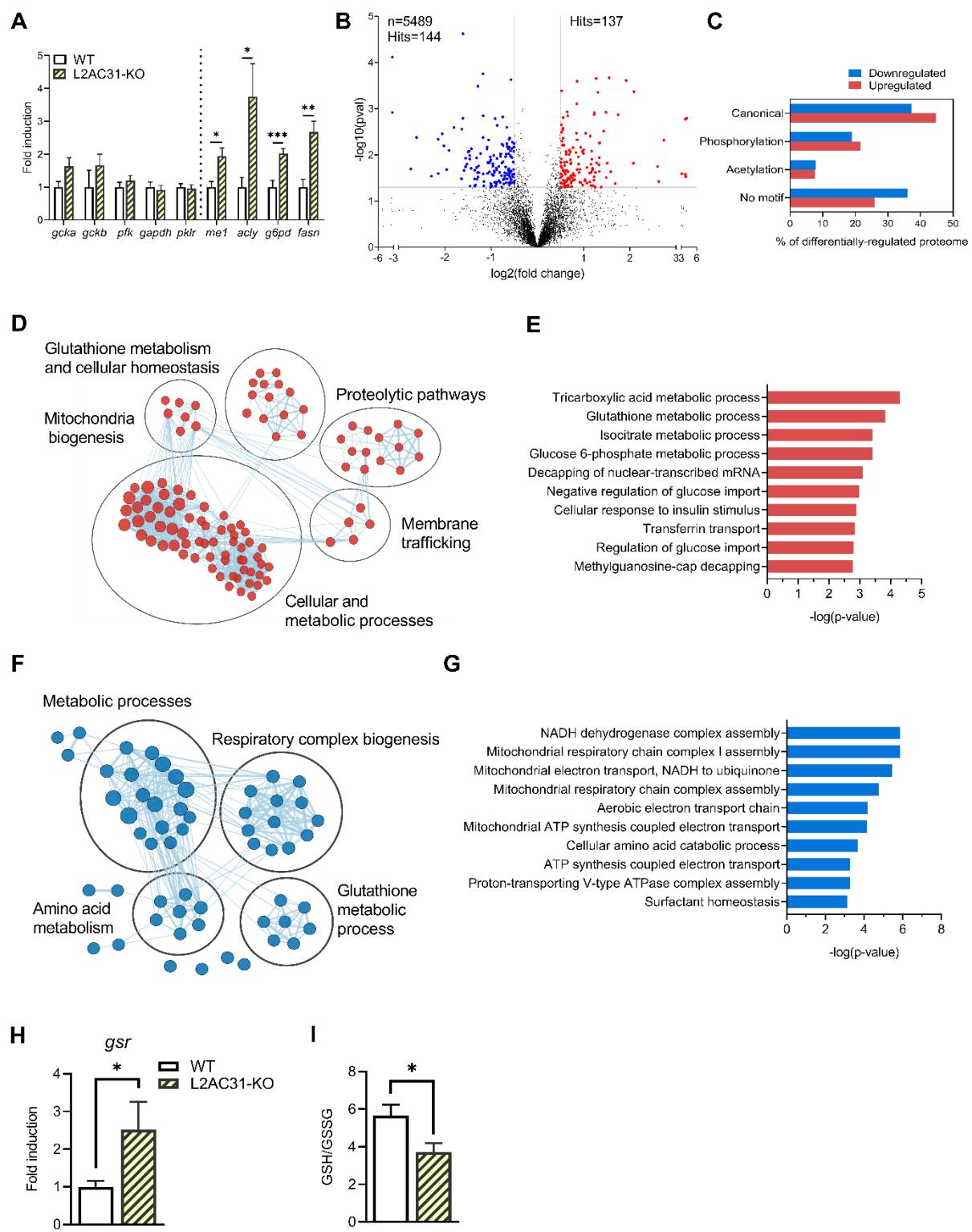


Fig5

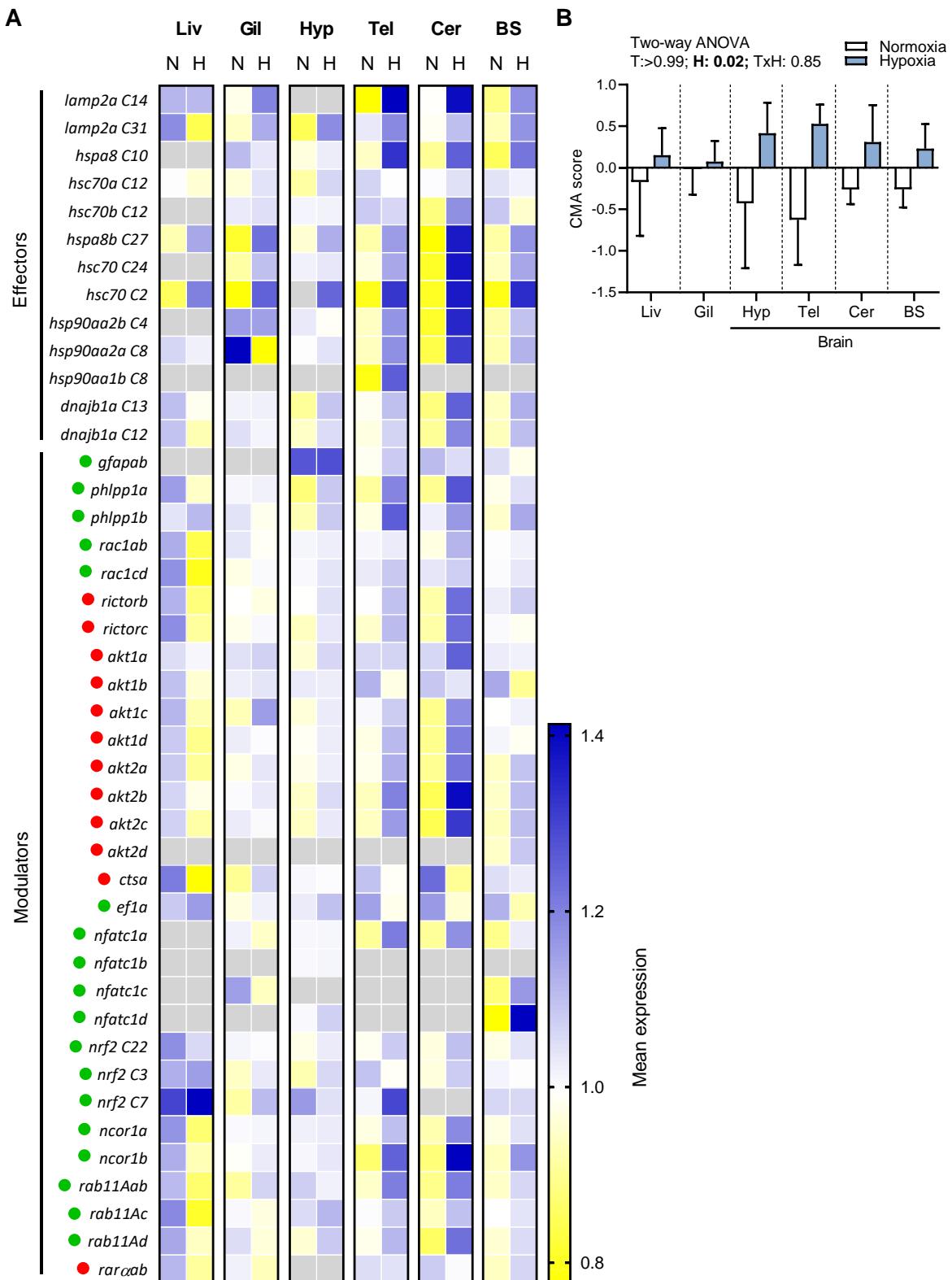


Fig6