

1 **The seminal vesicle is a juvenile hormone-responsive tissue in adult male**

2 ***Drosophila melanogaster***

3

4 Yoshitomo Kurogi¹, Yosuke Mizuno¹, Naoki Okamoto², Lacy Barton³, and Ryusuke
5 Niwa^{2,*}

6

7 ¹ Graduate School of Science and Technology, University of Tsukuba, Ibaraki 305-8577,
8 Japan

9 ² Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance
10 (TARA), University of Tsukuba, Ibaraki 305-8577, Japan

11 ³ Department of Neuroscience, Developmental and Regenerative Biology, University of
12 Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA

13

14 * Correspondence: Ryusuke Niwa (ryusuke-niwa@tara.tsukuba.ac.jp)

15

16 **Abstract**

17 Juvenile hormone (JH) is one of the most essential hormones controlling insect
18 metamorphosis and physiology. While it is well known that JH affects many tissues
19 throughout the insects life cycle, the difference in JH responsiveness and the repertoire
20 of JH-inducible genes among different tissues has not been fully investigated. In this
21 study, we monitored JH responsiveness *in vivo* using transgenic *Drosophila*
22 *melanogaster* flies carrying a *JH response element-GFP* (*JHRE-GFP*) construct. Our
23 data highlight the high responsiveness of the epithelial cells within the seminal vesicle,
24 a component of the male reproductive tract, to JH. Specifically, we observe an elevation
25 in the *JHRE-GFP* signal within the seminal vesicle epithelium upon JH analog
26 administration, while suppression occurs upon knockdown of genes encoding the
27 intracellular JH receptors, *Methoprene-tolerant* and *germ cell-expressed*. Starting from
28 published transcriptomic and proteomics datasets, we next identified *Lactate*
29 *dehydrogenase* as a JH-response gene expressed in the seminal vesicle epithelium,
30 suggesting insect seminal vesicles undergo metabolic regulation by JH. Together, this
31 study sheds new light on biology of the insect reproductive regulatory system.

32

33 **Keywords (3 to 6)**

34 *Drosophila melanogaster*, Juvenile hormone, *Juvenile hormone response element-GFP*
35 Lactate dehydrogenase, Seminal vesicle

36

37

38 **Introduction**

39 Juvenile hormone (JH) was initially discovered in the 1930s as an insect metamorphosis
40 inhibition factor [1–4]. JH is synthesized in the *corpora allata* (CA) and regulates many
41 aspects of insect physiology throughout the life cycle [5–8]. JH signaling is mediated
42 through intracellular JH receptors, Methoprene-tolerant (Met) and its paralogs, which
43 belong to the basic helix-loop-helix (bHLH)-Per-Arnt-Sim (PAS) family of
44 transcriptional factors [9–12]. Met and its paralogous transcription factors bind to JH
45 with high affinity [10,13]. Upon JH binding, these intracellular receptors associate with
46 specific JH response elements (JHREs), containing a C-box sequence (CACGCG, an
47 E-box-like motif) or a canonical E-box sequence (CACGTG) [13], followed by the
48 transcriptional induction of target genes, such *Krüppel-homolog 1* (*Kr-h1*) [13–18].

49 In the last decade, the fruit fly *D. melanogaster* has contributed to elucidating
50 molecular mechanisms of JH-responsiveness [19]. Two intracellular JH receptors have
51 been identified in *D. melanogaster*, known as Met and Germ cell-expressed (Gce).

52 Single loss-of-function of either *Met* and *gce* is adult viable, while double mutants of
53 *Met* and *gce* result in developmental arrest during pupation, like CA-ablated flies [9,20],
54 suggesting that Met and Gce act redundantly to regulate JH-responsive gene expression.
55 A recent study using *GAL4*- and *LexA*-based reporters showed that *Met* and *gce* are both
56 broadly expressed in many, but not all, tissues throughout *D. melanogaster* development
57 [21], suggesting many tissues have the potential to transcriptionally respond to JH. Yet,
58 whether all tissues that express JH receptors have active JH transcriptional signaling is
59 unknown.

60 To approach this problem, we conducted a study using a *D. melanogaster* strain
61 carrying a *JH response element-GFP* (*JHRE-GFP*) [22]. The *JHRE-GFP* construct
62 contains eight tandem copies of a JHRE, originally identified from the *early trypsin*

63 gene of *Aedes aegypti* [16,17,23]. It has also been confirmed that *JHRE* is responsive to
64 JH analogs in *D. melanogaster* S2 cultured cells [10]. In addition, a recent study has
65 shown that GFP signals of *JHRE-GFP* transgenic flies can monitor JH-responsiveness
66 in *D. melanogaster* embryos [22]. In this study, we show that *JHRE-GFP* signal is found
67 in epithelial cells of the adult seminal vesicle, which is a part of the male reproductive
68 tract in *D. melanogaster*. The *JHRE-GFP* signal in the seminal vesicle epithelium is
69 elevated upon JH analog administration and conversely suppressed in animals depleted
70 of *Met* and *gce* by RNAi. We also show that *JHRE-GFP* in the seminal vesicle
71 epithelium is elevated after mating, consistent with a previous hypothesis that mating
72 elevates JH titer in male adults [24,25]. Furthermore, we identified *Lactate*
73 *dehydrogenase (Ldh)* as a JH-response gene expressed in the seminal vesicle epithelium.
74 Our study demonstrates the seminal vesicle as a novel JH-responsive tissue in *D.*
75 *melanogaster*.

76

77 **Results**

78 **The seminal vesicle in male *D. melanogaster* is a JH-responsive tissue**

79 In previous studies, while the functions of JH during development and its effects on the
80 reproductive system of adult females have been extensively studied [1–8,19], its
81 functions in adult males have received less investigation. Therefore, we investigated
82 which cells/tissues are responsive to JH in the adult males using *JHRE-GFP* transgenic
83 flies. Whereas *JHRE-GFP* strain has been used for monitoring JH-responsive cells
84 during embryogenesis [22], it has not been used for adult males. Therefore, we first
85 examined *JHRE-GFP* fluorescence signals in whole male adult bodies. We used two
86 strains in this study, namely *JHRE*^{Wild-type (WT)}-*GFP* males with *JHRE*^{Mutated (Mut)}-*GFP*
87 males [22]. *JHRE*^{WT}-*GFP* strain carries a wild-type *JHRE*, while *JHRE*^{Mut}-*GFP* strain

88 carries a mutated JHRE in which Met and Gce binding sites are disrupted [10,22]. We
89 observed strong GFP signals in the scattered hemocytes and some tissues in the
90 abdominal region of *JHRE^{WT}-GFP*, but not *JHRE^{Mut}-GFP* flies (figure 1a). We also
91 orally administrated a JH analog (JHA), methoprene, to these animals, and found that
92 the GFP signals in the abdomen were particularly elevated in *JHRE^{WT}-GFP*, but not
93 *JHRE^{Mut}-GFP* flies (figure 1a, arrowhead). Based on the data, we further anatomically
94 characterized where *JHRE^{WT}-GFP* was expressed in abdominal tissues.

95 Dissection of *JHRE^{WT}-GFP* male abdomens revealed that the JHRE-GFP
96 signal was present in a part of the male reproductive tract, including the testes and
97 seminal vesicles (Figure 1b), which is known to store sperm produced in the testis [26].
98 As the seminal vesicle showed the most remarkable JHRE-GFP signal in the male
99 reproductive tract, we decided to focus on this tissue for the rest of this study. Within
100 the seminal vesicles, JHRE-GFP was active in cells located on the lumen side compared
101 to the muscle layer surrounding the seminal vesicle labeled with
102 fluorescence-conjugated phalloidin (figure 1c). We assume that these luminal side cells
103 were not muscle cells but epithelial cells, as *GFP* driven by the muscle driver
104 *how-GAL4* [27] was expressed in fewer cells than JHRE-GFP-positive cells in the
105 seminal vesicles (figure 1d) and embedded in the phalloidin-positive muscle layer
106 (figure 1e). These results suggest that *JHRE-GFP* is expressed in the seminal vesicle
107 epithelial cells.

108 We also examined whether these cells were labeled with another JH reporter
109 strain, *JH response region (JHRR)-lacZ*. *JHRR-lacZ* is a *lacZ* reporter fused with the
110 *JHRR* of the *D. melanogaster Kr-h1* promoter, which is responsive to JH via Met and
111 Gce [14]. We found that *JHRR-lacZ* was also expressed in the seminal vesicle cells,
112 some cells in the testes just anterior to the seminal vesicle, and some secondary cells of

113 the male accessory gland (figure 1*f*). Similar to *JHRE-GFP*, *JHRR-lacZ* also labeled the
114 epithelial cells of the seminal vesicles (figure 1*g, h*). These results support the idea that
115 seminal vesicle epithelial cells are sensitive to JH.

116 We next examined whether seminal vesicle cells respond to the JH signaling.

117 We found that the oral administration of JHA increased the JHRE-GFP signal in the
118 seminal vesicles of virgin males carrying the *JHRE^{WT}-GFP*, but not *JHRE^{Mut}-GFP*,
119 transgene (figure 2*a,b*). In addition, JHRE-GFP signal was elevated in *ex vivo* cultured
120 seminal vesicles 16 hr after incubation with JHA (figure. 2*c,d*), suggesting that the
121 seminal vesicle itself responds to JH. Conversely, when JH biosynthesis was blocked by
122 knocking down *juvenile hormone acid O-methyltransferase (jhamt)*, a rate-limiting
123 enzyme for JH biosynthesis in the CA [28,29], JHRE-GFP signal in the seminal vesicle
124 decreased (figure 2*e,f*). These results suggest that the seminal vesicle epithelial cells
125 respond to changes in circulating JH.

126

127 **JH signaling in the seminal vesicle requires Met and Gce**

128 We next confirmed that *JHRE-GFP* expression in the seminal vesicle was mediated by
129 intracellular JH receptors, Met and Gce [13–18]. However, since *Met* and *gce* double
130 mutant flies die during the larval-pupal transition [9], we conducted transgenic RNAi to
131 knockdown *Met* and *gce* with a GAL4 driver that labels the seminal vesicle epithelial
132 cells. After our GAL4 driver screen (See Materials and Methods for details), we found
133 that *Pde8-GAL4* driver drives gene expression in the seminal vesicles (figure 2*g*). Our
134 further detailed analysis confirmed that *Pde8-GAL4* labels the seminal vesicle epithelial
135 cells (figure 2*h,i*). Using this GAL4 driver, we found that JHRE-GFP signal in the
136 seminal vesicle epithelial cells was decreased by *Met* and *gce* double knockdown
137 (figure 2*j,k*). These results suggest that JH is received by Met and/or Gce in the seminal

138 vesicle epithelial cells.

139

140 **Mating activates JH signaling in the seminal vesicle**

141 Next, we tested whether *JHRE-GFP* expression in the seminal vesicle is responsive to
142 natural processes reported to impact JH signaling. In *D. melanogaster* males, JH
143 signaling may increase in a mating-dependent manner [24,25]. These previous
144 observations motivated us to compare JHRE-GFP signals in the seminal vesicle
145 between virgin and mated males. We found that JHRE-GFP signal in the seminal vesicle
146 epithelial cells increased in mated males as compared to virgin males (figure 3a,b). In
147 addition, the increase of the JHRE-GFP signal upon mating was canceled by *jhamt*
148 RNAi in the CA (figure 3c,d). These results suggest that JH signaling in the seminal
149 vesicle epithelium is responsive to mating.

150

151 **JH induces expression of *Lactate dehydrogenase* in the seminal vesicle**

152 In JH-responsive cells/tissues, JH signaling affects gene expression via Met and Gce
153 [6,13]. Therefore, we searched for genes that are highly expressed in the seminal
154 vesicles and potentially regulated by JH. First, we listed genes that might be highly
155 expressed in the seminal vesicles using the results of proteomic analyses performed in
156 two previous studies [30,31]. Among these proteome studies, one study used mixed
157 samples of the seminal vesicles and sperm [30], while the other study only used sperm
158 samples [31]. Comparing these two data sets, 66 proteins were considered candidates
159 highly enriched in the seminal vesicles but not sperm (figure 4a, Table 2). Next, we
160 browsed the *D. melanogaster* single-cell transcriptome database Fly Cell Atlas
161 (<https://flycellatlas.org/>) [32] to obtain the gene expression dataset derived from the
162 male reproductive glands. According to the Fly Cell Atlas dataset, the following four

163 genes among the 66 candidate genes are highly enriched in the seminal vesicles as
164 compared to other cells in the male reproductive glands (avg_logFC>2): *Lactate*
165 *dehydrogenase (Ldh)*, *Glutamate dehydrogenase (Gdh)*, *CG10407*, and *CG10863*
166 (figure 4a, Table 2). We then conducted RT-qPCR to confirm whether these genes were
167 expressed in the seminal vesicles. The mRNA levels of all candidate genes were higher
168 in the seminal vesicles compared to the testes and the male accessory glands (figure
169 4b-e).

170 To determine whether expression of these candidate genes is regulated by JH,
171 we did RT-qPCR to measure mRNA levels in male reproductive tracts containing the
172 seminal vesicles dissected from *JHRE^{WT}-GFP* flies with and without JHA
173 administration. The mRNA levels of *JHRE-GFP* and the JH-responsive gene *Kr-h1*,
174 used as positive controls, were upregulated by JHA treatment (figure 4f,g). Among the
175 candidate genes, *Ldh* mRNA levels was upregulated by JHA treatment (figure 4h),
176 while *Gdh*, *CG10407*, and *CG10863* showed no change in mRNA levels (figure 4i,j,k).
177 These results suggest that JH signaling in the seminal vesicle induces the expression of
178 *Ldh*.

179 To confirm whether *Ldh* is expressed in the seminal vesicle epithelial cells, we
180 used the transgenic strain, *Ldh-optGFP*, expressing *GFP*-tagged *Ldh* under the control
181 of *Ldh* regulatory sequences [33,34]. We found that Ldh-optGFP signal was higher in
182 the seminal vesicles, compared with other parts of male reproductive tracts (figure 5a).
183 The magnified images show that *Ldh-optGFP* is expressed in the seminal vesicle
184 epithelial cells (figure 5b,c), suggesting that *Ldh* is highly expressed in the seminal
185 vesicle epithelial cells. Importantly, two canonical Met/Gce binding E-box sequences
186 (CACGTG) are found in the *Ldh* locus, one motif is located in the *Ldh-RA* promoter
187 region and the other motif is located within the first intron (figure 5d). This suggests

188 that *Ldh* is a direct target of Met and Gce. Finally, we examined whether the expression
189 of *Ldh* was regulated by Met and Gce. We found that *Ldh* mRNA level was decreased
190 by a double knockdown of *Met* and *gce* in the seminal vesicle epithelial cells using
191 *Pde8-GAL4* driver (figure 5e). Together, these results indicate that *Ldh* is a
192 JH-responsive gene in the seminal vesicle epithelial cells.

193

194 **Discussion**

195 In this study we identified the seminal vesicle as a JH-responsive tissue in adult male *D.*
196 *melanogaster*. The seminal vesicles are present in males of many insects, including *D.*
197 *melanogaster*. The seminal vesicles are known to store, nourish, and maintain sperm
198 before they are transferred into the female reproductive tract [26]. In addition, the
199 seminal vesicles act as secretory organs that may assist in producing seminal fluid
200 proteins in some insects [35–40]. However, how seminal vesicles impart these functions
201 or whether there are additional functions is not understood. In addition, neither our
202 current study nor previous studies have been able to clarify the biological significance
203 of the action of JH on the seminal vesicles. Considering that JH is involved in mating
204 behavior and memory in male *D. melanogaster* [24,25,41,42], a JH-mediated
205 modulation of the seminal vesicle's function may also affect mating and reproduction.
206 In fact, a previous study on the tasar silkworm *Antheraea mylitta* has revealed that
207 topical application of Juvenile hormone III to newly emerged adult males increases the
208 concentration of total seminal vesicle proteins [43]. Therefore, the JH responsiveness of
209 seminal vesicles might be evolutionarily among insects.

210 An important finding in this study is that the expression of *Ldh* in the seminal
211 vesicles is upregulated by activation of JH signaling. While *Ldh* expression is known to
212 be regulated by ecdysone signaling [44], our study is the first report that *Ldh* is also

213 influenced by JH signaling. It is noteworthy that two canonical Met/Gce binding E-box
214 sequences are found in the *Ldh* locus (figure 5d), leaving open the possibility that *Ldh* is
215 a direct target of Met and Gce, though experimental validation of this postulate will be
216 needed in future studies. Considering that Ldh is an essential enzyme of the anaerobic
217 metabolic pathway [45,46], a metabolic state in the seminal vesicles might be regulated
218 by JH. Neurobiological studies using *D. melanogaster* have shown that Ldh has an
219 important role in supplying lactate from glial cells to neurons, known as a lactate shuttle,
220 in response to neural activity in order to supply nutrients to neurons [47–49].
221 Considering the storage of many sperm in the seminal vesicles and the high expression
222 of Ldh in the seminal vesicle epithelial cells, the lactate shuttle may exist between the
223 sperm stored in the seminal vesicle and the seminal vesicle epithelial cells. It will be
224 intriguing to examine whether JH signaling in the seminal vesicle changes in the
225 quantity and/or quality of sperm.

226 An interesting previous study have reported that the seminal vesicle expresses
227 multiple clock genes such as *period*, *Clock (Clk)*, and *timeless*, all of which are
228 necessary for generating proper circadian rhythm [50]. Considering that Met binds
229 directly to CLK to form a heterodimer in *D. melanogaster* [51], circadian rhythm
230 factors and JH may cooperatively regulate gene expression in the seminal vesicles.

231 In this study, we used both *JHRE-GFP* and *JHRR-lacZ* lines to analyze JH
232 responsive tissues. Unexpectedly, we found that *JHRR-lacZ* and *JHRE-GFP* were
233 differentially expressed in adult males. For example, JHRE-GFP signal was not
234 observed in the male accessory gland, which has been reported as a JH-responsive
235 tissue [24,52–54]. On the other hand, JHRR-LacZ signal was observed in the male
236 accessory gland (figure 1f). This difference may be due to the origin of *JHRE* and *JHRR*.
237 *JHRE* in *JHRE^{WT}-GFP* strain is derived from the *early trypsin* gene of *A. aegypti*

238 [22,23], while *JHRR* is derived from *D. melanogaster* *Kr-h1* [14]. Alternatively,
239 differences in reporter activity may reflect differences in genomic context, as both
240 *JHRE*^{WT}-*GFP* and *JHRE*^{Mut}-*GFP* transgenes are inserted into the *attP2* site of the third
241 chromosome while the *JHRR-lacZ* is randomly integrated into the third chromosome.
242 Nonetheless, activities of both reporters are restricted to a limited number of cell types
243 of male reproductive tracts. Considering that Met and Gce are expressed in almost all
244 cell types of male reproductive tracts [21], future studies will be needed to determine
245 whether more comprehensive JH reporter strains are needed in *D. melanogaster* as well
246 as other insects.

247 Nevertheless, we propose that the *JHRE*^{WT}-*GFP* and *JHRE*^{Mut}-*GFP* strains [22]
248 are nice tools to approximate JH signaling *in vivo* in adult male seminal vesicles. For
249 example, we found in this study that *JHRE*-*GFP* in the seminal vesicles is elevated after
250 mating. This observation is consistent with the fact that JH titer is elevated after mating
251 through the action of Ecdysis-triggering hormone [42]. Since *JHRE*^{WT}-*GFP* strain has
252 the tandem of eight JHREs [22], it may have the advantage of sensitivity for JH
253 signaling. While direct measurements of actual JH titers are crucial [55], indirect
254 approximation of JH titers through *JHRE*^{WT}-*GFP* and *JHRE*^{Mut}-*GFP* reporter activity in
255 adult males is very easy and convenient. Use of *JHRE*-*GFP* signals in the seminal
256 vesicles as a marker of JH signaling will facilitate future studies to increase our
257 understanding of JH-dependent insect male physiology.

258

259 **Materials and Methods**

260 ***Drosophila melanogaster* strains and maintenance**

261 *D. melanogaster* flies were raised on a standard yeast-cornmeal-glucose fly medium
262 (0.275 g agar, 5.0 g glucose, 4.5 g cornmeal, 2.0 g yeast extract, 150 µL propionic acid,

263 and 175 μ L 10% butyl p-hydroxybenzoate (in 70% ethanol) in 50 mL water) at 25 °C
264 under a 12:12 hr light/dark cycle. For the JHA oral administration (figure 1a, 2a,b,j,k,
265 4f-k), virgin male flies were collected 0 to 8 hr after eclosion, aged for 4 days on
266 standard food, and then transferred for 3 days into new tubes in the presence of food
267 supplemented with 60 μ M methoprene (Sigma-Aldrich, St Louis, MO, PESTANAL
268 33375, racemic mixture; 1.5 M stock was prepared in ethanol) or 0.8% ethanol (control).
269 To analyze the effect of mating (figure 3a-d), virgin male flies were collected at
270 eclosion, aged for 4 days on standard food and then transferred for 2 days into new
271 tubes in the presence of w^{1118} 4 days after eclosion virgin females. The ratio of males to
272 females in a vial for mating was 1:2. For experiments other than JHA administration
273 and mating, adult males were aged for 2 to 7 days on standard food.

274 The following transgenic strains were used: *how-GAL4* (Bloomington
275 Drosophila stock center [BDSC] #1767), *JHAMT-GAL4* [56] (a gift from Sheng Li,
276 South China Normal University, China), *JHRE^{Mut}-eGFP* [22], *JHRE^{WT}-eGFP* [22],
277 *JHRR-LacZ* [14](a gift from Sheng Li), *KK control* (Vienna Drosophila resource center
278 [VDRC] #60100), *Ldh-optGFP* (BDSC #94704), *Pde8-GAL4* (BDSC #65635),
279 *UAS-GFP*, *mCD8::GFP* [57] (a gift from Kei Ito, University of Cologne, Germany),
280 *UAS-gce-IR* (VDRC #101814), *UAS-jhamt-IR* (VDRC #103958), *UAS-Met-IR* (VDRC
281 #45852), and *UAS-stinger* (BDSC #84277).

282

283 **Immunohistochemistry**

284 The tissues were dissected in Phosphate-Buffered Saline (PBS) and fixed in 4%
285 paraformaldehyde in PBS for 30–60 min at 25–27 °C. The fixed samples were rinsed
286 thrice in PBS, washed for 15 min with PBS containing 0.3% Triton X-100 (PBT), and
287 treated with a blocking solution (2% bovine serum albumin in PBT; Sigma-Aldrich

288 #A9647) for 1 hr at 25–27 °C or overnight at 4 °C. The samples were incubated with a
289 primary antibody in blocking solution overnight at 4 °C. The primary antibodies used
290 were as follows: chicken anti-GFP antibody (Abcam #ab13970, 1:2,000), mouse
291 anti-LacZ (β -galactosidase; Developmental Studies Hybridoma Bank #40-1a; 1:50). The
292 samples were rinsed thrice with PBS and then washed for 15 min with PBT, followed
293 by incubation with fluorophore (Alexa Fluor 488)-conjugated secondary antibodies
294 (Thermo Fisher Scientific; 1:200) and in blocking solution for 2 hr at RT or overnight at
295 4 °C. Nuclear stains used in this study were 4',6-diamidino-2-phenylindole (DAPI; final
296 concentration 1 μ g/ml Sigma-Aldrich, St. Louis, MO, USA). F-Actin was stained with
297 Alexa Fluor 568 phalloidin (1:200; Invitrogen, #A12380). For DAPI and phalloidin
298 staining, after the incubation with the secondary antibodies, the samples were washed
299 and then incubated with DAPI and phalloidin for at least 20 min at RT or overnight 4 °C.
300 After another round of washing, all the samples were mounted on glass slides using
301 FluorSave reagent (Merck Millipore, #345789). For the quantification of JHRE-GFP
302 signal (figure 2a-f, 3), only DAPI and phalloidin was stained after fixation. Confocal
303 images were captured using the LSM 700 laser scanning confocal microscope (Carl
304 Zeiss, Oberkochen, Germany). Quantification of immunostaining signal was conducted
305 using the ImageJ software version 1.53q [58]. Fluorescence intensity of JHRE-GFP was
306 normalized to the area of the seminal vesicle.

307

308 ***Ex vivo* male reproductive tract culture**

309 We collected *JHRE*^{WT}-GFP virgin males 4 days after eclosion. The male reproductive
310 tracts were dissected in Schneider's Drosophila Medium (SDM; Thermo Fisher
311 Scientific, #21720024), and male accessory glands were removed from the male
312 reproductive tracts using forceps. Approximately 5–6 male reproductive tracts were

313 immediately transferred to a dish containing 3 mL of SDM supplemented with 15%
314 fetal calf serum and 0.6% penicillin-streptomycin with/without the addition of 1 μ M
315 methoprene (Sigma-Aldrich, St Louis, MO, PESTANAL 33375, racemic mixture; 1.5 M
316 stock was prepared in ethanol) or 0.7% ethanol (control). The cultures were incubated at
317 25 °C for 16 hr, and the samples were immunostained to check the JHRE-GFP signal.

318

319 **Screening of *GAL4* lines that label the seminal vesicle epithelial cells**

320 To knock down *Met* and *gce* in the seminal vesicle, we needed a *GAL4* driver active in
321 the seminal vesicle epithelial cells. For this purpose, we first surveyed which genes are
322 highly and predominantly expressed in the seminal vesicles. Candidates of the seminal
323 vesicle-specific genes were extracted from the single-cell transcriptome database, Fly
324 Cell Atlas (<https://flycellatlas.org/>) [32]. In the Fly cell atlas, a transcriptomic cluster of
325 the seminal vesicle was annotated in the 10x Genomics dataset from the whole body
326 and the male reproductive gland samples. We extracted the gene profile of the seminal
327 vesicle cluster derived from the whole-body sample and the male reproductive gland
328 sample. The two profiles of gene expression datasets were filtered by *P*-value (*P*-value
329 < 0.05) and log fold change (avg_logFC > 5). The avg_log FC indicates how specific
330 the expression of a gene is in the certain cluster. Finally, 11 candidate genes were
331 obtained (Table1). Of the published *GAL4* strains under the control of each of the 11
332 candidates, we promptly obtained *Pde8-GAL4* and confirmed the expression pattern of
333 *Pde8-GAL4* in the seminal vesicle as described in the main text (figure 2g-i).

334

335 **Screening of candidate genes that are specifically and highly expressed in the**
336 **seminal vesicles**

337 Candidate proteins highly enriched in the seminal vesicle were determined by

338 comparing the two independent proteomics datasets. One dataset [30] annotates 168
339 proteins as being enriched in the seminal vesicle and/or sperm stored in the seminal
340 vesicle. Another dataset [31] annotates 381 proteins as being enriched in the sperm
341 isolated from the seminal vesicle. We found that two datasets share 102 proteins,
342 suggesting that these shared proteins are enriched in the sperm but not the seminal
343 vesicle, with the remaining 66 proteins (168 minus 102) as candidate proteins enriched
344 in the seminal vesicle (Table 2). Next, we checked whether each of the genes encoding
345 the 66 proteins is predominantly expressed in the seminal vesicles by the single-cell
346 transcriptome database Fly Cell Atlas (<https://flycellatlas.org/>)[32]. We extracted gene
347 profiles of the seminal vesicle cluster in male reproductive gland sample. The candidate
348 genes were filtered by *P*-value (*P*-value < 0.05) and log fold change (avg_logFC > 5).
349 Finally, we obtained 4 candidate genes, *Ldh*, *Gdh*, *CG10407*, and *CG10863*.
350

351 **Reverse transcription-quantitative PCR (RT-qPCR)**

352 RNA from tissues was extracted using RNAiso Plus (Takara Bio) and
353 reverse-transcribed using ReverTra Ace qPCR RT Master Mix with gDNA Remover
354 (TOYOBO). Synthesized cDNA samples were used as templates for quantitative PCR
355 using THUNDERBIRD SYBR qPCR Mix (TOYOBO) on a Thermal Cycler Dice Real
356 Time System (Takara Bio). The amount of target RNA was normalized to the
357 endogenous control *ribosomal protein 49* gene (*rp49*) and the relative fold change was
358 calculated. The expression levels of each gene were compared using the $\Delta\Delta Ct$ method
359 [59]. The following primers were used for this analysis: rp49 F
360 (5'-CGGATCGATATGCTAAGCTGT-3'), rp49 R (5'-GCGCTTGTTCGATCCGTA-3'),
361 GFP F (5'-GAACCGCATCGAGCTGAA-3'), GFP R
362 (5'-TGCTTGTGCGGCCATGATATAG-3'), CG10407 F

363 (5'-ACTGGACAAACAGCCAAACCTC-3'), CG10407 R
364 (5'-GTGTCTAGGTCGGGTGCATTG-3'), Ldh F
365 (5'-CGTTGGTCTGGAGTGAACA-3'), Ldh R (5'-GCAGCTCGTCCACTTCTCT-3'),
366 Gdh F (5'-GGAGGACTACAAGAACGAGCA-3'), Gdh R
367 (5'-CAGCCACTCGAAGAACGGAGA-3'), CG10863 F
368 (5'-CATCGGACTGGGCACCTATAC-3'), CG10863 R
369 (5'-TTCTCGTAGAAATAGGCGGTGTC-3'), Kr-h1 F
370 (5'-TCACACATCAAGAACGCAACT-3'), Kr-h1 R
371 (5'-GCTGGTTGGCGGAATAGTAA-3').

372

373 **Statistical analysis**

374 All experiments were performed independently at least twice. The sample sizes were
375 chosen based on the number of independent experiments required for statistical
376 significance and technical feasibility. The experiments were not randomized, and the
377 investigators were not blinded. All statistical analyses were performed using the “R”
378 software version 4.0.3. Details of the statistical analyses are described in figure legends.

379

380 **Acknowledgments**

381 We thank Sheng Li, Kei Ito, Naoki Yamanaka, Bloomington Stock Center, Vienna
382 Drosophila Resource Center for fly strains, Developmental Studies Hybridoma Bank for
383 antibodies, and Jason Tennessen, Daiki Fujinaga, Ryo Hoshino, Eisuke Imura, Yuto
384 Yoshinari, and Yoshiki Hayashi for helpful discussions.

385

386 **Funding statements**

387 This work was supported by the Japan Society of the Promotion of Science KAKENHI

388 (21J20365 to YK and 23KJ0252 to YM), the Japan Science and Technology Agency
389 grant SPRING JPMJSP2124, and NIH R00 (R00HD097306 to LB) from NICHD. YK
390 and YM received fellowships from the JSPS.

391

392 **Author contributions**

393 YK: Conceptualization, Validation, Formal analysis, Investigation, Data Curation,
394 Writing - Original Draft, Visualization, Funding acquisition
395 YM: Validation, Investigation, Writing - Review & Editing, Funding acquisition
396 NO: Methodology, Resources, Writing - Review & Editing
397 LB: Methodology, Resources, Writing - Review & Editing
398 RN: Conceptualization, Resources, Writing - Original Draft, Visualization, Supervision,
399 Project administration

400

401 **Competing Interests**

402 The authors have declared no competing interest.

403

404 **References**

405 1. Li K, Jia QQ, Li S. 2019 Juvenile hormone signaling – a mini review. *Insect Sci.* **26**,
406 600–606.

407 2. Noriega FG. 2014 Juvenile hormone biosynthesis in insects: What Is new, what do
408 we know, and what questions remain? *International Scholarly Research Notices*
409 **2014**, 967361.

410 3. Qu Z, Bendena WG, Tobe SS, Hui JHL. 2018 Juvenile hormone and
411 sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. *J.*
412 *Steroid Biochem. Mol. Biol.* **184**, 69–76.

413 4. Riddiford LM. 2020 *Rhodnius*, Golden Oil, and Met: A History of Juvenile
414 Hormone Research. *Frontiers in Cell and Developmental Biology* **8**, 679.

415 5. Goodman WG, Cusson M. 2012 The juvenile hormones. pp. 310–365. Academic
416 Press.

417 6. Rivera-Pérez C, Clifton ME, Noriega FG, Jindra M. 2020 Juvenile hormone
418 regulation and action. In *Advances in Invertebrate (NEURO)Endocrinology*, pp.
419 1–76. Apple Academic Press.

420 7. Shinoda T. 2021 Juvenile hormone. pp. 987–989. Academic Press.

421 8. Kurogi Y, Mizuno Y, Imura E, Niwa R. 2021 Neuroendocrine regulation of
422 reproductive dormancy in the fruit fly *Drosophila melanogaster*: A review of
423 juvenile hormone-dependent regulation. *Frontiers in Ecology and Evolution* **9**,
424 715029.

425 9. Abdou MA *et al.* 2011 *Drosophila* Met and Gce are partially redundant in
426 transducing juvenile hormone action. *Insect Biochem. Mol. Biol.* **41**, 938–945.

427 10. Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. 2015 Genetic evidence for
428 function of the bHLH-PAS protein Gce/Met as a juvenile hormone receptor. *PLoS
429 Genet.* **11**, e1005394.

430 11. Jindra M, Uhlirova M, Charles JP, Smykal V, Hill RJ. 2015 Genetic Evidence for
431 Function of the bHLH-PAS Protein Gce/Met As a Juvenile Hormone Receptor.
432 *PLoS Genet.* **11**, e1005394.

433 12. Wilson TG. 1996 Genetic evidence that mutants of the *Methoprene-tolerant* gene of
434 *Drosophila melanogaster* are null mutants. *Arch. Insect Biochem. Physiol.* **32**,
435 641–649.

436 13. Jindra M, Bellés X, Shinoda T. 2015 Molecular basis of juvenile hormone signaling.
437 *Current Opinion in Insect Science* **11**, 39–46.

438 14. He Q, Wen D, Jia Q, Cui C, Wang J, Palli SR, Li S. 2014 Heat shock protein 83
439 (Hsp83) facilitates Methoprene-tolerant (Met) nuclear import to modulate juvenile
440 hormone signaling. *J. Biol. Chem.* **289**, 27874–27885.

441 15. Kayukawa T *et al.* 2012 Transcriptional regulation of juvenile hormone-mediated
442 induction of Krüppel homolog 1, a repressor of insect metamorphosis. *Proc. Natl.*
443 *Acad. Sci. U. S. A.* **109**, 11729–11734.

444 16. Li M, Mead EA, Zhu J. 2011 Heterodimer of two bHLH-PAS proteins mediates
445 juvenile hormone-induced gene expression. *Proc. Natl. Acad. Sci. U. S. A.* **108**,
446 638–643.

447 17. Li M, Liu P, Wiley JD, Ojani R, Bevan DR, Li J, Zhu J. 2014 A steroid receptor
448 coactivator acts as the DNA-binding partner of the methoprene-tolerant protein in
449 regulating juvenile hormone response genes. *Mol. Cell. Endocrinol.* **394**, 47–58.

450 18. Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR. 2011 Steroid receptor co-activator is
451 required for juvenile hormone signal transduction through a bHLH-PAS
452 transcription factor, Methoprene tolerant. *J. Biol. Chem.* **286**, 8437–8447.

453 19. Zhang X, Li S, Liu S. 2021 Juvenile Hormone Studies in *Drosophila melanogaster*.
454 *Front. Physiol.* **12**, 785320.

455 20. Riddiford LM, Truman JW, Mirth CK, Shen YC. 2010 A role for juvenile hormone
456 in the prepupal development of *Drosophila melanogaster*. *Development* **137**,
457 1117–1126.

458 21. Baumann AA, Texada MJ, Chen HM, Etheredge JN, Miller DL, Picard S, Warner R,
459 Truman JW, Riddiford LM. 2017 Genetic tools to study juvenile hormone action in
460 *Drosophila*. *Sci. Rep.* **7**, 2132.

461 22. Barton LJ, Sanny J, Packard Dawson E, Nouzova M, Noriega FG, Stadtfeld M,
462 Lehmann R. 2024 Juvenile hormones direct primordial germ cell migration to the

463 embryonic gonad. *Curr. Biol.* **34**, 505-518.e6.

464 23. Noriega FG, Shah DK, Wells MA. 1997 Juvenile hormone controls early trypsin

465 gene transcription in the midgut of *Aedes aegypti*. *Insect Mol. Biol.* **6**, 63–66.

466 24. Herndon LA, Chapman T, Kalb JM, Lewin S, Partridge L, Wolfner MF. 1997

467 Mating and hormonal triggers regulate accessory gland gene expression in male

468 *Drosophila*. *J. Insect Physiol.* **43**, 1117–1123.

469 25. Meiselman MR, Ganguly A, Dahanukar A, Adams ME. 2022 Endocrine modulation

470 of primary chemosensory neurons regulates *Drosophila* courtship behavior. *PLoS*

471 *Genet.* **18**, e1010357.

472 26. Chapman RF. 2012 *The Insects Structure And Function, 5th Eds.* Cambridge

473 University Press.

474 27. Fyrberg C, Becker J, Barthmaier P, Mahaffey J, Fyrberg E. 1997 A *Drosophila*

475 muscle-specific gene related to the mouse quaking locus. *Gene* **197**, 315–323.

476 28. Shinoda T, Itoyama K. 2003 Juvenile hormone acid methyltransferase: A key

477 regulatory enzyme for insect metamorphosis. *Proc. Natl. Acad. Sci. U. S. A.* **100**,

478 11986–11991.

479 29. Niwa R, Niimi T, Honda N, Yoshiyama M, Itoyama K, Kataoka H, Shinoda T. 2008

480 Juvenile hormone acid *O*-methyltransferase in *Drosophila melanogaster*. *Insect*

481 *Biochem. Mol. Biol.* **38**, 714–720.

482 30. Takemori N, Yamamoto MT. 2009 Proteome mapping of the *Drosophila*

483 *melanogaster* male reproductive system. *Proteomics* **9**, 2484–2493.

484 31. Dorus S, Busby SA, Gerike U, Shabanowitz J, Hunt DF, Karr TL. 2006 Genomic

485 and functional evolution of the *Drosophila melanogaster* sperm proteome. *Nat.*

486 *Genet.* **38**, 1440–1445.

487 32. Li H *et al.* 2022 Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult

488 fruit fly. *Science* **375**, eabk2432.

489 33. Bawa S *et al.* 2020 *Drosophila* TRIM32 cooperates with glycolytic enzymes to
490 promote cell growth. *Elife* **9**, e52358.

491 34. Li H *et al.* 2017 *Drosophila* larvae synthesize the putative oncometabolite
492 L-2-hydroxyglutarate during normal developmental growth. *Proc. Natl. Acad. Sci.*
493 *U. S. A.* **114**, 1353–1358.

494 35. Riemann JG, Thorson BJ. 1976 Ultrastructure of the vasa deferentia of the
495 mediterranean flour moth. *J. Morphol.* **149**, 483–505.

496 36. Couche GA, Gillott C. 1988 Development of secretory activity in the seminal
497 vesicle of the male migratory grasshopper, *Melanoplus sanguinipes* (fabr.)
498 (Orthoptera : Acrididae). *Int. J. Insect Morphol. Embryol.* **17**, 51–61.

499 37. Xie S, Hua B. 2010 Ultrastructure of the seminal vesicle and sperm storage in
500 Panorpidae (Insecta: Mecoptera). *Micron* **41**, 760–768.

501 38. Viscuso R, Bruno MV, Marletta A, Vitale DGM. 2015 Fine structure of male
502 genital tracts of some Acrididae and Tettigoniidae (Insecta: Orthoptera). *Acta Zool.*
503 **96**, 418–427.

504 39. Spiegel CN, Bretas JAC, Peixoto AA, Vigoder FM, Bruno RV, Soares MJ. 2013
505 Fine structure of the male reproductive system and reproductive behavior of
506 Lutzomyia longipalpis sandflies (Diptera: Psychodidae: Phlebotominae). *PLoS One*
507 **8**, e74898.

508 40. Lyu Q-H, Zhang B-B, Hua B-Z. 2018 Ultrastructure and function of the seminal
509 vesicle of Bittacidae (Insecta: Mecoptera). *Arthropod Struct. Dev.* **47**, 173–179.

510 41. Wijesekera TP, Saurabh S, Dauwalder B. 2016 Juvenile hormone is required in
511 adult males for *Drosophila* courtship. *PLoS One* **11**, e0151912.

512 42. Lee SS, Ding Y, Karapetians N, Rivera-Perez C, Noriega FG, Adams ME. 2017

513 Hormonal signaling cascade during an early-adult critical period required for
514 courtship memory retention in *Drosophila*. *Curr. Biol.* **27**, 2798–2809.

515 43. Pendam VR, Tembhare DB. 2013 Effect of JH III and β -ecdysone on seminal
516 vesicle protein secretion in the tropical tasar silkworm, *Antheraea mylitta*
517 (Drury)(Lepidoptera: Saturniidae). *Int. J. Wild Silkmoth & Silk* **17**, 43–48.

518 44. Abu-Shumays RL, Fristrom JW. 1997 IMP-L3, a 20-hydroxyecdysone-responsive
519 gene encodes *Drosophila* lactate dehydrogenase: Structural characterization and
520 developmental studies. *Dev Genet* **20**, 11–22.

521 45. Onoufriou A, Alahiotis SN. 1982 *Drosophila* lactate dehydrogenase: Molecular and
522 genetic aspects. *Biochem. Genet.* **20**, 1195–1209.

523 46. Rabinowitz JD, Enerbäck S. 2020 Lactate: the ugly duckling of energy metabolism.
524 *Nature Metabolism* **2**, 566–571.

525 47. Volkenhoff A, Weiler A, Letzel M, Stehling M, Klämbt C, Schirmeier S. 2015 Glial
526 glycolysis is essential for neuronal survival in *Drosophila*. *Cell Metab.* **22**,
527 437–447.

528 48. Liu L, MacKenzie KR, Putluri N, Maletić-Savatić M, Bellen HJ. 2017 The
529 glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and
530 lipid droplet accumulation in glia via APOE/D. *Cell Metab.* **26**, 719.

531 49. Brooks GA. 2018 The science and translation of lactate shuttle theory. *Cell Metab.*
532 **27**, 757–785.

533 50. Beaver LM, Gvakharia BO, Vollintine TS, Hege DM, Stanewsky R, Giebultowicz
534 JM. 2002 Loss of circadian clock function decreases reproductive fitness in males
535 of *Drosophila melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* **99**, 2134–2139.

536 51. He L, Wu B, Shi J, Du J, Zhao Z. 2023 Regulation of feeding and energy
537 homeostasis by clock-mediated *Gart* in *Drosophila*. *Cell Rep.* **42**, 112912.

538 52. Shemshedini R, Lanoue M, Wilson TG. 1990 Evidence for a juvenile hormone
539 receptor involved in protein synthesis in *Drosophila melanogaster*. *J. Biol. Chem.*
540 **265**, 1913–1918.

541 53. Wilson TG, DeMoor S, Lei J. 2003 Juvenile hormone involvement in *Drosophila*
542 *melanogaster* male reproduction as suggested by the *Methoprene-tolerant*²⁷ mutant
543 phenotype. *Insect Biochem. Mol. Biol.* **33**, 1167–1175.

544 54. Yamamoto K, Chadarevian A, Pellegrini M. 1988 Juvenile hormone action
545 mediated in male accessory glands of *Drosophila* by calcium and kinase C. *Science*
546 **239**, 916–919.

547 55. Rivera-Perez C, Nouzova M, Noriega FG. 2012 A quantitative assay for the
548 juvenile hormones and their precursors using fluorescent tags. *PLoS One* **7**, e43784.

549 56. Wen D *et al.* 2015 Methyl farnesoate plays a dual role in regulating *Drosophila*
550 metamorphosis. *PLoS Genet.* **11**, e1005038.

551 57. Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ. 1998 The
552 organization of extrinsic neurons and their implications in the functional roles of
553 the mushroom bodies in *Drosophila melanogaster* Meigen. *Learning and Memory* **5**,
554 52–77.

555 58. Schneider CA, Rasband WS, Eliceiri KW. 2012 NIH Image to ImageJ: 25 years of
556 image analysis. *Nat. Methods* **9**, 671–675.

557 59. Livak KJ, Schmittgen TD. 2001 Analysis of relative gene expression data using
558 real-time quantitative PCR and the $2^{-\Delta\Delta C(T)}$ Method. *Methods* **25**, 402–408.

559

560

561 **Tables**

562 **Table 1 Candidate seminal vesicle-specific genes for suitable GAL4 identification**

563 avg_LogFC: average_Log fold change

Gene	Male reproductive gland		Whole body	
	avg_logFC(5>)	P-value (0.05<)	avg_logFC(5>)	P-value (0.05<)
<i>DIP-zeta</i>	7.488148689	3.30132E-08	5.467468262	6.72E-08
<i>CG14301</i>	7.418711185	0	5.476506233	0
<i>CG13460</i>	7.363236427	5.49847E-06	6.622333527	3.69572E-06
<i>CG9664</i>	7.152559757	0	5.024883747	0
<i>Obp93a</i>	6.669476509	0.041431502	5.393202782	0.035683934
<i>CG5612</i>	6.657152176	0	6.221313	0
<i>CG42828</i>	6.422353268	0	6.050003529	0
<i>CG18628</i>	5.873726845	0	7.880100727	0
<i>Pde8</i>	5.734490395	0	5.000965118	0
<i>NT5E-2</i>	5.662868977	0	5.325617313	0
564 <i>CG10407</i>	5.660312653	0	5.038795471	0

565

566

567

568

569

570

571

572

573

574

575

576

577

578 **Table 2. Candidate proteins that are specifically and highly expressed in the**
579 **seminal vesicles**

580 avg_LogFC: average_Log fold change. “Not found” indicates that the presence of
581 mRNA in the seminal vesicle cluster could not be confirmed on the Fly Cell Atlas.

Gene	avg_logFC (Male reproductive gland)	P-value	Gene	avg_logFC (Male reproductive gland)	P-value
CG10407	5.660312653	0	Prx2540-2	Not found	Not found
CG10863	3.085217476	8.75402E-11	GstE12	Not found	Not found
Gdh	2.438033104	5.63537E-09	Gdi	Not found	Not found
Ldh	2.38763833	2.66E-18	Idgf3	Not found	Not found
Argk1	1.832550764	1.34915E-13	Cam	Not found	Not found
regucalcin	1.310050249	1.75488E-14	CG1648	Not found	Not found
GstD1	1.146826625	7.57E-18	CG4520	Not found	Not found
Idgf4	0.629053414	0.000129652	CG7264	Not found	Not found
Vha26	0.506168485	0.021732058	CG14282	Not found	Not found
awd	-0.363285989	0.015698655	CG15125	Not found	Not found
Est-6	-0.43701005	1.56277E-05	CG5177	Not found	Not found
ldh	-0.485521317	0.002354908	CG6287	Not found	Not found
Rack1	-0.502643883	0.000129842	Ogdh	Not found	Not found
Obp44a	Not found	Not found	Rpi	Not found	Not found
Gs1	Not found	Not found	CG34107	Not found	Not found
Dip-B	Not found	Not found	ND-19	Not found	Not found
scpr-C	Not found	Not found	ATPsynO	Not found	Not found
Inos	Not found	Not found	ND-B22	Not found	Not found
AdSS	Not found	Not found	RecQ5	Not found	Not found
Acsf2	Not found	Not found	Fkbp12	Not found	Not found
Bfc	Not found	Not found	Swim	Not found	Not found
CG11042	Not found	Not found	Mp20	Not found	Not found
Pglym78	Not found	Not found	Tm2	Not found	Not found
pyd3	Not found	Not found	Tm1	Not found	Not found
Pgk	Not found	Not found	Prm	Not found	Not found
Got2	Not found	Not found	Mf	Not found	Not found
LManll	Not found	Not found	Mhc	Not found	Not found
Fdh	Not found	Not found	Tsf1	Not found	Not found
CG8036	Not found	Not found	Zasp66	Not found	Not found
CG3609	Not found	Not found	porin	Not found	Not found
Mfe2	Not found	Not found	PPO1	Not found	Not found
Chd64	Not found	Not found	Sod2	Not found	Not found
lrp-1B	Not found	Not found	CG11815	Not found	Not found

582

583

584

585 **Figure Legends**

586 **Figure 1. JHRE-GFP is expressed in seminal vesicle epithelial cells**

587 (a) Whole body image of *JHRE*^{WT}-GFP (left) and *JHRE*^{Mut}-GFP virgin males (right) 7
588 days after eclosion, with or without oral administration of methoprene (JHA). GFP
589 signals (green) in the abdomen of *JHRE*^{WT}-GFP were increased by JHA administration
590 (arrowhead). (b, c) Immunostaining with anti-GFP (green) and phalloidin (magenta) of
591 *JHRE*^{WT}-GFP adult male. (b) Image of the male reproductive tract. The arrowhead
592 indicates the seminal vesicles. (c) Cross-section image of the seminal vesicle. Left and
593 bottom images indicate horizontal and vertical cross-sectional views, respectively. (d, e)
594 Transgenic visualization of muscles by nuclear GFP (Stinger) driven by *how-GAL4*.
595 Samples were immunostained with anti-GFP antibody (green), phalloidin (magenta) and
596 DAPI (blue). Samples were derived from virgin males 2 days after eclosion. (d) Image
597 of the seminal vesicle. (e) Magnified view of the seminal vesicle epithelial cells. (f-h)
598 Immunostaining with anti-LacZ (green) and phalloidin (magenta) of *JHRR-lacZ* adult
599 virgin males 4 days after eclosion. (f) Image of the male reproductive tract. Arrowheads
600 and arrows indicate the seminal vesicles and the male accessory glands, respectively. (g)
601 Image of the seminal vesicle. (h) Magnified view of the seminal vesicle epithelial cells.
602 Blue is the DAPI signal.

603

604 **Figure 2. JHRE-GFP signal in the seminal vesicle changes depending on JH**

605 **signaling.**

606 All samples were obtained from virgin males. In all photos, GFP and phalloidin
607 (F-actin) signals are shown in green and magenta, respectively. (a, b) JHRE-GFP signal
608 in the seminal vesicle of *JHRE*^{WT}-GFP (left) and *JHRE*^{Mut}-GFP males (right) 7 days
609 after eclosion, with or without oral administration of methoprene (JHA). (a)

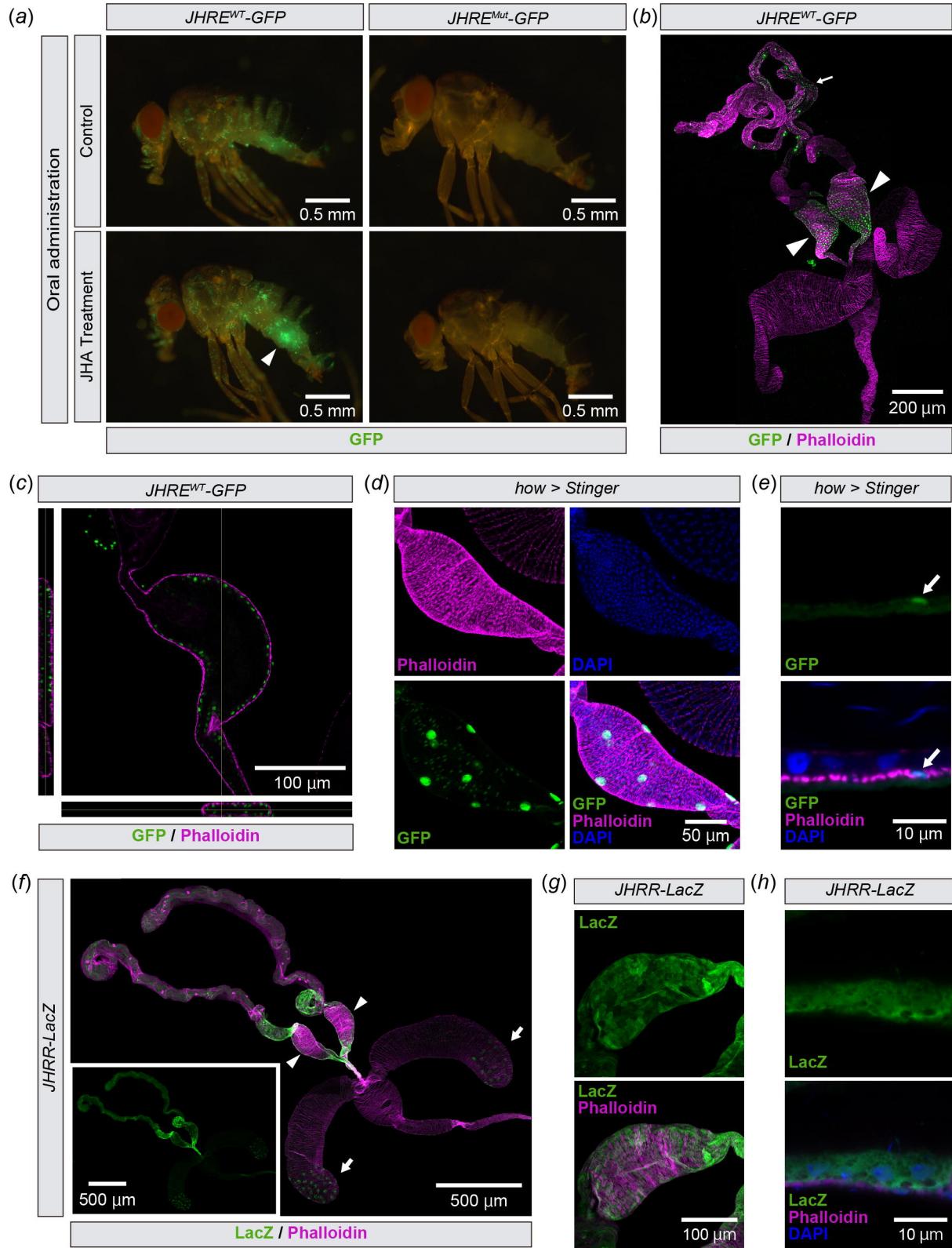
610 Representative images of the seminal vesicles. (b) Quantification of JHRE-GFP signals
611 in the seminal vesicles of control (Ctrl) and JHA-administrated (JHA) males. (c, d)
612 JHRE-GFP signals in the seminal vesicle of *JHRE^{WT}-GFP* males 4 days after eclosion.
613 Male reproductive tracts without male accessory glands are *ex vivo* cultured with (Ctrl)
614 or without methoprene (JHA). (c) Representative images of the seminal vesicles. (d)
615 Quantification of JHRE-GFP signal in the seminal vesicles. (e, f) JHRE-GFP signal in
616 the seminal vesicle of control and *JHAMT-GAL4*-driven *jhamt* RNAi males 4 days after
617 eclosion. Control RNAi was achieved with a VDRC KK control line . (e)
618 Representative images of the seminal vesicles. “Low gain” GFP signals were captured
619 with the same gain as shown in (c). “High gain” GFP signals were captured with
620 1.23-fold gain setting compared with “Low gain” (800 vs 650). (f) Quantification of
621 JHRE-GFP signal in the seminal vesicle. (g-i) Immunostaining with anti-GFP,
622 phalloidin, and DAPI (Blue) of *Pde8-GAL4 UAS-GFP UAS-mCD8::GFP* males 4 days
623 after eclosion. (g) Image of the central nervous system, gut, and male reproductive tract.
624 Allow heads indicate the seminal vesicles. (h) Cross section image of the seminal
625 vesicle. (i) Magnified view of the seminal vesicle epithelial cells. (j, k) JHRE-GFP
626 signal in the seminal vesicle of control males and *Pde8-GAL4*-driven *Met* and *gce* RNAi
627 males 7 days after eclosion. Note that this experiment was conducted with food
628 supplemented with JHA, as the JHA administration allowed us to see more drastic
629 difference in JHRE-GFP signals between control and RNAi. (j) Representative images
630 of the seminal vesicles. (k) Quantification of JHRE-GFP signal in the seminal vesicle.
631 Values in b,d,f and k are presented as mean \pm SE. Statistical analysis: Student’s t-test for
632 b,d,f and k. ** $P < 0.01$ *** $P < 0.001$. n.s.: not significant.
633

634 **Figure 3. JHRE-GFP signal in the seminal vesicle is increased after mating**

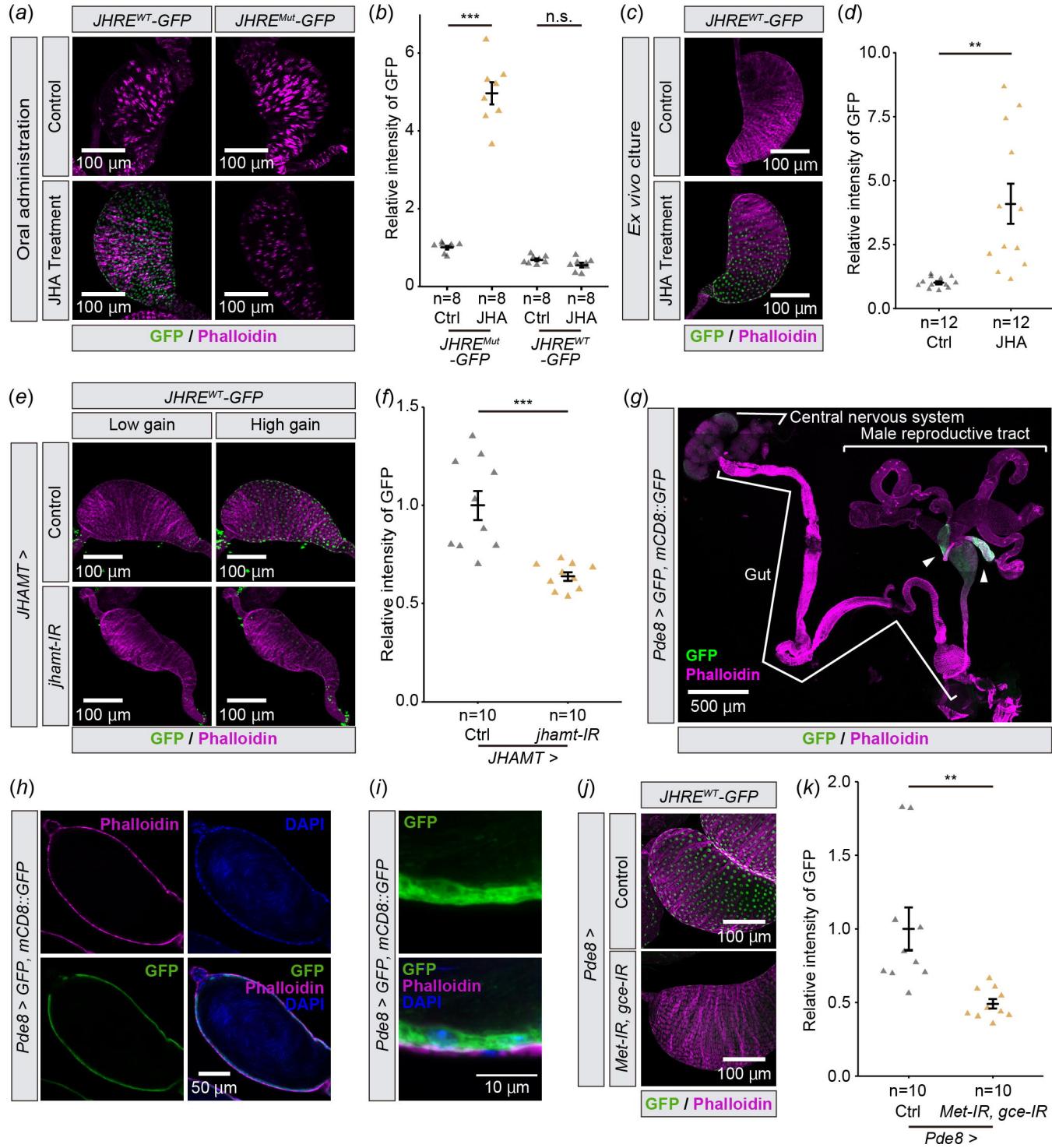
635 Samples were derived from males 6 days after eclosion. In all photos, GFP and
636 phalloidin (F-actin) signals are shown in green and magenta, respectively. (a, b)
637 JHRE-GFP signals in the seminal vesicle of virgin or mated males. (a) Representative
638 images of the seminal vesicles. (b) Quantification of JHRE-GFP signals in the seminal
639 vesicles. (c, d) JHRE-GFP signals in the seminal vesicles of control and
640 *JHAMT-GAL4*-driven *jhamt* RNAi males with or without mating. Control RNAi was
641 achieved with VDRC KK control line noted in the Methods section. (c) Representative
642 images of the seminal vesicles. (d) Quantification of JHRE-GFP signals in the seminal
643 vesicles. Values in b and d are presented as mean \pm SE. Statistical analysis: Student's
644 t-test for b. Tukey-Kramer test for d. * $P < 0.05$, *** $P < 0.001$. n.s.: not significant.
645

646 **Figure 4. Screening of genes highly expressed in the seminal vesicle**

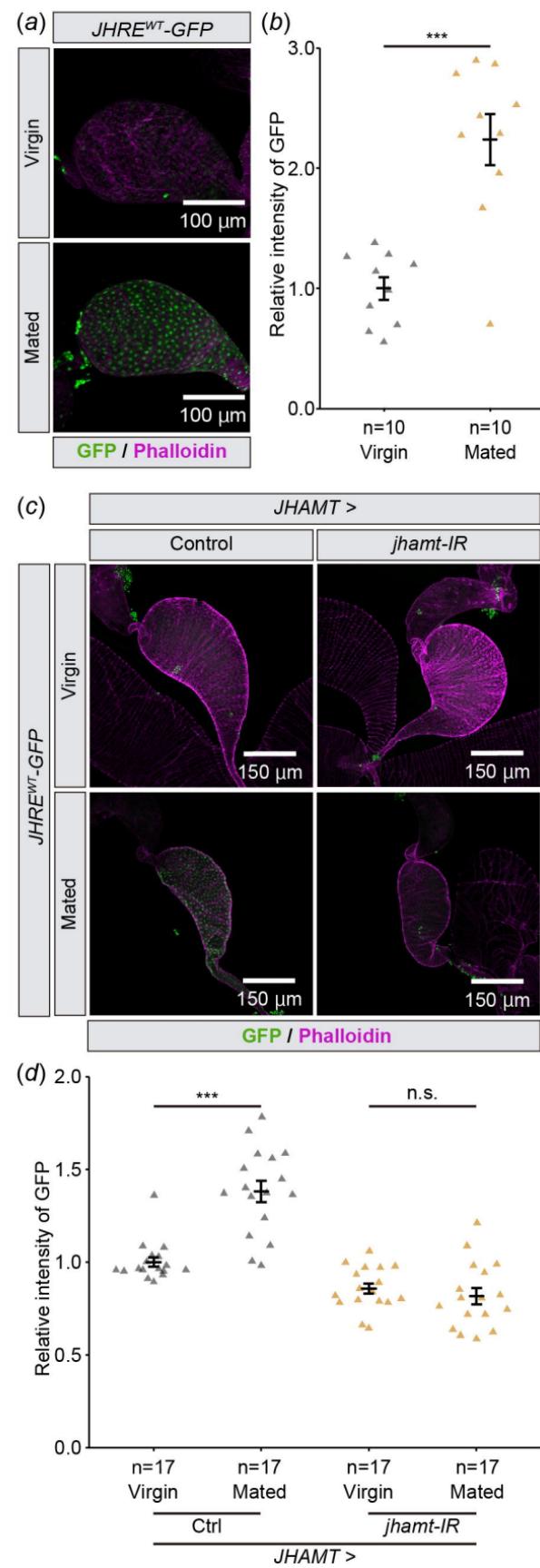
647 (a) An overall flowchart to identify candidate genes that are highly and predominantly
648 expressed in the seminal vesicles. See Results and Materials and Methods for details.
649 (b-e) RT-qPCR of the candidate genes in *JHRE^{WT}-GFP* males. mRNA levels were
650 compared among the testes (Te), seminal vesicles (SV), and male accessory glands
651 (AG). Each dot represents the levels of mRNA derived from 8 virgin males 6 days after
652 eclosion. (b) *Ldh*. (c) *Gdh*. (d) *CG10407*. (e) *CG10863*. (f-k) RT-qPCR of the candidate
653 genes in male reproductive tracts, including the seminal vesicles, of *JHRE^{WT}-GFP*
654 males with (JHA) or without (Ctrl) oral administration of methoprene. Each dot
655 represents the levels of mRNA derived from 5 virgin males 7 days after eclosion. (f)
656 RT-*JHRE-GFP*. (g) *Kr-h1*. *JHRE-GFP* and *Kr-h1* are positive control of JH responsive
657 genes. (h) *Ldh*. (i) *Gdh*. (j) *CG10407*. (k) *CG10863*. Values in b-k are presented as mean
658 \pm SE. Statistical analysis: Student's t-test for f-k. ** $P < 0.01$, *** $P < 0.001$. n.s.: not
659 significant.


660

661 **Figure 5. *Ldh* is expressed in the seminal vesicle epithelial cells**


662 (a-c) Immunostaining with anti-GFP antibody (green), phalloidin (magenta), and DAPI
663 (Blue) of *Ldh-optGFP* virgin males 4 days after eclosion. (a) Image of the male
664 reproductive tract. (b) Cross-section image of the seminal vesicle. (c) Magnified view of
665 the seminal vesicle epithelial cells. (d) Schematic representation of E-box in the
666 promoter region and the first intron of *Ldh-RA*. Yellow arrow represents position of
667 each E-box motif and numbers indicate the number of base pairs from the transcription
668 start site (+1). Gray and blue boxes indicate untranslated and coding sequences of *Ldh*,
669 respectively. (e) RT-qPCR of *Ldh* in the seminal vesicle of *Pde8-GAL4*-driven *Met* and
670 *gce* RNAi flies. Each dot represents the levels of mRNA derived from 10 seminal
671 vesicles of virgin males 7 days after eclosion. Values in d are presented as mean \pm SE.
672 Statistical analysis: Student's t-test for d. ***P < 0.001. n.s.: not significant.

673


Figure 1

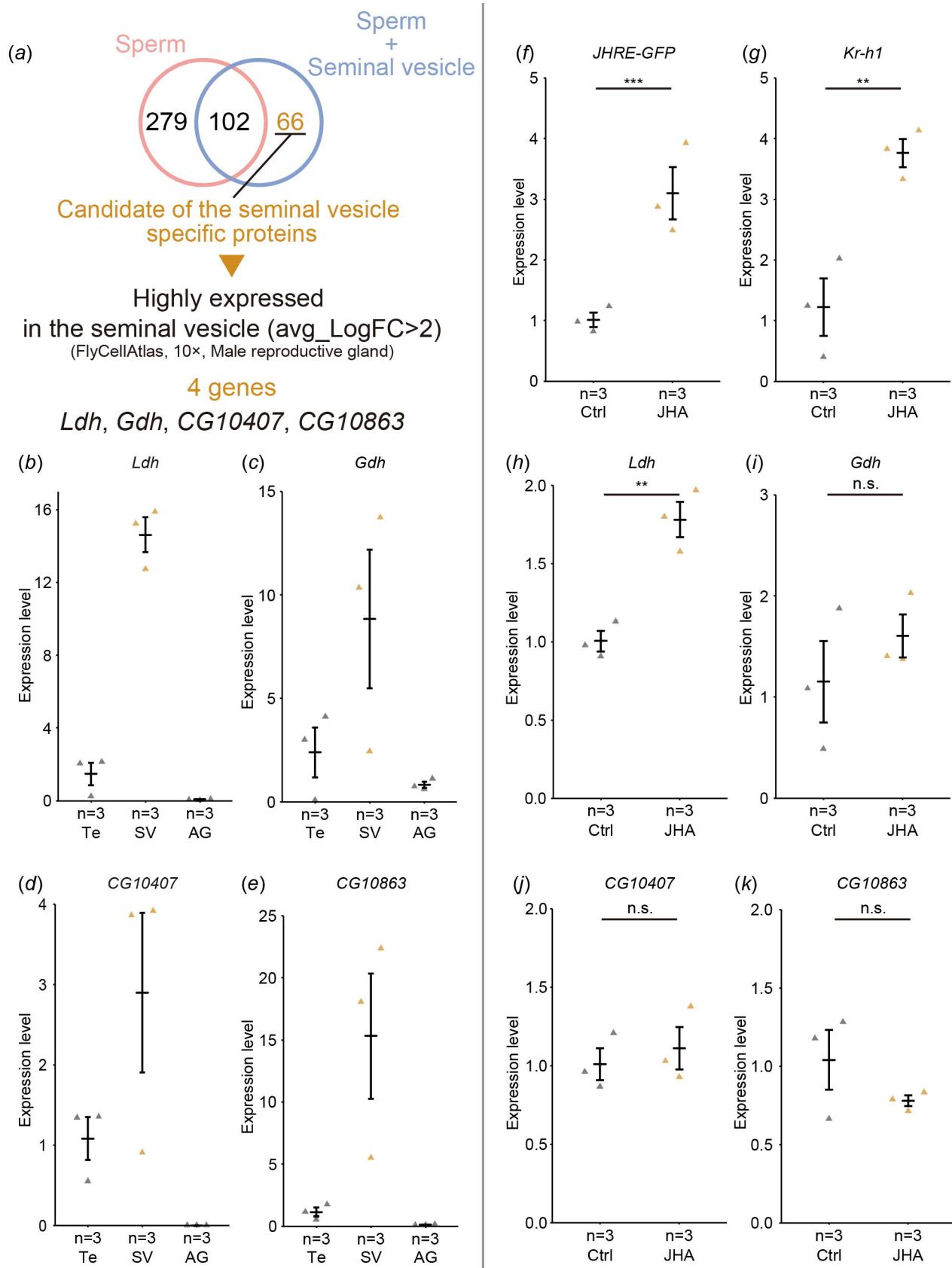

Figure 2

Figure 3

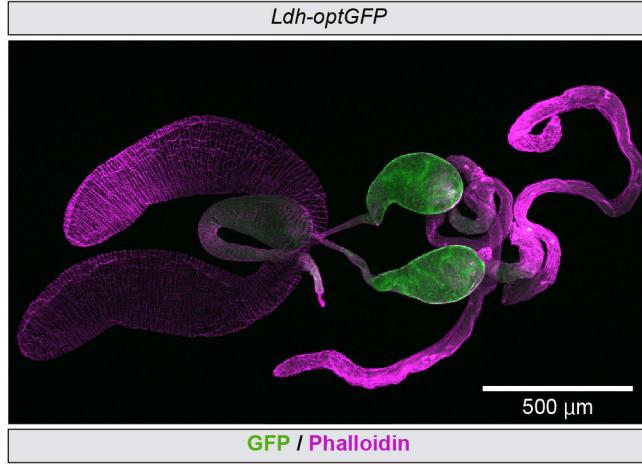


Figure 4

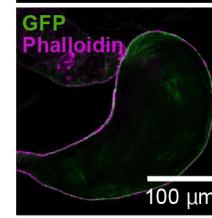
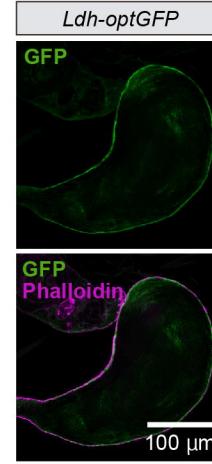
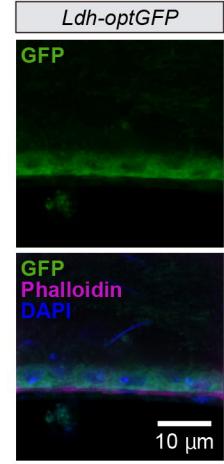
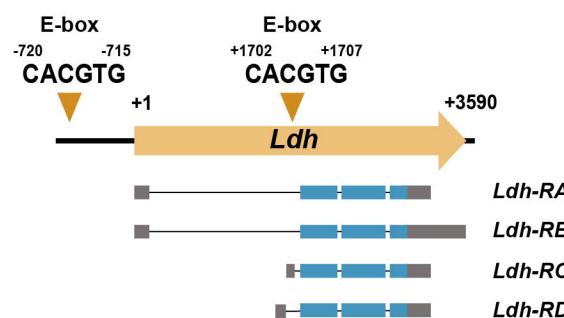
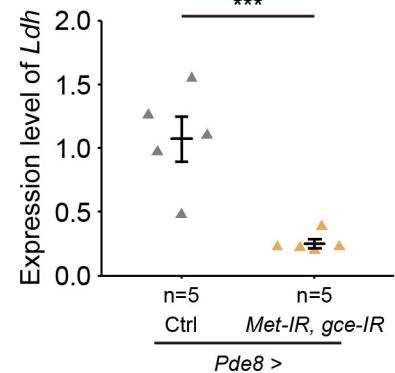



Figure 5


(a)


(b)


(c)

(d)

(e)

