

Imaging genomics reveals genetic architecture of the globular human braincase

Authors: Barbara Molz¹, Else Eising¹, Gökberk Alagöz¹, Dick Schijven^{1,2}, Clyde Francks^{1,2,3}, Philipp Gunz^{4†*}, Simon E. Fisher^{1,2†*}

Affiliations:

¹Language and Genetics Department, Max Planck Institute for Psycholinguistics; Nijmegen, The Netherlands.

²Donders Institute for Brain, Cognition and Behaviour, Radboud University; Nijmegen, The Netherlands.

³ Department of Cognitive Neuroscience, Radboud University Medical Center; Nijmegen, The Netherlands.

⁴ Department of Human Origins, Max-Planck-Institute for Evolutionary Anthropology; Leipzig, Germany.

†These authors contributed equally to this work.

*Correspondence to: simon.fisher@mpi.nl & gunz@eva.mpg.de

Abstract:

Compared with our fossil ancestors and Neandertal kin, modern humans have evolved a distinctive skull shape, with a rounder braincase and more delicate face. Competing explanations for this rounder skull have either linked it to changes in brain organisation, or seen it as a by-product of gracilization (evolution of thinner and lighter skeletal anatomy). Here, we combined palaeoanthropological data from hominin fossils and imaging genomics data from living humans to gain insight into evolutionary and developmental mechanisms shaping this uniquely modern human phenotype. We analysed endocranial globularity from magnetic resonance imaging (MRI) brain scans and genetic data of more than 33,000 adults. We discovered 28 genomic loci significantly associated with endocranial globularity. There was genetic overlap with the brain's ventricular system, white matter microstructure, and sulcal morphology, and with multivariate genetic analyses of reading/language skills, but not with general cognition. The associated genes exhibited enriched expression in the brain during prenatal development and early childhood. The connection to the ventricular system hints at a role for cerebrospinal fluid pressure in shaping the endocranum during development. Genes linked to endocranial globularity also showed enhanced expression in the cardiovascular and female reproductive systems. This finding suggests co-evolutionary pathways whereby changes impacting factors such as energy needs, pregnancy, or fertility concurrently shape the brain and its structure.

40

Main Text:

41

During foetal and infant development, the growing brain leaves an impression inside the skull. Such endocranial imprints (endocasts) in fossil skulls document evolutionary changes in brain volume, folding patterns, and brain shape. Modern humans have a distinct endocranial shape, that is more globular than the elongated endocranial seen in all other fossil hominins and apes^{1,2}. This endocranial globularity involves increased parietal bulging and an enlarged posterior cranial fossa, which houses the cerebellum (Fig. 1A). This unique phenotype emerged within the *Homo sapiens* lineage³, and is the most recently evolved anatomical trait of our species²⁻⁵.

42

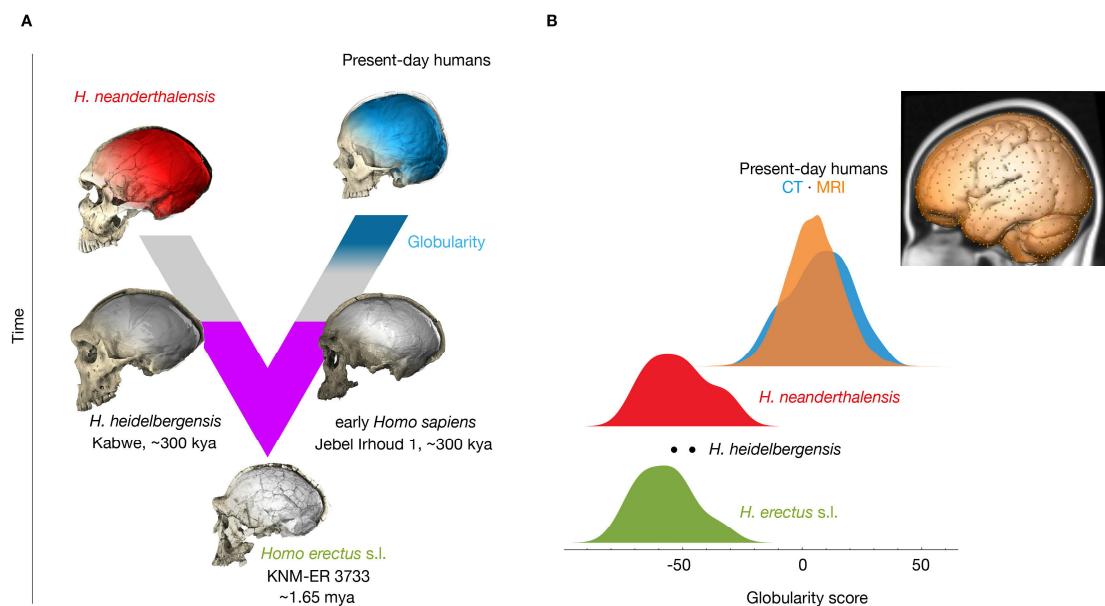
Endocranial shape changes are not causally related to evolutionary changes in endocranial volume, since the endocranial volumes of Neandertals and early *Homo sapiens* (~300 kya)^{2,3} fall within the range of modern variation, but these fossils still have elongated endocranial. In present-day humans, globularity emerges during early ontogeny⁶ – an important period for establishing the white-matter networks of the brain. Consequently, endocranial globularity has been associated with the timing and pattern of brain growth and development, especially the process of myelination^{2,5}. Another theory suggests that evolutionary changes in facial size and robusticity, possibly related to diet, were the main drivers of endocranial shape changes within the *Homo sapiens* lineage⁷. However, it is not possible to uncover the underlying developmental processes based on endocasts alone, as these represent only the brain's outer surface. Here, we combine palaeoanthropology with archaic and neuroimaging genomics, and use interindividual variation in present-day humans as a window into our evolutionary past. We investigate the biological mechanisms underlying endocranial globularity to enhance our understanding of human brain evolution.

43

An earlier focused study, which used MRI brain scans and DNA data of around 4,500 healthy adults to look specifically for effects of different introgressed Neandertal genetic fragments on endocranial globularity, found associations with the expression of two genes involved in neurogenesis and myelination, respectively⁵. Here, we performed a systematic investigation of the biological bases of endocranial globularity, based on morphometric data from hominin fossil endocasts, integrated with phenotypic and genomic data in a much larger sample.

44

We used a morphometric analysis of MRI data from lifespan and cross-sectional biobanking cohorts to create a metric that quantifies endocranial globularity, and investigated possible differences across age and sex. We then performed a genome-wide search to identify DNA variants associated with interindividual variation in endocranial globularity in tens of thousands of present-day individuals. Derived summary statistics were used to gain insight into the shared genetic architecture of endocranial globularity and a range of anatomical brain imaging traits. We moved beyond the brain to investigate genetically-mediated associations with disease phenotypes and other complex traits. Finally, we studied the underlying biological mechanisms revealed by enrichment and functional analyses of associated loci, and contributions of genes and genomic regions that show evolutionary changes along the human lineage, on timescales relevant for the emergence of this distinctive human trait.


45

An evolutionarily derived quantitative index of present-day human endocranial shape

46

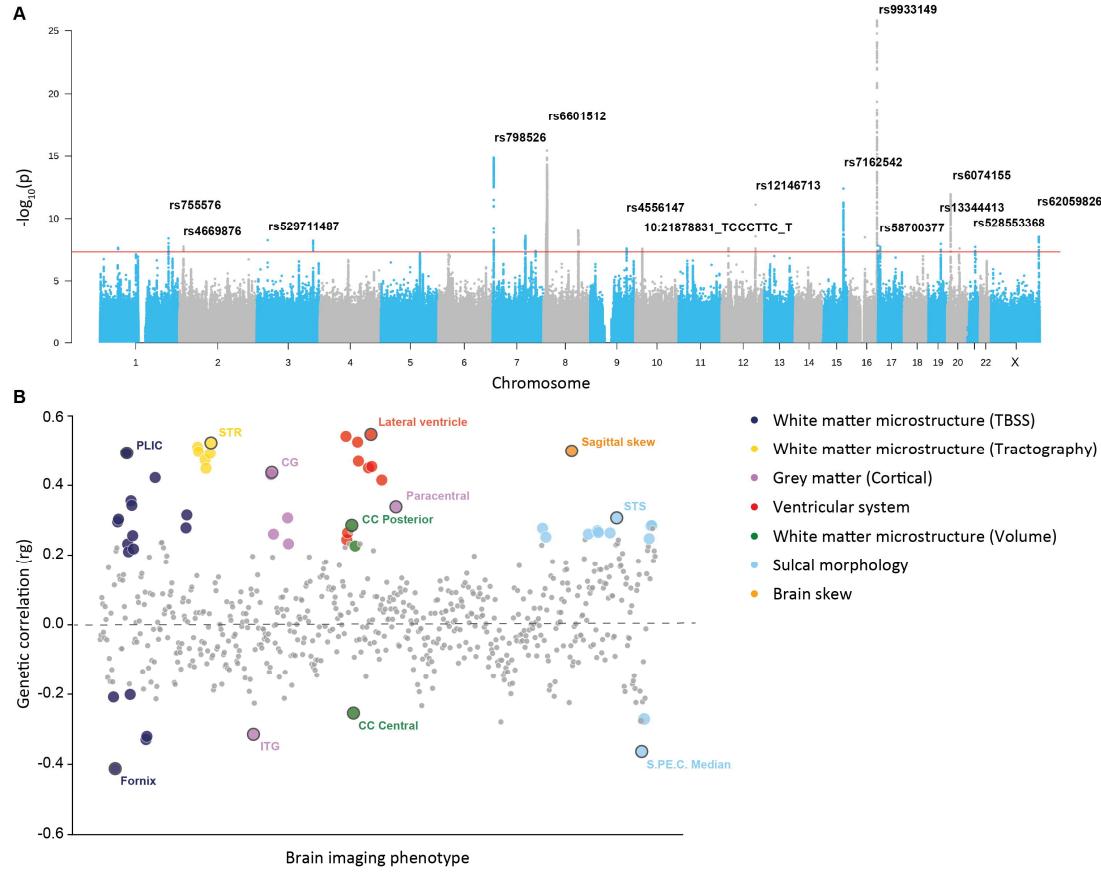
We used geometric morphometrics⁸ to derive a summary-measure of endocranial globularity from T1-weighted brain images of two independent epidemiological datasets comprising in total 34,595 individuals with European ancestry (Cambridge Centre for Ageing Neuroscience (CamCAN)^{9,10}

83 and UK Biobank (UKB)¹¹). We first digitized a mesh of 935 coordinates on virtual endocasts from
84 computed tomographic (CT) scans of fossil and present-day human crania, as well as the MNI
85 152 brain template. We used Procrustes superimposition to standardize for position, orientation,
86 and scale, and then projected each individual onto the vector between the average shape of
87 Neandertals and present-day humans. This yields a *globularity score*, an evolutionarily derived
88 summary measure of overall endocranial shape⁵. While globularity scores of present-day humans
89 derived from CT scans and structural MRI both show a high degree of interindividual variability,
90 scores from these two modalities cluster together, displaying a minimal overlap with globularity
91 scores of extinct humans, based on fossil data (Fig. 1B).

92 **Fig. 1. An evolutionarily derived globularity score captures interindividual variability in present-day human**
93 **endocranial shape.** (A) Neandertals and present-day humans share a common ancestor that lived more than 500
94 kya^{12,13} and likely evolved from *Homo erectus* s.l. in Africa. Purple: Fossils document an increase of endocranial
95 volumes in the lineages leading to Neandertals, and to *Homo sapiens*, respectively. Early *Homo sapiens* like, e.g.,
96 Jebel Irhoud 1, have endocranial volumes as large as present-day humans, but elongated endocranial. The emergence
97 of the globularity phenotype in the *Homo sapiens* lineage is symbolized in blue. Virtual endocasts based on CT data
98 are shown for a present-day human, a Neandertal (La Ferrassie 1), *Homo heidelbergensis* (Kabwe), early *Homo*
99 *sapiens* (Jebel Irhoud 1), and *Homo erectus* (KNM-ER 3733). (B) Histograms of globularity scores computed from
100 different modalities (orange: MRI-based scores of present-day humans, N = 34,595; blue: CT-based scores of present-
101 day humans, N = 89; red: CT-based scores of Neandertals, N = 10; grey: CT-based scores of *H. heidelbergensis*, N =
102 2; green: CT-based scores of *H. erectus*, N = 8; The endocranial measurement coordinates are shown on the endocast
103 segmentation of the MNI 152 brain template).

104
105 We first tested for potential effects of ageing on globularity scores using a lifespan dataset of
106 healthy adult participants aged 18-88 years (CamCAN, N = 644), and found no association
107 between age and endocranial globularity (Age: $t = 0.536$, $p = 0.592$; Age²: $t = -0.487$, $p = 0.626$)
108 as well as no interaction of age and sex (Age*Sex: $t = -0.0546$, $p = 0.585$; Age²*Sex: $t = 0.415$, $p =$
109 0.678) (Supplementary Fig. 1A). Analysis of globularity scores derived from the UK Biobank (N =
110 33,951), a large-scale cohort with a limited age-range clustering in the second half of life (mean
111 + SD age 63.77 years \pm 7.52), showed a small effect that was statistically significant (Age: $t = -$
112 3.822, $p = 1.32 \times 10^{-4}$; Age²: $t = 3.709$, $p = 2.08 \times 10^{-4}$) with no significant interaction terms

113 (Age*Sex: $t = 1.695$, $p = 0.0.0900$; Age 2 *Sex: $t = -1.377$, $p = 0.169$), while overall only accounting
114 for 0.4% of the total variance ($F(5, 33945) = 25.1$, $p < 2.2 \times 10^{-16}$, $R^2_{\text{Adjusted}} = 0.0035$).


115 We also assessed possible sex effects on endocranial globularity and found a minor but
116 significant difference in globularity scores between males and females in the UK Biobank (t
117 $= 8.245$, $p = < 2 \times 10^{-16}$, Cohen's $d = -0.0004$) (Supplementary Fig. 1B). Next, we investigated the
118 relationship with estimated total intracranial volume (eTIV) in UK Biobank ($N = 33,577$), finding a
119 statistically significant but subtle association, where eTIV explained 3.69% of the variance of
120 present-day endocranial globularity scores ($F(3, 33573) = 430.1$, $p < 2.2 \times 10^{-16}$, $R^2_{\text{Adjusted}} =$
121 0.0369) (Supplementary Fig. 1C). Lastly, using participant-specific health information available in
122 UK Biobank, we showed that globularity scores derived from people with distinct neuroanatomical
123 or neurodegenerative brain disorders ($N = 2,338$) do not differ from those of individuals without
124 such a diagnosis ($t = -0.039$, $p = 0.97$, Cohen's $d = -0.00084$) (Supplementary Fig. 1D).

125 **Genetics of interindividual differences in endocranial globularity**

126 Next, we performed a genome-wide association study (GWAS) to identify genetic variants
127 associated with interindividual differences in endocranial globularity. As age, neuroanatomical
128 and neurodegenerative disorders, and intracranial brain volume had either no or only marginal
129 influence on globularity scores, all 33,951 UK Biobank participants that passed genetic and
130 phenotypic quality control were included. These analyses identified 28 genome-wide significant
131 loci ($p \leq 5 \times 10^{-8}$), encompassing a total of 155 independent ($r^2 \leq 0.6$) genome-wide significant
132 single-nucleotide polymorphisms (SNPs) and insertions or deletions (indels), associated with
133 interindividual differences in endocranial globularity (Fig. 2A, Supplementary Fig. 2,
134 Supplementary Table 1).

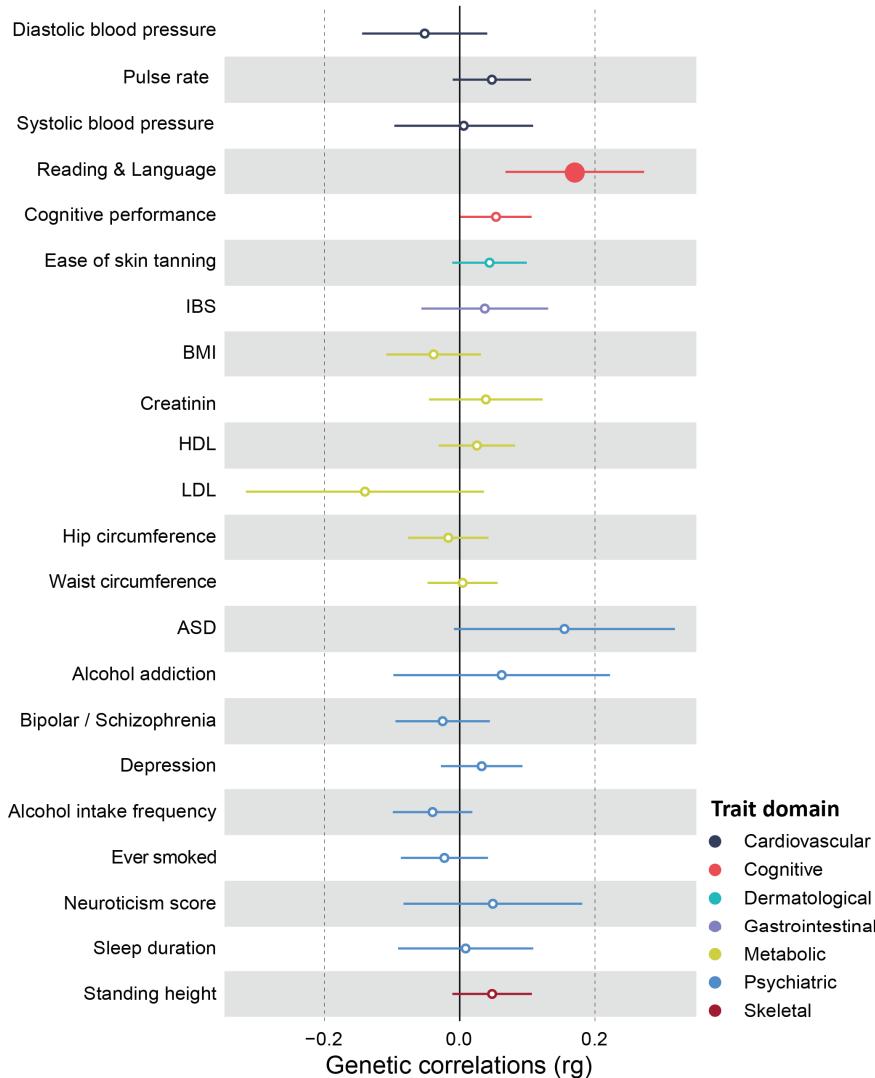
135 The locus showing the most significant association (lead SNP rs9933149, $p = 1.58 \times 10^{-26}$) was
136 located in an intron of *C16orf95* on chromosome 16 (Supplementary Fig. 3). Previous studies
137 have associated this locus with individual variation in an array of neuroanatomical phenotypes
138 ranging from sulcal morphology to white-matter microstructure and ventricular volume¹⁴⁻²⁴.
139 Variants in the region have shown association with congenital heart defects²⁵ while multigene
140 deletions that encompass the coding region of *C16orf95* have been reported in cases of
141 microcephaly and neurodevelopmental disorders^{26,27}.

142 Most of the significantly associated variants showed small effect sizes, consistent with
143 expectations for a highly polygenic trait and in line with findings from other neuroimaging-based
144 traits^{28,29}. One notable exception was rs529711487, a rare variant (minor allele frequency =
145 0.002; European 1000 Genomes Phase 3 Reference Panel) on chromosome 3, which had a
146 strong effect on endocranial globularity with a Beta estimate of 6.68 (SE = 1.15) (Supplementary
147 Fig. 4A). The rs529711487 variant was in Hardy-Weinberg equilibrium (pexact test = 1) and had
148 a high imputation quality score (0.91). For this SNP, heterozygous carriers ($N = 114$) show larger
149 globularity scores compared to peers who are homozygous for the major allele (Supplementary
150 Fig. 4B); since there are no homozygous carriers of the minor allele in the UK Biobank
151 neuroimaging cohort, it was not possible to test whether it acts in an additive or dominant manner.

152
153 **Fig. 2. Genetics of interindividual differences in endocranial globularity in a large cohort of present-day**
154 **humans. (A)** Manhattan plot of loci associated with interindividual variability in endocranial globularity (N = 33,951);
155 the red line denotes genome-wide significance ($p < 5 \times 10^{-8}$). Per chromosome the respective top genome-wide
156 significant loci are annotated with their lead SNP rsID. **(B)** Genetic correlations for endocranial globularity with 667
157 anatomical brain imaging phenotypes. Large coloured dots denote significant associations after Bonferroni correction,
158 with top hits annotated per imaging category. CG = cingulate gyrus, ITG = inferior temporal gyrus, CC = corpus
159 callosum, PLIC = posterior limb of the internal capsule, S.P.E.C. Median = median precentral sulcus, STR = superior
160 thalamic radiation, STS = superior temporal sulcus, TBSS = tract-based spatial statistics.

161
162 Introgressed Neandertal alleles on chromosomes 1 and 18 that were associated with endocranial
163 globularity in a prior targeted study of smaller cohorts⁵ exhibited the same direction of effect
164 towards reduced globularity in UK Biobank (rs28445963, beta (SE) = -0.19 (0.22), p = 0.37;
165 rs72931809, beta (SE) = -0.16 (0.21), p = 0.45) but associations were not significant.

166 Next, we used the aggregated GWAS signal across the entire genome to gain further insights into
167 the underlying biology. Estimates of SNP-heritability indicated that the captured genetic variation
168 accounted for 32.6% (SE = 3.4%) of the observed phenotypic variation in endocranial globularity
169 in the cohort. As genetic sex has distinct influences on brain (development), it is generally
170 considered a possible confound in GWASs. To supplement the phenotypic analysis we also
171 performed sex-stratified GWASs, finding a high genetic correlation between the male (N = 16,148)
172 and female (N = 17,803) GWAS ($rg (SE) = 0.9363 (0.0676)$), $p = 1.245 \times 10^{-43}$) (Supplementary
173 Fig. 5). Notably, with the exception of one indel (8:108402192_AGC_A, male GWAS), all


174 independent significantly associated variants in sex-stratified GWASs were also identified as
175 genomic regions associated with endocranial globularity (independent lead SNPs and SNPs in
176 LD ($r^2 > 0.6$)) in the primary GWAS (Supplementary Table 2). Thus, endocranial globularity shows
177 no pronounced sexual dimorphism, either phenotypically or genetically.

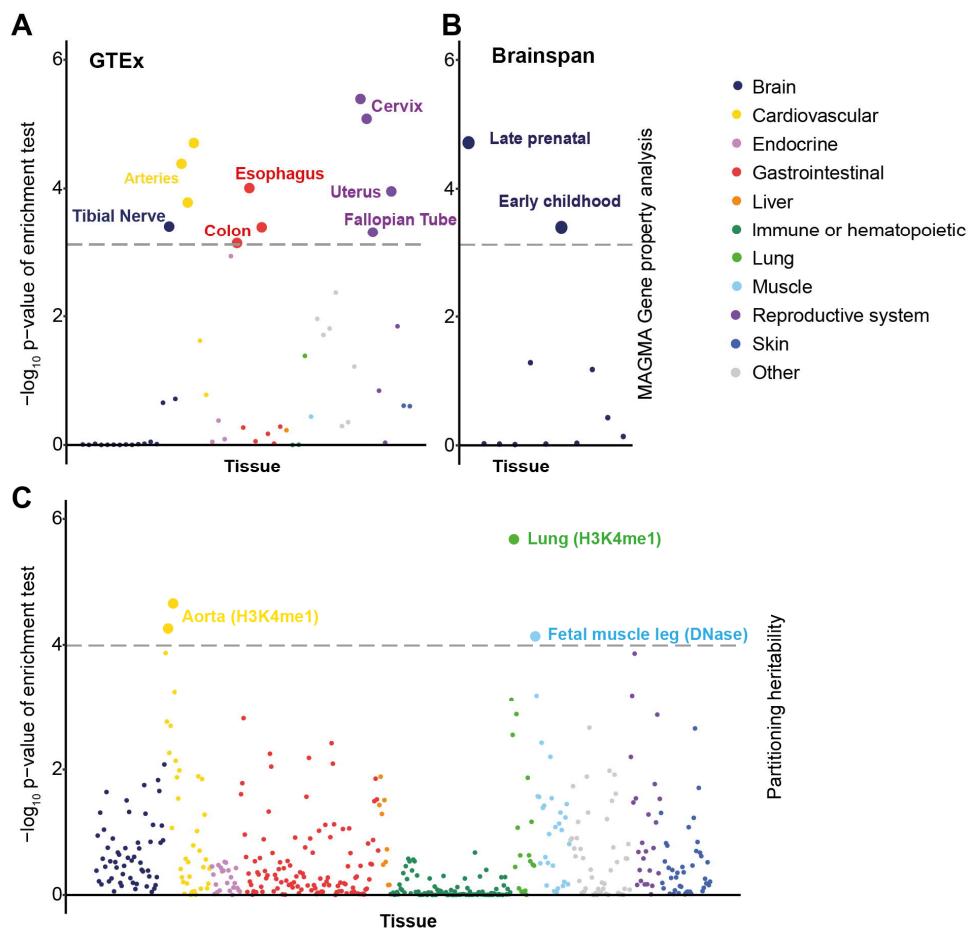
178 We went on to study relationships between endocranial globularity and a selection of other
179 relevant phenotypes, by estimating genetic correlations to measure the extent to which shared
180 genetic variation contributes to shared phenotypic variability across traits.

181 We used brain imaging derived phenotypes available in UK Biobank to assess whether certain
182 anatomical regions or specific metrics show significant genetic overlap with interindividual
183 variation of endocranial globularity, encompassing cortical and subcortical estimates as well as
184 white-matter microstructure estimates derived from tract-based spatial statistics (TBSS) and
185 probabilistic tractography. Further, we included metrics detailing sulcal brain morphology¹⁴ and
186 brain skew³⁰, traits with potential relevance to human evolution³¹⁻³⁴ that are not part of the
187 standard UK Biobank processing pipeline. Of the 667 neuroanatomical phenotypes that we
188 analysed, 56 showed significant genetic correlations with endocranial globularity ($\alpha_{\text{Bonferroni}} = 0.05$
189 / 667 = 7.5×10^{-5}) (Fig. 2B, Supplementary Table 3), with strongest correlations for the ventricular
190 system, distinct white-matter tracts, certain sulcal width measures, and sagittal brain skew. Both
191 hemispheres contributed similarly to these correlations, while cortical (surface area, thickness)
192 and subcortical (volume) measures generally showed only small genetic overlaps with
193 endocranial globularity.

194 Because facial form was recently proposed to be a main driver of endocranial shape variation
195 during hominin evolution⁷ we tested whether any of the identified genomic regions associated
196 with endocranial globularity (independent lead SNPs and SNPs in LD ($r^2 > 0.6$)) were also
197 associated with individual differences in facial morphology in previous GWAS efforts³⁵⁻⁵¹. This
198 analysis highlighted four independent signals from four different genomic loci which showed both
199 an association here with endocranial globularity and in previous facial shape studies, mostly with
200 the morphology of the nose (Supplementary Table. 4).

201 Some have proposed links between the unique globularity of the human brain and the evolution
202 of cognitive capacities and emergence of complex human traits⁵². At the same time, evidence
203 from a range of sources supports a reappraisal of Neandertal capacities for complex behaviour,
204 suggesting that our archaic cousins had more cognitive sophistication than previously
205 appreciated⁵³⁻⁵⁶. We tested for shared genetic underpinnings of endocranial globularity with a
206 curated set of complex human traits across several biological domains where an evolutionary
207 relevance was previously highlighted. Our choice was motivated by prior studies which highlighted
208 the phenotypic legacy of previous admixture events over trait domains linked to metabolism,
209 dermatology, the cardiovascular and gastrointestinal system, cognition, and skeletal features, as
210 well as neuropsychiatric disorders^{4,57-67} (Fig.3).

211
212 **Fig. 3. Genetic correlations between endocranial globularity and disease phenotypes and other complex traits.**
213 Large coloured dots denote significant associations after Bonferroni correction for the 22 phenotypes that were studied.
214 Genetic correlation (rg) is presented as a dot, and error bars indicate the standard error. ASD = Autism spectrum
215 disorder, BMI = Body mass index, HDL = high-density lipoprotein, IBS = Irritable bowel syndrome, LDL = low-density
216 lipoprotein;


217
218 A multivariate GWAS on reading- and language-related traits⁶⁸ was the only one to demonstrate
219 a significant genetic correlation (rg(SE) = 0.1704 (0.0523), p = 0.0011; $\alpha_{\text{Bonferroni}} = 0.05 / 22 =$
220 0.0023). In contrast, a measure of overall cognitive performance, as well as all other trait domains
221 assessed here, exhibited no significant genetic overlap with endocranial globularity
222 (Supplementary Table 5).

223
224 **Functional enrichment in gene expression and chromatin data**

225 To gain insights into functions of genes related to endocranial globularity, we first examined gene-
226 based associations using MAGMA's gene-based test as implemented in FUMA⁶⁹. 77 genes were

227 significantly associated with interindividual variation in endocranial globularity ($\alpha_{\text{Bonferroni}} = 0.05 /$
228 $19,312 = 2.59 \times 10^{-6}$; Supplementary Table 6) with the top signal seen for *C16orf95*, in line with
229 the SNP-based associations. We then performed MAGMA gene-property analysis to test for
230 positive associations between tissue-specific gene expression profiles and gene-based p-values
231 from the GWAS. Using two gene expression datasets (GTEx, Brainspan) ($\alpha_{\text{Bonferroni}} = 0.05 / (54 +$
232 $11) = 7.69 \times 10^{-4}$) we identified significant enrichment in adult tissue (GTEx)⁷⁰ highlighting the
233 tibial nerve as well as several non-brain tissues, mainly attributed to the cardiovascular,
234 gastrointestinal (colon and oesophagus) and female reproductive systems (cervix, uterus,
235 fallopian tube) (Fig. 4A, Supplementary Table 7). Further, enrichment in brain tissues sampled
236 through development (Brainspan)⁷¹ highlighted late-prenatal and early childhood brain tissues
237 (Fig. 4B, Supplementary Table 7).

238 We next tested for (brain) cell type enrichments using two single-cell RNA-sequencing datasets
239 covering foetal and adult brain tissue which highlighted significant enrichments in endothelial cells
240 of adult tissue (Supplementary Fig. 6, Supplementary Table 8).

241
242 **Fig. 4. Analyses of expression profiles in adult and brain developmental tissue as well as tissue-specific**
243 **chromatin signatures.** Enrichment -log₁₀ p-values of MAGMA gene-property analysis in gene expression data from
244 (A) adult tissue and (B) brain tissue from different developmental time points. (C) Partitioned heritability -
245 log₁₀ p-values in active regulatory elements across tissues and cell types. In all panels, the dashed line denotes the p-
246 value threshold for significant enrichment after Bonferroni correction.

247 To complement the gene expression analyses, we investigated enrichment of globularity
248 associations in tissue-specific chromatin signatures, using LDSC partitioned heritability
249 analysis^{72,73}. We found significant enrichment ($\alpha_{\text{Bonferroni}} = 0.05 / 489 = 1.02 \times 10^{-4}$) in regions with
250 DNase hypersensitivity, a marker for active chromatin, in foetal skeletal muscle (Fig. 4C,
251 Supplementary Table 9) and in regions with histone-3 lysine-4 monomethylation (H3K4me1), a
252 marker for enhancer regions, which again highlighted the cardiovascular system but also showed
253 enrichment in lung tissue (Fig. 4C, Supplementary Table 9).

254 **Partitioned heritability analysis with evolutionary annotations of the genome**

255 Focusing on the timescale over which endocranial globularity is thought to have emerged on the
256 *Homo sapiens* lineage (i.e., within ~300kya, see Figure 1A), we investigated relationships
257 between our association data and genomic annotations that tag relevant evolutionary events.

258 First, we used LDSC partitioned heritability analysis^{72,73} to test the contributions of archaic
259 admixture to the overall SNP-based heritability of the trait. Here, we analysed (i) Neandertal
260 introgressed alleles resulting from admixture events ~50-60k years ago⁷⁴ and (ii) archaic deserts,
261 which represent long stretches in the human genome that have a significant underrepresentation
262 of introgressed alleles⁷⁵. This analysis revealed a significant ($\alpha_{\text{Bonferroni}} = 0.05 / 2 = 0.025$)
263 heritability depletion in archaic deserts (enrichment = 0.61, SE = 0.14, p = 0.0115), indicating that
264 common DNA variants in these regions explain a lower proportion of the total SNP-based
265 heritability of endocranial globularity than expected under complete polygenicity (Supplementary
266 Table 10).

267 Next, we investigated links between endocranial globularity and two further sets of evolutionary
268 annotations that match the relevant timescale: (i) ancient selective sweeps, as defined by
269 extended lineage sorting⁷⁶, and (ii) anatomically modern human-derived differentially methylated
270 regions (AMH-derived DMRs) identified using skeletal DNA methylation maps of Neandertals,
271 Denisovans, and present-day humans⁷⁷. Since these annotations cannot be tested reliably with
272 existing LDSC heritability partitioning tools⁷⁸, we adopted a MAGMA gene-set approach⁷⁹ using
273 two custom gene-sets covering genes that fall within $\pm 1\text{kb}$ of the relevant evolutionary
274 annotations. We found that common variants associated with endocranial globularity are
275 significantly ($\alpha_{\text{Bonferroni}} = 0.05 / 2 = 0.025$) enriched in and near genes ($\pm 1\text{ kb}$) co-located with ancient
276 selective sweeps (Beta = 0.163, SE = 0.061, p = 0.004), but not in those co-located with AMH-
277 derived DMRs (Beta = 0.02, SE = 0.003, p = 0.333) (Supplementary Table 11).

278 **Discussion**

279 Our results point to proximate developmental, and evolutionary causes underlying a uniquely
280 modern human anatomical phenotype. The origins of endocranial globularity have been much
281 debated, with some studies emphasizing roles of genes related to neurogenesis and
282 myelination^{2,5}, while others propose that endocranial shape changes in *Homo sapiens* are driven
283 by facial gracilization linked to dietary and lifestyle differences⁷. In the current study, we
284 approached this longstanding question by investigating interindividual differences in endocranial
285 globularity in nearly 34,000 present-day living participants, identifying 28 loci and 77 genes
286 associated with the trait, and revealing a SNP-heritability comparable to (and in some cases larger
287 than) other neuroanatomical traits which have been studied via brain imaging genomics^{15,21,80}.

288 We found that genetic variation associated with endocranial globularity is shared with that of
289 several neuroanatomical metrics covering a variety of brain regions, highlighting the multifactorial
290 nature of this evolutionarily-defined phenotype. Particularly prominent here is the shared genetic
291 make-up with the ventricular system, raising the possibility that rounder endocranial may in part
292 be due to increased hydrostatic pressure of cerebrospinal fluid during development. Moreover,
293 these results go beyond confirming prior hypotheses concerning a role for white-matter
294 changes^{2,5}, by revealing which white-matter tracts show the strongest genetic overlaps with
295 endocranial globularity (Supplementary Table 3).

296 While the globularization of the brain is thought to have contributed to the emergence of complex
297 human-specific traits^{52,53,81,82}, adaptive evolution might have increased our susceptibility to certain
298 (brain-related) disorders^{57,58,61}. In the present study, we tested 22 phenotypes in a range of
299 categories where prior studies have suggested an impact of previous admixture events. Across
300 all trait domains we found at most very subtle genetic relationships with endocranial globularity,
301 and only one of the traits that we tested met statistical significance. This is in line with recent
302 studies finding that Neandertal variants overall show little association with diseases seen in
303 present-day humans, specifically with psychiatric and neurological disorders^{58,63}. More generally,
304 our findings indicate that the trend towards a more globular brain is not per se linked to increased
305 disease susceptibility and seems fairly independent of other trait domains previously linked to
306 Neandertal introgression. While we did not expect straightforward correlations between brain
307 shape and complex human traits, the absence of shared genetic architecture of endocranial
308 globularity with traits previously linked to Neandertal introgression might in part also reflect the
309 focus on common variants in this study, given that a large percentage of Neandertal introgressed
310 fragments is rare with allele frequencies below 1%⁸³.

311 Reading- and language-related skills were the only cognitive traits that showed a significant
312 genetic correlation with endocranial globularity. However, this does not necessarily imply the
313 absence of language in archaic hominins. As our analysis revealed only a marginal, non-
314 significant genetic overlap with general cognitive abilities, this finding may rather indicate a
315 continuous refinement of language-related abilities in the *Homo sapiens* lineage after the split
316 from Neandertals. Indeed, based on data from an array of palaeoanthropological sources, it has
317 been suggested that Neandertals had more complex communication abilities than previously
318 appreciated, potentially reflecting a deeper evolutionary history for speech and language
319 capacities⁸⁴⁻⁸⁷. This is consistent with archaeological evidence of complex and sophisticated
320 Neandertal behaviours, suggesting cognitive and behavioural similarities between Neandertals
321 and contemporary fossil *Homo sapiens*⁵³⁻⁵⁶. Given both the shared and diverging genetic
322 architecture with anatomical brain traits, subtle differences in brain circuitry which might emerge
323 during the globularization phase of brain development^{2,5,6} may have refined key brain structures
324 important for language circuitry that has subsequently also been recruited for processes involved
325 in reading. Intriguingly, anatomical measures of the superior temporal sulcus, a key brain region
326 involved in linguistic processing, show high genetic correlations with both endocranial globularity
327 and reading-/language-related traits⁶⁸.

328 Focusing on functional implications of identified associations, gene-property analysis highlighted
329 an enrichment of variants associated with endocranial globularity in genes expressed in the brain
330 during prenatal development and in early childhood. This finding links directly to prior work on
331 skulls which places the ontogenetic emergence of this phenotype within early development^{5,6,88,89}.

332 Several lines of evidence point to an association between endocranial globularity, metabolic
333 supply and the circulatory system. First, endocranial globularity showed strong genetic
334 correlations with the ventricular system, including the choroid plexus. Second, via gene-property
335 analysis, we found that genes associated with this trait have enriched expression in tissues linked
336 to the cardiovascular system as well as in adult brain endothelial cells, a cell type also linked to
337 the brain's metabolite supply⁹⁰. Third, using heritability partitioning, we observed enrichment of
338 heritability within regulatory elements linked to the cardiovascular system. In addition to the
339 cardiovascular system, genes associated with endocranial globularity also showed significant
340 enrichment in female reproductive tissues. The association of endocranial globularity and the
341 cardiovascular system highlights the advantages of our approach to uncover novel associations
342 which open up unexpected avenues for further research. This is consistent with recent research
343 that has shown strong phenotypic and genetic links between the heart and the brain⁹¹ and even
344 uncovered possibly genetic causal links between cardiovascular endophenotypes and
345 neurological health.

346 While Gunz & Tilot et al.⁵, using a smaller cohort, identified a number of Neandertal introgressed
347 alleles associated with elongated endocranial shape in present-day humans, our genome-wide
348 approach revealed a broader signal of SNP-heritability depletion within archaic deserts. This may
349 suggest that archaic deserts lack the genetic loci and regulatory elements that contribute to the
350 formation of the globular shape of the human endocranum during early development, similar to
351 earlier findings⁷⁸ showing archaic desert heritability depletion for cortical surface area. Further,
352 the gene-set analysis indicated a significant enrichment of globularity-associated variants within
353 genes that are co-located with ancient selective sweeps. Thus, genes that are co-located with
354 haplotypes fixed on the human lineage after the split from Neandertals and Denisovans (~450-
355 750 kya)¹³, but before the split of modern human populations (~100-120 kya)⁶⁶, may have played
356 an important role in the evolution of human endocranial globularity. The implicated time period
357 partially overlaps with that observed from the fossil data, which suggests endocranial globularity
358 emerged in the *Homo sapiens* lineage over the last ~300 kya. Overall, combining fossil and
359 genetic data narrows down the presumable time window for the evolutionary emergence of
360 endocranial globularity to the last ~300-120 kya.

361 An inherent limitation of the GWAS approach is that it cannot directly assess the impact of genetic
362 changes that have become fixed over the course of hominin evolution, as the basis of the analysis
363 relies on both genetic and phenotypic interindividual variation present in the cohort under study.
364 In addition, for pragmatic reasons, our study focused on individuals of European ancestry,
365 highlighting the need for further research of well-powered neuroimaging genomics cohorts from
366 diverse population backgrounds (as they become available) to gain a comprehensive
367 understanding of the biological mechanisms underlying aspects of human neuroanatomy. It is
368 important to keep in mind ethical implications of research on fundamental human traits; Box 1
369 outlines key issues, highlighting the scope and limitations of GWAS and providing guidelines for
370 interpreting such genetic findings.

371 Our study leveraged the interindividual differences in an evolutionarily derived phenotype unique
372 to present-day humans through analyses of large-scale neuroimaging genetics, to gain novel
373 insights into biological processes underlying human variation and evolution. We uncovered
374 unexpected signals that lead to new, testable hypotheses for future work when more fine-grained
375 datasets become available. Using neuroimaging genomic data spanning perinatal and infant

376 development will then allow for more detailed insights into the ontogeny of endocranial shape
377 while the latest data from single-cell transcriptomics and epigenomics will help to further
378 disentangle the involvement of metabolic supply, the circulatory and female reproductive system.
379 Further, availability of large-scale exome and whole-genome sequencing data will shed more light
380 on the contribution of rarer variants with larger effect sizes, whose functional implications and
381 interplay with more common variants are not yet clear.

382 Taken together, these findings suggest that human endocranial shape and brain function may
383 have co-evolved with both the circulatory and reproductive systems. In such a scenario, selection
384 acting on one system would also affect the other; thus, changes affecting, e.g., metabolite supply,
385 energy demand, pregnancy, or fertility would also affect brain structure and endocranial shape,
386 possibly as indirect by-products.
387

388 **Box 1 General ethical considerations and implications linked to brain shape and its genetic**
389 **underpinnings**

390 **Historical context of craniology and phrenology warrants a careful and vigilant ethical approach**

391 Endocranial imprints can provide direct empirical evidence of brain evolution revealing evolutionary
392 changes of brain size, shape and sulcal morphology in palaeoanthropology^{2,6,92–96}. However, given the
393 historical burden of craniometry, using endocranial metrics as phenotypes and correlating them with
394 anatomical or behavioural traits requires vigilant and thorough ethical considerations to avoid
395 misappropriation of presented results^{97,98}. Craniometry, the study of skull shape, size, and proportions, was
396 prevalent in anthropology during the 18th and early 19th centuries. It misused measurements, like the
397 cervical index (the ratio of a skull's maximum width to its length), to wrongly suggest racial differences in
398 intellectual capabilities. These ideas were absorbed into phrenology, which claimed to predict personality,
399 mental health, and criminal tendencies based on skull measurements, providing a pseudo-scientific basis
400 for racist beliefs, slavery, colonialism, and later, 20th-century eugenics^{99,100}. Despite being discredited as
401 pseudoscience^{101,102}, the remnants of racial craniology and phrenology still influence contemporary studies
402 linking brain and behaviour¹⁰³.

403 **Brain shape as a window into our evolutionary past**

404 In this study we make use of the latest advances in palaeoanthropology and endocranial shape analysis
405 from Neandertal fossils combined with brain imaging data from thousands of present-day living humans to
406 create a singular metric for endocranial globularity⁵. As the globular shape of the human braincase
407 represents one of the most distinct anatomical differences between *Homo sapiens* and our closest living
408 and extinct relatives, endocranial globularity functions here as an evolutionary phenotype^{2,6}. Investigating
409 associated genetic factors underlying this evolutionary phenotype offers a novel approach to study the more
410 elusive aspects of brain evolution and might lead to new insights into differences and similarities compared
411 to our closest extinct relatives, with no intent or scientific grounds to draw any conclusions for an individual
412 based on differences in their endocranial globularity.

413 **What can genetics tell us about human endocranial globularity today?**

414 Genome-wide association analyses of endocranial globularity highlight the polygenicity of this trait; that is,
415 there are thousands, if not tens of thousands, of DNA variants acting together to shape this particular aspect
416 of our anatomy. While identified associations do not inherently imply causal relationships, they can open
417 up new avenues of scientific inquiry for human evolution^{104,105}. Overall, endocranial globularity showed a
418 SNP-heritability (the proportion of interindividual variation that may be accounted for by common genetic
419 variants) of 30%, comparable to other brain morphological traits^{80,106,107}. Still, this means that only a third of
420 the interindividual variation in endocranial globularity can currently be explained by factors at the genetic
421 level. While larger sample sizes and a focus on rare variants might increase the genetic contribution, this
422 level of heritability indicates that a substantial proportion of variability in this trait is still unexplained and can
423 be attributed to non-genetic factors such as environmental influences¹⁰⁴ and developmental stochasticity.
424 Even though each identified genetic variant associated with endocranial globularity shows only minor
425 effects, the aggregated signal was correlated with a range of brain morphological traits, while most of the
426 health and complex human traits that we studied did not show significant genetic correlation. Overall, these
427 analyses can reveal the aetiological heterogeneity of endocranial globularity and other complex traits, and
428 help us to better understand their shared biology. Yet, it is important to note that genetic correlations do not
429 imply causal links between phenotypes¹⁰⁸.

430 We emphasize that our results and summary statistics do not provide a scientific foundation for deterministic
431 predictions of human endocranial shape. The findings represent statistical trends within the studied
432 population and cannot be applied to individuals. Additionally, given that different populations show
433 differences in allele frequencies and patterns of linkage disequilibrium (i.e. co-inheritance of neighbouring
434 DNA variants that lie close to each other on the same chromosome), this also means that the results should
435 not be taken out of context to make any inferences about other ancestry groups or to draw comparisons
436 between populations.

437

438

Methods

439

Dataset

440

For lifespan analyses we included 644 cognitively healthy adults (age range, 18 – 88 years) obtained from the Cambridge Centre for Aging and Neuroscience (CamCAN) repository (available at <http://www.mrc-cbu.cam.ac.uk/datasets/camcan/>)^{9,10}. Ethical approval was obtained from the Cambridgeshire Research Ethics Committee and participants gave written informed consent.

441

442

443

444

All data for the described neuroimaging genetics analysis were obtained from the UK Biobank (UKB) under the research application 16066 with Clyde Francks as the principal investigator. Detailed descriptions of the data used as well as sample-specific pre-processing and quality control (QC) are described below. The UK Biobank received ethical approval from the National Research Ethics Service Committee North West-Haydock (reference 11/NW/0382), and all of their procedures were performed in accordance with the World Medical Association. Informed consent was obtained for all participants by UK Biobank with details about data collection and ethical procedures described elsewhere^{11,109}.

445

446

447

448

449

450

451

452

Endocast segmentation and measurement protocol

453

Based on computed tomographic (CT) scans of recent and fossil crania, we used the endocranial shape differences between present-day humans (N = 89) representing world-wide cranial shape variation², and fossil humans (N = 20) as a framework for evolutionary shape changes⁵. The fossil sample comprises eight *Homo erectus* s.l. (KNM-ER 3733, KNM-ER 3883, KNM-WT 15000, OH 9, Ngandong 14, Ngawi, Sambungmacan 3, Sangiran 2), ten *Homo neanderthalensis* (Amud 1, Feldhofer 1, Gibraltar 1, Guattari 1, La Chapelle aux Saints, La Ferrassie 1, Spy 1, Spy 2, Saccopastore 1, Le Moustier 1), and two *Homo heidelbergensis* s.l. crania (Kabwe, Petralona). We first used semi-automated segmentation to create virtual endocranial imprints in the software Avizo 3D (Version 9; FEI SAS, Thermo Fisher Scientific) following protocols detailed in Neubauer et al.^{2,88}. We also segmented the endocranial surface of the MNI 152 template, an average of 152 normal MRI brain scans. On each endocranial surface we then digitized a mesh of 935 anatomical landmarks, curve semilandmarks¹¹⁰ and surface semilandmarks following the protocol described in Neubauer et al.² To establish geometric correspondence of the semilandmarks across individuals we allowed curve semilandmarks to slide along tangents to the curves, and surface semilandmarks to slide on tangent planes to the surface, minimizing the thin-plate spline bending energy following Gunz et al.¹¹⁰. Missing landmarks or semilandmarks were estimated based on minimal bending energy during this sliding step^{111,112}.

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

Sample level quality control and pre-processing of the neuroimaging data

470

471

472

473

474

475

476

477

478

479

For the lifespan analyses we used available T1-weighted images within the CamCAN data set. All details regarding the MRI acquisition are described in detail in Taylor et al.⁹. All available T1-weighted images were further pre-processed using *fsl_anat* as part of the FSL toolbox (v 5.1.0) to reorient the images to MNI standard orientation, automatically crop and bias-correct the images, and apply an initial brain extraction which was followed by a secondary brain extraction using FSL *bet*. Images were subsequently aligned to the MNI-T1-1mm standard template using FSL *flirt* to derive the inverse affine transformation matrix for each of 644 individuals.

480

481

482

483

484

485

486

487

For UKB data we first applied genetic sample level quality control measures to derive a final study sample that would also be suitable for further genetic analysis. As the first step, participants with available imaging data (N = 40,681, release 2020) were extracted from the full UKB imputed genotype dataset¹¹. Subject-level QC parameters were then applied to the 39,678 individuals for whom both neuroimaging and genotype data were available. This involved excluding individuals with a mismatch of their self-reported (UKB data field 31) and genetically inferred sex (UKB data field 22001), as well as individuals with putative aneuploidies (UKB data field 22019), or individuals who were determined as outliers based on heterozygosity (PC corrected heterozygosity >0.1903) or genotype missingness rate (missing rate >0.05)

488 (UKB data field 22027)¹¹. For all participants with self-reported 'White European' ancestry (UKB data field
489 21000) who passed the above described sample level quality control, a Bayesian outlier detection algorithm
490 (lambda = 40) was applied (*abberant*¹³). This algorithm identified dense clusters of participants with similar
491 genetic ancestry along PC1-PC2, PC3-PC4 and PC5-PC6, where only participants at the intersection of all
492 three principal component clusters were subsequently included. Lastly, we identified pairs of individuals
493 with a kinship coefficient > 0.0442 (UKB data field 22021¹¹) and available imaging data, and excluded one
494 individual from each pair, prioritizing the exclusion of individuals related to a larger number of other
495 individuals to maximize the overall sample.

496 This process resulted in 34,861 participants passing the described genetic sample level QC, of which
497 33,996 also had usable imaging data (T1 folder not declared 'unusable'). From this sample, we then made
498 use of imaging-derived phenotypes and pre-processed image data generated by an imaging-processing
499 pipeline developed and run on behalf of the UK Biobank. All details regarding image acquisition and
500 subsequent applied processing pipelines are available on the UK Biobank website
501 (<http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367>), and in the respective brain imaging documentation
502 (<http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977>), as described elsewhere^{114,115}. We used the
503 provided linear affine transformation matrices of each individual, which was part of the standard T1-
504 weighted MRI processing pipeline (UKB data field 20252; *T1_to_MNI_linear.mat*). We further used FSL
505 (v5.1.0, *convert_xfm*) to derive the inverse affine transformation matrix for each of the 33,996 participants.
506

507 Globularity scores derived from structural MRI scans and quality control

508 To quantify the endocranial shape differences between modern humans and Neandertals, we combined
509 geometric morphometrics⁸ using scripts in Mathematica (Version 12; Wolfram Inc.) with standard
510 neuroimaging data. In Mathematica, we applied the derived inverse affine transformation matrices for each
511 individual from both datasets (CamCAN, UKB) to the 3D coordinates of the dense mesh of 935 landmarks
512 and semilandmarks on the MNI 152 template, thereby bringing these coordinates into the native anatomical
513 space of each individual. Using Procrustes superimposition¹¹⁶ we standardized position, orientation, and
514 scale. From these Procrustes shape coordinates we then computed the difference between the mean
515 endocranial shape of Neandertals, and the mean endocranial shape of present-day humans. To calculate
516 the globularity scores, we projected each individual onto that multivariate vector, and multiplied the resulting
517 scalars by 1000. In this summary metric, more elongated (Neandertal-like) endocranial have low values,
518 and more globular endocranial have high values.
519

520 Quality control of the derived phenotype

521 For both datasets (CamCAN, UKB) we manually checked the respective T1-weighted image of any
522 individuals presenting with extreme globularity scores (Q1/Q3 +/- 1.5 IQR) for crude deviations in brain
523 shape from derived globularity scores. Further, the created inverse transformation matrix for all outliers was
524 applied to the MNI 152 standard template using FSL *flirt* and the derived image overlaid on each individual's
525 initial T1-weighted image, respectively. All overlays were manually inspected and individuals with crude
526 misalignments (N = 45) excluded from subsequent analysis, resulting in 644 and 33,951 individuals for
527 CamCAN and UKB, respectively.
528

529 Characterization of phenotype

530 Previous work suggested a subtle relationship between age and globularity scores⁵. We refined this
531 characterization and systematically assessed the relationship between age and endocranial globularity
532 during adulthood within the CamCAN lifespan dataset (N = 644) as well as the UKB dataset (N = 33,951),
533 also accounting for possible interactions with sex. To do so, we used a univariate linear regression
534 implemented in R [*lm*], including both age at time of scanning (UKB data field 21003; instance 2.0) and
535 age² terms and sex (UKB data field 31) as covariates, as well as possible interaction term (sex*age,
536 sex*age²) in our model. For a more detailed description of possible sex dimorphism, we assessed the effect
537 of sex on endocranial globularity using a univariate linear regression, where sex was included as the main

538 binary predictor ($N_{\text{Male}} = 16,148$; $N_{\text{Female}} = 17,803$), while controlling for age. We extracted the t-statistic
539 for the 'sex' term to calculate Cohen's d effect sizes and 95% confidence intervals using the psych package
540 (version 2.1.9) in R¹¹⁷.

541 Further, we investigated relationships with estimated total intracranial volume (UKB data field 26521,
542 instance 2.0, $N = 33,577$), and subject-specific health data (UKB Category 100074 and 2002). As before,
543 we applied a univariate linear regression to assess relationships between brain size and endocranial
544 globularity, using both age and sex as covariates. For subject-specific health data, we screened provided
545 health information for distinct neuroanatomical and neurodegenerative disorders that might potentially have
546 an influence on human brain shape, combining both supplied ICD9/10 information (UKB data fields 41202,
547 41203, 41204, 42205) and self-reported data (UKB data field 200002) which were collected in a verbal
548 interview at the assessment centre. In each case, all instances up to the imaging visit (instance 2) were
549 screened. This screen highlighted 27 participants with an ICD9 diagnosis and 1022 individuals with an
550 ICD10 diagnosis, while 1808 individuals indicated a neuroanatomical or neurodegenerative diagnosis in
551 the self-reported health screen. As some participants had multiple records, this led to a total of 2,338 unique
552 diagnosed participants while the rest of the cohort ($N = 31,613$) were treated as control participants. We
553 assessed the relationship with these disorders using a univariate linear regression, where diagnosis (case-
554 control status) was included as the main binary predictor, while controlling for sex and age. We extracted
555 the t-statistic for the 'diagnosis' term to calculate Cohen's d effect sizes and 95% confidence intervals using
556 the psych package (version 2.1.9) in R¹¹⁷.

557

558 Genome-wide association analysis

559 For all individuals in the UKB sample ($N = 33,951$), imputed single-nucleotide polymorphism (SNP)
560 genotype data (UKB Category 263, bgen files; imputed data v3-released March 2018) were extracted and
561 variant level QC and SNP statistics were computed using qctool v2.0.2
562 (https://www.well.ox.ac.uk/~gav/qctool_v2/). We excluded variants with a minor allele frequency below
563 0.001, Hardy-Weinberg equilibrium test p-value $< 1 \times 10^{-6}$, imputation quality INFO score < 0.7 (included in
564 the imputed UKB data) and multi-allelic SNPs. As recommended, for the X chromosome only Hardy-
565 Weinberg equilibrium p-values based on the female dataset were checked¹¹⁸. This procedure resulted in
566 15,030,319 SNPs, of which 499,719 were located on the X chromosome.

567 A linear regression model as implemented in PLINK 2.0 (www.cog-genomics.org/plink/2.0/)^{119,120} was used
568 to test for the association of endocranial globularity with sample specific dosages, using an additive model.
569 Here, PLINK converted the raw probabilities stored in the .bgen files to dosages. Covariates were scaled
570 to have unit variance, by using the `--covar-variance-standardiz` flag. To account for dosage compensation
571 (DC) due to X chromosome inactivation in females, we assumed full DC and treated males as homozygous
572 females with genotypes coded as (0,2) which represents the default model in PLINK 2.0¹²¹. We included
573 age (UKB data field 21003-2.0), age², sex (UKB data field 31-0.0), sex-by-age and age² interactions, the
574 first 10 genetic principal components (UKB data fields 22009-0.1 to 22009-0.10), genotype measurement
575 array (UKB data field 22000-0.0), and dummy variables for assessment centre (UKB data field 54-2.0), as
576 well as several imaging-related covariates, namely scanner position parameters (X, Y and Z position: UKB
577 data fields 25756-2.0, 25757-2.0 and 25758-2.0), T1 signal-to-noise ratio (UKB data field 25734-2.0), and
578 T1-contrast-to-noise ratio (UKB data field 25735-2.0) as co-factors.

579 For sex-stratified analysis we used the `--keep-male` or `--keep-female` flags as implemented in PLINK 2.0,
580 which decreased the overall sample size to 16,148 and 17,803 individuals, respectively. The sex-stratified
581 association tests were not adjusted for sex or any interaction terms thereof. The Manhattan plot was
582 generated using the "qqman" R function¹²² (qqman package v0.1.8), while QQ plots were added with a
583 custom function (https://genome.sph.umich.edu/wiki/Code_Sample:_Generating_QQ_Plots_in_R by
584 Matthey Flickinger). For sex-stratified GWAS, the Miami plot was created with the custom R function gmirror
585 ([https://github.com/RitchieLab/utility/blob/master/personal/ana/hudson-paper/hudson-paper-figures-
586 code.R](https://github.com/RitchieLab/utility/blob/master/personal/ana/hudson-paper/hudson-paper-figures-code.R)).

587 Subsequently, LD score regression (v1.0.0)¹²³ was used to estimate SNP heritability for endocranial
588 globularity and to calculate genetic correlation estimates between the male and female GWAS. For all these
589 analysis streams and any following analysis using *ldsc*, only autosomes were included, since the X
590 chromosome is not supported by the *ldsc* software.
591

592 Genetic correlations with brain imaging phenotypes

593 Publicly available GWAS summary statistics of brain imaging derived neuroanatomical traits were obtained
594 via the Oxford Brain Imaging Genetics Server¹⁵ (<http://big.stats.ox.ac.uk/>). Brain imaging derived
595 phenotypes (IDPs) encompassed surface T1 structural phenotypes (UKB Category 110), namely regional
596 grey matter volumes (FAST, UKB Category 1101), subcortical volumes (FIRST, UKB Category 1102),
597 Freesurfer ASEG (UKB Category 190) and Freesurfer DKT (UKB Category 196), as well as diffusion
598 imaging phenotypes (UKB Category 107), where we selected both fractional anisotropy (FA) and mean
599 diffusivity (MD) from the diffusion MRI skeleton measurements (UKB Category 134) and diffusion weighted
600 means measures (UKB Category 135), respectively. We also included summary statistics for two further
601 brain IDPs, namely sulcal morphology measures¹⁴ and brain skew³⁰. This resulted in 1017 traits, where
602 only those with a SNP-heritability larger than 0.1 were used, to avoid signal inflation, leading to a total of
603 667 final brain IDPs. A description of all IDPs used in this study can be found in Supplementary Table 3.
604 LD score regression¹²³ was used to assess genetic correlations between endocranial globularity and the
605 brain IDPs, with Bonferroni correction to adjust for multiple testing of 667 phenotypes.
606

607 As GWAS statistics for facial morphology traits were mostly available from multivariate screens and hence
608 lacked beta estimates, LD score regression was not applicable to test for possible genetic correlation. We
609 therefore used a lookup approach as an alternative, to determine if any of the genome-wide significant loci
610 associated with facial morphology (as reported in Supplementary Tables 1 and 3 of White et al.³⁵)
611 overlapped with identified genomic regions associated with endocranial globularity (independent lead SNPs
612 and SNPs in LD ($r^2 > 0.6$)).
613

Genetic correlation analysis with complex human traits

614 Several studies have highlighted potential relevance to human evolution for certain brain-related disorders
615 including depression, autism, schizophrenia, and addiction^{57,60,61,124}, inflammatory conditions⁶⁴, as well as
616 cognitive traits, with language being the most prominent^{66,86,87}. Further, the legacy of previous admixture
617 events was shown to influence trait variability in several categories, ranging from metabolism to
618 dermatological traits, as well as the cardiovascular and gastrointestinal system, and skeletal form. We
619 curated a list of 22 traits within these domains where high quality GWAS summary statistics were available
620 and used LD score regression¹²³ to estimate genetic correlations between endocranial globularity and
621 these traits. We made use of publicly available GWAS summary statistics for schizophrenia and bipolar
622 disorder¹²⁵, depression¹²⁶, autism spectrum disorder¹²⁷, alcohol dependence¹²⁸, inflammatory bowel
623 disease¹²⁹, cognitive performance¹³⁰, and a multivariate GWAS on reading- and language-related traits⁶⁸.
624 For all other traits, LDSC formatted summary statistics were downloaded from the Neal Lab heritability
625 server¹³¹ (https://nealelab.github.io/UKBB_Idsc/index.html). Bonferroni correction was used to correct for
626 multiple testing of 22 traits. A detailed overview of results and a description of all traits used in this study
627 can be found in Supplementary Table 5.
628

Functional Mapping and Annotation of GWAS analysis results

629 For functional annotation of GWAS results, we used the SNP2GENE function implemented in FUMA^{69,132}
630 (Functional Mapping and Annotation of Genome-Wide Association Studies; <https://fuma.ctglab.nl/>; version
631 v1.3.7) to highlight associated genomic loci and independent significant SNPs ($r^2 > 0.6$).
632

Gene and gene-property analysis in MAGMA

633 MAGMA⁷⁹ (version 1.08), integrated in the SNP2GENE function in FUMA, was used for gene-based, gene-
634 set, and gene-property analyses. For gene-based analysis (SNP-wide mean model) the European 1000
635

637 Genomes Phase 3 Reference Panel¹³³ was used and the gene window was set to 35 kb upstream and 10
638 kb downstream¹³⁴ to determine gene-based p-values, with other settings using default values. MAGMA
639 controls for gene size, the number of SNPs within a gene, and LD structure, by default.

640 We tested for enrichment of low gene-based p-values in specific tissue and cell types using MAGMA gene-
641 property analysis, where we selected adult tissue samples from GTEx V8
642 (<http://www.gtexportal.org/home/datasets>), as well as gene expression data of developmental brain
643 samples (<http://www.brainspan.org>). Additionally, we chose two single-cell RNA-sequencing datasets
644 covering fetal (prefrontal cortex, 8-26 weeks post conception; Gene expression omnibus (GEO) accession
645 number GSE104276) and adult (PsychENCODE Adult, <http://resource.psychencode.org/>) brain tissue for
646 the cell type-specific analysis, also implemented in FUMA¹³². Bonferroni correction was used in each case
647 to correct for multiple testing of bulk RNA-sequencing datasets (65 tissues) as well as for all single-cell
648 RNA-sequencing datasets (67 cell types), respectively.

649

650 Partitioning heritability of chromatin signatures

651 We used stratified LD score regression^{72,73} to test for enrichment of endocranial globularity SNP-heritability
652 in annotations of tissue-specific chromatin signatures reflecting regulatory and/or transcriptional activity.
653 The annotations used here were all based on data from the Roadmap Epigenomics project and ENTEX, as
654 described by Finucane et al.⁷². Bonferroni correction was used to correct for multiple testing of 489
655 annotations.

656

657 Analyses of contributions of Neandertal admixture

658 We used stratified LD score regression to determine if annotations of the human genome tagging signatures
659 of Neandertal ancestry show enrichment or depletion of the total SNP-heritability. We estimated the
660 contribution of evolutionary annotations associated with Neandertal ancestry, by using recently published
661 and enhanced genome annotations⁷⁸. These annotations were chosen based on their relevance for the
662 timing of the evolution of endocranial globularity in our ancestors (i.e. after the Neandertal-*Homo sapiens*
663 split), and the need for sufficient SNP-coverage to allow robust partitioned heritability analysis. Based on
664 these criteria, the following annotations were used: 1) Neandertal introgressed alleles (and SNPs in perfect
665 LD ($r^2 = 1$)), short genomic regions of Neandertal DNA which introgressed in to varying degree into the
666 genome of some present-day humans as a result from interbreeding events⁷⁴; and 2) archaic deserts, long
667 stretches of DNA that are significantly depleted of Neandertal sequences in modern human populations⁷⁵.
668 Both annotations were controlled for the baseline LD v2.2 model.

669

670 MAGMA gene-set analysis with custom evolutionary gene-sets

671 Two curated genome annotations with high evolutionary relevance were unsuitable for heritability
672 partitioning due to low SNP-coverage and were assessed instead via MAGMA gene-set analysis⁷⁹. These
673 annotations were: 1) Ancient Selective Sweeps, haplotypes that reached fixation after the split with archaic
674 humans (~450-750 kya), but before the differentiation of modern human populations (~100-120 kya)⁷⁶, 2)
675 Anatomically Modern Human-derived Differentially Methylated Regions (AMH-derived DMRs), regions with
676 unmethylated state in ancient and modern humans, but methylated in Neandertals and Denisovans,
677 reflecting chromatin-state differences that emerged between AMHs and archaic humans after they split
678 ~450-750 kya⁷⁷. We listed genes that fall within ± 1 kb of each loci locus tagged by one of these two
679 annotations, and filtered for protein coding genes using NCBI's hg19 genome annotation¹³⁵. We then
680 performed gene annotation by integrating SNP locations from GWAS summary statistics and gene locations
681 from NCBI hg19 genome annotation. We followed this with a gene-based analysis using SNP p-values and
682 1000 Genomes Phase 3 European Panel¹³³, and finally applied the gene-set analysis using results from
683 gene annotation, gene analysis, and the two evolutionary gene-sets that we curated. Bonferroni correction
684 was used to correct the enrichment p-value threshold for two tests.

685

686

Data availability:

687

Imaging data across the adult lifespan are available from CamCAN (<http://www.mrc-cbu.cam.ac.uk/datasets/camcan>). Neuroimaging and genotype data used for GWAS are available from UK Biobank (<https://www.ukbiobank.ac.uk>). GWAS summary statistics of endocranial globularity will be made freely available through the GWAS Catalog (<https://www.ebi.ac.uk/gwas/>).

688

689

690

691

692

Code availability:

693

Coordinate-measurements on endocasts, and scripts used for the analyses are available on the project GitLab repository (<https://gitlab.gwdg.de/barmol/globularity>).

694

695

696

References

1. Lieberman, D. E., McBratney, B. M. & Krovitz, G. The evolution and development of cranial form in *Homo sapiens*. *Proc. Natl. Acad. Sci.* **99**, 1134–1139 (2002).
2. Neubauer, S., Hublin, J.-J. & Gunz, P. The evolution of modern human brain shape. *Sci. Adv.* **4**, eaao5961 (2018).
3. Hublin, J.-J. *et al.* New fossils from Jebel Irhoud, Morocco and the pan-African origin of *Homo sapiens*. *Nature* **546**, 289–292 (2017).
4. De Sousa, A. A. *et al.* From fossils to mind. *Commun. Biol.* **6**, 636 (2023).
5. Gunz, P. *et al.* Neandertal Introgression Sheds Light on Modern Human Endocranial Globularity. *Curr. Biol. CB* **29**, 120-127.e5 (2019).
6. Gunz, P. *et al.* A uniquely modern human pattern of endocranial development. Insights from a new cranial reconstruction of the Neandertal newborn from Mezmaiskaya. *J. Hum. Evol.* **62**, 300–313 (2012).
7. Zollikofer, C. P. E. *et al.* Endocranial ontogeny and evolution in early *Homo sapiens*: The evidence from Herto, Ethiopia. *Proc. Natl. Acad. Sci.* **119**, e2123553119 (2022).
8. Mitteroecker, P. & Gunz, P. Advances in Geometric Morphometrics. *Evol. Biol.* **36**, 235–247 (2009).
9. Taylor, J. R. *et al.* The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: Structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample. *NeuroImage* **144**, 262–269 (2017).
10. Shafto, M. A. *et al.* The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. *BMC Neurol.* **14**, 204 (2014).
11. Bycroft, C. *et al.* The UK Biobank resource with deep phenotyping and genomic data. *Nature* **562**, 203–209 (2018).
12. Hajdinjak, M. *et al.* Reconstructing the genetic history of late Neanderthals. *Nature* **555**, 652–656 (2018).
13. Prüfer, K. *et al.* The complete genome sequence of a Neanderthal from the Altai Mountains. *Nature* **505**, 43–49 (2014).
14. Sun, B. B. *et al.* Genetic map of regional sulcal morphology in the human brain from UK biobank data. *Nat. Commun.* **13**, 6071 (2022).
15. Smith, S. M. *et al.* An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. *Nat. Neurosci.* **24**, 737–745 (2021).
16. van der Meer, D. *et al.* The genetic architecture of human cortical folding. *Sci. Adv.* **7**, eabj9446 (2021).
17. Vojinovic, D. *et al.* Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. *Nat. Commun.* **9**, 3945 (2018).
18. van der Meer, D. *et al.* Understanding the genetic determinants of the brain with MOSTest. *Nat. Commun.* **11**, 3512 (2020).
19. Hofer, E. *et al.* Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. *Nat. Commun.* **11**, 4796 (2020).
20. Naqvi, S. *et al.* Shared heritability of human face and brain shape. *Nat. Genet.* **53**, 830–839 (2021).
21. Grasby, K. L. *et al.* The genetic architecture of the human cerebral cortex. *Science* **367**, eaay6690 (2020).
22. Brouwer, R. M. *et al.* Genetic variants associated with longitudinal changes in brain structure across the lifespan. *Nat. Neurosci.* **25**, 421–432 (2022).
23. Shadrin, A. A. *et al.* Vertex-wise multivariate genome-wide association study identifies 780 unique genetic loci associated with cortical morphology. *NeuroImage* **244**, 118603 (2021).
24. Sha, Z., Schijven, D., Fisher, S. E. & Francks, C. Genetic architecture of the white matter connectome of the human brain. *Sci. Adv.* **9**, eadd2870 (2023).
25. Lupo, P. J., Mitchell, L. E. & Jenkins, M. M. Genome-wide association studies of structural birth defects: A review and commentary. *Birth Defects Res.* **111**, 1329–1342 (2019).
26. Butler, M. G. *et al.* Microcephaly, intellectual impairment, bilateral vesicoureteral reflux, distichiasis, and glomuvenous malformations associated with a 16q24.3 contiguous gene deletion and a Glomulin mutation. *Am. J. Med. Genet. A.* **158A**, 839–849 (2012).
27. Handrigan, G. R. *et al.* Deletions in 16q24.2 are associated with autism spectrum disorder, intellectual disability and congenital renal malformation. *J. Med. Genet.* **50**, 163 (2013).
28. Park, J.-H. *et al.* Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. *Nat. Genet.* **42**, 570–575 (2010).
29. Fan, C. C. *et al.* Beyond heritability: improving discoverability in imaging genetics. *Hum. Mol. Genet.* **27**, R22–R28 (2018).

- 751 30. Kong, X.-Z. *et al.* Large-Scale Phenomic and Genomic Analysis of Brain Asymmetrical Skew. *Cereb. Cortex N.*
752 *Y. N 1991* **31**, 4151–4168 (2021).
- 753 31. Amiez, C. *et al.* Sulcal organization in the medial frontal cortex provides insights into primate brain evolution.
754 *Nat. Commun.* **10**, 3437 (2019).
- 755 32. Gregory, M. D. *et al.* Neanderthal-Derived Genetic Variation Shapes Modern Human Cranium and Brain. *Sci.*
756 *Rep.* **7**, 6308 (2017).
- 757 33. Miller, S. E. *et al.* Evolutionary dynamics of recent selection on cognitive abilities. *Proc. Natl. Acad. Sci.* **117**,
758 3045–3052 (2020).
- 759 34. Neubauer, S., Gunz, P., Scott, N. A., Hublin, J.-J. & Mitteroecker, P. Evolution of brain lateralization: A shared
760 hominid pattern of endocranial asymmetry is much more variable in humans than in great apes. *Sci. Adv.* **6**,
761 eaax9935 (2020).
- 762 35. White, J. D. *et al.* Insights into the genetic architecture of the human face. *Nat. Genet.* **53**, 45–53 (2021).
- 763 36. Paternoster, L. *et al.* Genome-wide Association Study of Three-Dimensional Facial Morphology Identifies a
764 Variant in PAX3 Associated with Nasion Position. *Am. J. Hum. Genet.* **90**, 478–485 (2012).
- 765 37. Liu, F. *et al.* A Genome-Wide Association Study Identifies Five Loci Influencing Facial Morphology in
766 Europeans. *PLoS Genet.* **8**, e1002932 (2012).
- 767 38. Jacobs, L. C. *et al.* Intrinsic and Extrinsic Risk Factors for Sagging Eyelids. *JAMA Dermatol.* **150**, 836 (2014).
- 768 39. Adhikari, K. *et al.* A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in
769 human facial variation. *Nat. Commun.* **7**, 11616 (2016).
- 770 40. Pickrell, J. K. *et al.* Detection and interpretation of shared genetic influences on 42 human traits. *Nat. Genet.*
771 **48**, 709–717 (2016).
- 772 41. Shaffer, J. R. *et al.* Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial
773 Morphology. *PLoS Genet.* **12**, e1006149 (2016).
- 774 42. Cole, J. B. *et al.* Genomewide Association Study of African Children Identifies Association of SCHIP1 and
775 PDE8A with Facial Size and Shape. *PLoS Genet.* **12**, e1006174 (2016).
- 776 43. Lee, M. K. *et al.* Genome-wide association study of facial morphology reveals novel associations with FREM1
777 and PARK2. *PloS One* **12**, e0176566 (2017).
- 778 44. Crouch, D. J. M. *et al.* Genetics of the human face: Identification of large-effect single gene variants. *Proc. Natl.*
779 *Acad. Sci. U. S. A.* **115**, E676–E685 (2018).
- 780 45. Claes, P. *et al.* Genome-wide mapping of global-to-local genetic effects on human facial shape. *Nat. Genet.* **50**,
781 414–423 (2018).
- 782 46. Endo, C. *et al.* Genome-wide association study in Japanese females identifies fifteen novel skin-related trait
783 associations. *Sci. Rep.* **8**, 8974 (2018).
- 784 47. Cha, S. *et al.* Identification of five novel genetic loci related to facial morphology by genome-wide association
785 studies. *BMC Genomics* **19**, 481 (2018).
- 786 48. Howe, L. J. *et al.* Investigating the shared genetics of non-syndromic cleft lip/palate and facial morphology.
787 *PLoS Genet.* **14**, e1007501 (2018).
- 788 49. Qiao, L. *et al.* Genome-wide variants of Eurasian facial shape differentiation and a prospective model of DNA
789 based face prediction. *J. Genet. Genomics Yi Chuan Xue Bao* **45**, 419–432 (2018).
- 790 50. Wu, W. *et al.* Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han
791 Chinese. *Hum. Genet.* **138**, 601–611 (2019).
- 792 51. Xiong, Z. *et al.* Novel genetic loci affecting facial shape variation in humans. *eLife* **8**, e49898 (2019).
- 793 52. Sansalone, G. *et al.* Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood.
794 *Nat. Ecol. Evol.* **7**, 42–50 (2023).
- 795 53. Kuhlwilm, M. & Boeckx, C. A catalog of single nucleotide changes distinguishing modern humans from archaic
796 hominins. *Sci. Rep.* **9**, 8463 (2019).
- 797 54. Scerri, E. M. L. & Will, M. The revolution that still isn't: The origins of behavioral complexity in Homo sapiens. *J.*
798 *Hum. Evol.* **179**, 103358 (2023).
- 799 55. Wynn, T. & Coolidge, F. L. The expert Neandertal mind. *J. Hum. Evol.* **46**, 467–487 (2004).
- 800 56. Nowell, A. Rethinking Neandertals. *Annu. Rev. Anthropol.* **52**, annurev-anthro-052621-024752 (2023).
- 801 57. Benton, M. L. *et al.* The influence of evolutionary history on human health and disease. *Nat. Rev. Genet.* **22**,
802 269–283 (2021).
- 803 58. Chen, Z. *et al.* The contribution of Neanderthal introgression and natural selection to neurodegenerative
804 diseases. *Neurobiol. Dis.* **180**, 106082 (2023).

- 805 59. Tang, J., Huang, M., He, S., Zeng, J. & Zhu, H. Uncovering the extensive trade-off between adaptive evolution
806 and disease susceptibility. *Cell Rep.* **40**, 111351 (2022).
- 807 60. Srinivasan, S. *et al.* Genetic Markers of Human Evolution Are Enriched in Schizophrenia. *Biol. Psychiatry* **80**,
808 284–292 (2016).
- 809 61. Pattabiraman, K., Muchnik, S. K. & Sestan, N. The evolution of the human brain and disease susceptibility.
810 *Curr. Opin. Genet. Dev.* **65**, 91–97 (2020).
- 811 62. McArthur, E., Rinker, D. C. & Capra, J. A. Quantifying the contribution of Neanderthal introgression to the
812 heritability of complex traits. *Nat. Commun.* **12**, 4481 (2021).
- 813 63. Dannemann, M. *et al.* Neanderthal introgression partitions the genetic landscape of neuropsychiatric disorders
814 and associated behavioral phenotypes. *Transl. Psychiatry* **12**, 433 (2022).
- 815 64. Sankararaman, S. *et al.* The genomic landscape of Neanderthal ancestry in present-day humans. *Nature* **507**,
816 354–357 (2014).
- 817 65. Vernot, B. & Akey, J. M. Resurrecting Surviving Neandertal Lineages from Modern Human Genomes. *Science*
818 **343**, 1017–1021 (2014).
- 819 66. Pääbo, S. The Human Condition—A Molecular Approach. *Cell* **157**, 216–226 (2014).
- 820 67. Simonti, C. N. *et al.* The phenotypic legacy of admixture between modern humans and Neandertals. *Science*
821 **351**, 737–741 (2016).
- 822 68. Eising, E. *et al.* Genome-wide analyses of individual differences in quantitatively assessed reading- and
823 language-related skills in up to 34,000 people. *Proc. Natl. Acad. Sci.* **119**, e2202764119 (2022).
- 824 69. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic
825 associations with FUMA. *Nat. Commun.* **8**, 1826 (2017).
- 826 70. The GTEx Consortium *et al.* The GTEx Consortium atlas of genetic regulatory effects across human tissues.
827 *Science* **369**, 1318–1330 (2020).
- 828 71. Kang, H. J. *et al.* Spatio-temporal transcriptome of the human brain. *Nature* **478**, 483–489 (2011).
- 829 72. Finucane, H. K. *et al.* Heritability enrichment of specifically expressed genes identifies disease-relevant tissues
830 and cell types. *Nat. Genet.* **50**, 621–629 (2018).
- 831 73. Finucane, H. K. *et al.* Partitioning heritability by functional annotation using genome-wide association summary
832 statistics. *Nat. Genet.* **47**, 1228–1235 (2015).
- 833 74. Rinker, D. C. *et al.* Neanderthal introgression reintroduced functional ancestral alleles lost in Eurasian
834 populations. *Nat. Ecol. Evol.* **4**, 1332–1341 (2020).
- 835 75. Vernot, B. *et al.* Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals.
836 *Science* **352**, 235–239 (2016).
- 837 76. Peyrégne, S., Boyle, M. J., Dannemann, M. & Prüfer, K. Detecting ancient positive selection in humans using
838 extended lineage sorting. *Genome Res.* **27**, 1563–1572 (2017).
- 839 77. Gokhman, D. *et al.* Differential DNA methylation of vocal and facial anatomy genes in modern humans. *Nat.*
840 *Commun.* **11**, 1189 (2020).
- 841 78. Alagöz, G. *et al.* Using neuroimaging genomics to investigate the evolution of human brain structure. *Proc.*
842 *Natl. Acad. Sci.* **119**, e2200638119 (2022).
- 843 79. Leeuw, C. A. de, Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS
844 Data. *PLOS Comput. Biol.* **11**, e1004219 (2015).
- 845 80. Elliott, L. T. *et al.* Genome-wide association studies of brain imaging phenotypes in UK Biobank. *Nature* **562**,
846 210–216 (2018).
- 847 81. Boeckx, C. The language-ready head: Evolutionary considerations. *Psychon. Bull. Rev.* **24**, 194–199 (2017).
- 848 82. Boeckx, C. Biolinguistics: forays into human cognitive biology. *J. Anthropol. Sci.* 63–89 (2013)
849 doi:10.4436/jass.91009.
- 850 83. Wei, X. *et al.* The lingering effects of Neanderthal introgression on human complex traits. *eLife* **12**, e80757
851 (2023).
- 852 84. Dediu, D. & Levinson, S. C. On the antiquity of language: the reinterpretation of Neandertal linguistic capacities
853 and its consequences. *Front. Psychol.* **4**, (2013).
- 854 85. Dediu, D. & Levinson, S. C. Neanderthal language revisited: not only us. *Curr. Opin. Behav. Sci.* **21**, 49–55
855 (2018).
- 856 86. Fisher, S. E. Evolution of language: Lessons from the genome. *Psychon. Bull. Rev.* **24**, 34–40 (2017).
- 857 87. Corballis, M. C. Language Evolution: A Changing Perspective. *Trends Cogn. Sci.* **21**, 229–236 (2017).
- 858 88. Neubauer, S., Gunz, P. & Hublin, J.-J. The pattern of endocranial ontogenetic shape changes in humans. *J.*
859 *Anat.* **215**, 240–255 (2009).

- 860 89. Gunz, P., Neubauer, S., Maureille, B. & Hublin, J.-J. Brain development after birth differs between
861 Neanderthals and modern humans. *Curr. Biol.* **20**, R921–R922 (2010).
- 862 90. Zhao, Z., Nelson, A. R., Betsholtz, C. & Zlokovic, B. V. Establishment and Dysfunction of the Blood-Brain
863 Barrier. *Cell* **163**, 1064–1078 (2015).
- 864 91. Zhao, B. *et al.* Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images.
865 *Science* **380**, abn6598 (2023).
- 866 92. Bruner, E. Geometric morphometrics and paleoneurology: brain shape evolution in the genus *Homo*. *J. Hum.*
867 *Evol.* **47**, 279–303 (2004).
- 868 93. Moss, M. L. & Young, R. W. A functional approach to craniology. *Am. J. Phys. Anthropol.* **18**, 281–292 (1960).
- 869 94. Falk, D. Hominin paleoneurology. in *Progress in Brain Research* vol. 195 255–272 (Elsevier, 2012).
- 870 95. Balzeau, A. & Mangin, J.-F. What Are the Synergies between Paleoanthropology and Brain Imaging?
871 *Symmetry* **13**, 1974 (2021).
- 872 96. Labra, N. *et al.* What do brain endocasts tell us? A comparative analysis of the accuracy of sulcal identification
873 by experts and perspectives in palaeoanthropology. *J. Anat.* **244**, 274–296 (2024).
- 874 97. De Hemptinne, M. C. & Posthuma, D. Addressing the ethical and societal challenges posed by genome-wide
875 association studies of behavioral and brain-related traits. *Nat. Neurosci.* **26**, 932–941 (2023).
- 876 98. Gordon, R. L. *et al.* Confronting ethical and social issues related to the genetics of musicality. *Ann. N. Y. Acad.*
877 *Sci.* **1522**, 5–14 (2023).
- 878 99. Zeidman, L. A. “Three generations of imbeciles are enough”: Neuroscientists help advance scientific racism
879 and adopt the theories of eugenics and racial hygiene. in *Brain Science under the Swastika* 63–100 (Oxford
880 University Press, 2020). doi:10.1093/oso/9780198728634.003.0003.
- 881 100. Luchetti, M. The quantification of intelligence in nineteenth-century craniology: an epistemology of
882 measurement perspective. *Eur. J. Philos. Sci.* **12**, 56 (2022).
- 883 101. Parker Jones, O., Alfaro-Almagro, F. & Jbabdi, S. An empirical, 21st century evaluation of phrenology. *Cortex*
884 **106**, 26–35 (2018).
- 885 102. Stea, J. N., Black, T. R. & Di Domenico, S. I. Phrenology and Neuroscience. in *Investigating Pop Psychology*
886 9–19 (Routledge, New York, 2022). doi:10.4324/9781003107798-2.
- 887 103. Poldrack, R. A. Mapping Mental Function to Brain Structure: How Can Cognitive Neuroimaging Succeed?
888 *Perspect. Psychol. Sci.* **5**, 753–761 (2010).
- 889 104. Tam, V. *et al.* Benefits and limitations of genome-wide association studies. *Nat. Rev. Genet.* **20**, 467–484
890 (2019).
- 891 105. Uffelmann, E. *et al.* Genome-wide association studies. *Nat. Rev. Methods Primer* **1**, 59 (2021).
- 892 106. Grasby, K. L. & Jahanshad, N. The genetic architecture of the human cerebral cortex. **17** (2020).
- 893 107. Warrier, V. *et al.* Genetic insights into human cortical organization and development through genome-wide
894 analyses of 2,347 neuroimaging phenotypes. *Nat. Genet.* **55**, 1483–1493 (2023).
- 895 108. Van Rheenen, W., Peyrot, W. J., Schork, A. J., Lee, S. H. & Wray, N. R. Genetic correlations of polygenic
896 disease traits: from theory to practice. *Nat. Rev. Genet.* **20**, 567–581 (2019).
- 897 109. Sudlow, C. *et al.* UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of
898 Complex Diseases of Middle and Old Age. *PLOS Med.* **12**, e1001779 (2015).
- 899 110. Gunz, P. & Mitteroecker, P. SEMILANDMARKS: A METHOD FOR QUANTIFYING CURVES AND
900 SURFACES. *Hystrix Ital. J. Mammal.* **24**, (2013).
- 901 111. Gunz, P., Mitteroecker, P., Neubauer, S., Weber, G. W. & Bookstein, F. L. Principles for the virtual
902 reconstruction of hominin crania. *J. Hum. Evol.* **57**, 48–62 (2009).
- 903 112. Spoor, F. *et al.* Reconstructed *Homo habilis* type OH 7 suggests deep-rooted species diversity in early *Homo*.
904 *Nature* **519**, 83–86 (2015).
- 905 113. Bellenguez, C. *et al.* A robust clustering algorithm for identifying problematic samples in genome-wide
906 association studies. *Bioinformatics* **28**, 134–135 (2012).
- 907 114. Miller, K. L. *et al.* Multimodal population brain imaging in the UK Biobank prospective epidemiological study.
908 *Nat. Neurosci.* **19**, 1523–1536 (2016).
- 909 115. Alfaro-Almagro, F. *et al.* Image processing and Quality Control for the first 10,000 brain imaging datasets from
910 UK Biobank. *NeuroImage* **166**, 400–424 (2018).
- 911 116. Rohlf, F. J. & Slice, D. Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks.
912 *Syst. Zool.* **39**, 40 (1990).
- 913 117. Revelle, W. *Psych: Procedures for Psychological, Psychometric, and Personality Research*. (Northwestern
914 University, Evanston, Illinois, 2017).

- 915 118. König, I. R., Loley, C., Erdmann, J. & Ziegler, A. How to Include Chromosome X in Your Genome-Wide
916 Association Study. *Genet. Epidemiol.* **38**, 97–103 (2014).
- 917 119. Purcell, S. *et al.* PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses.
918 *Am. J. Hum. Genet.* **81**, 559–575 (2007).
- 919 120. Chang, C. C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets.
920 *GigaScience* **4**, 7 (2015).
- 921 121. Clayton, D. Testing for association on the X chromosome. *Biostat. Oxf. Engl.* **9**, 593–600 (2008).
- 922 122. Turner, S. qqman: QQ and Manhattan Plots for GWAS Data. R package version 0.1. 4. (2017).
- 923 123. Bulik-Sullivan, B. K. *et al.* LD Score regression distinguishes confounding from polygenicity in genome-wide
924 association studies. *Nat. Genet.* **47**, 291–295 (2015).
- 925 124. Simonti, C. N. *et al.* The phenotypic legacy of admixture between modern humans and Neandertals. *Science*
926 **351**, 737–741 (2016).
- 927 125. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic
928 address: douglas.ruderfer@vanderbilt.edu & Bipolar Disorder and Schizophrenia Working Group of the
929 Psychiatric Genomics Consortium. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28
930 Subphenotypes. *Cell* **173**, 1705–1715.e16 (2018).
- 931 126. Howard, D. M. *et al.* Genome-wide meta-analysis of depression identifies 102 independent variants and
932 highlights the importance of the prefrontal brain regions. *Nat. Neurosci.* **22**, 343–352 (2019).
- 933 127. Grove, J. *et al.* Identification of common genetic risk variants for autism spectrum disorder. *Nat. Genet.* **51**,
934 431–444 (2019).
- 935 128. Walters, R. K. *et al.* Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with
936 psychiatric disorders. *Nat. Neurosci.* **21**, 1656–1669 (2018).
- 937 129. Liu, J. Z. *et al.* Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight
938 shared genetic risk across populations. *Nat. Genet.* **47**, 979–986 (2015).
- 939 130. Lee, J. J. *et al.* Gene discovery and polygenic prediction from a genome-wide association study of educational
940 attainment in 1.1 million individuals. *Nat. Genet.* **50**, 1112–1121 (2018).
- 941 131. Rkwalter & Palmer, D. Nealelab/UKBB_Idsc: v2.0.0 (Round 2 GWAS update). Zenodo
942 <https://doi.org/10.5281/ZENODO.7186871> (2022).
- 943 132. Watanabe, K., Umičević Mirkov, M., de Leeuw, C. A., van den Heuvel, M. P. & Posthuma, D. Genetic mapping
944 of cell type specificity for complex traits. *Nat. Commun.* **10**, 3222 (2019).
- 945 133. 1000 Genomes Project Consortium *et al.* A global reference for human genetic variation. *Nature* **526**, 68–74
946 (2015).
- 947 134. Bryois, J. *et al.* Genetic identification of cell types underlying brain complex traits yields insights into the
948 etiology of Parkinson's disease. *Nat. Genet.* **52**, 482–493 (2020).
- 949 135. Church, D. M. *et al.* Modernizing Reference Genome Assemblies. *PLoS Biol.* **9**, e1001091 (2011).

950

951 **Acknowledgments:** This research was conducted using the UK Biobank resource under
952 application no. 16066 with CF as the principal applicant. Our study made use of brain imaging
953 derived phenotypes and pre-processed imaging data generated by an image processing pipeline
954 developed and run on behalf of UK Biobank. Data collection and sharing for this project was
955 provided by the Cambridge Centre for Ageing and Neuroscience (CamCAN), with funding
956 provided by the UK Biotechnology and Biological Sciences Research Council (grant number
957 BB/H008217/1), together with support from the UK Medical Research Council and University of
958 Cambridge, UK. SEF is a member of the Center for Academic Research and Training in
959 Anthropogeny (CARTA). We thank all curating institutions for access to CT data of fossil and
960 extant human crania, and the Max Planck Institute for Evolutionary Anthropology Leipzig (Dept.
961 of Human Evolution) for CT scanning. We further thank Giacomo Bignardi for insightful
962 discussions which helped to shape the ethical workup of this study. BM, GA, EE, DS, CF and SEF
963 were supported by the Max Planck Society. EE is also supported by the Dutch Research Council
964 (NWO; VI.Veni.202.072), and PG is also supported by the Evolution of Brain Connectivity Project
965 (M.IF.A.XXXX8103).

966 **Author contributions:**

967 Conceptualization: BM, EE, GA, CF, PG, SEF

968 Resources: CF, PG, SEF

969 Methodology: BM, EE, GA, DS, PG, SEF

970 Data analysis: BM, GA, PG

971 Writing – original draft: BM, PG

972 Writing – review & editing: BM, EE, GA, DS, CF, PG, SEF

973 **Competing interests:** Authors declare that they have no competing interests.

974 Supplementary Information is available for this paper

975 Correspondence and requests for materials should be addressed to Philipp Gunz or Simon
976 Fisher