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Abstract 

The extent to which mRNA and protein levels or their regulation correlate remains obscure, 

especially during development. In particular, this is true for organisms that exhibit aggregative 

multicellularity, such as the social amoeba Dictyostelium discoideum. The transcriptome of D. 

discoideum has been thoroughly studied during multicellular development, however the 

proteome and the correlation to the transcriptome during transition from uni- to multicellular life 

have not been analyzed in detail. Here, we present the first paired transcriptomics and 

proteomics developmental time series during aggregative multicellularity. The dataset reveals 

that mRNA and protein levels correlate highly during growth, but decrease when multicellular 

development is initiated. This accentuates that transcripts alone cannot accurately describe 

gene expression. This dataset can therefore be an important resource to study gene expression 

during aggregative multicellular development, in particular in D. discoideum. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.19.585704doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.19.585704
http://creativecommons.org/licenses/by/4.0/


 

 2

Keywords: 

Proteomics, Transcriptomics, gene regulation, Dictyostelium discoideum, multicellular 

development, aggregative multicellularity, Amoebozoa, social amoeba 

 

Introduction 

One of the pillars of biology is the central dogma, which states that, exceptions aside, the 

transfer of information from DNA leads through RNA to produce proteins1. Messenger RNA 

(mRNA) is transcribed from DNA and translated into protein in a quantitative manner. It follows 

that the levels of mRNA and protein are connected to each other. Both are dynamically 

regulated, and change due to environmental and developmental cues.  

 Transcriptomic and proteomic analyses have experienced incredible improvement in 

throughput and accuracy, however sensitivity of proteomics with LC-MS/MS is still lagging 

behind the sensitivity of transcriptomics by next-generation sequencing2. Also, in proteomics the 

signal cannot be amplified by e.g. PCR. When comparing these two omics approaches, studies 

based on transcriptomics have increased dramatically relative to studies based on proteomics, 

reflected by the number of datasets available in different repositories3,4 

 It is not uncommon that mRNA levels are used as a proxy for the levels of the effector 

molecules – the proteins. There is, however, not always a linear relationship between mRNA 

and protein, which can be attribute to e.g. differences in translation rates or protein stability5. 

Studying the correlation between mRNA and protein levels is important in order understand to 

what extent transcriptomics data can be used to predict gene expression6. 

 Organisms across the tree of life have evolved distinct strategies, which control the 

balance between mRNA and protein7. Due to these differences, the mRNA-protein correlation 

can differ between species, especially those that are phylogenetically distantly related. 

Additionally, the correlation between mRNA and protein can be different depending on the 

biological context of the cell. In steady-state cells, at the population level, the mRNA levels and 

protein levels are expected to be relatively stable, and their correlation high5. On the other hand, 

when the cells are undergoing changes, many genes will be differentially regulated and the 

correlation might be lower. One example of this is development, where cells undergo major 

differential gene expression. Here, cells transition to a different behavior or identity through 

intrinsic or extrinsic signals.  
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 Previously, the relationship between mRNA and protein has been studied by paired 

transcriptomics and proteomics at specific developmental stages in several eukaryotic 

organisms8–11. One organism with very particular development is the social amoeba 

Dictyostelium discoideum. When the amoebae run out of food, a developmental program is 

initiated where, D. discoideum transitions from free-living to multicellular. First the cells form 

aggregates of up to 100,000 cells, which then continue to develop into a fruiting body, where 

dead stalk cells support a ball of spores12. This aggregative multicellular development has been 

studied thoroughly at the RNA level, characterizing the main processes involved in the 

developmental program, as well as differentiation into specialized cell types at the single-cell 

level13–17. Thus far, the developmental proteome has not been extensively studied, and it 

remains unknown how well the observed transcriptional changes are reflected at the protein 

level. 

 In this study we performed transcriptomics and proteomics analyses at several time 

points during early development of D. discoideum, to elucidate the mRNA and protein levels 

throughout multicellular aggregation. We confirmed previous findings, which identified 

differentially regulated genes involved in processes essential for early development. 

Additionally, we detected many genes that are dynamically regulated, where specific mRNAs 

can be, for example, upregulated early during development and down regulated at the later 

stages, and vice versa. However, at the protein level many of the dynamically regulated mRNAs 

result in linearly regulated proteins. Another observation was that, in general, protein expression 

is delayed several hours as compared to mRNA expression. Levels of mRNA and protein 

correlate to a high degree during growth (across genes Spearman correlation = 0.65). The 

correlation decreases after the onset of development, mainly due to the time lag between 

mRNA transcription and protein translation. Hence, the data presented here show that the 

correlation between transcriptomics and proteomics is dependent on the conditions being 

studied and it is important to proceed with caution when using the transcriptome as a proxy for 

protein expression. The data presented in this study will also be a valuable resource for 

investigating D. discoideum development and are available in an interactive web app for ease of 

use: https://westholm.shinyapps.io/edelbroek_et_al_2024/. 
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Results 

Experimental setup 

The multicellular development of Dictyostelium discoideum starts when unicellular amoebae 

starve and embark on a developmental program. During this process, cells aggregate and go 

through distinct multicellular stages and culminate after 24 hours (h) in a fruiting body or 

“sorocarp” (Fig. 1). Here, we aimed to investigate how the transcriptome and proteome are 

regulated and correlated during early multicellular development of D. discoideum. Cells were 

starved on agar plates to induce multicellular aggregation, whereafter cells were harvested at 

time increments during 0 h to 10 h post starvation (Fig. 1). In order to minimize biological and 

technical variations, we collected cells from both halves of each plate and processed the cells 

for proteomics, and transcriptomics, respectively (Fig. 1). 

 

Fig. 1 | Experimental setup. Axenically grown cells were washed and plated on non-nutrient 

plates to induce multicellular development. Samples were taken from the same plate for 

transcriptomics and proteomics at 2h intervals, up to 10h post initiation of starvation. 
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Transcriptomics was performed on four biological replicates per time point for a total of 24 

sequencing libraries. Proteomics was performed on three biological replicates and not from the 

6h time point, resulting in 15 datasets.  

Major reorganization of the transcriptome during multicellular 

aggregation 

The broad transcriptional changes over time were investigated by principal component analysis 

(Fig. 2a). Developmental time correlates highly with the first principal component, whereas the 

second principal component oscillates from 0h to 6h back to 10h. This is similar to what has 

been observed for cells developed on filters15. The biological replicates showed minimal 

variation, both in the PCA plot and by calculating their correlation (Fig. S1). From our data, we 

could identify 8310 protein coding transcripts differentially expressed (FDR-adjusted p-value 

<0.01) during the first 10h of development, suggesting that the great majority of the in total 

11866 proteins are regulated at the transcript level during multicellular development (Table S1, 

2).  

 To compare our data with previous results from filter developed D. discoideum cells15, 

we re-analyzed their dataset and identified 4389 protein coding transcripts differentially 

expressed during the first ten hours of development (panels outlined with black square in Fig. 

2b). Of these, 3962 overlapped with the differentially expressed genes identified in our 

experimental setup (Fig. 2b). The genes identified in both studies are generally regulated in the 

same manner during development (Fig. 2b).  

 The 8310 protein coding transcripts that were identified as differentially expressed were 

clustered based on their fold change relative to 0h at the different time points. Subsequently, the 

genes were split into four groups based on hierarchical clustering, i.e. highly upregulated in 

cluster 1, genes moderately upregulated in cluster 2, genes moderately downregulated from 

four hours of development in cluster 3, and genes strongly downregulated in cluster 4 (Fig. 2c). 

In order to classify the differentially expressed genes in each cluster, we performed Gene 

Ontology-terms (GO-terms) enrichment analysis. This showed that the highly upregulated genes 

in general are associated with processes connected to development of multicellularity, such as 

cell-cell recognition, culmination involved in fruiting body development, and assembly of the 

spore wall (ultimately leading to formation of spores) (Fig. 2c). Among the moderately 

upregulated genes, the formation of the multicellular aggregates is also represented, with terms 

corresponding to cAMP dependent chemotaxis and response to differentiation-inducting factor 1 
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(Table S3), but also the cell cycle is represented, with an enrichment of genes involved in DNA 

replication and cell division (Fig. 2c, Table S3). Terms in the clusters with downregulated genes 

include translation and metabolism. This is expected, since starvation induces growth arrest of 

the cells (Fig. 2c). In conclusion, the transcriptomics dataset describes multicellular aggregation 

in detail, and the GO-terms associated with differently regulated clusters aptly represent 

biological processes regulated during early development. 
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Fig. 2 | Major reorganization of transcriptome during multicellular aggregation. a Principal 

component analysis (PCA) of the developmental transcriptome based on the 500 transcripts 

that show the most variation. The first two principal components (PC1, PC2) are shown, which 

together explain 92.6% of the variance. Four biological replicates were analyzed per time point. 

Each replicate is plotted as a number, representing the time point of the replicate. b Comparison 

of the transcriptomics dataset generated in this study (our_study) with the 0h to 10h time points 

of the dataset generated by Rosengarten et al.15 (rosengarten). Red and purple: 3339 protein 

coding transcripts identified as differentially expressed in the Rosengarten dataset; blue and 

purple: 8310 protein coding transcripts in the dataset generated in this study; purple: 3001 

protein coding transcripts identified in both studies. Regulation of the transcripts is shown by z-

score from 0h growing cells to 10h post initiation of development, with differentially expressed 

transcripts outlined (black rectangles). c Hierarchical clustering of protein coding transcripts 

based on log fold change (logFC) versus the 0h time point. Transcripts were grouped into four 

main clusters, with the general regulation of each transcript shown in the heatmap to the left, 

and the general regulation of the cluster shown with boxplots for each time point to the right. 

The dashed line indicates a logFC of 0 versus the 0h time point. On the far right, the four most 

significant GO-terms for each cluster are shown, with Fisher's exact test p-value for each GO-

term (the dashed line indicates p-value 0.01). The size of the filled circles represents the fold 

enrichment of the GO-term in the cluster. For the full set of significant GO-terms, see Table S3 

The developmentally regulated proteome 

In order to understand how well the transcriptomic data correlate with protein expression, we 

performed proteomic analysis, using cells from the same plates from which RNA was isolated 

for RNA-seq. By performing mass spectrometry (LC-MS/MS; label free quantification) on cells 

collected from several time points during early development (Fig. 1), 2478 proteins could be 

directly detected and quantified across all biological replicates and time points (Fig. 3a). For 

1185 proteins, quantification was possible in all biological replicates at one or more time points, 

but was missing in replicates at other time points. We hypothesized that the lack of 

quantification in these replicates was mostly due to a lack of- or low expression of the protein at 

these timepoints. This is supported by the fact that proteins which lack quantification in some 

replicates also have a lower maximum expression level in the replicates with quantification (Fig. 

S2a). We therefore imputed missing values for these 1185 proteins, which were consistently 

expressed at a given time point, to avoid discarding them from analysis. The missing values 
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were imputed using a probabilistic minimum, which accommodates for values missing due to 

low expression18. Addition of the imputed proteins brought the total number of proteins that we 

could analyze to 3663, about a third of all protein coding genes. For 7061 proteins no quantified 

peptides could be detected in the dataset. Many of these proteins are likely of low abundance or 

not expressed in accordance with the mRNA levels of these genes (Fig. 3a, Fig. S2b). 

Furthermore, the majority of unidentified proteins have a low annotation score, and low 

annotation quality may explain why some of the proteins were not identified (Fig. S2c). 

 Principal component analysis of the proteomics dataset resembles that of the 

transcriptomics and shows the same main trends, with the first principal component correlating 

with developmental time (Fig. 3b). Here too, variation between the biological replicates was low 

(Fig. S1). By analyzing the regulation of the quantified 3663 proteins, 672 were identified as 

differentially expressed during development (FDR-adjusted p-value <0.01) (Table S1, 4). In a 

study by Kelly e3/19/2024 5:42:00 AMt al., the D. discoideum proteome was analyzed during 

early multicellular development at 0.5h and 8h after initiating development in tissue-culture-

treated plates19. In order to compare their findings with our proteomic analysis, we first 

reanalyzed their dataset. Subsequent comparison showed that the differentially expressed 

proteins from either dataset were regulated in similar manner over time (Fig. S3).  

 In the same way as for the transcriptomic analysis, we grouped the differentially 

expressed proteins from our study based on their fold change at different time points relative to 

the 0h time point (Fig. 3c). Interestingly, a distinct change can be observed at 8h of 

development where proteins are either upregulated (clusters 1 and 2) or down regulated (cluster 

3). The first two clusters, which are made up of highly or moderately upregulated proteins, are 

associated with GO-terms linked to the development of multicellular aggregates and fruiting 

bodies, in line with what was observed in the transcriptomics analyses (Fig. 2c, Fig. 3c), but 

additionally protein ubiquitination and proteolysis appear to be upregulated (Table S5). The 

proteins that are downregulated from 8h are linked to growth arrest due to the lack of nutrients, 

where ribosomes and biosynthetic processes are broadly downregulated (Fig. 3c). Taken 

together, the proteomic dataset presented in this study describes a significant fraction of the 

total D. discoideum proteome during development, and is the first study to follow the regulation 

of the proteome during aggregative multicellularity in detail. 
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Fig. 3 | The proteome and its regulation during multicellular development. a Donut plot 

representing the total number of proteins, i.e. protein coding genes (outer circle) and the full 

transcriptome (inner circle). The inner ring shows the expression level from the transcriptomics 

analysis from high to low, and is correlated to each group of proteins. b Principal component 

analysis (PCA) of the proteomics dataset based on the 300 proteins that show most variation. 

The first two principal components (PC1, PC2) explain 60% of the variance in the dataset. The 

three replicates for each time point are plotted as separate numbers (time points in hours). c 

Hierarchical clustering of proteins based on log fold change (logFC) versus the 0h time point. 

The proteins were grouped into three main clusters, with the general regulation of each protein 

shown in the heatmap on the left, and the general regulation of the cluster shown with boxplots 

for each time point next to the heat map. The dashed line indicates a logFC of 0 versus the 0h 

time point. On the far right, the four most significant GO-terms for each cluster are shown, with 
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the Fisher’s exact test p-value for each GO-term (the dashed line indicates p-value 0.01) and 

the size of the filled circle represents the enrichment of the GO-term in the cluster. For the full 

set of significant GO-terms, see Table S5. 

High steady-state correlation of mRNA and protein levels 

From the proteomics dataset it was possible to identify about one third of the total D. 

discoideum proteome across replicates and timepoints. 589 protein-coding genes are 

differentially expressed in both the transcriptomics and proteomics datasets. These were 

clustered according to their fold change relative to the 0h time point, and they appear to be 

largely regulated in the same manner during development (Fig. 4a, Fig. S4), illustrating that the 

mRNA and protein expression are be correlated.  

  In order to study the correlation of the transcriptomic and proteomic datasets in more 

detail, we normalized the expression of each gene by the quantification of all genes, such that 

all mRNA values or protein values at a given time point sum up to 1. Across all genes at the 0h 

time point, the mRNA levels and protein levels correlated well (Spearman correlation 0.65, Fig. 

4b. At later time points however, the correlation dropped to 0.56 (Fig. S5). It should also be 

noted that at all time points, the regression of the data had slope greater than 1 (Fig. 4b Fig. 

S5). This is indicative of the fact that distribution of the data is different between the 

transcriptomics and proteomics datasets. We see, relative to the mRNA abundance, a wider 

dynamic range as well as a more uneven distribution of protein expression levels (Fig. S6). For 

example, for genes quantified in both datasets, the top 2 proteins together encompass 10% of 

the total protein abundance, whereas the top 2 most abundant transcripts encompass a more 

modest 2.3%. A slope greater than 1 in the mRNA-protein correlation has previously been 

observed for human tissues as well as in yeast20,21.  

 Although the mRNA and protein levels correlated well for each time point, we wondered 

if this is also the case for the regulation of each of these molecules over all samples. For 

instance, if an mRNA is upregulated at a specific time point during development, does this also 

hold true for its cognate protein? As an example, the gp130 mRNA and its associated 

glycoprotein 130 are both downregulated during development, resulting in a high correlation 

(Pearson’s r = 0.93, Fig. 4c). For other genes, a decrease in mRNA abundance between 

samples coincided with increased protein abundance resulting in a negative correlation (Fig. 

4d). When considering the Pearson correlation of all genes that were differentially expressed in 

both the transcriptomics and proteomics datasets, we observed a positive median correlation 
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(median Pearson’s r = 0.54, Fig. 4e, Table S6). Hence, in most cases an upregulation of mRNA 

corresponds to an increase in protein, and vice versa, for all differentially expressed genes. 

Notably, the median correlation is much lower when considering genes which are only 

differentially expressed in one of the datasets, or not differentially expressed at all (median 

Pearson’s r = 0.16, Fig. S7a). By calculating the correlation per gene, it is also possible to show 

the advantage of our sampling setup – to isolate mRNA and protein from the same plate 

(biological replicate) (Fig.1). When we compare to mismatched samples, i.e. when mRNA from 

one replicate (plate) is compared to protein from another replicate, for the same time point, the 

median correlation was significantly lower as compared to matching samples from the same 

plate (Fig. S7b, c).  

In sum, mRNA and protein expression are in general well correlated. Across genes, 

correlation is highest during steady state growth. The median per gene correlation is high for 

differentially expressed genes, but not for genes which lack regulation in the transcriptome or 

proteome during development. 
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Fig. 4 | Correlation between mRNA and protein levels. a Regulation in log fold change 

(logFC) versus 0h time point for genes differentially expressed in both transcriptomics and 

proteomics datasets. The genes in the heatmap are hierarchically clustered based on their 

regulation. For an expanded plot with all genes differentially expressed in either dataset, see 

Fig. S4. b Correlation of the mean mRNA and protein levels across the 0h time point. Each dot 

represents the mean protein and mRNA expression from a single gene. The dashed black line 

indicates the linear regression of the data, the red line is the y=x diagonal. c, d Positive linear 

Pearson correlation of gp130, and negative correlation of DDB_G0281185, respectively. The 

expression in each sample is shown by fraction of total protein and fraction of total mRNA. Each 

biological replicate is plotted with a number, signifying the time point in hours, and letter, 

signifying the biological replicate. Only samples for which both transcriptomics and proteomics 

data was generated, are included. Linear regression is shown with a black dashed line, with the 

Pearson correlation above the plot. e Distribution of per gene Pearson correlations for all genes 

with differentially expressed mRNA and protein.  
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Differences between mRNA and protein regulation 

To better understand the details behind the expression patterns in the transcriptomics and 

proteomics data, we performed an integrated unsupervised analysis using MEFISTO22. 

MEFISTO is a factor analysis method that reduces a multi-omics data set into a few latent 

factors that explain most of the variance in the full data set. Running MEFISTO on all genes for 

which we have both protein and mRNA data (Table S1), resulted in three factors that explain 

most of the variance in the transcriptomics data, and out of these three factors, Factor 1 also 

explained a large fraction of the variance in the proteomics data (Fig. 5a). Factor 1, which 

makes up 25% of the variance in the transcriptomics data and 34% in the proteomics data, 

represents steadily increasing or decreasing expression over the developmental time course 

(Fig. 5b). Factor 2, explaining 27% and 3% of the variance in the transcriptomics and 

proteomics data, respectively, represents a pattern where expression decreases between 0 and 

4 hours, after which it plateaus and then increases at 8 and 10 hours, or vice versa. Factor 3, 

which explains 17% and 6% of the variance respectively, shows a dramatic increase or 

decrease in expression between 0 and 2 hours, after which the expression gradually returns 

(Fig. 5b). This shows that mRNA is more dynamically regulated, with more variable expression 

patterns, whereas proteins mostly show steadily increasing or decreasing levels over the 

developmental time course. 

 For 280 genes, both the mRNA and protein were highly associated with Factor 1, i.e. 

linearly up- or downregulated during development. The majority of these were regulated in the 

same direction in the mRNA and protein modalities (Fig. 5c). For 11 genes however, mRNA was 

linearly downregulated and protein upregulated, and vice-versa for 6 other genes (Fig. 5c). 

 Since the majority of the mRNA regulation could be explained not by a steady increase 

or decrease but by more dynamic patterns, we investigated what GO-terms are associated with 

the dynamically regulated mRNA Factor 2 values (Fig. 5d). Genes with high Factor 2 values are 

upregulated at the 2h time point, downregulated from 4h-8h, followed by upregulation at the 10h 

time point. Among these genes, GO-terms related to translation and actin are enriched (Fig. 5d). 

This is reflected in regulation of the Arp2/3 complex, a major regulator of the actin cytoskeleton. 

At the mRNA level, the regulation is similar to Factor 2 (Fig. 5e). On the other hand, the 

complex appears to be linearly upregulated at the protein level, matching Factor 1 (Fig. 5e). The 

proteasome complex on the other hand, is associated with negative Factor 2 values (mRNA), 

but is also linearly upregulated (protein) (Fig. S8a, b).  
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 In conclusion, the factor analysis revealed several major trajectories of the dynamic 

mRNA regulation, which all appear to be paired with linear up- or downregulation at the protein 

level. 

 

Fig. 5 | Multi-omics factor analysis of mRNAs and proteins. a Percentage of variance explained 

by the first three factors of the multi-omics factor analysis for the transcriptomics and proteomics 

datasets. b Trajectory of the first three factors over time. The different replicates are shown, and 

the dashed line is the loess (locally estimated scatterplot smoothing) regression through the 

replicates. c Analysis of genes with high Factor 1 values at both mRNA and protein modalities. 
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The proportion of genes with different regulations shown in the pie-chart. Genes with opposing 

mRNA and protein regulation are represented in the heatmap. d Gene set enrichment analysis 

(GSEA) of Factor 2 mRNA values, with GO-terms classified under broad terms. The x-axis 

shows the average Factor 2: mRNA values while the y-axis shows the GSEA p-values, after 

negative log transformation. e Regulation of members of the Arp2/3 complex. For each gene, z-

scores were calculated from the mean expression per time point. The gray zone denotes the 

95% confidence interval trajectory of all z-scores. 

Protein expression is generally delayed several hours compared 

to mRNA expression. 

From the previous analyses, we identified that for a number of genes, the mRNA and protein 

regulation opposed one another (Fig. 5c, d). We hypothesized that for some of these genes, the 

difference may be explained by a time lag between the mRNA transcription and protein 

translation. To investigate this, we calculated the Spearman correlations of mRNA and protein 

levels, as before (Fig. 4a, Fig. S5), but matched all of the transcriptomics time points with all of 

the proteomics time points. Matching mRNA and protein expression from the same time points 

shows Spearman correlations of 0.65 to 0.56, however, for all time points, we found higher 

correlations when matching the mRNA expression with protein expression 2 to 4 hours later 

(Fig. 6a). This observed time lag is in agreement with previous studies in yeast23 and 

Drosophila24. When exclusively considering genes that are differentially expressed during 

development according to the protein and mRNA expression, the trend is largely the same (Fig. 

6b). Here, however, the maximum correlation is higher, similar to what we previously observed 

(Fig. 4b). Since these are genes which are highly affected throughout development, there is a 

larger difference between highly correlated pairs of time points (e.g. mRNA at 0h vs proteins at 

4h, Spearman correlation = 0.71, Fig. 6b) and those that show low correlation (e.g. mRNA at 

10h vs proteins at 0h protein, Spearman correlation = 0.02, Fig. 6b).  

 Next, we investigated if the ratios of protein to mRNA are affected during multicellular 

development. By dividing the protein quantification by the mRNA quantification, the protein to 

mRNA ratio could be calculated for each gene, at each time point. It should be noted that these 

ratios are in no way indicative of the absolute numbers of protein or mRNA molecules, and are 

purely relative values. When considering all genes expressed in both omics datasets, there are 

no significant differences in protein to mRNA ratios at the different time points (Fig. 6c). There 

are however significant differences between timepoints when considering genes for which the 
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mRNA is either up- or downregulated during multicellular development (Fig. 6d, e, Fig. S9). 10h 

after onset of multicellular development, the ratio of protein to mRNA is significantly decreased 

for genes which are upregulated (mRNA) (Fig. 6d). In contrast, downregulated genes show the 

opposite effect, with ratios of protein to mRNA significantly increasing over time (Fig. 6e). We 

suspect that this is largely another effect of the time lag between mRNA transcription and 

protein translation. Those genes that are upregulated at the transcriptional level have a 

relatively lower level of protein until translation catches up or the mRNA is eventually 

downregulated again. The opposite is true for genes which are downregulated, here the protein 

needs to be turned over for the levels to agree with the mRNA.  

 Taken together, these results show a modest correlation between protein and mRNA 

levels analyzed at the same developmental time points, however, the correlation increases 

when considering protein samples taken 2-4 hours after the mRNA samples.  
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Fig. 6 | Time lag between mRNA and protein. a,b Spearman correlations of mean protein 

values and mean mRNA values across genes for time points from 0h to 10h. In a, all genes 

quantified in both datasets are included in the analysis. In b, only differentially expressed (DE) 

genes are included. c-e, Ratio of protein to mRNA for different time points. Boxplots are based 

on c: all identified in both datasets; d: genes for which the mRNA was upregulated at 10h; e: 

genes for which the mRNA was downregulated at 10h. Above the boxplots: Dunnett contrasts p-

values relative to 0h time point reported for time points with p-values lower than 0.1. Dashed 

lines indicate the median protein to mRNA ratio for all genes. 

Discussion 

The evolution of multicellularity is thought to have occurred several times, through both clonal 

mechanisms, such as in animals and plants, and through aggregative mechanisms, where cells 

stream together to form multicellular structures25,26. Aggregative multicellularity has been 

studied using the social amoebae, where processes behind the transition from uni- to 

multicellular life have been investigated27–29. Numerous studies that focused on individual 

genes, have identified some of the key players involved in this transition30, but in recent years 

next-generation sequencing methodology have paved the way to acquire a complete 

understanding of this process at the transcriptional level13–17. 

 Here, we report transcriptomic and proteomic analyses of D. discoideum during early 

multicellular development. Using LC/MS-MS, we were able to capture the regulation of roughly 

a third of the proteome during development. This was combined with transcriptomic analyses, 

covering the great majority of the genes. By analyzing the two data sets separately, but also 

combining them with factor analysis, we identified several biological processes, vital for D. 

discoideum multicellular development. Together, this provides us with a detailed picture of gene 

expression and regulation, from mRNA to protein, during early development of the social 

amoeba. 

 Included in the upregulated processes, we find chemotaxis and development of the 

sorocarp, whereas ribosome biogenesis and general metabolism are among the most 

downregulated (Fig. 2c, Fig. 3c), in line with what has been observed previously15. Interestingly, 

some processes were dynamically up- and downregulated at the mRNA level, but linearly 

regulated at the protein level. This is similar to what has been observed in vertebrates, where a 

spike or dip in mRNA causes a switch in protein levels that are either down- or upregulated10,31. 

Examples of this kind of regulation in D. discoideum are protein degradation processes and 
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actin related genes, illustrating that relying on mRNA levels only for insights into the temporal 

impact of these processes may be misleading. Notably, for the majority of regulated mRNAs in 

our dataset, the protein response is delayed, and the proteins emerge first about 2h to 4h after 

mRNA appearance (Fig. 6). This result can likely explain the previous observation that early 

major morphological changes do not coincide with transcriptomic data, i.e. the phenotypes 

connected to the expressed mRNAs are delayed13,15. This result demonstrates that the 

proteome more accurately describes the functional gene expression and resulting phenotype6. 

Hence, it may be preferable to rely on proteomics, and not transcriptomics, for assigning genes 

to a specific temporal phenotype or morphological stage. 

 To what extent mRNA and protein expression correlate in different organisms remains 

largely unknown. For a solid comparison, the data should be generated from the same original 

sample, and should contain minimal technical variability5. In our study, we could verify that 

technical variation was very small and observed a significant increase in correlation due to the 

sampling approach (Fig. S1, Fig. S7c). At the 0h time point, prior to development of the cells, we 

observed a Spearman correlation across genes of 0.65 (Fig. 4a). This is somewhat lower than 

what has been recently reported for bacteria32 (Spearman = 0.80) and more in line with reports 

of mammalian cells and other eukaryotes6. Maybe this is reflective of a more linear relationship 

between mRNA and protein in bacteria than in eukaryotes. Additionally, some of the dissimilarity 

might be due to different methods or genes selected for comparison. For example, we observed 

Spearman correlations as high as 0.70 when considering only differentially expressed genes. 

 Besides the genome wide correlation between mRNA and protein levels at distinct time 

points, we also investigated the correlation between mRNA and protein for individual genes 

across all time points (Fig. 4b). Here, however, we found a relatively low median Pearson 

correlation of 0.16. One reason for this low correlation is that while the majority of the 

transcriptome is regulated during development (Fig. 2b, Fig. 5a), only a fraction of the proteome 

was clearly developmentally regulated. Thus, if we restrict our analysis to genes that were 

differentially expressed in both transcriptomic and proteomic datasets, we observe a drastically 

increased median correlation of 0.54 (Fig. 4b). This is similar to what was observed in a 

xenograft model33. Another factor contributing to the low correlation between individual mRNAs 

and their corresponding proteins over time, is the time-lag discussed above.  

 To conclude, the data presented here enable in-depth study of aggregative 

multicellularity at both transcript and protein levels, and can constitute a significant resource for 

comparative studies of other members of Amoebozoa. Notably, we show that the overall 

correlation between mRNA and protein in D. discoideum at steady-state is rather high, but 
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correlations of individual genes vary, and care should be taken when inferring the presence of 

proteins from transcriptomic data. We are pleased to refer anyone interested to explore the 

RNA-protein expression during early development in D. discoideum to the easy-to-use 

interactive web application https://westholm.shinyapps.io/edelbroek_et_al_2024/. 

Methods 

Growth conditions 

D. discoideum AX4 wildtype cells (DictyStockCenter ID: DBS0237637) were grown axenically in 

HL5-C (Formedium) to exponential phase. 3x108 cells were harvested at 400 x g, 5 min, and 

washed twice in 50 ml KK2 (2.2 g/l KH2PO4, 0.7 g/l K2HPO4). For the 0h time point (not 

developed), half the cells were harvested as before and stored at -80°C for subsequent 

processing for transcriptomics library preparation; the other half was harvested and stored at -

80°C and later used for proteomics sample preparation. For the other time points, cells were 

plated on 92mm NN-Agar plates (1.2 g/l KH2PO4, 0.48 g/l Na2HPO4⋅2H2O, 15 g/l agar) and 

harvested at the defined time points using Nunc Cell Scrapers (Thermo Fisher), into KK2 buffer; 

half the plate for transcriptomics and half the plate for proteomics. The cells were treated as 

described above and the cell pellets were frozen at -80°C until further processed for 

transcriptomics or proteomics sample preparation. 

Transcriptomics library preparation and sequencing 

The frozen cell pellets were dissolved in 1 ml TRIzol Reagent (Invitrogen) and total RNA was 

prepared according to the user guide, except with an additional 75% EtOH wash of the RNA 

pellet. Following RNA extraction, 15ug total RNA samples were DNase treated using TURBO 

DNase (Invitrogen) according to manufacturer’s protocol and purified by phenol/chloroform 

extraction. 75 μl Phenol stabilized: Chloroform : Isoamyl Alcohol (25:24:1, PanReacAppliChem) 

was added to 75 μl DNase treated RNA, shaken for 20 s and centrifuged 5 min, 16 000 x g. The 

upper phase was transferred to new tubes with 187.5 μl EtOH (99%), 7.5 μl 3M Sodium 

Acetate, 5 μg glycogen, and the RNA was precipitated at -20°C overnight. The RNA was 

harvested (16 000 x g, 30 min, 4°C), washed with 150 μl 75% EtOH (16 000 x g, 10 min, 4°C), 

and resuspended in 50 μl RNase free H2O. Sequencing libraries were prepared from 700 ng 

total RNA using the TruSeq stranded mRNA library preparation kit (Cat# 20020594/5, Illumina 
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Inc.) including polyA selection. The library preparation was performed according to the 

manufacturers’ protocol (#1000000040498). Libraries were sequenced on the NovaSeq 6000 

System (Illumina) on two SP Flowcells, with single reads, 100bp read length (v1 chemistry). 

 To enable mapping of the sequencing reads, adapters were trimmed using cutadapt 

v2.1034. Trimmed reads from different sequencing lanes were pooled and mapped using STAR 

v2.7.5, allowing a maximum intron size of 2000 bases35. Mapped reads from both Flowcells 

were merged with samtools v1.1036. Reads were assigned to genes with featureCounts, part of 

the subread v2.0.1 package37. For both read mapping and counting, the improved D. 

discoideum gene annotation was used38. mRNA library preparation and sequencing were 

performed at SciLifeLab Uppsala. 

Proteomics sample preparation and LC-MS/MS analysis 

The cell pellets were lysed in 150 µL of 1% β-octyl glucopyranoside and 6M urea containing 

lysis buffer using a sonication probe for 60 seconds (3 mm probe, pulse 1 s, amplitude 30%) 

according to a standard operating procedure. After homogenization, the samples were 

incubated for 90�min at 4°C during mild agitation. The lysates were clarified by centrifugation 

for 10�min (16 000 × g at 4°C). The supernatant containing extracted proteins was collected 

and further processed. The total protein concentration in the samples was measured using the 

DC Protein Assay (BioRad) with bovine serum albumin as standard. Aliquots corresponding to 

35 µg of proteins were withdrawn for digestion. The proteins were reduced, alkylated, and on-

filter digested by trypsin using 3kDa centrifugal spin filter (Millipore, Ireland). The collected 

peptide filtrate was vacuum centrifuged to dryness using a Speedvac system. The samples 

were dissolved in 100 µL 0.1% formic acid and further diluted 4 times. For LC-MS/MS analysis, 

the peptides were separated in reversed-phase on a C18-column with 150 min gradient and 

electrosprayed on-line to a Q Exactive Plus Orbitrap LC-MS/MS system (Thermo Scientific). 

Tandem mass spectrometry was performed applying Higher-energy collisional dissociation. 

 Label free quantification (LFQ) of the raw data was performed using FragPipe v20.0 

(https://fragpipe.nesvilab.org/), which is powered by MSFragger39. Analysis was performed with 

oxidation and lysine ubiquitination specified as variable modifications. Up to 3 missed cleavages 

were allowed. PSM validation performed with Percolator40, and protein inference with 

ProteinProphet41. Data is filtered at 1% FDR at the PSM, ion, peptide, and protein levels. Site 

localization with PTM-Prophet. For quantification, a minimum of 1 ion was required for MaxLFQ 

determination with IonQuant, using match between runs42.  
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RNA-seq analysis 

Counts from transcripts encoding the same protein were summed, and transcripts not encoding 

proteins were discarded, to allow for analysis of protein-coding transcripts and enable 

downstream comparison to protein data. Differentially expressed genes over time from mRNA-

seq were identified with DESeq2 v.1.41.12, using a likelihood ratio test to compare a model 

where gene expression is explained by developmental time to a null model of constant 

expression43. Genes with an FDR-adjusted p-value below 0.01 were designated as differentially 

expressed. Normalized, transformed count data was extracted using variance stabilizing 

transformations, and shrunken log fold changes of differentially expressed genes were 

calculated with Approximate Posterior Estimation for generalized linear model44. Counts from 0h 

to 10h time points from Rosengarten et al., were processed in the same manner 15,45. Genes 

plotted in heatmaps were hierarchically clustered based on their log fold changes or z-scores. 

Gene set enrichment for GO-terms was performed using topGO with the weight01 algorithm and 

using Fisher's exact test to determine statistical significance. 

Proteomics analysis 

Protein quantification is based on MaxLFQ values from FragPipe. Values were imputed for 

proteins that were quantified in all biological replicates at a given time point, but where values 

were missing at other time points. Imputation was performed using a probabilistic minimum from 

the imputeLCMD v.2.1 R package18. Differentially expressed proteins (FDR-adjusted p-value 

0.01) were identified with Limma v.3.57.11 by fitting linear models, with empirical Bayes 

smoothing46,47. The data by Kelly et al.19,48, was imputed and processed identically for 

comparison of differentially expressed genes. Clustering and GO-term analysis was performed 

as for the mRNA data.  

Integrative analysis 

Genes which were quantified in both the transcriptomics and proteomics datasets, were utilized 

for integrative analysis. To enable comparison of the mRNA and protein levels, the values of 

each replicate, for each dataset, were divided by the total sum of values for that replicate such 

that the scaled values sum to 1. For across genes correlation at a single time point, the mean 

mRNA and protein levels were calculated from the biological replicates. Linear regression was 

calculated with ranged major axes using lmodel2 v.1.7.13. For per-gene correlations, Pearson 
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correlations were calculated for each gene with all replicates available from both transcriptomics 

and proteomics.  

Multi omics factor analysis was performed with MOFA v.1.11.0 using data from all time points22. 

For analysis based on Factor 1, genes were selected with a Factor 1 loading at both mRNA and 

protein modalities above 0.45 or below -0.45. Gene set enrichment analysis of Factor 2 mRNA 

was performed based on the Factor 2 gene weights using piano v.2.17.049.  

For time lag analysis, the Spearman across-genes correlation was calculated for each 

transcriptomics time point with each proteomics time point, either with all common quantified 

genes, or those that were differentially expressed in both datasets. To calculate the ratios of 

protein levels to mRNA levels, the normalized protein level was divided by the normalized 

mRNA level for each gene. Differentially expressed genes at the mRNA modality, which have a 

fold change above 2 at the 10h time point compared to the 0h time point, were identified as 

upregulated, and those with a fold change below 0.5 as downregulated.  

Data availability 

Complete proteomics data submitted to MassIVE, with accession number MSV000093620, and 

is linked to ProteomeXchange: https://doi.org/doi:10.25345/C5H12VJ75. The transcriptomics 

dataset of all 24 sequencing libraries has been submitted to GEO with accession number 

GSE249880. 

Code availability 

All code for downstream analysis of the transcriptomics and proteomics datasets can be 

accessed at https://doi.org/10.6084/m9.figshare.25365283 together with the generated figures and 

tables. 
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