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Abstract

The extent to which mRNA and protein levels or their regulation correlate remains obscure,
especially during development. In particular, this is true for organisms that exhibit aggregative
multicellularity, such as the social amoeba Dictyostelium discoideum. The transcriptome of D.
discoideum has been thoroughly studied during multicellular development, however the
proteome and the correlation to the transcriptome during transition from uni- to multicellular life
have not been analyzed in detail. Here, we present the first paired transcriptomics and
proteomics developmental time series during aggregative multicellularity. The dataset reveals
that mRNA and protein levels correlate highly during growth, but decrease when multicellular
development is initiated. This accentuates that transcripts alone cannot accurately describe
gene expression. This dataset can therefore be an important resource to study gene expression

during aggregative multicellular development, in particular in D. discoideum.
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Introduction

One of the pillars of biology is the central dogma, which states that, exceptions aside, the
transfer of information from DNA leads through RNA to produce proteins’. Messenger RNA
(mRNA) is transcribed from DNA and translated into protein in a quantitative manner. It follows
that the levels of mMRNA and protein are connected to each other. Both are dynamically
regulated, and change due to environmental and developmental cues.

Transcriptomic and proteomic analyses have experienced incredible improvement in
throughput and accuracy, however sensitivity of proteomics with LC-MS/MS is still lagging
behind the sensitivity of transcriptomics by next-generation sequencing®. Also, in proteomics the
signal cannot be amplified by e.g. PCR. When comparing these two omics approaches, studies
based on transcriptomics have increased dramatically relative to studies based on proteomics,
reflected by the number of datasets available in different repositories®*

It is not uncommon that mRNA levels are used as a proxy for the levels of the effector
molecules — the proteins. There is, however, not always a linear relationship between mRNA
and protein, which can be attribute to e.g. differences in translation rates or protein stability®.
Studying the correlation between mMRNA and protein levels is important in order understand to
what extent transcriptomics data can be used to predict gene expression®.

Organisms across the tree of life have evolved distinct strategies, which control the
balance between mRNA and protein’. Due to these differences, the mRNA-protein correlation
can differ between species, especially those that are phylogenetically distantly related.
Additionally, the correlation between mRNA and protein can be different depending on the
biological context of the cell. In steady-state cells, at the population level, the mRNA levels and
protein levels are expected to be relatively stable, and their correlation high®. On the other hand,
when the cells are undergoing changes, many genes will be differentially regulated and the
correlation might be lower. One example of this is development, where cells undergo major
differential gene expression. Here, cells transition to a different behavior or identity through

intrinsic or extrinsic signals.
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Previously, the relationship between mRNA and protein has been studied by paired
transcriptomics and proteomics at specific developmental stages in several eukaryotic

organisms®™**,

One organism with very particular development is the social amoeba
Dictyostelium discoideum. When the amoebae run out of food, a developmental program is
initiated where, D. discoideum transitions from free-living to multicellular. First the cells form
aggregates of up to 100,000 cells, which then continue to develop into a fruiting body, where
dead stalk cells support a ball of spores®. This aggregative multicellular development has been
studied thoroughly at the RNA level, characterizing the main processes involved in the
developmental program, as well as differentiation into specialized cell types at the single-cell
level***’. Thus far, the developmental proteome has not been extensively studied, and it
remains unknown how well the observed transcriptional changes are reflected at the protein
level.

In this study we performed transcriptomics and proteomics analyses at several time
points during early development of D. discoideum, to elucidate the mRNA and protein levels
throughout multicellular aggregation. We confirmed previous findings, which identified
differentially regulated genes involved in processes essential for early development.
Additionally, we detected many genes that are dynamically regulated, where specific mRNAs
can be, for example, upregulated early during development and down regulated at the later
stages, and vice versa. However, at the protein level many of the dynamically regulated mRNAs
result in linearly regulated proteins. Another observation was that, in general, protein expression
is delayed several hours as compared to mRNA expression. Levels of mRNA and protein
correlate to a high degree during growth (across genes Spearman correlation = 0.65). The
correlation decreases after the onset of development, mainly due to the time lag between
MRNA transcription and protein translation. Hence, the data presented here show that the
correlation between transcriptomics and proteomics is dependent on the conditions being
studied and it is important to proceed with caution when using the transcriptome as a proxy for
protein expression. The data presented in this study will also be a valuable resource for
investigating D. discoideum development and are available in an interactive web app for ease of

use: https://westholm.shinyapps.io/edelbroek et al 2024/.
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Results

Experimental setup

The multicellular development of Dictyostelium discoideum starts when unicellular amoebae
starve and embark on a developmental program. During this process, cells aggregate and go
through distinct multicellular stages and culminate after 24 hours (h) in a fruiting body or
“sorocarp” (Fig. 1). Here, we aimed to investigate how the transcriptome and proteome are
regulated and correlated during early multicellular development of D. discoideum. Cells were
starved on agar plates to induce multicellular aggregation, whereafter cells were harvested at
time increments during O h to 10 h post starvation (Fig. 1). In order to minimize biological and
technical variations, we collected cells from both halves of each plate and processed the cells
for proteomics, and transcriptomics, respectively (Fig. 1).
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Fig. 1 | Experimental setup. Axenically grown cells were washed and plated on non-nutrient
plates to induce multicellular development. Samples were taken from the same plate for

transcriptomics and proteomics at 2h intervals, up to 10h post initiation of starvation.
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Transcriptomics was performed on four biological replicates per time point for a total of 24
sequencing libraries. Proteomics was performed on three biological replicates and not from the

6h time point, resulting in 15 datasets.

Major reorganization of the transcriptome during multicellular
aggregation

The broad transcriptional changes over time were investigated by principal component analysis
(Fig. 2a). Developmental time correlates highly with the first principal component, whereas the
second principal component oscillates from Oh to 6h back to 10h. This is similar to what has
been observed for cells developed on filters'®>. The biological replicates showed minimal
variation, both in the PCA plot and by calculating their correlation (Fig. S1). From our data, we
could identify 8310 protein coding transcripts differentially expressed (FDR-adjusted p-value
<0.01) during the first 10h of development, suggesting that the great majority of the in total
11866 proteins are regulated at the transcript level during multicellular development (Table S1,
2).

To compare our data with previous results from filter developed D. discoideum cells™,
we re-analyzed their dataset and identified 4389 protein coding transcripts differentially
expressed during the first ten hours of development (panels outlined with black square in Fig.
2b). Of these, 3962 overlapped with the differentially expressed genes identified in our
experimental setup (Fig. 2b). The genes identified in both studies are generally regulated in the
same manner during development (Fig. 2b).

The 8310 protein coding transcripts that were identified as differentially expressed were
clustered based on their fold change relative to Oh at the different time points. Subsequently, the
genes were split into four groups based on hierarchical clustering, i.e. highly upregulated in
cluster 1, genes moderately upregulated in cluster 2, genes moderately downregulated from
four hours of development in cluster 3, and genes strongly downregulated in cluster 4 (Fig. 2c).
In order to classify the differentially expressed genes in each cluster, we performed Gene
Ontology-terms (GO-terms) enrichment analysis. This showed that the highly upregulated genes
in general are associated with processes connected to development of multicellularity, such as
cell-cell recognition, culmination involved in fruiting body development, and assembly of the
spore wall (ultimately leading to formation of spores) (Fig. 2c). Among the moderately
upregulated genes, the formation of the multicellular aggregates is also represented, with terms

corresponding to cAMP dependent chemotaxis and response to differentiation-inducting factor 1
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(Table S3), but also the cell cycle is represented, with an enrichment of genes involved in DNA
replication and cell division (Fig. 2c¢, Table S3). Terms in the clusters with downregulated genes
include translation and metabolism. This is expected, since starvation induces growth arrest of
the cells (Fig. 2c¢). In conclusion, the transcriptomics dataset describes multicellular aggregation
in detail, and the GO-terms associated with differently regulated clusters aptly represent
biological processes regulated during early development.
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Fig. 2 | Major reorganization of transcriptome during multicellular aggregation. a Principal
component analysis (PCA) of the developmental transcriptome based on the 500 transcripts
that show the most variation. The first two principal components (PC1, PC2) are shown, which
together explain 92.6% of the variance. Four biological replicates were analyzed per time point.
Each replicate is plotted as a number, representing the time point of the replicate. b Comparison
of the transcriptomics dataset generated in this study (our_study) with the Oh to 10h time points
of the dataset generated by Rosengarten et al.’® (rosengarten). Red and purple: 3339 protein
coding transcripts identified as differentially expressed in the Rosengarten dataset; blue and
purple: 8310 protein coding transcripts in the dataset generated in this study; purple: 3001
protein coding transcripts identified in both studies. Regulation of the transcripts is shown by z-
score from Oh growing cells to 10h post initiation of development, with differentially expressed
transcripts outlined (black rectangles). ¢ Hierarchical clustering of protein coding transcripts
based on log fold change (logFC) versus the Oh time point. Transcripts were grouped into four
main clusters, with the general regulation of each transcript shown in the heatmap to the left,
and the general regulation of the cluster shown with boxplots for each time point to the right.
The dashed line indicates a logFC of 0 versus the Oh time point. On the far right, the four most
significant GO-terms for each cluster are shown, with Fisher's exact test p-value for each GO-
term (the dashed line indicates p-value 0.01). The size of the filled circles represents the fold

enrichment of the GO-term in the cluster. For the full set of significant GO-terms, see Table S3

The developmentally regulated proteome

In order to understand how well the transcriptomic data correlate with protein expression, we
performed proteomic analysis, using cells from the same plates from which RNA was isolated
for RNA-seq. By performing mass spectrometry (LC-MS/MS; label free quantification) on cells
collected from several time points during early development (Fig. 1), 2478 proteins could be
directly detected and quantified across all biological replicates and time points (Fig. 3a). For
1185 proteins, quantification was possible in all biological replicates at one or more time points,
but was missing in replicates at other time points. We hypothesized that the lack of
guantification in these replicates was mostly due to a lack of- or low expression of the protein at
these timepoints. This is supported by the fact that proteins which lack quantification in some
replicates also have a lower maximum expression level in the replicates with quantification (Fig.
S2a). We therefore imputed missing values for these 1185 proteins, which were consistently

expressed at a given time point, to avoid discarding them from analysis. The missing values
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were imputed using a probabilistic minimum, which accommodates for values missing due to
low expression®. Addition of the imputed proteins brought the total number of proteins that we
could analyze to 3663, about a third of all protein coding genes. For 7061 proteins no quantified
peptides could be detected in the dataset. Many of these proteins are likely of low abundance or
not expressed in accordance with the mRNA levels of these genes (Fig. 3a, Fig. S2b).
Furthermore, the majority of unidentified proteins have a low annotation score, and low
annotation quality may explain why some of the proteins were not identified (Fig. S2c).

Principal component analysis of the proteomics dataset resembles that of the
transcriptomics and shows the same main trends, with the first principal component correlating
with developmental time (Fig. 3b). Here too, variation between the biological replicates was low
(Fig. S1). By analyzing the regulation of the quantified 3663 proteins, 672 were identified as
differentially expressed during development (FDR-adjusted p-value <0.01) (Table S1, 4). In a
study by Kelly €3/19/2024 5:42:00 AMt al., the D. discoideum proteome was analyzed during
early multicellular development at 0.5h and 8h after initiating development in tissue-culture-
treated plates'®. In order to compare their findings with our proteomic analysis, we first
reanalyzed their dataset. Subsequent comparison showed that the differentially expressed
proteins from either dataset were regulated in similar manner over time (Fig. S3).

In the same way as for the transcriptomic analysis, we grouped the differentially
expressed proteins from our study based on their fold change at different time points relative to
the Oh time point (Fig. 3c). Interestingly, a distinct change can be observed at 8h of
development where proteins are either upregulated (clusters 1 and 2) or down regulated (cluster
3). The first two clusters, which are made up of highly or moderately upregulated proteins, are
associated with GO-terms linked to the development of multicellular aggregates and fruiting
bodies, in line with what was observed in the transcriptomics analyses (Fig. 2c, Fig. 3c), but
additionally protein ubiquitination and proteolysis appear to be upregulated (Table S5). The
proteins that are downregulated from 8h are linked to growth arrest due to the lack of nutrients,
where ribosomes and biosynthetic processes are broadly downregulated (Fig. 3c). Taken
together, the proteomic dataset presented in this study describes a significant fraction of the
total D. discoideum proteome during development, and is the first study to follow the regulation

of the proteome during aggregative multicellularity in detail.
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Fig. 3 | The proteome and its regulation during multicellular development. a Donut plot
representing the total number of proteins, i.e. protein coding genes (outer circle) and the full
transcriptome (inner circle). The inner ring shows the expression level from the transcriptomics
analysis from high to low, and is correlated to each group of proteins. b Principal component
analysis (PCA) of the proteomics dataset based on the 300 proteins that show most variation.
The first two principal components (PC1, PC2) explain 60% of the variance in the dataset. The
three replicates for each time point are plotted as separate numbers (time points in hours). c
Hierarchical clustering of proteins based on log fold change (logFC) versus the Oh time point.
The proteins were grouped into three main clusters, with the general regulation of each protein
shown in the heatmap on the left, and the general regulation of the cluster shown with boxplots
for each time point next to the heat map. The dashed line indicates a logFC of 0 versus the Oh

time point. On the far right, the four most significant GO-terms for each cluster are shown, with
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the Fisher's exact test p-value for each GO-term (the dashed line indicates p-value 0.01) and
the size of the filled circle represents the enrichment of the GO-term in the cluster. For the full

set of significant GO-terms, see Table S5.

High steady-state correlation of mMRNA and protein levels

From the proteomics dataset it was possible to identify about one third of the total D.
discoideum proteome across replicates and timepoints. 589 protein-coding genes are
differentially expressed in both the transcriptomics and proteomics datasets. These were
clustered according to their fold change relative to the Oh time point, and they appear to be
largely regulated in the same manner during development (Fig. 4a, Fig. S4), illustrating that the
MRNA and protein expression are be correlated.

In order to study the correlation of the transcriptomic and proteomic datasets in more
detail, we normalized the expression of each gene by the quantification of all genes, such that
all mRNA values or protein values at a given time point sum up to 1. Across all genes at the Oh
time point, the mRNA levels and protein levels correlated well (Spearman correlation 0.65, Fig.
4b. At later time points however, the correlation dropped to 0.56 (Fig. S5). It should also be
noted that at all time points, the regression of the data had slope greater than 1 (Fig. 4b Fig.
S5). This is indicative of the fact that distribution of the data is different between the
transcriptomics and proteomics datasets. We see, relative to the mRNA abundance, a wider
dynamic range as well as a more uneven distribution of protein expression levels (Fig. S6). For
example, for genes quantified in both datasets, the top 2 proteins together encompass 10% of
the total protein abundance, whereas the top 2 most abundant transcripts encompass a more
modest 2.3%. A slope greater than 1 in the mRNA-protein correlation has previously been
observed for human tissues as well as in yeast?>%.

Although the mRNA and protein levels correlated well for each time point, we wondered
if this is also the case for the regulation of each of these molecules over all samples. For
instance, if an mMRNA is upregulated at a specific time point during development, does this also
hold true for its cognate protein? As an example, the gpl30 mRNA and its associated
glycoprotein 130 are both downregulated during development, resulting in a high correlation
(Pearson’s r = 0.93, Fig. 4c). For other genes, a decrease in mRNA abundance between
samples coincided with increased protein abundance resulting in a negative correlation (Fig.
4d). When considering the Pearson correlation of all genes that were differentially expressed in

both the transcriptomics and proteomics datasets, we observed a positive median correlation

10
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(median Pearson’s r = 0.54, Fig. 4e, Table S6). Hence, in most cases an upregulation of mMRNA
corresponds to an increase in protein, and vice versa, for all differentially expressed genes.
Notably, the median correlation is much lower when considering genes which are only
differentially expressed in one of the datasets, or not differentially expressed at all (median
Pearson’s r = 0.16, Fig. S7a). By calculating the correlation per gene, it is also possible to show
the advantage of our sampling setup — to isolate mMRNA and protein from the same plate
(biological replicate) (Fig.1). When we compare to mismatched samples, i.e. when mRNA from
one replicate (plate) is compared to protein from another replicate, for the same time point, the
median correlation was significantly lower as compared to matching samples from the same
plate (Fig. S7b, c).

In sum, mRNA and protein expression are in general well correlated. Across genes,
correlation is highest during steady state growth. The median per gene correlation is high for
differentially expressed genes, but not for genes which lack regulation in the transcriptome or

proteome during development.
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Fig. 4 | Correlation between mRNA and protein levels. a Regulation in log fold change
(logFC) versus 0Oh time point for genes differentially expressed in both transcriptomics and
proteomics datasets. The genes in the heatmap are hierarchically clustered based on their
regulation. For an expanded plot with all genes differentially expressed in either dataset, see
Fig. S4. b Correlation of the mean mRNA and protein levels across the Oh time point. Each dot
represents the mean protein and mRNA expression from a single gene. The dashed black line
indicates the linear regression of the data, the red line is the y=x diagonal. ¢, d Positive linear
Pearson correlation of gp130, and negative correlation of DDB_(G0281185, respectively. The
expression in each sample is shown by fraction of total protein and fraction of total mMRNA. Each
biological replicate is plotted with a number, signifying the time point in hours, and letter,
signifying the biological replicate. Only samples for which both transcriptomics and proteomics
data was generated, are included. Linear regression is shown with a black dashed line, with the
Pearson correlation above the plot. e Distribution of per gene Pearson correlations for all genes

with differentially expressed mRNA and protein.
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Differences between mRNA and protein regulation

To better understand the details behind the expression patterns in the transcriptomics and
proteomics data, we performed an integrated unsupervised analysis using MEFISTO?.
MEFISTO is a factor analysis method that reduces a multi-omics data set into a few latent
factors that explain most of the variance in the full data set. Running MEFISTO on all genes for
which we have both protein and mRNA data (Table S1), resulted in three factors that explain
most of the variance in the transcriptomics data, and out of these three factors, Factor 1 also
explained a large fraction of the variance in the proteomics data (Fig. 5a). Factor 1, which
makes up 25% of the variance in the transcriptomics data and 34% in the proteomics data,
represents steadily increasing or decreasing expression over the developmental time course
(Fig. 5b). Factor 2, explaining 27% and 3% of the variance in the transcriptomics and
proteomics data, respectively, represents a pattern where expression decreases between 0 and
4 hours, after which it plateaus and then increases at 8 and 10 hours, or vice versa. Factor 3,
which explains 17% and 6% of the variance respectively, shows a dramatic increase or
decrease in expression between 0 and 2 hours, after which the expression gradually returns
(Fig. 5b). This shows that mRNA is more dynamically regulated, with more variable expression
patterns, whereas proteins mostly show steadily increasing or decreasing levels over the
developmental time course.

For 280 genes, both the mRNA and protein were highly associated with Factor 1, i.e.
linearly up- or downregulated during development. The majority of these were regulated in the
same direction in the mRNA and protein modalities (Fig. 5¢). For 11 genes however, mMRNA was
linearly downregulated and protein upregulated, and vice-versa for 6 other genes (Fig. 5¢).

Since the majority of the mRNA regulation could be explained not by a steady increase
or decrease but by more dynamic patterns, we investigated what GO-terms are associated with
the dynamically regulated mRNA Factor 2 values (Fig. 5d). Genes with high Factor 2 values are
upregulated at the 2h time point, downregulated from 4h-8h, followed by upregulation at the 10h
time point. Among these genes, GO-terms related to translation and actin are enriched (Fig. 5d).
This is reflected in regulation of the Arp2/3 complex, a major regulator of the actin cytoskeleton.
At the mRNA level, the regulation is similar to Factor 2 (Fig. 5e). On the other hand, the
complex appears to be linearly upregulated at the protein level, matching Factor 1 (Fig. 5e). The
proteasome complex on the other hand, is associated with negative Factor 2 values (MRNA),

but is also linearly upregulated (protein) (Fig. S8a, b).
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In conclusion, the factor analysis revealed several major trajectories of the dynamic
MRNA regulation, which all appear to be paired with linear up- or downregulation at the protein

level.

a % variance explained by factors b Trajectory of first three factors
Factor 1 Factor 2 Factor 3

) - : Biorep

0f = L [ ¥
30% : Fine | || A %

; —
. —_ ‘ | ! = ]
20% - Modality & ~ 7 /
l ma !
protein
10% : !
L § Sty 2. X NEpE>
0% ' =N N

T T T \, ' - L ] f
Factor1 Factor2 Factor3

positive
A\
oo oo

negaitve

0 2 4 681 0 2 4 68100 2 4 6 810
Time (h)

c Factor 1 (linear) gene regulation

mRNA protein
8 10

0 2 4 6 8 10 0 2 4
csnd
- dscD-1
mRNA down adprh
Protein up DDB_G0278333
‘ DDB_G0291301
" genes ubgC z-score
rpl31 2
dynB !1
redll
DDB_G0288477
DDB_G0277657 ! -1

arld -2

oatA

mRNA up mfsd1
Protein down DDB_G0349377
6 genes fmoC

| DDB_G0278003
d GSEA of Factor 2 associated mRNA e Regulation of Arp2/3 complex
. o 00 .

. % @ mRNA protein
3 s ® 1 8
g 34 GO-term class ° gene
& | oo ‘ 8
o @ Actin 14 <] i @ arcA
% 24 ..o ® ©® Chemotaxis [} o > @ ® o isg @ arcB
=X oBo o @ Protein degradation 8 ] 8 ® ) @ arcC
B [s] =) © Translation ¢ 0 ': ) ° 8 5 ® arcD
S ] @p D@) O Not classified N ° : s ° a L H ® arcE
'é: .O 14 ' e ) @ @ arpB
P, sy, ]| dntinnns K

0 i T T T T T T T T T T T T T T T

04 0.0 0.4 0 2 4 6 8 100 2 4 6 8 10
Factor 2: mRNA time(h)

Fig. 5 | Multi-omics factor analysis of mMRNAs and proteins. a Percentage of variance explained
by the first three factors of the multi-omics factor analysis for the transcriptomics and proteomics
datasets. b Trajectory of the first three factors over time. The different replicates are shown, and
the dashed line is the loess (locally estimated scatterplot smoothing) regression through the

replicates. ¢ Analysis of genes with high Factor 1 values at both mRNA and protein modalities.
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The proportion of genes with different regulations shown in the pie-chart. Genes with opposing
MRNA and protein regulation are represented in the heatmap. d Gene set enrichment analysis
(GSEA) of Factor 2 mRNA values, with GO-terms classified under broad terms. The x-axis
shows the average Factor 2: mRNA values while the y-axis shows the GSEA p-values, after
negative log transformation. e Regulation of members of the Arp2/3 complex. For each gene, z-
scores were calculated from the mean expression per time point. The gray zone denotes the

95% confidence interval trajectory of all z-scores.

Protein expression is generally delayed several hours compared

to MRNA expression.

From the previous analyses, we identified that for a number of genes, the mRNA and protein
regulation opposed one another (Fig. 5¢, d). We hypothesized that for some of these genes, the
difference may be explained by a time lag between the mRNA transcription and protein
translation. To investigate this, we calculated the Spearman correlations of mRNA and protein
levels, as before (Fig. 4a, Fig. S5), but matched all of the transcriptomics time points with all of
the proteomics time points. Matching mRNA and protein expression from the same time points
shows Spearman correlations of 0.65 to 0.56, however, for all time points, we found higher
correlations when matching the mRNA expression with protein expression 2 to 4 hours later
(Fig. 6a). This observed time lag is in agreement with previous studies in yeast” and
Drosophila®*. When exclusively considering genes that are differentially expressed during
development according to the protein and mRNA expression, the trend is largely the same (Fig.
6b). Here, however, the maximum correlation is higher, similar to what we previously observed
(Fig. 4b). Since these are genes which are highly affected throughout development, there is a
larger difference between highly correlated pairs of time points (e.g. mMRNA at Oh vs proteins at
4h, Spearman correlation = 0.71, Fig. 6b) and those that show low correlation (e.g. mMRNA at
10h vs proteins at Oh protein, Spearman correlation = 0.02, Fig. 6b).

Next, we investigated if the ratios of protein to mMRNA are affected during multicellular
development. By dividing the protein quantification by the mRNA quantification, the protein to
MRNA ratio could be calculated for each gene, at each time point. It should be noted that these
ratios are in no way indicative of the absolute numbers of protein or mMRNA molecules, and are
purely relative values. When considering all genes expressed in both omics datasets, there are
no significant differences in protein to MRNA ratios at the different time points (Fig. 6¢). There

are however significant differences between timepoints when considering genes for which the
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MRNA is either up- or downregulated during multicellular development (Fig. 6d, e, Fig. S9). 10h
after onset of multicellular development, the ratio of protein to mMRNA is significantly decreased
for genes which are upregulated (mRNA) (Fig. 6d). In contrast, downregulated genes show the
opposite effect, with ratios of protein to mMRNA significantly increasing over time (Fig. 6e). We
suspect that this is largely another effect of the time lag between mRNA transcription and
protein translation. Those genes that are upregulated at the transcriptional level have a
relatively lower level of protein until translation catches up or the mRNA is eventually
downregulated again. The opposite is true for genes which are downregulated, here the protein
needs to be turned over for the levels to agree with the mRNA.

Taken together, these results show a modest correlation between protein and mRNA
levels analyzed at the same developmental time points, however, the correlation increases
when considering protein samples taken 2-4 hours after the mRNA samples.
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Fig. 6 | Time lag between mRNA and protein. a,b Spearman correlations of mean protein
values and mean mRNA values across genes for time points from Oh to 10h. In a, all genes
quantified in both datasets are included in the analysis. In b, only differentially expressed (DE)
genes are included. c-e, Ratio of protein to mMRNA for different time points. Boxplots are based
on c: all identified in both datasets; d: genes for which the mRNA was upregulated at 10h; e:
genes for which the mRNA was downregulated at 10h. Above the boxplots: Dunnett contrasts p-
values relative to Oh time point reported for time points with p-values lower than 0.1. Dashed

lines indicate the median protein to mRNA ratio for all genes.

Discussion

The evolution of multicellularity is thought to have occurred several times, through both clonal
mechanisms, such as in animals and plants, and through aggregative mechanisms, where cells

2526 pggregative multicellularity has been

stream together to form multicellular structures
studied using the social amoebae, where processes behind the transition from uni- to
multicellular life have been investigated®’?°. Numerous studies that focused on individual
genes, have identified some of the key players involved in this transition®, but in recent years
next-generation sequencing methodology have paved the way to acquire a complete
understanding of this process at the transcriptional level**™’.

Here, we report transcriptomic and proteomic analyses of D. discoideum during early
multicellular development. Using LC/MS-MS, we were able to capture the regulation of roughly
a third of the proteome during development. This was combined with transcriptomic analyses,
covering the great majority of the genes. By analyzing the two data sets separately, but also
combining them with factor analysis, we identified several biological processes, vital for D.
discoideum multicellular development. Together, this provides us with a detailed picture of gene
expression and regulation, from mRNA to protein, during early development of the social
amoeba.

Included in the upregulated processes, we find chemotaxis and development of the
sorocarp, whereas ribosome biogenesis and general metabolism are among the most
downregulated (Fig. 2c, Fig. 3c), in line with what has been observed previously™. Interestingly,
some processes were dynamically up- and downregulated at the mRNA level, but linearly
regulated at the protein level. This is similar to what has been observed in vertebrates, where a
d10,31.

spike or dip in mMRNA causes a switch in protein levels that are either down- or upregulate

Examples of this kind of regulation in D. discoideum are protein degradation processes and
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actin related genes, illustrating that relying on mRNA levels only for insights into the temporal
impact of these processes may be misleading. Notably, for the majority of regulated mRNASs in
our dataset, the protein response is delayed, and the proteins emerge first about 2h to 4h after
MRNA appearance (Fig. 6). This result can likely explain the previous observation that early
major morphological changes do not coincide with transcriptomic data, i.e. the phenotypes
connected to the expressed mRNAs are delayed™'®. This result demonstrates that the
proteome more accurately describes the functional gene expression and resulting phenotype®.
Hence, it may be preferable to rely on proteomics, and not transcriptomics, for assigning genes
to a specific temporal phenotype or morphological stage.

To what extent mMRNA and protein expression correlate in different organisms remains
largely unknown. For a solid comparison, the data should be generated from the same original
sample, and should contain minimal technical variability’. In our study, we could verify that
technical variation was very small and observed a significant increase in correlation due to the
sampling approach (Fig. S1, Fig. S7c). At the Oh time point, prior to development of the cells, we
observed a Spearman correlation across genes of 0.65 (Fig. 4a). This is somewhat lower than
what has been recently reported for bacteria®* (Spearman = 0.80) and more in line with reports
of mammalian cells and other eukaryotes®. Maybe this is reflective of a more linear relationship
between mRNA and protein in bacteria than in eukaryotes. Additionally, some of the dissimilarity
might be due to different methods or genes selected for comparison. For example, we observed
Spearman correlations as high as 0.70 when considering only differentially expressed genes.

Besides the genome wide correlation between mRNA and protein levels at distinct time
points, we also investigated the correlation between mRNA and protein for individual genes
across all time points (Fig. 4b). Here, however, we found a relatively low median Pearson
correlation of 0.16. One reason for this low correlation is that while the majority of the
transcriptome is regulated during development (Fig. 2b, Fig. 5a), only a fraction of the proteome
was clearly developmentally regulated. Thus, if we restrict our analysis to genes that were
differentially expressed in both transcriptomic and proteomic datasets, we observe a drastically
increased median correlation of 0.54 (Fig. 4b). This is similar to what was observed in a

xenograft model*®

. Another factor contributing to the low correlation between individual mMRNAs
and their corresponding proteins over time, is the time-lag discussed above.

To conclude, the data presented here enable in-depth study of aggregative
multicellularity at both transcript and protein levels, and can constitute a significant resource for
comparative studies of other members of Amoebozoa. Notably, we show that the overall

correlation between mRNA and protein in D. discoideum at steady-state is rather high, but
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correlations of individual genes vary, and care should be taken when inferring the presence of
proteins from transcriptomic data. We are pleased to refer anyone interested to explore the
RNA-protein expression during early development in D. discoideum to the easy-to-use

interactive web application https://westholm.shinyapps.io/edelbroek et al 2024/.

Methods

Growth conditions

D. discoideum AX4 wildtype cells (DictyStockCenter ID: DBS0237637) were grown axenically in
HL5-C (Formedium) to exponential phase. 3x108 cells were harvested at 400 x g, 5 min, and
washed twice in 50 ml KK2 (2.2 g/l KH,PO,4, 0.7 g/l K;HPO,). For the Oh time point (not
developed), half the cells were harvested as before and stored at -80°C for subsequent
processing for transcriptomics library preparation; the other half was harvested and stored at -
80°C and later used for proteomics sample preparation. For the other time points, cells were
plated on 92mm NN-Agar plates (1.2 g/l KH2PO4, 0.48 g/l Na2HPO4-2H20, 15 g/l agar) and
harvested at the defined time points using Nunc Cell Scrapers (Thermo Fisher), into KK2 buffer;
half the plate for transcriptomics and half the plate for proteomics. The cells were treated as
described above and the cell pellets were frozen at -80°C until further processed for

transcriptomics or proteomics sample preparation.

Transcriptomics library preparation and sequencing

The frozen cell pellets were dissolved in 1 ml TRIzol Reagent (Invitrogen) and total RNA was
prepared according to the user guide, except with an additional 75% EtOH wash of the RNA
pellet. Following RNA extraction, 15ug total RNA samples were DNase treated using TURBO
DNase (Invitrogen) according to manufacturer’s protocol and purified by phenol/chloroform
extraction. 75 yl Phenol stabilized: Chloroform : Isoamyl Alcohol (25:24:1, PanReacAppliChem)
was added to 75 pl DNase treated RNA, shaken for 20 s and centrifuged 5 min, 16 000 x g. The
upper phase was transferred to new tubes with 187.5 pl EtOH (99%), 7.5 pl 3M Sodium
Acetate, 5 pg glycogen, and the RNA was precipitated at -20°C overnight. The RNA was
harvested (16 000 x g, 30 min, 4°C), washed with 150 pl 75% EtOH (16 000 x g, 10 min, 4°C),
and resuspended in 50 yl RNase free H,O. Sequencing libraries were prepared from 700 ng
total RNA using the TruSeq stranded mRNA library preparation kit (Cat# 20020594/5, Illumina
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Inc.) including polyA selection. The library preparation was performed according to the
manufacturers’ protocol (#1000000040498). Libraries were sequenced on the NovaSeq 6000
System (lllumina) on two SP Flowcells, with single reads, 100bp read length (v1 chemistry).

To enable mapping of the sequencing reads, adapters were trimmed using cutadapt
v2.10%. Trimmed reads from different sequencing lanes were pooled and mapped using STAR
v2.7.5, allowing a maximum intron size of 2000 bases®. Mapped reads from both Flowcells
were merged with samtools v1.10%. Reads were assigned to genes with featureCounts, part of
the subread v2.0.1 package®. For both read mapping and counting, the improved D.
discoideum gene annotation was used®®. mRNA library preparation and sequencing were

performed at ScilLifeLab Uppsala.

Proteomics sample preparation and LC-MS/MS analysis

The cell pellets were lysed in 150 uL of 1% B-octyl glucopyranoside and 6M urea containing
lysis buffer using a sonication probe for 60 seconds (3 mm probe, pulse 1 s, amplitude 30%)
according to a standard operating procedure. After homogenization, the samples were
incubated for 907 min at 4°C during mild agitation. The lysates were clarified by centrifugation
for 100Jmin (16 000 x g at 4°C). The supernatant containing extracted proteins was collected
and further processed. The total protein concentration in the samples was measured using the
DC Protein Assay (BioRad) with bovine serum albumin as standard. Aliquots corresponding to
35 pg of proteins were withdrawn for digestion. The proteins were reduced, alkylated, and on-
filter digested by trypsin using 3kDa centrifugal spin filter (Millipore, Ireland). The collected
peptide filtrate was vacuum centrifuged to dryness using a Speedvac system. The samples
were dissolved in 100 pL 0.1% formic acid and further diluted 4 times. For LC-MS/MS analysis,
the peptides were separated in reversed-phase on a C18-column with 150 min gradient and
electrosprayed on-line to a Q Exactive Plus Orbitrap LC-MS/MS system (Thermo Scientific).
Tandem mass spectrometry was performed applying Higher-energy collisional dissociation.
Label free quantification (LFQ) of the raw data was performed using FragPipe v20.0

(https:/fragpipe.nesvilab.org/), which is powered by MSFragger®. Analysis was performed with

oxidation and lysine ubiquitination specified as variable modifications. Up to 3 missed cleavages
were allowed. PSM validation performed with Percolator*®, and protein inference with
ProteinProphet*’. Data is filtered at 1% FDR at the PSM, ion, peptide, and protein levels. Site
localization with PTM-Prophet. For quantification, a minimum of 1 ion was required for MaxLFQ

determination with lonQuant, using match between runs*.

20


https://doi.org/10.1101/2024.03.19.585704
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.19.585704; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

RNA-seq analysis

Counts from transcripts encoding the same protein were summed, and transcripts not encoding
proteins were discarded, to allow for analysis of protein-coding transcripts and enable
downstream comparison to protein data. Differentially expressed genes over time from mRNA-
seq were identified with DESeq2 v.1.41.12, using a likelihood ratio test to compare a model
where gene expression is explained by developmental time to a null model of constant
expression®®. Genes with an FDR-adjusted p-value below 0.01 were designated as differentially
expressed. Normalized, transformed count data was extracted using variance stabilizing
transformations, and shrunken log fold changes of differentially expressed genes were

[**. Counts from Oh

calculated with Approximate Posterior Estimation for generalized linear mode
to 10h time points from Rosengarten et al., were processed in the same manner >*°. Genes
plotted in heatmaps were hierarchically clustered based on their log fold changes or z-scores.
Gene set enrichment for GO-terms was performed using topGO with the weight01 algorithm and

using Fisher's exact test to determine statistical significance.

Proteomics analysis

Protein quantification is based on MaxLFQ values from FragPipe. Values were imputed for
proteins that were quantified in all biological replicates at a given time point, but where values
were missing at other time points. Imputation was performed using a probabilistic minimum from
the imputeLCMD v.2.1 R package®®. Differentially expressed proteins (FDR-adjusted p-value
0.01) were identified with Limma v.3.57.11 by fitting linear models, with empirical Bayes
smoothing®*’. The data by Kelly et al.'**®, was imputed and processed identically for
comparison of differentially expressed genes. Clustering and GO-term analysis was performed
as for the mRNA data.

Integrative analysis

Genes which were quantified in both the transcriptomics and proteomics datasets, were utilized
for integrative analysis. To enable comparison of the mRNA and protein levels, the values of
each replicate, for each dataset, were divided by the total sum of values for that replicate such
that the scaled values sum to 1. For across genes correlation at a single time point, the mean
MRNA and protein levels were calculated from the biological replicates. Linear regression was

calculated with ranged major axes using Imodel2 v.1.7.13. For per-gene correlations, Pearson
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correlations were calculated for each gene with all replicates available from both transcriptomics
and proteomics.

Multi omics factor analysis was performed with MOFA v.1.11.0 using data from all time points®.
For analysis based on Factor 1, genes were selected with a Factor 1 loading at both mRNA and
protein modalities above 0.45 or below -0.45. Gene set enrichment analysis of Factor 2 mRNA
was performed based on the Factor 2 gene weights using piano v.2.17.0%.

For time lag analysis, the Spearman across-genes correlation was calculated for each
transcriptomics time point with each proteomics time point, either with all common quantified
genes, or those that were differentially expressed in both datasets. To calculate the ratios of
protein levels to mRNA levels, the normalized protein level was divided by the normalized
MRNA level for each gene. Differentially expressed genes at the mRNA modality, which have a
fold change above 2 at the 10h time point compared to the Oh time point, were identified as

upregulated, and those with a fold change below 0.5 as downregulated.

Data availability

Complete proteomics data submitted to MassIVE, with accession number MSV000093620, and
is linked to ProteomeXchange: https://doi.org/doi:10.25345/C5H12VJ75. The transcriptomics
dataset of all 24 sequencing libraries has been submitted to GEO with accession number
GSE249880.

Code availability

All code for downstream analysis of the transcriptomics and proteomics datasets can be

accessed at https://doi.org/10.6084/m9.figshare.25365283 together with the generated figures and

tables.
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