

1 **Enrichment of allelic editing outcomes by Prime Editing in iPS cells**

2

3 Ryo Niwa^{1,2}, Tomoko Matsumoto¹, Alexander Y. Liu^{1,5}, Maki Kawato¹, Takayuki Kondo^{1,3,}

4 ⁴, Kayoko Tsukita^{1,3}, Haruhisa Inoue^{1,3,4}, Thomas L. Maurissen^{1,6}, Knut Woltjen¹

5

6 ¹ Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan

7 ² Graduate School of Medicine, Kyoto University, Kyoto, Japan

8 ³ iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center

9 (BRC), Kyoto, Japan

10 ⁴ Medical-Risk Avoidance Based On iPS Cells Team, RIKEN Center for Advanced
11 Intelligence Project (AIP), Kyoto, Japan

12 ⁵ Present address: School of Biological Sciences, University of California San Diego, CA,
13 USA

14 ⁶ Present address: Roche Pharma Research and Early Development, Cardiovascular,
15 Metabolism, Immunology, Infectious Diseases and Ophthalmology, Roche Innovation Center
16 Basel, F Hoffmann-La Roche Ltd., Basel, Switzerland

17

18 * Correspondence should be addressed to K.W. (woltjen@cira.kyoto-u.ac.jp).

19 Center for iPS Cell Research and Application (CiRA), Kyoto University

20 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, JAPAN

21 E-mail: woltjen@cira.kyoto-u.ac.jp

22 Tel: +81-75-366-7060

23 Fax: +81-75-366-7079

24

25 **Abstract**

26 Gene editing in human induced pluripotent stem (iPS) cells with programmable
27 nucleases facilitates reliable disease models, but methods using double-strand break repair
28 often produce random on-target by-products. Prime editing (PE) combines Cas9 nickase with
29 reverse transcriptase (RT) and a prime editing guide RNA (pegRNA) encoding a repair
30 template to reduce by-products. We implemented a GMP-compatible protocol for transfecting
31 Cas9- or PE-2A-mCherry plasmids to track and fractionate human iPS cells based on PE
32 expression level. We compared the editing outcomes of Cas9- and PE-based methods in a
33 GFP-to-BFP conversion assay, at the *HEK3* benchmark locus, and at the *APOE* Alzheimer's
34 risk locus, revealing superior precision of PE at high expression levels. Moreover, sorting cells
35 for PE expression level influenced allelic editing outcomes at the target loci. We expect that our
36 findings will aid in the creation of gene-edited human iPS cells with intentional heterozygous
37 and homozygous genotypes.

38

39 **Key words:**

40 Prime editing, flow cytometry, FACS, genome editing, iPS cells

41

42 **Highlights**

43

- 44 1. Delivered large plasmids to human iPS cells under GMP-compliant conditions
- 45 2. Developed a flow cytometry-based approach to enrich for PE in human iPS cells
- 46 3. Demonstrated few on-target indels in cells regardless of PE expression
- 47 4. Sorted iPS cells based on PE expression level to influence mono- or bi-allelic editing

48

49 **Introduction**

50 Human induced pluripotent stem cells (iPS cells) are produced from somatic cells and
51 have indefinite proliferative and differentiation potential¹⁻³. In addition, they can differentiate
52 into multiple cell types, while retaining their normal diploid karyotypes and genome from
53 donors. Based on these characteristics, iPS cells are widely used as cellular-level models to
54 study human genetic diseases. Genetic disease modeling is generally achieved by correcting
55 mutations in iPS cells derived from patients with hereditary diseases, or by introducing
56 mutations into iPS cells prepared from healthy donors without diseases⁴. In addition, modifying
57 a target site by deleting, inserting, or replacing specific DNA sequences provides isogenic
58 control cells to study pathogenic variants⁵.

59 Point mutations represent 58% of disease-related polymorphisms registered in the
60 ClinVar database⁶. Precision gene editing technologies are required to reproduce these disease
61 mutations in iPS cells at single nucleotide resolution⁷. The CRISPR-Cas9 system is
62 conventionally used to generate targeted DNA double-strand breaks (DSBs) in the genome,
63 which are subsequently repaired by cellular DNA repair pathways^{8,9}. Non-homologous
64 end-joining (NHEJ) results in insertion and deletion (indel) mutations, while
65 microhomology-mediated end-joining (MMEJ) leads to predictable deletions¹⁰. Both NHEJ
66 and MMEJ are collectively known as mutagenic end-joining (MutEJ), as both repair outcomes
67 lead to the loss or gain of DNA sequence¹¹. Typically, to produce specific changes including
68 single nucleotide variants, the homology-directed repair (HDR) pathway is exploited with
69 custom repair templates containing the desired edit, such as double-stranded linear or plasmid
70 DNA, or single-stranded donor oligonucleotides (ssODNs). However, various studies have
71 shown a preference for MutEJ over precise repair by HDR when employing canonical
72 Cas9¹²⁻¹⁵.

73 Variations on Cas9, such as base editing (BE), combine Cas9 nickase (D10A) with a
74 cytidine or adenine deaminase to directly convert specific DNA bases with reduced incidence

75 of double-strand breaks^{6,16}. Although BE can generate precise edits, it is limited to a specific
76 editing window and bases adjacent to the target may be simultaneously converted, resulting in
77 bystander mutations⁶. In contrast, Prime Editing (PE) technology combines Cas9 nickase
78 (H840A) with reverse transcriptase (RT) activity derived from the Moloney murine leukemia
79 virus (M-MLV)¹⁷. PE utilizes a prime editing guide RNA (pegRNA) with a 3' extension that
80 serves as a reverse transcription template (RTT) and primer binding site (PBS) to incorporate
81 the desired edit. Since prime editing performs everything from single-stranded DNA cleavage
82 to re-writing the genome, editing may be more intentional, and is a breakthrough in genetic
83 disease modeling¹⁸.

84 This work demonstrates the optimization of PE applications in iPS cells using a
85 GMP-grade electroporation platform. We established a fluorescence-based PE benchmark
86 method by using GFP-to-BFP conversion in iPS cells. To maximize PE efficiency, we
87 developed a strategy of FACS enrichment, in which the PE expression vector was modified
88 with T2A-mCherry, allowing assessment of Prime Editor 2 (PE2) expression levels in cells and
89 their fractionation. The efficiency of our method was benchmarked in iPS cells using *HEK3* and
90 the rs429358 (c.T388C) pathogenic risk variant in *APOE*. Our results demonstrate that the
91 activity of PE increases with the expression level of mCherry, and PE is less mutagenic than the
92 conventional genome-editing method using Cas9. Moreover, our results demonstrate that
93 FACS enrichment can be used to control allelic editing outcomes.

94 **Methods**

95 **Human iPS cell culture**

96 409B2 (RIKENBRC #HPS0076), 317-A4 (GFP heterozygously targeted iPS cells),
97 and 317-D6 (GFP homozygously targeted iPS cells)^{11,19} were maintained at 37°C and 5%
98 CO₂ in StemFit AK02N medium (Ajinomoto, Cat. No. RCAK02N) on 0.5 mg/mL silk
99 laminin iMatrix-511 (Nippi, Cat. No. 892021) coated 6-well plates or 10 cm dishes. Cell
100 passaging was performed every 7 days during maintenance. The cells were treated with 300 µL
101 or 2 mL of Accumax (Innovative Cell Technologies, Cat. No. AM105-500) in 6-well plates and
102 10 cm dishes, respectively. The cells were incubated for 10 min at 37°C to dissociate the
103 cells. Pipetting was performed to detach the cells from the surface and generate a single-cell
104 suspension in 700 µL or 4 mL of medium containing 10 µM ROCK inhibitor, Y-27632
105 (Wako, Cat. No. 253-00513). Cells were seeded onto iMatrix511-coated plates at a density of
106 1 × 10³ cells/cm² in StemFit AK02N medium with 10 µM ROCK inhibitor for 24 h after
107 seeding and then cultured without ROCK inhibitor. All the cell lines were routinely tested for
108 mycoplasma contamination.

109

110 **Cas9-gRNA vector cloning**

111 The spacer sequence of GFP-targeting gRNA was designed based on a previous work
112¹¹. pSpCas9(BB)-2A-GFP (PX458) was a gift from Feng Zhang (Addgene plasmid # 48138;
113 <http://n2t.net/addgene:48138>; RRID:Addgene_48138). PX458 was digested by EcoRI, and
114 T2A-mCherry was inserted and ligated (KW1013: pSpCas9(BB)-2A-mCherry). The gRNA
115 construct was generated by Golden Gate assembly of annealed oligonucleotides into *the*
116 *Bbs*I-digested KW1013 plasmid. The oligonucleotides listed in Table 2 were used for gRNA
117 cloning.

118

119 **Cloning of PE-mCherry constructs**

120 The T2A-mCherry fragment was PCR-amplified from the KW1013 plasmid.
121 pCMV-PE2, a gift from David Liu (Addgene plasmid # 132775;
122 <http://n2t.net/addgene:132775>; RRID: Addgene_132775), was digested by *Eco*RI and *Pme*I
123 (Thermo Fisher Scientific). The digested product was gel-extracted using the Wizard SV Gel
124 and PCR Clean-Up Kit (Promega). The two fragments were assembled in a single In-Fusion
125 reaction (In-Fusion HD Cloning Kit, Takara, 639650), and the PCR-derived regions of the
126 resulting plasmids were confirmed by sequencing.

127

128 **pegRNA design and cloning**

129 pU6-pegRNA-GG-acceptor was a gift from David Liu (Addgene plasmid # 132777;
130 <http://n2t.net/addgene:132777> ; RRID: Addgene_132777). pegRNA-GFP and pegRNA-APOE
131 were designed using the PrimeDesign web platform version
132 (<https://drugthatgene.pinellolab.partners.org/>)²⁰. The pegRNA construct was generated by
133 Golden Gate assembly of annealed oligonucleotides into the *Bsa*I-digested
134 pU6-pegRNA-GG-acceptor plasmid and sequence verified, as previously reported¹⁷. The
135 plasmids used in this study are listed in Table 1, and the oligos used for the construction of
136 vectors are listed in Table 2.

137

138 **Electroporation of plasmids and RNP**

139 For Cas9-based editing, all plasmids for electroporation were prepared using the
140 HiSpeed Plasmid Maxi Kit (Cat. No. 12663), precipitated with ethanol, and dissolved in the
141 MaxCyte electroporation buffer at a concentration of 2.5 μ g/ μ L. For Cas9-based editing, 5 μ g
142 of plasmid encoding gRNA-GFP and Cas9 and 5 μ g of ssODN repair template (IDT) were
143 mixed in a total volume of 5 μ L. The ssODNs used in this study are presented in Table 1. For
144 PE-based editing, 5 μ g of the KW1564 vector and 5 μ g of the pegRNA-expressing plasmid
145 were mixed in a total volume of 5 μ L. Next, 5 \times 10⁶ cells resuspended in 50 μ L of MaxCyte

146 electroporation buffer were added to the DNA mixture. The suspension (50 μ L) was
147 electroporated into an OC-100 $\square\times\square$ 2 processing assembly (MaxCyte, Cat. No. SOC-1 $\square\times\square$ 2)
148 using a MaxCyte STX electroporator (Opt0-5 protocol). Electroporated cells were incubated at
149 37°C for 30 min and then transferred to an iMatrix511-coated 10 cm dish in StemFit AK02N
150 medium supplemented with 10 μ M ROCK inhibitor. Cell preparation for FACS analysis was
151 performed 24 h after electroporation. Otherwise, medium exchange was performed 48 h after
152 electroporation using StemFit AK02N without ROCK inhibitor, and cells were maintained until
153 collection for genotyping on day five or flow cytometry (FC) analysis on day eight. We
154 performed the *APOE* gene editing by ribonucleoprotein (RNP) of Cas9 with NEPA21
155 following the previously published protocol¹¹. *APOE* gene editing by RNP was performed in
156 T8 iPS cells²¹.

157

158 **Flow cytometry and cell sorting**

159 5 \times 10⁵ cells were suspended in 1 mL FACS buffer (DPBS supplemented with 2% FBS),
160 and GFP and mCherry fluorescence intensities were analyzed using a BD LSRFortessa Cell
161 Analyzer or BD FACSAria II cell sorter (BD Biosciences) with BD FACSDiva software (BD
162 Biosciences). After setting gates for the singlets, 10,000 events were measured for each
163 population. For editing experiments in 317-A4 iPS cells, the cells were acquired using Pacific
164 Blue (450/50 \square nm) and FITC (530/30 \square nm) filters. For cell sorting, cell suspensions were
165 prepared in FACS buffer at a density of 1 \times 10⁶ cells/mL and filtered through a 35 μ m nylon
166 mesh cap of the tube (Corning, 352235) to remove clumps. Sorting gates were set for the singlet
167 events. The desired population was collected using a BD FACSAria II cell sorter (BD
168 Biosciences) in AK02N medium containing 20 μ M Y-27632. Sorting efficiency was confirmed
169 by re-analyzing 300 μ L of the media. Raw data were analyzed using FlowJo 10 (FlowJo LLC).
170 Rainbow Calibration Particles (6 peaks) and 3.0 - to 3.4 μ m (BD biosciences) were utilized to

171 calibrate the laser strength and determine the sorting gate. The 90 percentiles of the relative
172 mCherry intensity of the unelectroporated cells was defined as the threshold of the mCherry.

173

174 **Genotyping**

175 For genomic DNA extraction, $0.5-1 \times 10^6$ cells were washed with 1X DPBS, and
176 DNA was purified using the DNeasy Blood & Tissue Kit (Qiagen, Cat. No. 69506) following
177 the manufacturer's protocol. Purified DNA was eluted in $100 \mu\text{L}$ of AE buffer. Target
178 sequences were amplified by PCR using the KAPA HiFi HS ReadyMix (Kapa Biosystems, Cat.
179 No. KK2602). PCR product cleanup was performed using the ExoSAP-IT Express reagent (Cat.
180 No. 75001) following the manufacturer's protocol, and Sanger sequencing was performed
181 using the BigDye Terminator v3.1 CS Kit (Thermo Fischer Scientific, Cat. No. 4337456). The
182 final product was purified by ethanol precipitation and dissolved in HiDi formamide.
183 Sequencing was performed on a 3500xl Genetic Analyzer (Applied Biosystems). Sequence
184 alignments were analyzed with Snapgene (GSL Biotech LLC), and sequence trace files with
185 low base-calling confidence were excluded manually. The primers used for genotyping are
186 listed in Table 3. Sequencing analysis was performed on mixed sequences using ICE
187 (<https://ice.synthego.com/>) and DECODR (<https://decodr.org/>) (REF)²². Sequence data from
188 317-A4 iPS cells was used as the reference genome. The parameters were kept at their default
189 values.

190

191 **Droplet digital PCR (ddPCR)**

192 To quantify the APOE 388 mutation created by PE, we prepared a mixture containing
193 $10 \mu\text{L}$ of ddPCR Multiplex Supermix (Bio-Rad, Cat. No. 12005909), $1.8 \mu\text{L}$ of $20 \mu\text{M}$ forward
194 and reverse primers each, $1.25 \mu\text{L}$ of $10 \mu\text{M}$ APOE-FAM and $0.5 \mu\text{L}$ of $10 \mu\text{M}$ hTFRC-HEX
195 probes, and 30 ng of Template DNA, adjusted to a final volume of $20 \mu\text{L}$. Droplets were
196 generated using a QX200 Automated Droplet Generator (Bio-Rad). The PCR amplification

197 protocol was as follows: 95°C for 10 min, 40 cycles at 94°C for 30 s and 58°C for 4 min,
198 followed by 98°C for 10 min. The amplified droplets were then read with the QX200 Droplet
199 Reader (Bio-Rad), and data were analyzed using QuantaSoft™ Analysis Pro v1.7.4.

200

201 **Statistical Analysis**

202 The data are presented as the mean \pm SD from the indicated numbers of independent
203 experiments and were processed using R 4.0.3, and the R package tidyverse 1.2.0²³ and
204 ggprism²⁴.

205

206 **Results**

207 **GFP to BFP conversion assay to benchmark editing with PE plasmids in iPS cells.**

208 First, we established conditions for PE expression from plasmids in iPS cells. We
209 adopted a GFP-to-BFP conversion assay previously used to optimize ssODN editing¹¹, where a
210 single amino acid change from tyrosine to histidine (Y66H) in the fluorophore region of GFP is
211 sufficient to convert fluorescent emission of GFP to BFP, and can be quantified in single cells
212 by flow cytometry (Figure 1a)²⁵. The pegRNA-GFP was designed to create Y66H, along with a
213 T65S mutation which acts to stabilize BFP, increasing fluorescence by approximately
214 2-fold^{26,27}, as well as block the PAM to prevent subsequent re-cleavage of the edited BFP allele
215 (Figure 1b). The spacer sequence is identical to that used in ssODN editing¹¹. Conversion to
216 BFP therefore represents the intended PE edit, while MutEJ is detected by loss of fluorescence
217 and unmodified cells remain GFP-positive. These changes were quantified by flow cytometry,
218 resulting in 21.2% editing to BFP in the 317-A4 iPS cell line (monoallelic AAVS1-targeted
219 GFP) with 3 µg of each PE expression plasmid and pegRNAs expression plasmid (Figure 1c).

220 The PE2 expression vector was modified to couple PE with mCherry using a T2A
221 self-cleaving peptide (PE2-mCherry), such that mCherry expression represents the level of PE
222 expression. Previously, delivery of Cas9 ribonucleoprotein (RNP) and DNA plasmid to human
223 iPS cells was established on the GMP-compliant MaxCyte platform^{11,28,29}. However,
224 co-transfection of multiple plasmids in iPS cells has yet to be demonstrated, and we started by
225 optimizing the amount of plasmids by titration. (Figure 1d). We tested the editing efficiency
226 based on the amount of PE-mCherry or pegRNA expressing plasmid (0, 1, 3, and 5 µg), while
227 keeping the second component fixed (5 µg). The proportion of mCherry-positive cells, detected
228 at 24 h after electroporation, indicated transfection efficiency. The proportion of BFP-positive
229 cells on day 7 indicated the amount of correct editing. We confirmed that the increase in
230 mCherry-positive cells correlated with the amount of PE plasmid and the editing efficiency

231 correlated with the amount of pegRNAs plasmid within the titration range. In addition, 5 µg
232 of each plasmid showed consistent transfection efficiency of approximately 83% across
233 multiple electroporations, and we decided to use this condition for the subsequent experiments.
234 Notably, electroporation itself increased the autofluorescence and 31.3% was distinguished as
235 positive when using 90 percentile of electroporated cells as a threshold.

236

237 **FACS enrichment of highly transfected iPS cells to maximize correct editing efficiencies.**

238 Next, we established parameters for FACS enrichment of cells expressing high levels
239 of PE or Cas9. FACS enrichment was performed 24 hours after electroporation. Using
240 fluorescent beads as a calibration ladder for consistency between experiments, the cells were
241 divided into three groups: ‘Low’, ‘Medium’ (or ‘Med’), and ‘High’, depending on the level of
242 mCherry expression (Figure 2a). The 90 percentiles of relative mCherry intensity of
243 un-electroporated cells were used as a threshold for the Low population. The mode of each peak
244 of the ladder was first measured, and we defined the mode of the 3rd and 4th peaks as the
245 thresholds for Medium and High populations, respectively. The mCherry expression level
246 varied among the population of transfected iPS cells (Figure 2b, c).

247 The effect of FACS enrichment on the editing outcomes was tested for both PE and
248 ssODN editing (Figure 2c, d). In the total unsorted (‘Unsort’) population, 33.0% of correct edits
249 were observed for PE, whereas only 1.62% of the correct edits were observed in ssODN editing.
250 MutEJ levels in PE were found to be low (0.993%), while MutEJ was more prevalent than
251 correct edits for ssODN editing (20.3%). In comparison, the ratio of correct edits to MutEJ was
252 0.08 in ssODN editing, as compared to 33.3 in PE. These data verify that PE with plasmids is
253 more efficient and precise than editing with Cas9 and ssODNs in human iPS cells. In the High
254 fraction, on average, 83.6% of iPS cells were converted to BFP by PE while only 18.1%
255 became BFP positive by ssODN. Compared with Unsort, the fold improvement of correct edits
256 by PE were 0.60, 1.90 and 2.50 times in Low, Med, and High fractions, respectively. The fold

257 improvement by ssODN editing was 0.53, 7.74, and 11.2 times for the respective fractions.
258 Thus, for both PE and ssODN editing, the editing efficiency improved alongside mCherry
259 intensity. Importantly for PE, the proportion of MutEJ only increased 0.43, 1.39, and 1.99 times
260 in the Low, Medium, and High populations compared to Unsort, while in ssODN, MutEJ was
261 increased 1.21, 2.80, and 3.90 times. In the High fractions, MutEJ reached only 18.1% for PE,
262 but 79.2% for ssODN. These data demonstrate that FACS enrichment of PE increases the
263 number of correct edits without a substantial increase in MutEJ, in stark contrast to ssODN
264 editing. These data indicate that PE outcomes may be improved by enrichment using
265 fluorescence, without an increase in MutEJ.

266

267 **Benchmarking editing efficiencies in iPS cells at endogenous loci.**

268 For benchmarking endogenous gene editing with PE and FACS enrichment, we
269 selected the *HEK3* locus (Figure 2d) that has been used in diverse cell lines such as HEK293T,
270 HeLa, K562, and human embryonic stem (ES) cells^{30,31}. This benchmarking pegRNA inserts
271 CTT and caused two detected sequences. Overall, the combination of PE and FACS enrichment
272 resulted in a 3-fold increase in correct edits, reaching 8.0% in the High fraction. MutEJ was
273 undetectable across all fractions by ICE analysis. These data indicate that PE can be improved
274 by fluorescent enrichment at endogenous loci, without co-enrichment of MutEJ.

275

276 **Evaluation of allelic editing outcomes with FACS enrichment.**

277 Given the potential of iPS cells for modeling genetic diseases, it is important to
278 determine the rate of mono- and biallelic editing at a cellular or clonal population level. We first
279 evaluated allelic editing in 317-D6, a biallelic AAVS1-targeted GFP iPS cell line. In total, six
280 editing patterns are expected (Figure 3a). Since iPS cells with one or two active copies of GFP
281 or BFP only double in their mean fluorescence intensities¹⁹, we recognize that distinguishing
282 between biallelic editing and monoallelic editing with MutEJ is challenging by FACS¹¹.

283 However, considering the near-zero proportion of MutEJ generated by PE, we predicted that
284 BFP single-positive iPS cells correspond to biallelic editing, whereas BFP/GFP double-positive
285 iPS cells represent monoallelic editing (Figure 3a). The Unsort population exhibited nearly
286 equal amounts of biallelic (29.4%) and monoallelic (23.1%) editing (Figure 3b). Interestingly,
287 the High population showed more than 3-fold higher biallelic editing (72.6%) than monoallelic
288 editing (22.4%). In the Med population, these proportions were more similar at 43.1% and
289 36.3% for biallelic and monoallelic edits, respectively. Finally, the Low population reversed
290 this trend, showing nearly half the number of biallelic edits compared to monoallelic editing
291 (7.65% and 14.7%). These results demonstrate that FACS enrichment for defined PE
292 expression levels can skew the outcomes of mono- and biallelic editing at a cellular level.

293 We then explored the clonal distribution of allelic editing by Cas9 and PE at an
294 endogenous locus. Among the three variants of the apolipoprotein (*APOE*) gene, *APOE2*,
295 *APOE3* (c.C526T, rs7412), and *APOE4* (c.T388C, rs429358), *APOE4* is associated with the
296 highest risk of Alzheimer's disease (Figure 4a). We therefore chose to engineer the rs429358
297 *APOE3* variant to the *APOE4* genotype by both ssODN editing and PE (Figure 4b). Editing by
298 ssODN and Cas9 RNP showed 11.3% correct edits (Figure 4c). However, correct edits were
299 outcompeted by 78.3% +1T insertions. We treated cells with NU7441 (a DNA-PKcs inhibitor),
300 with the aim of depleting +1T insertions and increasing the correct edits (Figure 4d). NU7441
301 treatment was able to maintain a similar level of correct edits (7.5%). While the decrease in +1T
302 insertion by NU7441 was substantial (55.0%), it was not enough to eliminate it. Next, we
303 created the same variant by PE and FACS enrichment (Figure 4e, f). Sanger sequencing with
304 DECODR software estimated 23.6% *APOE4* c.T388C correctly edited alleles in the High
305 fraction, which was validated by droplet digital PCR (ddPCR, 21.3%) (Figure 4f). In contrast,
306 no edits were detected in the Low or Med fractions by Sanger sequencing and DECODR,
307 whereas ddPCR identified 3% and 8% correct edits, respectively (Figure 4f). MutEJ was not
308 discernible in any of the fractions by Sanger sequencing analyzed by DECODR.

309 Finally, we determined the number of APOE4 biallelic and monoallelic edited iPS
310 cells at a clonal level (Figure 4g). Using Cas9 RNP, two bi- and nine monoallelically edited
311 clones were obtained, however, 8 of the monoallelically edited clones were accompanied by a
312 +1 insertion in other alleles. Using PE, the Med and Low populations yielded only monoallelic
313 clones (1 and 8, respectively), with many unedited clones. From the High PE condition, we
314 isolated twenty-four mono- and one biallelically edited colony. Moreover, no unintended edits
315 were confirmed by Sanger sequencing of clones. Collectively, these findings suggest that a
316 combination of PE and FACS enrichment can fulfill a crucial need in establishing an allelic
317 series of isogenic iPS cells for disease modeling.

318

319 **Discussion**

320 In this research, we demonstrate the superior efficiency and precision of PE over
321 Cas9-based ssODN editing in iPS cells. Also, applying FACS, we successfully enriched cells
322 exhibiting varied editing efficiencies. Leveraging a GFP to BFP reporter assay with single-cell
323 resolution, our findings revealed that PE generated notably fewer MutEJ events compared to
324 ssODN editing. Finally, we show that FACS enrichment can modulate the frequency of mono-
325 or bi-allelic editing, demonstrating its utility in controlling allelic editing outcomes.

326 The GMP-approved MaxCyte platform has been used for plasmid transfection into T
327 cells, HEK293T cells, and CHO cells^{32,33}. Previous research used the MaxCyte to successfully
328 introduce plasmid, mRNA, and RNPs into iPS cells^{11,28,29,34}. As iPS cells hold significant
329 promise not only for disease modeling but also for genome-edited cellular regenerative
330 medicine anticipating ex vivo applications for cell therapy, our findings are of paramount
331 importance.

332 Our protocol demonstrates a highly reproducible FACS gating strategy through the
333 implementation of a fluorescent bead ladder. FACS provides advantages for PE editing using
334 plasmid vectors by eliminating non-transfected cells and isolating cells based on their
335 expression level. Our FACS enrichment data also indicate that PE activity was underestimated
336 in the unsorted population, similar to a previous study on the combination of Cas9 and FACS
337 enrichment reported³⁵. Another study employed *piggyBac* transposition to introduce PE into
338 iPS cells for long-term stable expression, yet observed no increase in editing over 40 days of
339 continuous expression³⁶, suggesting that the effects of PE are realized early after transfection.
340 Using FACS enrichment, it is possible to select cells with modest PE expression for editing
341 with high efficiency pegRNAs (such as pegRNA-GFP), and high PE expression for editing
342 with low efficiency pegRNAs (such as pegRNA-APOE).

343 To bias the reaction of heteroduplex removal in the PE repair step, a second nicking
344 guide RNA (ngRNA) can be used to nick approximately 50 bases in the editing region. Prime

345 editing with the ngRNA used is called PE3^{16,17,37}. Although previous studies have shown that
346 PE3 can be further improved by additional nicking, this also increases MutEJ. Also, using
347 multiple gRNA including pegRNA in a single experiment increases the sites experimentalists
348 require to confirm off-target activity. Thus, our study focused on PE2. Editing of GFP was
349 found to be efficient; however, editing at endogenous loci was variable. PE3 can be a powerful
350 method for improving editing efficiency. Furthermore, in PE, almost all edits were targeted
351 edits. Previous studies have shown that PE is less likely to occur in cells with mature Mismatch
352 Repair (MMR) such as iPS cells³⁰. PE4 is a method in which the transient expression of a
353 dominant-negative MMR protein (MLH1dn) is combined with PE2. This temporal inhibition of
354 MMR showed the potential to increase editing efficiency in iPSCs³⁸. Combined with FACS
355 enrichment, this method may enable further flexible and accurate genome editing.

356 Even without FACS, we observed a significant disparity in by-products between
357 ssODN editing and PE. Upon FACS enrichment, ssODN editing showed a marked increase in
358 the proportion of MutEJ accompanied by HDR, whereas, in PE, only the proportion of correct
359 edits surged. This disparity is caused by the increased likelihood of DSBs due to elevated Cas9
360 expression levels, whereas PE's nick-based editing mechanism enhances mainly the rate of
361 correct editing over MutEJ. While our observations were consistent for editing a single
362 nucleotide variant in the *APOE* gene, we cannot guarantee that similar patterns would be
363 observed for other genes or pegRNA and mutation designs without a genome-wide effort. In
364 addition, pegRNA activity differs between *GFP* and *APOE*. This resulted in high Bi-allelic
365 editing in *GFP*, whereas high Mono-allelic editing was observed in *APOE*. Allelic editing may
366 require a high level of PE activity.

367

368 **Conclusion**

369 Combination of PE and FACS enrichment allows highly efficient and accurate gene
370 editing. The combined protocol is a useful method, as the accuracy of PE does not lead to a
371 significant increase in by-products. Also, fractionation by FACS based on PE expression level
372 can influence mono- or bi-allelic editing. Improving the reliability of gene editing outcomes
373 will greatly facilitate the generation of genetic disease models and possibly therapies using
374 human iPS cells.

375

376

377

378 **Acknowledgment**

379 We thank Suji Lee for technical assistance in cell culture and molecular biology, Dr.
380 Kanae Mitsunaga for helping establish conditions for FACS analysis and cell sorting, and Dr.
381 Peter Gee for helping establish conditions for large plasmid delivery on the MaxCyte and
382 reviewing the manuscript. We thank Dr. Ryo Yamada for his mentorship and guidance of R.N.
383 as part of the Medical Innovation Program and providing the inspiration for statistical methods
384 applied to FACS.

385

386 **Funding information**

387 R.N. is a trainee of the Medical Innovation Program managed by Kyoto University and
388 supported by JST SPRING (Grant Number JPMJSP2110). This study was supported by
389 funding to K.W. from the Japan Agency for Medical Research and Development (AMED) for
390 the Core Center for iPS Cell Research (Grant Number JP21bm0104001), the Core Center for
391 Regenerative Medicine and Cell and Gene Therapy (Grant Number JP23bm1323001), the
392 COVID-19 Private Fund (Shinya Yamanaka, CiRA, Kyoto University), and the Canadian
393 National Research Council.

394

395 **Competing Interest Statement**

396 The authors declare that they have no conflicts of interest.

397

398 **Author contribution**

399 RN: Conceptualization, Formal analysis, Investigation, Resources, Writing - Original Draft,
400 Writing - Review & Editing, Visualization
401 TM: Methodology, Investigation, Resources
402 AYL: Investigation, Resources
403 MK: Investigation

404 TK: Investigation, Resources
405 KT: Resources
406 HI: Investigation, Resources
407 TLM: Conceptualization, Investigation, Writing - Review & Editing
408 KW: Conceptualization, Formal analysis, Investigation, Resources, Writing - Original Draft,
409 Writing - Review & Editing, Supervision, Project administration, Funding acquisition
410

411 **References**

- 412 1. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of Pluripotent Stem Cells from
413 Adult Human Fibroblasts by Defined Factors. *Cell* 2007;131(5):861–872; doi:
414 10.1016/j.cell.2007.11.019.
- 415 2. Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided
416 Cas9 nucleases. *Nat Biotechnol* 2013;31(9):827–832; doi: 10.1038/nbt.2647.
- 417 3. Shi Y, Inoue H, Wu JC, et al. Induced pluripotent stem cell technology: a decade of
418 progress. *Nat Rev Drug Discov* 2017;16(2):115–130; doi: 10.1038/nrd.2016.245.
- 419 4. Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug
420 discovery. *Nat Rev Genet* 2019;20(7):377–388; doi: 10.1038/s41576-019-0100-z.
- 421 5. Nami F, Ramezankhani R, Vandenabeele M, et al. Fast and Efficient Generation of
422 Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing. *The CRISPR
423 Journal* 2021;4(4):502–518; doi: 10.1089/crispr.2021.0006.
- 424 6. Rees HA, Liu DR. Base editing: precision chemistry on the genome and
425 transcriptome of living cells. *Nat Rev Genet* 2018;19(12):770–788; doi:
426 10.1038/s41576-018-0059-1.
- 427 7. Kim S-I, Matsumoto T, Kagawa H, et al. Microhomology-assisted scarless genome
428 editing in human iPSCs. *Nat Commun* 2018;9(1):939; doi: 10.1038/s41467-018-03044-y.
- 429 8. Mali P, Yang L, Esvelt KM, et al. RNA-Guided Human Genome Engineering via
430 Cas9. *Science* 2013;339(6121):823–826; doi: 10.1126/science.1232033.
- 431 9. Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting
432 genomes. *Nat Biotechnol* 2014;32(4):347–355; doi: 10.1038/nbt.2842.
- 433 10. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair Pathway Choices and Consequences
434 at the Double-Strand Break. *Trends in Cell Biology* 2016;26(1):52–64; doi:
435 10.1016/j.tcb.2015.07.009.
- 436 11. Maurissen TL, Woltjen K. Synergistic gene editing in human iPS cells via cell cycle
437 and DNA repair modulation. *Nat Commun* 2020;11(1):2876; doi:
438 10.1038/s41467-020-16643-5.
- 439 12. Howden SE, McColl B, Glaser A, et al. A Cas9 Variant for Efficient Generation of
440 Indel-Free Knockin or Gene-Corrected Human Pluripotent Stem Cells. *Stem Cell Reports*
441 2016;7(3):508–517; doi: 10.1016/j.stemcr.2016.07.001.
- 442 13. Idoko-Akoh A, Taylor L, Sang HM, et al. High fidelity CRISPR/Cas9 increases
443 precise monoallelic and biallelic editing events in primordial germ cells. *Sci Rep*
444 2018;8(1):15126; doi: 10.1038/s41598-018-33244-x.
- 445 14. Miyaoka Y, Berman JR, Cooper SB, et al. Systematic quantification of HDR and
446 NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. *Sci Rep*
447 2016;6(1):23549; doi: 10.1038/srep23549.

- 448 15. Hussmann JA, Ling J, Ravisankar P, et al. Mapping the genetic landscape of DNA
449 double-strand break repair. *Cell* 2021;184(22):5653-5669.e25; doi:
450 10.1016/j.cell.2021.10.002.
- 451 16. Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases,
452 base editors, transposases and prime editors. *Nat Biotechnol* 2020;38(7):824–844; doi:
453 10.1038/s41587-020-0561-9.
- 454 17. Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing
455 without double-strand breaks or donor DNA. *Nature* 2019;576(7785):149–157; doi:
456 10.1038/s41586-019-1711-4.
- 457 18. Schene IF, Joore IP, Oka R, et al. Prime editing for functional repair in
458 patient-derived disease models. *Nat Commun* 2020;11(1):5352; doi:
459 10.1038/s41467-020-19136-7.
- 460 19. Oceguera-Yanez F, Kim S-I, Matsumoto T, et al. Engineering the AAVS1 locus for
461 consistent and scalable transgene expression in human iPSCs and their differentiated
462 derivatives. *Methods* 2016;101:43–55; doi: 10.1016/j.ymeth.2015.12.012.
- 463 20. Hsu JY, Grünewald J, Szalay R, et al. PrimeDesign software for rapid and simplified
464 design of prime editing guide RNAs. *Nat Commun* 2021;12(1):1034; doi:
465 10.1038/s41467-021-21337-7.
- 466 21. Kondo T, Hara N, Koyama S, et al. Dissection of the polygenic architecture of
467 neuronal A β production using a large sample of individual iPSC lines derived from
468 Alzheimer’s disease patients. *Nat Aging* 2022;2(2):125–139; doi:
469 10.1038/s43587-021-00158-9.
- 470 22. Conant D, Hsiau T, Rossi N, et al. Inference of CRISPR Edits from Sanger Trace
471 Data. *The CRISPR Journal* 2022;5(1):123–130; doi: 10.1089/crispr.2021.0113.
- 472 23. Wickham H, Averick M, Bryan J, et al. Welcome to the Tidyverse. *JOSS*
473 2019;4(43):1686; doi: 10.21105/joss.01686.
- 474 24. Dawson C. Csdaw/Ggprism: Ggprism 1.0.2. 2021; doi: 10.5281/ZENODO.4556067.
- 475 25. Heim R, Prasher DC, Tsien RY. Wavelength mutations and posttranslational
476 autoxidation of green fluorescent protein. *Proc Natl Acad Sci USA*
477 1994;91(26):12501–12504; doi: 10.1073/pnas.91.26.12501.
- 478 26. Joly E. Optimising Blue Fluorescent Protein (BFP) for use as a mammalian reporter
479 gene in parallel with Green Fluorescent Protein (GFP). *Nat Prec* 2007; doi:
480 10.1038/npre.2007.1259.1.
- 481 27. Glaser A, McColl B, Vadolas J. GFP to BFP Conversion: A Versatile Assay for the
482 Quantification of CRISPR/Cas9-mediated Genome Editing. *Molecular Therapy - Nucleic
483 Acids* 2016;5:e334; doi: 10.1038/mtna.2016.48.
- 484 28. Kagita A, Lung MSY, Xu H, et al. Efficient ssODN-Mediated Targeting by Avoiding
485 Cellular Inhibitory RNAs through Precomplexed CRISPR-Cas9/sgRNA Ribonucleoprotein.
486 *Stem Cell Reports* 2021;16(4):985–996; doi: 10.1016/j.stemcr.2021.02.013.

- 487 29. Roig-Merino A, Urban M, Bozza M, et al. An episomal DNA vector platform for the
488 persistent genetic modification of pluripotent stem cells and their differentiated progeny. *Stem*
489 *Cell Reports* 2022;17(1):143–158; doi: 10.1016/j.stemcr.2021.11.011.
- 490 30. Chen PJ, Hussmann JA, Yan J, et al. Enhanced prime editing systems by
491 manipulating cellular determinants of editing outcomes. *Cell* 2021;184(22):5635-5652.e29;
492 doi: 10.1016/j.cell.2021.09.018.
- 493 31. Adikusuma F, Lushington C, Arudkumar J, et al. Optimized nickase- and
494 nuclease-based prime editing in human and mouse cells. *Nucleic Acids Research*
495 2021;49(18):10785–10795; doi: 10.1093/nar/gkab792.
- 496 32. Gee P, Lung MSY, Okuzaki Y, et al. Extracellular nanovesicles for packaging of
497 CRISPR-Cas9 protein and sgRNA to induce therapeutic exon skipping. *Nat Commun*
498 2020;11(1):1334; doi: 10.1038/s41467-020-14957-y.
- 499 33. Bozza M, De Roia A, Correia MP, et al. A nonviral, nonintegrating DNA nanovector
500 platform for the safe, rapid, and persistent manufacture of recombinant T cells. *Sci Adv*
501 2021;7(16):eabf1333; doi: 10.1126/sciadv.abf1333.
- 502 34. Xu H, Kita Y, Bang U, et al. Optimized electroporation of CRISPR-Cas9/gRNA
503 ribonucleoprotein complex for selection-free homologous recombination in human pluripotent
504 stem cells. *STAR Protocols* 2021;2(4):100965; doi: 10.1016/j.xpro.2021.100965.
- 505 35. Lonowski LA, Narimatsu Y, Riaz A, et al. Genome editing using FACS enrichment
506 of nuclease-expressing cells and indel detection by amplicon analysis. *Nat Protoc*
507 2017;12(3):581–603; doi: 10.1038/nprot.2016.165.
- 508 36. Eggenschwiler R, Gschwendtberger T, Felski C, et al. A selectable all-in-one
509 CRISPR prime editing piggyBac transposon allows for highly efficient gene editing in human
510 cell lines. *Sci Rep* 2021;11(1):22154; doi: 10.1038/s41598-021-01689-2.
- 511 37. Chen PJ, Liu DR. Prime editing for precise and highly versatile genome
512 manipulation. *Nat Rev Genet* 2022; doi: 10.1038/s41576-022-00541-1.
- 513 38. Bonnycastle LL, Swift AJ, Mansell EC, et al. Generation of Human Isogenic Induced
514 Pluripotent Stem Cell Lines with CRISPR Prime Editing. *The CRISPR Journal*
515 2024;7(1):53–67; doi: 10.1089/crispr.2023.0066.
- 516
- 517

518 **Figure Legends**

519 **Figure 1. GFP-to-BFP conversion assay to optimize plasmid delivery of PE in human iPS cells**
520 **using the MaxCyte platform**

521 (a) Schematic overview of editing outcomes in heterozygous GFP reporter iPS cells (317-A4). A
522 schematic of the Flow Cytometry (FC) distribution plot indicates each population. (b) Design of the
523 pegRNA-GFP used in this study. The spacer sequence is indicated by a green arrow and the nicking
524 position is indicated by the triangle. ssODN editing with Cas9 uses the same protospacer sequence¹¹.
525 RTT and PBS sequences are indicated by blue underlines. The PAM is in bold. Nucleotide changes
526 leading to BFP are indicated in blue characters. (c) Representative plot of FACS analysis after
527 GFP-to-BFP conversion. (d) Titration of PE2-mCherry (left) and pegRNA-GFP (right) plasmids.
528 ‘mCherry positive’ indicates the proportion of cells over the 90 percentile of mCherry intensity in
529 non-transfected cells at 24hrs after electroporation. ‘Correct edit’ indicates the proportion of
530 BFP-converted cells on day 7 after electroporation.

531

532 **Figure 2. FACS enrichment to maximize PE or ssODN editing efficiency**

533 (a) Schematic of FACS approach to cell fractionation based on transfection and expression level. Gating
534 scheme was derived from a fluorescent calibration bead ladder and a representative histogram of
535 mCherry positive cells with sorting gates. (c) Gating scheme and quantification of editing outcomes
536 using Cas9-mCherry and ssODN-GFP. (d) Gating scheme and quantification of editing outcomes using
537 PE and pegRNA-GFP. All data in (c, d) are presented as the mean \pm S.D. of three technical replicates
538 of independent electroporations for each condition. (e) Design of pegRNA-HEK3 and editing outcomes
539 as measured by Sanger sequencing.

540

541 **Figure 3. Modulating the allelic editing outcomes by FACS enrichment**

542 (a) Schematic of the expected GFP editing outcomes in a homozygous AAVS1-CAG::GFP iPS cell line.
543 (b) Allelic editing outcomes following FACS enrichment (N=3). Each fractioned population showed
544 different pattern in editing outcomes.

545

546 **Figure 4. APOE gene editing to recreate a disease model for Alzheimer's disease in iPS cells**

547 (a) Table of APOE risk variant alleles for Alzheimer's disease. (b) Schematic of the design for gRNA-
548 and pegRNA-APOE. (c) TIDE plot of ssODN editing in T8 iPS cells. (d) ssODN editing with NU7441
549 to reduce +1 insertion. (e, f) Quantification of Correct edits by DECODR analysis (e) and ddPCR (f) in
550 317-A4 iPS cells after PE and mCherry FACS. (g) Clonal distribution of gene editing outcomes at the
551 APOE locus using ssODN or PE.

552

553 **Table 1. Plasmids used in this study**

554 **Table 2. Oligos used for vector construction in this study**

555 **Table 3. Primers used for genotyping and sequence analysis**

556 **Table 4. crRNA and ssODN used in this study**

557

558 **Table 1. Plasmids used in this study**

Purpose	Plasmid ID	Plasmids
ssODN editing	KW1013	pSpCas9(BB)-2A-mCherry
ssODN editing	KW1322	pSpCas9(BB)-2A-mCherry-GFP
PE	KW1564	pCMV-PE2-T2A-mCherry
PE	KW1548	pU6-pegRNA-GFP
PE	Addgene#132778	U6-pegRNA-HEK3- <i>ins3</i> (Anzalone <i>et al.</i> , 2019)
PE	KW1573	pU6-pegRNA-GG-ApoE

559

560 **Table 2. Oligos used for vector construction in this study**

Oligo ID	Length	Sequence	Content
dna2935	24	caccGCTGAAGCACTGCACGCCGT	sgRNA-GFP-s
dna2936	24	aaacACGGCGTGCAGTGCTTCAGC	sgRNA-GFP-as
dna3433	29	caccGCTGAAGCACTGCACGCCGTgttt	pegRNA-GFP-spacer-s
dna3434	29	ctctaaaacACGGCGTGCAGTGCTTCAGC	pegRNA-GFP-spacer-as
dna3435	30	gtgcACCCTGAGCCACGGCGTGCAGTGCTT	pegRNA-GFP-ext-s
dna3436	30	aaaaAAGCACTGCACGCCGTGGCTCAGGGT	pegRNA-GFP-ext-as
dna3559	30	caccgCGCCGCGGTACTGCACCAAGGgttt	APOE_Spacer_s
dna3560	30	ctctaaaacCCTGGTGCAGTACCGCGGCCGc	APOE_Spacer_as
dna3561	31	gtgcGTGcGCAGGCCGCTGGTGCAGTACCGC	APOE_Normal_s
dna3562	31	aaaaGCGGTACTGCACCAAGCGGCCGCGCAC	APOE_Normal_as

561

562

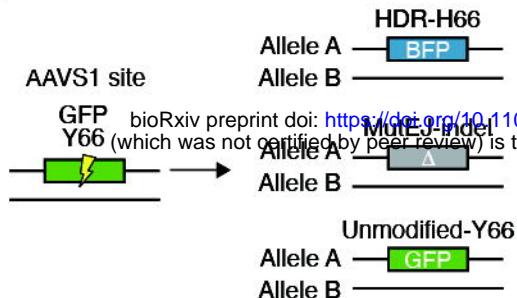
563

564 **Table 3. Primers used for genotyping and sequence analysis**

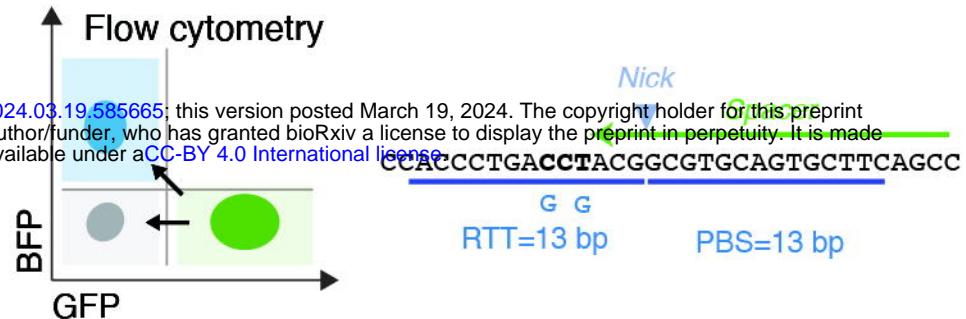
Sequencing	Primer ID	Sequence
GFP	dna549	AGCAAGGGCGAGGAGCTGTT
	dna649	GCCGTTCTTCTGCTTGTCTGG
HEK3	dna3449	ATGTGGGCTGCCTAGAAAGG
	dna3450	CCCAGCCAAACTTGTCAACC
APOE	dna3244	GGCGCTGATGGACGAGACCA
	dna3241	CACACAGACACAGATGGAGAG

565

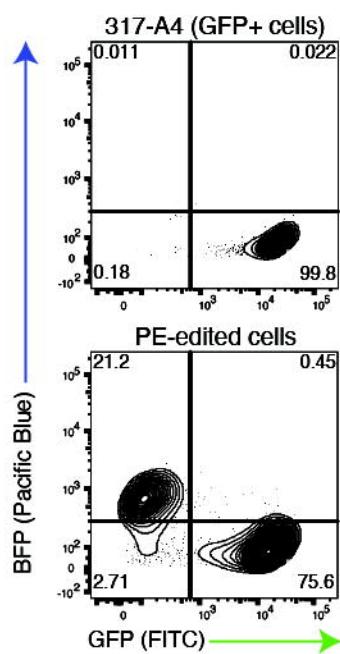
566

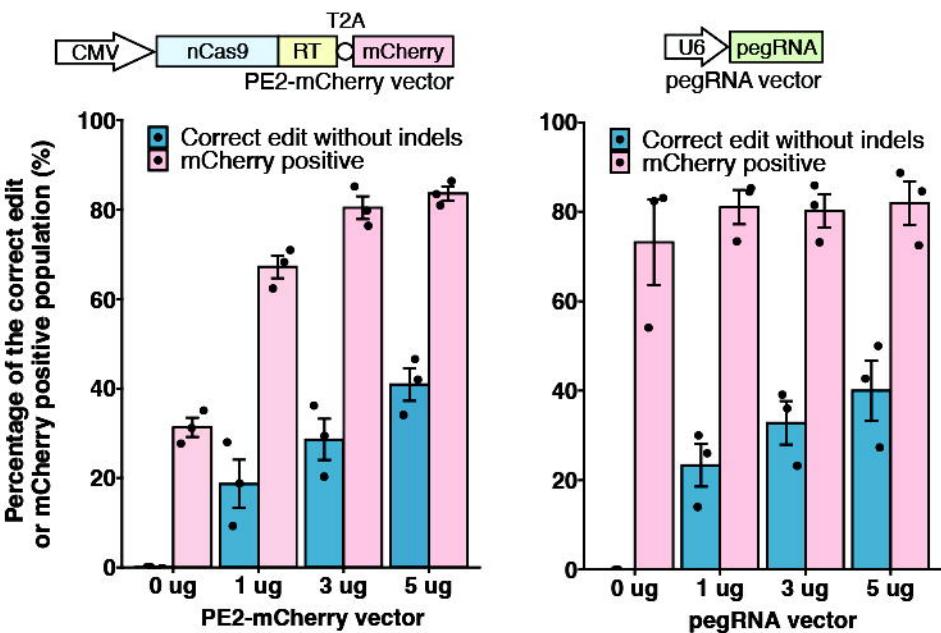

567 **Table 4. ssODN used in this study**

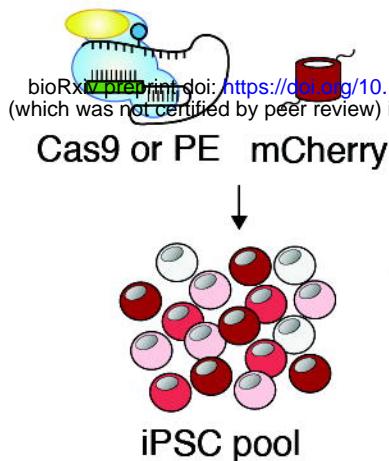
ssODN ID	ssODN name	Sequence
ss027	eGFPc.194G.196C-50/50-t	CGGCAAGCTGCCGTGCCCTGGCCCACCC TCGTGACCACCTGAgCcACGGCGTGCAG TGCTTCAGCCGCTACCCCGACCACATGAA GCAGCACGACTTC
ss021	APOE-rs429358-C[e4]	GGCCGAGCATGGCCTGCACCTCGCCGG TACTGCACCAGGCAGGCCGCGCACGTCCTC CATGTCCCGGCCAGCCGGCCTGCGCCG CCTGCAGCTCCTT
rna059	APOE-x386-e3	/AlTR1/rGrCrGrGrArCrArUrGrGrAr GrGrArCrGrUrGrUrGrGrUrUrUrAr GrArGrCrUrArUrGrCrU/AlTR2/

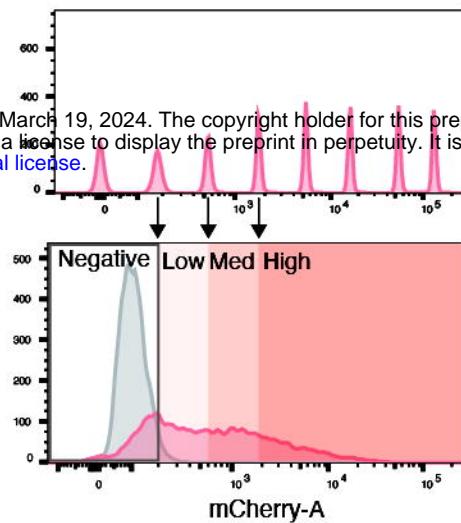

568

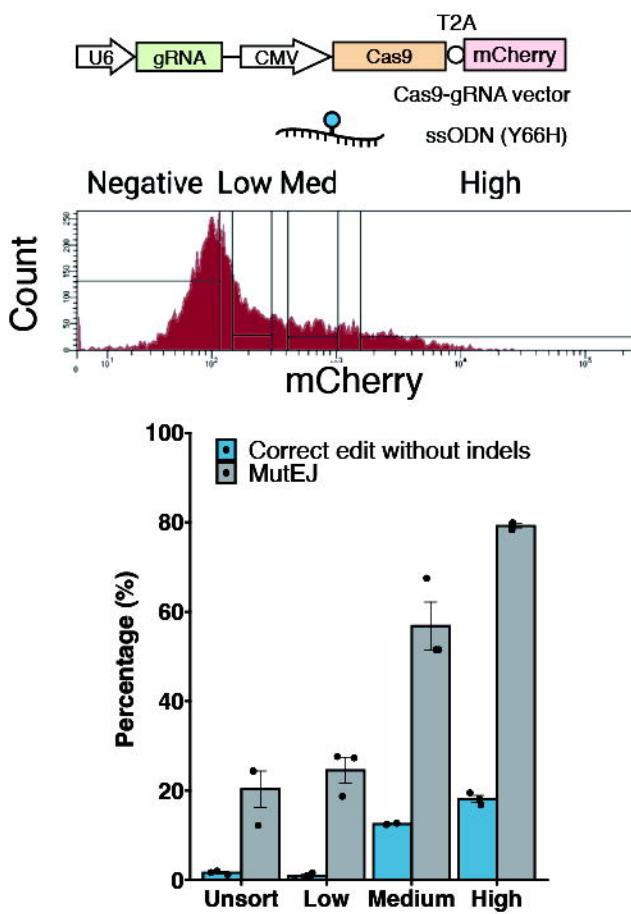
569

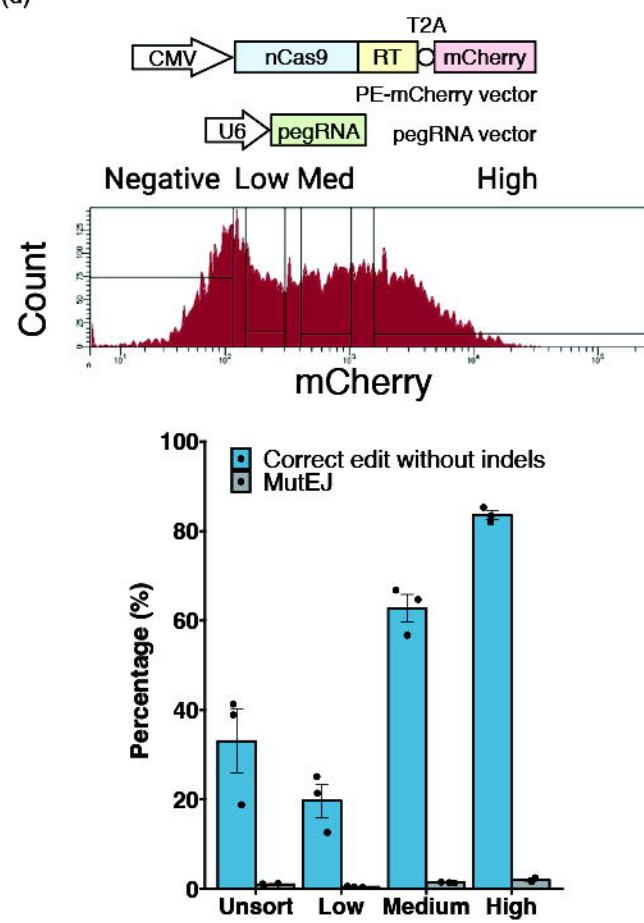

(a)

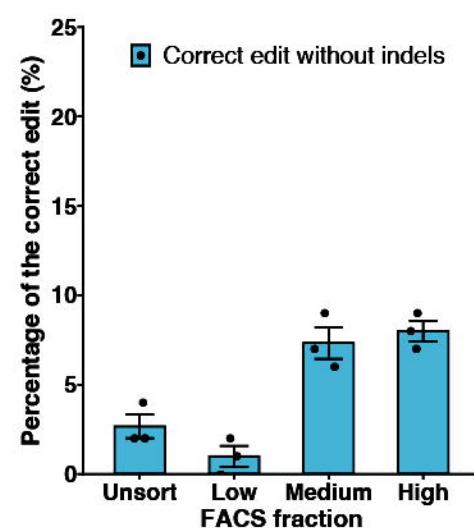
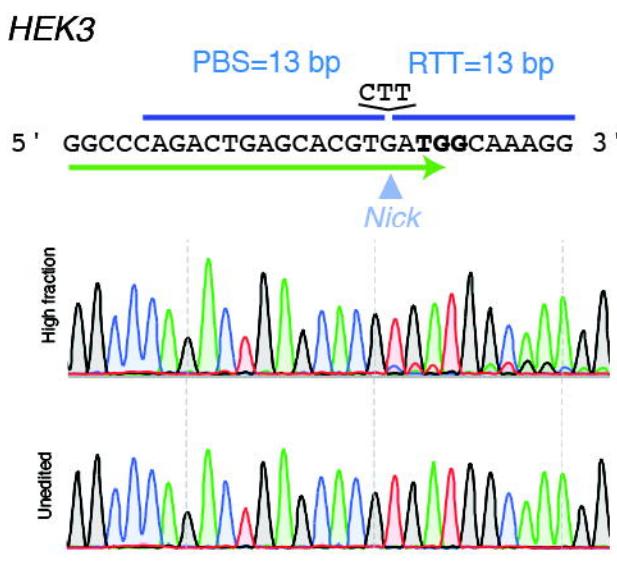

(b)

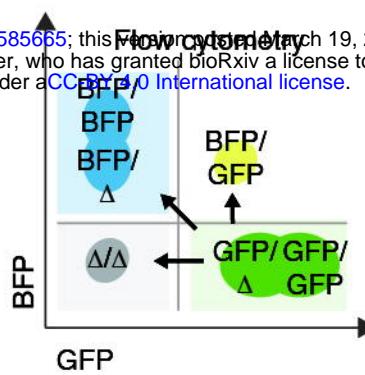
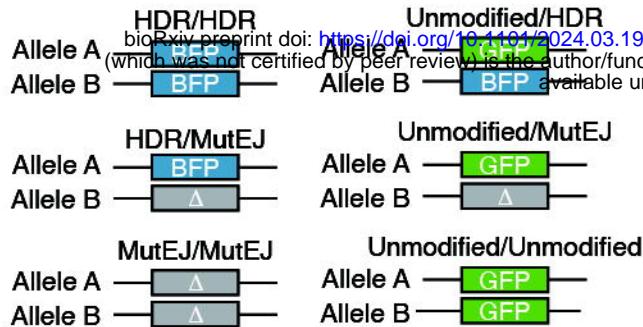

(c)

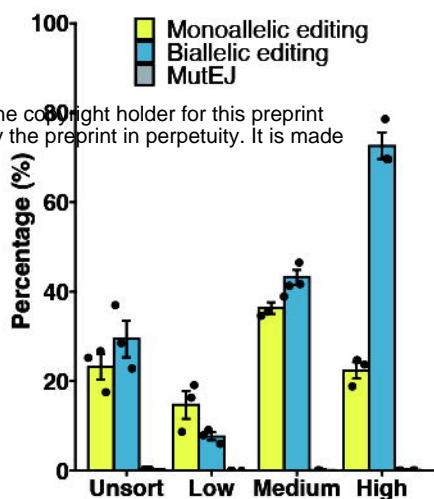

(d)


(a)


(b)



(c)



(d)

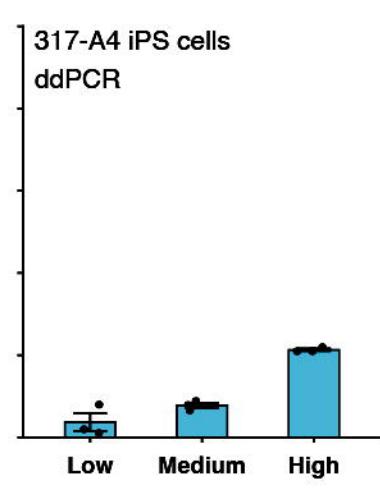
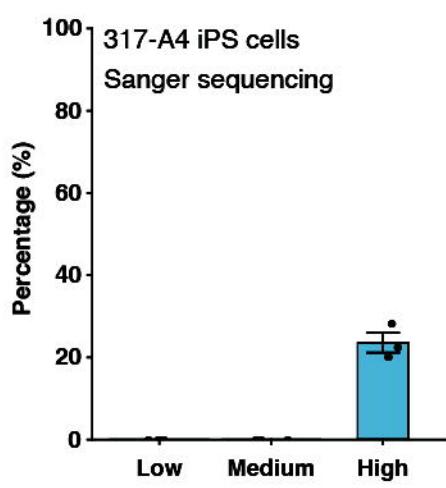
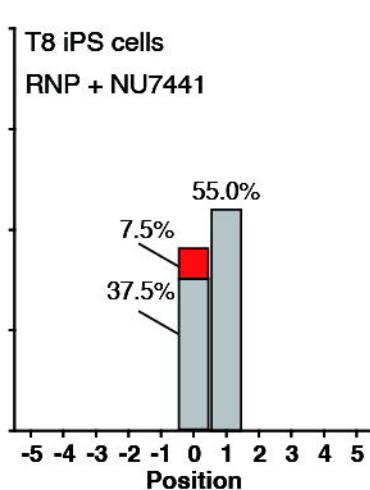
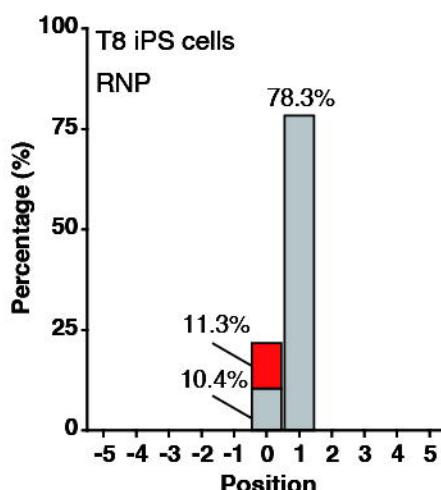
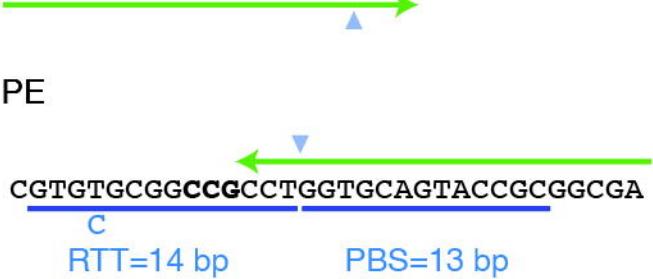

(d)

(a)

(b)

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.19.585665>; this version posted March 19, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

rs429358 (c. T388C) rs7112 (c. C520T) AD MSK

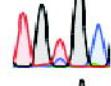





	rs429358 (c. T388C)	rs7112 (c. C520T)	AD MSK
APOE2	T	T	3rd
APOE3	T	C	2nd
APOE4	C	C	1st

APOE

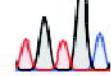
Cas9

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.19.585665>; this version posted March 19, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

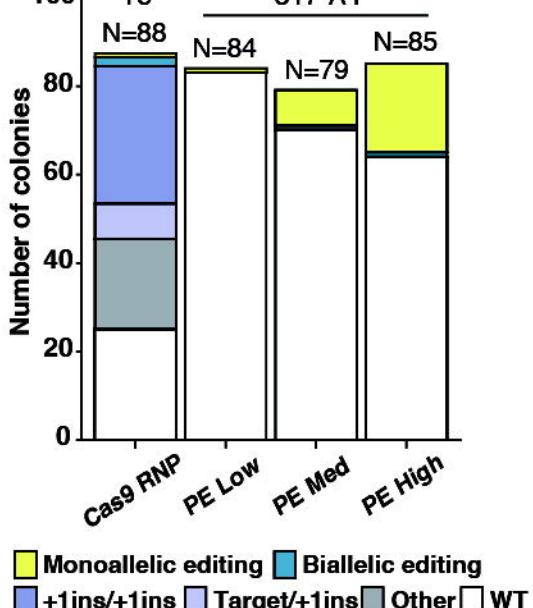
CGCGGACATGGAGGACGTGTGC~~GG~~CCGCCT



rs429358


c.388T>C, p.C112R

TGTGC


High fraction

Unedited

T8 N=88 317-A4 N=84 N=79 N=85

