

1 **Multi-decadal warming alters predator's effect on prey community composition**

2 Jingyao Niu¹, Magnus Huss¹, Aurélie Garnier^{1,3}, Anti Vasemägi^{2,4} and Anna Gårdmark¹

¹ Swedish University of Agricultural Sciences, Department of Aquatic Resources, Box 7018, 750 07 Uppsala, Sweden

² Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Freshwater Research, Stångholmsvägen 2, SE-178 93 Drottningholm, Sweden

³ Université de Rennes, UMR 6553 CNRS ECOBIO, 263 avenue du Général Leclerc, 35042 Rennes, France

⁴ Estonian University of Life Sciences, Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, 46A Kreutzwaldi St., 51006 Tartu, Estonia

*Corresponding author: Email: jingyao.niu@slu.se

3 **Abstract**

4 Predator responses to warming can occur via phenotypic plasticity and evolutionary
5 adaptation, resulting in changes in their prey communities. However, we lack evidence of
6 how warming-induced evolutionary changes in predators can influence the food web. Here,
7 we ask whether fish subject to long-term warming across multiple generations differ in their
8 impacts on prey communities compared to their nearby conspecifics experiencing a natural
9 thermal regime. We carried out a common garden mesocosm experiment with larval perch
10 (*Perca fluviatilis*), originating from one heated or one reference coastal environment, feeding
11 on zooplankton communities under a gradient of experimental temperatures. We found that
12 fish thermal origin influenced the zooplankton communities, and differently so depending on
13 the experimental temperature. In presence of fish of heated origin, there were less
14 zooplankton and also fewer individuals of large size, except for at intermediate experimental
15 temperatures. Our findings show that differences between fish populations, potentially
16 representing adaptation to local thermal environment, caused by multi-generational warming
17 can cascade down via trophic interactions to also affect their zooplankton prey communities.
18 Considering climate warming, our results suggest that rapid evolution in predators might have
19 indirect cross-generational ecological consequences propagating through food webs.

20 **Keywords:** local adaptation, thermal evolution, climate warming, trophic interactions, *Perca*
21 *fluviatilis*

22 [Introduction](#)

23 Organisms respond to prevailing climate warming by means of plasticity during
24 acclimatization and evolutionary changes over generations (1). Despite extensive efforts in
25 investigating species- (2) and community-responses to warming (3,4), such studies are mostly
26 on ecological time scales (5–8). When studies do span multiple generations, they are rarely
27 field-based but instead under laboratory conditions (9,10) or the thermal gradient involved in
28 the study encompasses a large geographic area including confounding factors (11). Yet, given
29 fast ongoing environmental changes due to global warming, there is pressing need to
30 investigate the cascading effects of potential adaptations to warming in natural predators on
31 prey communities, to improve our ability to predict the impacts of global change on food web
32 stability and ecosystem functioning (12).

33

34 Ectotherm individual physiological responses to warming, such as an increase in metabolic
35 rate (13–15), can affect organisms' activity level, feeding and locomotion (16–18).

36 Physiological responses to warming can ultimately result in faster growth at younger life
37 stages (19,20), reduced size at maturation (21) and lowered survival (22). Warming-induced
38 changes in predator feeding rate and behaviour can, in turn, lead to reduced biomass, shifts in
39 species composition and size distribution (23), as well as behavioural and morphological
40 changes in their prey communities (24), which can have profound impact on the ecosystem
41 (25). In aquatic systems, fish commonly exert top-down control on zooplankton communities
42 by direct size-specific removal of individuals with potential effects on prey population
43 dynamics and viability (26). However, how long-term warming-induced responses in fish
44 predators affect prey communities is largely unknown.

45

46 How do fish adapt or acclimatize to warming in ways that may affect their prey? Fish
47 responses to multi-generational warming include changes in their metabolism, growth,
48 development, morphology and body size (14,20,27,28) which could directly or indirectly
49 affect predators' feeding. First, increased metabolic rate is common in warmer environments
50 (29), which requires and also enables organisms to consume more prey (30). In case they
51 cannot fully compensate by increased feeding rate, increased metabolic cost can result in
52 lower net energetic gains in warmer environments, with less energy being allocated to
53 activities such as growth, locomotion and even motivation to initiate predation (31,32).

54 However, to counter the increased energetic deficiency in a warmer environment – a

55 compensatory metabolic response – a depression in standard metabolic rate (SMR) has been
56 found in several warm-acclimatized or warm-adapted fish species (14,33–35). A lower SMR
57 would reduce starvation risk, as individuals require less food to maintain their energy
58 balances. Compensatory metabolic responses can also lead to changes in locomotor
59 performance that directly enhance feeding behaviour (5). Another indirect way by which
60 adaptation to warming may lead to increased food intake is through faster development (36)
61 or body growth (10) in warm environments. A faster early growth can lead to a larger body
62 size when young, thus potentially a larger gape size (37) or a better body condition at a given
63 age that can lead to an advanced switch in diet towards larger prey (10,38,39). Changes in
64 development or growth can also cause phenological shifts among predators and prey. For
65 example, shifting relative size distribution or turnover rates can result in predator-prey
66 mismatches (38). In cases where prey communities have adapted to warming, predator fish
67 developed feeding morphological changes in response to changes in their food availability
68 and composition (27). Following this logic, prey should be affected by warming-induced
69 long-term changes of their predators, as suggested by changes in trophic interactions in short-
70 term warming acclimatization experiments (5,7) and aquatic invertebrates (11,40). However,
71 responses in prey communities to such indirect effects of multi-generational warming via
72 trophic interactions are yet to be demonstrated.

73

74 Effects on prey communities from warming-induced responses in predators can play out
75 differently depending on the extent of temperature change relative to their natal habitat
76 temperature, and exposure time. Effects of adaptation or acclimatization on, for example,
77 thermal tolerance or SMR often follow a hump-shape function of the novel environmental
78 temperature (14,41). Therefore, the indirect effect from these responses on predator feeding
79 can also be hump-shaped, which has been shown for attack and maximum ingestion rates
80 (5,18,42,43). While there is evidence for thermal adaptation in predators (14) and for that
81 thermal acclimatization in predators can shape predator-prey interactions (5,7), we still lack
82 experimental tests of how cross-generational responses in predators to warming may influence
83 prey community composition under different temperatures.

84

85 Here, we investigate whether the thermal origin of larval fish affects zooplankton prey
86 communities, and if this effect varies with experimental temperature. To answer these
87 questions, we carried out a common garden mesocosm experiment using Eurasian perch
88 (*Perca fluviatilis*) larvae hatched from eggs collected in two adjacent wild populations

89 inhabiting ecosystems with different thermal regimes: heated or unheated for 41 years. The
90 two neighbouring coastal areas share similar environmental characteristics, except for the 41
91 years of +5-10 °C difference in water temperatures that spans across multiple fish generations
92 (Figure S1). We tested the effect of fish larvae of different thermal origin on a natural (from
93 an unheated area) zooplankton prey community and manipulated the mesocosm water
94 temperatures, rendering a gradient of mean temperatures from 14 to 25 °C over the
95 experiment. This allowed us to study the potential for effects of warming across trophic levels
96 based on a wild, potentially warm-adapted, fish population exposed to multi-generational
97 heating, feeding on a natural prey community. Our hypotheses are: 1) changes in experimental
98 zooplankton communities depend on the thermal origin of the fish larvae feeding on them,
99 and that 2) these differences vary with temperature. Our findings imply that impacts of
100 climate warming on predators across generations can have indirect, yet substantial, effects on
101 their prey communities via shifts in trophic interactions.

102 **Methods and materials**

103 **Fish larvae thermal-origin**

104 The larval Eurasian perch (*Perca fluviatilis*, hereafter perch) used in the experiment originated
105 from parental populations from areas that either has undergone heating for 41 years or is a
106 control population residing in an adjacent coastal area experiencing a natural temperature
107 regime. The heated population has been residing in an 1-km² heated area since 1980 and has
108 been subjected to a temperature of 5-10 °C above the natural, caused by warm water
109 discharge from nearby nuclear reactors on the western Baltic Sea coast (60.43N 18.19E,
110 Figure S1). The design of the set-up ensured that the two populations have been exposed to
111 similar environmental conditions, other than the heated water flow-through (i.e. the two
112 adjacent areas share the same coastal environmental characteristics and water properties, see
113 Supplement: Perch larvae thermal origin). In the heated area, perch have larger female size at
114 age and higher growth rates when small (20) but slower growth in large males (28), higher
115 mortality (22), more advanced gonad development at a given time of year (44), and a smaller
116 female maturation size (21). When experimentally exposed to acute warming, large perch
117 from the heated area displayed lower metabolic rate, thermal sensitivity and higher thermal
118 plasticity than perch from the reference area (35). Allelic composition shifts in the MHC
119 alleles have been observed in the heated-area perch population (45), which might explain the
120 higher parasite resistance in the heated population (46). Perch in the heated area have thus
121 separated from the perch population in the adjacent unheated control area both genetically

122 (45,47) and phenotypically (20,21,28). However, the metal grid that prevented the exchange
123 of organisms between the areas was removed in 2004. The grid removal increased the
124 probability of larger fish (>10 cm, 48) dispersing between the areas, although the strong
125 current (~100 m³/s) likely prevents immigration of small or poorly swimming individuals into
126 the heated area.

127 To study the effects on prey communities of larval perch from these two geographically close
128 but thermally contrasting habitats, we collected 15 separate roe strands (Table S1) from each
129 area on 2021 May 10th. Eight strands with similar width and adhesion between eggs were
130 selected out of 15 from each habitat and transferred to indoor aquaria for hatching. Each egg
131 strand was placed in separate aquaria with ~ 100 L aerated, unfiltered coastal water with a 16
132 h light: 8 h dark photoperiod indoors at room temperature. The rest of the roe strands were
133 kept in smaller aquaria (~40 L) for genetic analysis. Perch larvae started hatching from May
134 17th, and on May 22nd there was an adequate number of larvae to use for the experiment (for
135 hatching record, see Table S1). We selected two newly hatched (< 5 days old) perch larvae
136 from each of five egg strands per origin (heated or unheated area) based on similar hatching
137 time and egg strand widths (Table S1). At the start of the experiment, we acclimatized the fish
138 to the experimental mesocosm by gradually lowering and immersing the bag containing
139 aquaria water and larvae into the mesocosm water. Besides introducing perch larvae to the
140 mesocosms, we also sampled larvae (or egg, if no larvae were hatched) from all 15 roe strands
141 per origin on the same day for larval body size measurements and/or genetic analyses. Our
142 microsatellite DNA analysis based on 14 loci (as described in supplementary material
143 14_microsatellite_primer.xlsx), using three individuals each from these 30 roe strands
144 (supplementary material microsatelliteDNA_genotypes.xlsx), showed low but statistically
145 significant genetic differentiation between the heated and unheated individuals (Fisher's exact
146 probability test, Chi² = 82.5, P < 0.001; Fst = 0.006).

147 Mesocosm experiment

148 We established 38 outdoor mesocosms using tanks (FlexiTank, Max Grow Shop) of volume
149 ~400 L, diameter 0.68 m, height ~1.1 m, made of polyurethane fabric and supported by rods.
150 Altogether, 26 of these tanks were inoculated with fish larvae (10 individuals from one of the
151 two origins per tank) and the remaining 12 tanks were kept without fish as control (Figure S2,
152 Table S2). The experiment was conducted outdoors for 20 days (2021 May 22nd – June 10th,
153 experiment day 0-20). In these open-to-atmosphere tanks, we generated a simplified pelagic
154 food web with plankton and fish larvae. The mesocosms were filled with 350 L water from

155 the unheated area (salinity ~5 PSU) filtered through 50 μm mesh. Water filling underwent
156 from May 12th – 18th, ensuring that approximately equal amounts of water were added to all
157 mesocosms each day. One day prior to the start of the experiment (i.e. on May 21st),
158 zooplankton communities were collected at four sites in bays and along the shore in the
159 unheated area, partly overlapping with the site for egg strand collection. One plankton net of
160 20 and one of 70 μm mesh size were lowered to the target depth (< 1 m), pulled horizontally
161 for approximately 5 min at average speed of 1 knot (0.5 m/s), and thereafter quickly retrieved
162 to the surface to empty collected plankton. Active sampling was conducted for in total three
163 hours. Collected plankton were kept in one ~700 L tank filled with filtered water from the
164 unheated area until being added to the mesocosms. 7.5 L of this well-mixed plankton mixture
165 was added to each mesocosm on May 21st.

166 Experimental temperature in each mesocosm was manipulated by thermostats (Eheim 300W)
167 placed in the centre of the mesocosm for heating, or by cooling with a surrounding flow-
168 through system (Figure S2). A thermal gradient of 14 - 25 °C was maintained among the 38
169 mesocosms throughout the course of the experiment, with natural variation due to weather
170 and time of day (Figure S3). We deployed a temperature logger (HOBO UA-001-64 Pendant
171 Temperature Data Logger) right after temperature manipulation started at 40 cm depth in each
172 mesocosm to record temperature every hour. Each mesocosm was aerated on the bottom with
173 approximately the same air flow intensity using one air stone connected to an air pump
174 (Airflow 400, IP44 230V). The aeration saturated mesocosm water with oxygen and
175 prevented temperature stratification. Note that while dissolved oxygen concentration declined
176 slightly with temperature (a physical law that applies to all systems), the percentage saturation
177 was independent of temperature across the gradient (> 100%).

178 Sampling and sample processing

179 Zooplankton and chlorophyll *a* (chl *a*) were sampled prior to the addition of fish larvae to the
180 mesocosms (on day 0 and day -1, respectively), in the middle of the experiment (day 9) and
181 when approaching the end of the experiment (day 19) by sampling 3.3 L water from each
182 mesocosm at 40 cm depth using a 0.66 L Ruttner water sampler. The water was filtered
183 through a 70 μm mesh to keep most zooplankton on the mesh and reduce the amount of water.
184 We gently rinsed off each sample of the zooplankton collected on the mesh into a 100 ml
185 brown bottle with tap water and added 4 ml Lugol's iodine solution into the same bottle. To
186 estimate chl *a*, we filtered 500 ml water through a 47 mm glass fiber filter (WhatmanTM GF/F)
187 using a pressurized chamber. The glass fiber filters were stored folded in aluminum foil and

188 put in sealed bags at -20 °C until they were processed for estimation of chl *a* concentration to
189 approximate the phytoplankton biomass in our mesocosms (49). Before adding perch larvae to
190 the mesocosms, chl *a* and zooplankton were sampled the first time to confirm that there were
191 no significant differences in phyto- and zooplankton biomass and zooplankton composition
192 among mesocosms of different treatments (Supplement: Mesocosm initial conditions). From
193 June 3rd, we put the remaining filtered water after sampling back to mesocosms to slow down
194 the noticeable decrease in water level (mostly due to evaporation under warm weather).

195 Zooplankton identification, counting and measurements were done using a stereo microscope
196 (Leica M125C). We counted and measured individuals in 30 ml subsamples of the
197 zooplankton mixture, and in the remaining volume continued counting only the taxa of which
198 less than 50 individuals were counted in the first 30 ml. *Copepoda* were separated into nauplii,
199 copepodite stage 1-3, stages 4-5 of order *Calanoida* (genus *Acartia* or *Eurytemora*), adults
200 and order *Cyclopoida*. Cladocerans were separated into *Bosmina* sp, *Chydorus* sp and *Podon*
201 sp. Rotifers were identified to genus *Keratella* (*K. cochlearis*, *K. quadrata* and *K.*
202 *cruciformis*), *Bdelloida* and *Brachionus*. We measured the individual body length to the
203 nearest 0.01 mm of 20 or more individuals in each taxon for each mesocosm. Zooplankton
204 biomass was estimated from length measurements using body length-biomass relationships
205 (Table S3).

206 To estimate chl *a* concentrations, we processed the glass fibre filters as follows: we cut each
207 filter in half (exact proportion measured for accuracy) and put one of the halves directly into a
208 5 ml screw cap vial filled with 96% ethanol and then kept in darkness at 4°C for 22.5 h for chl
209 *a* extraction. All samples were shaken vigorously halfway through the extraction. Samples
210 were thereafter centrifuged at 5000 rpm for 5 min to sediment any particles. Three replicates
211 of 200µl of the supernatant of each sample were pipetted into three wells of a black solid-
212 bottom 96-well plate. Fluorescence was measured at $\lambda_{\text{ex}}/\text{em} = 444 \pm 12/675 \pm 50$ nm using a
213 microplate reader (Hidex Sense) and converted to chl *a* concentration (µg/L) following
214 Equation S1. The samples and plates were kept cool in darkness and handled as fast as
215 possible during the process.

216 Perch larvae were sampled at the end of the experiment, on day 20, by hand-made drop nets
217 of 1 mm mesh size that were slightly smaller than the mesocosm tank's diameter. We sank the
218 drop net vertically to the mesocosm bottom, turned it horizontally at the bottom, pulled to the
219 surface horizontally and picked up the fish from the net using tweezers. The fish were
220 immediately put in a benzocaine solution (200 mg/L) to euthanize them and then transferred

221 to containers with 80% ethanol for storage. If no fish were caught during five such fishing
222 attempts, we deemed that no fish was left in the mesocosm and moved on to the next. In total,
223 138 fish larvae were caught. For the first three mesocosms, we repeated the same fishing
224 process to validate the drop net method and no fish were caught during this process. However,
225 16 fish were found alive 22 days after the experiment ended (July 2nd) when we emptied the
226 mesocosms. The number of fish captured on both occasions (day 20 and July 2nd) can be
227 found in Table S2. Body lengths of caught perch larvae were measured to the nearest 0.01
228 mm using a stereo microscope (Supplementary material Table S4.xlsx). Both the standard
229 length and total length were measured for the mesocosm-caught fish whereas only total length
230 was measured for one-week-old larvae collected from the hatchery aquaria. Fish wet weights
231 were measured to the closest 0.1 mg after we patted them dry on both sides twice to minimize
232 alcohol residual (Table S4 & S5).

233 Statistical analyses

234 We used analysis of variance (ANOVA) to test whether thermal origin of the larval fish,
235 experimental temperature and their interaction had an effect on zooplankton abundance,
236 biomass and composition (Table 1 & 2). We also tested for the effect of time (i.e. experiment
237 day) in analyses where data encompassed the whole experiment, and the random effects of
238 mesocosms (Table 2). Experimental temperature of each mesocosm was calculated by
239 averaging the hourly measurements from day 0 up until the experiment day in question. We
240 treated experimental temperature as a continuous variable as the temperatures measured were
241 quite evenly distributed across the full gradient of 14 – 25 °C, and also fluctuated within each
242 mesocosm due to exposure to natural temperature variation (Figure S3).

243 We used a model selection approach to test for effects of each variable. Models were
244 established using the R-packages lme4 (50) and betareg (for proportional data, 51). We set the
245 null model as response ~ temperature + day + random(mesocosm), where the random effect
246 was only included when we analyse more than one day of data. For model selection, we
247 ranked the models based on significance of pairwise likelihood ratio tests on sequential
248 models of increasing complexity (52). Data visualization and processing were done using the
249 packages within the tidyverse collection (53).

250 Zooplankton abundance, biomass and fish larvae weight were ln-transformed prior to analyses
251 and fish survival rate (sum of larvae caught on day 20 and July 2nd, divided by 10) was square
252 root transformed to account for heteroscedasticity. For taxon-specific analysis, we grouped

253 Calanoid copepodite stage 4-5, adult *Eurytemora* and *Acartia* and Cyclopoid copepods
254 together as *Copepoda* because the numbers were low (due to fish predation, see Supplement:
255 Fish predation). Using the function vegdist in package ‘vegan’ (54), we calculated the
256 distance matrix of Bray-Curtis dissimilarity indices (55) to represent zooplankton community
257 composition based on abundance and on biomass. We then used the function capscale to
258 conduct an Analysis of Principal Coordinates, capscale(matrix ~ 1), on each of the distance
259 matrices in two steps: (1) the dissimilarity matrix was ordinated using function cmdscale, and
260 (2) the ordination was projected to maximize the variance in each ordination axis (56). We
261 then used an ANOVA to test if the variance found among mesocosms, as represented by the
262 first ordination axis (PCO1), differed depending on fish larval origins. We also recorded
263 variance found between zooplankton taxa (species scores on PCO1), to investigate whether
264 some taxa were particularly influential in driving the variation in zooplankton composition
265 among mesocosms. For analysis of zooplankton size composition, we found that 200 µm was
266 a suitable threshold to separately group large- and small-sized zooplankton for their clear
267 difference in abundance. It also separated the zooplankton species known to be less preferred
268 as prey by fish larvae (e.g. rotifers with lorica, a hard structure making them unfavorable prey
269 for perch larvae, 57) from their preferred prey (more than 99% of *Keratella* were below 200
270 µm). We calculated the proportion of large-sized (> 200 µm) zooplankton and tested for
271 effects of larval thermal origin, experimental temperature and the interaction using model
272 selection as described above. Finally, we made predictions using the best model according to
273 the model selection results.

274 All data processing and statistical analyses were conducted in R, version 4.0.2, R Core Team
275 2014.

276 **Results**

277 Fish larvae origin had a significant effect on zooplankton total abundance as well as biomass
278 at the end of the experiment (Table 1, Figure 1a & Figure S4), but differently so depending on
279 the experimental temperature (Table 1 & 2). Indeed, no effect of temperature on zooplankton
280 was found for treatments with larvae of heated origin, whereas temperature had a negative
281 effect on zooplankton abundance in mesocosms with fish from the unheated area (Figure 1a;
282 ANOVA on zooplankton difference at high temperatures, $P = 0.024$). The thermal origin of
283 fish affected zooplankton total abundance throughout the experiment (Figure 1b, Table 2), but
284 zooplankton total biomass only at the end of the experiment (day 19, Table S6). Moreover,
285 the interaction between larvae origin and experimental temperature did not affect zooplankton

286 abundance across the duration of the experiment but only became detectable at the end of the
287 experiment, likely due to changes emerging between day 9 and 19 (Table 2). The effect of
288 fish origin on zooplankton abundance and biomass was not due to differences in fish
289 abundance nor their difference in growth as the number of larvae caught and their total length
290 at the end of the experiment did not differ between origins (Figure S5a & S5c, ANOVA on
291 survival: $F(1,22) = 0.44$, $P = 0.48$; length: $F(1,134) = 2.58$, $P = 0.111$).

292 Zooplankton compositional variation based on abundance (Figure 2a) or biomass (Figure S6)
293 as described by PCO1 significantly correlated with larval origin (Table 3, $P < 0.05$ for the
294 term larval thermal origin, Figure 2b and Figure S6, $\eta^2 = 0.18$). The effect of larval origin on
295 zooplankton community composition varied with experimental temperature (Table 3, $P < 0.05$
296 for the interaction term origin * temperature, $\eta^2 = 0.10$), with the greatest difference in
297 zooplankton community composition between mesocosms containing larvae of heated versus
298 unheated origin at high temperatures (Figure 2b & S7). The six taxa partitioned most variance
299 on PCO1 (Figure 2a), which correlates significantly with fish larvae thermal origin (Table 3),
300 were *Keratellas*, nauplii, copepodite and *Cyclopoid* copepods.

301 The relative abundance of large-sized zooplankton differed depending on fish origin, but in
302 different ways depending on the experimental temperature (Figure 3, interaction term origin *
303 temperature $P < 0.001$ in Table S7). At higher temperatures (above 20 °C in Figure 3), there
304 were significantly less large-sized zooplankton in mesocosms with larvae of heated than
305 unheated origin (ANOVA, $F(1, 12) = 6.07$, $P = 0.030$), whereas the opposite was observed at
306 low temperatures. Among zooplankton taxonomic groups, copepods constituted a
307 significantly smaller proportion in mesocosms with larvae of heated than unheated origin
308 (ANOVA, $F(1, 12) = 5.78$, $P = 0.033$). Larval thermal origin thus affected both zooplankton
309 size- and species composition, as well as the relationship between zooplankton composition
310 and experimental temperature.

311 Unlike number of fish caught or individual body length of larvae, individual larvae of heated
312 origin gained slightly more weight than the ones of unheated origin during the experiment
313 (ANOVA, $P = 0.038$, $\eta^2 = 0.03$). Experimental temperature also increased individual weight
314 of larvae independently of their thermal origin (Figure S5 b, ANOVA, $F(1, 134) = 55.54$, $P <$
315 0.0001 , $\eta^2 = 0.28$), which was also the case for body length (Figure S5 c, ANOVA, $F(1, 134)$
316 $= 41.17$, $P < 0.0001$, $\eta^2 = 0.23$).

317 The differences in zooplankton abundance, biomass and composition between mesocosms
318 with fish larvae of heated or unheated origin was likely not caused by any differences in
319 phytoplankton biomass because chlorophyll *a* concentration did not differ between
320 mesocosms containing perch larvae of heated or unheated origin (Figure S8a, ANOVA,
321 P=0.462). However, without fish, chl *a* increased with temperature (Figure S8b, $R^2=0.394$, P
322 < 0.0001).

323 **Discussion**

324 We found that the thermal origin of fish larvae affected the community abundance, biomass
325 and composition of their zooplankton prey in a mesocosm warming experiment. Zooplankton
326 abundance and biomass was higher in mesocosms with larvae of heated origin than unheated
327 origin, despite no difference in fish survival or chlorophyll *a* concentration. As fish larvae
328 presence resulted in lower zooplankton abundance and biomass than in mesocosms without
329 fish and the removal of most large-sized zooplankton (Supplement: Fish predation), the origin
330 effect on zooplankton was likely due to feeding variation in fish. Zooplankton biomass data
331 indicated that perch larvae originated from the heated area generally feed less than the ones of
332 unheated origin, especially when experimental temperature exceeded the natural water
333 temperature. Our results suggest that perch may have responded to the long-term extensive
334 heating in ways that resulted in a reduced feeding on zooplankton during their larval stages
335 and that multi-generational heating-induced changes in predators can have significant impact
336 on their prey communities.

337 The reduced top-down effect of larvae of heated origin on the zooplankton communities,
338 compared to that of larvae of unheated origin, might have arisen from a few non-exclusive
339 mechanisms. Firstly, perch from the chronically warmed environment may have
340 physiologically adapted such that they require less food to sustain themselves under elevated
341 temperatures due to a lowered metabolic rate (14,58). If this is the case, it could enable high
342 growth rates also at a lower feeding rate by reduced energy spent on maintenance resulting in
343 a higher energetic efficiency (i.e. difference between energy intake and metabolic costs). In
344 the populations that our larval fish originated from, adult perch from the heated habitat
345 display significant metabolic thermal compensation and lowered heart beat at high
346 temperatures compared to adults from the unheated population (35). Such warming-induced
347 metabolic changes are commonly due to phenotypic plasticity (59), but there is also evidence
348 showing that changes in metabolism of fish can reflect evolutionary adaptations, potentially to
349 compensate for higher energy losses at high temperatures (14). Secondly, reduced attack rates

350 can directly decrease top-down effect. When exposed to high temperatures, some organisms
351 display reduced attack rates also after acclimatization to warmer environments (5,58). Thirdly,
352 shifts in growth and development rates can be linked to evolutionary changes in response to
353 warming (36). As a (potentially) higher energetic efficiency may also have helped fish
354 maintain high growth rates, this might partly explain why larvae of heated origin gained
355 slightly yet significantly more weight compared to larvae of unheated origin. Young (though
356 non-larval) perch from the heated area also have a faster growth rate and an energy allocation
357 strategy for earlier reproduction (20,21). Ultimately, these changes can lead to changes in
358 body size, which also may result in differences in their diets (39,60). However, body size at
359 inoculation and the end of experiment of larvae did not differ significantly between the
360 thermal origins in our experiment. It is also possible that perch of heated origin have adapted
361 to their already warm-adapted new prey communities and thus fed differently when exposed
362 to a zooplankton community from the unheated area. While more comprehensive testing for
363 the genetic base of local adaptation due to warming is needed, microsatellite DNA analysis of
364 roe strands collected for our experiment already showed low but significant population
365 differentiation between the thermal origins, which may partly be driven by adaptation to the
366 higher temperatures. The results of our mesocosm experiment demonstrated that such impacts
367 of chronic warming across multiple generations on wild fish populations can also affect their
368 prey communities.

369 In addition to the higher zooplankton abundance, there were proportionally less large-sized
370 zooplankton in mesocosms with larvae of heated origin than in those with larvae of unheated
371 origin at high temperatures, and vice versa at low temperatures (Figure 3). This difference in
372 zooplankton size- and species-composition could be due to different feeding preferences
373 between perch larvae depending on thermal origin. Perch larvae of heated origin might have
374 grown faster at higher temperatures, and thus having a larger gape size (than larvae of
375 unheated origin) enabling them to predate more on larger-sized zooplankton (61). This may
376 result from adaptation to long-term heating (20,27) and if heritable, provide an advantage for
377 offspring in coping with a predictable chronically warm environment. This might partly
378 explain the somewhat larger weight increase of larvae of heated than of unheated origin.

379 We found that the larvae origin effect on zooplankton abundance and composition was most
380 pronounced at the highest end of the experimental temperature range (25 °C), which is a
381 temperature that the chronically heated environment frequently reaches during the perch
382 hatching season (Figure S1). This interaction between experimental temperature and larvae

383 thermal origin suggests that the consequences of the potential adaptation in fish induced by
384 the long-term heating can be temperature specific, as changes due to warming seem to modify
385 fish top-down effects. This might have occurred due to the temperature-dependence of attack
386 rates or handling time (5,11,40,62). In our experiment, the zooplankton prey responses to fish
387 predation varied with the experimental temperature and was most pronounced when the
388 experimental temperature reached the natal temperature of the larvae of heated origin.

389 However, the effect of fish thermal origin on zooplankton did not cascade down to affect
390 phytoplankton biomass, as we found no differences in chlorophyll *a* concentration between
391 mesocosms containing larvae of different origins (Figure S10). Primary producers might not
392 be as susceptible to moderate changes in the feeding of top predators as the intermediate
393 trophic levels (12) because the effect is mediated by trophic interactions across several trophic
394 levels when it cascades through the food web. As we lack information about phytoplankton
395 community composition, we are not able to rule out responses in phytoplankton composition
396 depending on fish thermal origin. In the wild, primary producers would often be exposed to
397 the same long-term environmental changes (e.g. warming) as higher trophic levels, such as
398 fish, and would thus likely adapt in parallel (40), but we set up our experiment with prey
399 communities of only natural (unheated) origin and not with separate treatments of the prey
400 community of heated or unheated origin.

401 Besides changes in fish larvae feeding due to potential warming adaptation, the effect of fish
402 thermal origin on the experimental zooplankton communities could also be explained by
403 maternal effects from fish being acclimatized to different thermal regimes. Despite our effort
404 to control for such differences, the roe strands collected from the heated area (5.8 ± 1.2 cm)
405 were larger in width than the ones collected from the unheated area (3.9 ± 0.4 cm; Welch Two
406 Sample t-test $p < 0.05$, effect size 0.6). Perch roe strand width is generally correlated with
407 larger body size at hatching (61). This may explain why, despite hatching around the same
408 time (May 18th), body lengths of larvae of heated origin were slightly larger than larvae of
409 unheated origin at inoculation (Welch Two Sample t-test $p < 0.05$, effect size 0.5), however,
410 no difference was found in larvae body weight. We argue that any maternal effects and
411 acclimation before roe collection were likely small as egg strands were kept until hatching in
412 a single hatchery for a much longer period with uniformed conditions and variation in all
413 other environmental factors was minimized.

414 Our mesocosms were open to the atmosphere, making the experimental water temperatures
415 vary with weather conditions, but with consistent temperature differences between

416 mesocosms. On the other hand, our field conditions may be more relevant to climate change
417 effects in nature than studies conducted at constant temperature as the latter have proved to be
418 inaccurate at predicting responses to fluctuating conditions in ectotherms (63). We did not
419 systematically quantify the presence of other organisms besides zooplankton in the
420 mesocosms, however, we detected presence of chironomids larvae in 26 out of 38 mesocosms
421 from spawning midges, zooplankton eggs at very low densities plus that we have observed
422 zooplankton taxa emerge in the middle of the experiment. These organisms could have
423 contributed to the larval fish diet without being accounted for in our assessment of the prey
424 community. Changes in fish feeding may thus have not fully have been reflected in the
425 sampled zooplankton community due to additional food sources that we did not sample. This
426 could have contributed to variation in response variables among mesocosms within treatments.
427 However, more than 99% of the fish larvae in the mesocosms were smaller than 20 mm and
428 thus likely unable to efficiently consume larger prey such as chironomid larvae or pupae (64).
429 Similarly, zooplankton eggs and protists not accounted for are likely also of minor importance
430 given larval perch feeding preferences (65). Thus, we believe the observed differences in
431 zooplankton prey communities are driven by fish larvae thermal origin.

432 There are also trophic interactions within the zooplankton community that may influence the
433 results. Among species detected in our mesocosms, some meso-zooplankton species (e.g.
434 *Cyclops* sp.) may prefer to predate on micro-zooplankton (20-200 μm) instead of merely
435 grazing on phytoplankton (66). Fish predation on predatory zooplankton species can therefore
436 result in both competitive and potentially predatory release on rotifers, which might explain
437 the high numbers (>1000 individuals, taking up more than 70% of all individuals) of
438 *Keratella* species in some mesocosms towards the end of the experiment. Besides by direct
439 removal through predation, presence of fish larvae might create a landscape of fear for
440 zooplankton that indirectly affect zooplankton community composition and dynamics (26,67).
441 Measures on behavioural or chemical cues were, however, out of the scope of our experiment
442 but may be informative in future experiments on indirect effects of potential adaptation to
443 warming in aquatic predators.

444 In conclusion, we show that cross-generation changes in wild predators in response to whole-
445 ecosystem warming can have significant cascading effects on prey communities via predator
446 feeding behaviour. Although warming can change predator feeding across generations (11),
447 ecosystem effects may depend on whether trophic interactions buffer or amplify the cascading
448 effects of warming. Thus, it is important to measure direct responses in the prey community.

449 We therefore call for experiments generalizing our novel findings, to test whether responses
450 to multi-generational warming in other ectothermic predators and/or older life stages would
451 cascade down to affect other trophic levels and to further investigate the mechanisms by
452 incorporating evolutionary and quantitative genetic methods – to infer whether these
453 responses to warming are due to local adaptation, maternal effects or others.

454 **Acknowledgement**

455 We are grateful to Carolina Åkerlund and Fredrik Landfors for the help during perch roe
456 strand collection, Olivia Bell for assisting in the experiment, Wojciech Uszko for the generous
457 guidance and directions on zooplankton identification, calibration and analysis, the Functional
458 Microbial Ecology Lab (FUME) at SLU for facilitating the chlorophyll sample processing,
459 and Oksana Burimski at Estonian University of Life Sciences, Institute of Veterinary
460 Medicine and Animal Sciences, Chair of Aquaculture for microsatellite DNA processing.

461 **Funding**

462 This study was supported by grants from the Swedish Research Council FORMAS (no. 2019-
463 00928), the Oscar and Lili Lamm Foundation (both to AG), and SLU Quantitative Fish- and
464 Fisheries Ecology.

465 **Ethics**

466 This experiment was conducted in accordance with national regulations for animal care, and
467 the experimental design and practices were reviewed and approved by the regional review
468 board for ethical animal experiments in Uppsala, Sweden. Approved permit number: Dnr
469 5.8.18-04546-2021, permit holder AG.

470 **References**

- 471 1. Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. *Nature*. 2011
472 Feb;470(7335):479–85.
- 473 2. Alfonso S, Gesto M, Sadoul B. Temperature increase and its effects on fish stress
474 physiology in the context of global warming. *Journal of Fish Biology*. 2021;98(6):1496–
475 508.
- 476 3. Gårdmark A, Huss M. Individual variation and interactions explain food web responses to
477 global warming. *Philosophical Transactions of the Royal Society B: Biological Sciences*.
478 2020 Nov 2;375(1814):20190449.
- 479 4. Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming,
480 predation and competition: A meta-analysis. *Ecology Letters*. 2022;25(2):541–54.

481 5. Grigaltchik VS, Ward AJW, Seebacher F. Thermal acclimation of interactions:
482 differential responses to temperature change alter predator–prey relationship. *Proceedings*
483 of the Royal Society B: Biological Sciences. 2012 Aug;279(1744):4058–64.

484 6. Morgan R, Andreassen AH, Åsheim ER, Finnøen MH, Dresler G, Brembu T, et al.
485 Reduced physiological plasticity in a fish adapted to stable temperatures. *Proc Natl Acad*
486 *Sci USA*. 2022 May 31;119(22):e2201919119.

487 7. Sentis A, Morisson J, Boukal DS. Thermal acclimation modulates the impacts of
488 temperature and enrichment on trophic interaction strengths and population dynamics.
489 *Global Change Biology*. 2015;21(9):3290–8.

490 8. Van Doorslaer W, Stoks R, Jeppesen E, De Meester L. Adaptive microevolutionary
491 responses to simulated global warming in *Simocephalus vetulus*: a mesocosm study.
492 *Global Change Biology*. 2007;13(4):878–86.

493 9. Morgan R, Finnøen MH, Jensen H, Pélabon C, Jutfelt F. Low potential for evolutionary
494 rescue from climate change in a tropical fish. *Proc Natl Acad Sci USA*. 2020 Dec
495 29;117(52):33365–72.

496 10. Wootton HF, Morrongojello JR, Schmitt T, Audzijonyte A. Smaller adult fish size in
497 warmer water is not explained by elevated metabolism. *Ecology Letters*.
498 2022;25(5):1177–88.

499 11. Carbonell JA, Wang YJ, Sentis A, Stoks R. Evolution of predator–prey interactions
500 during range expansion in an aquatic insect predator. *Functional Ecology*.
501 2022;36(12):3060–72.

502 12. Devlin SP, Saarenheimo J, Syvääranta J, Jones RI. Top consumer abundance influences
503 lake methane efflux. *Nat Commun*. 2015 Nov 4;6(1):8787.

504 13. Seebacher F, White CR, Franklin CE. Physiological plasticity increases resilience of
505 ectothermic animals to climate change. *Nature Clim Change*. 2015 Jan;5(1):61–6.

506 14. Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, et al.
507 Multigenerational exposure to elevated temperatures leads to a reduction in standard
508 metabolic rate in the wild. *Functional Ecology*. 2020;34(6):1205–14.

509 15. Sandblom E, Gräns A, Axelsson M, Seth H. Temperature acclimation rate of aerobic
510 scope and feeding metabolism in fishes: implications in a thermally extreme future.
511 *Proceedings of the Royal Society B: Biological Sciences*. 2014 Nov
512 7;281(1794):20141490.

513 16. Johansen JL, Jones GP. Increasing ocean temperature reduces the metabolic performance
514 and swimming ability of coral reef damselfishes. *Global Change Biology*.
515 2011;17(9):2971–9.

516 17. Neubauer P, Andersen KH. Thermal performance of fish is explained by an interplay
517 between physiology, behaviour and ecology. *Conservation Physiology*. 2019 Jan
518 1;7(1):coz025.

519 18. Rall BC, Brose U, Hartvig M, Kalinkat G, Schwarzmüller F, Vucic-Pestic O, et al.
520 Universal temperature and body-mass scaling of feeding rates. *Philosophical Transactions
521 of the Royal Society B: Biological Sciences*. 2012 Nov 5;367(1605):2923–34.

522 19. Kumlu M, Eroldogan OT, Aktas M. Effects of temperature and salinity on larval growth,
523 survival and development of *Penaeus semisulcatus*. *Aquaculture*. 2000 Aug 1;188(1):167–
524 73.

525 20. Huss M, Lindmark M, Jacobson P, van Dorst RM, Gårdmark A. Experimental evidence
526 of gradual size-dependent shifts in body size and growth of fish in response to warming.
527 *Glob Change Biol*. 2019 Jul;25(7):2285–95.

528 21. Niu J, Huss M, Vasemägi A, Gårdmark A. Decades of warming alters maturation and
529 reproductive investment in fish. *Ecosphere*. 2023;14(1):e4381.

530 22. Lindmark M, Karlsson M, Gårdmark A. Larger but younger fish when growth outpaces
531 mortality in heated ecosystem. *eLife*. 2023 May 9;12.

532 23. He X, Wright RA. An Experimental Study of Piscivore–Planktivore Interactions:
533 Population and Community Responses to Predation. *Can J Fish Aquat Sci*. 1992
534 Jun;49(6):1176–83.

535 24. Walls M, Kortelainen I, Sarvala J. Prey responses to fish predation in freshwater
536 communities. *Annales Zoologici Fennici*. 1990;27(2):183–99.

537 25. He H, Jin H, Jeppesen E, Li K, Liu Z, Zhang Y. Fish-mediated plankton responses to
538 increased temperature in subtropical aquatic mesocosm ecosystems: Implications for lake
539 management. *Water Research*. 2018 Nov 1;144:304–11.

540 26. Gliwicz ZM. Relative significance of direct and indirect effects of predation by
541 planktivorous fish on zooplankton. 1994;10.

542 27. Pilakouta N, Humble JL, Hill IDC, Arthur J, Costa APB, Smith BA, et al. Testing the
543 predictability of morphological evolution in contrasting thermal environments. *Evolution*.
544 2023 Jan 1;77(1):239–53.

545 28. van Dorst RM, Gårdmark A, Kahlainen KK, Nurminen L, Estlander S, Huuskonen H, et
546 al. Ecosystem heating experiment reveals sex-specific growth responses in fish. *Can J
547 Fish Aquat Sci [Internet]*. 2023 Oct 6 [cited 2023 Dec 5]; Available from:
548 <https://cdnsciencepub.com/doi/10.1139/cjfas-2023-0034>

549 29. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. TOWARD A METABOLIC
550 THEORY OF ECOLOGY. *Ecology*. 2004 Jul;85(7):1771–89.

551 30. van Denderen D, Gislason H, van den Heuvel J, Andersen KH. Global analysis of fish
552 growth rates shows weaker responses to temperature than metabolic predictions. *Global
553 Ecology and Biogeography*. 2020;29(12):2203–13.

554 31. Colchen T, Teletchea F, Fontaine P, Pasquet A. Temperature modifies activity, inter-
555 individual relationships and group structure in a fish. *Current Zoology*. 2017 Apr
556 1;63(2):175–83.

557 32. O'Steen S, Bennett AF. Thermal Acclimation Effects Differ between Voluntary,
558 Maximum, and Critical Swimming Velocities in Two Cyprinid Fishes. *Physiological and*
559 *Biochemical Zoology*. 2003 Jul;76(4):484–96.

560 33. Sylvestre EL, Lapointe D, Dutil JD, Guderley H. Thermal sensitivity of metabolic rates
561 and swimming performance in two latitudinally separated populations of cod, *Gadus*
562 *morhua* L. *J Comp Physiol B*. 2007 May 1;177(4):447–60.

563 34. Song J, Brill RW, McDowell JR. Plasticity in Standard and Maximum Aerobic Metabolic
564 Rates in Two Populations of an Estuarine Dependent Teleost, Spotted Seatrout
565 (*Cynoscion nebulosus*). *Biology*. 2019 Jun;8(2):46.

566 35. Sandblom E, Clark TD, Gräns A, Ekström A, Brijs J, Sundström LF, et al. Physiological
567 constraints to climate warming in fish follow principles of plastic floors and concrete
568 ceilings. *Nat Commun*. 2016 Sep;7(1):11447.

569 36. Lema SC, Bock SL, Malley MM, Elkins EA. Warming waters beget smaller fish:
570 evidence for reduced size and altered morphology in a desert fish following
571 anthropogenic temperature change. *Biology Letters*. 2019 Oct 16;15(10):20190518.

572 37. Wainwright PC, Richard BA. Predicting patterns of prey use from morphology of fishes.

573 38. Rudolf VHW. Temperature and nutrient conditions modify the effects of phenological
574 shifts in predator-prey communities. *Ecology*. 2022 Jul;103(7):e3704.

575 39. Schael DM, Rudstam LG, Post JR. Gape Limitation and Prey Selection in Larval Yellow
576 Perch (*Perca flavescens*), Freshwater Drum (*Aplodinotus grunniens*), and Black Crappie
577 (*Pomoxis nigromaculatus*). *Can J Fish Aquat Sci*. 1991 Oct;48(10):1919–25.

578 40. Wang YJ, Sentis A, Tüzün N, Stoks R. Thermal evolution ameliorates the long-term
579 plastic effects of warming, temperature fluctuations and heat waves on predator–prey
580 interaction strength. *Functional Ecology*. 2021;35(7):1538–49.

581 41. Chen Z, Snow M, Lawrence CS, Church AR, Narum SR, Devlin RH, et al. Selection for
582 upper thermal tolerance in rainbow trout (*Oncorhynchus mykiss* Walbaum). *Journal of*
583 *Experimental Biology*. 2015 Mar 1;218(5):803–12.

584 42. Englund G, Öhlund G, Hein CL, Diehl S. Temperature dependence of the functional
585 response: Temperature dependence of consumption. *Ecology Letters*. 2011
586 Sep;14(9):914–21.

587 43. Lindmark M, Ohlberger J, Gårdmark A. Optimum growth temperature declines with body
588 size within fish species. *Global Change Biology* [Internet]. 2022 [cited 2022 Feb
589 16];n/a(n/a). Available from: <https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16067>

590 44. Lukšienė D, Sandström O, Lounasheimo L, Andersson J. The effects of thermal effluent
591 exposure on the gametogenesis of female fish. *Journal of Fish Biology*. 2000;56(1):37–50.

592 45. Björklund M, Aho T, Behrmann-Godel J. Isolation over 35 years in a heated biotest basin
593 causes selection on MHC class II β genes in the European perch (*Perca fluviatilis* L.).
594 *Ecology and Evolution*. 2015;5(7):1440–55.

595 46. Mateos-Gonzalez F, Sundström LF, Schmid M, Björklund M. Rapid Evolution of Parasite
596 Resistance in a Warmer Environment: Insights from a Large Scale Field Experiment.
597 PLOS ONE. 2015 Jun 2;10(6):e0128860.

598 47. Demandt MH. Temporal changes in genetic diversity of isolated populations of perch and
599 roach. Conserv Genet. 2010 Feb 1;11(1):249–55.

600 48. Adill A, Mo K, Sevastik A, Olsson J, Bergström L. Biologisk recipientkontroll vid
601 Forsmarks kärnkraftverk. Aqua reports [Internet]. 2013 [cited 2024 Feb 29];(2013:19).
602 Available from: <https://res.slu.se/id/publ/50718>

603 49. Huot Y, Babin M, Bruyant F, Grob C, Twardowski MS, Claustre H. Does chlorophyll *a*
604 provide the best index of phytoplankton biomass for primary productivity studies?
605 Biogeosciences Discussions. 2007 Mar;4(2):707–45.

606 50. Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using
607 lme4. Journal of Statistical Software. 2015 Oct 7;67:1–48.

608 51. Cribari-Neto F, Zeileis A. Beta Regression in R. Journal of Statistical Software. 2010 Apr
609 5;34:1–24.

610 52. Banta JA, Stevens MHH, Pigliucci M. A comprehensive test of the ‘limiting resources’
611 framework applied to plant tolerance to apical meristem damage. Oikos. 2010
612 Feb;119(2):359–69.

613 53. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome
614 to the Tidyverse. Journal of Open Source Software. 2019 Nov 21;4(43):1686.

615 54. Oksanen J. Multivariate Analysis of Ecological Communities in R: vegan tutorial. 2022;

616 55. Clarke KR, Gorley RN, Somerfield PJ, Warwick RM. Change in marine communities: an
617 approach to statistical analysis and interpretation, 3rd edn. [Internet]. Plymouth: Primer-E
618 Ltd; 2014 [cited 2024 Feb 29]. 256 p. Available from:
619 <https://plymsea.ac.uk/id/eprint/7656/>

620 56. Anderson MJ, Willis TJ. Canonical Analysis of Principal Coordinates: A Useful Method
621 of Constrained Ordination for Ecology. Ecology. 2003;84(2):511–25.

622 57. Herzig A, editor. Rotifera X: rotifer research: trends, new tools and recent advances:
623 proceedings of the Xth International Rotifer Symposium, held in Illmitz, Austria, 7-13
624 June 2003. Dordrecht: Springer; 2005. 601 p. (Developments in hydrobiology).

625 58. Sohlström EH, Archer LC, Gallo B, Jochum M, Kordas RL, Rall BC, et al. Thermal
626 acclimation increases the stability of a predator–prey interaction in warmer environments.
627 Global Change Biology. 2021;27(16):3765–78.

628 59. Norin T, Metcalfe NB. Ecological and evolutionary consequences of metabolic rate
629 plasticity in response to environmental change. Philosophical Transactions of the Royal
630 Society B: Biological Sciences. 2019 Jan 28;374(1768):20180180.

631 60. Romanuk TN, Hayward A, Hutchings JA. Trophic level scales positively with body size
632 in fishes. Global Ecology and Biogeography. 2011;20(2):231–40.

633 61. Huss M, Persson L, Byström P. The origin and development of individual size variation in
634 early pelagic stages of fish. *Oecologia*. 2007 Aug 1;153(1):57–67.

635 62. Sentis A, Hemptinne JL, Brodeur J. Using functional response modeling to investigate the
636 effect of temperature on predator feeding rate and energetic efficiency. *Oecologia*. 2012
637 Aug 1;169(4):1117–25.

638 63. Niehaus AC, Angilletta MJ Jr, Sears MW, Franklin CE, Wilson RS. Predicting the
639 physiological performance of ectotherms in fluctuating thermal environments. *Journal of*
640 *Experimental Biology*. 2012 Feb 15;215(4):694–701.

641 64. Wagner A, Volkmann S, Dettinger-Klemm PMA. Benthic–pelagic coupling in lake
642 ecosystems: the key role of chironomid pupae as prey of pelagic fish. *Ecosphere*.
643 2012;3(2):art14.

644 65. Mikheev VN, Wanzenböck J. Diet changes in prey size selectivity in larvae of perch
645 *Perca fluviatilis*. *J Ichthyol*. 2010 Dec 1;50(11):1014–20.

646 66. Brandl Z. Freshwater copepods and rotifers: predators and their prey. In: Herzig A, Gulati
647 RD, Jersabek CD, May L, editors. *Rotifera X: Rotifer Research: Trends, New Tools and*
648 *Recent Advances, Proceedings of the Xth International Rotifer Symposium, held in*
649 *Ilmitz, Austria, 7–13 June 2003 [Internet]*. Dordrecht: Springer Netherlands; 2005 [cited
650 2023 Aug 2]. p. 475–89. (Developments in Hydrobiology). Available from:
651 https://doi.org/10.1007/1-4020-4408-9_49

652 67. Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS. Landscapes of Fear:
653 Spatial Patterns of Risk Perception and Response. *Trends in Ecology & Evolution*. 2019
654 Apr 1;34(4):355–68.

655

656

657

658

659

660

661

662

663

664

665

666 **Figures and Tables**

667 **Table 1.** Results of ANOVA on the effects of larvae thermal origin, temperature and the interaction
668 between origin and temperature on zooplankton community abundance and biomass at the end (day 20)
669 of the experiment. Symbol * indicates significant results ($P < 0.05$). Best model estimates are the
670 coefficients from the best model based on model selection (Table 2).

Zooplankton	Explanatory variables	F(1, 38)	P	Best model estimates
Total abundance	Origin	5.84	0.024 *	5.58
	Temperature	5.12	0.034 *	- 0.02
	Origin x temperature	4.82	0.039 *	- 0.34
Total biomass	Origin	4.60	0.043 *	- 0.79
	Temperature	2.33	0.141	- 0.08
	Origin x temperature	1.30	0.266	/

671

672

673

674 **Table 2.** Results of model selection regarding zooplankton abundance based on model pair testing -
675 likelihood ratio tests (significance level between the new model and null model). Model pairs are: null
676 and second, second and third, and so on. We judged whether including larvae origin, or experimental
677 temperature and larval origin * temperature, improved the model explaining the total variance based
678 on the significance of likelihood ratio tests. The best models' (in bold) coefficients are origin
679 (unheated) 5.58, temperature -0.02 and origin x temperature -0.34; origin (unheated): -0.47,
680 temperature: -0.059.

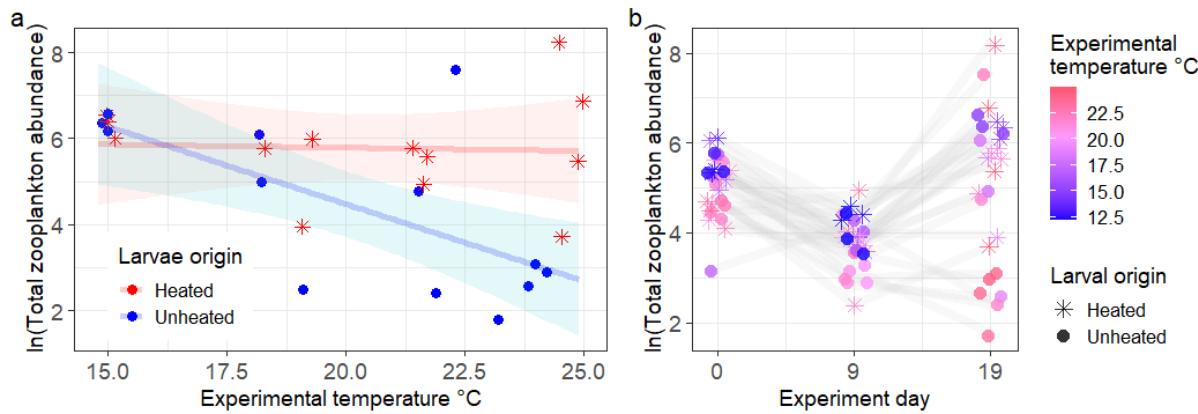
	End of experiment		Throughout the experiment	
	Formula	Significance	Formula	Significance
	1		day + random(day mesocosm)	
ln(total zooplankton abundance + 1)	temperature	0.07	temperature + day + random(day mesocosm)	0.07
~	origin + temperature	0.02*	origin + temperature + day +random(day mesocosm)	0.02 *
	origin * temperature	0.03*	origin * temperature + day +random(day mesocosm)	0.14

681

682

683

684


685

686

687 **Table 3.** Results of an ANOVA model on the effects of fish larvae thermal origin (heated/unheated),
688 experimental temperature and their interaction on PCO1 based on zooplankton community
689 compositional abundance or biomass. We found no significant between-mesocosm differences in
690 PCO2, based on abundance or biomass, in relation to fish origin or experimental temperature.

		Variables	F	P	η^2
Abundance	Origin	16.65	<0.001 ***	0.18	
	Temperature	9.85	0.005 **	0.33	
	Origin x temperature	5.64	0.027 *	0.10	
Biomass	Origin	19.69	<0.001 ***	0.22	
	Temperature	13.4	0.001 **	0.34	
	Origin x temperature	7.2	0.014 *	0.12	

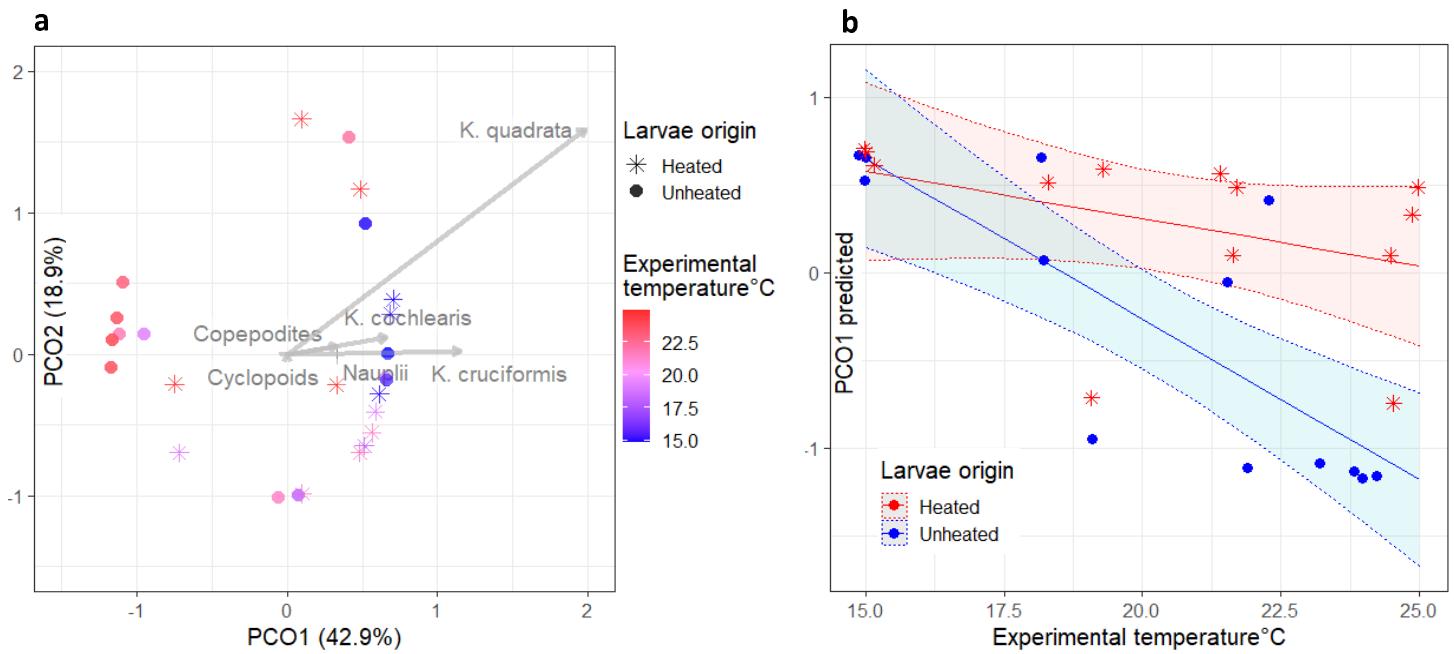

691

Figure 1. Zooplankton total abundance at the end of the experiment (a) and throughout the experiment (b) in mesocosms containing larval fish originating from the heated (stars) or unheated population (circles) at different experimental temperatures. The red and blue lines depict the predicted (from $\ln(\text{abundance}) \sim \text{origin} + \text{temperature} + \text{day} + \text{random}(\text{day}/\text{mesocosm})$, Table 2) \ln -transformed zooplankton abundance and the belts show their corresponding confidence intervals at 95%. The effect of larvae origin on zooplankton abundance is predicted to increase with temperature. Note that all mesocosms were measured on the same days (0, 9, 19), but have been displaced for visibility.

692

693

Figure 2. Ordination (a) showing PCO1 (explaining 42.9% of the total variation) and PCO2 (explaining 18.9%) results on zooplankton community composition based on abundance of different taxa in mesocosms with fish larvae from the heated (star) or unheated population (circles). Colour shows mean experimental temperature (from blue to red). Predicted PCO1 (b) at given experimental temperature, where colour indicates larvae origin (heated vs unheated). Predictions made from linear model $lm(PCO1 \sim origin * temperature)$. The difference in zooplankton composition between larvae origins increased with temperature.

694

695

696

697

698

699

700

701

702

703

704

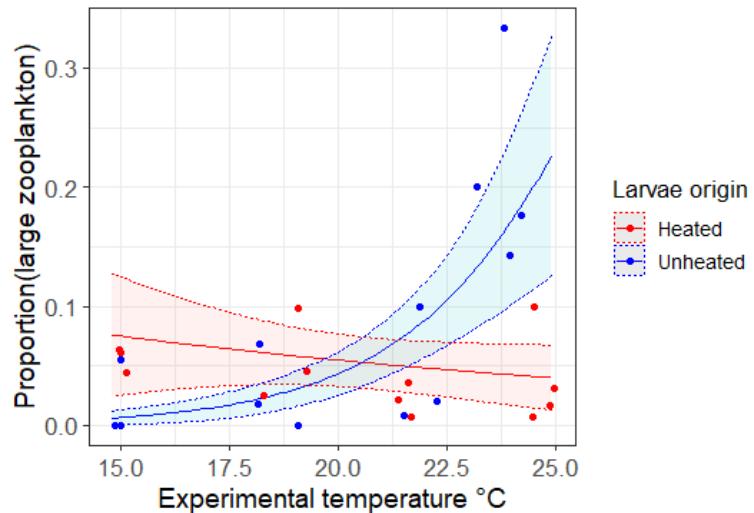


Figure 3. Proportion of large-sized zooplankton in mesocosms containing larval fish of heated (red) or unheated (blue) origin. Predictions made from the best model $P(\text{large zooplankton}) \sim \text{origin} \times \text{temperature}$ (Table S7) show that fish origin had a clear effect on how fish from that origin affected large zooplankton under different experimental temperatures.