

1 **Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing**

2 Svenja K. Tetzlaff^{1,2,3,21}, Ekin Reyhan^{1,2,3,21}, C. Peter Bengtson⁴, Julian Schroers^{1,5}, Julia
3 Wagner^{1,2}, Marc C. Schubert^{1,2}, Nikolas Layer^{1,2}, Maria C. Puschhof⁶, Anton J. Faymonville^{1,2},
4 Nina Drewa^{1,2}, Rangel L. Pramatarov^{1,2}, Niklas Wissmann^{1,2}, Obada Alhalabi⁷, Alina Heuer^{1,2},
5 Nirosan Sivapalan^{1,2}, Joaquín Campos⁸, Berin Boztepe^{9,10}, Jonas G. Scheck^{9,11}, Giulia Villa¹²,
6 Manuel Schröter¹³, Felix Sahm^{14,15}, Karin Forsberg-Nilsson¹⁶, Michael O. Breckwoldt^{9,10}, Claudio
7 Acuna⁸, Bogdana Suchorska⁷, Dieter Henrik Heiland^{12,17,18,19,20}, Julio Saez-Rodriguez⁶, Varun
8 Venkataramani^{1,2,3,22,*}

9 ¹Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg,
10 Heidelberg, Germany

11 ²Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg
12 University, Heidelberg, Germany

13 ³Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer
14 Research Center (DKFZ), Heidelberg, Germany

15 ⁴Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg
16 University, Germany

17 ⁵Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

18 ⁶Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Institute for
19 Computational Biomedicine, BioQuant, Heidelberg, Germany

20 ⁷Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany

21 ⁸Laboratory of Neural Circuits and Behavior, Institute of Anatomy and Cell Biology, Heidelberg
22 University, Heidelberg, Germany

23 ⁹Neuroradiology Department, University Hospital Heidelberg, Heidelberg, Germany

24 ¹⁰Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer
25 Consortium (DKTK) within the German Cancer Research Center (DKFZ), Heidelberg, Germany

26 ¹¹Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center
27 (DKFZ), Heidelberg, Germany

28 ¹²Translational Neurosurgery, Friedrich-Alexander University Erlangen Nuremberg, Erlangen,
29 Germany

30 ¹³ETH Zurich, Department of Biosystems Science and Engineering, Basel, Switzerland

31 ¹⁴Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany

32 ¹⁵Clinical Cooperation Unit Neuropathology (B300), German Cancer Consortium (DKTK), German
33 Cancer Research Center (DKFZ), Heidelberg, Germany

34 ¹⁶Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala
35 University, 75185 Uppsala, Sweden

36 ¹⁷Department of Neurosurgery, Medical Center – University of Freiburg, Freiburg, Germany

37 ¹⁸Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University
38 Erlangen Nuremberg, Erlangen, Germany

39 ¹⁹ Department of Neurological Surgery, Northwestern University Feinberg School of Medicine,
40 Chicago, IL, USA

41 ²⁰ German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany.

42 ²¹ These authors contributed equally to this work.

43 ²² Lead Contact

44 *Correspondence: varun.venkataramani@med.uni-heidelberg.de (V.V.)

45

46 **SUMMARY**

47 Glioblastomas are invasive brain tumors with high therapeutic resistance. Neuron-to-glioma
48 synapses have been shown to promote glioblastoma progression. However, a characterization of
49 tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted
50 retrograde tracing using rabies viruses to investigate and manipulate neuron-tumor networks.
51 Glioblastoma rapidly integrated into neural circuits across the brain engaging in widespread
52 functional communication, with acetylcholinergic neurons driving glioblastoma invasion. We
53 uncovered patient-specific and tumor cell state-dependent differences in synaptogenic gene
54 expression associated with neuron-tumor connectivity and subsequent invasivity. Importantly,
55 radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn,
56 simultaneous neuronal activity inhibition and radiotherapy showed increased therapeutic effects,
57 indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly,
58 rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression,
59 offering a viral strategy to tackle glioblastoma. Together, this study provides a framework to
60 comprehensively characterize neuron-tumor networks and target glioblastoma.

61

62

63 INTRODUCTION

64 Glioblastoma, the most prevalent and aggressive form of primary brain cancer in adults, presents
65 a formidable challenge in neuro-oncology.^{1,2} Effective treatments remain elusive, largely due to
66 the cellular heterogeneity, the highly invasive nature of glioblastoma and resistance to standard-
67 of-care therapies including surgery, radio- and chemotherapy.^{1,3-11} A burgeoning area of interest
68 is the exploration of the intricate relationships between glioblastoma cells and neural networks of
69 the brain.¹²⁻¹⁵ The interplay between tumor cells and neuronal circuits, particularly synaptic
70 neuron-tumor communication, has emerged as a critical factor in tumor progression and
71 invasion.^{12,16-25} However, while neuronal molecular signatures have been described in paired
72 primary and recurrent glioblastoma^{4,7}, it is unclear whether and how neuron-glioma synaptic
73 communication contributes to therapeutic resistance. Synaptic inputs onto adult glioblastoma
74 cells have so far been identified as local, glutamatergic projections, leaving the comprehensive
75 circuit architecture and the diversity of neuronal subtypes interacting with glioma largely
76 unexplored.^{8,16-18} Moreover, the dynamics of how tumor cells synaptically integrate into neuronal
77 networks and in turn change neuronal structure and function are yet unclear. The cellular,
78 molecular and functional heterogeneity of glioblastoma has been increasingly investigated,^{5,8-10,26}
79 but how these layers are related to neuronal connectivity is yet unknown.

80 While tracing neuronal circuits is an extensive field of research in neuroscience,²⁷⁻²⁹ the neuronal
81 connectome of brain tumors remains poorly understood.^{12,13} Among tracing approaches, the
82 retrograde monosynaptic tracing using modified rabies virus stands out as a pivotal technique for
83 investigating neural networks.³⁰⁻³³ Previous studies have applied this methodology to neurons and
84 oligodendrocytic precursor cells, both receiving synaptic input^{34,35} to map their neuronal
85 connectome and characterize their functional organization.^{33,36-44}

86 This paper introduces a modified rabies virus-based retrograde tracing methodology platform for
87 the multimodal, neuronal connectome characterization of glioblastoma. We demonstrated its
88 applicability across model systems ranging from human patient tissue, patient-derived xenograft
89 models to co-cultures of neurons and tumor cells. Unexpectedly, this approach revealed a
90 majority of glioblastoma cells and neurons were functionally connected to neurons in the early
91 stages of glioblastoma colonization. This stands in contrast to previous data from us and
92 others,^{16,17} where technologies to comprehensively assess the functional connectivity were
93 lacking. Molecular and functional analyses of tumor-connected (connected^{TUM}) and tumor-
94 unconnected (unconnected^{TUM}) neurons did not show significant differences in early stages of
95 colonization, implying that synaptic integration of tumor cells into neural circuits precedes
96 neuronal dysfunction and hyperexcitability, described in later stages of the disease.⁴⁵⁻⁴⁹ Moreover,
97 we found brain-wide recruitment of diverse neuronal populations including neuromodulatory
98 circuits forming neuron-tumor networks with glioblastoma. Together, both acetylcholinergic and
99 glutamatergic neurons were able to drive glioblastoma progression. Further, invasive patient-
100 derived tumors and glioblastoma cell states were associated synaptogenic gene expression
101 signatures and subsequent larger neuron-tumor connectivity. Lastly, we found that radiotherapy
102 promotes neuron-tumor connectivity by boosting neuronal activity and saw an increased
103 therapeutic effect of combined neuronal activity inhibition and radiotherapy. Hereby, we provided
104 evidence for the role of neuron-to-glioma synaptic communication in contributing to therapeutic
105 resistance. Lastly, we provided a proof-of-concept of how, in addition to pharmacological
106 perturbation, rabies virus itself could be used to selectively ablate connected^{TUM} neurons and
107 thereby inhibit glioblastoma progression.

108 The insights gathered here offer a valuable framework for future investigations in glioblastoma
109 and potentially other cancer entities, highlighting the pivotal role of characterizing the neuronal
110 connectome of glioblastoma to develop novel therapeutic strategies.

111 **RESULTS**

112 **Rabies-based retrograde tracing enables versatile neuron-tumor network characterization**

113 We took advantage of a rabies virus-based retrograde tracing system to establish a method for

114 characterizing neuron-tumor networks using patient-derived glioblastoma spheroid cultures

115 (Figures 1A, B).^{8,9,50,51} First, we stably transduced glioblastoma spheroids (n = 10 patient-derived

116 models, Figure 1B, Supplementary Table 1) with a lentivirus containing the EnvA receptor TVA

117 for rabies entry, the rabies virus glycoprotein (oG) for trans-complementation as well as spread,

118 and the cytosolically expressed fluorophore mCherry (STAR Methods). Second, we performed

119 fluorescence-associated cell sorting (FACS) for mCherry, to identify and isolate patient spheroid

120 cells expressing TVA and oG. Subsequently, these cells were transduced with an EnvA-

121 pseudotyped G protein-deleted (Δ G) rabies virus expressing the cytosolic fluorophore GFP that

122 could only infect glioblastoma cells containing the TVA receptor. Upon entry and trans-

123 complementation with the rabies-oG protein, starter glioblastoma cells (GB^{Starter}) are expected to

124 label tumor cell-connected (connected^{TUM}) neurons via monosynaptic, retrograde propagation.³¹

125 Connected^{TUM} neurons could be readily identified by expressing only GFP, whereas patient-

126 derived GB^{Starter} cells expressed both mCherry and GFP. Further, as connected^{TUM} neurons did

127 not express oG, no transmission across secondary synapses was possible, ensuring a high

128 specificity of this approach to label only directly connected neuron-tumor networks (Figure 1A).

129 FACS of GB^{Starter} spheroids enabled a direct and dense labeling of all tumor cells before engrafting

130 these tumor cells into any experimental model system. In contrast, implanting or seeding

131 glioblastoma cells before (Δ G) rabies virus transduction in combination with a titration of the Δ G

132 rabies virus (STAR Methods) led to a sequential, sparse labeling to trace the neuronal

133 connectome of single glioblastoma cells. While whole-tumor neuronal connectome analyses

134 enabled a comprehensive characterization, sparse labeling approaches allowed for a more

135 specific analysis of single tumor cell states and their connected^{TUM} neurons over time. Further,

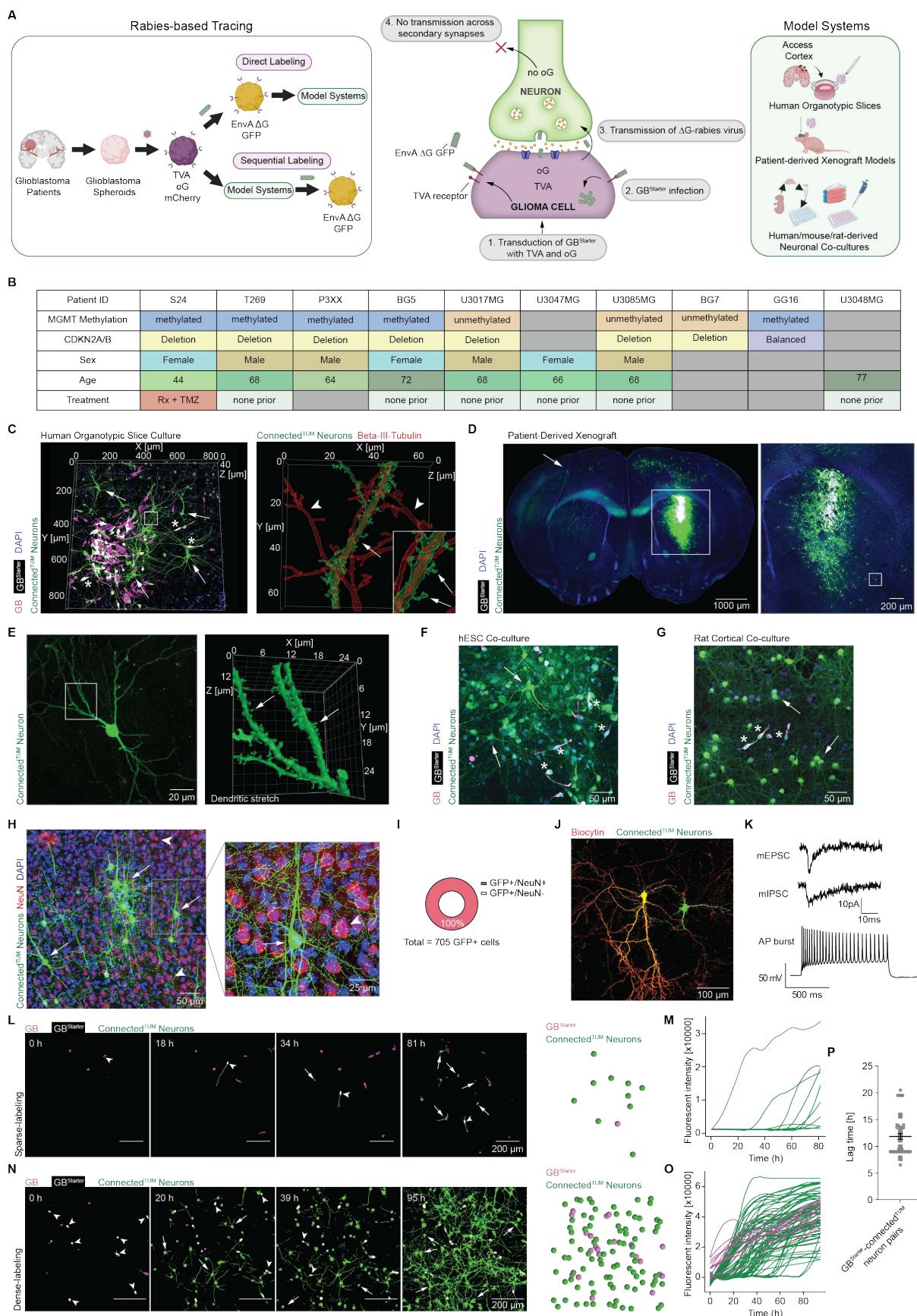
136 genetic modification of the rabies virus additionally expressing functional proteins such as the Cre

137 Recombinase⁵² enabled a precise manipulation of connected^{TUM} neurons to investigate its
138 subsequent effect on glioblastoma biology (Figures 1A, S1A).

139 We assessed the versatility of this approach for tracing of functional neuron-tumor networks
140 across a range of *in vivo*, *ex vivo* and *in vitro* model systems. To establish an all-in-human tissue
141 model system for tracing neuron-tumor networks, we adapted an organotypic slice culture using
142 human access cortex tissue removed during surgery⁵³ (n = 7 patients, Figure 1C) and
143 transplanted GB^{Starter} cells to label human connected^{TUM} neurons. This model system was
144 complemented by patient-derived mouse xenografts and a variety of human and mouse neuronal
145 co-culture models (STAR Methods) (Figures 1C-G, S1B, C).⁵⁴

146 Specifically, our retrograde tracing technique selectively labeled connected^{TUM} neurons as
147 demonstrated across all patient-derived spheroids in all model systems and using different strains
148 of the rabies virus (CVS-N2c^{ΔG}-eGFP(EnvA)³³ and SAD-B19^{ΔG}-eGFP(EnvA)³⁰ (Figures 1C-G).
149 This labeling approach even allowed the ultrastructural characterization of connected^{TUM} neurons
150 including different classes of dendritic spines⁵⁵ employing high- and super-resolution light
151 microscopy (Figures 1C, E, S1D). Our analysis confirmed that retrogradely labeled cells are
152 exclusively neuronal, with no labeling observed in astrocytes, oligodendrocytes, or microglia
153 (Figures 1H, I, S1E-G). Electrophysiological assessments revealed connected^{TUM} neurons
154 maintained their characteristic functional properties, including action potential firing, bursting as
155 well as excitatory and inhibitory synaptic inputs from other neurons (Figures 1J, K, S1H).
156 Importantly, our tracing method was highly specific, as close to no labeling occurred in the
157 absence of TVA receptor expression in glioma cells, nor when media from neuron-GB^{Starter} co-
158 cultures was added to untransduced neuronal cultures (Figures S1I, J).

159 Last, we evaluated the tumor cell-toxic potential of two strains of the rabies virus, CVS-N2c^{ΔG}-
160 eGFP(EnvA) and SAD-B19^{ΔG}-eGFP(EnvA).^{30,33} Here, we found little sign of tumor cell toxicity, as
161 tumor cells transduced with either of these rabies strains showed comparable growth curves in
162 monocultures as compared to control cell lines (Figure S1K).


163 In summary, rabies-based retrograde tracing in glioblastoma enables a comprehensive
164 investigation of connected^{TUM} neurons across a variety of model systems.

165

166 **Rapid and dynamic integration of glioblastoma into neuron-tumor networks**

167 Live-cell imaging of neuron-tumor network formation in co-culture models over time revealed the
168 fast and dynamically increasing integration of glioblastoma cells into neuronal circuits. Sparse
169 labeling of GB^{Starter} cells enabled tracking the recruitment of connected^{TUM} neurons in a near real-
170 time manner, increasing over time (Figures 1 L, M, Video S1). In contrast, employing dense
171 labeling to mark the entirety of the tumor cell population permits a comprehensive examination of
172 the neuronal connectome associated with all tumor cells. This approach contrasts with the sparse
173 labeling technique, which reveals neuronal connections to individual tumor cells, by enabling the
174 visualization of neuronal networks linked to the entire tumor (Figures 1N, O, Video S1).
175 Remarkably, connected^{TUM} neuron labeling occurred within a matter of hours (mean 11.85 +/-
176 0.51 hours) after GB^{Starter} cells became GFP-positive, demonstrating the rapid ability of
177 glioblastoma cells to form neuron-tumor connections, in contrast to a previously reported
178 minimum amount of two days to retrogradely label neuron-to-neuron synapses (Figures 1P,
179 S1L).³¹ These findings were complemented by corresponding electrophysiological measurements
180 of neuronal activity-driven excitatory, postsynaptic currents and slow inward currents (Figure
181 S1M).^{8,16-18}

182 Together, combined retrograde tracing and live-cell imaging revealed a rapid, functional
183 integration of glioblastoma cells into neuronal circuits.

185 **Figure 1. Rabies-based tracing of glioblastoma neuron-tumor networks across model**
186 **systems**

187 (A) Monosynaptic retrograde tracing workflow in patient-derived glioblastoma (GB) spheroid models.

188 (B) Overview of patient-derived glioblastoma models used in this study.

189 (C) 3D rendering of an exemplary human organotypic slice injected with S24 GB^{Starter} cells (left). Shown
190 are GB^{Starter} cells (white, asterisks) and connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrows)
191 nearby. The inset (right) shows the neuronal marker beta-III-tubulin (red) expressing dendritic stretch of a
192 connected^{TUM} neuron (green, arrow). Arrowheads point to only beta-III-tubulin expressing, unconnected^{TUM}
193 neurons (red). Zoom-in showing dendritic spines (arrows) of a connected^{TUM} neuron.

194 (D) Retrograde tracing in a patient-derived xenograft model (PDX). Shown is an exemplary brain
195 section, where S24 GB^{Starter} cells (white) and connected^{TUM} neurons (SAD-B19^{ΔG}-eGFP(EnvA), green) are
196 visible. Arrow points to distant connected^{TUM} neurons on the contralateral hemisphere. The inset is a zoom-
197 in on the tumor site (dashed white circle).

198 (E) An exemplary connected^{TUM} neuron is shown from the brain slice from D (left). 3D rendering of
199 dendritic stretches (right) showing that dendritic spines (arrows) can be distinguished in connected^{TUM}
200 neurons.

201 (F) Retrograde tracing in human embryonic stem cell-induced neurons with human S24 GB^{Starter} cells
202 (white). Arrows show exemplary connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green). Asterisks point
203 to GB^{Starter} cells.

204 (G) Retrograde tracing in co-culture of rat cortical neurons with human S24 GB^{Starter} cells (white).
205 Arrows show exemplary connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green). Asterisks point to
206 GB^{Starter} cells.

207 (H) Confocal imaging of connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green) in a tissue section
208 from PDX model S24 stained against the neuronal marker NeuN (red). Arrows point to connected^{TUM}
209 neurons and arrowheads show only NeuN-positive, unconnected^{TUM} neurons.

210 (I) Quantification showing the portion of NeuN-positive cells from the retrogradely labeled,
211 connected^{TUM} neurons (SAD-B19^{ΔG}-eGFP(EnvA), green) (n = 705 GFP-positive cells in n = 10 different
212 patient-derived GB models).

213 (J) Confocal imaging of a patched connected^{TUM} neuron (CVS-N2c^{ΔG}-eGFP(EnvA), green) filled with
214 Neurobiotin and stained for streptavidin 647 (yellow).

215 (K) Representative examples of mEPSC (top), mIPSC (middle) and AP bursts after current injection
216 (bottom) of a connected^{TUM} neuron by whole-cell patch clamp recording.

217 (L) Probability maps of live cell time-lapse imaging demonstrating the sparse labeling approach. One
218 of many S24 GB cells (magenta) is labeled with rabies virus and becomes a GB^{Starter} cell (white,
219 arrowheads). Over a time course of 81h the neuronal connectome of this GB^{Starter} cell is traced and
220 connected^{TUM} neurons become infected (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrows). Rendered manual
221 segmentation representing the last time point of imaging (far right). Each dot represents a cell.

222 (M) Line plot indicating the change of (CVS-N2c^{ΔG}) eGFP fluorescence intensities of the GB^{Starter} cell
223 (magenta line) and its connected^{TUM} neurons (green lines) as shown in L. (CVS-N2c^{ΔG}) eGFP fluorescence
224 is indicative of rabies virus infection.

225 (N) Probability maps of live cell time-lapse imaging showing the dense labeling approach. Most GB
226 cells are labeled with rabies virus and become double-positive (white, arrowheads). Over 95h the neuronal
227 connectome of the whole tumor region imaged is traced. Arrows point to exemplary connected^{TUM} neurons.
228 Rendered manual segmentation representing the last time point of imaging (far right). Each dot represents
229 a cell.

230 (O) Line plot indicating the change of the (CVS-N2c^{ΔG}) eGFP fluorescence intensities of the GB^{Starter}
231 cells (magenta lines) and their connected^{TUM} neurons (green lines) as shown in N. (CVS-N2c^{ΔG}) eGFP
232 fluorescence is indicative of rabies virus infection.

233 (P) Quantification of the lag time with which (SAD-B19^{ΔG}/CVS-N2c^{ΔG}) eGFP fluorescence can be
234 observed in connected^{TUM} neurons after their respective GB^{Starter} cells have been infected with rabies via
235 GB^{Starter} cells (n = 49 GB^{Starter}-connected^{TUM} neuron pairs analyzed).

236

237 **Widespread functional neuron-tumor network communication in glioblastoma**

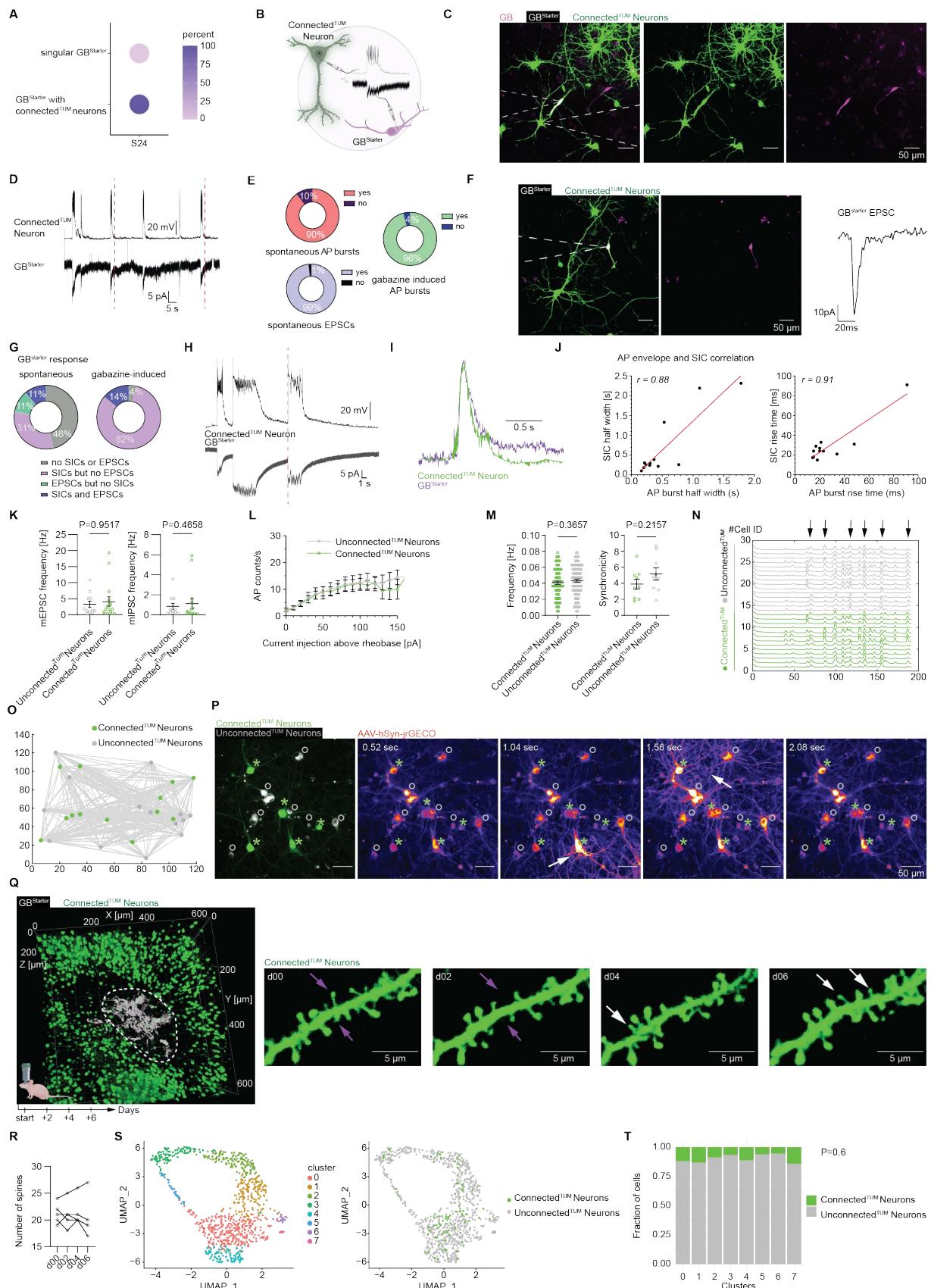
238 We aimed to understand the structural and functional connectivity between neurons linked to
239 tumor cells. Unexpectedly, we found in the early stages of glioblastoma colonization, all tumor

240 clusters label connected^{TUM} neurons, indicative of a high level of structural connectivity between
241 neurons and glioblastoma cells (Figure 2A). To characterize whether these are corresponding to
242 functional neuron-tumor networks, we performed paired whole-cell patch-clamp electrophysiology
243 of putatively connected^{TUM} neurons and glioblastoma cells in co-cultures of patient-derived
244 glioblastoma cells and neurons (Figure 2B). This allowed us to examine their electrophysiological
245 and functional connectivity (Figures 2C-E). We found that action potentials of connected^{TUM}
246 neurons correlate with either excitatory postsynaptic currents (EPSCs) or slow inward currents
247 (SICs) in glioma cells (Figures 2F, G).^{16,17} These co-active electrical activity patterns indicate
248 robust functional connectivity between connected^{TUM}, GFP-positive neurons and their
249 corresponding GB^{Starter} cells.

250 Interestingly, the application of the GABA receptor inhibitor gabazine triggered epileptiform activity
251 of connected^{TUM} neurons in co-cultures with GB^{Starter} cells, unveiling a significant proportion of
252 tumor cells (exceeding 96%) engaged in functional neuron-tumor networks (Figure 2E). A finding
253 that diverges from our initial observations under physiological conditions, where neuron-glioma
254 communication was presumed to be in the range of 10-30% of tumor cells (Figure 2G).¹⁶ This
255 suggests that the manifestation of functional connectivity within these networks may require
256 strong stimulation as in the case of neuronal hyperexcitability, occurring in later disease stages
257 of glioblastoma,^{13,14,56} highlighting the complex relationship between structural connectivity and
258 functional communication. We also found a strong correlation in neuronal action potential burst
259 slopes of connected^{TUM} neurons and the GB^{Starter} response in the form of SIC half width, rise time
260 and decay time, indicative of a sensitive functional connection (Figures 2H-J, S2A).

261 In summary, a majority of glioblastoma cells is functionally connected with neurons via SICs and
262 EPSCs in the early stages of glioblastoma evolution driven by neuronal action potentials.

263


264 **Diverse neuron-tumor network formation precedes neuronal dysfunction**

265 Next, we wanted to understand whether certain neuronal subpopulations are more prone to form
266 neuron-tumor networks and whether this connectivity influences neuronal function and gene
267 expression patterns. Upon examining both connected^{TUM} and unconnected^{TUM} neurons with
268 whole-cell patch-clamp electrophysiology, we could distinguish different neuronal subtypes such
269 as cortical regular-spiking neurons and intermittent spiking interneurons. Importantly, we found
270 no significant differences between connected^{TUM} and unconnected^{TUM} neurons in their
271 electrophysiological properties, including resting membrane potential, capacitance, and input
272 resistance (Figures S2B, C). Overall, there was no difference in synaptic connectivity between
273 connected^{TUM} and unconnected^{TUM} neurons demonstrated by the analysis of miniature excitatory
274 (mEPSC) or inhibitory (mIPSC) postsynaptic currents (Figures 2K, S2D-F). Further, our analysis
275 did not reveal variations in action potential firing patterns or neuronal excitability (Figures 2L,
276 S2G). In addition, we used multielectrode array recordings and calcium imaging to demonstrate
277 neuronal cultures with tumor cells show similar neuronal action potential burst- and firing rates
278 and do not differ in their synchronicity to neuronal cultures with no tumor, in early stages of
279 glioblastoma development (Figures S2H, I). Functional calcium imaging further demonstrated that
280 both connected^{TUM} and unconnected^{TUM} neurons exhibit similar cytoplasmatic calcium transient
281 frequencies and synchronicity (Figure 2M). Additionally, both of these neuronal populations also
282 show co-active calcium transient patterns (Figures 2N-P, Video S2). This observation expands
283 the concept of the neuron-tumor connectome, suggesting that connected^{TUM} neurons maintain
284 their integration within broader neural circuits even after establishing direct connections with
285 glioblastoma cells.

286 Next, we investigated whether the neuronal plasticity of connected^{TUM} neurons is affected by
287 neuron-tumor networks. For this purpose, we employed intravital longitudinal multiphoton
288 microscopy of patient-derived xenograft models to examine dendritic spine dynamics.
289 Interestingly, we found dynamics comparable to physiological dendritic plasticity as previously
290 described (Figures 2Q, R, Video S3).⁵⁷⁻⁶⁰

291 Complementing this functional investigation, we combined FACS and subsequent single-cell RNA
292 sequencing to analyze both connected^{TUM} and unconnected^{TUM} neuronal subpopulations six days
293 after rabies virus infection. This approach identified a consistent ratio of connected^{TUM} to
294 unconnected^{TUM} neurons across all gene expression clusters, suggesting a widespread
295 integration of tumor cells within neural networks irrespective of neuronal subpopulation (Figures
296 2S, T, S3, STAR Methods). This indicates the integration of glioblastoma cells into neural
297 networks did not discriminate based on the functional or molecular identity of neurons, further
298 highlighting the tumor's ability to hijack neuronal subpopulations broadly across the brain.
299 In summary, these data show that glioblastoma is able to connect with diverse neuronal
300 populations preceding neuronal dysfunction.

301

303 **Figure 2. Functional investigation of neuron-tumor networks**

304 (A) Quantification of GB^{Starter} cell connectivity percentage in co-cultures (n = 2529 GB^{Starter} cells in 10 samples).

306 (B) Schematic of paired whole-cell patch clamp electrophysiology of connected^{TUM} neurons and
307 GB^{Starter} cells.

308 (C) Representative image of a S24 GB^{Starter} cell (white) and adjacent connected^{TUM} neuron in co-culture
309 (CVS-N2c^{ΔG}-eGFP(EnvA), green). Dashed white lines indicate patch pipettes of paired patch.

310 (D) Exemplary electrophysiological traces of a connected^{TUM} neuron (top) and its respective S24
311 GB^{Starter} cell (bottom). Red dashed lines indicating synchronized events.

312 (E) Quantification of neuronal activity of connected^{TUM} neurons with spontaneous AP bursts (left, top,
313 n = 59 cells), spontaneous EPSCs (left, bottom, n = 59 cells) and gabazine-induced AP bursts (right, n =
314 25 cells).

315 (F) Representative image of patched S24 GB^{Starter} cell (white, CVS-N2c^{ΔG}-eGFP(EnvA)) and
316 corresponding EPSC trace. Dashed white lines indicate patch pipette.

317 (G) Quantification of electrophysiological GB^{Starter} response in the form of no response, only EPSCs,
318 only SICs or both, under baseline condition (left, n = 63 pairs) and after stimulation with gabazine (right, n
319 = 28 pairs).

320 (H) Representative traces of paired-patched connected^{TUM} neuron (top) and GB^{Starter} cell (bottom)
321 showing neuronal AP bursts and responsive SICs. Synchronized electrophysiological traces indicated by
322 red dashed line.

323 (I) Exemplary overlay of AP burst slope and GB^{Starter} cell SIC.

324 (J) Correlation of AP envelopes and SICs. SIC halfwidth and AP burst half width (left), n = 12 pairs,
325 Pearson's r = 0.88, ANOVA F (df) = 33.8 (11), p = 0.0017. SIC rise time and AP burst rise time (right),
326 Pearson's r = 0.91, ANOVA F (df) = 49.8 (11), p = 0.00035.

327 (K) Mean frequencies of mEPSCs and mIPSCs (n = 11 unconnected^{TUM} and n = 15-16 connected^{TUM}
328 neurons, Mann-Whitney test).

329 (L) Input-output relationship between the current injected relative to the rheobase current and the
330 number of action potentials generated over 1 s in connected^{TUM} (n = 10) and unconnected^{TUM} (n = 9) regular-
331 spiking neurons.

332 (M) Calcium transient frequency (left) and synchronicity (right) of connected^{TUM} and unconnected^{TUM}
333 neurons (n = 75 connected^{TUM} and 95 unconnected^{TUM} neurons in 9 regions of interest, Mann-Whitney test
334 (frequency) and unpaired t-test (synchronicity).
335 (N) Representative individual calcium traces of connected^{TUM} and unconnected^{TUM} neurons. Arrows
336 pointing to exemplary synchronized events affecting all neurons.
337 (O) Exemplary connected^{TUM} and unconnected^{TUM} calcium coactivity map.
338 (P) Dual-color calcium imaging of unconnected^{TUM} (gray) and connected^{TUM} (CVS-N2c^{ΔG}-eGFP(EnvA),
339 green) neurons using AAV-jrGECO (fire) in co-culture. Asterisks show connected^{TUM} neurons, circles point
340 to unconnected^{TUM} neurons.
341 (Q) 3D rendering of *in vivo* two-photon longitudinal imaging of S24 GB^{Starter} cells (white) and
342 connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green). Tumor overview is shown on the left. Main tumor
343 mass is marked with a dashed circle. Exemplary time-lapse imaging of a dendritic stretch over 6 days
344 (right). White arrows point to new spines and purple arrows point to retracted spines.
345 (R) Quantification of the dendritic turnover in connected^{TUM} neurons *in vivo* (n = 106 dendritic spines
346 followed over time in n = 2 mice).
347 (S) UMAP plots showing clustering of connected^{TUM} and unconnected^{TUM} neurons of sequenced co-
348 cultures (n = 97 connected^{TUM} neurons and n = 811 unconnected^{TUM} neurons).
349 (T) Distribution of connected^{TUM} and unconnected^{TUM} neurons across clusters showing no significant
350 differences (n = 97 connected^{TUM} neurons and n = 811 unconnected^{TUM} neurons, Fischer test (10⁵
351 simulations)).

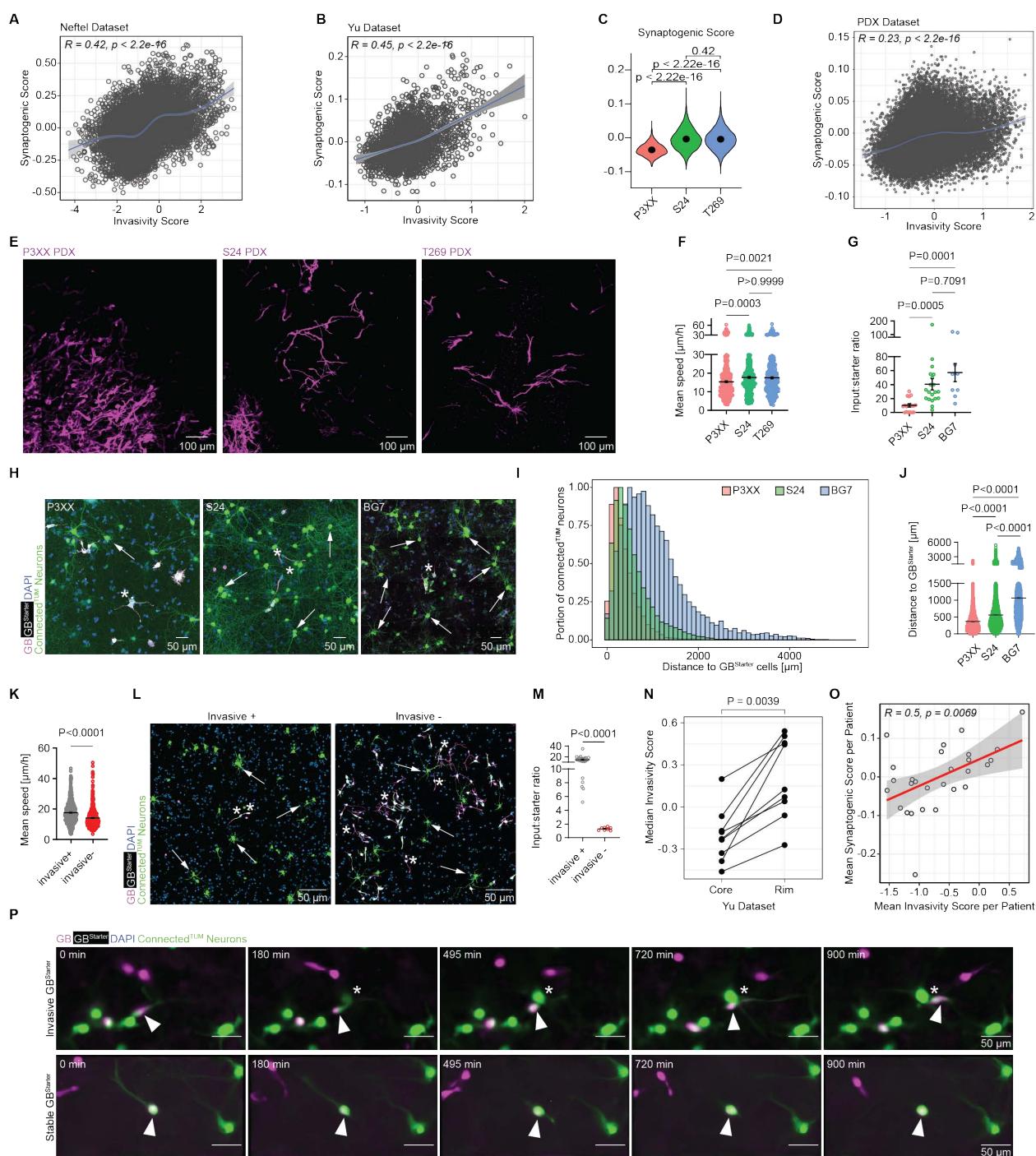
352

353 **Neuron-tumor connectivity is patient- and cell state-dependent**

354 As patient-specific and tumor cell-state driven heterogeneity is one hallmark of glioblastoma,^{5,7,8}
355 we wanted to investigate tumor-intrinsic mechanisms driving neuron-tumor connectivity. For this
356 purpose, we integrated analyses of neuron-tumor connectivity via retrograde tracing, histological
357 tumor growth patterns of patient-derived xenografts, and single-cell RNA sequencing data from
358 glioblastoma patients and patient-derived models. This comprehensive approach allowed us to

359 examine the functional connectivity of these models, revealing how invasive properties of
360 glioblastoma are associated with higher neuron-tumor connectivity.

361 To assess the capacity of cells from different patient-derived models to form synaptic networks,
362 we used genes associated with the GO term for synaptogenesis^{61,62} to calculate a synaptogenic
363 module score on single-cell RNA sequencing data (STAR Methods). In addition, we made use of
364 a single-cell RNA sequencing-based invasivity score that was associated with invasive growth
365 across glioblastoma patients and patient-derived models (Figures 3A, B).⁸ Interestingly, patient-
366 derived models with a high synaptogenic score, such as S24 and T269, also show a high invasivity
367 score (Figures 3C, D).⁸ In line with these data, patient-derived tumor models with a high
368 synaptogenic and invasivity score also show a significantly higher mean somatokinetic speed
369 than ones with a lower synaptogenic and invasivity score (Figures 3E, F). Our analysis indicated
370 that tumor models with a higher propensity for invasion also exhibited greater neuronal
371 connectivity. For this purpose, we determined the average number of connected^{TUM} neurons per
372 GB^{Starter} cell, referred to as input-to-starter ratio. The highly invasive patient-derived models S24
373 and BG7 showed a mean input-to-starter ratio of approximately 40/57 +/- 8.19/12.85 respectively,
374 whereas the less invasively growing patient-derived spheroid model P3XX showed a mean input-
375 to-starter ratio of about 10 +/- 2.26 (Figures 3G, H, S5A, B). Furthermore, the distance distribution
376 of connected^{TUM} neurons to GB^{Starter} cells is significantly higher in invasive patient-derived models
377 with a mean distance of 563.8 µm +/- 2,63 in S24, 1065 +/- 7.28 µm in BG7 and 366.1 +/- 2.19
378 µm in P3XX (Figures 3I, J, S5C, D), suggesting a broader connectivity across larger distances.
379 This underlines a strong correlation between synaptogenic gene expression profiles of
380 glioblastoma across patient-derived models, their ability to integrate into neuron-tumor networks
381 and their functionally relevant invasive cell state.


382 These results raised the intriguing question to which extent functionally distinct invasive and
383 stationary glioblastoma cell states receive synaptic input within the same patient. For this purpose,

384 we adopted an approach combining longitudinal, *in vivo* two-photon microscopy and serial section
385 scanning electron microscopy to analyze synaptic connectivity across functional cell states in
386 glioblastoma within the same patient-derived model (S24) (Figure S5E). Interestingly, this
387 approach revealed synaptic inputs to both actively invading glioblastoma cells and to stationary
388 tumor cells (Figures S5F, G, Video S4).⁸ To quantify whether invasive tumor cell states receive
389 more neuronal input, we made use of combined live-cell imaging and retrograde tracing. Here,
390 we found that more invasive tumor microregions showed a significantly higher neuron-tumor cell
391 connectivity ratio (Figures 3K-M). These findings are in accordance with a significantly higher
392 invasivity and synaptogenic score in the tumor rim as compared to the core within each patient,
393 matching also the correlation of the invasivity and the synaptogenic scores per patient (Figures
394 3N, O, S5H).

395 In line with these data, we observed new infections occurring around invading GB^{Starter} cells that
396 seem to label connected^{TUM} neurons *en passant* via transient synaptic contacts (Figure 3P, Video
397 S5).

398 These findings collectively underscored the association between a tumor cell's synaptogenic
399 potential at the RNA expression level with neuron-tumor connectivity and its invasiveness.

400

401

402 **Figure 3. Influences of patient-and cell state-specific factors on neuron-tumor**
403 **connectivity**

404 (A) Correlation of synaptogenic and invasivity score in Neftel dataset⁵ (n = 7929 cells, Pearson's test).

405 (B) Correlation of synaptogenic and invasivity score in Yu dataset⁶³ (n = 2795 cells, Pearson's test).

406 (C) Synaptogenic score compared in 3 PDX models P3XX, S24 and T269 (n = 27293 cells, Wilcoxon
407 test).

408 (D) Correlation of synaptogenic versus invasivity score in PDX models (n = 27293 cells, Pearson's
409 test).

410 (E) *In vivo* two-photon microscopy of 3 different PDX models (P3XX (left), S24 (middle), T269 (right))
411 showing the invasive tumor front. Images were processed with denoise.ai.

412 (F) Mean invasion speed of 3 different patient-derived models P3XX (left), S24 (middle) and T269
413 (right) in co-culture (n = 392 cells for P3XX, n = 435 cells for S24, n = 332 for T269, Kruskal-Wallis test).

414 (G) Input-to-starter ratio comparison of 3 patient-derived models in co-culture (n = 20 (S24), n = 18
415 (P3XX), n = 9 (BG7) samples, Kruskal-Wallis test).

416 (H) Representative images of retrograde tracing in patient-derived models P3XX (left), S24 (middle)
417 and BG7 (right), showing GB^{Starter} cells (white) and their neuronal-connectome (CVS-N2c^{ΔG}-eGFP(EnvA),
418 green). Asterisks show exemplary GB^{Starter} cells and arrows point to exemplary connected^{TUM} neurons.

419 (I) Histogram showing an overlay of the portion of connected^{TUM} neurons in relation to the distance to
420 GB^{Starter} cells for patient-derived models P3XX, S24 and BG7 in co-culture.

421 (J) Comparison of distance between connected^{TUM} neurons to GB^{Starter} cells in three patient-derived
422 models in co-culture as shown in I (n = 30219 (S24), n = 17726 (P3XX), n = 10877 (BG7) cells in 3 biological
423 replicates, one-way ANOVA).

424 (K) Mean invasion speed shown in highly invasive microregions (DIV5-7) as compared to more stable
425 regions (DIV12-13) in co-cultures with S24 (n = 630 cells in invasive region, n = 631 in non-invasive region,
426 Mann-Whitney test).

427 (L) Exemplary images of highly invasive regions (left) and less invasive regions (right). Shown are S24
428 GB^{Starter} cells (white, asterisks) and their connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrows).

429 (M) Input-to-starter ratio of highly invasive microregions (DIV5 infection) compared to less invasive,
430 more stable microregions (DIV11 infection) in S24 co-cultures (n = 23 invasive+ and n = 8 invasive- regions,
431 Mann-Whitney test).

432 (N) Median invasivity score in rim versus core regions from different patients in Yu dataset⁶³ (n = 2795
433 from 9 patients, Wilcoxon test).

434 (O) Mean invasivity score correlated with mean synaptogenic score per patient in the Neftel dataset⁵
435 (n = 7929 cells from 28 patients, Pearson's test).

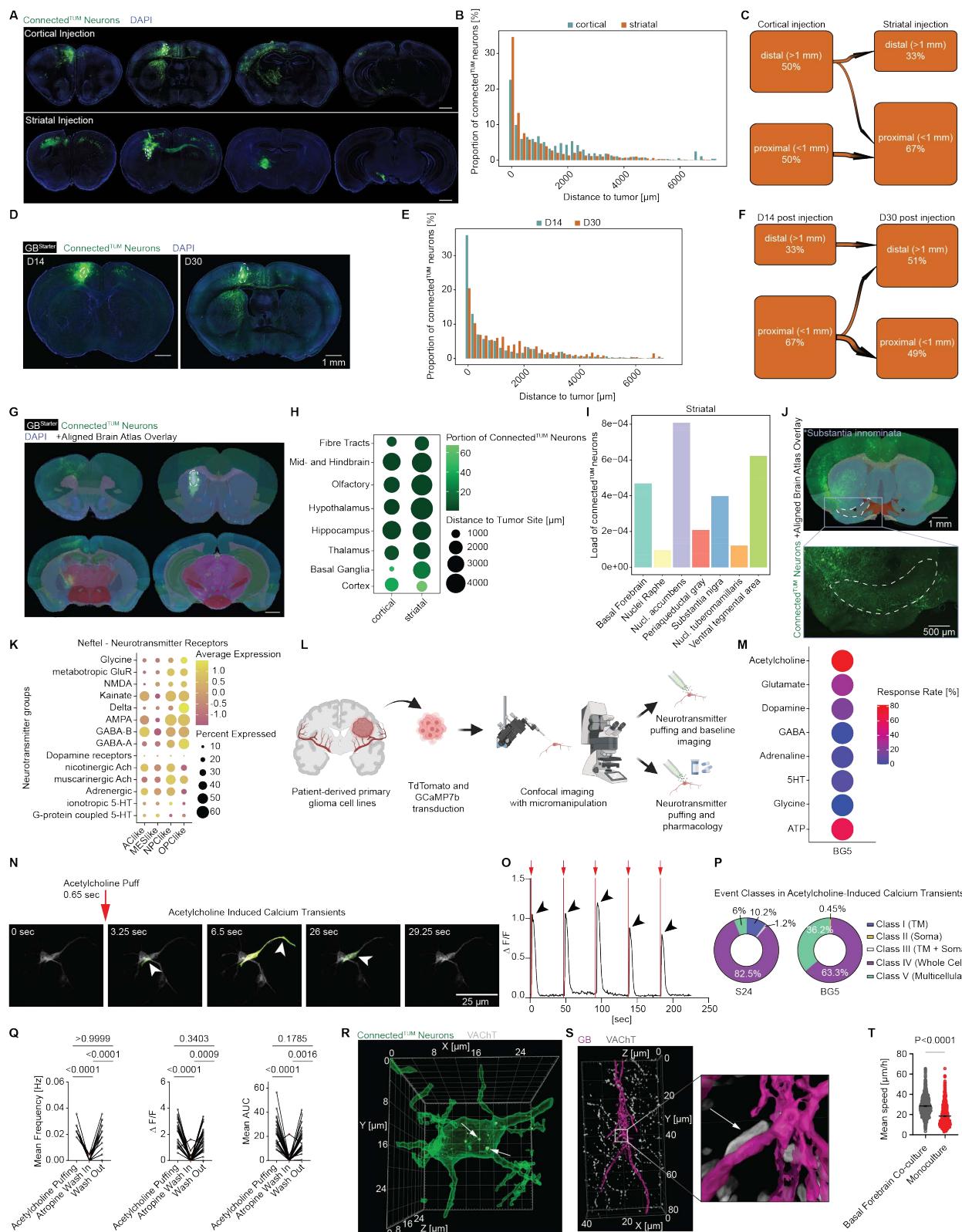
436 (P) *In vitro* live cell time-lapse imaging portraying an invasive S24 GB^{Starter} (white) and connected^{TUM}
437 neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, above). Asterix points to a newly infected, connected^{TUM} neuron
438 adjacent to an invading GB^{Starter} cell (arrowhead). Live cell time-lapse imaging showing a stable S24 GB^{Starter}
439 cell (white, arrowheads) and connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, below). Images were
440 processed with denoise.ai.

441

442 **Brain-wide recruitment of neuronal circuits by glioblastoma**

443 Having explored the role of tumor-intrinsic factors, we examined the role of brain tumor-bearing
444 regions on the formation of neuron-tumor networks.²⁵ For this purpose, we implanted patient-
445 derived GB^{Starter} cells into the cortex and striatum of mice, both regions frequently affected in
446 glioblastoma patients.⁶⁴ Investigation of patient-derived xenograft models at early stages of
447 glioblastoma colonization (Figure S5A) revealed both long-range projections throughout the brain,
448 including the contralateral hemisphere,²⁵ as well as proximally connected^{TUM} neurons, organizing
449 as locally connected clusters (Figures S5B, C). These long-range projections can be clearly
450 delineated, further supported by data from co-culture models (Figure S5D). Specifically, our
451 findings indicated that glioblastoma cells injected into the cortex exhibit more dispersed
452 connectivity throughout the brain compared to those injected into the striatum (Figures 4A-C,
453 S5E). While cortically localized glioblastoma showed 50% of distal connected^{TUM} neurons (defined
454 as neuronal somata more than 1 mm away from the nearest GB^{Starter} cell), striatal tumors had 33%
455 on average. Overall, we found approximately 9 and 14% connected^{TUM} neurons (on average 12
456 (+/-2)% across brain tumor regions) labeled on the contralateral hemisphere in patient-derived
457 xenografts of cortical and striatal tumors respectively, highlighting the important role of long-range
458 neuron-tumor networks contributing to the overall glioblastoma connectome (Figure S5F).
459 Our analysis also demonstrates that the proportion of distal connections of the tumor significantly
460 increases over time, indicating a more dispersed brain-wide recruitment of neuronal circuits as

461 the tumor progresses, diminishing the role of main tumor mass location on the spread of
462 connected^{TUM} neurons during tumor progression (Figures 4D-F, S5G).
463 The quantification of connected^{TUM} neurons by brain regions showed that glioblastoma cells in
464 both cortical and striatal regions most frequently received neuronal input from cortex, the basal
465 ganglia and the thalamus (Figure 4H, S5H).⁶⁵⁻⁶⁹ While cortically localized glioblastoma cells
466 received input mainly from isocortex, both from the ipsi- and contralateral side, striatal
467 glioblastoma cells received most neuronal input from the basal ganglia, reflecting the high degree
468 of neuronal connectivity within the brain regions from both cortex and basal ganglia.^{65-68,70}
469 Interestingly, the recruited brain regions included the brainstem as pathophysiologically important
470 regions where invasion along axonal tracts mediates lethality of glioblastoma (Figure S5H, I).⁷¹
471 Although the overall degrees of neuron-tumor connectivity is dependent on the tumor-bearing
472 region, the overall pattern of brain-wide distribution is comparable between the cortical and striatal
473 brain tumors. This illustrates the conserved recruitment from glioblastoma of neural circuits across
474 brain regions (Figures 4I, S5J).


475

476 **Functional and structural acetylcholinergic neuron-tumor communication**

477 Interestingly, distinct neuromodulatory circuits, such as those in the substantia innominata, which
478 primarily consists of acetylcholinergic neurons,⁷²⁻⁷⁴ were recruited by glioblastoma (Figures 4I, J,
479 S5J). To investigate the capacity of glioblastoma to directly communicate with different neuronal
480 subpopulations, we compared co-cultures with GB^{Starter} cells and neurons from the basal forebrain,
481 cortex and hippocampus. Interestingly, the input-to-starter ratio was not significantly different
482 (Figures S5K, L). In line with these data, we found extensive recruitment of both glutamatergic
483 and acetylcholinergic excitatory and GABAergic, inhibitory neurons in patient-derived xenografts
484 and co-culture models (Figures S5M-Q). These findings highlight the tumor's capability to
485 integrate with various neurotransmitter systems across the brain. Supporting these findings, an
486 unbiased analysis of publicly available single cell sequencing data⁵ showed that glioblastoma

487 cells from human patients express genes from a broad variety of neurotransmitter receptor
488 classes (Figures 4K, S6A). Based on the diverse neuronal subpopulations recruited by
489 glioblastoma and neurotransmitter receptor gene expression profiles, we investigated whether
490 different neurotransmitters released by connected^{TUM} neurons could lead to a functional response
491 in glioblastoma cells. For this purpose, we established a functional neurotransmitter receptor
492 screening approach (Figure 4L). Here, a targeted burst of eight neurotransmitters was
493 sequentially applied directly onto glioblastoma cells stably expressing the genetically encoded
494 calcium indicator GCamp7b.⁷⁵ The resulting correlated calcium events within glioblastoma cells,⁸
495 triggered by a localized, time-resolved application of neurotransmitters with a high concentration
496 similar to synaptic stimulation, served as a direct measure of functional neurotransmitter receptor
497 expression. These calcium events could be classified into four event classes reaching from
498 subcellular localization within a glioblastoma cell to multicellular events, as described previously.⁸
499 Our results indicate that glioblastoma cells are responsive to a wide range of neurotransmitters
500 to a varying extent (Figures 4M, S6B). Interestingly, acetylcholine, ATP, glutamate and dopamine
501 led to high degrees of responsiveness in two patient-derived models (S24, BG5), in line with the
502 recruitment of neuromodulatory circuits and glutamatergic, excitatory neurons by glioblastoma
503 across patient-derived xenograft models. The event areas of calcium transients after
504 neurotransmitter response are consistently larger than those observed spontaneously, further
505 reflected by higher rates of whole cell and multicellular transients in response to acetylcholine and
506 glutamate (Figures 4N-P, S6C, Video S6). In contrast, GABA, serotonin and glycine showed low
507 responsiveness of glioblastoma in both patient-derived models. The lack of functional GABA
508 receptor expression in adult glioblastoma, as previously reported,¹⁹ contrasts with the structural
509 recruitment of glioblastoma with GABAergic, inhibitory neurons. This suggests other pathways of
510 neuron-tumor communication, potentially driving glioblastoma biology.
511 Next, we further characterized the functional acetylcholine receptor expression in glioblastoma
512 cells. Here, we found that the muscarinic acetylcholine receptor blocker atropine blocked

513 acetylcholine-induced calcium events (Figures 4Q, S6D, E). Further investigation of single cell
514 sequencing datasets^{5,63} revealed that the muscarinic acetylcholine receptor M3 (CHRM3) is
515 highly expressed in glioblastoma (Figures S6F, G).
516 Based on this molecular evidence, we investigated whether structural, synaptic connections
517 between cholinergic neurons and glioblastoma cells could be detected. First, we validated that
518 connected^{TUM} neurons indeed express the vesicular acetylcholine transporter (VACHT) and
519 employing high-resolution light microscopy, could show there are putative cholinergic synapses
520 directly onto the tumor cell membrane in a patient-derived xenograft model (Figures 4R, S).
521 Lastly, we investigated whether acetylcholinergic neurons, similar to glutamatergic neurons,⁸
522 could promote glioblastoma somatokinesis. Interestingly, we found that neurons from the basal
523 forebrain promoted glioblastoma migration while monocultures of glioblastoma showed
524 significantly slower somatokinesis, suggesting an important effect of acetylcholinergic neurons on
525 invasive properties of glioblastoma (Figures 4T, S6H).
526 Taken together, local and distant neural circuits were recruited revealing extensive
527 communication via diverse neurotransmitter receptor systems revealing acetylcholine as a
528 functional neurotransmitter in neuron-to-glioma communication. However, the role of
529 acetylcholine for glioblastoma biology is yet to be further characterized.
530

531

532 **Figure 4. Brain tumor-bearing region-dependent formation of neuron-tumor networks**

533 (A) Exemplary *ex vivo* brain overviews of cortical (above, SAD-B19^{ΔG}-eGFP(EnvA)) and striatal (below,
534 CVS-N2c^{ΔG}-eGFP(EnvA)) tumors in PDX model S24. Dashed white lines indicate the tumor localization.
535 Scale bar = 1 mm.

536 (B) Histogram showing the distribution of connected^{TUM} neurons in relation to the distance from the
537 tumor site for cortical (blue) and striatal (orange) tumors (n = 8839 connected^{TUM} neurons in n = 7 cortical
538 tumors, n = 30528 connected^{TUM} neurons in n = 11 striatal tumors from three PDX models (S24, BG5,
539 P3XX)).

540 (C) River plot illustrating the distribution of distal and proximal tumor-to-neuron connections for cortical
541 and striatal tumors (n = 8839 connected^{TUM} neurons in n = 7 cortical tumors, n = 30528 connected^{TUM}
542 neurons in n = 11 striatal tumors from three PDX models (S24, BG5, P3XX)).

543 (D) Representative brain sections showing the progressions of the tumor and its connectome between
544 14 and 30 days following tumor injection in PDX model S24 (SAD-B19^{ΔG}-eGFP(EnvA)). Dashed white lines
545 indicate the tumor localization.

546 (E) Histogram showing the distribution of connected^{TUM} neurons in relation to the distance from the
547 tumor site 14 (blue) and 30 (orange) days following tumor injection (n = 26419 connected^{TUM} neurons in n
548 = 11 D14 tumors, n = 12948 connected^{TUM} neurons in n = 7 D30 tumors from three PDX models (S24, BG5,
549 P3XX)).

550 (F) River plot illustrating the distribution of distal and proximal neuron-tumor connections 14 and 30
551 days following tumor injection (n = 26419 connected^{TUM} neurons in n = 11 D14 tumors, n = 12948
552 connected^{TUM} neurons in n = 7 D30 tumors from three PDX models (S24, BG5, P3XX)).

553 (G) Exemplary brain sections of PDX model S24 aligned to the Allen Brain Atlas using the QUINT
554 workflow (STAR Methods). Connected^{TUM} neurons are shown in green (CVS-N2c^{ΔG}-eGFP(EnvA)). Dashed
555 white circle indicates the tumor localization. Scale bar = 1 mm.

556 (H) Dot plot showing the brain region affinity of connected^{TUM} neurons depending on tumor site (n =
557 8839 connected^{TUM} neurons in n = 7 cortical tumors, n = 30528 connected^{TUM} neurons in n = 11 striatal
558 tumors from three PDX models (S24, BG5, P3XX)).

559 (I) Bar plot showing the load of connected^{TUM} neurons in various neuromodulatory circuits (n = 30528
560 connected^{TUM} neurons in n = 11 striatal tumors from three PDX models (S24, BG5, P3XX)).

561 (J) Representative brain slice of PDX model S24 with connected^{TUM} neurons in the basal forebrain as
562 shown by the alignment to the Allen Brain Atlas. The substantia innominata is marked with a dashed line.

563 (K) Dot plot showing the expression of various neurotransmitter groups of different gene-based cell
564 states in the Neftel dataset⁵ (n = 7929 cells).

565 (L) Schematic workflow of the functional neurotransmitter screening in co-culture.

566 (M) Dot plot indicating the calcium transient response rate to stimulation with different neurotransmitters
567 (n = 78 cells from patient-derived model BG5 in n = 7 independent experiments).

568 (N) Time-lapse imaging showing an exemplary acetylcholine puff and the following acetylcholine-
569 induced calcium transients in a BG5 GB cell. Arrowheads point to the calcium transient.

570 (O) Calcium imaging trace of GB cell showing acetylcholine stimulation (arrows) and the following
571 calcium transients (arrowheads).

572 (P) Pie charts showing the distribution of event classes in acetylcholine-induced calcium transients in
573 two different patient-derived models (n = 166 events in n = 47 cells for S24, n = 221 events in n = 51 cells
574 for BG5).

575 (Q) Mean calcium event frequency, ΔF over F and area under curve (from left to right) of calcium
576 transients in response to acetylcholine puffing, blocking through atropine and after wash-out in S24 (n = 22
577 cells in 2 independent experiments, Friedman test).

578 (R) 3D rendering of a connected^{TUM} neuron (CVS-N2c^{ΔG}-eGFP(EnvA), green) showing VACHT (gray,
579 arrows) expression.

580 (S) 3D rendering of a putative cholinergic synapse (arrow) on a GB cell (magenta) shown with staining
581 against VACHT (gray).

582 (T) Mean invasion speed of S24 GB cells in a basal forebrain co-culture system compared to in only
583 S24 GB monoculture (n = 998 cells in co-culture and n = 978 cells in monoculture, Mann-Whitney test).

584

585 **Radiotherapy-driven remodeling of neuron-tumor networks**

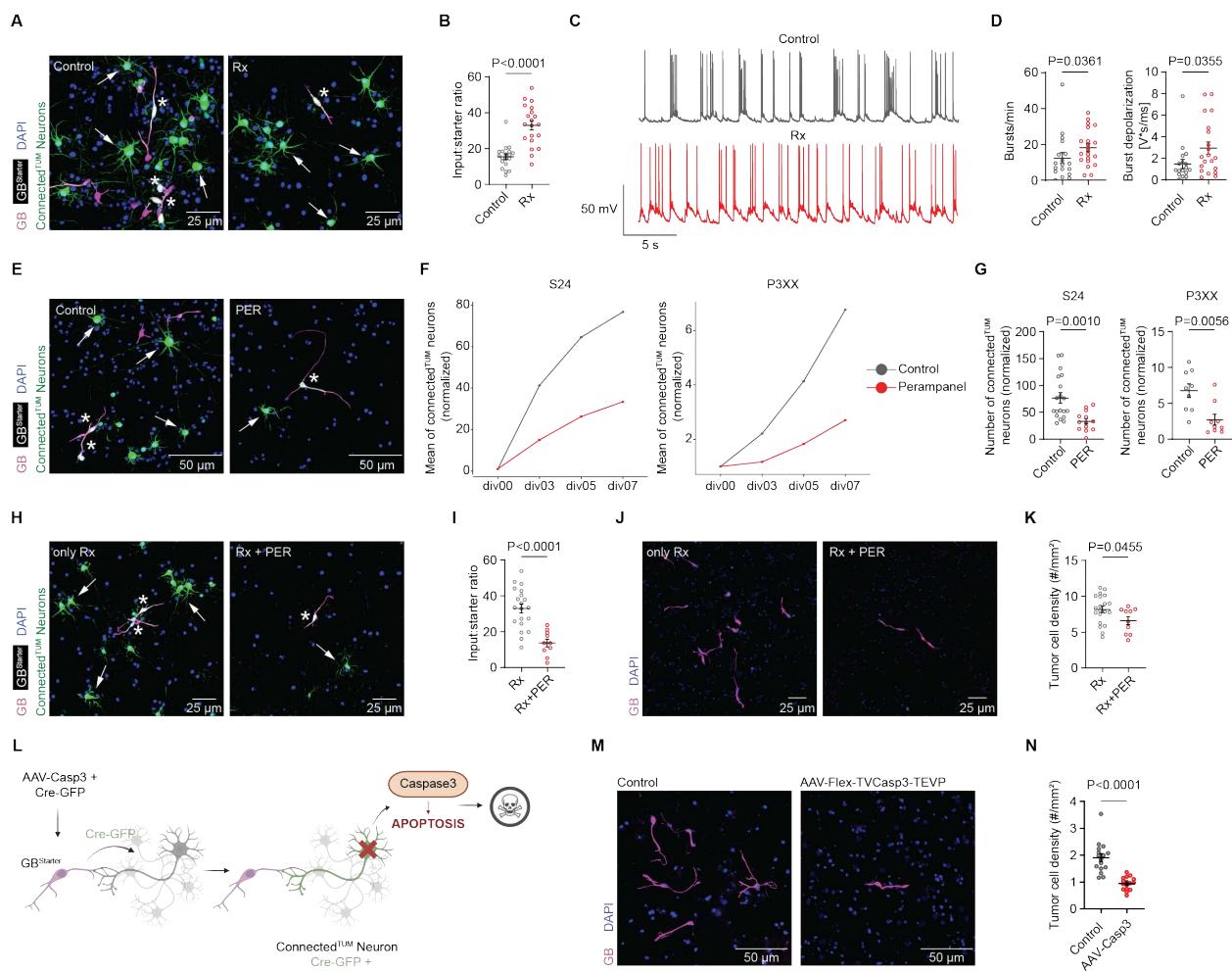
586 Increasing sequencing data of matched primary and recurrent glioblastoma samples show
587 conflicting results regarding the role of the neural microenvironment and glioblastoma's intrinsic

588 neural signatures for its notorious therapeutic resistance.^{11,76,77} Exploiting time-resolved, rabies-
589 mediated retrograde tracing, we aimed to investigate the role of neuron-tumor networks in
590 radiotherapy-induced therapeutic resistance in a co-culture model . We found that while
591 radiotherapeutic treatment reduced the glioblastoma cell number as expected (Figures S7A, B),
592 the average number of connected^{TUM} neurons per glioblastoma cells significantly increased,
593 overall increasing neuron-tumor connectivity (Figures 5A, B). We hypothesized the increased
594 neuron-tumor connectivity is driven by neuronal activity-dependent factors and performed whole-
595 cell patch-clamp electrophysiology of connected^{TUM} neurons with and without radiotherapy.
596 Interestingly, we saw a significant increase in action potential bursting activity following
597 radiotherapy, with a higher number of action potential bursts per minute and an increased area
598 under curve of action potential bursts (Figures 5C, D). In contrast, we did not see a change in the
599 basic electrophysiological properties of connected^{TUM} neurons after radiation, including resting
600 membrane potential, capacitance, input resistance and rheobase (Figures S7C, D) or in their
601 synaptic connectivity (Figures S7E-G). Taken together, the observation of increased action
602 potential bursts after radiotherapy is in line with clinical observations of increased epileptic
603 seizures among a subset of glioma patients following radiotherapy.⁷⁸
604 Next, we investigated whether neuron-tumor connectivity is driven by neuronal activity, similar to
605 synaptogenesis in neuron-to-neuron synapses.^{79,80} For this purpose, we employed the non-
606 competitive AMPAR antagonist perampanel (PER), commonly used as antiepileptic drug to inhibit
607 neuronal activity.⁸¹ In consequence, the neuron-tumor connectivity and tumor cell number
608 significantly decreased, highlighting the role of intrinsic neuronal activity in the formation of
609 neuron-tumor networks (Figures 5E-G, S7H).^{8,16,17}
610 These data led us to the question whether simultaneous inhibition of neuronal activity and
611 radiotherapy would decrease neuron-tumor network connectivity and increase therapeutic
612 efficacy.

613 Interestingly, we saw that neuron-tumor connectivity is significantly reduced after combined
614 radiotherapy and AMPAR inhibition as compared to radiotherapy alone (Figures 5H, I). In
615 consequence, we could also see how glioblastoma progression was reduced by this therapy
616 combination, indicative of neuron-to-glioma synaptic communication contributing to therapeutic
617 resistance (Figures 5J, K).

618 Taken together, radiotherapy-induced neuronal activity promotes neuron-tumor connectivity with
619 combined inhibition of neuronal activity and radiotherapy showing increased therapeutic effects,
620 requiring further clinical-translational investigation.

621


622 **Rabies virus-based ablation of tumor-connected neurons inhibits glioblastoma
623 progression**

624 In addition to pharmacological perturbation of neuron-tumor networks, we investigated whether
625 retrograde tracing with the modified rabies virus itself could be used to specifically ablate both
626 local and distant connected^{TUM} neurons to inhibit glioblastoma progression. For this purpose, we
627 implemented a Cre-loxP strategy to specifically ablate connected^{TUM} neurons in a co-culture
628 model. Thus, we infected the neural tumor microenvironment with an AAV expressing a Cre-
629 dependent genetically engineered designer caspase 3, a caspase whose activation drives cells
630 to apoptosis. Hereby, we could specifically kill connected^{TUM} neurons and investigate its effect on
631 tumor cells (Figure 5L).^{82,83} The eradication of connected^{TUM} neurons across all neuronal subtypes
632 resulted in a significant reduction of tumor cells as compared to controls (Figures 5M , N).

633 Taken together, these data demonstrate how a modified rabies virus could in principle be used to
634 kill heterogeneous connected^{TUM} neuronal subpopulations via retrograde infection and thus inhibit
635 glioblastoma growth.

636

637

638

639 **Figure 5. Tackling neuron-tumor networks with rabies and combined radiotherapy and**
 640 **neuronal activity inhibition.**

641 (A) Probability maps of S24 GB^{Starter} cells (white, asterisks) and connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrows) in co-culture under control conditions (left) versus after radiation therapy with 642 4 Gray (right).

643 (B) Input-to-starter ratio under control compared to radiotherapy conditions (n = 19 control versus 20 644 radiotherapy-treated samples, Mann-Whitney test).

645 (C) Representative whole-cell current-clamp recordings of spontaneous burst firing in connected^{TUM} 646 neurons under control conditions (top) versus after radiotherapy (bottom).

647 (D) Bursts per minute (left panel, n = 18 control and n = 20 irradiated neurons, Mann-Whitney test) and 648 normalized burst area (right panel, n = 18 control and n = 20 irradiated neurons, Mann-Whitney test).

650 (E) Exemplary probability maps of the neuronal connectome of glioblastoma under control condition
651 (left) versus perampanel treatment (right) showing GB^{Starter} cells (white, asterisks) and connected^{TUM}
652 neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrows).

653 (F) Normalized mean count of connected^{TUM} neurons in S24 (left) and P3XX (right) GB patient-derived
654 models over a time course of 7 days under control conditions and perampanel treatment (n = 19 control
655 versus 13 perampanel-treated samples in S24, n = 9 control versus n = 9 perampanel-treated samples in
656 P3XX).

657 (G) Quantitative comparison of normalized mean count of connected^{TUM} neurons in S24 (left) and P3XX
658 (right) on day 07 of treatment (n = 19 control versus 13 perampanel-treated samples in S24, n = 9 control
659 versus n = 9 perampanel-treated samples in P3XX, Mann-Whitney test).

660 (H) Probability maps of GB^{Starter} cells (white, asterisks) and connected^{TUM} neurons (CVS-N2c^{ΔG}-
661 eGFP(EnvA), green, arrows) in only irradiated (left) versus simultaneous irradiation and perampanel-
662 treatment (right) conditions.

663 (I) Input-to-starter ratio in only irradiated versus simultaneous irradiation and perampanel-treatment
664 conditions (n = 20 only irradiated versus 10 irradiated and perampanel-treated samples, unpaired t-test).

665 (J) Representative images of tumor regions in only irradiated (left) compared to simultaneous
666 irradiation and perampanel treatment (right) conditions in S24 co-culture.

667 (K) Tumor cell density in cell count per mm² under only irradiated conditions compared to a combination
668 of irradiation and perampanel-treatment in co-culture (n = 20 only irradiated versus 10 irradiated and
669 perampanel-treated samples, unpaired t-test).

670 (L) Schematic of experimental paradigm for genetic ablation of connected^{TUM} neurons.

671 (M) Representative images of *in vitro* S24 GB cells under control conditions (left) compared to the
672 genetic ablation of connected^{TUM} neurons (right).

673 (N) Quantification of S24 tumor cell density in cell count per mm² under control conditions compared
674 to the genetic ablation of connected^{TUM} neurons in co-culture (n = 16 control compared to n = 16 caspase
675 treated samples, Mann-Whitney test).

676

677 **DISCUSSION**

678 It is becoming increasingly clear that synaptic neuron-tumor networks are an important hallmark
679 of yet incurable glioblastomas.^{12,13} Our research introduces a comprehensive and reproducible
680 methodology platform capable of investigating the neuronal connectome of glioblastoma across
681 a range of models, from purely human tissue models over co-culture models of neurons and
682 tumors to patient-derived xenografts. Technologies such as monosynaptic retrograde tracing are
683 especially important in the context of highly invasive tumors such as glioblastoma. This contrasts
684 sharply with traditional dye injection techniques that could get taken up by neurons nearby tumor
685 cells, precluding cellular specificity of the labeled neuronal connectome.²⁹ Importantly, the ability
686 to investigate the neuronal connectome of patient-derived models in a human tissue context
687 opens up the potential for personalized therapeutic approaches, disconnecting neuron-tumor
688 networks.

689 By integrating longitudinal imaging, electrophysiology, molecular characterization, and functional
690 tumor biological assays, we have gained important insights into the malignant circuitry's evolution.
691 A nuanced picture has emerged, revealing the bidirectional mechanisms that underpin neuron-
692 tumor connectivity: tumor cells establish transient, functional connections with neurons regardless
693 of their molecular or functional properties. Concurrently, the functional connectivity between
694 neurons and tumor cells can be significantly increased by neuronal activity.

695 The impact of known glioma-induced alterations in neural circuits^{17,24,46,49,84} on overall brain
696 function and their contribution to disease advancement warranted further investigation. Our
697 findings showed that, at least in the initial stages of glioblastoma colonization, the functional and
698 molecular properties of neurons remain unchanged, potentially setting the stage for neuronal
699 hyperexcitability as the disease progresses. Thus, these findings together suggest a model where
700 the establishing neuron-tumor networks precedes neuronal dysfunction in the course of the
701 disease. This would also be in concordance with clinical findings where epileptic seizures occur
702 in later disease stages where curable surgical resection of glioblastoma is no longer feasible.⁵⁶

703 Functional imaging of connected^{TUM} and unconnected^{TUM} neurons revealed that connected^{TUM}
704 neurons are well integrated into neural circuits of unconnected^{TUM} neurons, as evidenced by co-
705 active firing patterns. With neuronal activity being able to elicit calcium transients in glioblastoma
706 cells, this suggests the concept of a primary, directly connected and secondary, indirectly
707 connected neuronal connectome. These data also make it unlikely that connected^{TUM} neurons are
708 created via neurogenesis, a phenomenon that has been previously described in prostate cancer,⁸⁵
709 as neurons derived from neurogenesis presumably need several weeks of integrating into
710 neuronal networks.⁸⁶ These complex networks highlight the importance of investigating
711 bidirectional interactions between glioblastoma and the central nervous system across scales,
712 including distant and even non-tumor connected brain regions. The specificity of neural influence,
713 especially how particular neuronal types and neurotransmitters distinctively affect various cancer
714 types, remains an area for further investigation.

715 Our work highlights the readiness of tumor cells to engage in functional communication with
716 various neuronal subpopulations across the brain including various neuromodulatory circuits by
717 expressing a spectrum of neurotransmitter receptors. Specifically, we found functional,
718 muscarinic acetylcholine receptors on glioblastoma cells across patient-derived models and
719 structural acetylcholinergic neuron-to-glioma synaptic contacts. Further, we found that
720 acetylcholinergic neurons promote glioblastoma progression.

721 Interestingly, not all neurotransmitter receptors were functionally expressed on glioblastoma cells,
722 implying that there might be either structurally present and functionally “silent” neuron-glioma
723 synapses. In the case of structurally connected GABAergic neurons, co-transmitted
724 neurotransmitters such as acetylcholine might play an important role,⁸⁷ or paracrine neuron-tumor
725 communication^{88,89} could mediate tumor biological effects.

726 Importantly, early synaptic connections to brainstem neurons hinted at a strategy for glioblastoma
727 invasion along axonal pathways into the brainstem, a critical factor in the disease's lethality.⁷¹
728 This observation suggests that potentially initial synaptic connections prompted glioblastoma's

729 migration along axonal structures, paving a path for invasion into distant brain regions. The
730 importance of neuron-glioma synapses for distant invasion is further supported by an increased
731 neuron-tumor connectivity in more invasively growing tumors and invasive tumor cell states,
732 driven by their synaptogenic gene expression profiles.

733 In addition to the molecular and functional characterization of neuron-tumor networks, retrograde
734 tracing in the context of glioblastoma enabled the investigation of how neuron-tumor networks are
735 formed and therapeutically exploited. Interestingly, we could see how neuronal activity-dependent
736 formation of neuron-tumor networks parallels similar establishments of physiological synaptic
737 connections during development.^{79,80} Furthermore, we could see that increasing neuronal activity
738 through radiotherapy increased neuron-tumor connectivity and show an inhibition of AMPA
739 receptors in combination with standard-of-care radiotherapy yields synergistic therapeutic effects.
740 This demonstrates an additional role of neuron-glioma synaptic communication in therapeutic
741 resistance, explaining a potential role of neuronal gene expression signatures of glioblastoma in
742 the recurrent setting.⁴

743 Using our rabies-based tracing approach, we demonstrate how this system could in principle be
744 directly used to induce apoptosis specifically in neurons connected to tumor cells, thereby
745 decreasing tumor progression. Our proof-of-concept investigation in several model systems
746 enables further modification of rabies virus constructs to not only eliminate cancer cells but also
747 their associated neuronal connectome as a potential novel therapeutic strategy. Such a viral
748 approach to target glioblastoma could even be adapted to specifically disconnect neuron-tumor
749 network connectivity, adding to other promising immunotherapeutic, viral strategies tackling not
750 only glioblastoma directly but its associated neuronal connectome.⁹⁰

751 Taken together, we established a novel framework to investigate the neuronal connectome of
752 glioblastoma that can be translated to study not only other brain tumors but also cancers outside
753 the brain. Using this scalable technology, we furthered our understanding about the organization,

754 formation and therapeutic opportunities yielded by neuron-tumor networks enabling further
755 investigation.

756

757 **Limitations of the study**

758 This study introduces a technology platform allowing a comprehensive multimodal look into the
759 neuron-tumor connectome in glioblastoma, employing a rabies virus-based retrograde tracing
760 system to explore these complex interactions. Despite the insights provided on a basic science
761 and clinical-translational level, there are limitations that merit consideration for a more
762 comprehensive understanding and broader application of the findings. The study primarily
763 focuses on the early stages of neuron-tumor network formation, highlighting a need for further
764 exploration across various stages of tumor development to fully understand how these
765 interactions evolve and impact disease progression and therapeutic responses over time. One
766 limitation of the experimental platform is the neurotoxic potential associated with the use of rabies
767 virus for retrograde tracing over time.⁹¹⁻⁹³ This issue underscores the importance of utilizing and
768 further adapting less toxic rabies-based labeling strategies for glioblastoma,^{93,94} to enable longer
769 observation periods without adverse effects on neuronal health. Further, rabies virus-mediated
770 retrograde tracing did not label all synaptic inputs in previous work, illustrating that the labeled
771 connected^{TUM} are possibly still an underestimation of the entire neuronal connectome of
772 glioblastoma.^{95,96} Additionally, while a high level of neuron-tumor connectivity is observed, the
773 precise mechanisms underpinning the synaptic interactions between neurons and glioma cells,
774 especially regarding the role of neuronal action potential-driven slow inward currents (SICs),
775 remain unclear and require further elucidation. While we demonstrate a biological effect of
776 acetylcholinergic neurons on glioblastoma biology, further investigation of acetylcholinergic
777 neurotransmission as well as the specific effects of other neuronal subpopulations on
778 glioblastoma is needed.

779 Furthermore, the therapeutic effects observed between radiotherapy and neuronal activity
780 inhibition via perampanel present a promising therapeutic avenue, warranting validation across
781 diverse model systems and in clinical trials to confirm their potential. The feasibility of using a
782 modified rabies virus to specifically ablate connected^{TUM} neurons also poses a significant
783 opportunity. While the study provides a proof-of-concept, further research is necessary to
784 determine how these viral constructs can be adapted for efficacy and safety in a clinical-
785 translational context without the need for genetically modifying neurons via AAVs. Lastly, the
786 application of retrograde tracing in patient-derived glioblastoma spheroids suggests the potential
787 for this methodology to be extended to other types of cancer, both within and outside the brain.
788 Investigating whether other tumors receive synaptic input and how neuron-tumor interactions vary
789 across different malignancies could open new paths for cancer research, enhancing our
790 understanding of these complex networks and paving the way for novel therapeutic strategies
791 across oncology.

792

793 **Supplementary Video 1:** Dynamic investigation of single tumor cell and whole tumor-associated
794 neuronal connectome in glioblastoma, related to Figure 1. Shown are sparse and dense labeling
795 approaches of glioblastoma in co-culture of neurons and tumor cells, depicting different modalities
796 of rabies-based retrograde tracing.

797

798 **Supplementary Video 2:** Functional networks of connected^{TUM} and unconnected^{TUM} neurons
799 during early glioblastoma colonization shown with simultaneous calcium imaging in co-cultures,
800 related to Figure 2. Connected^{TUM} neurons are embedded in a synchronously firing network of
801 unconnected^{TUM} neurons.

802

803 **Supplementary Video 3:** Structural plasticity of dendritic spines in connected^{TUM} neurons shown
804 with *in vivo* two-photon microscopy of glioblastoma, related to Figure 2. High-resolution time-lapse
805 imaging of connected^{TUM} neurons showing physiological dendritic plasticity.

806

807 **Supplementary Video 4:** Neuron-to-glioma synapse reconstructions across functional cell states
808 in a patient-derived xenograft model (S24), related to Figure 3. Correlation of light and electron
809 microscopy reveals synaptic input on invasive and stable glioblastoma cells.

810

811 **Supplementary Video 5:** Investigating the dynamic neuron-tumor connectome with longitudinal
812 imaging, related to Figure 3. *In vitro* live cell time-lapse imaging portraying an *en passant* infection
813 of a connected^{TUM} neuron by an invasive GB^{Starter} cell in contrast to a stable GB^{Starter} cell within the
814 same time frame.

815

816 **Supplementary Video 6:** Functional muscarinic acetylcholinergic receptor expression of
817 patient-derived glioblastoma cells, related to Figure 4. Shown are glioblastoma cells responding
818 to acetylcholine stimulation in the form of subsequent calcium transients in co-culture of
819 glioblastoma cells and neurons.

820

821 **Supplementary Table 1:** Overview of patient-derived glioblastoma models

822

823 **Supplementary Table 2:** Overview of genes included in neurotransmitter group analysis of
824 single-cell RNA sequencing data

825

826

827

828 **METHODS**

829 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Mouse monoclonal anti-beta-III-tubulin	Abcam	Cat#ab7751, RRID:AB_306045
Guinea pig polyclonal anti-NeuN	Synaptic Systems	Cat#266004, RRID:AB_2619988
Rabbit polyclonal anti-VACHT	Synaptic Systems	Cat#139103, RRID:AB_887864
Chicken polyclonal anti-S100B	Synaptic Systems	Cat#287006, RRID:AB_2713986
Rat monoclonal anti-MBP	Novus Biologicals	Cat#NB600-717, RRID:AB_2139899
Rabbit polyclonal anti-Iba1	FUJIFILM Wako Pure Chemical Corporation	Cat# 019-19741, RRID:AB_839504
Mouse monoclonal anti-Nestin	Abcam	Cat#ab22035 RRID:AB_446723
Chicken polyclonal anti-GFP	Abcam	Cat#ab13970 RRID:AB_300798
Chicken polyclonal anti-GFP	Aves Labs	Cat#GFP-1020, RRID:AB_10000240
Rabbit polyclonal anti-RFP, pre-adsorbed	Rockland	Cat#600-401-379, RRID:AB_11182807
Rabbit polyclonal anti-mCherry	Abcam	Cat#ab167453, RRID:AB_2571870
Guinea pig polyclonal anti-RFP	Synaptic Systems	Cat#390004, RRID:AB_2737052
Mouse monoclonal anti-CAMK2	Abcam	Cat#ab22609, RRID:AB_447192
Rabbit polyclonal anti-ChAT	invitrogen	Cat#PA5-29653, RRID:AB_2547128
Rabbit polyclonal anti-Parvalbumin	Abcam	Cat#ab11427, RRID:AB_298032
Goat anti-chicken Alexa488	invitrogen	Cat#1458638 and 2304258, RRID:AB_2534096
Goat anti-rabbit Alexa647	invitrogen	Cat#1981173 and 2299231, RRID:AB_2535813
Goat anti-guinea pig Alexa647	invitrogen	Cat#A-21450, RRID:AB_141882
Goat anti-guinea pig Alexa546	invitrogen	Cat#A11074, RRID:AB_2534118

Goat anti-chicken Alexa647	invitrogen	Cat#A-21449, RRID:AB_2535866
Goat anti-rat Alexa647	invitrogen	Cat#A-21247, RRID:AB_141778
Goat anti-rabbit Alexa568	invitrogen	Cat#A11011, RRID:AB_143157
Goat anti-mouse Alexa647	invitrogen	Cat#A21235, RRID:AB_2535804
Goat anti-mouse Alexa568	invitrogen	Cat#A11011, RRID:AB_144696
Goat anti-chicken Alexa488	invitrogen	Cat#A32931, RRID:AB_2762843
Streptavidin Alexa647 conjugate	Thermo Fischer	Cat#S21374, RRID:AB_2336066
Bacterial and virus strains		
RABV CVS-N2C(deltaG)-EGFP	addgene	#73461
SAD-B19(deltaG)-EGFP	addgene	#32634
pAAV-mDlx-NLS-mRuby2	addgene	#99130
pAAV-flex-taCasp3-TEVp	addgene	#45580
pSADdG/CreGFP	Charité Viral Vector Core	BR-26
pAAV.Syn.NES-jRGECO1a.WPRE.SV40	addgene	#100854
Biological samples		
Patient-derived xenografts (PDX)	This paper	N/A
Chemicals, peptides, and recombinant proteins		
Poly-L-lysine	Sigma	P4707
Neurobasal Medium	Gibco	11570556
Hibernate™-A Medium	Gibco	A1247501
B-27 Supplement for neuronal co-culture	Gibco	17504044
B27 supplement without vitamin A for GB culture	Gibco	12587010
L-glutamine (Glutamax™-I (100x))	Gibco	35050038
Antibiotic-Antimycotic (100x)	Gibco	15240062
MgSO ₄	Sigma Aldrich	M3409
DMEM/F12 Medium	Gibco	11330032
Insulin solution human	Sigma	I9278
Heparin	Sigma	H4784
EGF	Biotechne	236-EG-200
FGF Recombinant Protein	Life Technologies	PHG0021
FGF Recombinant Protein 1mg	Life Technologies	PHG0023
Accutase Solution	FisherScientific	A1110501
0.05% Trypsin-EDTA (1x)	Gibco	25300-054
2.5% Trypsin (10x)	Gibco	15090-046
NGF	Miltenyi Biotech	130-127-430
mTeSR™ Plus	StemCell Technologies	#100-0276

ReLeaSR	StemCell Technologies	#05872
1% N2 supplement	Gibco	17502048
Minimum Essential Medium from non-essential amino acids	Gibco	11140050
Laminin	ThermoFischer	23017015
BDNF	Peprotech	#450-02
NT-3	Peprotech	#450-03
Doxycycline-HCl	FisherScientific	15473189
Cytosine arabinoside	Sigma	#C6645
HyClone FBS	Cytiva	SH30071.03HI
FBS	Anprotec	AC-SM-0041
AcX	invitrogen	A20770
Ammoniumpersulfate	Sigma	A3678
TEMED	Merck	T9281
4-Hydroxy-TEMPO	Merck	176141
Acrylamide	Sigma	A9099
Sodiumacrylate	Sigma	408220
Neurobiotin Tracer	Vector Laboratories	SP-1120
HEPES	Sigma Aldrich	7365-45-9
HEPES solution	Sigma Aldrich	H0887
D-Glucose	Sigma Aldrich	G8644
N-Methyl-D-Glucamin	Sigma Aldrich	M2004
ASC acid	Riedel-de-Haën	33034
HI horse serum	ThermoFischer	26050-070
N,N'-Methylenbisacrylamide	Merck	146072
Perampanel	BioCrick	BCC1847; CAS: 380917-97-5
Glutamate	Sigma Aldrich	G8415
Acetylcholine	Sigma Aldrich	A6625
5-HT	Sigma Aldrich	14927
GABA	Sigma Aldrich	A2129
Adrenaline	Tocris	5169
Dopamine hydrochloride	Sigma Aldrich	H8502
Glycine	Sigma Aldrich	G7126
Alexa Fluor 594 hydrazide sodium salt	invitrogen	A10442
Atropine sodium salt	Sigma Aldrich	A0132
Dulbecco's Phosphate Buffered Saline	Sigma Aldrich	D8537
Millicell cell culture inserts 0.4 um	Merck	PICM0RG50
CellTiter-Glo® Luminescent Cell Viability Assay	Promega	G7570
NaCl	Sigma-Aldrich	S7653
KCL	Fluka	60129
NaHCO3	Fluka	71627
NaH2PO4	Fluka	71496
Triton™ X-100	Sigma-Aldrich	T9284
L-glutamine (GlutaMAX™-I (100x))	Gibco	35050-038

Evans Blue	Sigma	E2129
SlowFade™ Gold Antifade Mountant	ThermoFischer	S36936
DAPI	Sigma	D9542
PFA 4%	Roth	P087.3
Sulforhodamine 101 (SR101)	Sigma Aldrich	S7635
Tetramethylrhodamine isothiocyanate dextran (TRITC)	Sigma Aldrich	52194
Cacodylic acid-Na-salt-3H2O	Serva	15540.1
Potassium ferricyanide	Serva/Sigma	107H3450
Osmium tetroxide	Serva	31253.04
Glycid Ether 100 for electron microscopy	Serva	21045.02
MNA hardener	Carl Roth	8639.2
DMP-30	Carl Roth	8621.1
DBA Härter	Carl Roth	8623.2
DDSA	Serva	20755.02
Propylenoxide	VWR Chemicals	27165.295
Uranyl acetate	Serva	77870
SEM pin stub (0,5"/6mm length)	Agar scientific	#G301F
Acheson silver	Plano	#3692
Experimental models: Cell lines		
S24	This paper	N/A
BG5	This paper	N/A
BG7	This paper	N/A
P3XX	This paper	N/A
T269	This paper	N/A
GG16	This paper	N/A
U3017MG	Xie et al., 2015	N/A
U3085MG	Xie et al., 2015	N/A
U3047MG	Xie et al., 2015	N/A
U3048MG	Xie et al., 2015	N/A
Experimental models: Organisms/strains		
NMRI-Foxn1 nu/nu	Charles River and Janvier	BL210203171
WISTAR	Janvier	N/A
C57BL/6	Janvier	N/A
WA01/H1	WiCell	N/A
HD6	Heidelberg University, Heidelberg, Germany	N/A
Recombinant DNA		
Plasmid: pFU-TVA-2A-mCherry-2A-oGlycoprotein	addgene	#85225
Plasmid: mGFP	De Paola et al., 2003	N/A
Plasmid: GCamp7-tdTomato	Dana et al., 2019	N/A
Plasmid: GFP	Osswald et al., 2015	N/A
Plasmid: tdTomato	Osswald et al., 2015	N/A
Software and algorithms		

Fiji	Schindelin et al., 2012	https://imagej.nih.gov/ij/
NIS-Elements AR Analysis 5.41.00 64-bit	Nikon	N/A
Arivis Vision4D 3.5.0	arivis AG, Munich, Germany	https://imaging.arivis.com/en/imaging-science/arivis-vision4d
R Studio 1.4	RStudio Team, 2023	N/A
GraphPad Prism Version 9	GraphPad	N/A
Adobe Illustrator 28.2 64-bit	Adobe	N/A
Ilastik 1.4.0	Berg et al., 2019	https://www.ilastik.org/development.html
AquaA	Wang et al., 2019	N/A
PATCHMASTER Igor Pro 6.21	HEKA	N/A
DaVinciResolve 18	Blackmagicdesign	https://www.blackmagicdesign.com/de/products/davinciresolve/
TrakEM	Cardona et al., 2012	N/A
Zen Blue 3.5	Zeiss	
Zen Black 2.3	Zeiss	
Leica Application Suite X	Leica Microsystems CMS GmbH	https://www.leica-microsystems.com/de/produkte/mikroskop-software/p/leica-las-x-ls/
MATLAB 9.120.1884302	MathWorks	
Easy Electrophysiology		RRID:SCR_021190
pClamp 11	Molecular Devices	
Autodesk 3ds max	Autodesk	https://www.autodesk.de/products/3ds-max/overview
Single-cell RNA-sequencing datasets		
Human single-cell RNA-sequencing glioblastoma dataset	Neftel et al., 2019	GSE131928
Human single-cell RNA-sequencing glioblastoma dataset	Yu et al., 2020	GSE117891
Xenograft single-cell RNA-sequencing glioblastoma datasets	Hai et al., 2021	N/A

Human single-cell RNA-sequencing glioblastoma dataset	Ruiz-Moreno et al., 2022	GSE141946, GSE166418, GSE162631, GSE154795, GSE141383, GSE182109, GSE173278
Other		
Multirad 225 X Ray Irradiation System	Faxitron	BLE1900269
FACSAria Fusion 2 Bernhard Shoor	BD	N/A
FACSAria Fusion Richard Sweet	BD	N/A

830

831

832 **Human specimens and animal models**

833 Human tissues used for organotypic slice cultures were obtained after approval of the local
834 regulatory authorities (ethical codes 23-1233-S1, 23-1234-S1 and S-005/2003). Human patient
835 samples were pseudonymized manually.

836 Male NMRI nude mice were used for all animal studies involving patient-derived glioblastoma
837 models. All animal procedures were performed in accordance with the institutional laboratory
838 animal research guidelines following approval of the Regierungspräsidium Karlsruhe, Germany.
839 Efforts were made to minimize animal suffering and reduce the number of animals used according
840 to the 3R principles. Mice were clinically scored and if they showed marked neurological
841 symptoms or weight loss exceeding 20%, experiments were terminated. No maximum tumor size
842 was defined for the invasive brain tumor models.

843

844 **Lentiviral vector and plasmid generation of pFU-TVA-2A-mCherry-2A-oGlycoprotein**

845 To generate lentiviruses expressing, EnvA TVA receptor (TVA), rabies glycoprotein (oG), and
846 mCherry, we sub-cloned TVA-2A-mCherry-2A-oGlycoprotein into a lentiviral vector ('pFU-') using
847 In-Fusion cloning (Takara). TVA-2A-mCherry-2A-oGlycoprotein was amplified from p306 (Zurich
848 virus core), and cloned into a pFU vector using ECORI and BAMHI sites.

849

850 **Packaging of CVS-N2c^{ΔG} and SAD-B19^{ΔG}**

851 Rabies viruses used in this study were produced as described previously.⁹⁷ Briefly, B7GG cells
852 were transfected by Lipofectamine 3000 (Thermo Fischer) with rabies virus genomic vectors
853 RabV CVS-N2c^{ΔG}-eGFP (Addgene plasmid #73461) or SAD-B19^{ΔG}-eGFP (modified from
854 Addgene plasmid # 32634). Supernatant was collected over several days and the recovered virus
855 was re-transfected in B7GG cells for a final collection step. For pseudotyping, the supernatant
856 containing unpseudotyped viruses and the rabies with the envelope protein EnVA of the Avian
857 Sarcoma and Leukosis virus were applied on BHK-EnVA cells. 3-5 days later, the EnVA-
858 pseudotyped rabies virus was collected, filtered and concentrated using an ultracentrifuge. Titer
859 was determined by infection of HEK293T-TVA cells with serially diluted viruses. RabV CVS-
860 N2c(deltaG)-EGFP was a gift from Thomas Jessell (Addgene plasmid #73461;
861 <http://n2t.net/addgene:73461>; RRID: Addgene_73461). pSADdeltaG-F3 was a gift from Edward
862 Callaway (Addgene plasmid #32634; <http://n2t.net/addgene:32634>; RRID: Addgene_32634).

863

864 **Patient-derived glioblastoma cultures**

865 Patient-derived glioblastoma spheroid models from resected tumor material were cultivated as
866 previously described^{8,9,98} in DMEM/F-12 under serum-free, non-adherent, 'stem-like' conditions,
867 which includes B27 supplement without Vitamin A, insulin, heparin, epidermal growth factor, and
868 fibroblast growth factor as described before.⁹⁹ Glioblastoma models U3085MG, U3048MG,
869 U3047MG, U3017MG were obtained from the Human Glioma Cell Culture (HGCC, www.hgcc.se)
870 biobank resource at Uppsala University, Uppsala, Sweden.⁵¹

871 The patient-derived glioblastoma spheroid models were transduced with lentiviral vectors for the
872 TVA receptor with a modified TVA-P2A-mCherry-2A-oG construct based on the Addgene plasmid
873 #85225, membrane-bound GFP with the pLego-T2-mGFP construct,¹⁰⁰ and for calcium imaging
874 with the pLego-T2-GCaMP7b-tdTomato construct.⁷⁵ For direct labeling, TVA-oG-mCherry
875 expressing glioblastoma spheroids were transduced with rabies virus constructs SAD-B19^{ΔG}-

876 eGFP(EnVA) or CVS-N2c^{ΔG}-eGFP(EnVA) (Addgene #73461) prior to further experiments.³³

877 Transduced cells were sorted regularly by FACS with either FACSaria Fusion 2 Bernhard Shoor

878 or FACSaria Fusion 1 Richard Sweet. Following filters were used for the respective fluorophores:

879 610/20 for mCherry, 530/30 for GFP, 586/15 for tdTomato.

880

881 **850k methylation array analysis**

882 The Illumina Infinium Methylation EPIC kit was used to obtain the DNA methylation status at

883 >850,000 CpG sites in patient-derived glioblastoma spheroid models, according to the

884 manufacturer's instructions at the Genomics and Proteomics Core Facility of the German Cancer

885 Research Center in Heidelberg, Germany, as described previously.¹⁰¹ The molecular

886 classification of patient-derived glioblastoma models used in this study can be found in Table S1.

887

888 **Harvesting cortical tissue from human patients**

889 During surgical interventions, cortical tissue proximal to deeper pathologies was precisely and

890 safely extracted, guided by neuro-navigation techniques. To ensure the removal of non-damaged

891 tissue, we applied a refined method recently detailed by our group.¹⁰² This technique enhances

892 the accurate identification and collection of cortical tissues, aiming to minimize harm. The criteria

893 for selecting human slice cultures are rigorously defined to maintain the material's study relevance

894 and integrity. Specifically, tissue designated for slice culture is required to be more than 10

895 millimeters away from identified pathologies, like metastases or vascular issues, establishing a

896 safety margin to exclude potentially compromised tissue not evident visually. For glioma tumors,

897 the criteria are stricter, demanding over 20 millimeters of separation from the tumor,

898 acknowledging gliomas' diffuse infiltration potential. While ensuring 100% pathology-free tissue

899 is challenging, we leveraged Scattered Raman Histology and AI-based detection to mitigate the

900 impact of any significant tumors or pathologies on the harvested cortex in selected patients.¹⁰³

901 **Human organotypic slice cultures**

902 Human neocortical slices were prepared following a recently described procedure.¹⁰⁴⁻¹⁰⁷
903 Immediately after resection, cortical tissue was transported to the laboratory in a carbogen-
904 saturated "Preparation medium" (Gibco Hibernate™ media with 0.5 mM Gibco GlutaMax™, 13
905 mM Glucose, 30 mM NMDG, 1% Anti-Anti, 1 mM ASC Acid, and HI Horse Serum) on ice. Under
906 a 10x microscope, capillaries and damaged tissue were microdissected, and the arachnoidia was
907 microsurgically removed. The collection medium, enriched with GlutaMax and NMDG, ensured
908 optimal tissue recovery. Cortical slices, 300 µm thick, were created using a vibratome (VT1200,
909 Leica Germany) and incubated in the preparation medium for 10 minutes pre-plating to minimize
910 variability from tissue trauma. Typically, tissue blocks (1 cm × 2 cm) allowed for 15 sections, with
911 1-3 sections per insert being carefully spaced. A polished wide-mouth glass pipette facilitated
912 slice transfer. The slices were then maintained in a growth medium composed of Neurobasal L-
913 Glutamine (Gibco) supplemented with 2% serum-free B-27 (Gibco), 2% Anti-Anti (Gibco), 13 mM
914 d-glucose (Sigma-Aldrich), 1 mM MgSO4 (Sigma-Aldrich), 15 mM Hepes (Sigma-Aldrich), and 2
915 mM GlutaMAX (Gibco). The medium was refreshed 24 hours after plating and then every 48
916 hours. For inoculation, target cells were prepared as previously mentioned, undergoing post-
917 trypsinization centrifugation, harvesting, and resuspension in PBS at 20.000 cells/µL. Cells were
918 inoculated into tissue sections using a 10 µL Hamilton syringe to deliver 1 µL onto the white
919 matter, then incubated at 37°C for a week with medium changes every 48 hours. Tumor
920 proliferation was assessed using fluorescence imaging with an inverted microscope (Observer
921 D.1; Zeiss). After the designated culture period, sections were fixed for immunostaining.

922

923 **Surgical procedures**

924 For *in vivo* two-photon imaging, surgical procedures were performed as described previously.^{8,9,16}
925 Cranial window implantation in mice was done in a modification of what we had previously

926 described, including a custom-made teflon ring for painless head fixation during imaging. 1 to 3
927 weeks after cranial window implantation, 50.000-100.000 glioblastoma cells were stereotactically
928 injected into the mouse cortex at an approximate depth of 500 μ m. Alternatively, the stereotactic
929 tumor injection was performed without prior cranial window implantation into the mouse cortex as
930 described above or into the striatum (1 mm anterior to bregma and 2 mm lateral to midline, 2 mm
931 deep to cranial surface).

932 For *in vivo* retrograde tracing of the neuronal connectome, tumor injections were done following
933 the direct labeling protocol as described above. Tumor cells were injected either into the cortex
934 or the striatum. For *ex vivo* analyses of tissue, mice were sacrificed via perfusion between 14-30
935 days following tumor implantation.

936

937 **Intravital microscopy**

938 For *in vivo* two-photon imaging, male NMRI nude mice were implanted with cranial window and
939 injected with tumor cells as described previously.^{9,16} The tumors were observed from 1 week after
940 tumor implantation with a Zeiss 7MP setup (Zeiss) equipped with bandpass filter sets of 500 - 550
941 nm and 575 - 610 nm, using a 20x (1.0 NA) apochromatic, 1.7 mm working distance, water
942 immersion objective (Zeiss). A pulsed Ti:Sapphire laser (Chameleon II ultra; Coherent) was used
943 at 960 nm wavelength.

944 Isoflurane gas was diluted in 100% O₂ to a concentration between 0.5 - 2.0% for *in vivo* imaging.
945 For the induction of anesthesia, the mice were exposed to 4% isoflurane, which was lowered to
946 0.5-2% for the rest of the experiment and was monitored throughout the experiment. Eye cream
947 was applied after anesthesia induction. During imaging, the body temperature was monitored and
948 kept at 37°C using a temperature sensor and a heating plate. Anesthesia was regularly evaluated
949 during image acquisition by checking the breathing rate.

950 Stacks from each time point of dendritic plasticity time-lapse imaging were hyperstacked and
951 registered in Fiji by using a custom script.¹⁰⁸

952

953 **Intravital microscopy analysis**

954 Analysis of time-lapse imaging of dendritic plasticity in connected^{TUM} neurons was performed
955 manually. After registration of each stack to minimize drift between acquisition time-points,
956 regions of interest of dendritic stretches were cropped for further analysis. For each time-point,
957 the number of dendritic spines from five total dendritic stretches was determined.

958

959 **Sample preparation, immunohistochemistry, *in situ*, and confocal microscopy**

960 For *ex vivo* analyses of PDX models, the mice were anesthetized with either ketamine/xylazine
961 or pentobarbital i.p. First, mice were perfused transcardially with PBS followed by 4% PFA (w/v)
962 in 1x PBS. After removal of the brain, it was post-fixed in 4% PFA overnight and kept in PBS at
963 4°C. Serial sections of 80-100 µm were cut with a semiautomatic vibratome (Leica VT1000s). For
964 *in vitro* analyses, coverslips were washed once with 1x PBS and subsequently fixed with 4% PFA
965 (w/v) in 1x PBS for 5-10 minutes. Afterwards, they were washed once with 1x PBS and stored in
966 PBS at 4°C.

967 *Ex vivo* mouse brain slices and organotypic slices were first permeabilized with 5% (v/v) FBS and
968 1% (v/v) Triton X-100 in 1x PBS for 2 hours. In the following, the primary antibodies were solved
969 in 1% (v/v) FBS and 0.2% (v/v) Triton X-100 in 1x PBS with a general dilution of 1:100, with the
970 exception of anti-Nestin mouse with a dilution of 1:300 and anti-GFP chicken with a dilution of
971 1:300. Afterwards, the slices were washed 3x with 2% (v/v) FBS in 1x PBS for 15 minutes each.
972 The secondary antibodies were solved in the same buffer as the primary antibodies with a general
973 dilution of 1:500. The primary and the secondary antibodies were both incubated for 20-24 hours
974 each. After the incubation time of the secondary antibody, the slices were washed 3x with 1%

975 (v/v) FBS in PBS for 10 minutes each, followed by 3x washing steps with 1x PBS for 10 minutes
976 each. All incubation steps were performed at room temperature on a shaker. Sample mounting
977 was performed with “SlowFade Gold” solution.
978 For *in vitro* stainings, the coverslips were permeabilized for 10 minutes with 0.2% (v/v) Triton X-
979 100 in 1x PBS. Afterwards, blocking was performed by incubating the samples in 10% FBS (v/v)
980 in 1x PBS for 10 minutes. In general, the primary antibodies were solved in blocking buffer with a
981 dilution of 1:100, with the exceptions of anti-Nestin mouse with a dilution of 1:300 and anti-GFP
982 chicken with a dilution of 1:200-300. Subsequently, after 1h of incubation, the coverslips were
983 washed 2x with 1x PBS for 5 minutes each before the respective secondary antibody was applied
984 with a general dilution of 1:500 in the blocking buffer. After another hour of incubation, the
985 coverslips were washed again 2x with 1x PBS for 5 minutes each. All incubation steps were
986 performed at room temperature, shaking. Finally, the coverslips were mounted with “SlowFade
987 Gold” solution and DAPI diluted 1:10000 (v/v) in 1x PBS.
988 Images were acquired using either a 20x air (NA 0.8) or 63x oil immersion objective (NA 1.4) at a
989 confocal laser-scanning microscope (LSM710 ConfoCor3 or LSM980 Airyscan NIR, Zeiss).

990

991 **Airyscan microscopy of *ex vivo* brain slices**

992 Airyscan microscopy of dendritic stretches of connected^{TUM} neurons was performed using
993 LSM980 Airyscan NIR (Zeiss) with a 63x oil immersion objective (NA 1.4). Images were acquired
994 using calibrated Airyscan detectors with a lateral resolution of 0.043 µm/pixel and an axial
995 resolution of 0.15 µm/pixel. Airyscan processing was performed in the Zen Blue software.

996

997 **Mouse and rat cortical, hippocampal and basal forebrain cultures**

998 Preparation of rat cortical cultures was done as described previously.¹⁶ Briefly, cells from E19
999 embryos were seeded on 12 mm coverslips in 24-well plates coated with poly-L-lysine at a density
1000 of 90,000 cells/cm². They were cultured in a medium of Neurobasal (Invitrogen), supplemented

1001 with B27 (50x, 2% v/v) and L-glutamine (0.5 mM). The same protocol was used for rat hippocampal
1002 cultures, with the exception of 2.5% Trypsin (10x) instead of 0.05% Trypsin-EDTA (1x), as used
1003 for cortical cultures.

1004 Mouse cortical cultures were prepared similarly to rat cortical cultures using cells from P1 and P2
1005 mouse pups.

1006 Primary basal forebrain cultures were prepared as previously described from the dissected
1007 septum of E19 rat embryos and plated at a density of 100,000 - 200,000 cells per well on 12 mm
1008 coverslips in 24-well plates coated with poly-L-lysine.¹⁰⁹ They were cultured in neurobasal medium
1009 supplemented with B27 supplement (50x, 2% v/v), L-glutamine (0.5 mM) and neuronal growth
1010 factor (50 ng/ml). Culture medium was changed twice a week.

1011

1012 **Human iPSC- and ESC-derived neurons**

1013 Human embryonic stem cells (hESC) of line WA01/H1 were obtained from WiCell whereas iPSCs
1014 were locally derived from a healthy donor (HD6, Heidelberg University, Heidelberg, Germany).
1015 Pluripotent cells were feeder-free cultured on Matrigel-coated (Corning #15505739) dishes,
1016 using mTeSR Plus medium (StemCell Technologies #100-0276). mTeSR was changed every
1017 other day and cells were passaged every 3–5 days using ReLeaSR (StemCell Technologies
1018 #05872). All cell cultures were maintained in a humidified incubator with 5% CO₂ at 37°C. All
1019 procedures were approved by the Robert Koch Institute.

1020 Induced glutamatergic neurons were differentiated from iPSCs or hESC according to previously
1021 described methods.⁵⁴ Briefly, for each differentiation 250,000 hESCs were detached with
1022 Accutase (Gibco), plated on matrigel-coated wells in mTeSR Plus containing Rho kinase inhibitor
1023 (Y27632, Axon Medchem #1683, or Thiazovivin) and simultaneously transduced with lentiviruses
1024 FU-M2rtTA and Tet-O-Ngn2-puromycin. One day later (defined as DIV0), the media was replaced
1025 with N2 media [DMEM/F12 (Gibco #11330032), 1% N2 supplement (Gibco 17502048) 1% non-
1026 essential amino acids (Gibco #11140050), laminin (200 ng/ml, Thermo Fisher #23017015), BDNF

1027 (10 ng/ml, Peprotech #450-02) and NT-3 (10 ng/ml, Peprotech #450-03) supplemented with
1028 Doxycycline (2 µg/ml, Alfa Aesar) to induce expression of Ngn2 and the puromycin resistance
1029 cassette. On DIV1, puromycin (1 mg/ml) was added to the medium and after 48h of selection,
1030 cells were detached with Accutase (Gibco #A1110501) and re-plated on Matrigel-coated
1031 coverslips along with mouse glia (see paragraph below, typically at a density of 150,000 iGluts/24-
1032 well) in B27 media [Neurobasal-A (Gibco #12349015 supplemented with B27 (Gibco #17504044),
1033 GlutaMAX (Gibco #35050061) laminin, BDNF and NT-3]. Near 50% of the medium was replaced
1034 every second day for eight days, with cytosine arabinoside (ara-C; Sigma #C6645) added to a
1035 working concentration of 2 µM to prevent glia overgrowth. From DIV10 onward, neuronal growth
1036 media [Neurobasal-A supplemented with B27, GlutaMAX and 5% fetal bovine serum (FBS)
1037 (Hyclone #SH30071.03HI)] was washed in and used for partial media replacements every 3-4
1038 days until analysis, typically after 4-6 weeks in culture.

1039 Mouse glia cells used for co-cultures with induced glutamatergic neurons, were isolated as
1040 described before.¹¹⁰ Briefly, P3 mouse cortices from wildtype C57BL6 mice were dissected and
1041 triturated with fire polished Pasteur pipettes, and passed through a cell strainer. Typically, lysates
1042 from two cortices were plated onto a T75 flask pre-coated with poly-L-lysine (5 mg/ml,
1043 Sigma #P1274) in DMEM supplemented with 10% FBS (Sigma). Once primary mouse glial cells
1044 reached confluence, they were dissociated by trypsinization and re-seeded twice and then used
1045 for co-culture with induced glutamatergic neurons.

1046

1047 **Cell viability assays**

1048 To assess toxicity of rabies virus to patient-derived glioblastoma spheroids, cells were seeded on
1049 to an opaque 96 well plates in neurobasal medium supplemented with B27 (50x, 2% v/v) and L-
1050 glutamine (0.5 mM), at a density of 5000 cells/well. Per patient-derived glioblastoma model, we
1051 seeded wells with glioblastoma cells transduced only with the TVA-oG-mCherry construct, directly

1052 labeled TVA-oG-mCherry and CVS-N2c^{ΔG}-eGFP(EnVA) expressing glioblastoma cells, and
1053 directly labeled TVA-oG-mCherry and SAD-B19^{ΔG}-eGFP(EnVA) expressing glioblastoma cells,
1054 including a control with only medium to measure background signal. The assay was performed
1055 according to the manufacturers protocol (Promega, Madison, WI) after 24, 48 and 72 hours.
1056 Luminescence was measured 10 minutes after incubation at room temperature for signal
1057 stabilization.

1058

1059 **Direct and sequential labeling of glioblastoma cells for retrograde tracing**

1060 Experiments were performed following either the direct or the sequential labeling approach. For
1061 the direct approach, patient-derived glioblastoma spheroids were transduced with both the TVA-
1062 oG-mCherry construct and either SAD-B19^{ΔG}-eGFP(EnVA) (5×10^4 vg/ml) or CVS-N2C^{ΔG}-
1063 eGFP(EnVA) (10^6 vg/ml) used in this study before conducting further experiments. They were
1064 cultured as described above under spheroid primary culture conditions. For the sequential
1065 approach, TVA-oG-mCherry expressing glioblastoma cells were seeded, followed by a sequential
1066 rabies infection on the co-cultures at a titer depending on paradigm.

1067

1068 **Sparse and dense sequential retrograde labeling**

1069 For tracing of the neuronal connectome of singular tumor cells, SAD-B19^{ΔG}-eGFP(EnVA) or CVS-
1070 N2C^{ΔG}-eGFP(EnVA) were added to TVA-oG-mCherry seeded co-cultures 2 hours after seeding
1071 on DIV07 rat cortical neurons at a titer of 10 vg/ml. For dense labeling of glioblastoma cells, SAD-
1072 B19^{ΔG}-eGFP(EnVA) or CVS-N2C^{ΔG}-eGFP(EnVA) were applied at a titer of 10^5 vg/ml.

1073

1074 ***In vitro* live cell time-lapse imaging of retrograde labeling**

1075 For rabies virus based retrograde live cell imaging, TVA-oG-mCherry expressing patient-derived
1076 glioblastoma spheroids were seeded onto DIV07 rat cortical cultures at a density of 1000 cells
1077 per well in 24 well plates. SAD-B19^{ΔG}-eGFP(EnVA) or CVS-N2C^{ΔG}-eGFP(EnVA) (both 10³ vg/ml)
1078 virus was added 1 hour after seeding. For experiments at later infection time points, rabies viruses
1079 were added 5 or 11 days after seeding glioblastoma cells.

1080 Imaging was performed 2 hours after seeding of glioblastoma cells for a time period of 3-5 days
1081 at 37 degrees Celsius with 5% CO₂. Images were acquired using a Zeiss LSM780/710 Zeiss
1082 Celldiscoverer7 confocal or a Nikon Ti-HCS widefield microscope with a 10x (NA 0.3)/20x (NA
1083 0.95) objective and a pixel size of 770nm – 1.38μm. Coverslips were scanned every 20-45
1084 minutes.

1085

1086 ***In vitro* live cell time-lapse imaging of neuron-tumor co-cultures**

1087 For live cell experiments, tdTomato or GFP transduced patient-derived glioblastoma cells were
1088 seeded onto DIV7 rat cortical cultures at 1000 cells per well. For glioblastoma monocultures, 1000
1089 cells per well were seeded in 24 well plates containing the same medium as co-cultures, namely
1090 Neurobasal (Invitrogen) supplemented with B27 (50x, 2% v/v) and L-glutamine (0.5 mM). Co- and
1091 monocultures were imaged at the same DIV, 4-13 days after seeding. Patient-derived
1092 glioblastoma cells were imaged for a period of 12-18 hours at 37 degrees Celsius with 5% CO₂.
1093 Images were acquired using a Zeiss LSM 780 confocal microscope with a fully open pinhole every
1094 10 minutes, with a 10x (NA 0.3) air objective and a pixel size of 346nm.

1095

1096 **Invasion Speed Analysis with Trackmate**

1097 Field of views of *in vitro* live cell imaging data were analyzed in Trackmate (version 7.11.1).¹¹¹
1098 The Kalman tracker was used (parameters: Initial search radius = 50, Search radius =30, Max
1099 frame gap = 10). For quality control, only tracks with track durations over 10000s were kept to
1100 account for false tracks made by the tracking algorithm.

1101

1102 **Infection lag time analysis**

1103 For determination of approximate infection lag time, images from live cell time-lapse imaging of
1104 tumor cells infected at DIV00 were used. The time point of GB^{Starter} cell infection was manually
1105 determined when a TVA-oG-mCherry expressing tumor cell became visually eGFP-positive after
1106 rabies virus infection with SAD-B19^{ΔG}-eGFP(EnvA) or CVS-N2c^{ΔG}-eGFP(EnvA). Earliest
1107 connected^{TUM} neuron infection was calculated by subtracting time point of visible infection of first
1108 connected^{TUM} neuron in vicinity of infected GB^{Starter} from the time point of GB^{Starter} infection.

1109

1110 **Drug treatment and radiotherapy in co-cultures**

1111 For drug treatment experiments, coverslips were treated with an end concentration of 40μM
1112 perampanel 2 hours post glioblastoma cell seeding. Controls were treated with respective amount
1113 of DMSO. Coverslips were imaged on the same day of seeding and then 3, 5 and 7 days after
1114 seeding using a Zeiss LSM 780 microscope with a 10x air (NA 0.3) objective at 37 degrees Celsius
1115 with 5% CO2.

1116 For irradiation experiments, glioblastoma cells were seeded on to DIV7 rat cortical neurons in 24-
1117 well plates (1000 cells/well). For combined perampanel treatment and radiotherapy, coverslips
1118 were treated with 40 μM perampanel 2 hours after seeding. 5 days after seeding tumor cells,
1119 coverslips were irradiated at 4 Gray. For radiotherapy in combination with retrograde labeling of
1120 patient-derived glioblastoma cells, irradiated and control coverslips were infected with CVS-

1121 N2c^{ΔG}-eGFP(EnVA) virus (10³ vg/ml) 6 hours after irradiation. Coverslips were fixed 3 days later
1122 and analyzed for input-to-starter ratios (see method section “determination of input-to-starter
1123 ratios”).

1124

1125 **Rabies virus-based genetic ablation of connected^{TUM} neurons**

1126 DIV06 rat cortical neurons were infected with AAV5 virus based on the AAV-Flex-TACasp3-TEVP
1127 plasmid (Addgene #45580)⁸³ at a titer of >7x10⁸ vg/ml. AAV-flex-taCasp3-TEVp was a gift from
1128 Nirao Shah & Jim Wells (Addgene plasmid #45580; <http://n2t.net/addgene:45580>; RRID:
1129 Addgene_45580). The following day, all wells were washed 3x with pre-warmed culture medium
1130 (Neurobasal with B27 (50x, 2% v/v) and L-glutamine (0.5mM) before seeding 1000 TVA-oG-
1131 mCherry expressing glioblastoma cells per well. 2 hours after seeding, SAD-B19^{ΔG}-Cre-
1132 GFP(EnVA) (based on Addgene plasmid #32634) was added at a titer of 10⁴ vg/ml.¹¹² Control
1133 wells were treated with the same concentration of SAD-B19^{ΔG}-Cre-GFP(EnVA) but without prior
1134 infection of neuronal cultures with AAV-Flex-TACasp3-TEVP. 10 days after seeding of tumor
1135 cells, coverslips were fixed and stained with human-specific anti-Nestin (Abcam, 22035) to label
1136 glioblastoma cells as previously described.^{8,16} Quantification was done as described in methods
1137 section “determination of input-to-starter ratios”.

1138

1139 **Single-cell RNA sequencing**

1140 For single-cell RNA sequencing of rabies transduced cultures and their controls, co-cultures of
1141 rat cortical cultures and human glioblastoma cells were processed on DIV06. First, the cells were
1142 dissociated from coverslips by incubating with Trypsin for 5 minutes. Then, the cells were
1143 collected in falcon tubes and centrifuged before resuspending in FACS buffer (10% FBS in PBS).
1144 DAPI was used at a final concentration of 1 µg/ml as a cell viability marker. Sorting was performed
1145 with FACSymphony S6 (BD Biosciences). GB^{Starter} were identified by simultaneous GFP and

1146 mCherry fluorescence. Connected^{TUM} neurons were identified by the GFP signal and cells without
1147 fluorescence signal were categorized as unconnected^{TUM} microenvironmental cells. The following
1148 filters were used: 450/20 for DAPI, 530/30 for GFP and 610/20 for mCherry. Lasers with
1149 wavelengths of 405 nm, 488 nm and 561 nm were used for this purpose.

1150

1151 **Sequencing pre-processing and analysis**

1152 The analysis of the single-cell RNA sequencing data was performed using the R package Seurat
1153 (version 5.0.1)¹¹³ unless indicated otherwise. The sequencing data was preprocessed and high-
1154 quality rat cells matching the following criteria were analyzed: unique number of transcripts
1155 (5,000-11,250), number of reads (100,000-2,000,000), fraction of mitochondrial reads less than
1156 4%. The number of highly variable features was set to 4,000 and data integration was performed
1157 using the Seurat method “CCAIIntegration”. The connected^{TUM} neurons were identified based on
1158 the eGFP expression level as measured by FACS.

1159 **Identification of cell types**

1160 Previously published gene sets were used to identify different cell types and states (annotation
1161 level 3).¹¹⁴ To this end, the expression of a gene set across the clusters was assessed using the
1162 Seurat module score function. Astrocytes and oligodendrocytes were identified by a mean module
1163 score > 0.1 in the respective gene set, which was in line with the expression of known marker
1164 genes. The subanalysis of neurons was performed after excluding astrocytes and
1165 oligodendrocytes from the dataset.

1166

1167 **Invasivity module score for single-cell RNA sequencing analyses**

1168 Invasivity scores for the different patient-derived glioblastoma models were calculated as
1169 described before.⁸ Briefly, pseudotime was estimated, with initial cells being designated as

1170 SR101-negative invasive cells. Genes exhibiting either positive or negative correlation to
1171 pseudotime across cell lines were identified. Following this, the invasivity score was determined
1172 by subtracting the Module score of genes negatively correlated from that of positively correlated
1173 genes.

1174

1175 **Synaptogenic module score for single-cell RNA sequencing analyses**

1176 The “Synapse assembly” GO term was downloaded from
1177 <https://amigo.geneontology.org/amigo/>.^{61,62} Synaptogenic score was calculated from the list of
1178 117 genes using the AddModuleScore function from Seurat. Score correlations were calculated
1179 in r.

1180

1181 **Single-cell neurotransmitter genes expression analysis**

1182 Using the AddModuleScore function from Seurat, a score was calculated for each
1183 neurotransmitter group of interest. Genes included for each group can be found in Table S2.

1184

1185 **Analysis of publicly available single-cell RNA sequencing data**

1186 Publicly available single-cell RNA sequencing data from various publications were used for
1187 analysis.^{5,63,114}

1188

1189 **Correlative *in vivo* two-photon and *ex vivo* volume electron microscopy**

1190 For conducting *in vivo* correlative light and electron microscopy (CLEM) with infrared branding,
1191 we detected the glioblastoma cells based on their mGFP expression and classified them based

1192 on their uptake of Sulforhodamine 101 (SR101), which was monitored with two-photon
1193 microscopy in living mice over time. After identification of the glioblastoma cells, the mice
1194 underwent transcardial perfusion following a previously established protocol.⁸

1195 To facilitate the correlation process on a macroscopic level as well as on *ex vivo* and electron
1196 microscopy imaging level, approximately 7 ml of 2% Evans Blue were added into the last 20 ml
1197 of 4% PFA at the end of the perfusion. This addition was designed to enhance blood vessel signal
1198 *ex vivo*. To preserve the *in vivo* orientation for imaging, the mice were decapitated, leaving the
1199 window and the titanium ring on the head, allowing immediate subsequent two-photon microscopy
1200 with consistent positioning. For the infrared branding, cells of interest that were chosen before
1201 were centered in a field of view of 694 x 694 μm using a 16x objective. A high-resolution z-stack
1202 (pixel-size: 0.67 μm) of the area prior to branding was obtained.

1203 To precisely localize the region of interest within the brain *ex vivo*, an infrared branding was
1204 performed.¹¹⁵

1205 This macroscopically visible region, providing clear demarcation for the region of interest, was cut
1206 out of the brain in the form of a cube using a surgery knife. Subsequently, the cube was embedded
1207 in agarose in a manner that its surface was parallel to the sectioning blade of the vibratome. Slices
1208 of 300 μm thickness were obtained using a Leica Vibratome.

1209 The sample was then stained with DAPI to provide further landmarks for correlative imaging.
1210 Preparation of the sample for electron microscopy was performed as previously described.^{8,16,116}
1211 Then, we captured low-resolution overviews with serial-section scanning electron microscopy.
1212 The cells of interest were identified by their cell morphology, by their spatial arrangement of the
1213 DAPI-stained nuclei and the Evans blue signal as a marker for blood vessels. Lastly, we acquired
1214 the cells of interest throughout large z-volumes and reconstructed them.

1215 Stable glioblastoma cells were discerned by longitudinal, intravital imaging and through the
1216 colocalization of SR101 with the intrinsic mGFP signal exhibited by the tumor cells.

1217

1218 **Correlative *ex vivo* confocal microscopy and *ex vivo* volume electron microscopy**

1219 We followed the sample preparation, microscopy and analysis protocols for *ex vivo* correlative
1220 light and scanning electron as described before.⁸ The mice were administered anesthesia using
1221 pentorbital i.p. We initiated the perfusion process with transcardial infusion of PBS, succeeded by
1222 a 4% solution of PFA in PBS. After extracting the mouse brain, it was subjected to an overnight
1223 post-fixation in 4% PFA and subsequently preserved in PBS at 4°C for storage. We prepared
1224 serial brain sections of 80 µm thickness using a semi-automatic vibratome (Leica VT1000s) which
1225 were then screened under a widefield fluorescence microscope (Leica DM6000) to check for
1226 intrinsic tumor cell fluorescence. Subsequently, we carefully cut tissue blocks with an approximate
1227 area of 400 µm² for in-depth analysis and volume electron microscopy.

1228 Our approach relied on CLEM for the identification of cells of interest. Therefore, the sections
1229 were stained with DAPI (1:10000) and subsequently imaged under a Leica TCS SP8 confocal
1230 microscope (63x objective [NA 1.4] or 20x objective [NA 0.75]; pixel size 200 nm; z-stack with 520
1231 nm-steps; scanning speed of 400-600 Hz). The rinsing-, post-fixation-, and contrasting-steps for
1232 the electron microscopy processing were conducted as described before.^{8,116,117}

1233

1234 **Electron microscopy and image analysis**

1235 Electron microscopic imaging was performed using a LEO Gemini 1530 scanning electron
1236 microscope (Zeiss) and an Auriga scanning electron microscope (Zeiss) in combination with an
1237 ATLAS scan generator (Zeiss). Imaging and synapse identification was performed as described
1238 previously.⁸

1239 To visualize the distribution of the synaptic vesicles and their distance to the synaptic cleft, the
1240 “scatterplot3d” function in R¹¹⁸ was used. The vesicles were plotted in three dimensions with color
1241 indicating the distance based on calculations on the 2D-sections.

1242 The cell and synaptic bouton boundaries were manually segmented and imported as area-lists
1243 on consecutive EM sections.¹¹⁹ 3D representations and renderings of the synaptic inputs on stable
1244 and invasive glioblastoma cells were performed in Arivis Vision4D x64 and 3dmod. During this
1245 visualization, mesh surfaces were refined. Subsequently, the exported video renderings were
1246 montaged in DaVinci Resolve.

1247

1248 **Determination of input-to-starter ratios**

1249 Patient-derived glioblastoma spheroids were seeded onto DIV7 rat cortical neurons following
1250 either the direct or the sequential labeling protocol as described above. 8 days later, coverslips
1251 were fixed and stained for Nestin and GFP as described above.

1252 For input-to-starter ratio analysis of highly invasive versus non-invasive regions, coverslips were
1253 infected with CVS-N2c^{ΔG}-eGFP(EnvA) (10³ vg/ml) at DIV05 (highly invasive) or DIV11 (non-
1254 invasive) and fixed 3 days after virus application. Coverslips were imaged at a Zeiss AxioScanZ1
1255 microscope with a 20x (NA 0.8) objective and a pixel size of 325 nm.

1256 Cell somata were trained using the ilastik¹²⁰ pixel classification pipeline. Probability maps were
1257 exported. All further processing steps were performed in Fiji.¹⁰⁸ For quantification of the number
1258 of tumor cells per coverslip, probability maps of Nestin and DAPI signals were multiplied.
1259 Afterwards, the resulting image was auto-thresholded using the “Threshold” function and the
1260 number of cells were then determined using the “Analyze Particles” function with a cut-off by a
1261 minimum of 20 µm diameter. Auto-thresholding and particle analysis was also performed for the
1262 probability map of the eGFP channel. To extract the number of GB^{Starter} cells, thresholded images
1263 were multiplied and resulting particles were counted. The number of input cells (connected^{TUM}

1264 neurons) were calculated by subtracting the number of GB^{Starter} cells from the number of all eGFP-
1265 positive cells.

1266

1267 **Cell type analysis of connected^{TUM} neurons**

1268 For *ex vivo* analysis, brain slices obtained from mice sacrificed 14-30 days after tumor injection
1269 with TVA-oG-mCherry expressing, SAD-B19^{ΔG}-eGFP(EnvA) or CVS-N2c^{ΔG}-eGFP(EnvA)-
1270 infected cells from patient-derived glioblastoma spheroids were stained for Nestin or mCherry,
1271 GFP and a marker of interest from the above listed. Slices were imaged at a Leica DM6000
1272 microscope with a 10x (NA 0.4) objective.

1273 Crops were manually analyzed for number of eGFP-positive cells, number of marker of interest
1274 positive cells and double positive cells.

1275 For the *in vitro* quantification, TVA-oG-mCherry expressing, SAD-B19^{ΔG}-eGFP(EnvA) or CVS-
1276 N2c^{ΔG}-eGFP(EnvA)-infected cells from patient-derived glioblastoma spheroids were seeded onto
1277 DIV7 rat cortical neurons. 8 days later, coverslips were fixed and stained for Nestin, GFP and a
1278 marker of interest (used in our study were: NeuN, S100B, MBP, Iba1, CAMK2, Parvalbumin,
1279 Chat). Coverslips were imaged at a Zeiss AxioScanZ1 microscope with a 20x (NA 0.8) air
1280 objective and a pixel size of 325nm.

1281 For quantification of DLX-infected connected^{TUM} neurons, DIV6 rat cortical neurons were treated
1282 with AAV-mDlx-NLS-mRuby (Addgene #99130) at a titer of $>1\times10^9$ vg/ml.¹²¹ AAV-mDlx-NLS-
1283 mRuby2 was a gift from Viviana Grdinaru (Addgene plasmid #99130;
1284 <http://n2t.net/addgene:99130>; RRID: Addgene_99130). One day later, glioblastoma cells infected
1285 with the direct labeling approach were seeded at 1000 cells/well. Coverslips were fixed at tumor
1286 cell div08 and quantified as described above.

1287 To rule out unspecific leakage or labeling of rabies virus we have done different control
1288 experiments. First, we have exchanged medium of wells with TVA-oG-mCherry expressing and
1289 SAD-B19^{ΔG}-eGFP(EnvA) or CVS-N2c^{ΔG}-eGFP(EnvA)-infected tumor cell co-cultures of both

1290 strains onto wells of only rat cortical neurons and fixed these 8 days after medium exchange.
1291 Furthermore, we have seeded lysed TVA-expressing, rabies-infected glioblastoma cells onto
1292 DIV7 rat cortical neurons. Cells were lysed by first exposing them to sterile water and
1293 subsequently mechanically lysing them by pipetting them through a 25-gauge needle for 60
1294 seconds. Cell lysis was confirmed by Trypan-blue staining when counting cells.

1295

1296 **4ExM Expansion microscopy**

1297 4x expansion microscopy was performed as described before.¹²² Briefly, mouse cortical and iPSC
1298 co-cultures with human glioblastoma cells were cultured as described above.
1299 Immunohistochemistry was performed as described to stain against GFP and Nestin, since
1300 endogenous fluorescence is expected to be quenched after expansion. Following
1301 immunohistochemistry, coverslips were anchored in 0.1 mg/ml Acryloyl-X SE (AcX) solution in 1x
1302 PBS overnight at room temperature. AcX stock solution was 10 mg/ml AcX solved in DMSO.
1303 Coverslips were then incubated for 2 hours at 37° C in custom chambers in 100 μ l of the gelation
1304 solution consisting of 470 μ l monomer stock solution for 4xM (0.08 % (v/v) sodium-acrylate (33%
1305 wt stock), 2.5% (v/v) acrylamide (50% wt stock), 0.02% (v/v) cross-linker (1% wt stock), 1.9M
1306 NaCl (5M stock), 1 ml of 10x PBS, 18.8% (v/v) water) mixed with 10 μ l each of 0.5 wt% 4-HT, 10
1307 wt% TEMED and 10 wt% APS. All stock solutions were prepared with water. Incubation chambers
1308 were prepared using microscope slides and spacers made from No. 0 coverslips. After incubation,
1309 gels were recovered and digested in 8 U/ml Protein-K buffer overnight at room temperature. The
1310 gels were then stained with DAPI (1 μ g/ml in 1x PBS) for 30 min and washed afterwards for 30
1311 min with 1x PBS. The gels were expanded by washing with MilliQ water 3x 10 min followed by 1x
1312 30 min at room temperature.

1313 Expanded gels were mounted on and imaged in poly-L-lysine coated glass bottom dishes.
1314 The scale bars in expansion microscopy images shown in figures were placed after accounting
1315 for the expansion factor of 4.

1316

1317 **Tissue clearing**

1318 Whole brain immunolabeling was performed according to the iDISCO+ protocol.¹²³ Briefly,
1319 samples were dehydrated with a methanol/PBS series (catalog # 8388.2; Carl Roth, Karlsruhe,
1320 Germany): 20 vol%, 40 vol%, 60 vol%, 80 vol%, 100 vol% (twice) for one hour each, followed by
1321 overnight incubation in 66 vol% Dichloromethane (DCM) (KK47.1, Carl Roth) and 33 vol%
1322 methanol. Samples were then washed twice in 100 vol% methanol followed by a bleaching step
1323 with 5% H₂O₂ (catalog # LC-4458, Labochem, Sant'Agata li Battiati, Italy) overnight at 4 °C.
1324 Rehydration was performed with a methanol/PBS series containing 80 vol%, 60 vol%, 40 vol%,
1325 20 vol%, PBS for 1h each. Lastly samples were washed in 0,2 vol% TritonX-100 (x100, Sigma)
1326 in PBS (PTx.2) twice for 1h.

1327 Immunolabeling was performed by incubating pretreated samples in permeabilization solution
1328 (400 ml PTx.2, 11.5 g Glycine (catalog # G7126, Sigma), 100 ml DMSO (catalog # A994, Carl
1329 Roth) for 2 days at 37° C. Brains were then blocked in blocking solution (42 ml PTx.2, 3 ml Donkey
1330 serum, 5 ml DMSO) for 2 days at 37° C. For immunolabeling primary antibodies for against GFP
1331 (catalog # GFP-1020, Aves Labs) and against RFP (catalog # 600-401-379, Rockland) were
1332 applied in PBS, 0,2% Tween-20 (P2287, Sigma) (PTw), 5% DMSO, 3% goat serum for 7 days at
1333 37° C on a rocking platform. Then samples were washed in PTw for 5 times until the next day and
1334 incubated with secondary antibodies (goat anti-chicken 488, catalog # A32931, Thermo Fischer
1335 and goat anti-rabbit 568, catalog # A11011, Thermo Fischer) in PTw and 3% goat serum for 7
1336 days at 37° C. Samples were wrapped in aluminum foil to prevent photobleaching. Samples were
1337 washed in PTw for 5 times until the next day.

1338 Clearing was performed by dehydrating the samples in a methanol/PBS series: 20 vol%, 40 vol%,
1339 60 vol%, 80 vol%, 100 vol% (twice) for one hour each. Followed by 3h incubation in 66 vol% DCM
1340 and 33 vol% Methanol, samples were incubated twice in 100 vol% DCM for 15 minutes. Lastly

1341 samples were incubated in 33 vol% benzyl alcohol (catalog # 24122, Sigma) and 67 vol% benzyl
1342 benzoate (vol/vol; catalog # W213802, Sigma) without shaking.

1343 Unless otherwise stated all steps were performed at room temperature, while shaking. Clearing
1344 agents were freshly prepared for each step of the protocol.

1345

1346 **Light-sheet microscopy**

1347 Cleared samples were imaged with a light-sheet microscope (Ultramicroscope II, Miltenyi Biotec,
1348 Heidelberg, Germany) using a 4x objective (MI Plan objective lens 4x, NA 0.35) and combined
1349 lasers (excitation wavelength at 470 nm and 560 nm). The in-plane resolution was 1.63 x 1.63
1350 μm with a step size of 5 μm . Images were stitched with a custom-made macro in Fiji/ImageJ.¹²⁴

1351

1352 **Calcium imaging of connected^{TUM} and unconnected^{TUM} neurons**

1353 6 days after seeding of rat cortical neurons, cultures were infected with AAV.Syn.NES-
1354 jRGECO1a.WPRE.SV40 (Addgene #100854).¹²⁵ AAV.Syn.NES-jRGECO1a.WPRE.SV40 was a
1355 gift from Douglas Kim & GENIE Project (Addgene plasmid #100854;
1356 <http://n2t.net/addgene:100854>; RRID: Addgene_100854). The following day, TVA-oG-mCherry
1357 expressing, CVS-N2c^{ΔG}-eGFP(EnvA)-infected glioblastoma cells were seeded at a density of
1358 1000 cells/well. 12 days after seeding, cultures were imaged on a Zeiss LSM 980 confocal
1359 microscope with a 20x objective (NA 0.8) with a pixel size of 345.26 nm and a frame interval of
1360 0.52 sec.

1361

1362 **Calcium analysis of connected^{TUM} and unconnected^{TUM} neurons**

1363 For the analysis of calcium transients, somata of connected^{TUM} and unconnected^{TUM} neurons were
1364 marked with circular regions of interest. Mean gray value and center of mass were multi-measured
1365 in Fiji¹⁰⁸ for all imaging time-points. The exported measurements were further quantified using a
1366 custom-written MATLAB script.⁸

1367 **Functional neurotransmitter receptor screening**

1368 Calcium imaging experiments were performed with a triggered neurotransmitter puffing onto the
1369 glioblastoma cells. They puffing pipettes were placed approximately 30 μ m above the targeted
1370 region of interest (ROI). For these recordings, Patchmaster software (HEKA) was used, with a
1371 puff applied every 45 s. Puffing stimulations were generated at 10-15 PSI using a Picospritzer.
1372 Each recording lasted 225 seconds. Images were acquired with pixel sizes of 1,3 μ m, 0.2 μ m and
1373 0.7 μ m at a Leica TCS SP5 microscope using a 20x (NA 0.5) water objective, respectively. The
1374 recoding frequency was 1.56 Hz in a bidirectional acquisition mode.
1375 Pipettes for puffing were fabricated from borosilicate capillaries (World Precision Instruments) and
1376 had resistances of 2-7 M Ω . The pipettes were filled with 200 μ l of the neurotransmitter stock and
1377 0.4 μ l of Alexa 594 coloring agent from Invitrogen.
1378 Functional neurotransmitter receptor screening occurred by sequentially puffing 8 different
1379 neurotransmitters onto a region of interest to determine which trigger a response in glioblastoma
1380 cells. A baseline recording with aCSF puffing was used first to exclude regions with a non-
1381 neurotransmitter specific response. Next, glutamate puffing was performed for 225 seconds and
1382 5 puff stimulations. Further, acetylcholine (1 mM), GABA (100 mM), ATP (1 mM), serotonin (5HT)
1383 (1.5 mM), adrenaline (1 mM), glycine (2 mM) and dopamine (10 mM) puffing followed under the
1384 same conditions. All neurotransmitter stocks were prepared with calcium-free aCSF and for
1385 puffing, 200 μ l of aCSF with 0.4 μ l Alexa 594 were used to visualize the neurotransmitter puff as
1386 control for successful neurotransmitter application during calcium imaging.
1387 For pharmacological experiments, two baseline recordings with neurotransmitter- and control
1388 puffing were performed as described. Next, atropine (50nM) was washed in for 450 seconds to
1389 ensure that the coverslip was fully submerged, and a pharmacological effect could be observed.
1390 After the wash in, a third recording took place with Acetylcholine puffing under altered conditions.
1391 Atropine was then washed out with regular aCSF for 450 seconds. Finally, one last calcium

1392 imaging time-lapse recording was performed to assess whether the initial response of the cell
1393 could be recovered after washing out atropine.

1394

1395 **Calcium imaging analysis**

1396 AQuA was used to quantify the event frequency, area, duration, $\Delta F/F$ and total calcium entering
1397 the cell (Area Under Curve) for each calcium event.¹²⁶ The raw calcium imaging recordings
1398 contain two channels, one with the puff recording, and the other with the calcium signal. For the
1399 semi-automatic AQuA data analysis, the channels were split using a Fiji macro and the recording
1400 with the calcium signal was analyzed further. Single cells from each ROI were defined in a user
1401 interface and all cells were batch processed using the same detection settings for all files.

1402

1403 **Whole-cell patch-clamp electrophysiology**

1404 Whole-cell patch clamp recordings were made from coverslips secured under a platinum ring in
1405 the recording chamber (OAC-1; Science Products) and submerged in continuously flowing (3
1406 mL/min) artificial cerebrospinal fluid (aCSF, in mM: NaCl, 125; KCl, 3.5; CaCl₂, 2.4; MgCl₂, 1.3;
1407 NaH₂PO₄, 1.2; glucose, 25; NaHCO₃, 26; gassed with 96% O₂ and 4% CO₂) maintained at 32–34
1408 °C with an in-line perfusion heater (TC324B; Warner Instruments). Patch electrodes (3–5 MΩ)
1409 were pulled from 1.5 mm borosilicate glass. For paired recordings, action potential recordings and
1410 postsynaptic current recordings, the following internal solution was used (in mM):
1411 KMethylsulphate, 135; EGTA, 0.2; HEPES, 10; KCl, 12; NaCl, 8; Mg-ATP, 2; Na₃-GTP, 0.3.
1412 Methylsulphate was used instead of gluconate as the principle intracellular anion to avoid a
1413 rundown of both sAHP amplitude and AP accommodation. Data were not corrected for the liquid
1414 junction potential of 10.1 mV calculated with JPCalc (RRID:SCR_025044). Recordings were
1415 made with a Multiclamp 700B amplifier, digitized through a Digidata 1550B A/D converter and
1416 acquired and analyzed using pClamp 11 software (Molecular Devices). Recordings commenced
1417 only after passive properties had stabilized and these values were used for analysis. Cells with

1418 an access resistance above 25 MΩ were excluded from analysis. Voltage clamp recordings were
1419 sampled at 20 kHz with a low pass filter of 2 kHz. Current clamp recordings were sampled at 250
1420 kHz with a low pass filter of 10 kHz. Pipette, but not whole cell capacitance, was compensated in
1421 all recordings. For Biotin filling, 0.3% Neurobiotin Tracer from Vector Laboratories was used.

1422

1423 **Patch-clamp analysis**

1424 Action potential and postsynaptic current analysis was performed in Easy Electrophysiology
1425 (RRID:SCR_021190): Rheobase current (the minimal required current injection step needed to
1426 evoke an AP), AP threshold, AP amplitude, half width, afterhyperpolarization (AHP) potential
1427 amplitude and AHP delay to peak were assessed from the first AP evoked by 1 s depolarizing
1428 current injection steps applied in 10 pA increments from a potential of -70 mV maintained by
1429 constant current injection. Spontaneous APs or any AP coinciding with current injection onset
1430 were excluded from analysis. AP threshold was defined as the point where the first derivative of
1431 the voltage trace reached 20 mV/ms during the rising AP phase. AP and AHP amplitudes kinetics
1432 were calculated relative to this threshold and rise and decay times represent 10 to 90% of the
1433 threshold to peak interval. Input/output functions represent the frequency of APs generated over
1434 a depolarizing current injection step of 1 s versus the current injection amplitude (in pA).

1435 Miniature postsynaptic currents (mPSCs) were recorded at -70 mV in the presence of TTX (0.5
1436 M). Due to the more positive chloride reversal potential (-49 mV), both GABA_A receptor-mediated
1437 inhibitory mPSCs (mIPSCs) and AMPA receptor-mediated excitatory mPSCs (mEPSCs) were
1438 recorded as inward currents distinguishable by their decay times: Events with a decay time
1439 (defined as time between the peak and the point at which the event decayed to 37% (1/e)) up to
1440 10 ms and a rise time from 0.5 to 5 ms were defined as mEPSCs, while events with a decay time
1441 longer than 12 ms and a rise time from 0.5 to 15 ms were defined as mIPSCs. Thresholds for
1442 decay times were established from recordings in the presence of the GABA_A receptor antagonist
1443 gabazine (Biotrend, 5 μM), or the AMPA-receptor blocker 2,3-dihydroxy-6-nitro-7-sulfamoyl-

1444 benzo[f]quinoxaline (NBQX, Hello Bio, 5 μ M) (n = 4 cells each). Events were detected via template
1445 matching after filtering with a 2000 Hz Bessel low-pass filter while a minimum amplitude threshold
1446 of 5 pA was used to exclude noise (RMS noise was < 5 pA). All events were fit with a biexponential
1447 function and visually verified. Decay kinetics were fit with a single exponential function with the
1448 formula:

1449

1450 $I_{membrane} = A_0 + A_1 \left(e^{-\frac{t}{\tau}} \right)$

1451 where $I_{membrane}$, represents the membrane current, A_0 and A_1 represent the mean baseline current
1452 and slope parameter and τ the decay time constant.

1453 Spontaneous network activity was evaluated from 3-5 min long current-clamp recordings without
1454 any holding current. EPSP bursts (>500 ms and >5 mV with multiple synaptic events) and APs
1455 were counted manually. Burst depolarization per second was calculated from the mathematical
1456 integral of the difference between the baseline membrane potential outside burst events
1457 (Savitzky-Golay smoothed) and the lower envelope of the EPSP burst after smoothing (500 point)
1458 to remove any APs. SIC and AP burst envelope decay kinetics were analyzed in cells with large
1459 and clean single peak responses and expressed as weighted tau values from biexponential fits
1460 using the following formula:

1461 $I_{membrane} = A_0 + A_1 \left(e^{-\frac{t}{\tau_1}} \right) + A_2 \left(e^{-\frac{t}{\tau_2}} \right)$

1462 $\tau_{weighted} = \tau_1 \left(\frac{A1}{A1 + A2} \right) + \tau_2 \left(\frac{A2}{A1 + A2} \right)$

1463

1464

1465 **Electrophysiological characterization with high-density microelectrode arrays.**

1466 Recordings were performed on multi-well high-density microelectrode arrays (HD-MEAs)
1467 available from MaxWell Biosystems (MaxTwo system, Zurich, Switzerland).¹²⁷ Before the plating,

1468 HD-MEAs underwent sterilization using 70% ethanol for 30 minutes, followed by three successive
1469 rinses using distilled water. For enhanced tissue attachment, the arrays were treated with a
1470 coating of 0.05% poly(ethyleneimine) (Sigma-Aldrich), prepared in borate buffer at a pH of 8.5
1471 (Thermo Fisher Scientific, Waltham, USA). This coating process was carried out for 30 minutes
1472 at room temperature. Subsequently, the arrays were rinsed again with distilled water and then
1473 allowed to air dry.

1474 Embryonic day (E) 18 rat primary cortical neurons were prepared as described previously.¹²⁷
1475 Neurons were seeded at a density of 20-30'000 cells per chip in plating medium, which contained
1476 450 mL Neurobasal (Invitrogen, Carlsbad, CA, United States), 50 mL horse serum (HyClone,
1477 Thermo Fisher Scientific), 1.25 mL Glutamax (Invitrogen), and 10 mL B-27 (Invitrogen). Primary
1478 cultures were housed in culture incubators at 37C/5% CO₂. After two days, the plating medium
1479 was gradually changed to maintenance medium, which contained BrainPhys and SM1
1480 (STEMCELL Technologies, Vancouver, #05792); ½ of the media was exchanged every 2–3 days.
1481 On day in vitro (DIV) 7, an activity scan was performed to screen for active electrodes on the HD-
1482 MEA and to select a suitable recording configuration for the tracking experiment. Up to 1024 read-
1483 out channels were selected based on the action potential amplitude values estimated during the
1484 activity scan. Next, tumor cells were dissociated and seeded onto the primary culture for co-
1485 culture. Starting from DIV7 onwards, co-cultures were recorded every 1–2 days until DIV12 with
1486 the same network recording configuration (recording duration: 30-60 mins). No media changes
1487 were performed during this period.

1488 Results were obtained from a total of 4 controls and 8 neuron/tumor co-cultures, using multi-unit
1489 activity. The firing rate was estimated for all active channels (minimum firing rate: 0.05 Hz), and
1490 averaged over the full array. The bursts were detected on binned spike train activity (1 second
1491 bins), using an adaptive threshold based on the activity of each well (peaks above the mean +
1492 1.5 standard deviation of the binned population activity).

1493

1494 **Cluster analysis of connected^{TUM} neurons over time**

1495 In this methodology, we employed a systematic analysis of input and starter cells and their spatial
1496 relationships. First, GFP and Nestin signals were segmented using ilastik.¹²⁰ Starter cells were
1497 calculated by overlapping the segmented GFP and Nestin signals. Input cells were identified by
1498 subtracting starter cells from the GFP signal. We extracted the coordinates of the input and starter
1499 cells. In further analysis, we utilized MATLAB to conduct clustering using the Density-Based
1500 Spatial Clustering of Applications with Noise (DBScan) algorithm. Parameters such as MinPts
1501 and epsilon were adjusted according to the characteristics of individual samples. The MATLAB
1502 script calculated distances between starter cells, input cells, and the resulting clusters. Moreover,
1503 it transformed the cluster boundaries into Regions of Interest (ROI) represented by Convex Hulls
1504 for enhanced delineation. Within each cluster, we evaluated the input-to-starter ratio to assess
1505 the distribution and composition of input cells relative to starter cells.

1506

1507 **Whole brain atlas mapping of tumor cells and connected^{TUM} neurons**

1508 To register and analyze brain sections, we used the QUINT workflow consisting of three steps.¹²⁸
1509 First, the sections were registered to Allen Mouse Brain Common Coordinate Framework
1510 (CCF).¹²⁹ Sections were then preprocessed and segmented for quantification.

1511 **Data Acquisition and Preparation**

1512 Brain sections from experimental mice were acquired using the Zeiss AxioScanZ1 microscope
1513 with a 20x (NA 0.8) objective. Sections were stained with DAPI prior to acquisition. The
1514 endogenous mCherry was used to identify glioblastoma cells and the connected^{TUM} neurons were
1515 identified by the endogenous GFP expression.

1516 **Image Registration and Processing**

1517 The aligned image series were registered to the atlas using QuickNII and VisuAlign tools¹³⁰ to
1518 ensure accurate alignment across different brain sections. QuickMASK tool was utilized for
1519 generating masks corresponding to left-right hemisphere delineations.

1520 **Tumor and Connected^{TUM} Neuron Analysis**

1521 In order to define the distance from GFP-positive, connected^{TUM} neurons to the tumor mass,
1522 regions of interest (ROIs) were delineated where the mCherry signal was very dense. These ROIs
1523 were cleared from the GFP signal. DAPI and GFP signals were separately trained in ilastik¹²⁰ to
1524 segment nuclei and connected^{TUM} neurons, respectively. To separate connected^{TUM} neurons,
1525 nuclei of connected^{TUM} neurons were calculated by overlapping the segmented GFP and DAPI
1526 channels. Additionally, the centroids of these nuclei were extracted.

1527 **Quantification and Visualization**

1528 The Nutil tool was utilized to quantify GFP-positive nuclei across different brain regions.¹³¹ Main
1529 tumor site and GFP-positive, connected^{TUM} neurons were visualized in 3D using MeshView¹³⁰,
1530 providing insights into their spatial distribution and connectivity patterns.

1531 **Distance Determination and Plotting**

1532 Using the coordinates of each centroid of GFP-positive nuclei, the distances of connected^{TUM}
1533 neurons to the tumor mass were determined separating ipsilateral and contralateral hemispheres.
1534 Distances to tumor, differences across hemispheres, and cell distribution were quantified and
1535 visualized for each experimental group.

1536

1537 **Magnet resonance imaging**

1538 MR scans were conducted using a 9.4 Tesla horizontal bore small animal MRI scanner (BioSpec
1539 94/20 USR, Bruker BioSpin GmbH, Ettlingen, Germany) equipped with a gradient strength of 675
1540 mT/m and a receive-only 4-channel surface array coil. T2 weighted images of *ex vivo* brain
1541 samples were acquired using a 3D TurboRARE sequence (TE: 78.9 ms, TR: 1800 ms, spatial
1542 resolution: 0.1 x 0.1 x 0.1 mm³, FOV: 15 x 20 x 10 mm³, matrix: 150 x 200 x 100, averages: 1,
1543 flip angle: 180°, RARE factor: 25, time of acquisition: 12min 0s).

1544

1545 **General image processing and visualization**

1546 Image processing was primarily performed in ImageJ/Fiji (e.g. to reduce and remove unspecific
1547 background by subtraction of different channels, filtering with a median filter or the 'Remove
1548 Outlier').¹⁰⁸

1549 Arivis Vision 4D and ImageJ/Fiji were used for 3D and 4D image visualization. Probability maps
1550 were created for further analysis and visualization using ilastik.¹²⁰ For all 3D renderings in Arivis
1551 Vision 4D, probability maps were used. Confocal Laser Scanning Microscopy (CLSM) images
1552 and *in vivo* imaging data were denoised using the denoise.ai pretrained model in the Nikon NIS-
1553 Elements AR software v5.30.01 (Nikon GmbH Germany/Laboratory Imaging). Videos were
1554 produced in DaVinci Resolve 17.

1555

1556 **Quantification and statistical analysis**

1557 Quantification results were analyzed in GraphPad Prism (GraphPad Software) or R to test
1558 statistical significance with the respective tests. Data were first analyzed for normality using
1559 D'Agostino and Pearson normality. For normally distributed data, statistical significance was
1560 determined by using the two-sided Students' t-test. In the case of non-normality, Mann-Whitney
1561 test was used. For > 2 groups, normally distributed data were analyzed using a one-way ANOVA
1562 test and non-normally distributed data were analyzed with a Kruskal-Wallis (unpaired) or
1563 Friedman (paired) test. If the p value was below 0.05, results were considered statistically
1564 significant. Manual quantifications were performed by two independent investigators. Animal
1565 group sizes were kept as low as possible. No statistical methods were used for predetermining
1566 sample size. Quantifications were depicted with mean and standard error of means.

1567

1568 **DATA AVAILABILITY**

1569 All sequencing data will be deposited to GEO prior to publication.

1570

1571 **CODE AVAILABILITY**

1572 Code used for analysis is available at <https://github.com/venkataramani-lab/>.

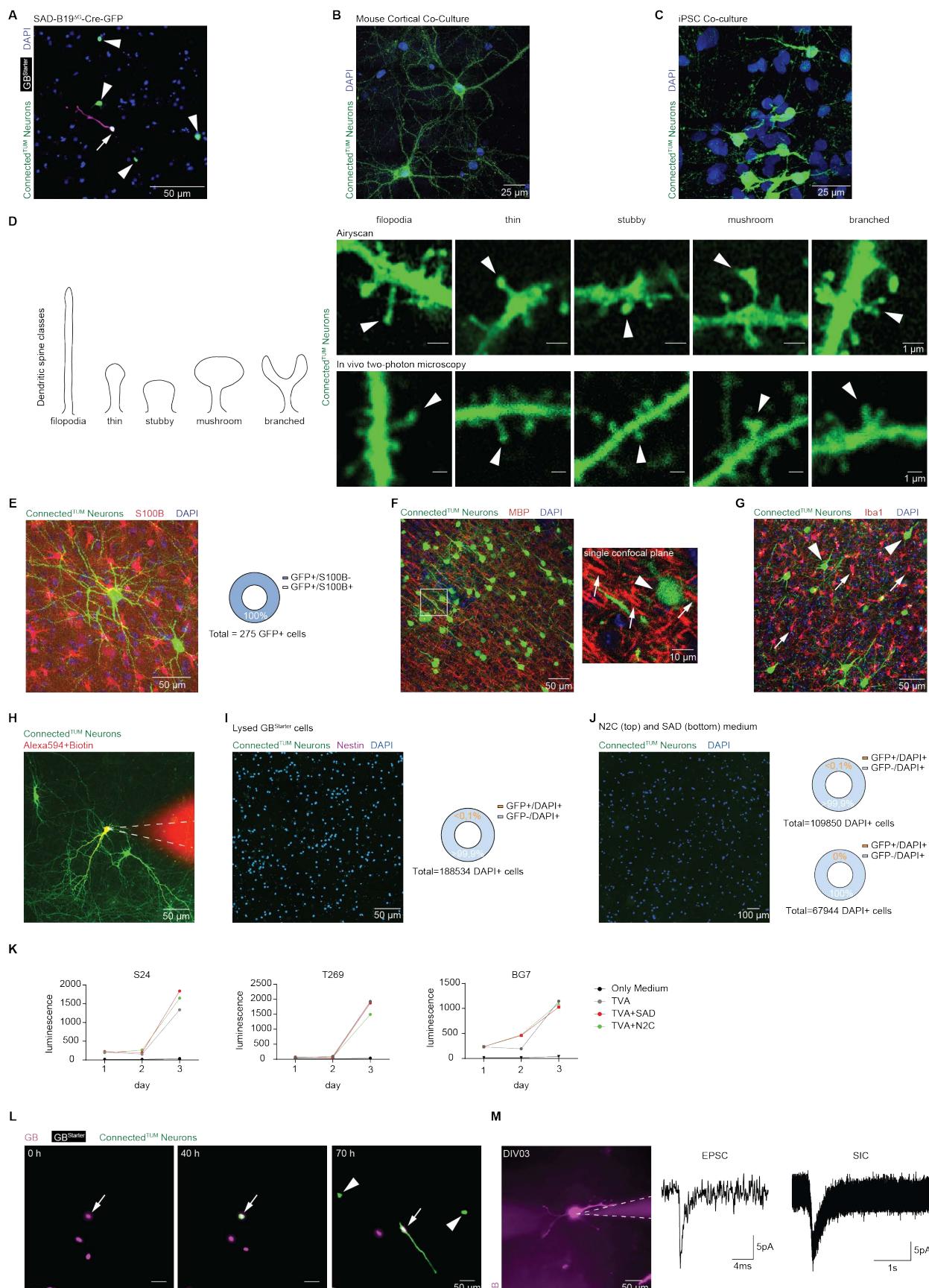
1573

1574 **ACKNOWLEDGMENTS**

1575 The work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research
1576 Foundation), SFB 1389, UNITE Glioblastoma, project ID 404521405 (addressed to V.V., M.B.),
1577 project number VE1373/2-1516 (addressed to V.V.), Heidelberg University and Research Seed
1578 Capital (RiSC) from the Ministry of Science, Research and the Arts Baden Württemberg
1579 (addressed to V.V.). S.K.T., E.R., M.C.S were supported by the Deutsche Krebshilfe/German
1580 Cancer Aid (Mildred-Scheel-Scholarship for MD students). We gratefully acknowledge the data
1581 storage service SDS@hd supported by the Ministry of Science, Research, and the Arts Baden-
1582 Württemberg (MWK). This publication was supported through state funds approved by the State
1583 Parliament of Baden-Württemberg for the Innovation Campus Health + Life Science Alliance
1584 Heidelberg/Mannheim. C.P.B. was supported by the German Research Foundation (DFG:
1585 BE7081/2-1). We are grateful to Hilmar Bading, Department of Neurobiology and Interdisciplinary
1586 Center for Neurosciences, Heidelberg University, for providing the opportunity to carry out
1587 electrophysiological characterization of neuron-tumor networks in his laboratory. Rabies viruses
1588 for initial experiments were a gift from Karl-Klaus Conzelmann. We thank the Viral Core Facility
1589 Charité for supplying viral constructs used in this study. We thank M. Kaiser, M. Schmitt, F.
1590 Gleiche, V. Buchert and K. Eghbalian for technical assistance. We thank Y. Dörflinger and S.
1591 Hoppe for technical assistance with electron microscopy. We thank K. Becker, K. Dell, A.
1592 Riedasch for providing support and assistance in animal care and design of animal experiments.
1593 We are grateful for the Light Microscopy and Flow Cytometry Core Facilities of the German
1594 Cancer Research Center. We thank the Nikon Imaging Center of the Heidelberg University. We
1595 thank the Single-Cell Open Lab of the German Cancer Research Center. We thank the EM Core
1596 Facility of the Heidelberg University, the EM and Microscopy Core Facility of the German Cancer
1597 Research Center for their support.

1598

1599 **AUTHOR CONTRIBUTIONS**


1600 Supervision, V.V.; conceptualization, S.K.T., E.R. and V.V.; methodology, S.K.T., E.R., C.P.B.,
1601 J.S., M.C.S., R.P.L., N.W. and V.V. ; project administration, S.K.T., E.R., V.V.; investigation,
1602 S.K.T., E.R., C.P.B., J.S., J.W., M.C.S, N.L., M.C.P., A.F., N.D., R.L.P., N.W., O.A., A.H., N.S.,
1603 J.C., B.B., J.G.S., G.V., M.S., F.S. and V.V.; formal analysis, S.K.T., E.R., C.P.B., J.S., J.W.,
1604 M.C.S., N.L., M.C.P., A.F., N.D., R.L.P., N.S., B.B., J.G.S., M.S., F.S. and V.V.; resources, O.A.,
1605 J.C., G.V., K.F.N., C.A., B.S., D.H.H, V.V.; visualization, S.K.T., E.R., C.P.B., J.S., J.W., M.C.S,
1606 N.L., M.C.P., R.L.P., N.W., B.B., J.G.S., M.O.B. and V.V.; writing – original draft, V.V.; writing –
1607 review and editing, S.K.T., E.R., C.P.B., J.S, J.B., M.C.S, N.L., M.C.P., R.L.P., N.W., A.H., N.S.,
1608 B.B., J.G.S., G.V., M.S., K.F.N., M.O.B., C.A., D.H.H, J.S.R., and V.V.; funding acquisition, V.V.

1609

1610 **DECLARATION OF INTERESTS**

1611 J.S.R. reports funding from GSK, Pfizer and Sanofi and fees/honoraria from Travere
1612 Therapeutics, Stadapharm, Astex, Owkin, Pfizer and Grunenthal. The other authors declare no
1613 competing interests.

1614

1616 **Figure S1, Specific labeling of connected^{TUM} neurons with rabies-based tracing, related to**

1617 **Figure 1:**

1618 (A) Probability map of SAD-B19^{ΔG}-Cre-GFP and TVA-oG-mCherry positive S24 GB^{Starter} cell (arrow)

1619 with SAD-B19^{ΔG}-Cre-GFP infected connected^{TUM} neurons (arrowheads) in co-culture.

1620 (B) Expansion microscopy of mouse cortical co-culture showing connected^{TUM} neurons in green (CVS-

1621 N2c^{ΔG}-eGFP(EnvA), patient-derived model S24).

1622 (C) Expansion microscopy probability map of iPSC neuron co-culture showing connected^{TUM} neurons

1623 in green (CVS-N2c^{ΔG}-eGFP(EnvA), patient-derived model S24).

1624 (D) Scheme illustrating dendritic spine classes (left). Dendritic spine classes can be distinguished in

1625 connected^{TUM} neurons (green) in PDX model S24 as shown with *ex vivo* Airyscan imaging (SAD-B19^{ΔG}-

1626 eGFP(EnvA), right, top) and with *in vivo* two-photon imaging (CVS-N2c^{ΔG}-eGFP(EnvA), right, bottom).

1627 Arrowheads point to dendritic spines matching the respective class.

1628 (E) *Ex vivo* maximum intensity projection of confocal microscopy from connected^{TUM} neurons (SAD-

1629 B19^{ΔG}-eGFP(EnvA), green) and non-infected, S100B-positive astrocytes (red) in PDX model S24. All

1630 connected^{TUM} cells did not show S100B signal (n = 275 cells in n = 9 patient-derived models).

1631 (F) *Ex vivo* confocal maximum intensity projection showing connected^{TUM} neurons (CVS-N2c^{ΔG}-

1632 eGFP(EnvA), green) and non-infected, MBP-positive oligodendrocytes (red) in PDX model S24 (left).

1633 Zoom-in on a single confocal plane showing no overlap between connected^{TUM} neurons (arrowhead) and

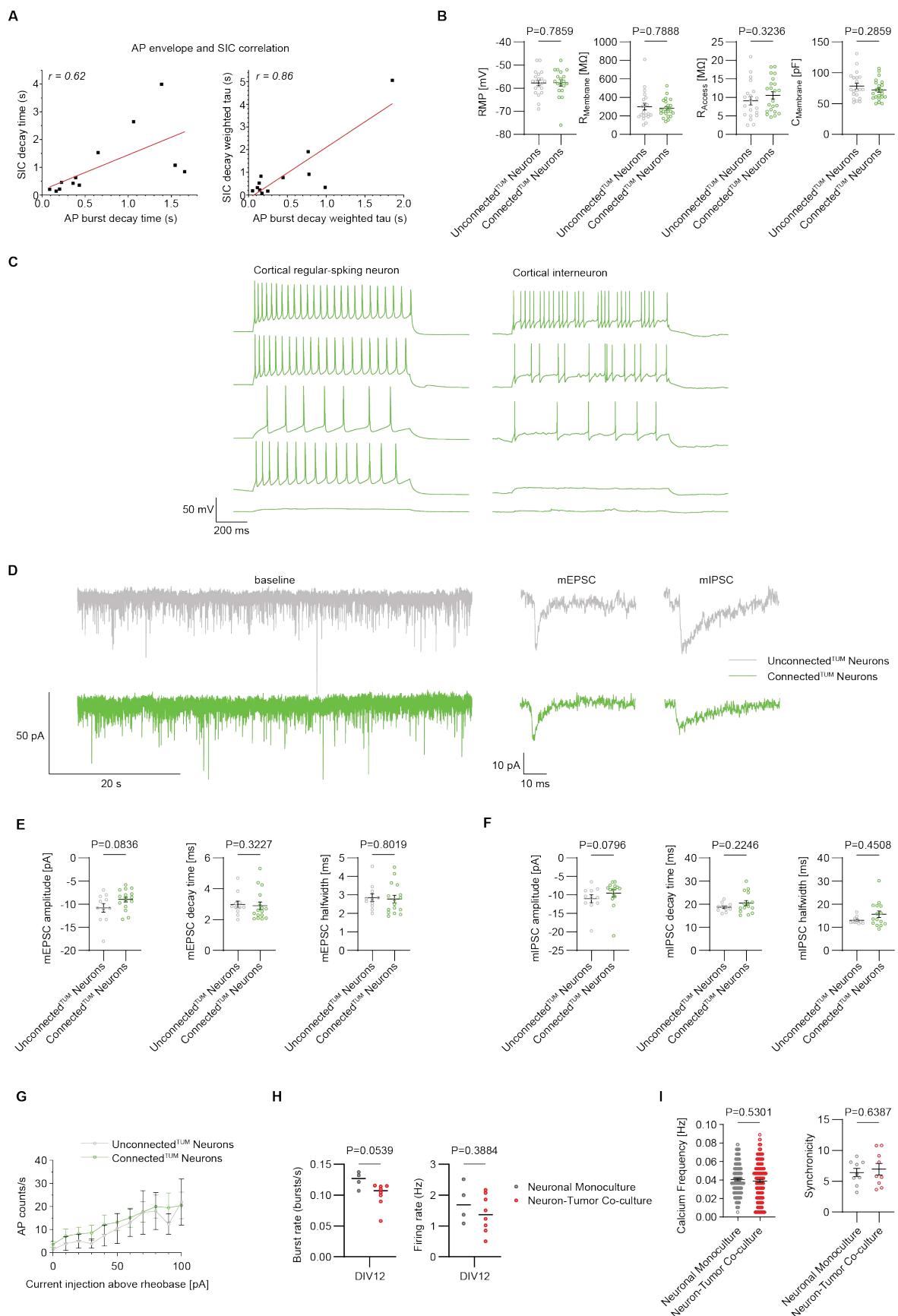
1634 MBP (arrows, right).

1635 (G) *Ex vivo* maximum intensity projection of confocal microscopy showing connected^{TUM} neurons

1636 (CVS-N2c^{ΔG}-eGFP(EnvA), green, arrowheads) and non-infected, Iba1-positive microglia (red, arrows) in

1637 PDX model S24.

1638 (H) Representative image of whole-cell patch clamp of connected^{TUM} neuron (CVS-N2c^{ΔG}-


1639 eGFP(EnvA)), patch pipette (dashed line) filled with Alexa 594 and Neurobiotin (patient-derived model

1640 S24).

1641 (I) Control experiment showing that rabies transfection from released particles from dead S24 GB^{Starter}

1642 cells (left). Less than 0.1% of cells in co-culture are infected. (n = 18 cells in n = 188534 cells total).

1643 (J) Culture medium from rabies-infected co-cultures on neuronal cultures (left). Quantifications show
1644 less than 0.1% of cells in culture are rabies-infected for both cultures infected with the CVS-N2c^{ΔG}-
1645 eGFP(EnvA) (top) and the SAD-B19^{ΔG}-eGFP(EnvA) (bottom) strains (n = 2 cells in n = 109850 cells total
1646 for CVS-N2c^{ΔG}, n = 0 cells in n = 67944 cells total for SAD-B19^{ΔG} in patient-derived model S24).
1647 (K) CellTiter-Glo assay of patient-derived models S24 (left), T269 (middle) and BG7 (right) comparing
1648 only medium control (black), only TVA-oG-mCherry transduced cells (grey), SAD-B19^{ΔG}-eGFP(EnvA)
1649 rabies-infected and TVA-oG-mCherry cells (red), and CVS-N2c^{ΔG}-eGFP(EnvA) rabies-infected and TVA-
1650 oG-mCherry cells (green) (n = 2 replicates per model).
1651 (L) Time-lapse imaging showing a probability map of tumor cell dynamics immediately after seeding
1652 on co-cultures. Arrows pointing to newly infected GB^{Starter} cell, arrowheads indicating newly infected
1653 connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA)).
1654 (M) Image of S24 GB cell in whole-cell patch clamp recording 3 days after seeding onto neuronal
1655 cultures (left) and exemplary EPSC and SIC traces. Image was processed using denoised.ai.
1656
1657

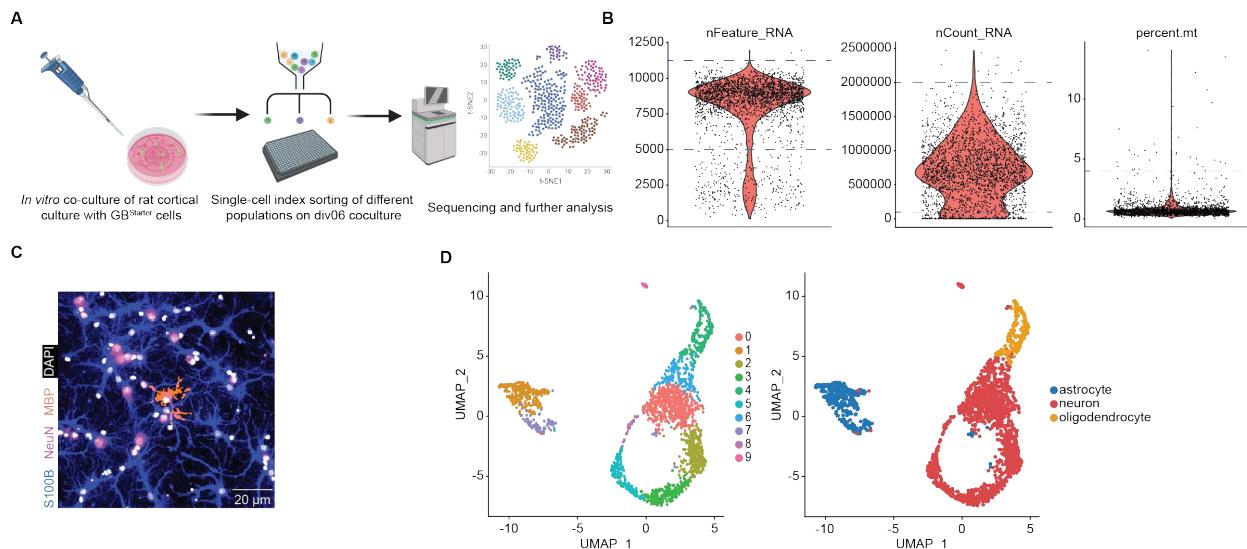
1659 **Figure S2, Electrophysiological properties of connected^{TUM} and unconnected^{TUM} neurons,
1660 related to Figure 2:**

1661 (A) Connected^{TUM} AP envelope and GB^{Starter} SIC current correlation, showing correlation between
1662 decay times (left, Pearson's $r = 0.62$, ANOVA F (df) = 6.4 (11), $p = 0.0301$) and decay weighted tau (right,
1663 Pearson's $r = 0.86$, ANOVA F (df) = 29.6 (11), $p = 0.00029$) ($n = 12$ pairs).

1664 (B) Passive membrane properties in currents in unconnected^{TUM} ($n = 20$) and connected^{TUM} ($n = 22$)
1665 cortical neurons: Resting membrane potential (RMP, Mann-Whitney test), membrane resistance (R_{Membrane} ,
1666 unpaired t-test), access resistance (R_{Access} , unpaired t-test) and membrane capacitance (C_{Membrane} , unpaired
1667 t-test).

1668 (C) Representative whole-cell current-clamp recordings of action potential firing in connected^{TUM}
1669 cortical regular- and intermittent-spiking neurons after 10, 50, 100, 150 and 200 pA current step injection.

1670 (D) Representative whole-cell voltage-clamp recordings of miniature post-synaptic currents in
1671 unconnected^{TUM} and connected^{TUM} cortical neurons with representative single mEPSC and mIPSC
1672 examples (right).


1673 (E) Post-synaptic mEPSC properties in unconnected^{TUM} ($n = 11$) and connected^{TUM} ($n = 16$) cortical
1674 neurons: mEPSC amplitude (unpaired t-test), decay time (Mann-Whitney test) and half-width (unpaired t-
1675 test).

1676 (F) Post-synaptic mIPSC properties in unconnected^{TUM} ($n = 11$) and connected^{TUM} ($n = 16$) cortical
1677 neurons: mEPSC amplitude (unpaired t-test), decay time (unpaired t-test) and half-width (Mann-Whitney
1678 test).

1679 (G) Burst rate in bursts/s (left) and firing rate in Hz (right) of cultures without tumor cells (grey) and
1680 cultures with GB (red) ($n = 4$ monocultures and 8 co-cultures, unpaired t-test).

1681 (H) Calcium transient frequency (left) and synchronicity (right) of neuronal monoculture and cultures
1682 with seeded GB cells ($n = 157$ (monoculture) and 160 (co-culture) cells in 9 regions of interest, Mann-
1683 Whitney test (frequency) and unpaired t-test (synchronicity)).

1684 (I) Input-output relationship between the current injected (relative to the rheobase current) and the
1685 number of action potentials generated over 1 s in connected^{TUM} and unconnected^{TUM} intermittent-spiking
1686 neurons ($n = 8$).

1687

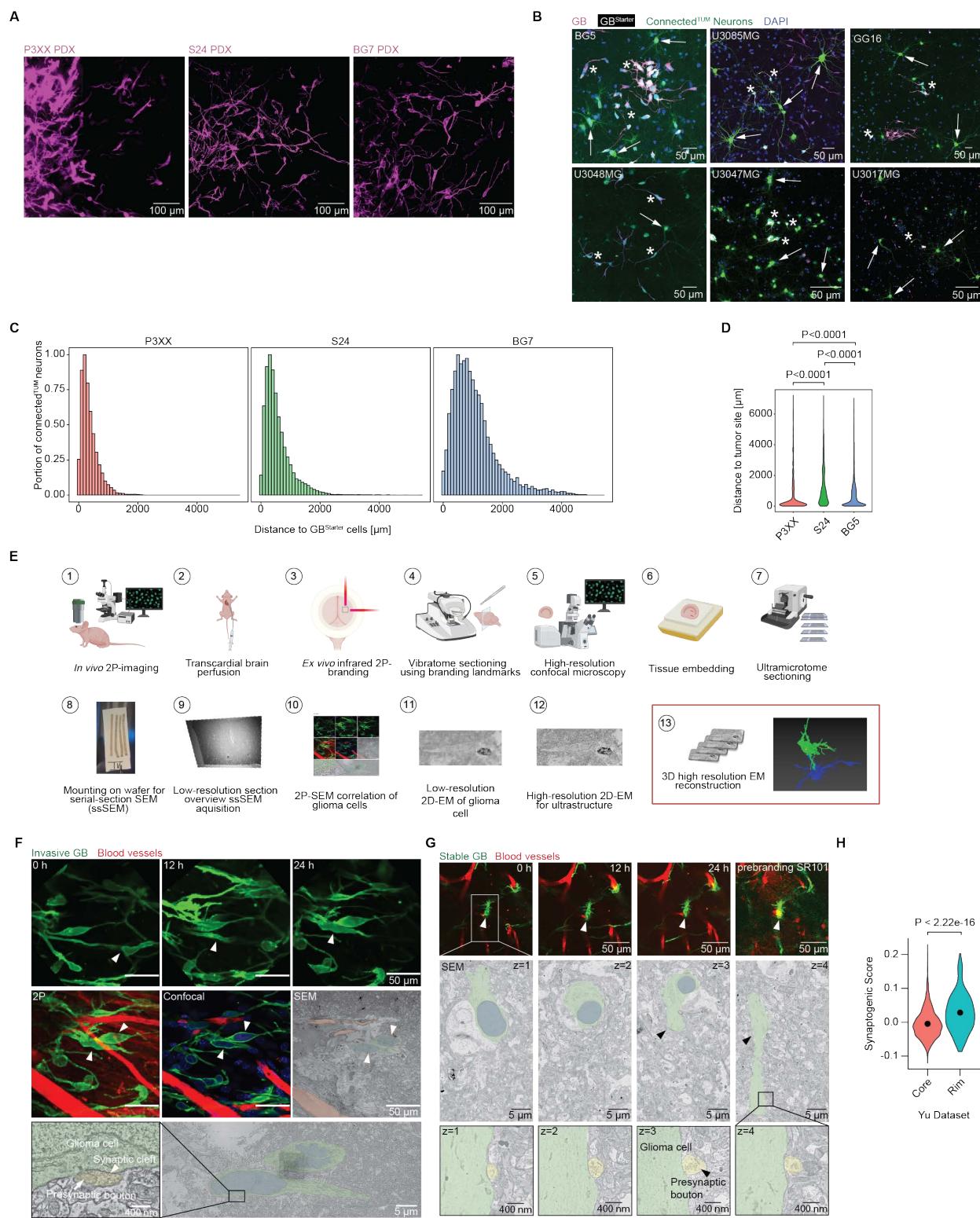
1688 **Figure S3, Single-cell RNA sequencing of connected^{TUM} and unconnected^{TUM} neurons,**
1689 **related to Figure 2:**

1690 (A) Schematic workflow of the FACS sorting and single-cell RNA sequencing of co-cultures.

1691 (B) Quality control of sequenced co-cultures. Blue dashed lines indicate filtering cut-offs.

1692 (C) Representative image showing the different microenvironmental cell types in co-culture. The main

1693 portion of the cells found are S100B-positive astrocytes (blue), NeuN-positive neurons (magenta) and MBP-


1694 positive oligodendrocytes (orange).

1695 (D) UMAP plots of the sequenced co-cultures after quality control showing the clustering (left) and the

1696 cell type annotation (right) of the different microenvironmental cell types in co-culture (n = 1958 cells).

1697

1698

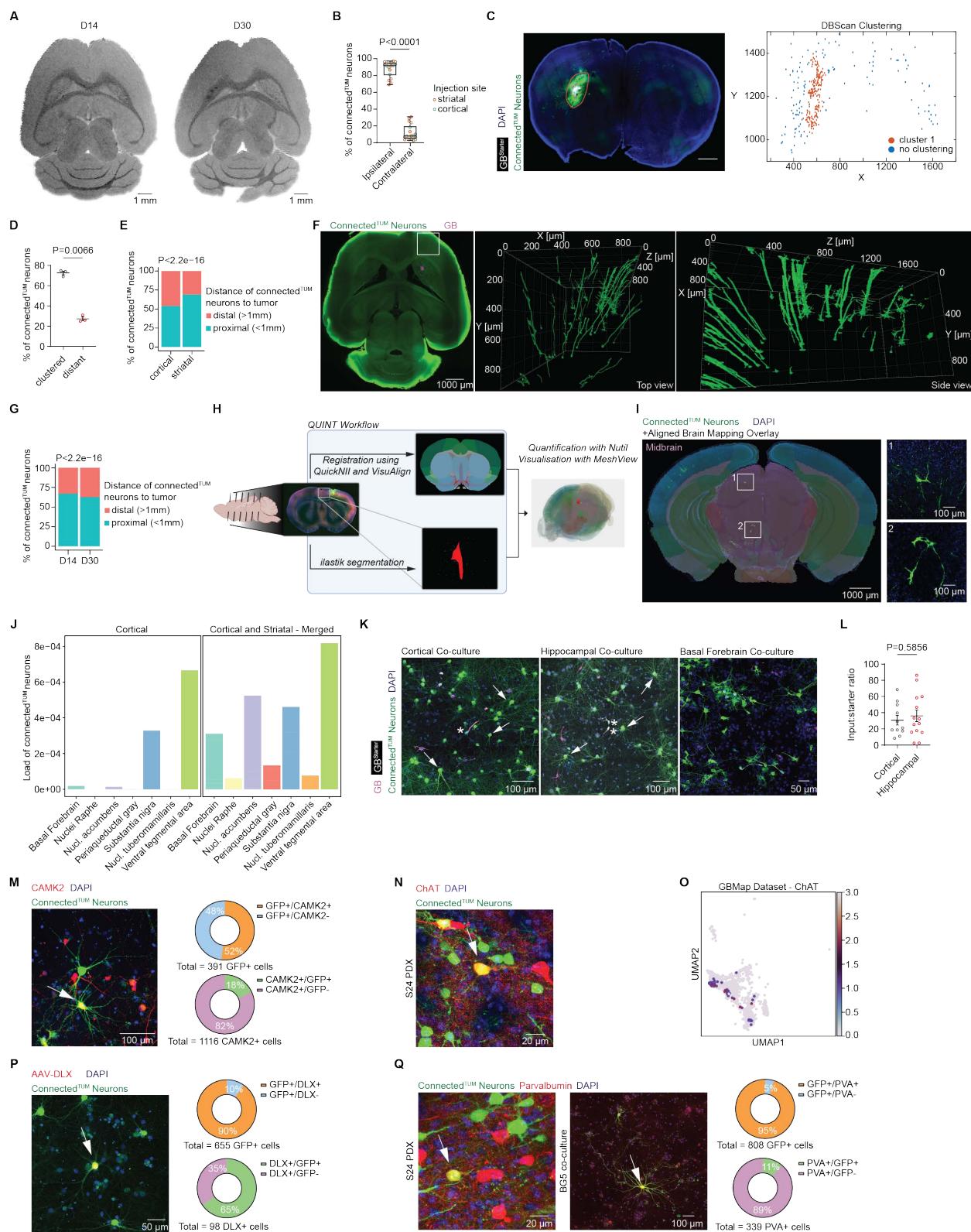
1699

1700 **Figure S4, Neuron-to-glioma synapses across functional glioblastoma cell states, related**
 1701 **to Figure 3:**

1702 (A) *In vivo* two-photon microscopy images of 3 different PDX models P3XX (left), S24 (middle) and
1703 BG7 (right). Images were processed with denoise.ai.

1704 (B) Neuronal connectome of different patient-derived glioblastoma models in co-culture.
1705 Representative images showing GB^{Starter} cells (white, asterisks) and their connected^{TUM} neurons (green,
1706 arrows) (CVS-N2c^{AG}-eGFP(EnvA) for BG5, GG16, U3048MG, SAD-B19^{AG}-eGFP(EnvA) for U3085MG,
1707 U3047MG, U3017MG, green).

1708 (C) Histogram showing the portion of connected^{TUM} neurons in relation to the distance to GB^{Starter} cells
1709 for patient-derived models P3XX (left), S24 (middle) and BG7 (right) in co-culture (n = 30219 (S24), n =
1710 17726 (P3XX), n = 10877 (BG7) connected^{TUM} neurons in n = 3 biological replicates).


1711 (D) Distance of connected^{TUM} neurons to main tumor site in three PDX models *in vivo* (n = 17726
1712 (P3XX), n = 30219 (S24), n = 10877 (BG7) cells, one-way ANOVA test).

1713 (E) *In vivo* correlative light and serial section scanning electron microscopy (CLEM) workflow.

1714 (F) CLEM of an invasive GB cell with 24h *in vivo* two-photon imaging prior to perfusion and subsequent
1715 electron microscopy revealing a neuron-to-glioma synapse with presynaptic bouton and synaptic cleft.
1716 Glioblastoma cell (green overlay), its nucleus (blue overlay), presynaptic bouton (yellow overlay) and blood
1717 vessels (red overlay).

1718 (G) CLEM of a stable GB cell with 24h *in vivo* two-photon imaging prior to perfusion with SR101-signal
1719 in the cell. Serial sectioning scanning electron microscopy of the glioblastoma cell (green overlay) and its
1720 nucleus (blue overlay). Zoom-in on a neuron-to-glioma synapse in consecutive z-layers with a presynaptic
1721 bouton (yellow overlay).

1722 (H) Synaptogenic score in rim compared to core glioblastoma regions in the Yu dataset⁶³ (n = 2795
1723 cells, Mann-Whitney test).

1726 (A) MRI imaging of early stage tumors (D14 and D30) showing no T2-signal (PDX model BG5).

1727 (B) Comparison of the portion of connected^{TUM} neurons in the ipsilateral and contralateral hemispheres

1728 in relation to the tumor site in cortical and striatal tumors (n = 7 cortical and n = 11 striatal tumors from three

1729 PDX models (S24, BG5, P3XX), Mann-Whitney test).

1730 (C) Exemplary *ex vivo* brain slice image (left) showing S24 GB^{Starter} cells (white) and connected^{TUM}

1731 neurons (green). Dashed circle points to the tumor site. Orange circle indicating the area of the majority of

1732 connected^{TUM} neurons. Scale bar = 1 mm. DBScan clustering of the connected^{TUM} neurons from the image

1733 on the left (right). One big cluster around the tumor site is detected (cluster 1, orange). More distant

1734 connected^{TUM} neurons show no specific clustering (blue).

1735 (D) Proportion of connected^{TUM} neurons in clusters compared to distant connected^{TUM} neurons in co-

1736 culture (n = 3 samples from patient-derived models S24 and BG7). Clusters were determined with DBScan

1737 clustering.

1738 (E) Comparison of the portion of proximal and distal connected^{TUM} neurons in cortical compared to

1739 striatal tumors (n = 8839 connected^{TUM} neurons in n = 7 cortical tumors, n = 30528 connected^{TUM} neurons

1740 in n = 11 striatal tumors in three PDX models (S24, BG5, P3XX), Wilcoxon test).

1741 (F) Light-sheet microscopy of retrograde tracing of an early stage glioblastoma (PDX model BG5, D30

1742 post tumor injection). Single plane image showing tumor (magenta) and connected^{TUM} neurons (CVS-

1743 N2c^{ΔG}-eGFP(EnvA), green, left). 3D renderings showing zoom-in onto the connected^{TUM} neurons in the

1744 marked region on the right from two different perspectives.

1745 (G) Comparison of the portion of proximal and distal connected^{TUM} neurons 14 versus 30 days after

1746 tumor implantation (n = 26419 connected^{TUM} neurons in n = 11 D14 tumors, n = 12948 connected^{TUM}

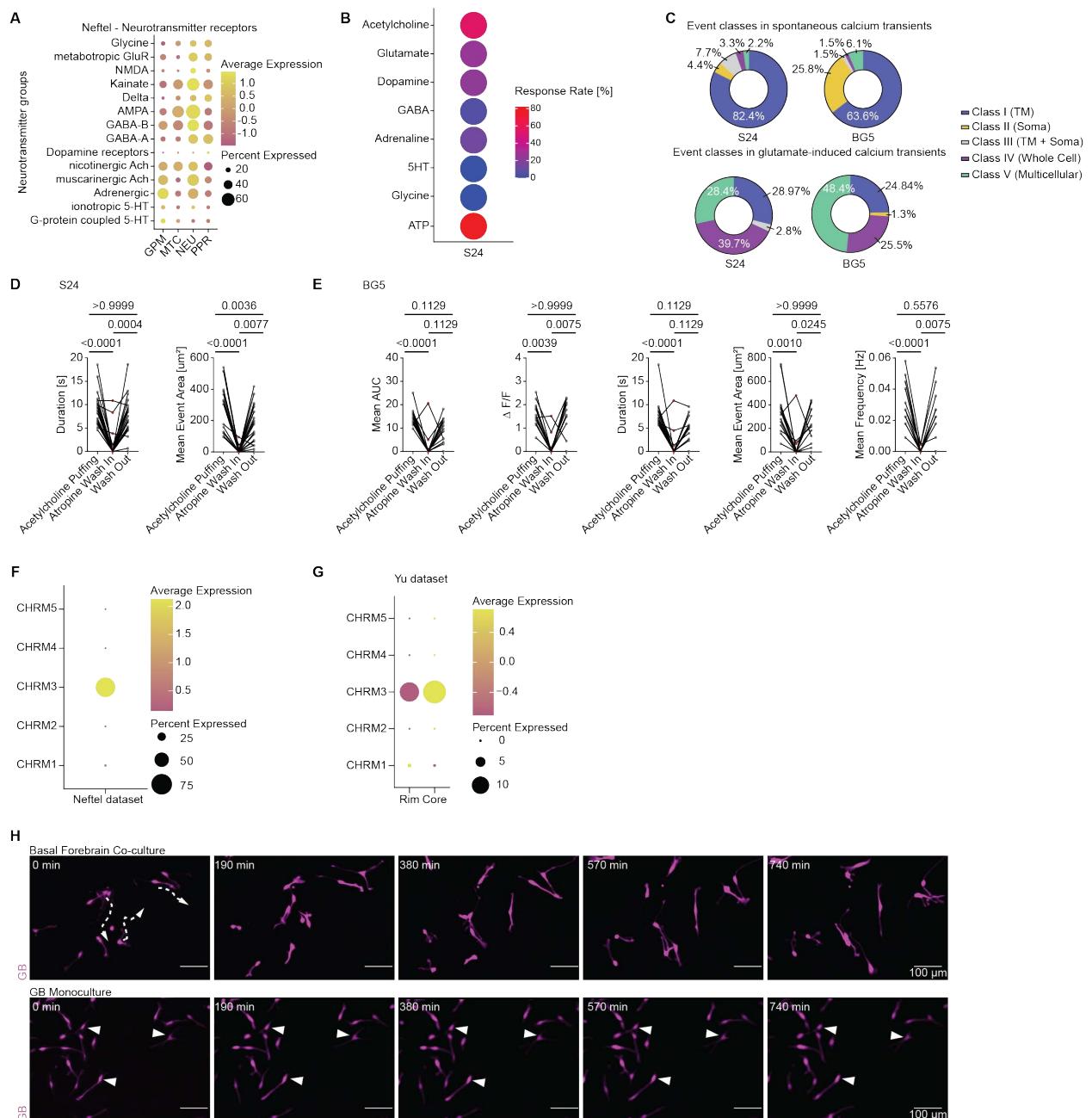
1747 neurons in n = 7 D30 tumors in three PDX models (S24, BG5, P3XX), Wilcoxon test).

1748 (H) Scheme of the QUINT workflow for atlas mapping of brain sections (STAR Methods).

1749 (I) Overlay of fluorescence microscopy and brain atlas mapping around the midbrain region (PDX

1750 model S24, left). Zoom-in on connected^{TUM} neurons in the brainstem (SAD-B19^{ΔG}-eGFP(EnvA), right).

1751 (J) Bar plot showing the load of connected^{TUM} neurons in various neuromodulatory circuits in cortical


1752 tumors (left) and in all analyzed samples (right) (n = 8839 connected^{TUM} neurons in n = 7 cortical tumors, n

1753 = 39367 connected^{TUM} neurons in n = 18 mice total from three PDX models (S24, BG5, P3XX)).

1754 (K) Representative confocal images of different co-culture models with neurons from different brain
1755 regions. Rat cortical co-culture (left), hippocampal co-culture (middle) and basal forebrain co-culture (right).
1756 Asterisks point to S24 GB^{Starter} cells, arrows showing exemplary connected^{TUM} neurons (CVS-N2c^{ΔG}-
1757 eGFP(EnvA) in cortical and hippocampal culture, SAD-B19^{ΔG}-eGFP(EnvA) in basal forebrain culture).
1758 (L) Input-to-starter ratio in hippocampal compared to cortical co-culture model (n = 11 samples for
1759 cortical, n = 14 samples for hippocampal cultures, unpaired t-test).)
1760 (M) Representative confocal image of connected^{TUM} neurons (SAD-B19^{ΔG}-eGFP(EnvA), green) and
1761 CAMK2-positive neurons (red, left). Arrow points to a CAMK2-positive connected^{TUM} neuron (yellow).
1762 Analysis illustrating the portion of CAMK2-positive connected^{TUM} neurons compared to all connected^{TUM}
1763 neurons (above right, n = 391 connected^{TUM} neurons in 3 biological replicates). Analysis showing the portion
1764 of connected^{TUM} neurons compared to all CAMK2-positive neurons (below right, n = 1116 CAMK2-positive
1765 cells in 3 biological replicates).
1766 (N) Representative confocal image of connected^{TUM} neurons (SAD-B19^{ΔG}-eGFP(EnvA), green) and
1767 ChAT-positive neurons (red). Arrow points to a ChAT-positive connected^{TUM} neuron (yellow).
1768 (O) UMAP plot of the neuronal cell subpopulation in the GBMap dataset¹¹⁴ showing ChAT expression
1769 (n = 6309 neurons).
1770 (P) Exemplary confocal image of connected^{TUM} neurons (CVS-N2c^{ΔG}-eGFP(EnvA), green) in a co-
1771 culture infected with AAV-DLX virus infecting GABAergic interneurons (left)¹³² (red). Arrow points to a DLX-
1772 positive connected^{TUM} neuron. Analysis illustrating the portion of DLX-positive connected^{TUM} neurons
1773 compared to all connected^{TUM} neurons (above right, n = 655 connected^{TUM} neurons in n = 6 samples).
1774 Analysis showing the portion of connected^{TUM} neurons compared to all DLX-positive neurons (below right,
1775 n = 98 DLX-positive cells in n = 6 samples).
1776 (Q) Exemplary confocal images of connected^{TUM} neurons (SAD-B19^{ΔG}-eGFP(EnvA), green) and
1777 Parvalbumin-expressing neurons (red) in a patient-derived xenograft model (left) and in co-culture (middle).
1778 Arrows point to Parvalbumin-positive connected^{TUM} neurons (yellow). Analysis illustrating the portion of
1779 Parvalbumin-positive connected^{TUM} neurons compared to all connected^{TUM} neurons (above right, n = 808
1780 connected^{TUM} neurons in n = 4 biological replicates). Analysis showing the portion of connected^{TUM} neurons

1781 compared to all Parvalbumin-positive neurons (below right, n = 339 Parvalbumin-positive cells in n = 4
1782 biological replicates).

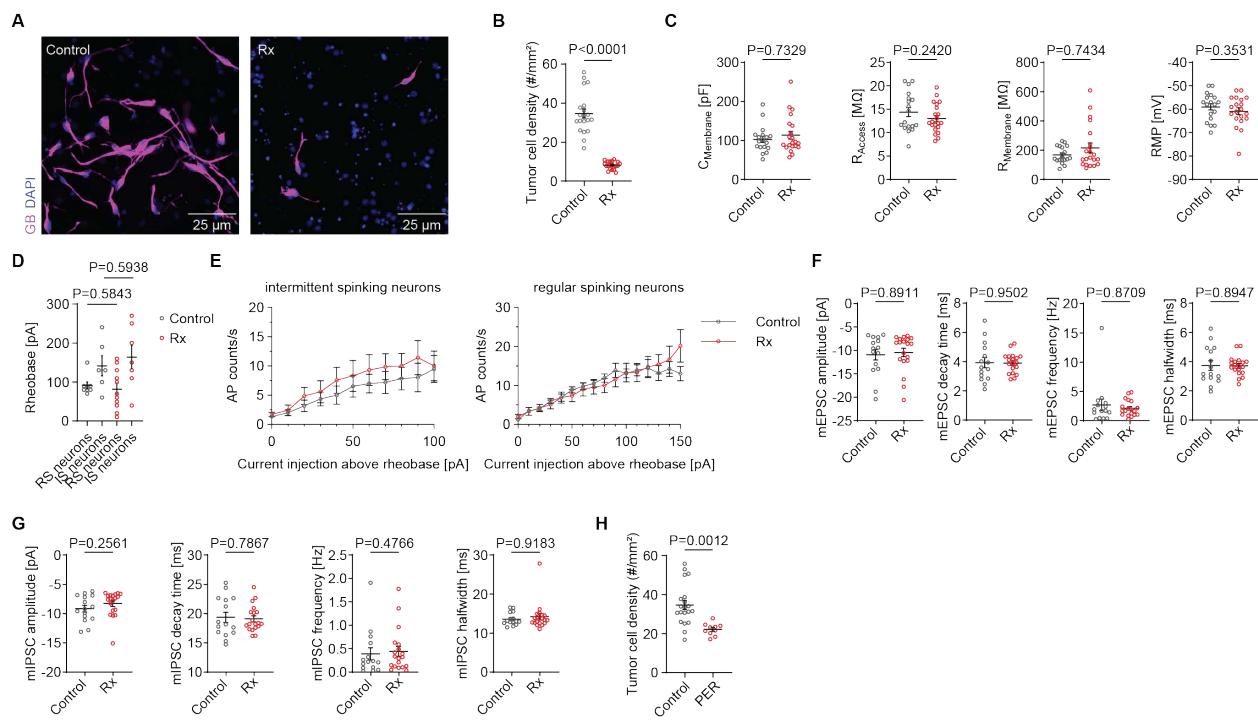
1783

1785 **Figure S6, Gene expression and functional neurotransmitter receptor analysis in**
 1786 **glioblastoma, related to Figure 4:**

1787 (A) Dot plot showing the gene expression module scores of various neurotransmitter receptor groups
 1788 of different glioblastoma pathway-based cell states⁷ in the Neftel dataset⁵ (n = 7929 cells).
 1789 (B) Dot plot indicating the calcium transient response rate to stimulation with different neurotransmitters
 1790 in patient-derived model S24 (n = 56 cells from 5 independent experiments).

1791 (C) Calcium transient event classes in S24 and BG5 patient-derived models under spontaneous
1792 baseline conditions (above) and induced by glutamate puffing (below) (n = 91 events in n = 29 cells (S24),
1793 n = 65 events in n = 56 cells (BG5) for spontaneous events; n = 176 events in n = 77 cells (S24) and n =
1794 157 events in n = 66 cells (BG5) in 12 (S24) and 6 (BG5) independent experiments).

1795 (D) Duration (left) and mean event area (right) of calcium transients in response to acetylcholine
1796 puffing, inhibition of transients by atropine and wash out in S24 glioblastoma cells (n = 22 cells from 2
1797 independent experiments, Friedman test).


1798 (E) Mean area under curve, ΔF over F, duration, event area und frequency (from left to right) of calcium
1799 transients in BG5 glioblastoma cells responding to acetylcholine puffing, inhibition of transients by atropine
1800 and wash out (n = 14 cells from one experiment, Friedman test).

1801 (F) Dot plot showing the expression of muscarinic acetylcholine receptors in glioblastoma cells in
1802 the Neftel dataset⁵ (n = 7929 cells).

1803 (G) Dot plot showing the gene expression of muscarinic acetylcholine receptor subunits in
1804 glioblastoma cells split by rim versus core in Yu dataset⁶³ (n = 2795 cells).

1805 (H) *In vitro* live cell time-lapse images of glioblastoma cells in a co-culture of tumor cells and basal
1806 forebrain neurons (top) compared to a monoculture of only glioblastoma cells (bottom). Arrows with dashed
1807 lines indicating movement of invasive cells, arrows pointing to stable cells. Images were processed with
1808 denoise.ai.

1809

1811 **Figure S7, Radiotherapy-induced effects on glioblastoma cells and connected^{TUM} neurons,**
1812 **related to Figure 6:**

1813 (A) Representative images of tumor regions in control (left) compared to radiotherapy-treated (right)
1814 conditions.

1815 (B) Tumor cell density in cell count per mm² under control conditions versus after irradiation (n = 20
1816 control versus 20 irradiated samples, unpaired t-test)

1817 (C) Passive membrane properties of connected^{TUM} cortical neurons under control condition and after
1818 radiotherapy: Membrane capacitance (C_{Membrane}), access resistance (R_{Access}), membrane resistance
1819 (R_{Membrane}) and resting membrane potential (RMP) (n = 18 control and n = 20 neurons after radiotherapy,
1820 Mann-Whitney test for C_{Membrane} and R_{Membrane}, unpaired t-test for RMP and R_{Access}).

1821 (D) Neuronal rheobase of connected^{TUM} cortical neurons under control condition and after radiotherapy
1822 split by neuronal firing type (n = 8 regular-spiking control neurons, n = 11 regular-spiking neurons after
1823 radiotherapy, Mann-Whitney test, n = 6 intermittent-spiking control neurons, n = 7 intermittent-spiking
1824 neurons after radiotherapy, unpaired t-test)

1825 (E) Input-output relationship between the current injected relative to the rheobase current and the
1826 number of action potentials generated over 1 s in connected intermittent-spiking and regular-spiking
1827 neurons.

1828 (F) Post-synaptic mEPSC properties of connected^{TUM} neurons under control conditions (n = 15) and
1829 after radiotherapy (n = 19) (Mann-Whitney test for mEPSC amplitude and frequency; unpaired t-test for
1830 mEPSC half-width and decay time).

1831 (G) Post-synaptic mIPSC properties of connected^{TUM} neurons under control conditions (n = 15) and
1832 after radiotherapy (n = 19) (Mann-Whitney test for mIPSC amplitude, frequency and half-width; unpaired t-
1833 test for mIPSC decay time).

1834 (H) Tumor cell density in cell count per mm² under control conditions compared to after perampanel
1835 treatment (n = 20 control versus n = 10 perampanel-treated samples, unpaired t-test).

1836

1837

1838

1839 REFERENCES

1840 1. Weller, M., Wick, W., Aldape, K., Brada, M., Berger, M., Pfister, S.M., Nishikawa, R.,
1841 Rosenthal, M., Wen, P.Y., Stupp, R., and Reifenberger, G. (2015). Glioma. Nat Rev Dis
1842 Primers 1, 15017. 10.1038/nrdp.2015.17.

1843 2. Ostrom, Q.T., Price, M., Neff, C., Cioffi, G., Waite, K.A., Kruchko, C., and Barnholtz-Sloan,
1844 J.S. (2022). CBTRUS Statistical Report: Primary Brain and Other Central Nervous System
1845 Tumors Diagnosed in the United States in 2015-2019. Neuro Oncol 24, v1-v95.
1846 10.1093/neuonc/noac202.

1847 3. Weller, M., van den Bent, M., Preusser, M., Le Rhun, E., Tonn, J.C., Minniti, G., Bendszus,
1848 M., Balana, C., Chinot, O., Dirven, L., et al. (2021). EANO guidelines on the diagnosis and
1849 treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18, 170-186.
1850 10.1038/s41571-020-00447-z.

1851 4. Varn, F.S., Johnson, K.C., Martinek, J., Huse, J.T., Nasrallah, M.P., Wesseling, P.,
1852 Cooper, L.A.D., Malta, T.M., Wade, T.E., Sabedot, T.S., et al. (2022). Glioma progression
1853 is shaped by genetic evolution and microenvironment interactions. *Cell*.
1854 10.1016/j.cell.2022.04.038.

1855 5. Neftel, C., Laffy, J., Filbin, M.G., Hara, T., Shore, M.E., Rahme, G.J., Richman, A.R.,
1856 Silverbush, D., Shaw, M.L., Hebert, C.M., et al. (2019). An Integrative Model of Cellular
1857 States, Plasticity, and Genetics for Glioblastoma. *Cell* 178, 835-849 e821.
1858 10.1016/j.cell.2019.06.024.

1859 6. Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto, H., Cahill,
1860 D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-cell RNA-seq highlights
1861 intratumoral heterogeneity in primary glioblastoma. *Science* 344, 1396-1401.
1862 10.1126/science.1254257.

1863 7. Garofano, L., Migliozzi, S., Oh, Y.T., D'Angelo, F., Najac, R.D., Ko, A., Frangaj, B., Caruso,
1864 F.P., Yu, K., Yuan, J., et al. (2021). Pathway-based classification of glioblastoma uncovers
1865 a mitochondrial subtype with therapeutic vulnerabilities. *Nat Cancer* 2, 141-156.
1866 10.1038/s43018-020-00159-4.

1867 8. Venkataramani, V., Yang, Y., Schubert, M.C., Reyhan, E., Tetzlaff, S.K., Wissmann, N.,
1868 Botz, M., Soyka, S.J., Beretta, C.A., Pramatarov, R.L., et al. (2022). Glioblastoma hijacks
1869 neuronal mechanisms for brain invasion. *Cell* 185, 2899-2917 e2831.
1870 10.1016/j.cell.2022.06.054.

1871 9. Osswald, M., Jung, E., Sahm, F., Solecki, G., Venkataramani, V., Blaes, J., Weil, S.,
1872 Horstmann, H., Wiestler, B., Syed, M., et al. (2015). Brain tumour cells interconnect to a
1873 functional and resistant network. *Nature* 528, 93-98. 10.1038/nature16071.

1874 10. Verhaak, R.G., Hoadley, K.A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M.D., Miller, C.R.,
1875 Ding, L., Golub, T., Mesirov, J.P., et al. (2010). Integrated genomic analysis identifies

1876 clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA,
1877 IDH1, EGFR, and NF1. *Cancer Cell* 17, 98-110. 10.1016/j.ccr.2009.12.020.

1878 11. Hoogstrate, Y., Draisma, K., Ghisai, S.A., van Hijfte, L., Barin, N., de Heer, I., Coppieters,
1879 W., van den Bosch, T.P.P., Bolleboom, A., Gao, Z., et al. (2023). Transcriptome analysis
1880 reveals tumor microenvironment changes in glioblastoma. *Cancer Cell* 41, 678-692 e677.
1881 10.1016/j.ccr.2023.02.019.

1882 12. Winkler, F., Venkatesh, H.S., Amit, M., Batchelor, T., Demir, I.E., Deneen, B., Gutmann,
1883 D.H., Hervey-Jumper, S., Kuner, T., Mabbott, D., et al. (2023). Cancer neuroscience: State
1884 of the field, emerging directions. *Cell* 186, 1689-1707. 10.1016/j.cell.2023.02.002.

1885 13. Venkataramani, V., Schneider, M., Giordano, F.A., Kuner, T., Wick, W., Herrlinger, U., and
1886 Winkler, F. (2022). Disconnecting multicellular networks in brain tumours. *Nat Rev Cancer*.
1887 10.1038/s41568-022-00475-0.

1888 14. Venkataramani, V., Tanev, D.I., Kuner, T., Wick, W., and Winkler, F. (2020). Synaptic
1889 Input to Brain Tumors: Clinical Implications. *Neuro Oncol.* 10.1093/neuonc/noaa158.

1890 15. Monje, M., Borniger, J.C., D'Silva, N.J., Deneen, B., Dirks, P.B., Fattah, F., Frenette, P.S.,
1891 Garzia, L., Gutmann, D.H., Hanahan, D., et al. (2020). Roadmap for the Emerging Field
1892 of Cancer Neuroscience. *Cell* 181, 219-222. 10.1016/j.cell.2020.03.034.

1893 16. Venkataramani, V., Tanev, D.I., Strahle, C., Studier-Fischer, A., Fankhauser, L., Kessler,
1894 T., Korber, C., Kardorff, M., Ratliff, M., Xie, R., et al. (2019). Glutamatergic synaptic input
1895 to glioma cells drives brain tumour progression. *Nature* 573, 532-538. 10.1038/s41586-
1896 019-1564-x.

1897 17. Venkatesh, H.S., Morishita, W., Geraghty, A.C., Silverbush, D., Gillespie, S.M., Arzt, M.,
1898 Tam, L.T., Espenel, C., Ponnuswami, A., Ni, L., et al. (2019). Electrical and synaptic
1899 integration of glioma into neural circuits. *Nature* 573, 539-545. 10.1038/s41586-019-1563-
1900 y.

1901 18. Taylor, K.R., Barron, T., Hui, A., Spitzer, A., Yalcin, B., Ivec, A.E., Geraghty, A.C.,
1902 Hartmann, G.G., Arzt, M., Gillespie, S.M., et al. (2023). Glioma synapses recruit
1903 mechanisms of adaptive plasticity. *Nature* 623, 366-374. 10.1038/s41586-023-06678-1.
1904 19. Barron, T., Yalçın, B., Mochizuki, A., Cantor, E., Shamardani, K., Tlais, D., Franson, A.,
1905 Lyons, S., Mehta, V., Jahan, S.M., et al. (2022). GABAergic neuron-to-glioma synapses
1906 in diffuse midline gliomas. *bioRxiv*.
1907 20. Pan, Y., Hysinger, J.D., Barron, T., Schindler, N.F., Cobb, O., Guo, X., Yalcin, B.,
1908 Anastasaki, C., Mulinyawe, S.B., Ponnuswami, A., et al. (2021). NF1 mutation drives
1909 neuronal activity-dependent initiation of optic glioma. *Nature*. 10.1038/s41586-021-03580-
1910 6.
1911 21. Schubert, M.C., Soyka, S.J., Tamimi, A., Maus, E., Denninger, R., Wissmann, N., Reyhan,
1912 E., Tetzlaff, S.K., Beretta, C., Drumm, M., et al. (2023). Deep intravital brain tumor imaging
1913 enabled by tailored three-photon microscopy and analysis. *bioRxiv*,
1914 2023.2006.2017.545350. 10.1101/2023.06.17.545350.
1915 22. Chen, P., Wang, W., Liu, R., Lyu, J., Zhang, L., Li, B., Qiu, B., Tian, A., Jiang, W., Ying,
1916 H., et al. (2022). Olfactory sensory experience regulates gliomagenesis via neuronal IGF1.
1917 *Nature*. 10.1038/s41586-022-04719-9.
1918 23. Curry, R.N., Aiba, I., Meyer, J., Lozzi, B., Ko, Y., McDonald, M.F., Rosenbaum, A.,
1919 Cervantes, A., Huang-Hobbs, E., Cocito, C., et al. (2023). Glioma epileptiform activity and
1920 progression are driven by IGSF3-mediated potassium dysregulation. *Neuron* 111, 682-
1921 695 e689. 10.1016/j.neuron.2023.01.013.
1922 24. Krishna, S., Choudhury, A., Keough, M.B., Seo, K., Ni, L., Kakaizada, S., Lee, A., Aabedi,
1923 A., Popova, G., Lipkin, B., et al. (2023). Glioblastoma remodelling of human neural circuits
1924 decreases survival. *Nature* 617. 10.1038/s41586-023-06036-1.
1925 25. Huang-Hobbs, E., Cheng, Y.T., Ko, Y., Luna-Figueroa, E., Lozzi, B., Taylor, K.R.,
1926 McDonald, M., He, P., Chen, H.C., Yang, Y., et al. (2023). Remote neuronal activity drives

1927 glioma progression through SEMA4F. *Nature* 619, 844-850. 10.1038/s41586-023-06267-

1928 2.

1929 26. Hara, T., Chanoch-Myers, R., Mathewson, N.D., Myskiw, C., Atta, L., Bussema, L.,

1930 Eichhorn, S.W., Greenwald, A.C., Kinker, G.S., Rodman, C., et al. (2021). Interactions

1931 between cancer cells and immune cells drive transitions to mesenchymal-like states in

1932 glioblastoma. *Cancer Cell* 39, 779-792 e711. 10.1016/j.ccr.2021.05.002.

1933 27. Luo, L.Q., Callaway, E.M., and Svoboda, K. (2018). Genetic Dissection of Neural Circuits:

1934 A Decade of Progress. *Neuron* 98, 256-281. 10.1016/j.neuron.2018.03.040.

1935 28. Saleeba, C., Dempsey, B., Le, S., Goodchild, A., and McMullan, S. (2019). A Student's

1936 Guide to Neural Circuit Tracing. *Front Neurosci-Switz* 13. ARTN 897

1937 10.3389/fnins.2019.00897.

1938 29. Xu, X.M., Holmes, T.C., Luo, M.H., Beier, K.T., Horwitz, G.D., Zhao, F., Zeng, W.B., Hui,

1939 M., Semler, B.L., and Sandri-Goldin, R.M. (2020). Viral Vectors for Neural Circuit Mapping

1940 and Recent Advances in Trans-synaptic Anterograde Tracers. *Neuron* 107, 1029-1047.

1941 10.1016/j.neuron.2020.07.010.

1942 30. Wickersham, I.R., Lyon, D.C., Barnard, R.J., Mori, T., Finke, S., Conzelmann, K.K.,

1943 Young, J.A., and Callaway, E.M. (2007). Monosynaptic restriction of transsynaptic tracing

1944 from single, genetically targeted neurons. *Neuron* 53, 639-647.

1945 10.1016/j.neuron.2007.01.033.

1946 31. Wickersham, I.R., Finke, S., Conzelmann, K.K., and Callaway, E.M. (2007). Retrograde

1947 neuronal tracing with a deletion-mutant rabies virus. *Nature methods* 4, 47-49.

1948 10.1038/Nmeth999.

1949 32. Sun, Y., Nguyen, A.Q., Nguyen, J.P., Le, L., Saur, D., Choi, J., Callaway, E.M., and Xu,

1950 X. (2014). Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-

1951 dependent rabies tracing. *Cell Rep* 7, 269-280. 10.1016/j.celrep.2014.02.030.

1952 33. Reardon, T.R., Murray, A.J., Turi, G.F., Wirblich, C., Croce, K.R., Schnell, M.J., Jessell,
1953 T.M., and Losonczy, A. (2016). Rabies Virus CVS-N2c Strain Enhances Retrograde
1954 Synaptic Transfer and Neuronal Viability. *Neuron* 89, 711-724.
1955 10.1016/j.neuron.2016.01.004.

1956 34. Sudhof, T.C., and Malenka, R.C. (2008). Understanding synapses: past, present, and
1957 future. *Neuron* 60, 469-476. 10.1016/j.neuron.2008.10.011.

1958 35. Bergles, D.E., Roberts, J.D.B., Somogyi, P., and Jahr, C.E. (2000). Glutamatergic
1959 synapses on oligodendrocyte precursor cells in the hippocampus. *Nature* 405, 187-191.
1960 Doi 10.1038/35012083.

1961 36. Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N.R., Taniguchi,
1962 H., Tasic, B., Huang, Z.J., He, Z.G., et al. (2011). Cortical representations of olfactory input
1963 by trans-synaptic tracing. *Nature* 472, 191-196. 10.1038/nature09714.

1964 37. Schwarz, L.A., Miyamichi, K., Gao, X.J.J., Beier, K.T., Weissbourd, B., DeLoach, K.E.,
1965 Ren, J., Ibanes, S., Malenka, R.C., Kremer, E.J., and Luo, L.Q. (2015). Viral-genetic
1966 tracing of the input-output organization of a central noradrenaline circuit. *Nature* 524, 88-
1967 U180. 10.1038/nature14600.

1968 38. Stephenson-Jones, M., Yu, K., Ahrens, S., Tucciarone, J.M., van Huijstee, A.N., Mejia,
1969 L.A., Penzo, M.A., Tai, L.H., Wilbrecht, L., and Li, B. (2016). A basal ganglia circuit for
1970 evaluating action outcomes. *Nature* 539, 289-+. 10.1038/nature19845.

1971 39. Wu, X.T., Morishita, W., Beier, K.T., Heifets, B.D., and Malenka, R.C. (2021). 5-HT
1972 modulation of a medial septal circuit tunes social memory stability. *Nature* 599, 96-+.
1973 10.1038/s41586-021-03956-8.

1974 40. Siu, C., Balsor, J., Merlin, S., Federer, F., and Angelucci, A. (2021). A direct interareal
1975 feedback-to-feedforward circuit in primate visual cortex. *Nature communications* 12.
1976 ARTN 4911 10.1038/s41467-021-24928-6.

1977 41. Foster, N.N., Barry, J., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X.N., Choi, J.H., et al. (2021). The mouse cortico-basal ganglia-thalamic network. *Nature* **598**, 188-+. 10.1038/s41586-021-03993-3.

1979 42. Yao, S.Q., Wang, Q.X., Hirokawa, K.E., Ouellette, B., Ahmed, R., Bomben, J., Brouner, K., Casal, L., Caldejon, S., Cho, A., et al. (2023). A whole-brain monosynaptic input connectome to neuron classes in mouse visual cortex. *Nature Neuroscience* **26**, 350-+. 10.1038/s41593-022-01219-x.

1980 43. Wertz, A., Trenholm, S., Yonehara, K., Hillier, D., Raics, Z., Leinweber, M., Szalay, G., Ghanem, A., Keller, G., Rózsa, B., et al. (2015). Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. *Science* **349**, 70-74. 10.1126/science.aab1687.

1981 44. Mount, C.W., Yalcin, B., Cunliffe-Koehler, K., Sundaresh, S., and Monje, M. (2019). Monosynaptic tracing maps brain-wide afferent oligodendrocyte precursor cell connectivity. *eLife* **8**. 10.7554/eLife.49291.

1982 45. John Lin, C.C., Yu, K., Hatcher, A., Huang, T.W., Lee, H.K., Carlson, J., Weston, M.C., Chen, F., Zhang, Y., Zhu, W., et al. (2017). Identification of diverse astrocyte populations and their malignant analogs. *Nat Neurosci* **20**, 396-405. 10.1038/nn.4493.

1983 46. Buckingham, S.C., Campbell, S.L., Haas, B.R., Montana, V., Robel, S., Ogunrinu, T., and Sontheimer, H. (2011). Glutamate release by primary brain tumors induces epileptic activity. *Nat Med* **17**, 1269-1274. 10.1038/nm.2453.

1984 47. Hatcher, A., Yu, K., Meyer, J., Aiba, I., Deneen, B., and Noebels, J.L. (2020). Pathogenesis of peritumoral hyperexcitability in an immunocompetent CRISPR-based glioblastoma model. *J Clin Invest* **130**, 2286-2300. 10.1172/JCI133316.

1985 48. Campbell, S.L., Robel, S., Cuddapah, V.A., Robert, S., Buckingham, S.C., Kahle, K.T., and Sontheimer, H. (2015). GABAergic disinhibition and impaired KCC2 cotransporter activity underlie tumor-associated epilepsy. *Glia* **63**, 23-36. 10.1002/glia.22730.

2003 49. Yu, K., Lin, C.J., Hatcher, A., Lozzi, B., Kong, K., Huang-Hobbs, E., Cheng, Y.T., Beechar, V.B., Zhu, W., Zhang, Y., et al. (2020). PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. *Nature*. 10.1038/s41586-020-1952-2.

2004 50. Lemke, D., Weiler, M., Blaes, J., Wiestler, B., Jestaedt, L., Klein, A.C., Low, S., Eisele, G., Radlwimmer, B., Capper, D., et al. (2014). Primary glioblastoma cultures: can profiling of 2005 stem cell markers predict radiotherapy sensitivity? *J Neurochem* 131, 251-264.

2006 2007 2008 2009 10.1111/jnc.12802.

2010 51. Xie, Y., Bergstrom, T., Jiang, Y., Johansson, P., Marinescu, V.D., Lindberg, N., Segerman, A., Wicher, G., Niklasson, M., Baskaran, S., et al. (2015). The Human Glioblastoma Cell 2011 Culture Resource: Validated Cell Models Representing All Molecular Subtypes. 2012 *Ebiomedicine* 2, 1351-1363. 10.1016/j.ebiom.2015.08.026.

2013 2014 52. Abremski, K., and Hoess, R. (1984). Bacteriophage P1 site-specific recombination. 2015 Purification and properties of the Cre recombinase protein. *J Biol Chem* 259, 1509-1514.

2016 53. Ravi, V.M., Joseph, K., Wurm, J., Behringer, S., Garrelfs, N., d'Errico, P., Naseri, Y., 2017 Franco, P., Meyer-Luehmann, M., Sankowski, R., et al. (2019). Human organotypic brain 2018 slice culture: a novel framework for environmental research in neuro-oncology. *Life Sci* 2019 *Alliance* 2. ARTN e201900305 10.26508/lsa.201900305.

2020 54. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., 2021 Acuna, C., Covy, J., et al. (2013). Rapid single-step induction of functional neurons from 2022 human pluripotent stem cells. *Neuron* 78, 785-798. 10.1016/j.neuron.2013.05.029.

2023 55. Yuste, R., and Bonhoeffer, T. (2001). Morphological changes in dendritic spines 2024 associated with long-term synaptic plasticity. *Annu Rev Neurosci* 24, 1071-1089. 2025 10.1146/annurev.neuro.24.1.1071.

2026 56. Vecht, C.J., Kerkhof, M., and Duran-Pena, A. (2014). Seizure prognosis in brain tumors:
2027 new insights and evidence-based management. *Oncologist* 19, 751-759.
2028 10.1634/theoncologist.2014-0060.

2029 57. Grutzendler, J., Kasthuri, N., and Gan, W.B. (2002). Long-term dendritic spine stability in
2030 the adult cortex. *Nature* 420, 812-816. 10.1038/nature01276.

2031 58. Majewska, A.K., Newton, J.R., and Sur, M. (2006). Remodeling of synaptic structure in
2032 sensory cortical areas in vivo. *J Neurosci* 26, 3021-3029. 10.1523/JNEUROSCI.4454-
2033 05.2006.

2034 59. Holtmaat, A.J., Trachtenberg, J.T., Wilbrecht, L., Shepherd, G.M., Zhang, X., Knott, G.W.,
2035 and Svoboda, K. (2005). Transient and persistent dendritic spines in the neocortex in vivo.
2036 *Neuron* 45, 279-291. 10.1016/j.neuron.2005.01.003.

2037 60. Zuo, Y., Lin, A., Chang, P., and Gan, W.B. (2005). Development of long-term dendritic
2038 spine stability in diverse regions of cerebral cortex. *Neuron* 46, 181-189.
2039 10.1016/j.neuron.2005.04.001.

2040 61. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P.,
2041 Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification
2042 of biology. The Gene Ontology Consortium. *Nat Genet* 25, 25-29. 10.1038/75556.

2043 62. Gene Ontology, C., Aleksander, S.A., Balhoff, J., Carbon, S., Cherry, J.M., Drabkin, H.J.,
2044 Ebert, D., Feuermann, M., Gaudet, P., Harris, N.L., et al. (2023). The Gene Ontology
2045 knowledgebase in 2023. *Genetics* 224. 10.1093/genetics/iyad031.

2046 63. Yu, K., Hu, Y.Q., Wu, F., Guo, Q.F., Qian, Z.H., Hu, W.E., Chen, J., Wang, K.Y., Fan,
2047 X.Y., Wu, X.L., et al. (2020). Surveying brain tumor heterogeneity by single-cell RNA-
2048 sequencing of multi-sector biopsies. *Natl Sci Rev* 7, 1306-1318. 10.1093/nsr/nwaa099.

2049 64. Larjavaara, S., Mantyla, R., Salminen, T., Haapasalo, H., Raitanen, J., Jaaskelainen, J.,
2050 and Auvinen, A. (2007). Incidence of gliomas by anatomic location. *Neuro Oncol* 9, 319-
2051 325. 10.1215/15228517-2007-016.

2052 65. Lanciego, J.L., Luquin, N., and Obeso, J.A. (2012). Functional neuroanatomy of the basal
2053 ganglia. *Cold Spring Harb Perspect Med* 2, a009621. 10.1101/cshperspect.a009621.

2054 66. Munoz-Castaneda, R., Zingg, B., Matho, K.S., Chen, X., Wang, Q., Foster, N.N., Li, A.,
2055 Narasimhan, A., Hirokawa, K.E., Huo, B., et al. (2021). Cellular anatomy of the mouse
2056 primary motor cortex. *Nature* 598, 159-166. 10.1038/s41586-021-03970-w.

2057 67. Yao, S., Wang, Q., Hirokawa, K.E., Ouellette, B., Ahmed, R., Bomben, J., Brouner, K.,
2058 Casal, L., Caldejon, S., Cho, A., et al. (2023). A whole-brain monosynaptic input
2059 connectome to neuron classes in mouse visual cortex. *Nat Neurosci* 26, 350-364.
2060 10.1038/s41593-022-01219-x.

2061 68. Luo, P., Li, A., Zheng, Y., Han, Y., Tian, J., Xu, Z., Gong, H., and Li, X. (2019). Whole
2062 Brain Mapping of Long-Range Direct Input to Glutamatergic and GABAergic Neurons in
2063 Motor Cortex. *Frontiers in neuroanatomy* 13, 44. 10.3389/fnana.2019.00044.

2064 69. Johansson, Y., and Silberberg, G. (2020). The Functional Organization of Cortical and
2065 Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target
2066 Cell Identities. *Cell Rep* 30, 1178-1194 e1173. 10.1016/j.celrep.2019.12.095.

2067 70. Harris, J.A., Mihalas, S., Hirokawa, K.E., Whitesell, J.D., Choi, H., Bernard, A., Bohn, P.,
2068 Caldejon, S., Casal, L., Cho, A., et al. (2019). Hierarchical organization of cortical and
2069 thalamic connectivity. *Nature* 575, 195-202. 10.1038/s41586-019-1716-z.

2070 71. Drumm, M.R., Dixit, K.S., Grimm, S., Kumthekar, P., Lukas, R.V., Raizer, J.J., Stupp, R.,
2071 Chheda, M.G., Kam, K.L., McCord, M., et al. (2020). Extensive brainstem infiltration, not
2072 mass effect, is a common feature of end-stage cerebral glioblastomas. *Neuro Oncol* 22,
2073 470-479. 10.1093/neuonc/noz216.

2074 72. Mesulam, M.M., and Van Hoesen, G.W. (1976). Acetylcholinesterase-rich projections
2075 from the basal forebrain of the rhesus monkey to neocortex. *Brain Res* 109, 152-157.
2076 10.1016/0006-8993(76)90385-1.

2077 73. Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H. (1983). Cholinergic
2078 innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the
2079 septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and
2080 hypothalamus in the rhesus monkey. *J Comp Neurol* 214, 170-197.
2081 10.1002/cne.902140206.

2082 74. Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H. (1984). Atlas of cholinergic
2083 neurons in the forebrain and upper brainstem of the macaque based on monoclonal
2084 choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry.
2085 *Neuroscience* 12, 669-686. 10.1016/0306-4522(84)90163-5.

2086 75. Dana, H., Sun, Y., Mohar, B., Hulse, B.K., Kerlin, A.M., Hasseman, J.P., Tsegaye, G.,
2087 Tsang, A., Wong, A., Patel, R., et al. (2019). High-performance calcium sensors for
2088 imaging activity in neuronal populations and microcompartments. *Nature methods* 16,
2089 649-657. 10.1038/s41592-019-0435-6.

2090 76. Varn, F.S., Johnson, K.C., Martinek, J., Huse, J.T., Nasrallah, M.P., Wesseling, P.,
2091 Cooper, L.A.D., Malta, T.M., Wade, T.E., Sabedot, T.S., et al. (2022). Glioma progression
2092 is shaped by genetic evolution and microenvironment interactions. *Cell* 185, 2184-2199
2093 e2116. 10.1016/j.cell.2022.04.038.

2094 77. Wang, L., Jung, J., Babikir, H., Shamardani, K., Jain, S., Feng, X., Gupta, N., Rosi, S.,
2095 Chang, S., Raleigh, D., et al. (2022). A single-cell atlas of glioblastoma evolution under
2096 therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets. *Nat Cancer* 3, 1534-
2097 1552. 10.1038/s43018-022-00475-x.

2098 78. Rades, D., Witteler, J., Trillenberg, P., Olbrich, D., Schild, S.E., Tvilsted, S., and Kjaer,
2099 T.W. (2022). Increasing Seizure Activity During Radiation Treatment for High-grade
2100 Gliomas - Final Results of a Prospective Interventional Study. *In Vivo* 36, 2308-2313.
2101 10.21873/invivo.12961.

2102 79. Bouwman, J., Maia, A.S., Camoletto, P.G., Posthuma, G., Roubos, E.W., Oorschot, V.M.,
2103 Klumperman, J., and Verhage, M. (2004). Quantification of synapse formation and
2104 maintenance in vivo in the absence of synaptic release. *Neuroscience* 126, 115-126.
2105 10.1016/j.neuroscience.2004.03.027.

2106 80. Katz, L.C., and Shatz, C.J. (1996). Synaptic activity and the construction of cortical
2107 circuits. *Science* 274, 1133-1138. 10.1126/science.274.5290.1133.

2108 81. Rogawski, M.A., and Hanada, T. (2013). Preclinical pharmacology of perampanel, a
2109 selective non-competitive AMPA receptor antagonist. *Acta Neurol Scand Suppl*, 19-24.
2110 10.1111/ane.12100.

2111 82. Gray, D.C., Mahrus, S., and Wells, J.A. (2010). Activation of specific apoptotic caspases
2112 with an engineered small-molecule-activated protease. *Cell* 142, 637-646.
2113 10.1016/j.cell.2010.07.014.

2114 83. Yang, C.F., Chiang, M.C., Gray, D.C., Prabhakaran, M., Alvarado, M., Juntti, S.A., Unger,
2115 E.K., Wells, J.A., and Shah, N.M. (2013). Sexually dimorphic neurons in the ventromedial
2116 hypothalamus govern mating in both sexes and aggression in males. *Cell* 153, 896-909.
2117 10.1016/j.cell.2013.04.017.

2118 84. Aabedi, A.A., Lipkin, B., Kaur, J., Kakaizada, S., Valdivia, C., Reihl, S., Young, J.S., Lee,
2119 A.T., Krishna, S., Berger, M.S., et al. (2021). Functional alterations in cortical processing
2120 of speech in glioma-infiltrated cortex. *Proc Natl Acad Sci U S A* 118.
2121 10.1073/pnas.2108959118.

2122 85. Mauffrey, P., Tchitchek, N., Barroca, V., Bemelmans, A.P., Firlej, V., Allory, Y., Romeo,
2123 P.H., and Magnon, C. (2019). Progenitors from the central nervous system drive
2124 neurogenesis in cancer. *Nature* 569, 672-678. 10.1038/s41586-019-1219-y.

2125 86. Zhao, C., Teng, E.M., Summers, R.G., Jr., Ming, G.L., and Gage, F.H. (2006). Distinct
2126 morphological stages of dentate granule neuron maturation in the adult mouse
2127 hippocampus. *J Neurosci* 26, 3-11. 10.1523/JNEUROSCI.3648-05.2006.

2128 87. Granger, A.J., Mulder, N., Saunders, A., and Sabatini, B.L. (2016). Cotransmission of
2129 acetylcholine and GABA. *Neuropharmacology* 100, 40-46.
2130 10.1016/j.neuropharm.2015.07.031.

2131 88. Venkatesh, H.S., Johung, T.B., Caretti, V., Noll, A., Tang, Y.J., Nagaraja, S., Gibson, E.M.,
2132 Mount, C.W., Polepalli, J., Mitra, S.S., et al. (2015). Neuronal Activity Promotes Glioma
2133 Growth through Neuroligin-3 Secretion. *Cell* 161, 803-816. 10.1016/j.cell.2015.04.012.

2134 89. Venkatesh, H., and Monje, M. (2017). Neuronal Activity in Ontogeny and Oncology.
2135 *Trends Cancer* 3, 89-112. 10.1016/j.trecan.2016.12.008.

2136 90. Chen, E., Ling, A.L., Reardon, D.A., and Chiocca, E.A. (2024). Lessons learned from
2137 phase 3 trials of immunotherapy for glioblastoma: Time for longitudinal sampling? *Neuro*
2138 *Oncol* 26, 211-225. 10.1093/neuonc/noad211.

2139 91. Huang, K.W., and Sabatini, B.L. (2020). Single-Cell Analysis of Neuroinflammatory
2140 Responses Following Intracranial Injection of G-Deleted Rabies Viruses. *Front Cell*
2141 *Neurosci* 14, 65. 10.3389/fncel.2020.00065.

2142 92. Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Fu, X., Lea, N.E., Xu, R., Hou,
2143 Y., Rutigliani, L., et al. (2024). Long-term labeling and imaging of synaptically connected
2144 neuronal networks in vivo using double-deletion-mutant rabies viruses. *Nat Neurosci* 27,
2145 373-383. 10.1038/s41593-023-01545-8.

2146 93. Jin, L., Sullivan, H.A., Zhu, M., Lea, N.E., Lavin, T.K., Fu, X., Matsuyama, M., Hou, Y.,
2147 Feng, G., and Wickersham, I.R. (2023). Third-generation rabies viral vectors allow
2148 nontoxic retrograde targeting of projection neurons with greatly increased efficiency. *Cell*
2149 *Rep Methods* 3, 100644. 10.1016/j.crmeth.2023.100644.

2150 94. Jin, L., Sullivan, H.A., Zhu, M., Lavin, T.K., Matsuyama, M., Fu, X., Lea, N.E., Xu, R., Hou,
2151 Y.Y., Rutigliani, L., et al. (2024). Long-term labeling and imaging of synaptically connected
2152 neuronal networks in vivo using double-deletion-mutant rabies viruses. *Nature*
2153 *Neuroscience*. 10.1038/s41593-023-01545-8.

2154 95. Callaway, E.M., and Luo, L. (2015). Monosynaptic Circuit Tracing with Glycoprotein-
2155 Deleted Rabies Viruses. *J Neurosci* 35, 8979-8985. 10.1523/JNEUROSCI.0409-15.2015.

2156 96. Rogers, A., and Beier, K.T. (2021). Can transsynaptic viral strategies be used to reveal
2157 functional aspects of neural circuitry? *Journal of neuroscience methods* 348, 109005.
2158 10.1016/j.jneumeth.2020.109005.

2159 97. Yin, L., Geng, Y., Osakada, F., Sharma, R., Cetin, A.H., Callaway, E.M., Williams, D.R.,
2160 and Merigan, W.H. (2013). Imaging light responses of retinal ganglion cells in the living
2161 mouse eye. *J Neurophysiol* 109, 2415-2421. 10.1152/jn.01043.2012.

2162 98. Weil, S., Osswald, M., Solecki, G., Grosch, J., Jung, E., Lemke, D., Ratliff, M., Hanggi, D.,
2163 Wick, W., and Winkler, F. (2017). Tumor microtubes convey resistance to surgical lesions
2164 and chemotherapy in gliomas. *Neuro Oncol* 19, 1316-1326. 10.1093/neuonc/nox070.

2165 99. Osswald, M. (2015). Nanotechnology and Oral Implants: An Update. *The International
2166 journal of oral & maxillofacial implants* 30, 995-997.

2167 100. Dondzillo, A., Satzler, K., Horstmann, H., Altrock, W.D., Gundelfinger, E.D., and Kuner, T.
2168 (2010). Targeted three-dimensional immunohistochemistry reveals localization of
2169 presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the
2170 onset of hearing. *J Comp Neurol* 518, 1008-1029. 10.1002/cne.22260.

2171 101. Capper, D., Jones, D.T.W., Sill, M., Hovestadt, V., Schrimpf, D., Sturm, D., Koelsche, C.,
2172 Sahm, F., Chavez, L., Reuss, D.E., et al. (2018). DNA methylation-based classification of
2173 central nervous system tumours. *Nature* 555, 469-474. 10.1038/nature26000.

2174 102. Straehle, J., Ravi, V.M., Heiland, D.H., Galanis, C., Lenz, M., Zhang, J., Neidert, N.N., El
2175 Rahal, A., Vasilikos, I., Kellmeyer, P., et al. (2023). Technical report: surgical preparation
2176 of human brain tissue for clinical and basic research. *Acta Neurochir (Wien)* 165, 1461-
2177 1471. 10.1007/s00701-023-05611-9.

2178 103. Neidert, N., Straehle, J., Erny, D., Sacalean, V., El Rahal, A., Steybe, D., Schmelzeisen,
2179 R., Vlachos, A., Reinacher, P.C., Coenen, V.A., et al. (2022). Stimulated Raman histology

2180 in the neurosurgical workflow of a major European neurosurgical center - part A.

2181 *Neurosurg Rev* 45, 1731-1739. 10.1007/s10143-021-01712-0.

2182 104. Ravi, V.M., Will, P., Kueckelhaus, J., Sun, N., Joseph, K., Salie, H., Vollmer, L., Kuliesiute,
2183 U., von Ehr, J., Benotmane, J.K., et al. (2022). Spatially resolved multi-omics deciphers
2184 bidirectional tumor-host interdependence in glioblastoma. *Cancer Cell* 40, 639-655 e613.
2185 10.1016/j.ccr.2022.05.009.

2186 105. Ravi, V.M., Neidert, N., Will, P., Joseph, K., Maier, J.P., Kuckelhaus, J., Vollmer, L.,
2187 Goeldner, J.M., Behringer, S.P., Scherer, F., et al. (2022). T-cell dysfunction in the
2188 glioblastoma microenvironment is mediated by myeloid cells releasing interleukin-10.
2189 *Nature communications* 13, 925. 10.1038/s41467-022-28523-1.

2190 106. Kuliesiute, U., Joseph, K., Straehle, J., Madapusi Ravi, V., Kueckelhaus, J., Kada
2191 Benotmane, J., Zhang, J., Vlachos, A., Beck, J., Schnell, O., et al. (2023). Sialic acid
2192 metabolism orchestrates transcellular connectivity and signaling in glioblastoma. *Neuro*
2193 *Oncol* 25, 1963-1975. 10.1093/neuonc/noad101.

2194 107. Schneider, M., Vollmer, L., Potthoff, A.L., Ravi, V.M., Evert, B.O., Rahman, M.A., Sarowar,
2195 S., Kueckelhaus, J., Will, P., Zurhorst, D., et al. (2021). Meclofenamate causes loss of
2196 cellular tethering and decoupling of functional networks in glioblastoma. *Neuro Oncol.*
2197 10.1093/neuonc/noab092.

2198 108. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
2199 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source
2200 platform for biological-image analysis. *Nature methods* 9, 676-682. 10.1038/nmeth.2019.

2201 109. Schnitzler, A.C., Lopez-Coviella, I., and Blusztajn, J.K. (2008). Purification and culture of
2202 nerve growth factor receptor (p75)-expressing basal forebrain cholinergic neurons. *Nature*
2203 *protocols* 3, 34-40. 10.1038/nprot.2007.477.

2204 110. Patzke, C., Brockmann, M.M., Dai, J., Gan, K.J., Grauel, M.K., Fenske, P., Liu, Y., Acuna,
2205 C., Rosenmund, C., and Sudhof, T.C. (2019). Neuromodulator Signaling Bidirectionally

2206 Controls Vesicle Numbers in Human Synapses. *Cell* 179, 498-513 e422.
2207 10.1016/j.cell.2019.09.011.

2208 111. Ershov, D., Phan, M.S., Pylvanainen, J.W., Rigaud, S.U., Le Blanc, L., Charles-Orszag,
2209 A., Conway, J.R.W., Laine, R.F., Roy, N.H., Bonazzi, D., et al. (2022). TrackMate 7:
2210 integrating state-of-the-art segmentation algorithms into tracking pipelines. *Nature
2211 methods* 19, 829-832. 10.1038/s41592-022-01507-1.

2212 112. Osakada, F., Mori, T., Cetin, A.H., Marshel, J.H., Virgen, B., and Callaway, E.M. (2011).
2213 New rabies virus variants for monitoring and manipulating activity and gene expression in
2214 defined neural circuits. *Neuron* 71, 617-631. 10.1016/j.neuron.2011.07.005.

2215 113. Hao, Y., Stuart, T., Kowalski, M.H., Choudhary, S., Hoffman, P., Hartman, A., Srivastava,
2216 A., Molla, G., Madad, S., Fernandez-Granda, C., and Satija, R. (2024). Dictionary learning
2217 for integrative, multimodal and scalable single-cell analysis. *Nature biotechnology* 42, 293-
2218 304. 10.1038/s41587-023-01767-y.

2219 114. Ruiz-Moreno, C., Salas, S.M., Samuelsson, E., Brandner, S., Kranendonk, M.E.G.,
2220 Nilsson, M., and Stunnenberg, H.G. (2022). Harmonized single-cell landscape,
2221 intercellular crosstalk and tumor architecture of glioblastoma. *bioRxiv*,
2222 2022.2008.2027.505439. 10.1101/2022.08.27.505439.

2223 115. Bishop, D., Nikic, I., Brinkoetter, M., Knecht, S., Potz, S., Kerschensteiner, M., and
2224 Misgeld, T. (2011). Near-infrared branding efficiently correlates light and electron
2225 microscopy. *Nature methods* 8, 568-570. 10.1038/nmeth.1622.

2226 116. Horstmann, H., Korber, C., Satzler, K., Aydin, D., and Kuner, T. (2012). Serial section
2227 scanning electron microscopy (S3EM) on silicon wafers for ultra-structural volume imaging
2228 of cells and tissues. *PLoS One* 7, e35172. 10.1371/journal.pone.0035172.

2229 117. Reynolds, E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in
2230 electron microscopy. *The Journal of cell biology* 17, 208-212.

2231 118. Team, R.C. (2023). R: A Language and Environment for Statistical Computing.

2232 119. Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S., Longair, M.,
2233 Tomancak, P., Hartenstein, V., and Douglas, R.J. (2012). TrakEM2 software for neural
2234 circuit reconstruction. *PLoS One* 7, e38011. 10.1371/journal.pone.0038011.

2235 120. Berg, S., Kutra, D., Kroeger, T., Straehle, C.N., Kausler, B.X., Haubold, C., Schiegg, M.,
2236 Ales, J., Beier, T., Rudy, M., et al. (2019). ilastik: interactive machine learning for
2237 (bio)image analysis. *Nature methods* 16, 1226-1232. 10.1038/s41592-019-0582-9.

2238 121. Chan, K.Y., Jang, M.J., Yoo, B.B., Greenbaum, A., Ravi, N., Wu, W.L., Sanchez-
2239 Guardado, L., Lois, C., Mazmanian, S.K., Deverman, B.E., and Grdinaru, V. (2017).
2240 Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral
2241 nervous systems. *Nat Neurosci* 20, 1172-1179. 10.1038/nn.4593.

2242 122. Asano, S.M., Gao, R., Wassie, A.T., Tillberg, P.W., Chen, F., and Boyden, E.S. (2018).
2243 Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues. *Curr
2244 Protoc Cell Biol* 80, e56. 10.1002/cpcb.56.

2245 123. Renier, N., Wu, Z., Simon, D.J., Yang, J., Ariel, P., and Tessier-Lavigne, M. (2014).
2246 iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging.
2247 *Cell* 159, 896-910. 10.1016/j.cell.2014.10.010.

2248 124. Pan, C., Schoppe, O., Parra-Damas, A., Cai, R., Todorov, M.I., Gondi, G., von Neubeck,
2249 B., Bogurcu-Seidel, N., Seidel, S., Sleiman, K., et al. (2019). Deep Learning Reveals
2250 Cancer Metastasis and Therapeutic Antibody Targeting in the Entire Body. *Cell* 179, 1661-
2251 1676 e1619. 10.1016/j.cell.2019.11.013.

2252 125. Dana, H., Mohar, B., Sun, Y., Narayan, S., Gordus, A., Hasseman, J.P., Tsegaye, G., Holt,
2253 G.T., Hu, A., Walpita, D., et al. (2016). Sensitive red protein calcium indicators for imaging
2254 neural activity. *Elife* 5. 10.7554/elife.12727.

2255 126. Wang, Y., DelRosso, N.V., Vaidyanathan, T.V., Cahill, M.K., Reitman, M.E., Pittolo, S.,
2256 Mi, X., Yu, G., and Poskanzer, K.E. (2019). Accurate quantification of astrocyte and

2257 neurotransmitter fluorescence dynamics for single-cell and population-level physiology.

2258 *Nat Neurosci* 22, 1936-1944. 10.1038/s41593-019-0492-2.

2259 127. Bakkum, D.J., Frey, U., Radivojevic, M., Russell, T.L., Muller, J., Fiscella, M., Takahashi,
2260 H., and Hierlemann, A. (2013). Tracking axonal action potential propagation on a high-
2261 density microelectrode array across hundreds of sites. *Nature communications* 4, 2181.
2262 10.1038/ncomms3181.

2263 128. Yates, S.C., Groeneboom, N.E., Coello, C., Lichtenthaler, S.F., Kuhn, P.H., Demuth, H.U.,
2264 Hartlage-Rubsamen, M., Rossner, S., Leergaard, T., Kreshuk, A., et al. (2019). QUINT:
2265 Workflow for Quantification and Spatial Analysis of Features in Histological Images From
2266 Rodent Brain. *Front Neuroinform* 13, 75. 10.3389/fninf.2019.00075.

2267 129. Wang, Q., Ding, S.L., Li, Y., Royall, J., Feng, D., Lesnar, P., Graddis, N., Naeemi, M.,
2268 Facer, B., Ho, A., et al. (2020). The Allen Mouse Brain Common Coordinate Framework:
2269 A 3D Reference Atlas. *Cell* 181, 936-953 e920. 10.1016/j.cell.2020.04.007.

2270 130. Puchades, M.A., Csucs, G., Ledergerber, D., Leergaard, T.B., and Bjaalie, J.G. (2019).
2271 Spatial registration of serial microscopic brain images to three-dimensional reference
2272 atlases with the QuickNII tool. *PLoS One* 14, e0216796. 10.1371/journal.pone.0216796.

2273 131. Groeneboom, N.E., Yates, S.C., Puchades, M.A., and Bjaalie, J.G. (2020). Nutil: A Pre-
2274 and Post-processing Toolbox for Histological Rodent Brain Section Images. *Front*
2275 *Neuroinform* 14, 37. 10.3389/fninf.2020.00037.

2276 132. Dimidschstein, J., Chen, Q., Tremblay, R., Rogers, S.L., Saldi, G.A., Guo, L., Xu, Q., Liu,
2277 R., Lu, C., Chu, J., et al. (2016). A viral strategy for targeting and manipulating
2278 interneurons across vertebrate species. *Nat Neurosci* 19, 1743-1749. 10.1038/nn.4430.

2279