

1 **Mutating the arginine residue within the FRNK motif of HC-Pro yield highly
2 attenuated strains that confer complete cross protection against telosma mosaic
3 virus (TelMV) in passion fruit (*Passiflora edulis*)**

4 Linxi Wang¹, Wei Shi¹, Asma Aziz¹, Xiaoqing Wang¹, Haobin Liu¹, Wentao Shen², Aiming Wang³,
5 Hongguang Cui¹, Zhaoji Dai^{1*}

6 ¹Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of
7 Education), School of Plant Protection, Hainan University, Haikou, Hainan, China

8 ²Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical
9 Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural
10 Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China

11 ³London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford
12 Street, London, Ontario N5V 4T3, Canada.

13 *Corresponding author: Zhaoji Dai; zhaoji.dai@hainanu.edu.cn

14 **Keywords:** telosma mosaic virus, TelMV, cross protection, HC-Pro, FRNK, passion fruit, *Passiflora*
15 *edulis*, mild strain, highly attenuated mutant

16 **Abstract**

17 Telosma mosaic virus (TelMV, *Potyvirus*, *Potyviridae*) is an emerging viral pathogen causing a
18 major global threat to passion fruit plantations. However, an efficient strategy for controlling such
19 viruses is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with
20 one virus prevents or delays superinfection with the same or closely related virus. HC-Pro is the
21 potyviral encoded multifunctional protein involved in several steps of viral infection, including
22 multiplication, movement, transmission and RNA silencing suppression. The main hypothesis we
23 tested in this study was whether it is possible to generate attenuated viral strains capable of
24 conferring protection against severe TelMV infection by manipulating the *HC-Pro* gene. By
25 introducing point mutation into the potyviral conserved motif FRNK of HC-Pro, we have
26 successfully obtained three highly attenuated mutants of TelMV (R₁₈₁K, R₁₈₁D and R₁₈₁E,
27 respectively) that can systemically infect passion fruit plants without any noticeable symptoms.
28 Importantly, these mutants confer complete protection against subsequent infection of severe
29 recombinant virus TelMV-GFP, evidenced by no detection of viral RNA or protein of the
30 superinfection virus in the systemic leaves of passion fruit plants in both early and late stages. Lastly,
31 we demonstrated that the HC-Pros harbored by the highly attenuated mutants exhibited reduced RNA
32 silencing suppression activity in *Nicotiana benthamiana* leaves. Altogether, this study provides the
33 first demonstration of the generation of highly attenuated strains for TelMV and highlights key amino
34 acid residue involved in complete cross protection against TelMV, opening a new avenue to fight
35 TelMV in the field.

36

37

38

39 Introduction

40 Cross protection is a phenomenon in which pre-infection of a plant with one virus prevents
41 superinfection (subsequent challenge) with the same or closely related virus. This natural
42 phenomenon was first discovered by Mckinney in 1929, where he found that infection of tobacco
43 plants with one genotype of tobacco mosaic virus (TMV) can protect against the secondary infection
44 with another genotype of TMV (McKinney 1929; Ziebell and Carr 2010). Since then, cross
45 protection has been demonstrated for various plant viruses, animal viruses, bacteriophages and
46 viroids (Folimonova 2013; Ziebell and Carr 2010). Plant virologists have observed this phenomenon
47 in plant viruses belonging to different taxonomic groups, such as TMV in the genus *Tobamovirus*,
48 pepino mosaic virus (PepMV) in the family *Flexiviridae*, citrus tristeza virus (CTV) in the family
49 *Closteroviridae*, papaya ringspot virus (PRSV) and zucchini yellow mosaic virus (ZYMV) in the
50 genus *Potyvirus* (Ziebell and Carr 2010; Folimonova 2013; Chewachong et al. 2015). In the past
51 decades, the use of a mild strain virus as the protective virus has been proven to be practical for cross
52 protection both in the lab and field experiments. There are typical two methods for generating mild
53 strain and/or attenuated strain: 1) searching for naturally existed mild strains, and 2) mutagenesis by
54 physical and chemical means, including UV irradiation, nitrous acid and low/high temperature
55 treatment as well as genetic manipulation of the virus genome (Goh et al. 2023; Raja et al. 2022; Tran
56 et al. 2023).

57 Passion fruit (*Passiflora edulis*), a perennial evergreen vine growing mainly in tropical and
58 subtropical regions, gains popularity in agriculture and food industries due to its nutritional,
59 medicinal and ornamental values. However, viral diseases are the major constraint for passion fruit
60 production worldwide, including in Brazil, Uganda, China, Vietnam, Thailand and Japan. (Yang et al.
61 2018; Do et al. 2021; Ochwo-Ssemakula et al. 2012). The most frequent cause of viral diseases in
62 passion fruit belongs to the genus *Potyvirus*, including passion fruit woodiness virus (PWV), cowpea
63 aphid-borne mosaic virus (CABMV), East Asian Passiflora virus (EAPV), Passiflora mottle virus
64 (PaMoV), and telosma mosaic virus (TelMV) (Do et al. 2021; Do et al. 2023; Gou et al. 2023). It is
65 worth mentioning that TelMV is an emerging viral pathogen causing a major global threat to passion
66 fruit plantations. In 2008, TelMV was discovered infecting telsoma (*Telosma cordata*,
67 *Asclepiadaceae*) in Vietnam, and was first reported to infect passion fruit in Thailand in 2014. The
68 infected passion fruit plants exhibited typical viral symptoms including leaf mottle, mosaic and
69 distortion (Chiemsombat et al. 2014). Since then, TelMV has been reported to infect passion fruit in
70 several places in different provinces across China, including Hainan, Taiwan, Guizhou and Fujian, as
71 well as in Vietnam (Yang et al. 2018; Xie et al. 2020; Do et al. 2021; Zhang et al. 2024; Gou et al.
72 2023). In 2018, Our lab reported the first complete genome sequence of TelMV infecting passion
73 fruit in Hainan, and subsequently obtained the TelMV infectious clone in 2023 (Yang et al. 2018;
74 Gou et al. 2023). Unfortunately, little is known about the viral disease management of TelMV.

75 TelMV belongs to the genus *Potyvirus* in the family *Potyviridae*. Potyvirus represents the largest
76 group of known plant RNA viruses and comprises many agriculturally and economically important
77 viruses, including soybean mosaic virus (SMV), potato virus Y (PVY), plum pox virus (PPV) and
78 turnip mosaic virus (TuMV) (Cui and Wang 2019; Yang et al. 2021; Dai et al. 2020). The genome of
79 TelMV consists of a positive-sense single-stranded RNA (+ssRNA) genome of 10049 nucleotides,
80 harboring one large open reading frame (ORF) that encodes a polyprotein that can be further
81 processed into ten mature viral proteins by three viral proteases. In addition, a short ORF (pretty
82 interesting *Potyviridae* ORF, PIPO) embedded within the P3 cistron is predicted to be translated by
83 RNA polymerase slippage (Yang et al. 2018; Chung et al. 2008). The helper component proteinase
84 (HC-Pro), a well-known virus-encoded RNA silencing suppressor (RSS), is the second gene product
85 at the amino terminus of potyviral genome. The potyviral HC-Pro has been revealed to be a

86 multifunctional protein that plays roles in aphid transmission, protease activity, viral replication, viral
87 movement and gene silencing suppression (Valli et al. 2018). Schematically, HC-Pro can be divided
88 into three domains: an N-terminal domain essential for aphid transmission; a central region
89 implicated in various functions, including RNA silencing suppression, enhancement of viral particle
90 yield and viral movement, and a C-terminal region harboring the protease activity and as well as the
91 RSS activity. The central region contains the highly conserved FRNK motif that is essential for RSS
92 activity and symptom development (Shiboleth et al. 2007; Valli et al. 2018). Moreover, mutation of
93 the arginine (R) residue within the FRNK motif has been reported for generating attenuated strains
94 that are capable of conferring cross protection against virus infection by severe strains, including
95 TuMV, ZYMV, and SCMV (Kung et al. 2014; Gal-On 2000; Lin et al. 2007; Xu et al. 2020).
96 Nevertheless, mild/attenuated strains for efficient cross protection have not been reported for TelMV.

97 The aim of this study was to 1) generate mild/attenuated TelMV strain based on the site-directed
98 mutagenesis of HC-Pro, and 2) to investigate its potential for disease management by cross
99 protection. Owing to the wealth of knowledge of mutation of HC-Pro FRNK motif could generate
100 attenuated strain and be applied in cross protection against severe virus strain, we report here
101 mutation of the arginine residue at the position 181 (R₁₈₁) within the FRNK motif of HC-Pro results
102 in highly attenuated strains that could confer complete cross protection against the subsequent
103 challenge of severe TelMV in passion fruit plants. To our knowledge, this is the first study to
104 demonstrate highly attenuated strains of TelMV and their successful application in cross protection
105 against severe TelMV infection in passion fruit. The significance of these results for promoting the
106 disease management of passion fruit and future prospects are discussed.

107 Materials and Methods

108 Plant material and growth conditions

109 Tobacco (*Nicotiana benthamiana*) and passion fruit (*Passiflora edulis*) plants were grown in pots and
110 placed in a plant growth chamber with light for 16 h and darkness for 8 h at a relative humidity of
111 65%. The temperature was set at 24°C and 22°C during the light and dark periods, respectively.

112 TelMV infectious clone and virus inoculation

113 The wild-type TelMV and GFP-tagged TelMV infection clones used in this study were previously
114 reported by our group in 2023 (Gou et al. 2023).

115 For the inoculation of *N. benthamiana* plants, *Agrobacterium tumefaciens* harboring virus infection
116 clones were infiltrated into the leaves of three-week-old plant using a needle-less syringe. In brief, *A.*
117 *tumefaciens* strain GV3101 harboring virus infectious clone was grown overnight on a shaker at 200
118 rpm. The *Agrobacterium* culture was then centrifuged, washed and resuspended in the
119 agroinfiltration buffer (10 mM MgCl₂, 10 mM MES, pH 5.7) supplemented with 200 μM
120 acetosyringone. The optical density (OD600) of *Agrobacterium* was then adjusted to 0.5 for
121 agroinfiltration.

122 For the inoculation of *P. edulis* plants, the sap prepared from virus-infected *N. benthamiana* plants
123 was rub-inoculated on the cotyledons or true leaves of *P. edulis* plants.

124 Generation of TelMV HC-Pro mutants

125 The point mutations of the Arg₁₈₁ in the FRNK motif of HC-Pro (replacing arginine at position 181
126 with isoleucine, lysine, aspartic acid, glutamic acid, histidine and alanine, respectively) were
127 introduced into HC-Pro cistron by overlapping PCR using Phusion High-Fidelity DNA Polymerase
128 (Thermo Fisher Scientific) and appropriate primers (Table 1). More specifically, primary PCR was

129 carried out to amplify fragment I and fragment II from pPasFru infectious clone (Gou et al. 2023)
130 using primer pairs a/b and c/d, respectively. Next, overlapping PCR was performed to obtain
131 fragment III using primer set a/d, and fragment I and fragment II as the templates. Then, fragment III
132 and pPasFru infectious clones were digested with *Pst*I and *Sal*I, respectively. Lastly, the two digested
133 fragments were ligated by T4 DNA ligase (Thermo Fisher Scientific) to generate recombinant viruses
134 harboring point mutation. Restriction enzymes were purchased from New England Biolabs Inc. All
135 recombinant viral mutants were verified by double digestion and Sanger sequencing.

136 **Cross protection assay**

137 For the primary inoculation of *P. edulis* plants, the sap prepared from mutant virus-infected *N.*
138 *benthamiana* plants was rub-inoculated on the cotyledons of passion fruit plants. To determine
139 whether the passion fruit plants were systemically infected by the mutant virus, systemic leaves were
140 harvested at 12 days post rub-inoculation (dpr) for RNA extraction followed by RT-PCR analysis.
141 Subsequently, the first and second true leaves of these passion fruit plants were further challenge-
142 inoculated with the severe recombinant virus TelMV-GFP (GFP-tagged TelMV infectious clone)
143 (Gou et al. 2023). The cross-protection effect was evaluated by symptom observation under both the
144 regular light and the UV light over an extended period (90 days post challenge). In addition,
145 molecular detection was also carried out to monitor the cross-protection effect. The accumulations of
146 GFP both at the mRNA level and protein level were detected by RT-PCR and Western blot,
147 respectively. The experiment was independently repeated three times, each consisted ten passion fruit
148 plants for the corresponding rub-inoculation.

149 **Genetic stability assay**

150 The genetic stability of the three highly attenuated mutants (R₁₈₁K, R₁₈₁D, R₁₈₁E) was evaluated by
151 serial passages three times, each with twenty-day intervals. More specifically, *P. edulis* plants were
152 rub-inoculated with the sap prepared from each highly attenuated virus-infected *N. benthamiana*
153 leaves, respectively. Twenty days later, the systemic leaves were collected for grounding and the
154 resulting sap was applied for rub-inoculation on the healthy *P. edulis* plants. The serial passage was
155 carried out three times. Throughout the long passaging period, the inoculated plants remain
156 asymptomatic. Additionally, the systemic leaves are collected from every passage and subjected to
157 RT-PCR analysis, followed by Sanger sequencing to confirm the identity of the mutation.

158 **RNA silencing suppression assay of HC-Pro mutants**

159 The coding region of both the WT and mutant HC-Pros were amplified from the corresponding virus
160 infection clones by the primer set F1
161 (5'ATATAGGATCCATGGAACAGAAACTGATCTCTGAAG
162 AAGATCTGTCACTTCACCTGAGATGCAAT3')/R1(5'ATATAGGTACCTAACCAACTCTG
163 TAATGTTTCATTCTC3'). Note that we introduced the Myc tag-encoding sequence in the primer
164 set. The PCR products were double-digested with *Bam*HI and *Kpn*I, and then inserted into the plant
165 expression binary vector (pCaMterX) (Qin et al. 2020). Each HC-Pro-expression construct was
166 further transferred into *Agrobacterium tumefaciens* GV3101 by the electroporation method.

167 Next, The WT or mutant HC-Pro was co-expressed with the GFP-expression construct (Li et al.
168 2014), respectively, by agroinfiltration in *N. benthamiana* leaves. The strong gene silencing
169 suppressor P19 (from tomato bushy stunt virus, TBSV) and empty vector were used as the positive
170 control and negative control, respectively. Lastly, the GFP fluorescence was visualized under UV
171 light starting at 2 dpi and observed over an extended period (11 days). The protein accumulation of
172 GFP was detected by Western blot at 4, 7 and 11 dpi, respectively. The experiment was repeated
173 three times.

174 **RNA extraction and RT-PCR**

175 Total RNA was extracted from 50 mg leaf tissue of *P. edulis* plants using RNA prep Pure Plant Plus
176 Kit (Tiangen). For first-strand cDNA synthesis, 500 ng of RNA was subjected to reverse
177 transcription reaction using the SuperScript III First-strand Synthesis System (Thermo Fisher
178 Scientific) as instructed. For RT-PCR, primers pairs TelMV-8285-F
179 (5'CCAAAGTTAGAGCCAGAAAGGA3')/
180 TelMV-8900-R (5'GAAACCATTGACGACATTCA3') and GFP-F (5'ATGAGTAAAGGAG
181 AAGAACCTTTC3')/GFP-R (5'TTTGTATAGTCATCCATGCCATG3'), were used to detect the
182 viral mRNA and GFP mRNA, respectively. A fragment of *EF1* was amplified from passion fruit
183 cDNA using primers EF1-F (5'GGCTGAGCGTGAACGTGGTA3')/EF1-R
184 (5'CGGCACAATCAGCCTGG
185 GAA3') and served as the internal control (Zhao et al. 2022).

186 **Western blot analysis**

187 Western blot analysis was essentially performed as described (Wang et al. 2021).

188 **Results**

189 **TelMV HC-Pro possesses the highly conserved FRNK motif**

190 First, we investigated whether TelMV HC-Pro contains the FRNK motif by multiple alignments of
191 amino acid sequences of HC-Pro derived from various potyviruses. The alignment results show that
192 the FRNK motif shared over 95% amino acid identity among 143 potyviruses (Fig. 1A). Fig. 1B
193 showed the protein sequence alignment of the partial central domain of HC-Pros harboring the FRNK
194 domain derived from 21 potyviruses. Next, we also conducted the protein sequence alignment
195 analysis on the FRNK motif from all the available TelMV isolates deposited in NCBI databases. We
196 found that all the nine TelMV isolates do contain the FRNK motif and share 100% amino acid
197 identity (Fig. 1C). Taken together, TelMV HC-Pro possesses the highly conserved FRNK motif
198 shared by a large number of potyviruses.

199 **Site-directed mutagenesis of TelMV HC-Pro**

200 As the Arginine (Arg, R) residue in the FRNK motif of HC-Pro has been revealed to be an ideal
201 target for generating mild/attenuated strains toward successful cross protection in potyviruses, we
202 hypothesized that the highly conserved Arginine residue could be the ideal candidate for generating
203 mild strain of TelMV in passion fruit plants. To test this hypothesis, we selected the Arginine 181
204 (R₁₈₁) in the FRNK motif and conducted a comprehensive site-directed mutagenesis in the backbone
205 of TelMV infectious clone (pPasFru) (Gou et al. 2023).

206 The positively charged R₁₈₁ in the FRNK motif of HC-Pro was mutated into five different residues,
207 including two negatively charged amino acids: aspartic acid (Asp, D) and glutamic acid (Glu, E), the
208 other two positively charged: lysine (Lys, K) and histidine (His, H) and Alanine (Ala, A). In addition,
209 as mutating R to isoleucine (Ile, I), often results in mild symptoms in potyviral infections, we
210 mutated R₁₈₁ to I as well in the current study. In total, six TelMV point mutants (designated R₁₈₁I,
211 R₁₈₁K, R₁₈₁D, R₁₈₁E, R₁₈₁H and R₁₈₁A, respectively) have been successfully created by the site-
212 directed mutagenesis in the background of TelMV infectious cDNA clone (Fig. 2A), supported by
213 the PCR identification (Fig. 2B), double digestion (Fig. 2C), and sequencing validation.

214 **Mutation of R₁₈₁ in the FRNK motif of TelMV HC-Pro results in highly attenuated infections in
215 passion fruit plants**

216 To evaluate the infectivity of the six HC-Pro mutants, *Agrobacterium* harboring different mutants
217 were agroinfiltrated into 4-week-old *Nicotiana benthamiana* leaves, respectively. At 5 days post
218 inoculation (dpi), the inoculated leaf samples were ground in pestle and mortar and were
219 subsequently rub-inoculated onto carborundum-dusted leaves of passion fruit plants. Viral infections
220 in passion fruit plants were monitored by visual symptom observation and viral RNA detection by
221 RT-PCR. At 25 days post rub-inoculation (dpr), wild-type (WT) virus-inoculated passion fruit plants
222 exhibited typical viral symptoms exemplified by plant stunting, leaf mosaic and small foliage and
223 distortion (Fig. 3A) when compared to the buffer (Mock)-inoculated control plants. Similar to the
224 WT virus, mutants R₁₈₁H, and R₁₈₁A induced severe symptoms, including plant stunting, leaf mosaic
225 and small foliage. R₁₈₁I caused moderate symptom with inconspicuous leaf mosaic. In contrast,
226 mutants R₁₈₁K, R₁₈₁D and R₁₈₁E induced very mild mosaic symptoms on the systemic leaf during 8
227 to 15 dpr, followed by recovery with no conspicuous symptom in passion fruit plants that are
228 indistinguishable from mock controls at 25 dpr (Fig. 3A), suggesting these mutants are highly
229 attenuated.

230 Intriguingly, RT-PCR analysis of the systemic leaves showed that viral RNA can be detected in the
231 highly attenuated mutants (R₁₈₁K, R₁₈₁D or R₁₈₁E)-inoculated passion fruit plants (Fig. 3B),
232 suggesting these mutants can systemically infect plants without inducing visual symptoms. In
233 addition, at 40 dpr, these mutants did not induce any visual symptoms on passion fruit plants but
234 indeed systemically infected the plants, evidenced by the presence of intensive viral RNA in the
235 newly-emerged leaves by RT-PCR analysis (Fig. 3A, 3B). We constantly monitored the growth of
236 plants till 120 dpr and all plants inoculated by R₁₈₁K, R₁₈₁D or R₁₈₁E were symptomless and
237 indistinguishable from the mock controls.

238 Taken together, the mutants R₁₈₁K, R₁₈₁D and R₁₈₁E are highly attenuated strains with the capability
239 of systemic infection in passion fruit plants.

240 **The highly attenuated mutants R₁₈₁K, R₁₈₁D and R₁₈₁E provide complete protection against 241 severe TelMV infection**

242 We next investigated the potential of the highly attenuated strains (R₁₈₁K, R₁₈₁D and R₁₈₁E) to cross
243 protect against severe TelMV infection in passion fruit plants. To this end, ten passion fruit plants
244 were first rub-inoculated with R₁₈₁K, R₁₈₁D or R₁₈₁E, respectively for twelve days to allow for
245 systemic infection (Fig. 4A). Fig. 4B showed the presence of viral RNA in the systemic leaf of highly
246 attenuated mutant-inoculated plants at 12 dpr. Subsequently, passion fruit plants were then
247 challenged with severe recombinant virus TelMV-GFP (Gou et al., 2023) on the upper young leaves
248 and observed for symptom development (Fig. 4A). The experiment was repeated three times with the
249 same results. The unprotected plants developed severe symptoms with plant stunting, mosaic and
250 small foliage (Fig. 4C). In contrast, passion fruit plants pre-inoculated with R₁₈₁K, R₁₈₁D or R₁₈₁E
251 showed no apparent symptom at 30 days post challenge (dpc) or over an extended period (60 dpc) of
252 observation (Fig. 4C). Constantly, no green fluorescence could be observed under UV light in R₁₈₁K,
253 R₁₈₁D or R₁₈₁E-preinoculated plants at 30 dpc and 60 dpc (Fig. 4C), suggesting the highly attenuated
254 mutants R₁₈₁K, R₁₈₁D and R₁₈₁E confer efficient protection against severe TelMV infection in
255 passion fruit plants.

256 The visual observation of symptoms was further corroborated with molecular analysis. At 30 dpc and
257 60 dpc, the RT-PCR results (with 30 cycles) confirmed the presence of GFP gene in Mock plants
258 challenged with TelMV-GFP, but not in R₁₈₁K, R₁₈₁D or R₁₈₁E-preinoculated plants (Fig. 5A),
259 suggesting R₁₈₁K, R₁₈₁D or R₁₈₁E mutants could offer complete cross protection against TelMV-GFP.
260 To further confirm if the viral RNAs of protective virus were present in the systemic leaves of
261 challenged passion fruit plants during the protection period, we used a pair of primer located in the

262 NIb and CP cistron (franking the GFP cistron), respectively for additional PCR analysis. In the non-
263 challenge inoculation sample (TelMV-GFP) and the Mock sample challenged with TelMV-GFP, we
264 detected blight bands corresponding to the size of the NIb-GFP-CP fragment (1431 bp). However, in
265 the R₁₈₁K, R₁₈₁D or R₁₈₁E-preinoculated sample, a smaller band corresponding to the size of NIb-CP
266 fragment (687 bp) was detected (Fig. 5A). These results indicated that the highly attenuated mutants
267 R₁₈₁K, R₁₈₁D and R₁₈₁E can systemically infect the plants with the excellent ability to cross protect
268 severe TelMV infection in passion fruit plants. Furthermore, Western blot analysis also revealed that
269 GFP protein cannot be detected in R₁₈₁K, R₁₈₁D or R₁₈₁E-preinoculated samples (Fig. 5B). Taken
270 together, these results demonstrated that the three highly attenuated strains (R₁₈₁K, R₁₈₁D or R₁₈₁E)
271 could provide complete protection against severe TelMV infection in the passion fruit plants.

272 **Mutants R₁₈₁K, R₁₈₁D and R₁₈₁E are genetically stable in passion fruit plants**

273 To evaluate whether the highly attenuated strains (R₁₈₁K, R₁₈₁D and R₁₈₁E) were stable and
274 maintained their identity after serial passages in passion fruit plants, the highly attenuated strains
275 were subjected to rub-inoculations in passion fruit plants for three serial passages, each with twenty-
276 day intervals (Fig. 6A). The stability of the highly attenuated strains is determined by both the
277 symptom and molecular analyses. All the plants inoculated with R₁₈₁K, R₁₈₁D or R₁₈₁E were
278 symptomless among all the serial passages tests (Fig. 6B upper panel). Furthermore, the RT-PCR
279 products from passion fruit plants for the serial passages were subjected to sequencing, and the
280 sequence analysis of HC-Pro confirmed that R₁₈₁K, R₁₈₁D and R₁₈₁E remained unchanged during
281 each serial passage (Fig. 6B lower panel). These results revealed that the attenuated strains R₁₈₁K,
282 R₁₈₁D and R₁₈₁E are genetically stable at the genome level through the serial passages.

283 **The Arginine residue within the FRNK motif is critical for RNA silencing suppressor (RSS)
284 activity**

285 As the potyviral HC-Pro is a commonly known RNA silencing suppressor (RSS), we hypothesized
286 that TelMV HC-Pro possesses the RSS activity, and the mutated HC-Pros of the highly attenuated
287 strains execute the eliminated or diminished RSS activity. To this end, the *HC-Pro* gene of WT as
288 well as the mutated viruses were cloned into a Myc-tagged plant expression binary vector (Fig. 7A),
289 respectively and were subsequently examined for RSS activity using a GFP-silencing assay. The
290 Myc-tagged mutant HC-Pro were co-expressed with GFP-expression construct (Qin et al. 2020),
291 respectively, by agroinfiltration in *N. benthamiana* leaves and the GFP fluorescence was visualized
292 under UV light starting at 2 dpi and observed over time for 11 days.

293 First, by using anti-Myc antibody, western blot analysis showed roughly similar protein levels
294 between the WT and mutant HC-Pros at 4 dpi, suggesting these HC-Pro expression vectors
295 successfully encode the HC-Pro proteins in the GFP-silencing assay experiment (Fig. 7C). Next, GFP
296 fluorescence could be visualized under UV light for both the WT and mutant HC-Pros-expression
297 leaf sample at 4 dpi (Fig. 7B). At 7 dpi and 11 dpi, GFP fluorescence in leaf regions co-infiltrated
298 with HC-Pro^{WT} was similar to the fluorescence in regions co-infiltrated with P19 (Fig. 7B), a well-
299 known RSS, indicating TelMV HC-Pro is a very strong RSS.

300 At 4 dpi, leaf regions co-infiltrated with various mutant HC-Pro exhibited comparable green
301 fluorescence to that with WT HC-Pro, and this is verified by western blot analysis of GFP using GFP
302 antiserum. Interestingly, at 7 dpi, leaf regions co-infiltrated with HC-Pro^{R181K}, HC-Pro^{R181D}, and HC-
303 Pro^{R181E} exhibited apparent weakened green fluorescence, compared to HC-Pro^{WT}. Strikingly, these
304 areas showed hugely diminished fluorescence at 11 dpi (Fig. 7B). In contrast, areas co-infiltrated

305 with the other three mutated HC-pros (HC-Pro^{R181H}, HC-Pro^{R181A}, and HC-Pro^{R181I}) remain the
306 relative strong fluorescence at 7dpi and discernible at 11 dpi (Fig. 7B). This observation is supported
307 by the western blot analysis of GFP at the corresponding time points (Fig. 7C). At 11 dpi, the protein
308 level of GFP from the leaf sample co-infiltrated with HC-Pro^{R181K}, HC-Pro^{R181D}, and HC-Pro^{R181E}
309 respectively, was apparently lower than that of HC-Pro^{WT} (Fig. 7C).

310 Taken together, these data indicate point mutants HC-Pro^{R181K}, HC-Pro^{R181D}, and HC-Pro^{R181E}
311 exhibited weaker RSS function than the WT HC-Pro, demonstrating the residue R₁₈₁ in the FRNK
312 motif is critical for the RSS activity of TelMV HC-Pro.

313 Discussion

314 Telomsa mosaic virus (TelMV) is an emerging viral pathogen that causes devastating economic
315 losses in the passion fruit industry worldwide. However, no TelMV-resistant cultivars are currently
316 available, nor any transgenic approaches (Zhang et al. 2024). Alternatively, cross protection using
317 mild/attenuated strain offers great measures to control virus infection. In the current study, we tested
318 whether mutating HC-Pro could yield mild/attenuated strain for TelMV. We demonstrated for the
319 first time that mutation of Arginine (R) within the highly conserved motif (FRNK) of TelMV HC-Pro
320 could generate highly attenuated strains that elicit full protection against severe TelMV infection in
321 passion fruit plants.

322 The highly conserved FRNK motif of potyviral HC-Pro is important for viral pathogenicity, mainly
323 evidenced by the previous reports that mutating the Arginine (R) residue resulted in reduced
324 pathogenicity of various potyviruses, including ZYMV, TuMV, PLDMV, EAPV, PaMoV and PRSV
325 (Gal-On 2000; Lin et al. 2007; Shibolet et al. 2007; Tran et al. 2023; Kung et al. 2014; Tuo et al
326 2020; Chong et al. 2023; Do et al. 2023). Consistently, in our comprehensive exam on the role of
327 Arginine residue within the FRNK motif of HC-Pro in TelMV infection, three out of six mutants
328 (R₁₈₁K, R₁₈₁D and R₁₈₁E, but not R₁₈₁H, R₁₈₁I and R₁₈₁A) exhibited highly attenuated infections that
329 induced unnoticeable symptom in passion fruit plants (Fig 3A). Intriguingly, mutating R to K in the
330 FRNK motif of ZYMV induced severe symptoms in squash plants (Shibolet et al. 2007). Similar to
331 our finding, the FKKN mutant of TuMV caused no symptoms in the systemic leaves of *N.*
332 *benthamiana* plants (Kung et al. 2014), and mutating R to K in the FRNK motif of SCMV induced
333 significantly attenuated infections in maize plants (Xu et al. 2020). It seems the effect of mutating R
334 to K in the FRNK motif on the viral pathogenicity plays a virus-dependent manner. In the case of R
335 to D and R to E mutants, to date, there is only one other report where Kung et al. showed that FDNK
336 and FENK mutants both resulted in the absence of TuMV infection in *N. benthamiana* plants. In our
337 study, the R₁₈₁D and R₁₈₁E indeed induced no noticeable symptom (Fig 3A), but viral RNAs were
338 detected in the systemic leaves (Fig 3B), which further promoted us to test their potential in cross
339 protection against subsequent severe viral infections.

340 Here, we reported the three highly attenuated mutants (R₁₈₁K, R₁₈₁D and R₁₈₁E) elicited complete
341 cross protection against severe TelMV infection in passion fruit (Fig 4C). It added an example of a
342 single-point mutation of the highly conserved FRNK that could offer full cross protection against
343 severe viral strains. Nevertheless, double mutants with one mutation within the FRNK motif have
344 been used as the mild strains offering cross protection, such as the FKKN/C60A double mutant of
345 SCMV (Xu et al. 2021), R₁₈₁D₃₉₇N double mutant of PRSV (Tran et al. 2023) and K₅₃R₁₈₃E of
346 papaya leaf distortion mosaic virus (PLDMV) (Tuo et al 2020). However, compared with single-
347 point mutation, the double or triple mutation has the disadvantage of instability that easy to reverse
348 mutate or induce new mutations. Instead, our study revealed three single-point mutants that are stable
349 and could provide full protection against severe virus infection (Fig 4, 5 and 6).

350 In our study, mutating the Arginine residue (R) to six different amino acid residues resulted in
351 different effects on the viral pathogenicity. The net charge of the HC-Pro mutants is not important for
352 the viral pathogenicity, as mutating the positively charged R₁₈₁ to the negatively charged residues (D
353 and E), and another positively charged residue (K) both resulted in highly attenuated infections in
354 passion fruit plants. As the higher structure of a protein often plays critical roles in protein function in
355 biology, the secondary structure and the 3D structure of both WT and mutant HC-Pros were
356 predicted using the JPred server and I-TASSER server, respectively. Unfortunately, WT HC-Pro and
357 all three highly attenuated mutant HC-Pros (R₁₈₁K, R₁₈₁D and R₁₈₁E) are distinguishable in both the
358 secondary and 3D structures (data not shown). Together, it seems neither the net charge nor the
359 higher structure of HC-Pro is the direct reason for causing highly attenuated infections. Nevertheless,
360 successful viral infections need the assistance of protein-protein interactions among viral proteins as
361 well as the interactions between viral proteins and host proteins. We argue here that it could be the
362 disruption of protein-protein interaction between the HC-Pro and other viral proteins or host proteins
363 is the reason for the highly attenuated pathogenicity of R₁₈₁K, R₁₈₁D and R₁₈₁E.

364 The potyviral HC-Pro is a well-known virus-encoded RNA silencing suppressor (RSS) (Qin et al. 2020).
365 In the current study, we have revealed the potyviral pathogenicity of TelMV is correlated with the
366 RSS ability of HC-Pro, as the RSS activities of HC-Pros of the three highly attenuated mutants (HC-
367 Pro^{R181K}, HC-Pro^{R181D}, and HC-Pro^{R181E}) are hugely reduced in the GFP-silencing assay (Fig. 7). This
368 was also the case for SCMV where the FKNK mutant of SCMV HC-Pro exhibited very weak RSS
369 activity (Xu et al. 2020). Another study by Kung et al., 2014 also reported that the FKNK mutant of
370 TuMV caused mild symptoms and retained partial RSS function in Arabidopsis. However, it remains
371 unknown whether the RSS activity of the FDNK and FENK mutant of TuMV HC-Pro is hampered
372 (Kung et al. 2014). It seems the FRNK mutant of HC-Pro often exhibited abolished or weak RSS
373 activities. This is supported by the current study of TelMV as well as many other cases among
374 different potyviruses, including WMV, SCMV, TuMV and PaMoV (Xu et al. 2020; Kung et al. 2014;
375 Do et al. 2023). Nevertheless, the FINK mutant of ZYMV HC-Pro maintains RSS activity, despite
376 that the corresponding viral mutant caused attenuation of symptoms in cucurbits (Shiboleth et al.
377 2007).

378 In summary, our study presents the first report of generating highly attenuated mutants (R₁₈₁K, R₁₈₁D
379 and R₁₈₁E) for complete cross protection against TelMV in passion fruit plants. Considering the
380 unavailability of efficient strategies for controlling such emerging viral pathogens in passion fruit, it
381 is very important to evaluate the possible application of these highly attenuated mutants in cross
382 protection in the field. Another interesting future direction will be the investigation of the molecular
383 mechanism of virus attenuation. Enormous efforts should be devoted to assessing if any biological
384 aspect of viral infection is disrupted for the attenuated mutants, such as replication and movement, as
385 well as finding host proteins and/or viral proteins sequestered by highly attenuated strains that are
386 critical for subsequent viral infection.

387 Acknowledgments

388 This work was supported by grants from the Hainan Provincial Natural Science Foundation (grant
389 nos. 321QN181 and 322RC564), and the National Natural Science Foundation of China (grant nos.
390 32360651, 32102157, and 32372484). We thank all the members of the lab for the helpful
391 discussions on this project.

392 References

393 Cheng, H. W., Lin, T. T., Huang, C. H., Raja, J. A., and Yeh, S. D. 2023. Modification of papaya
394 ringspot virus HC-Pro to generate effective attenuated mutants for overcoming the problem of strain-
395 specific cross protection. *Plant Dis.* 107:1757-1768.

396 Chewachong, G. M., Miller, S. A., Blakeslee, J. J., Francis, D. M., Morris, T. J., and Qu, F. 2015.
397 Generation of an attenuated, cross-protective *Pepino mosaic virus* variant through alignment-guided
398 mutagenesis of the viral capsid protein. *Phytopathology* 105:126-134.

399 Chiemsombat, P., Prammanee, S., and Pipattanawong, N. 2014. Occurrence of *Telosma mosaic virus*
400 causing passion fruit severe mosaic disease in Thailand and immunostrip test for rapid virus
401 detection. *Crop Prot.* 63:41-47.

402 Chong, Y. H., Do, D. H., Cheng, H. W., Raja, J. A., Ngo, X. T., Hwang, S. G., and Yeh, S. D. 2023.
403 Generation of Attenuated Mutants of East Asian Passiflora Virus for Disease Management by Cross
404 Protection. *Mol. Plant Microbe Interact.* 36:345-358.

405 Chung, B. Y. W., Miller, W. A., Atkins, J. F., and Firth, A. E. 2008. An overlapping essential gene in
406 the *Potyviridae*. *PNAS*. 105:5897-5902.

407 Cui, H., and Wang, A. 2019. The biological impact of the hypervariable N-terminal region of
408 potyviral genomes. *Annu. Rev. Virol.* 6:255-274.

409 Dai, Z., He, R., Bernards, M. A., and Wang, A. 2020. The *cis*-□expression of the coat protein of
410 turnip mosaic virus is essential for viral intercellular movement in plants. *Mol. Plant. Pathol.*
411 21:1194-1211.

412 Do, D. H., Chong, Y. H., Ha, V. C., Cheng, H. W., Chen, Y. K., Bui, T. N. L., Nguyen, T. B. N., and
413 Yeh, S. D. 2021. Characterization and detection of Passiflora mottle virus and two other potyviruses
414 causing passionfruit woodiness disease in Vietnam. *Phytopathology* 111:1675-1685.

415 Do, D. H., Nguyen, T. B. N., Ha, V. C., Raja, J. A., and Yeh, S. D. 2023. Generation of Attenuated
416 Passiflora Mottle Virus Through Modification of the Helper Component Protease for Cross
417 Protection. *Phytopathology* 113:1605-1614.

418 Folimonova, S. Y. 2013. Developing an understanding of cross-protection by *Citrus tristeza*
419 virus. *Front. Microbiol.* 4:46301.

420 Gal-On, A. 2000. A Point Mutation in the FRNK Motif of the Potyvirus Helper Component-Protease
421 Gene Alters Symptom Expression in Cucurbits and Elicits Protection Against the Severe
422 Homologous Virus. *Phytopathology* 90:467-473.

423 Goh, R. P., Xie, X. Y., Lin, Y. C., Cheng, H. W., Raja, J. A., and Yeh, S. D. 2023. Rapid selection of
424 potyviral cross-□protection effective mutants from the local lesion host after nitrous acid
425 mutagenesis. *Mol. Plant Pathol.* 24:973-988.

426 Gou, B., Dai, Z., Qin, L., Wang, Y., Liu, H., Wang, L., Liu, P., Ran, M., Fang, C., Zhou, T., Shen,
427 W., Valli, A. A., and Cui, H. 2023. A zinc finger motif in the P1 N terminus, highly conserved in a
428 subset of potyviruses, is associated with the host range and fitness of *Telosma mosaic virus*. *J. Virol.*
429 97:e01444-22.

430 Ha, C., Coombs, S., Revill, P. A., Harding, R. M., Vu, M., and Dale, J. L. 2008. Design and
431 application of two novel degenerate primer pairs for the detection and complete genomic
432 characterization of potyviruses. *Arch. Virol.* 153:25-36.

433 Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., Lin, C. P., Huang, Y. H., Wu,
434 H. W., Chen, C. C., and Lin, S. S. 2014. Genetic analyses of the FRNK motif function of *Turnip*
435 *mosaic virus* uncover multiple and potentially interactive pathways of cross-protection. *Mol. Plant*
436 *Microbe Interact.* 27:944-955.

437 Li, F., Huang, C., Li, Z., and Zhou, X. 2014. Suppression of RNA silencing by a plant DNA virus
438 satellite requires a host calmodulin-like protein to repress *RDR6* expression. *PLoS Pathog.*
439 10:e1003921.

440 Lin, S. S., Wu, H. W., Jan, F. J., Hou, R. F., and Yeh, S. D. 2007. Modifications of the helper
441 component-protease of Zucchini yellow mosaic virus for generation of attenuated mutants for cross
442 protection against severe infection. *Phytopathology* 97:287-296.

443 McKinney, H. H. 1929. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. *J Agric Res.*
444 39:577-578.

445 Ochwo-Ssemakula, M., Sengooba, T., Hakiza, J. J., Adipala, E., Edema, R., Redinbaugh, M. G.,
446 Aritua, V., and Winter, S. 2012. Characterization and distribution of a Potyvirus associated with
447 passion fruit woodiness disease in Uganda. *Plant Dis.* 96:659-665.

448 Qin, L., Shen, W., Tang, Z., Hu, W., Shangguan, L., Wang, Y., Tuo, D., Li, Z., M, W., Valli, A. A.,
449 Wang, A., and Cui, H. 2020. A newly identified virus in the family Potyviridae encodes two leader
450 cysteine proteases in tandem that evolved contrasting RNA silencing suppression functions. *J. Virol.*
451 95:10-1128.

452 Raja, J. A. J., Huang, C. H., Chen, C. C., Hu, W. C., Cheng, H. W., Goh, R. P., Chao, C. H., Tan, Y.
453 R., and Yeh, S. D. 2022. Modification of N-terminal FWKG- α H1 element of potyviral HC-Pro
454 affects its multiple functions and generates effective attenuated mutants for cross protection. *Mol.*
455 *Plant Pathol.* 23:947-965.

456 Shibolet, Y. M., Haronsky, E., Leibman, D., Arazi, T., Wassenegger, M., Whitham, S. A., Gaba, V.,
457 and Gal-On, A. 2007. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing,
458 is required for small RNA binding and mediates symptom development. *J. Virol.* 81:13135-13148.

459 Tran, T. N. B., Cheng, H. W., Xie, X. Y., Raja, J. A., and Yeh, S. D. 2023. Concurrent Control of
460 Two Aphid-Borne Potyviruses in Cucurbits by Two-in-One Vaccine. *Phytopathology* 113: 1583-
461 1594.

462 Tuo, D., Zhou, P., Zhao, G., Yan, P., Tan, D., Li, X., and Shen, W. 2020. A double mutation in the
463 conserved motifs of the helper component protease of papaya leaf distortion mosaic virus for the
464 generation of a cross-protective attenuated strain. *Phytopathology* 110:187-193.

465 Valli, A. A., Gallo, A., Rodamilans, B., López-Moya, J. J., and García, J. A. 2018. The HCPro from
466 the *Potyviridae* family: an enviable multitasking Helper Component that every virus would like to
467 have. *Mol. Plant. Pathol.* 19:744-763.

468 Wang, Y., Shen, W., Dai, Z., Gou, B., and Cui, H. 2021. Biological and molecular characterization of
469 two closely related arepaviruses and their antagonistic interaction in *Nicotiana benthamiana*. *Front.*
470 *Microbiol.* 12:755156.

471 Wen, Y., Lim, G. X. Y., and Wong, S. M. 2013. Profiling of genes related to cross protection and
472 competition for *NbTOM1* by HLSV and TMV. *PloS one* 8:e73725.

473 Xie, L., Gao, F., Shen, J., Zhang, X., Zheng, S., Zhang, L., and Li, T. 2020. Molecular
474 characterization of two recombinant isolates of telosma mosaic virus infecting *Passiflora edulis* from
475 Fujian Province in China. *PeerJ* 8:e8576.

476 Xu, X. J., Li, H. G., Cheng, D. J., Geng, C., Tian, Y. P., and Li, X. D. 2020. A spontaneous
477 complementary mutation restores the RNA silencing suppression activity of HC-Pro and the
478 virulence of sugarcane mosaic virus. *Front. Plant. Sci.* 11:549767.

479 Xu, X. J., Zhu, Q., Yan, Z. Y., Tian, Y. P., and Li, X. D. 2021. Development and evaluation of stable
480 sugarcane mosaic virus mild mutants for cross-protection against infection by severe strain. *Front.*
481 *Plant. Sci.* 12:788963.

482 Yang, K., Yan, H., Song, L., Jin, P., Miao, W., and Cui, H. 2018. Analysis of the complete genome
483 sequence of a potyvirus from passion fruit suggests its taxonomic classification as a member of a new
484 species. *Arch. Virol.* 163:2583-2586.

485 Yang, X., Li, Y., and Wang, A. 2021. Research advances in potyviruses: from the laboratory bench
486 to the field. *Annu. Rev. Phytopathol.* 59:1-29.

487 Zhang, C., Jiang, J., Chen, S., Wang, F., and Xie, X. 2024. *Telosma mosaic virus*: An emerging plant
488 RNA virus causing production loss in passion fruit across Asia. *Plant Pathol.* 73:242-249.

489 Zhao, M., Fan, H., Tu, Z., Cai, G., Zhang, L., Li, A., and Xu, M. 2022. Stable reference gene
490 selection for quantitative real-time PCR normalization in passion fruit (*Passiflora edulis* Sims.). *Mol.*
491 *Biol. Rep.* 49:5985-5995.

492 Ziebell, H. and Carr, J. P. 2010. Cross-protection: a century of mystery. *Adv. Virus Res.* 76:211-264.

493 **Figure legends**

494 **Fig. 1.** Telosma mosaic virus (TelMV) harbors the highly conserved motif FRNK in potyvrial HC-
495 Pros. A, percentage of amino acid conservation within the FRNK motif of HC-Pros derived from 143
496 potyviruses. B, protein sequence alignment of the partial central domain of HC-Pros harboring the
497 FRNK domain derived from 21 potyviruses. The abbreviated species names and their GenBank
498 accession numbers are as follows: TelMV (telosma mosaic virus), MG944249; EAPV (East Asian
499 Passiflora virus), AB246773; PRSV (papaya ringspot virus), X67673; PPV (plum pox virus),
500 AY028309; PVY (potato virus Y), X12456; SCMV (sugarcane mosaic virus), AJ297628; SMV
501 (soybean mosaic virus), D00507; TEV (tobacco etch virus), M11458; TVMV (tobacco vein mottling
502 virus), X04083; WMV (watermelon mosaic virus), AY437609; ZYMV (zucchini yellow mosaic
503 virus), AF127929; PVMV (pepper veinal mottle virus), DQ645484; PWV (passion fruit woodiness
504 virus), HQ122652; PLDMV (papaya leaf distortion mosaic virus), JX974555; MDMV (maize dwarf
505 mosaic virus), AJ001691; PVA (potato virus A), AJ296311; BCMV (bean common mosaic virus),
506 AJ312437; TuMV (turnip mosaic virus), AF169561; TVBMV (tobacco vein banding mosaic virus),

507 EF219408; SPVG (sweet potato virus G), JQ824374; ChiVMV (chilli veinal mottle virus),
508 AJ237843. Asterisks indicate identical residues. C, multiple alignments of amino acid sequences of
509 HC-Pros of nine different TelMV isolates, with purple boxes highlighting the FRNK motif identified
510 in the alignments. The GenBank accession numbers are as follows: TelMV-PasFru, MG944249;
511 TelMV-Fuzhou, MK340754; TelMV-Wuyishan, MK340755; TelMV-XW, ON932194; TelMV-YD,
512 ON932196; TelMV-RJ, ON932195; TelMV-DC6, MN316594; TelMV-GL2, MT557572; TelMV-
513 Hanoi, NC_009742.

514 **Fig. 2.** Schematic representation of TelMV HC-Pro point mutants. A, schematic representation of
515 R_{181} mutations in TelMV HC-Pro. The symptom severity is indicated, ranging from severe (+++),
516 moderate (+) to symptomless (−) in passion fruit plants. The systemic infection is determined by the
517 presence (+) or absence (−) of viral RNAs in the systemic leaves of passion fruit plants by RT-PCR
518 analysis. The blue box represents the HC-Pro cistron. 35S: 35S promoter of cauliflower mosaic virus;
519 Nos: nopaline synthase terminator. B, PCR identification of HC-Pro mutants. M: DNA marker. WT:
520 WT virus, serving as the positive control. -: negative control using water as the template. C, double
521 digestion validation of HC-Pro mutants. M: DNA marker. WT: positive control using plasmid of WT
522 virus as the template. -: negative control without any plasmid added.

523 **Fig. 3.** Effect of R_{181} in the FRNK motif of HC-Pro on telosma mosaic virus (TelMV) infection in
524 passion fruit. A, passion fruit plants infected with buffer (Mock), wild-type (WT) virus or HC-Pro
525 mutant virus at 25 days post rub-inoculation (dpr). Scale bar: 2 cm. B, RT-PCR analysis of systemic
526 leaf of HC-Pro mutant virus-inoculated passion fruit plants at 25 dpr and 40 dpr, respectively. WT:
527 wild-type TelMV; Mock: buffer-inoculated plants. A fragment of viral coat protein (CP) gene (687
528 bp) was used to detect viral RNAs. The *EF1* gene fragment (146 bp) of passion fruit was served as
529 the internal control for RT-PCR analysis.

530 **Fig. 4.** Effect of three HC-Pro mutants on cross protection against severe telosma mosaic virus
531 (TelMV) infection. A, schematic representation of the experimental design for cross protection in
532 passion fruit plants. B, RT-PCR analysis for viral RNA (partial CP gene) detection in the systemic
533 leaf of HC-Pro mutant-infected plants before the challenge infection. M: DNA marker. TelMV-GFP:
534 GFP-tagged TelMV infectious clone; Mock: buffer-inoculated plants. C, mutants $R_{181}K$, $R_{181}D$ and
535 $R_{181}E$ confer efficient cross-protection against TelMV-GFP infection in passion fruit plants at 30
536 days and 60 days post challenge (dpc), respectively. Scale bar: 3 cm for pictures at 30 dpc and 4 cm
537 for pictures at 60 dpc, respectively.

538 **Fig. 5.** Molecular detection of superinfection in the systemic leaf of passion fruit plant by RT-PCR
539 and Western blot analyses. A, detection of viral RNA of superinfected passion fruit plants by RT-
540 PCR. B, detection of GFP protein of superinfected passion fruit plants by Western blot. The
541 Coomassie brilliant blue (CBB)-stained Rubisco large subunit (RbcL) serves as a loading control.

542 **Fig. 6.** Genetic stability assay. A, schematic representation of genetic stability assay for the highly
543 attenuated TelMV mutants in passion fruit plants. SP: serial passage. B, genetic stability assay by
544 symptom observation and sequence analysis of RT-PCR products of HC-Pro from the highly
545 attenuated mutants-inoculated passion fruit plants. For each serial passage test, the stability of the
546 highly attenuated strains is determined by symptom observation. Scale bar: 1 cm. In addition, the
547 systemic leaves were collected for RNA extraction and the RT-PCR products were subjected to
548 sequencing.

549 **Fig. 7.** RNA silencing suppression analysis of WT and mutated HC-pros of telosma mosaic virus
550 (TelMV) in plant. A, schematic representation of plant binary vector for HC-Pro expression. B, GFP-
551 silencing assay in *N. benthamiana* leaves. GFP-expression construct was co-expressed with vectors
552 expressing WT HC-Pro or mutated HC-Pros, respectively and monitored under UV light at 4, 7 and

553 11 days post inoculation (dpi). EV: empty vector; P19: RNA silencing suppressor P19 from tomato
554 bushy stunt virus (TBSV). C, western blot analysis of GFP expression and HC-Pro expression using
555 anti-GFP and anti-Myc at different time points. The Coomassie brilliant blue (CBB)-stained Rubisco
556 large subunit (RbcL) serves as a loading control.

557

558

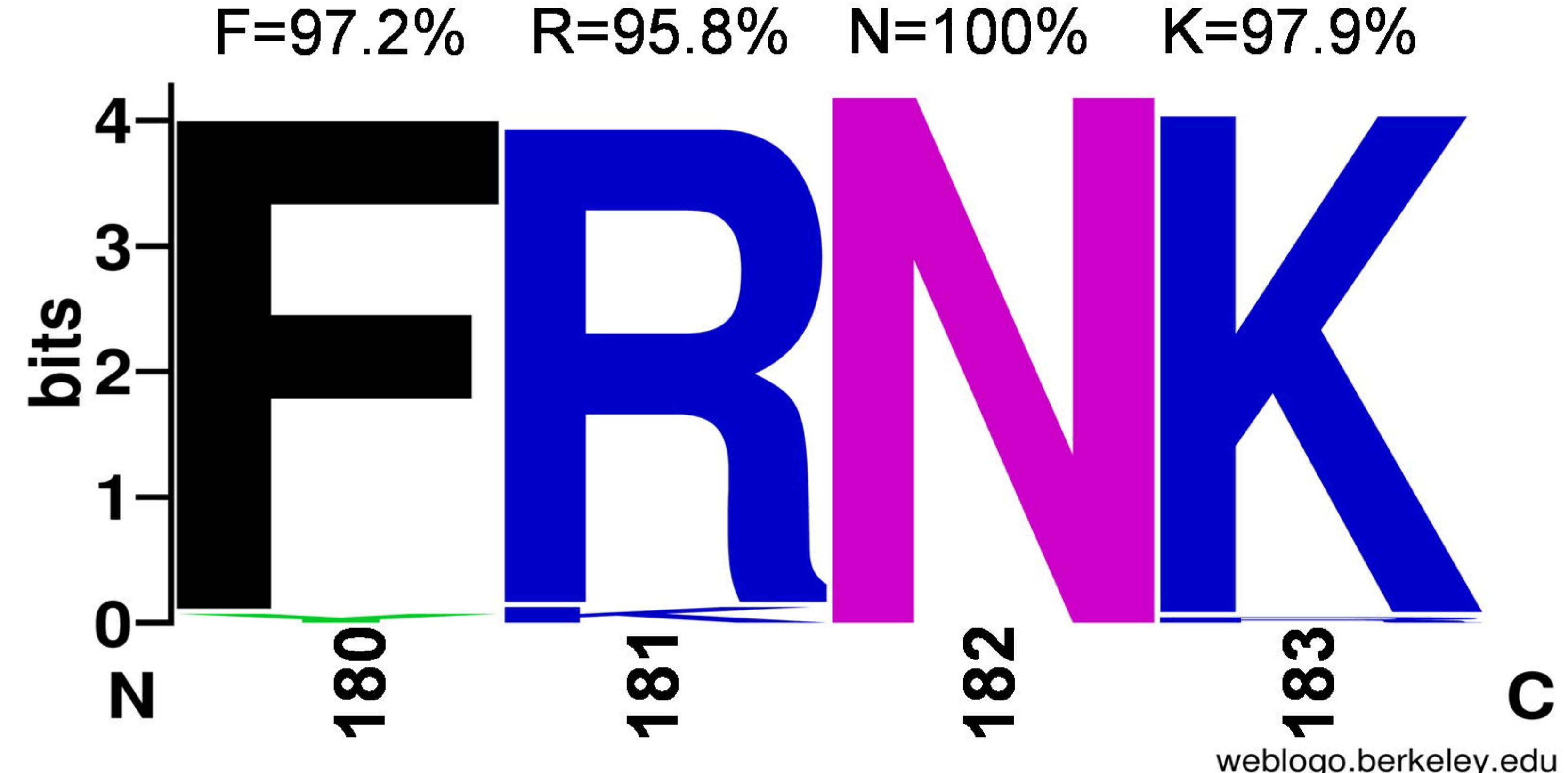
559

560

561

562

Table 1 Primers used for the construction of HC-Pro mutants

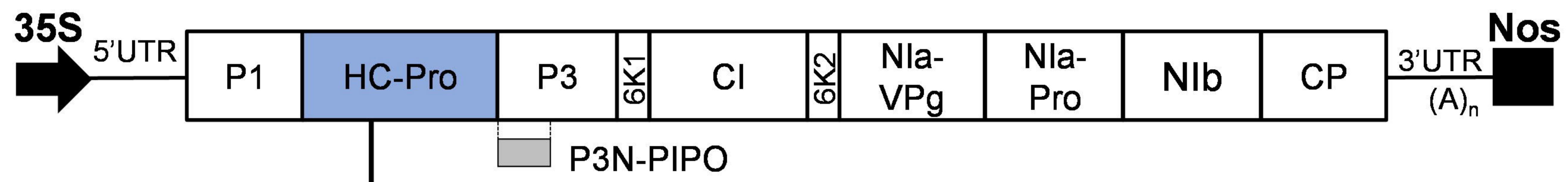

Primer name	Sequence (5'-3')
HC-PstI-F (a)	AACTCTGAG CTGCAG AAACGA
HC-SalI-R (d)	TGAGT GT CGACCTCTTCACCC
HCPro-I-F (c-I)	CTCAAGACTTC ATC ATAAGCGTCCCTAAAAGCC
HCPro-I-R (b-I)	GGCTTTGAGGAACGCTTATT GAT GAAAGTCTTGAG
HCPro-K-F (c-K)	CTCAAGACTTC AAG ATAAGCGTCCCTAAAAGCC
HCPro-K-R (b-K)	GGCTTTGAGGAACGCTTATT CT GAAAGTCTTGAG
HCPro-D-F (c-D)	CTCAAGACTTC GAT ATAAGCGTCCCTAAAAGCC
HCPro-D-R (b-D)	GGCTTTGAGGAACGCTTATT ATC GAAAGTCTTGAG
HCPro-E-F (c-E)	CTCAAGACTTC GAG ATAAGCGTCCCTAAAAGCC
HCPro-E-R (b-E)	GGCTTTGAGGAACGCTTATT TC GAAAGTCTTGAG
HCPro-H-F (c-H)	CTCAAGACTTC CAT ATAAGCGTCCCTAAAAGCC
HCPro-H-R (b-H)	GGCTTTGAGGAACGCTTATT ATG GAAAGTCTTGAG
HCPro-A-F (c-A)	CTCAAGACTTC GCC ATAAGCGTCCCTAAAAGCC
HCPro-A-R (b-A)	GGCTTTGAGGAACGCTTATT GGC GAAAGTCTTGAG

The restriction enzyme sites (*PstI* and *SalI*) are marked in bold and the underlined nucleotides represent introduced mutations.

563

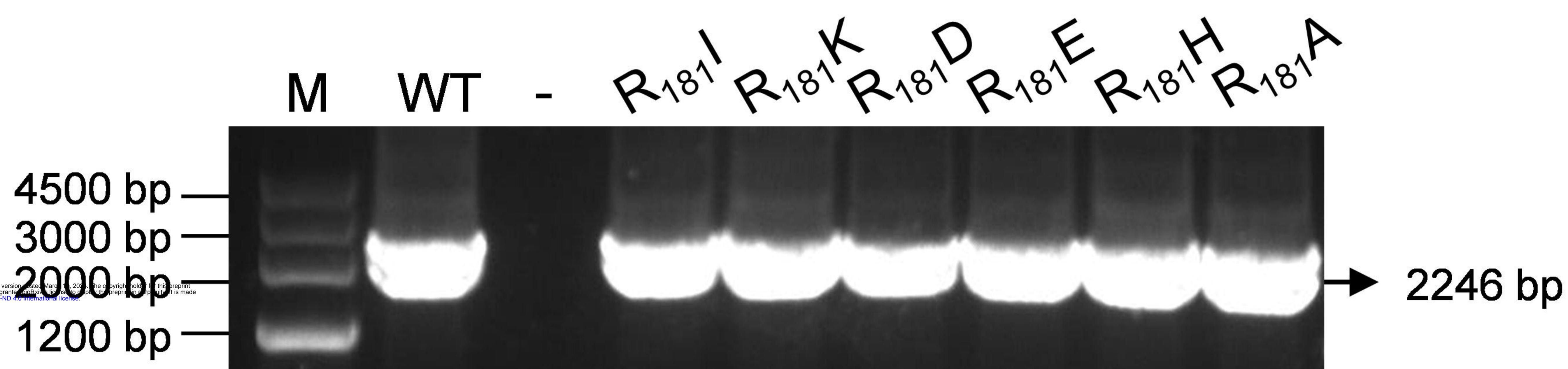
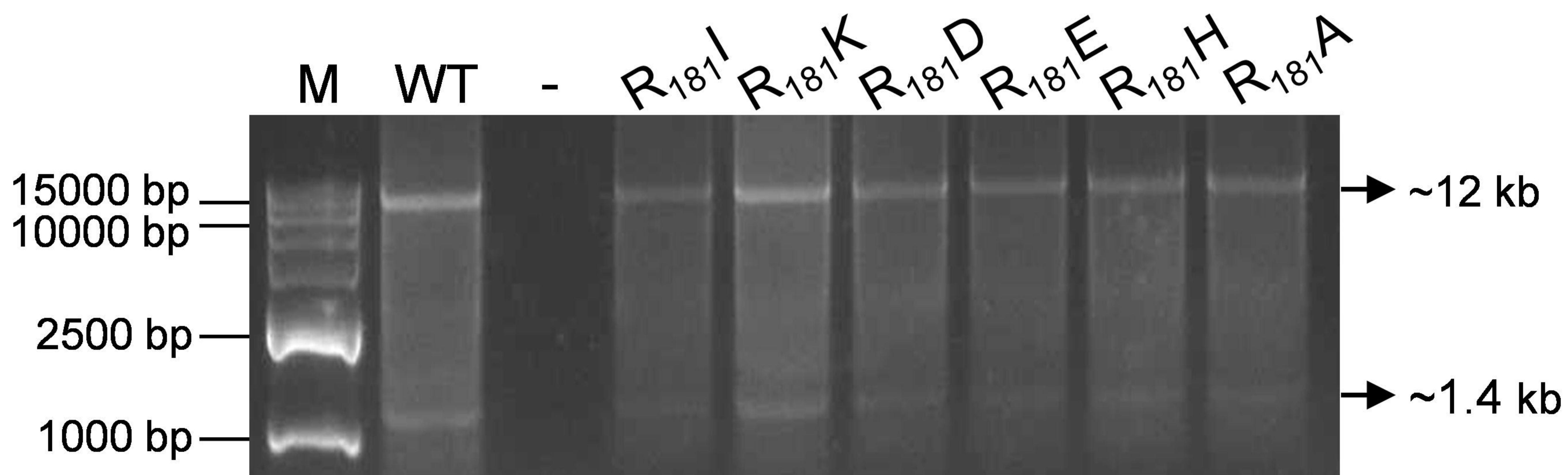
Percentage conservation of FRNK motif among 143 potyviruses

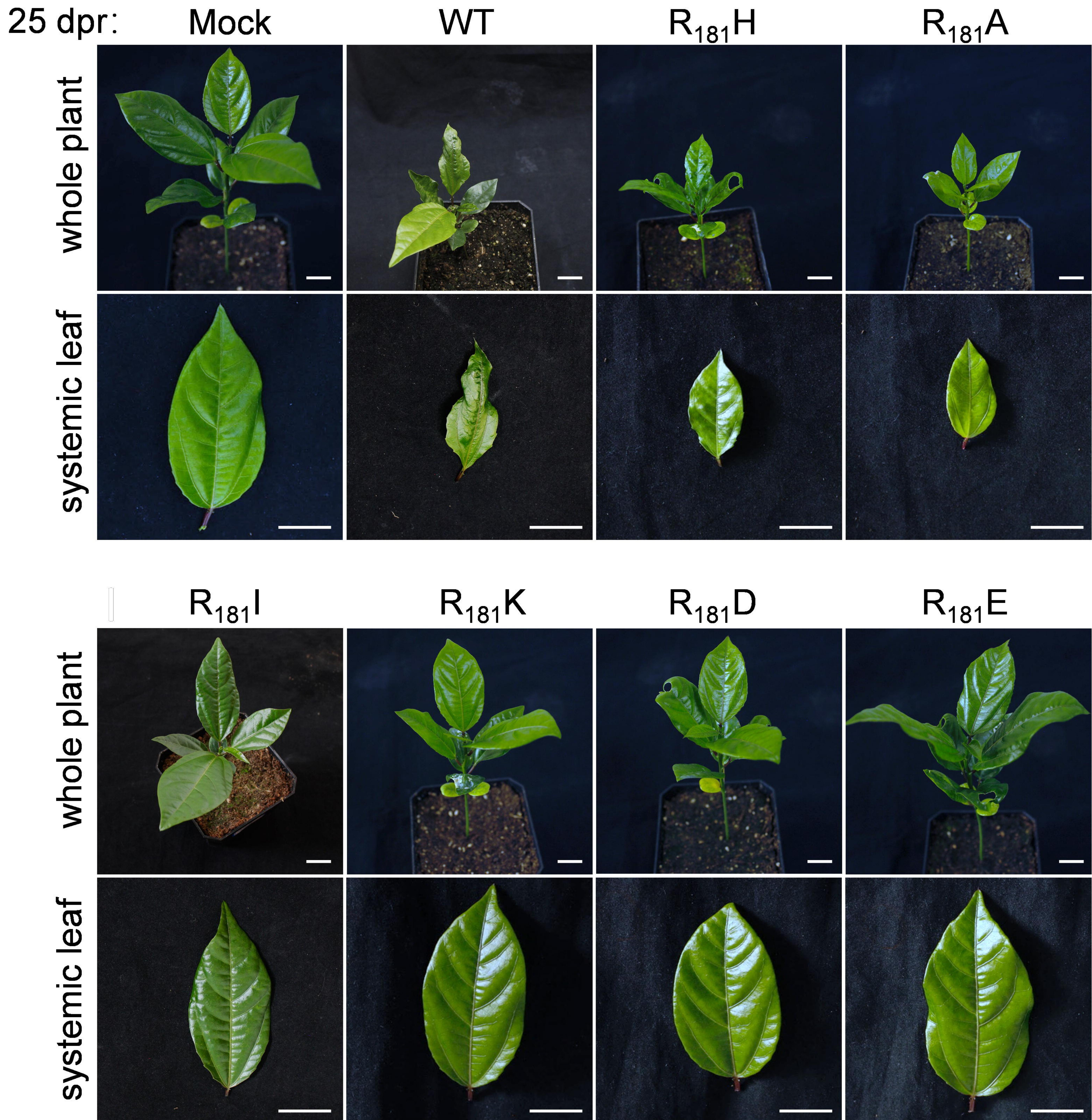
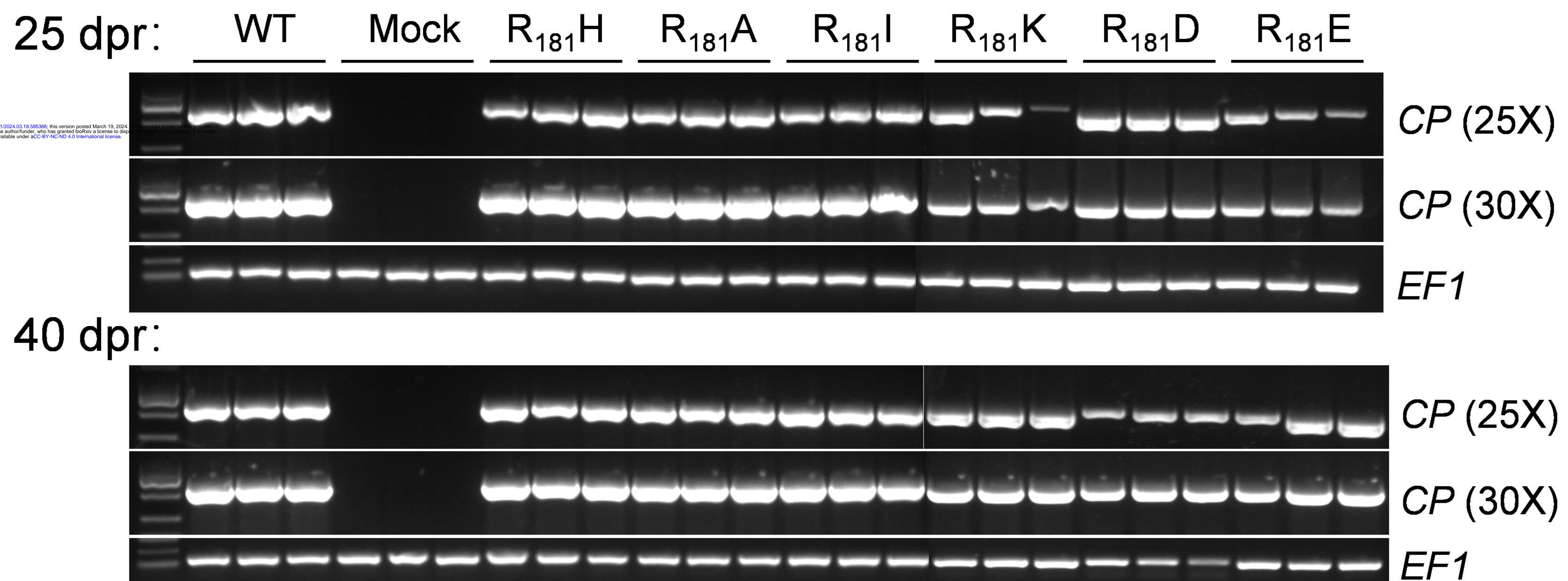
weblogo.berkeley.edu

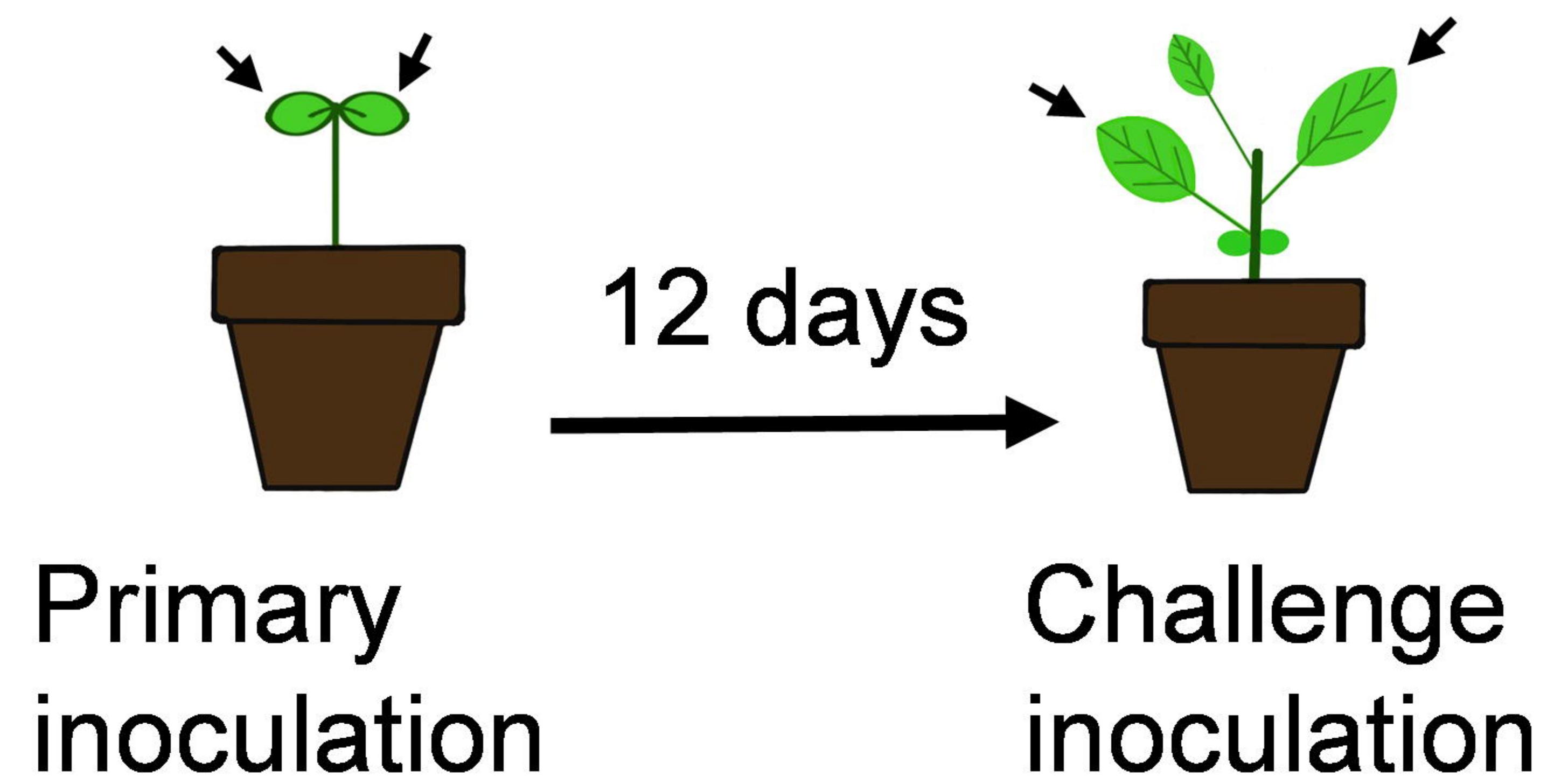
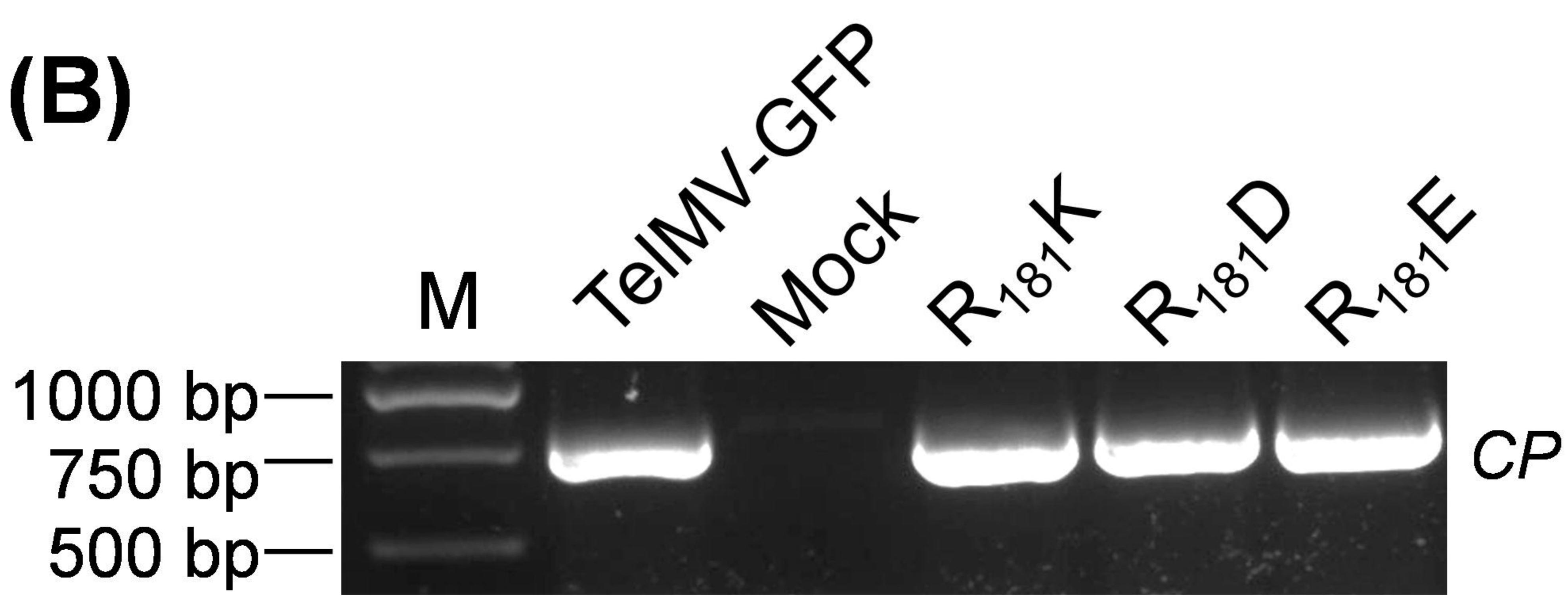
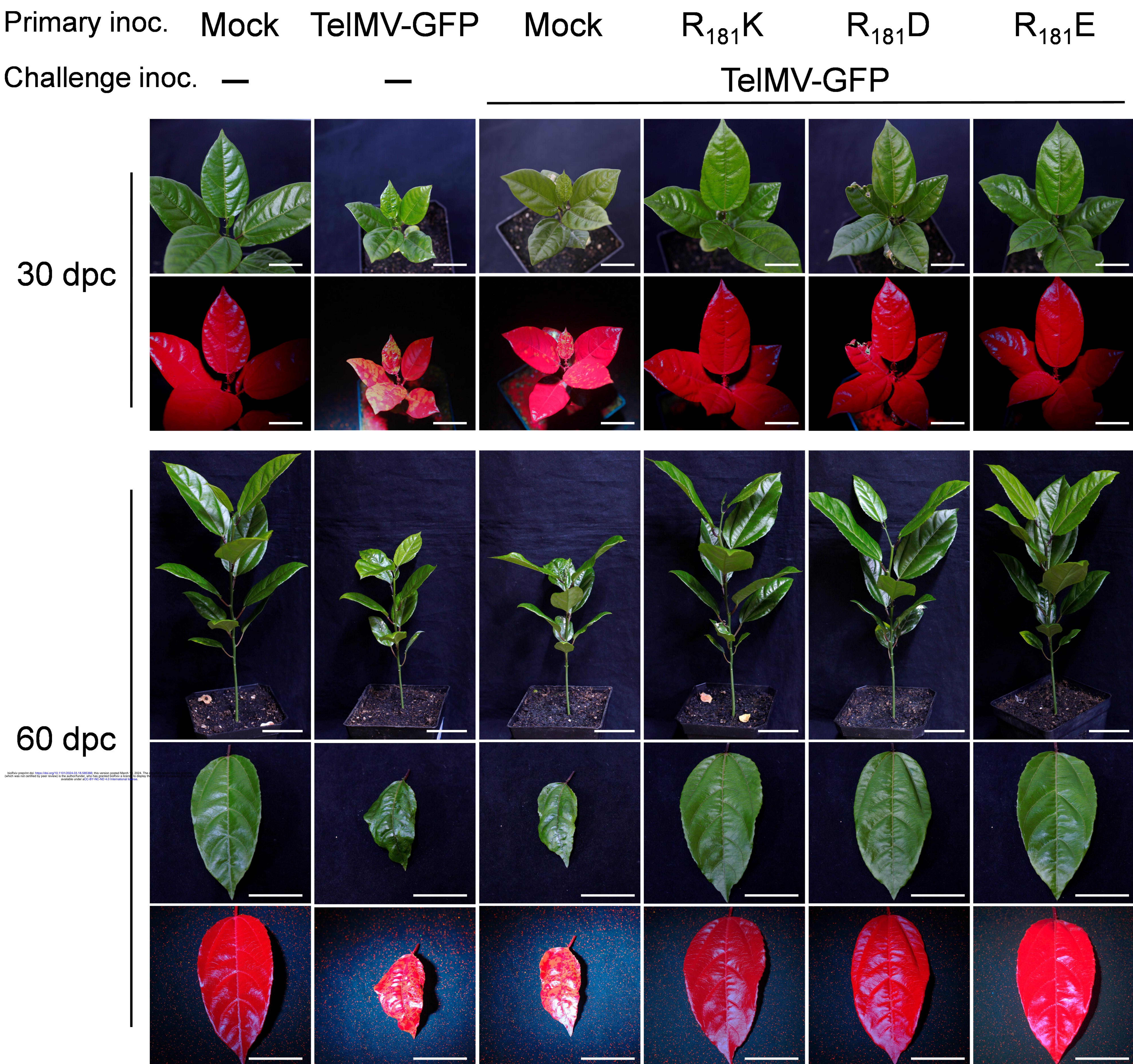

(B)

Sequence logo showing the consensus sequence for the 3' UTR of various viruses. The logo is a 20x20 grid where each column represents a position in the sequence and each row represents a nucleotide (A, T, C, G). The height of each bar indicates the frequency of that nucleotide at that position. Below the logo, the consensus sequence is written as a string of letters: E N I K K G S L F R N K I S Q K A H I N P T.

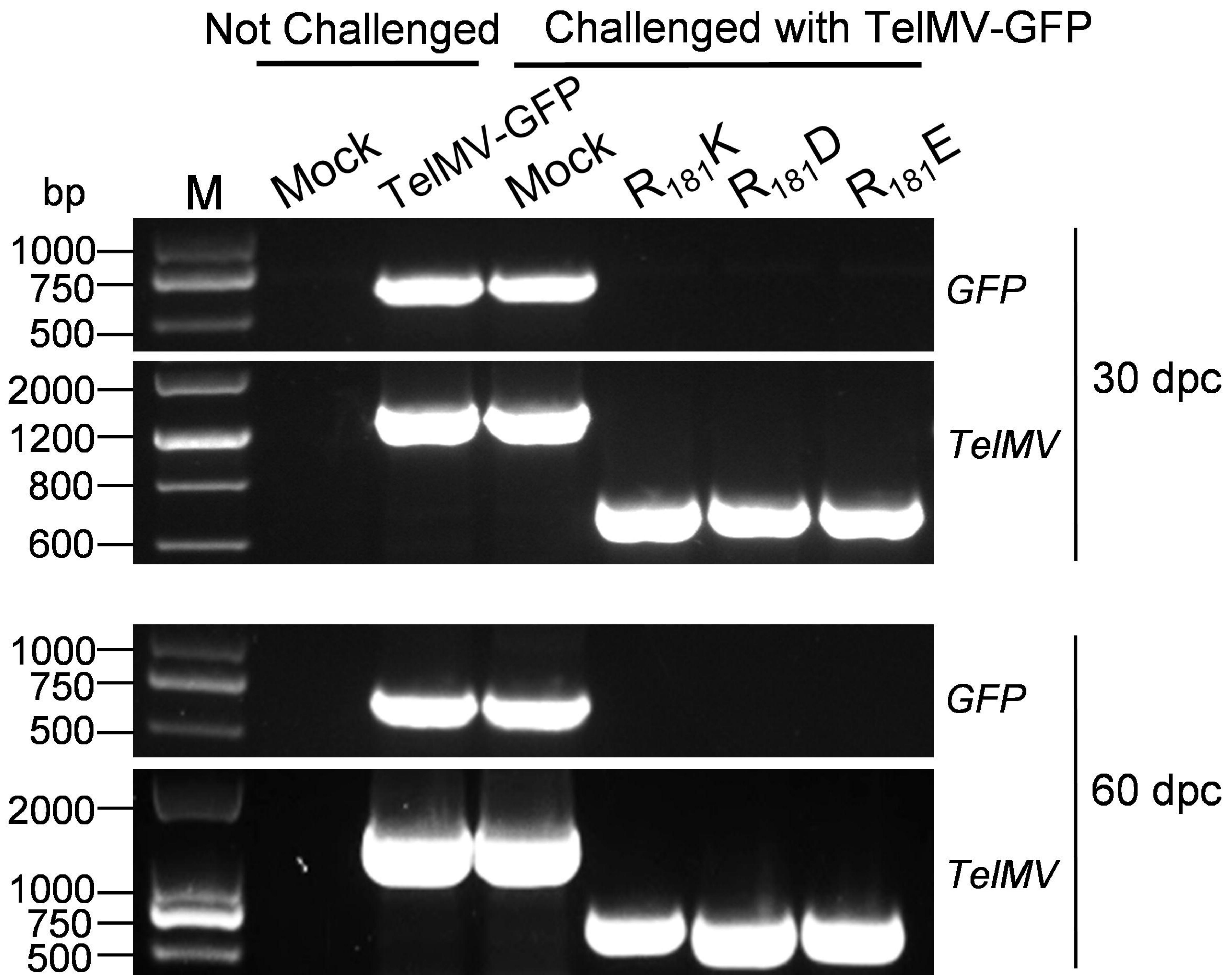
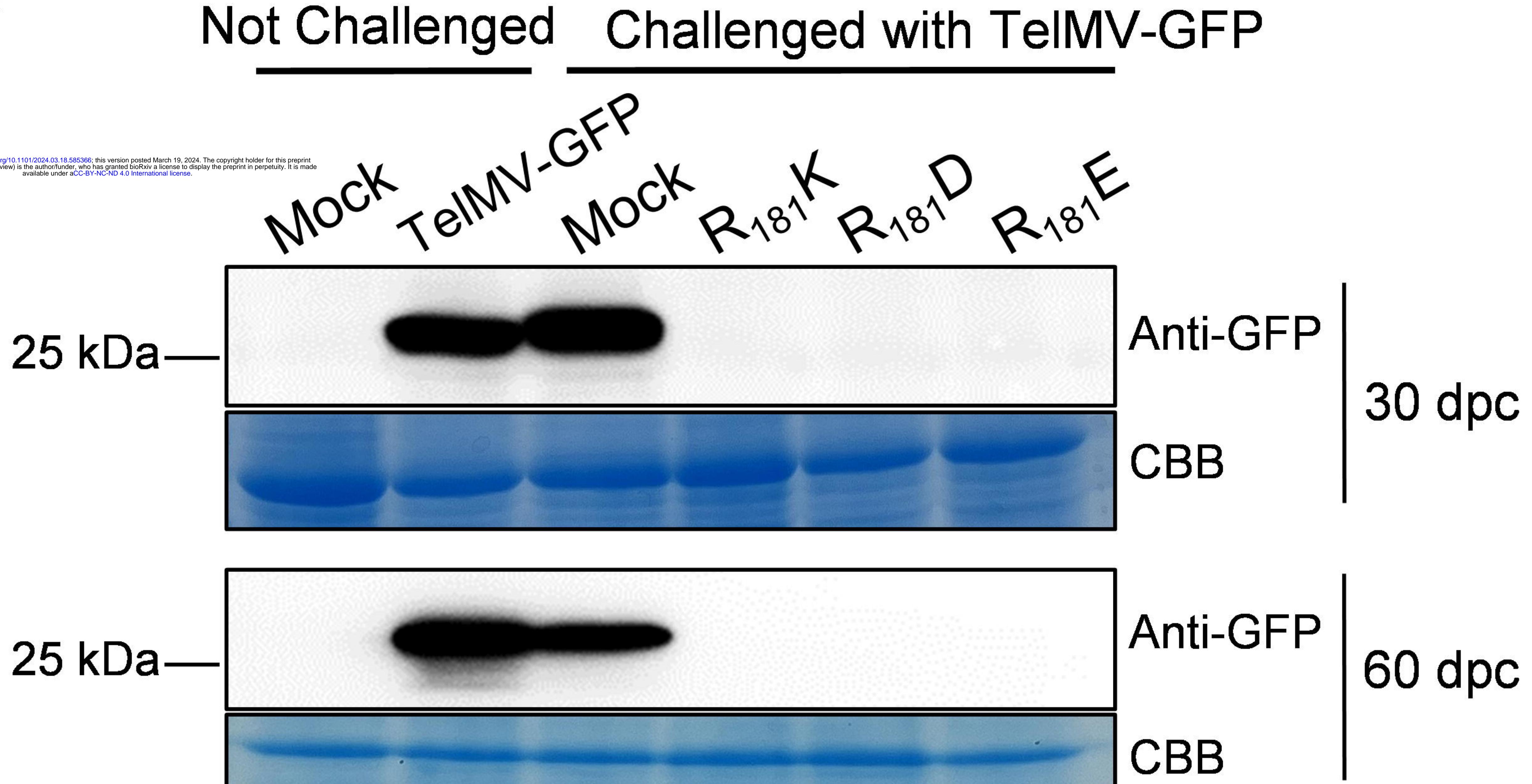
Sequence	Position	Consensus
TeIMV-PasFru	170	T L T D E D A L K T F R N K R S S K A L L N P S
EAPV	170	N L T D E D A L R V F R N K R S S K A L L N P S
PRSV	170	E S I K A G S V E S F R N K R S G K A H F N P A
PPV	171	E N I R S G S I K A F R N K I S S K A H V N M Q
PVY	169	D N I K K G D I S F F R N K L S A K A N W N L Y
SCMV	173	E S L K T D T L D S F R N K I S P K S T I N A A
SMV	170	T L T D E D A L K V F R N K R S S K A L L N P S
TEV	172	E N M R I G H L G S F R N K I S S K A H V N N A
TVMV	170	E N I R N G S L K H F R N K I S S K A H S N L A
WMV	170	N L T D E D A L K V F R N K R S S K A L L N P S
ZYMV	169	H L T G E E E A L K M F R N K R S S K A M I N P S
PVMV	170	E S L K K G S L H L F R N K A A S K A H I N P S
PWV	170	T L T G E D S L K T F R N K R S A K A M I N P S
PLDMV	172	D S F K K G E I H H F R N K M S G K A Q F N F A
MDMV	173	E S T K E D N L S T F R N K I S P K S T I N L A
PVA	170	D N I K K G S L A L F R N K I S A K A H V N T A
BCMV	170	S L T E I D P L K S F R N K R S S K A L L N P S
TuMV	171	E N I E K G S L K S F R N K I S Q K A H I N P T
TVBMV	171	D N I K K G S L A T F R N K V S A K A H I N P S
SPVG	171	E N I K K G S L V S F R N K I S Q K A H V N L S
ChiVMV	170	E S L K K G S L H L F R N K V T S K S H I N P S

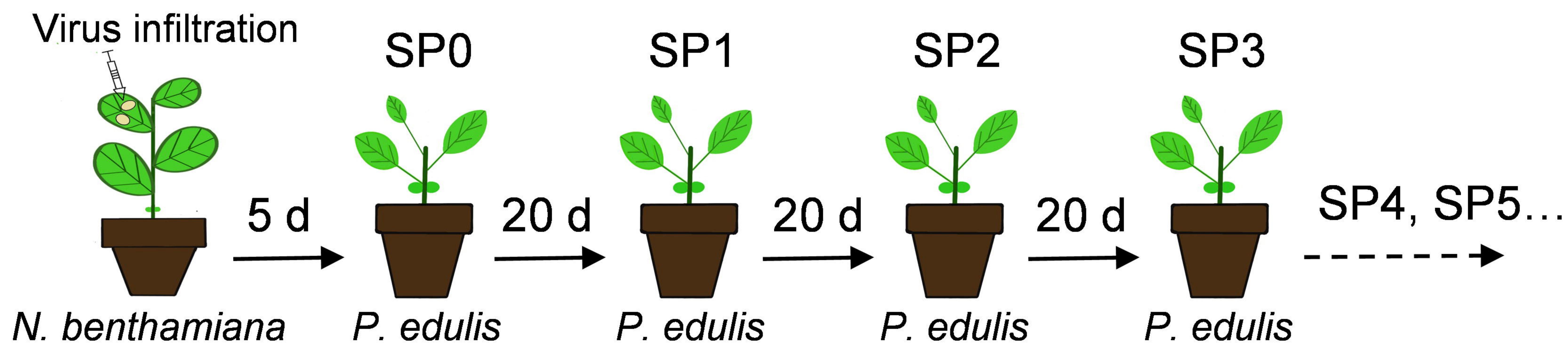
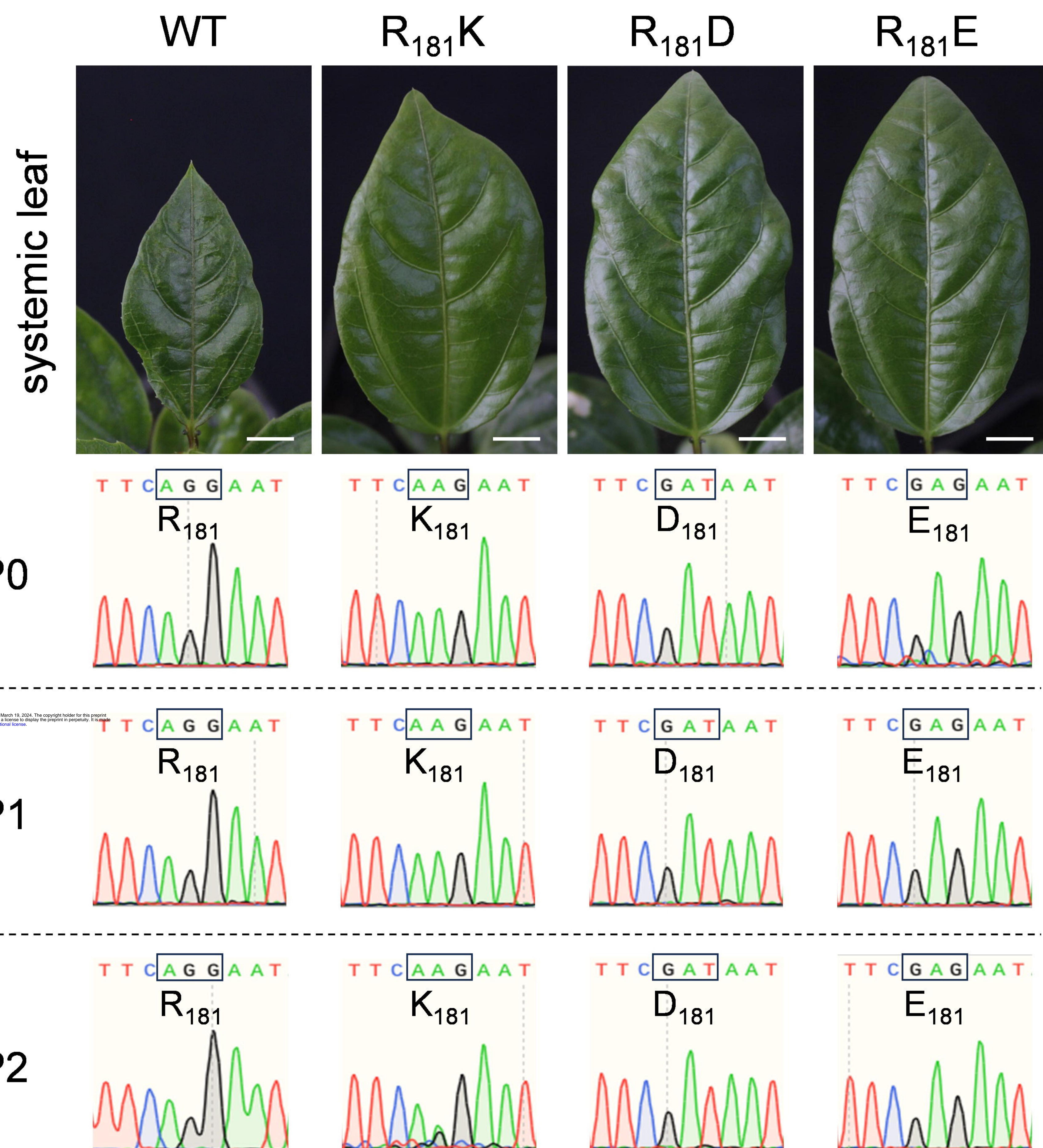


(C) Rxiv preprint doi: <https://doi.org/> (which was not certified by peer review)



TelMV-PasFru	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-Fuzhou	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-Wuyishan	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-XW	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-YD	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-RJ	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-DC6	170	T LT GEDAL K T	FR N K R S S K A L L N P S	193
TelMV-GL2	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193
TelMV-Hanoi	170	T LT DEDAL K T	FR N K R S S K A L L N P S	193

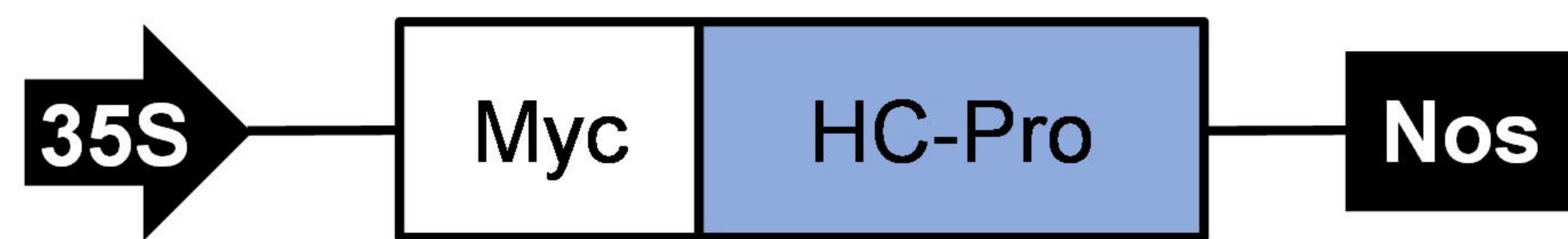



(A)**TelMV (pPasFru):**

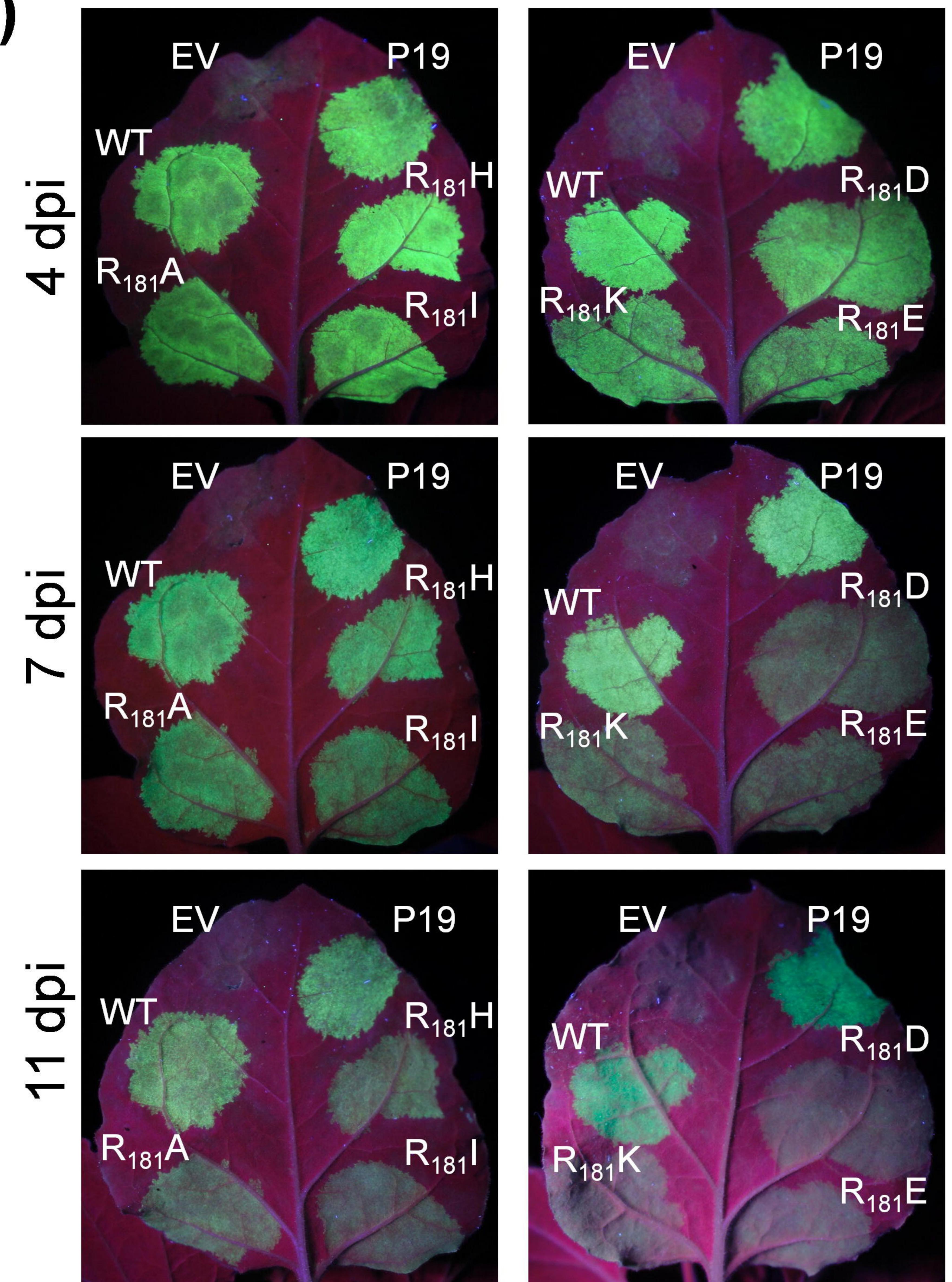
181 ★



		Symptom severity	Systemic infection
WT	FRNK	+++	+
R ₁₈₁ I	FINK	+	+
R ₁₈₁ K	FKNK	-	+
R ₁₈₁ D	FDNK	-	+
R ₁₈₁ E	FENK	-	+
R ₁₈₁ H	FHNK	+++	+
R ₁₈₁ A	FANK	+++	+



(B)**(C)**

(A)**(B)**




(A)**(B)****(C)**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.18.683601>; this version posted March 18, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY-ND 4.0 International license](https://creativecommons.org/licenses/by-nd/4.0/).

(A)**(B)**

(A)**(B)**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.03.18.585360>; this version posted March 19, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(A)**(C)****(B)**