
Neural speech tracking in newborns: prenatal learning and contributing 
factors 
Cristina Florea, Michaela Reimann, Fabian Schmidt, Jasmin Preiß, Eva Reisenberger, Monika Angerer, 

Mohamed Ameen, Dominik Heib, Dietmar Roehm, Manuel Schabus 

 

Abstract: 

Introduction 
Early language development in infants is being increasingly studied, though only recently with direct 

measurements of brain activity rather than with behavioral or physiological measurements. In the 

current study, we use electroencephalographic (EEG) recordings of 2-week-old infants to look for 

signs of prenatal learning and to investigate newborns’ abilities to process language. We also look at 

the influence of prenatal stress factors and at the predictive value of the newborns’ language 

processing abilities for later language development. 

Methods 
Sixty pregnant women played a rhyme to their abdomen twice a day from the 34th week of 

pregnancy until birth, to familiarize the fetus with the rhyme. At around 2 weeks after delivery (mean 

age 16 days), the newborns were exposed to the familiar rhyme as well as to an unfamiliar one while 

their EEG was recorded. Additionally, three manipulations of the familiar rhyme were played: (1) low-

pass filtered, (2) with changed rhythm, and (3) inverted and played backwards. The data was 

analyzed to see how well the infant brain signal followed the speech envelope in each condition. 

Accounting for the heterogenous approach used for neural speech tracking in the literature, we used 

four methods, namely: (1) coherence, (2) Hilbert coherence, (3) temporal response functions (TRF), 

and (4) mutual information (MI). The maternal prenatal depression was evaluated with Edinburgh 

Prenatal Depression Score and the chronic fetal stress was measured from the hair cortisol levels of 

the 2 week-olds. The language development at 6 months of age was evaluated with the Bayley 

Scales. 

Results and discussion 
Overall, the results indicate the presence of prenatal learning, with the unfamiliar rhyme eliciting 

stronger cortical tracking (higher coherence and MI) than the familiar rhyme, which suggests 

stronger brain-to-speech coupling for the unfamiliar rhyme, perhaps deriving from more effort to 

process the unexpected stimulus. However, the original version of the familiar rhyme proved to be 

the easiest to track compared to the language- and rhythm-manipulations, (higher MI for the original 

rhyme than the language manipulation and higher coherence and mTRF correlation coefficients for 

the original rhyme than the rhythm manipulation). This indicates language discrimination and a 

prosodic-based learning of the familiar rhyme. Furthermore, there is an indication of phonotactic 

sensitivity at this young age, with less tracking (lower Hilbert coherence and lower mTRF correlation 

coefficients) of the low-pass filtered rhyme than the original version, indicating that the phonological 

cues erased by the filtering were important for the newborn’s ability to follow the rhyme. 

Furthermore, the mothers’ depression scores positively correlated with the infant’s tracking ability 

for the familiar rhyme. This suggests that a slightly lower mood was more stimulative for the fetal 

language development. The chronic fetal stress levels, however, were negatively correlated with the 

cortical tracking abilities. Importantly, the newborn’s cortical tracking was positively correlated with 

the infant’s language development at 6 months of age, underlining the predictive value of the early 

assessment of language processing. 
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Conclusion 
Prenatal learning is well established, but evidence including (healthy) brain data in the first weeks of 

life is scarce. The current study shows that newborns can discriminate between a familiar and 

unfamiliar rhyme, while also highlighting the role of prosody in early language processing, and 

bringing new evidence of their sensitivity to phonotactic cues in auditory stimuli. Furthermore, the 

newborn’s ability to track a rhyme is correlated with their language development at 6 months. The 

newborn’s cortical tracking of the familiar rhyme is further increased by moderately low maternal 

mood, but decreased by fetal stress. Future studies with similar fine-grained linguistic designs but of 

older infants should teach us the timeline of what exactly is learned prenatally and at very early age 

in respect to language. 
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Introduction 
The development of perceptive language skills and the familiarization with the mother tongue starts 

before birth (Dehaene-Lambertz & Spelke, 2015) and it strongly depends on environmental factors, 

i.e., auditory input (Webb et al., 2015). The sounds to which a fetus is exposed during gestation 

shape their ability to discriminate the mother’s voice from a stranger’s (Beauchemin et al., 2011; 

DeCasper & Fifer, 1980; Kisilevsky et al., 2003, 2009; Picciolini et al., 2014; Rand & Lahav, 2014), the 

maternal language from a foreign one (Abboub et al., 2016; Kisilevsky et al., 2009; Minai et al., 2017), 

and even influences the prosody of their cries after birth (Mampe et al., 2009).  

Newborns can track continuous speech 
On fetuses and newborns, most language processing studies measure indirect behavioral or 

physiological indicators like fetal heart rate or movement (Kisilevsky et al., 2009; Kisilevsky & Hains, 

2011), or, for infants, head turn (Thiessen et al., 2005; Trainor & Desjardins, 2002) or suckling 

frequency (DeCasper & Spence, 1986; Moon et al., 2013). More recently, studies started to acquire 

direct brain data, using either electroencephalography (EEG) or near-infrared spectroscopy (NIRS), 

but most often the auditory stimuli used are short, designed to evoke an event-related potential 

(ERP, in the EEG method: Partanen, Kujala, Näätänen, et al., 2013a), or rapid changes in the 

concentrations of oxygenated and deoxygenated hemoglobin (in the NIRS method: Abboub et al., 

2016; Gervain et al., 2008). Even so, reports with direct brain data within the first month of life in at-

term infants are scarce (Abboub et al., 2016; Gervain et al., 2008; Ortiz Barajas et al., 2021; Partanen, 

Kujala, Näätänen, et al., 2013a), and very few investigate the tracking of longer, continuous language 

stimuli (Ortiz Barajas et al., 2021). However, even if not in newborns, in older infants (7-14 months) 

continuous speech tracking has been investigated by some studies (Kalashnikova et al., 2018; Menn, 

Michel, et al., 2022; Menn, Ward, et al., 2022). Continuous speech stimuli allow the analysis of 

infants’ language processing abilities in a more naturalistic situation, as speech is a complex stimulus 

with many variable attributes (rhythm, pitch, volume, etc.) that short auditory stimuli cannot always 

reproduce. Following from these studies, we expected that cortical tracking of continuous speech is 

also detectable in newborns. 

Cortical tracking of the familiar language is better than that of unintelligible language 
Discrimination of the maternal language from a foreign one has been shown previously, e.g. by 

Kisilevsky et al., 2009, who found that the fetal heart rate increases when a female stranger changed 

the language from familiar (English) to unfamiliar (Mandarin). Another study on fetuses (Minai et al., 

2017), using a bilingual English-Japanese unfamiliar female speaker, showed that fetuses (with 

English as their mother-tongue) specifically discriminate the two languages, having a novelty reaction 

with faster heart rate to the unfamiliar language. However, language discrimination is only possible if 

the two languages have different rhythms (Nazzi et al., 1998). Evidence from brain data indicates that 

already at birth children show cortical tracking for speech in both familiar and unfamiliar language 

(Ortiz Barajas et al., 2021). They can even discriminate unfamiliar language-related patterns (Abboub 

et al., 2016), even though the process of perceptual narrowing has not begun yet. This process takes 

place between 6 and 12 months of age, during which infants improve their phoneme discrimination 

abilities for native phoneme contrasts, but worsen/lose this ability for unfamiliar, socially irrelevant 

phoneme contrasts (Jansson-Verkasalo et al., 2010; Jusczyk et al., 1993; Shafer et al., 2011). In 

language-specific analyses, backward speech is often used as a control condition for the familiar 

language, since it matches forward speech in pitch, intensity and duration. Even if backward speech 

violates several phonological properties of human speech, as some backward sequences cannot be 

produced by a human speaker (Cowan et al., 1985), it still sounds like an articulated language 

(Kimura & Folb, 1968). However, further studies have shown that these phonological properties are 

important to newborns, as they help them discriminate between languages, which they can do in 

forward speech but not in backward speech (Ramus et al., 2000). As forward speech seems to 
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activate several brain regions stronger than backward speech (Dehaene-Lambertz et al., 2002), we 

expected that the cortical tracking of the unintelligible, backward language might be worse or similar 

to that of the natural, familiar language. 

Cortical tracking of prosodic manipulated speech is weaker than that of natural speech 
Studies investigating the more detailed underlying factors of speech processing have shown that 

infants are sensitive to the rhythmical regularities in the auditory input (François et al., 2017), and 

can segment speech based on statistical information (Teinonen et al., 2009). Stress is a salient 

prosodic cue for newborns in speech perception (Sansavini et al., 1997). At this age, prosody is a 

more important cue than word order to indicate linguistic units (Benavides-Varela & Gervain, 2017). 

This was also shown in a study (Fló, Benjamin, et al., 2022) where sleeping neonates could track 

transitional probabilities in a speech stream, and that these, together with prosodic cues, allowed 

them to segment the speech into word-like units. These studies point towards prosody as a strong, 

important linguistic cue, that newborns are specifically attuned to, and led us to expect that a change 

in prosody would make the familiar rhyme more difficult to track. 

Prenatal learning 
Of further interest in the process of language development is the fetus’ ability to hear and build a 

lasting memory of an auditory stimulus. Prenatal learning is the process of recognition and 

discrimination of a familiar stimulus by the newborn, after repeated exposure to that stimulus during 

fetal life. Prenatal learning has been studied with music, where newborns and infants who had been 

exposed to a melody during pregnancy had a higher ERP amplitude to the familiar notes of the same 

melody than the infants that had not been prenatally exposed (Partanen, Kujala, Tervaniemi, et al., 

2013) or where 1-month old infants have a heart rate deceleration in response to a piano melody 

that had been played to them during pregnancy (Granier-Deferre et al., 2011). Already 34-38 

gestational week fetuses show heart rate decelerations in response to a familiar rhyme (DeCasper et 

al., 1994; Krueger & Garvan, 2014), and newborns preferentially react (sucking) to a rhyme presented 

during pregnancy even if not recited by their mother (DeCasper & Spence, 1986). A heart rate 

reaction study (Krueger et al., 2004) showed that learning in a fetus is likely affected by both prior 

experience (amount of recitation of a nursery rhyme) and the timing of that experience in relation to 

fetal development (maturation of the autonomic nervous system). Another study of prenatal learning 

has used specific linguistic stimuli (Partanen, Kujala, Näätänen, et al., 2013a), exposing fetuses to a 

pitch change in the middle of a trisyllabic word (atypical for the native language of the participants). 

Newborns exposed during pregnancy reacted with a stronger mismatch response (MMR) than the 

control group to middle-of-the-word pitch changes, while the MMRs to other deviants (vowel 

identity change, normal in native language) did not differ between groups. This suggests that 

prenatal exposure to specific linguistic stimuli shapes the way newborns react to and discriminate 

these language features. Given this literature, we hypothesized that cortical tracking of familiar 

rhymes would be higher than cortical tracking of unfamiliar rhymes in newborns. 

Prenatal stress factors and predictive value of cortical tracking 
As the fetal nervous system slowly develops in the womb, it is subject to many influencing factors, 

from nutrients to hormones and external input (De Haan & Johnson, 2005). Studies of prenatal 

maternal depression indicated a negative impact on infant’s cognitive development (Barker et al., 

2013; Deave et al., 2008; Field, 2011), which led us to hypothesize that infants of depressed mothers 

would have lower brain-to-speech coupling than infants of non-depressed mothers. Furthermore, 

fetal stress has also been independently associated with negative cognitive outcomes (Bergman et 

al., 2010), and as hair cortisol can be used as a marker of chronic stress (Russell et al., 2012) in a non-

invasive way, we examined the correlation between newborns’ hair cortisol and their ability to track 

the familiar rhyme. Another important outlook of the current study was to assess the predictive 

value of the cortical tracking abilities of newborns. As other studies reported that infant cortical 
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tracking positively correlated with language development (Menn, Ward, et al., 2022; Ní Choisdealbha 

et al., 2023), we also measured the infants’ language development at 6 months of age using the 

Bayley scales (Macha & Petermann, 2015) and investigated the correlation with newborns’ cortical 

tracking ability.  

Study purpose 
In this expanding field of early language development, an increasing number of studies are being 

made with preverbal infants or even fetuses. While earlier studies relied mainly on behavioral (gaze, 

suckling, fetal movement) or physiological methods (heart rate), more recent studies started to use 

brain activity measurements, like EEG (Partanen, Kujala, Näätänen, et al., 2013a) or NIRS (Abboub et 

al., 2016; Gervain et al., 2008). However, even when the same measurement is used, data is often 

analyzed in very different ways. Given the high variability used in data analysis, studies are difficult to 

compare and rarely replicated. Therefore, a side purpose of the present study was to compare some 

of the most frequently used methods by applying them to the same dataset, the research question 

being to find evidence of cortical tracking, language discrimination and prenatal learning in 2-week-

old infants. Using a fine-grained linguistic paradigm, we additionally aimed to investigate language 

structures on different levels (rhythm, phonetic cues) and better understand which parts of language 

are actually shaped before birth. Further, we investigated the influence that prenatal stress factors 

might have on the newborn’s cortical tracking and how this reflects on later language development. 

Methods 
The current report is part of a longitudinal study funded by the Austrian Science Fund (FWF), in which 

infants and their parents were followed up from the 34th week of gestation to their first birthday. 

During the pregnancy, the mothers filled out the Edinburgh Postnatal Depression Score (Cox et al., 

1987) for screening of depression symptoms (Fig. 1). Infant EEG data was recorded at the 2-week 

appointment, and developmental diagnostic data was acquired at 6 months with the Bayley Scales 

for cognition and language (Macha & Petermann, 2015). 

Participants 
We recruited 66 participants, and by the time of the analysis 65 had been born. Due to three 

dropouts before the first recording, only 62 newborns were recorded. Another two participants were 

excluded because of very noisy data or technical problems during the recording, leaving 60 

participants (29 female, 31 male) for the analysis. The mean age at recording was 16.48 days, SD = 

3.64 days. The mean gestational age at birth was 278 days (39 weeks and 6 days), SD = 7.9 days. Four 

participants were born before term (gestational age at birth < 38 weeks), with the smallest 

gestational age being 36 weeks and 3 days. The mean APGAR score at birth was 9.38, SD = 0.997 

(averaged values from 1 min, 5 min, and 10 min). Only two children had an average APGAR lower 

than 7, and the lowest 10 min APGAR score was 6.  
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Fig. 1: Study design. From the 34th gestational week until birth, the mother played the rhyme twice a day and 

completed questionnaires every two weeks. At two weeks after birth, infant EEG was recorded and infant and 

mother hair samples were acquired. At 6 months of age, the developmental diagnostic of cognition and 

language was performed. The figure photo is just symbolic, as the children were just 2 week old and did not 

wear headphones, but were stimulated via loudspeakers. EPDS = Edinburgh Postnatal Depression Scale.  

Experimental design 
The pregnant women were requested to play a specific rhyme (audio file) to their abdomen for 5min 

twice daily from the 34th week of gestation until childbirth, using standardized conditions (sitting or 

lying down, with 73dB stimulation volume). The women were randomly assigned to one of two 

groups: Group 1 (N = 32) played Rhyme 1 (Es tanzt ein Biba Butzeman) and Group 2 (N = 34) played 

Rhyme 2 (Es war eine Mutter). At two weeks after delivery, the infants were exposed to both rhymes 

and their EEG activity was measured. One of the rhymes was the familiar one they had been exposed 

to before birth, while the other one was unfamiliar (the rhyme used for the other group). 

Additionally, three manipulated versions of the familiar rhyme were played during the EEG 

recordings: a low-pass filtered version, a rhythm-modified version, and a time-reversed version 

(backwards speech, also named here the “unintelligible language” condition). The different rhyme 

manipulations aimed to reveal the language structures present at birth. The (1) low-pass filtering 

mainly removed phonological cues, so it was named the “phonological paradigm”. It was based on 

the hypothesis that it would grossly resemble how the fetuses heard the rhyme in the womb, 

because the abdominal wall, uterine wall, and amniotic liquid would act as a low-pass filter. This 

filtering also removed part of the phonological elements of the nursery rhyme but would leave most 

prosodic cues intact. In this way, we could investigate the importance of phonological cues for 

infants. The (2) rhythm manipulation was based on the hypothesis that infants can follow the 

rhythmic structure of the stressed and non-stressed syllables in a rhyme, and that changing the 

rhythm of the familiar rhyme makes it harder to recognize. The (3) backwards speech manipulation 

was meant to investigate if speech processing is language-specific at birth, and was based on the 

hypothesis that a newborn can already recognize the maternal language and discriminate it from 

unintelligible language. 

These five rhymes (conditions) were played in random order for about 3min each (an approximately 

1min rhyme looped for 3 times), with 2min of silent intervals between them. The beginning of the 

recording also included a 3min silent baseline and 1.5min of beeps (1000Hz pitch, 100ms length, at 

1.5s interstimulus intervals), so that the total recording length was 29.5min. The stimulation volume 

was 60dB, measured at the infant’s head, from loudspeakers placed at 1m distance, while the 

mother wore noise-cancelling headphones with a white noise playing, so that she could not tell what 

rhyme was playing in the room. 
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Fig. 2: Experimental design of auditory stimulation. In Rhyme 1, the syllables in each measure are numbered 

from 1 to 4, and in Rhyme 2 they are numbered from 1 to 3. The first syllable (Es) is not stressed and is 

therefore counted as upbeat. The stressed syllables in the original rhymes are underlined. The amplification or 

reduction of stress of each syllable is marked with red and blue, respectively. For the phonological 

manipulation, just a low-pass filter was applied. For the language manipulation, the rhyme was amplitude-

inverted and time-reversed. 

Preparing auditory stimuli 
The two rhymes were chosen to have different rhythms. Rhyme 1 (R1), “(Es) tanzt ein Biba-

Butzemann”, had a 4/4 meter with a trochee rhythm, emphasizing beats 1 and 3. Rhyme 2 (R2), “(Es) 

war eine Mutter”, had a ¾ meter with dactyl rhythm, accentuating beat 1 (Figure 2). 

For Rhyme 1, the average syllable rate was 3.12 Hz (SD = 8.88 Hz), while for Rhyme 2, it was slightly 

higher at 3.52 Hz (SD = 7.27 Hz). The prosodic stress rate, referring to the interval between stressed 

syllables, was 1.40 Hz (SD = 5.76 Hz) for Rhyme 1 and 1.07 Hz (SD = 4.74 Hz) for Rhyme 2.  

The rhymes were recorded in a sound-proof studio as recited (not sung) by a professional male 

speaker. The rhymes were recorded with the lingWAVES Sound Pressure Level meter microphone 

and the lingWAVES software, version 3.1 (Copyright 2016 WEVOSYS). Afterwards, the manipulated 

conditions were obtained by altering different parameters in the software Audacity version 3.0.2.0, 

and Praat version 6.0.49, as further described. For the backward speech manipulation, the rhymes 

were inverted and played backward. This approach matches the characteristics of intensity and pitch 

to the unmanipulated version, while simultaneously creating the impression of an unfamiliar, 

unintelligible language. For the phonological manipulation, a low pass filter of 1000Hz was applied, 

with 6dB decrease per octave, removing phonological aspects and primarily retaining prosodic 

information. In addition, the “WahWah” function was applied to especially accentuate low 

frequencies, modulated by a moving band-pass filter (LFO = 1,5 Hz, depth = 70%, resonance = 2,5, 

Wah Frequency Offset = 30%, Output gain -6.0 dB). As a final step, the loudness was adapted to 

match the unmanipulated version. In the prosodic manipulation, we modified the pitch (± 25%) and 

the length (± 20%) of the syllables with the aim of creating an arrhythmic accent pattern. For Rhyme 

1, in the first bar, the first, second, and fourth beats were heightened, while the third beat was 

lowered. In the second bar of Rhyme 1, only the third beat was heightened, and the others were 

lowered. In Rhyme 2, in the first bar, the first and second beats were heightened, and the third beat 

was lowered. In the second bar, only the first beat was heightened, with the second and third beats 

lowered. These patterns were consistently applied throughout the rhymes.  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2024. ; https://doi.org/10.1101/2024.03.18.585222doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585222
http://creativecommons.org/licenses/by-nc-nd/4.0/


Processing of the audio data (speech envelopes) 
For the neural speech tracking analysis, we extracted the speech envelopes from the audio files with 

a custom-made Matlab script using the Chimera toolbox (Smith et al., 2002). First, nine cochlear 

frequency bands at equal intervals were defined (using the function equal_xbm_bands from the 

Chimera toolbox). For each of these frequency bands, the data was band-pass filtered in the 

corresponding frequency intervals, the Hilbert transform was applied, and the amplitude (absolute 

value) was extracted. Then the mean over frequency bands was computed and the data was 

transformed in percentage (the data was divided by the maximum value). The files were resampled 

to 500Hz to reduce computation times but preserve a high information level in the data. As 

previously described, the audio files were then added as another channel to the EEG files. 

Equipment 
The EEG data was recorded at a 1000Hz sampling rate, using the EGI system (Electrical Geodesics 

Inc., US, recently acquired by Magstim, Canada) with hdEEG caps (HydroCel Geodesic Sensor Nets), 

with 124 channels, and the NetStation acquisition software (version 5.4.2, release r29917). The 

recordings were performed either in the university lab or (most often) at the parents’ home. The 

total recording time was 29.5min, and during the recording the babies would usually lie in their 

parents’ arms, or sometimes on the bed. The rhymes were played via a separate laptop than the 

recording one, using a custom Matlab (The MathWorks Inc. 2022, MATLAB version: 9.13.0, R2022b, 

Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com) script, that implemented 

the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner, 2007; Pelli, 1997). In previous pilot 

studies, there was an evident delay in the markers that would accumulate over the 1min loop of the 

continuous rhyme and would reach significant lags of tens to hundreds of milliseconds from the real 

audio stimulus. As this was relevant only for long, continuous auditory files, while most literature 

uses short stimuli, the synchronization problem had not been previously addressed, which led us to a 

custom-made solution (see Supplementary Material). 

Data preprocessing 
The data was preprocessed using Matlab version R2021a, the EEGLab toolbox (Delorme & Makeig, 

2004) and the Fieldtrip toolbox (Oostenveld et al., 2011). The raw EEG files were resampled to 500Hz, 

and the EEG markers were corrected to be synchronized with the audio signal. Next, the data was 

filtered with the APICE pipeline for preprocessing of continuous data (Fló, Gennari, et al., 2022), 

which involved multiple steps described in the supplemental material. This resulted in continuous 

data and a matrix of “artifacts” storing the times, channels and epochs marked as “bad”, i.e., those 

that could not be interpolated or corrected through filters. The two outermost electrode rows, as 

well as the occipital electrodes, were excluded because of high artifact prevalence, leaving 82 

channels for analysis. The EEG was then segmented into epochs corresponding to the different 

rhymes, and the speech envelopes were then attached to their corresponding EEG data.  

Computation of classical coherence 
Coherence is a method used to compare two electrical signals, often applied in the analysis of brain 

connectivity between different regions (Nunez et al., 1997; Rosenberg et al., 1989). Coherence is 

expressed as a function of frequency, and it is computed for each frequency value using the cross 

spectral density of the two channels compared, normalized by the auto-spectral density (or “power 

spectrum”) of each channel for that frequency value. The formula for coherence between channels i 

and j at frequency f, estimated over N trials, is (Nunez et al., 1997): 

𝐶𝑖𝑗(𝑓) =  
|𝐺𝑖𝑗(𝑓)|

2

𝐺𝑖(𝑓)𝐺𝑗(𝑓)
 

Where 𝐺𝑖𝑗(𝑓) is the cross-spectral density function for channels i and j over N trials, computed by 

using the formula (Nunez et al., 1997): 
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𝐺𝑖𝑗(𝑓) =  
1

𝑁
∑ 𝑋𝑖𝑛(𝑓)𝑋𝑗𝑛

∗ (𝑓)

𝑁

𝑛=1

 

Where 𝑋𝑖𝑛(𝑓) is the complex Fourier transform of each trial (n) of channel i and 𝑋𝑗𝑛
∗ (𝑓) is the 

complex conjugate (*) of the complex Fourier transform at epoch n for channel j. 

The two channels compared can be a “stimulus” (the speech envelope) and a “response” signal (an 

EEG channel), and the method has been widely used for the study of brain activation during speech 

(Bourguignon et al., 2013; Gross et al., 2014; Kolozsvári et al., 2021). For the coherence analysis, the 

EEG epochs of the current study were segmented in 3s trials, overlapping by 50%, and the trials that 

had been marked as bad in the APICE pipeline were removed. The 3s length of the trials was chosen 

to include three cycles of the smallest frequency that we wanted to analyze, that being the 1 Hz 

frequency. Datasets with less than 25 trials (per participant and condition) were excluded, so that 

some participants resulted in having data only for certain conditions.  

Using filters optimized with the Parks McClellan algorithm, the data was filtered in two frequency 

bands, one at the syllable rate (the frequency at which the syllables alternate, 2.62-3.67Hz in Rhyme 

1 and 3.00-4.02Hz in Rhyme 2), and one at the stress (or prosody) rate (the frequency at which the 

stressed syllables alternate, 1-2Hz in Rhyme 1 and 1-1.67Hz in Rhyme 2). Coherence was then 

computed for each of these bands based on the cross-spectral density using the Fieldtrip toolbox 

(Rosenberg et al., 1989), which resulted in a series of 3 to 4 coherence values, 0.33Hz apart, for each 

frequency point in the given interval. The coherence values were then averaged over trials and 

channels. For further statistical analysis, three coherence values were used: the average coherence 

over the frequency band of interest, the maximum coherence in that band, and the average of the 

two maximal coherence values in that frequency band. All three methods were compared with the 

aim of avoiding frequency smoothing but also to keep as much information as possible from the 

entire frequency band. 

Computation of Hilbert coherence 
The Hilbert coherence is another measure of correlation between two signals but in contrast to the 

classical coherence, it is computed as a function of time. In the Hilbert coherence, each sample (value 

at each timepoint) is weighted by its amplitude, while for the classical coherence, which is a function 

of frequency, not of time, the samples at a given frequency are weighted by their joint amplitude 

together (Bruña et al., 2018). In this way, while the classical coherence estimates the synchronization 

between tow signals for just one frequency value, the Hilbert coherence estimates the 

synchronization over the whole frequency band in which the data has been filtered. In our analysis, 

this means that, for example in the prosodic interval (1-2 Hz), the classical coherence was computed 

at fixed frequency values (as reported above: 1Hz, 1.33Hz, 1.67Hz and 2Hz). This leads to a frequency 

smoothing, as coupled frequencies are averaged together with uncoupled ones over each of the 

0.33Hz bandwidths. Further smoothing occurs when the average coherence over the whole prosodic 

or syllable frequency band is computed. This might lead to an underestimation of coupling. The 

Hilbert coherence, on the other hand, uses not the Fourier or wavelet phases, but the temporal, 

Hilbert phase of the signal. Therefore, at each timepoint it calculates the instantaneous phase over 

the whole band, and not from an average of frequencies (Bruña et al., 2018). Thus, Hilbert coherence 

might identify a brain synchronization with an oscillator that changes frequencies (e.g., the prosodic 

and syllable frequencies in our rhymes were also not perfectly constant). This might reveal 

synchronizations that are otherwise underestimated by the classical coherence. 

For the Hilbert coherence, data was segmented, cleaned, and filtered in two frequency bands just 

like for the classical coherence. The data was then Hilbert-transformed, and the Hilbert coherence 

was computed for each trial and each channel, based on the formula (Bruña et al., 2018): 
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𝐶𝐻(𝑐ℎ𝑎𝑛𝑖, 𝑡𝑟𝑖𝑎𝑙) =
|∑ 𝑥𝑖(𝑡) ∙ 𝑥𝑗(𝑡)∗𝑇

𝑡=1 |

√∑ |𝑥𝑖(𝑡)|2𝑇
𝑡=1 ∙ ∑ |𝑥𝑗(𝑡)|

2𝑇
𝑡=1

 

Where 𝐶𝐻(𝑐ℎ𝑎𝑛𝑖, 𝑡𝑟𝑖𝑎𝑙) is the Hilbert coherence computed for each channel and each trial, between 

the channel i and the audio channel j, t is the timepoint, with T being the last (highest) timepoint of 

each trial, x is the band-pass filtered and Hilbert-transformed data, * is the conjugate of a complex 

number, and | | is the absolute value of a complex number. The Matlab code for the Hilbert 

coherence is described in the supplemental material. The resulting coherence values (one for each 

frequency band) were then averaged over trials and channels.  

Computation of surrogate data for coherence significance 
To check the statistical significance of the coherence values, they were compared to a distribution of 

1000 “surrogate” coherences computed between the EEG data and 1000 circular shifts (Keitel et al., 

2017) of audio data from a different condition. The percentage of surrogate coherence values higher 

than the measured coherence gave the p value, i.e., the probability that the measured coherence is 

significant. 

Statistical analysis for the classic and Hilbert coherence 
For the statistical analysis, the average classical coherence over the frequency points in each 

frequency range (prosodic or syllable) was used. Additionally, considering that perhaps each child 

was following best at a different frequency, the statistical analysis was performed on (1) just the 

maximum value and (2) the average of the highest two values.  

Both the classical and the Hilbert coherence analyses were performed first on the whole dataset and 

second on a selection of values that only included the significant coherences based on the surrogate 

distribution. The results of the analysis of only the significant coherences are presented in the 

Supplemental material. 

Computation of multivariate temporal response functions (mTRF) 
The mTRF toolbox (Crosse et al., 2016) was used to compute multivariate temporal response 

functions (mTRF). mTRF is an encoding model that describes the association between an auditory 

stimulus and a brain signal (Crosse et al., 2016). In brief, a TRF is a time-lagged regression model that 

describes a neural activity as a time lagged response to a stimulus (e.g., the amplitude in the speech 

envelope), where the interpretation of a TRF follows that of an ERP in response to a continuous 

stimulus (Lalor et al., 2006). In the case of newborns, where ERP components are stretched over a 

longer period of time due to brain immaturity, we chose time lags up to 1000ms after the stimulus 

for our encoding model. The resulting value of the TRF at a certain time lag (e.g., 450ms) indicates 

“how a unit change in the amplitude of the speech envelope would affect the EEG” 450ms later 

(Crosse et al., 2016). To account for the multiple frequency bands contained in the speech stimulus, 

the multivariate analysis computes the TRF for each frequency band defined (similarly to Attaheri et 

al., 2022). However, in our case, the bands of interest being so narrow, we computed the TRF on the 

filtered data and speech for three different frequency intervals of interest: on data band-pass filtered 

for 0.5-2Hz, covering the prosodic stress rate, for 0.5-4Hz, also covering the syllable rate, and for 0.5-

10Hz, which additionally covered shorter linguistic structures, such as phonemes. That means that 

we computed de facto a univariate TRF for each of these intervals. 

The continuous preprocessed data was down-sampled to 100Hz to increase the computation speed. 

As each 1min long rhyme was played three times in a loop, we obtained six segments (folds) of 30s 

each. Only the folds with less than 30% bad times or bad channels were kept. The last fold was used 

as test data, and the others as training data. The data was z-scored and split into a stimulus channel 

(i.e., the speech envelope or the markers of the stressed syllables) and the response channels (the 

EEG channels). For each subject and model, an optimal regularization parameter (lambda) was 

chosen via cross-validation from the possible values of 10-3 to 1010. A forward (encoding) regression 
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model was then trained on windows of 1200ms length (-100 to 1100ms) to predict the EEG signal 

from the speech envelope and used to predict neural activity in the test set. Afterwards, the 

Spearman correlation coefficient r between the predicted and the real EEG signal was computed. 

Statistical analysis of mTRF models 
The mTRF models were analyzed in two ways, (1) using the correlation strength (r) between the 
predicted and measured signal (on the test set), and (2) by applying a cluster-based permutation test 
on the weights of the models from each condition and participant. For the first analysis, Wilcoxon 
signed rank tests were performed in RStudio, while for the second analysis we used Matlab and the 
Fieldtrip toolbox. 
In addition to the correlation coefficient, the statistical analysis was performed also on r2 and |r| 
(absolute value), as the negative correlations might reflect that the model was in counter-phase, but 
not ill-fitting. The cluster-based analysis of the model functions used a t-test for repeated measures 
as a statistical test between conditions. 

Computation and analysis of mutual information 
The mutual information (MI) computes how much of the entropy in one signal (response = EEG) can 

be reduced by the information contained in the other signal (stimulus = speech envelope), without 

assuming a linear relationship. In the current study, we computed it between the same frequency 

bands in the speech envelope and the brain signal, but analyses of combinations between different 

frequency bands in the “stimulus” and the “response” can also be done (Cogan & Poeppel, 2011). 

The advantage of MI analysis in the current study is that it compares not just the amplitudes of the 

signals, but also the phases, in all possible combinations. For example, if the stimulus amplitude 

changes the phase (but not the amplitude) of the response, then that would be caught by the MI of 

phase-amp (EEG phase vs. speech envelope amplitude). Sometimes, auditory stimuli lead to such 

phase resets in the brain signal (Canavier, 2015). Inversely, groups of neurons might fire 

simultaneously at a phase change in speech, leading to a larger amplitude in the EEG, in which case 

MI for amp-phase would increase. These changes are not easily uncovered by the other methods 

(coherence, TRF), which is why the MI might reveal effects that are otherwise masked. 

For the computation of mutual information (MI), the continuous preprocessed data was segmented 

into 3s segments, and the noisy segments were removed. The data was band-pass filtered with an 

optimized algorithm in 1-Hz-wide frequency bands between 0.5-10Hz, to cover the same interval as 

the mTRF. The phase and amplitude were extracted with a Hilbert transform and the MI was 

computed between all combinations of phase and amplitude between EEG and the speech envelope. 

Considering the immaturity of the newborn brain, interindividual variations in response lag had to be 

accounted for, which is why we computed MI with possible lags from 0 to 800ms between the two 

signals, choosing the highest MI from all the lags. The MI was then averaged over electrodes and 

trials. The four resulting MI tables (phase-phase, phase-amp, amp-amp, amp-phase) were then 

analyzed in RStudio. The average MI over each frequency interval (similar to mTRF models: 0.5-2Hz, 

0.5-4Hz, and 0.5-10Hz) was compared between conditions using Wilcoxon signed rank tests. 

Maternal prenatal distress, fetal stress, and infant language development 
The maternal prenatal depression score was evaluated with the Edinburgh Prenatal Depression Scale 

(EPDS) (Cox et al., 1987) at 34 weeks of gestation and then every 2 weeks until birth, via an online 

survey. The average score across the pregnancy was computed and used for further correlation 

analyses. Hair samples from the mother and child were acquired at 2 weeks after birth from the 

occipital area and used for the analysis of hair cortisol, to measure chronic fetal stress and chronic 

maternal prenatal stress. The infant language development was assessed by trained testers at 6 

months of age using the Bayley Scales (3rd edition) for expressive and receptive language 

development (Macha & Petermann, 2015). The correlations were computed in RStudio using 

Spearman’s correlation. 
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Statistical analysis 
Due to assumptions violation for normal distribution and/or homogeneity of variance, nonparametric 

tests were performed, namely Wilcoxon signed rank tests for dependent samples comparisons 

(comparisons between conditions), Wilcoxon rank sum test for independent samples (comparisons 

between groups) and Spearman’s correlation for the relationship between neural speech tracking 

and prenatal factors or language development. The statistical analyses were made with RStudio, 

version 2022.02.3 (RStudio Team, 2020). Where there were outliers that strongly distorted the data, 

they would be cut off at 3 SD over the average. The minimum sample size for performing the 

Wilcoxon signed rank test was N = 6 (total sample size), with 2 groups of size within groups N = 3 

(Dwivedi et al., 2017). 

Results 
In the following, we present the main results for the (1) prenatal learning, (2) language manipulation, 

(3) rhythm manipulation, and (4) phonological manipulation across methods. Further we present the 

(5) comparison of measured coherence to surrogate coherence and lastly the (6) correlation of 

neural tracking with prenatal factors and later language development. Details on the agreement 

between methods, as well as statistics of non-significant results and figures of trending effects can be 

found in Supplemental materials. 

1. Prenatal learning 
In the analysis of classical coherence and of mutual information we found a familiarity effect, with 

higher coherence/MI for the unfamiliar rhyme than for the familiar one (Figure 3). In the Hilbert 

coherence and mTRF analyses there was no effect of familiarity. In the classical coherence analysis, 

the effect was significant (V = 432, p = 0.048) at the prosodic rate for the average coherence and 

trending (V = 446, p = 0.065) at the syllable rate for the average of two maximums. In the MI analysis, 

the effect was significant in the amplitude-amplitude comparison over all frequency intervals (0.5-

2Hz: V = 1112, p = 0.004; 0.5-4Hz: V = 1046, p = 0.021; 0.5-10Hz: V = 1059, p = 0.016), and trending (V 

= 943, p = 0.085) in the phase-phase comparison for the 0.5-10Hz interval.  

 
Fig. 3: Rhyme familiarity. The rhyme familiarity effects in the Classical coherence (N = 50) and in the Mutual 

information (N = 55). Note the higher coherence/MI for the unfamiliar rhyme (blue) compared to the familiar 

rhyme (yellow). * p < 0.05, ** p < 0.01. 
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2. Unintelligible language discrimination 
Across multiple methods we found a significant (p < 0.05) or at least trending (p < 0.1) language 

effect, predominantly in favor of the familiar language. 

The classical coherence analysis showed a language trend in the prosodic rate when the maximal 

coherence (V = 826, p = 0.07) or the average of the two highest coherences (V = 813, p = 0.09) was 

used as a variable, but not when the average coherence was used. The trend was for the familiar 

rhyme to have higher coherence than the language-manipulated unintelligible rhyme. In the Hilbert 

coherence analysis, there was a significant language effect for the prosodic rate (V = 409, p = 0.04), 

but rather in favor of the unintelligible rhyme (Figure 4A). 
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Fig. 4: Unintelligible language discrimination. Panel A: The effect of language familiarity in Hilbert coherence, 

mTRF for the speech envelope, and Mutual Information. According to the TRF for speech envelope, the 

newborn showed higher coupling with the familiar language than the unfamiliar one. The MI indicates that the 

phase of the speech envelope of the familiar language entrained the EEG amplitude more for the familiar 

language than the unintelligible one. The Hilbert coherence depicts a reversed effect, possibly due to a variable 

oscillator and an attention-orienting effect induced by the unintelligible language. Panel B: Cluster-based 

permutation analysis of the TRF models for stressed syllables in Group 2. Note the positive cluster (higher 

predicted signal for the familiar language) between 550-650ms, marked with a red rectangle. 

In the mTRF analysis of the speech envelope, there was also a trend for a language effect over all 

frequency intervals, but only in Group 1, with higher r2 and |r| values for the familiar rhyme than for 

the language manipulated rhyme, p < 0.1. The effect reached significance for |r| at 0.5-4Hz, V = 158, 

p = 0.048 (Figure 4A).  

The cluster-based permutation analysis of the TRF for the speech envelope showed a trending cluster 

at 750-900ms at 0.5-4Hz, indicating higher activation for the language-manipulated rhyme, p = 0.095, 

but it did not reach significance (neither at other frequencies, nor when analyzed in each Group 

separately) (see Supplemental Material, Figure S10). However, in the TRF for the stressed syllable 

triggers, there was a significant cluster in Group 2, bilateral frontally, at 500-650ms, at 0.5-2Hz (p = 

0.043) and 0.5-10Hz (p = 0.045) and trending at 0.5-4Hz (p = 0.081) (Figure 4B). This positive cluster 

indicated higher predicted signal for the familiar rhyme than for the language-manipulated rhyme. 

The later, trending cluster in favor of the unfamiliar language might suggest that the unintelligible 

language is tracked with a longer time lag and more spread over time and location, so that statistical 

significance for a cluster is not reached.  

The mutual information analysis showed a language effect only in the amplitude-phase comparison, 

with higher mutual information for the familiar rhyme, significant for 0.5-2Hz (V = 1132, p = 0.033) 

(Figure 4A) and trending for 0.5-4Hz (V = 1103, p = 0.056). 

Interestingly, the TRF correlation coefficient differed between language familiarity in the 0.5-4 Hz 

frequency band but not in the 0.5-2 Hz frequency band (V = 156, p = 0.058). This indicates that 

tracking of information in the frequency band related to syllabic information was more pronounced 

in the familiar compared to the unintelligible language. This added information in the larger 

bandwidth extended the difference in cortical tracking of the two conditions to reach statistical 

significance. A detailed interpretation of the opposing results of Hilbert coherence and TRF/MI is 

given in the Discussion section.  

3. The rhythm effect 
In two methods (classical coherence and mTRF analysis) there was a significant or trending difference 

between the original rhyme and the rhythm manipulated rhyme, with higher coherence and, 

respectively, higher mTRF correlation coefficient in the original rhyme (Figure 5). In the other 

methods there was no effect. The effect for the classical coherence was significant at the prosodic 

rate for the maximal (V = 907, p = 0.022) or average of the highest two (V = 881, p = 0.041) coherence 

values in the prosodic rate. The effect for the mTRF correlation values was trending in the mTRF for 

the speech envelope, for |r| at 0.5-2Hz (V = 126, p = 0.081) for Group 1 only, and in the mTRF for the 

stressed syllables for r2 at all frequency intervals, for Group 2 only (0.5-2Hz: V = 126, p = 0.081, 0.5-

4Hz: V = 128, p = 0.067, 0.5-10Hz: V = 127, p = 0.074). 
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Fig. 5: The rhythm effect. Note the higher coherence/correlation coefficients of mTRF models for the familiar 

rhyme rhythm (yellow) than for the rhythm-manipulated rhyme (blue). Significance notation: + = p < 0.1, * = p < 

0.05 

4. The phonological effect 
Across two methods – the Hilbert coherence and the mTRF analysis – there was a significant or 

trending difference between the low-pass filtered manipulation and the original rhyme, always in 

favor of the original version. In the Hilbert coherence analysis, there was a trend (V = 799, p = 0.064) 

for a phonological effect in the prosodic rate. In the mTRF for the speech envelope, there was a trend 

for r2 at 0.5-4Hz in Group 1 (V = 101, p = 0.093) and in the mTRF for the stressed syllables there was 

an effect for r in Group 1 at 0.5-4Hz (V = 107, p = 0.044) (Figure 6), which became a trend at 0.5-2Hz 

(V = 106, p = 0.051) and at 0.5-10Hz (V = 104, p = 0.065). 

 
Fig. 6: The phonological effect. Note the phonological effect in favor of the familiar unmanipulated rhyme 

(yellow). Significance notation: * = p < 0.05.  

5. Comparison with surrogate and effects of group and rhyme 
Compared to the coherence distribution on surrogate data, in the classical coherence 33% of the 

participant*condition files had significant coherence values for the prosodic and 38% for the syllable 

rates; in the Hilbert coherence, 58% had significant coherence values for the prosodic rate and 21% 

for the syllable rate. For a separate analysis of these files only, see Supplemental Material. 
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To control for group or rhyme differences, analyses comparing the two groups and the two rhymes 

were performed. Across all methods there were no group effects, indicating a well distributed 

sample across the two groups. In some methods there was a rhyme effect, but it alternated between 

favoring rhyme 1 and rhyme 2, which suggested no consistent bias (see Supplemental Material for 

detailed results).  

6. Correlation of cortical tracking with maternal stress and depression and the predictive 

value for language development 
There was a moderate positive correlation between the maternal depression score (EPDS) and the 

classical coherence for the prosodic rate, with ρ (rho) = 0.377, p = 0.005, indicating more tracking for 

the familiar rhyme in children of mothers who were more depressed during pregnancy. Furthermore, 

there was a negative correlation between the child hair cortisol levels at 2 weeks and the Hilbert 

coherence at the prosodic rate, indicating less tracking for the familiar rhyme in children with high 

hair cortisol, ρ = -0.35 (moderate correlation) and p = 0.045. The maternal hair cortisol did not 

correlate with the infant’s neural tracking (ρ = -0.006, p = 0.97) or with maternal EPDS (ρ = -0.084, p = 

0.64). Further, there was a significant positive correlation between the Hilbert coherence for the 

prosodic rate for the familiar rhyme at 2 weeks and the language composite score (receptive and 

expressive) from the Bayley scales at 6 months, ρ = 0.50 (large correlation), p = 0.001, indicating that 

the ability to track the familiar rhyme was strongly correlated with later language development. 

There was no significant correlation between coherence and the Bayley cognitive scale (ρ = 0.21, p = 

0.20). 

 
Fig. 7: The correlations of cortical tracking with depression, stress, and language development. Note the 

strong positive correlation between the Hilbert coherence at two weeks and the language development at 6 

months (right panel). 

Discussion 
Overall, the results indicate that the newborns tracked the unfamiliar rhyme more strongly than the 

familiar one, which likely is associated with enhanced attention to an unexpected stimulus input. 

Conversely, different manipulations of the rhymes (backward speech, changed rhythm, and low-pass 

filtered) were tracked less strongly than the familiar, original rhymes. This may be due to a 

degradation of different aspects of the signal in the manipulated versions, making it more difficult to 

track. 

Prenatal learning 
There was a clear discrimination of the familiar and unfamiliar rhymes. The amplitude-amplitude MI 

and the classical coherence were both higher for the unfamiliar rhyme than for the familiar one, 

which shows an amplitude-driven tracking of the rhymes which is stronger (better correlation 

between amplitudes) for the unfamiliar rhyme than for the familiar one. The coherence is a function 

of frequency which takes into account the amplitudes of the signals, while the MI amp-amp is also a 

function of both signals’ amplitudes, which explains why the two measures are congruent in their 

effect. There are previous studies that show enhanced brain activity for unfamiliar or more complex 
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stimuli (Henson et al., 2000), or for unfamiliar pitch contours (Homae et al., 2007) which could rely 

on an attention-orienting effect, ultimately leading to a better neural tracking of the acoustic 

stimulus. This explains the better tracking of the unfamiliar rhyme in our sample. 

The current study is one of the first to show, with direct brain data, that a newborn already has 

memory traces of a rhyme they heard during the intrauterine life. Evidence of prenatal programing, 

with changes in speech processing occurring due to stimulation during fetal life, has been previously 

presented by Partanen (Partanen, Kujala, Näätänen, et al., 2013b). The prenatal learning paradigm in 

our study, however, is different since it compares two rhymes, both in the same (familiar) language. 

The result is, moreover, not rhyme-specific, since irrespective of which rhyme was familiar, the 

unfamiliar one was better tracked.  

Language paradigm 
In the language-paradigm, the familiar language had better tracking (i.e. higher mutual information 

and higher mTRF correlation coefficients) than the unintelligible language. However, the analysis of 

the Hilbert coherence showed an opposite effect, with higher coherence for the unintelligible 

language. The analysis of the classical coherence showed no effect. Backwards language should have 

the same rhythm as the original rhyme, but if we consider that rhythm is syllable based, and that the 

syllables in the backward speech were phonetically very different, then also the infant’s 

interpretation of the rhythm would be different. Hence, we propose that the higher Hilbert 

coherence was due to a different interpretation of the rhythm by the infant, for whom the syllables 

of the backwards speech were phonetically unfamiliar. Therefore, the stressed syllables were 

perceived at variable intervals, which might have led to a variable frequency of cortical tracking, that 

was better measured with the Hilbert coherence. The presence of unexpected, unfamiliar phonemes 

might have stimulated the infant’s response to be stronger than for the familiar language, which 

could explain the higher Hilbert coherence for the unintelligible language compared to the familiar 

one. 

However, as the forward linear model (TRF) predicted the EEG better in the familiar language 

(correlated better with the real EEG signal) than it could predict the EEG for the backward language, 

this suggests that the predictability of neural tracking was better in the familiar than in the 

unfamiliar, unintelligible language. Similarly, the phase of the speech envelope of the familiar 

language entrained the amplitude in the EEG (amp-phase MI) more than the phase in the backward 

language did, perhaps since it was easier to predict. The predictability of the familiar language phase 

might have provoked more neurons to fire simultaneously, giving rise to higher cortical EEG 

amplitudes that correlated with the phase changes in the speech envelope.  

The fact that the TRF effect was present only in Group 1 suggests that in Group 2 the level of rhythm 

familiarity was not different enough between the familiar language and the backwards rendition of 

Rhyme 2. This might be due to the fact that Rhyme 2, in its original version, already has a rhythm 

rather unusual for the German language (dactyl, in a ¾ tact). Therefore, neither TRF (linear 

prediction) nor MI (phase-driven by the speech envelope) were sufficiently different between the 

two conditions of Rhyme 2. 

The existing literature also reports seemingly different reactions to an unfamiliar language. On the 

one hand, infants orient faster to their native language (Dehaene-Lambertz & Houston, 1998; 

Kisilevsky et al., 2009) than to an unfamiliar one. Furthermore, in a NIRS study on newborns, May et 

al. (May et al., 2011) found increased Hb oxygenation to the familiar language and decrease to the 

unfamiliar language. On the other hand, a study by (Moon et al., 2013) showed that neonates 

increase the suckling frequency to a nonfamiliar language, which might indicate a general increase in 

alertness and, by extension, an intensification of cognitive processes. These findings suggest that the 

response to an unfamiliar language is complex and may result as a combination of increased 

attention, decreased capacity of prediction, and a more diffuse (i.e., spread over time, location, and 

oscillations frequency) processing of the unfamiliar phonemes and sentence structure. 
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Overall, however, our results confirm the newborns’ ability to discriminate the familiar language 

from an unfamiliar one, as reported by previous studies. 

Rhythm and phonological paradigms 
With the rhythm and phonological paradigm, the current study found that newborns used both 

prosodic and phonologic cues to track the rhymes. In the manipulated rhymes, where these cues had 

been changed, the classical/Hilbert coherence values and the correlation coefficients of TRFs were 

lower than for the original rhyme. 

The rhythm paradigm effect was always in favor of the familiar rhythm, with the classical coherence 

and the TRF correlation coefficients being higher for the familiar rhythm than for the manipulated 

one. It makes sense that the Hilbert coherence in this case was not very different between the two 

conditions, because the unfamiliar rhythm might have been followed at various frequencies, so that 

the Hilbert coherence was just as high in the rhythm-manipulated rhyme as it was in the familiar-

rhythm rhyme. But the difference in the classical coherence and TRF correlation coefficient suggest 

that there is a linear relationship at a more constant frequency value between the EEG signal and the 

speech envelope. This relationship is stronger for the familiar rhythm than for the unfamiliar rhythm. 

This finding underlines the early sensibility of infants to prosody and expands present literature with 

evidence from the very young newborns, since previous reports are from older children: 9-month-

olds (Martinez-Alvarez et al., 2023), 6-month-olds (Holzgrefe-Lang et al., 2018; Seidl, 2007), or 4-

month-olds (Seidl & Cristià, 2008). Additionally, by comparing versions of the familiar rhyme, this 

result is also an indication that prenatal learning relies quite strongly on rhythmic cues.  

The low pass-filtered rhyme, missing the phonological cues, also had lower tracking than the original 

rhyme: lower TRF correlation coefficient and trending lower Hilbert coherence. This effect was 

significant only in Group 1, but it was also trending in the other group. The reason why the effect 

would appear only in Group 1 might have to do with the manipulations and rhyme characteristics. In 

Rhyme 1, the rhythmic cues alone, in the presence of degraded phonological cues, might have not 

been enough to retrieve the memory of the rhyme, so the low-pass filtered version was harder to 

follow than the original rhyme. However, in Rhyme 2, the removal of the phonological cues by low-

pass filtering did not seem to have this effect, and the prosodic cues (the rhythm and melody of the 

familiar rhyme) were enough to retrieve the memory of the rhyme. This might be due to the ¾ tact of 

Rhyme 2, which is less usual for the German language, and might have made the rhyme easier to 

remember based only on prosodic cues. Overall, the phonological effects suggest that newborns 

already use phonological cues to track a rhyme. Indeed, a study using resynthesized speech (Ramus, 

2002) found that newborns can discriminate between two languages based on rhythm but only if 

some phonotactic information is present. Our results support this theory of early phonotactic 

sensitivity, which builds up on earlier studies that found only 4.5 -month-olds and older infants to be 

able to process phonotactic cues (Friederici & Wessels, 1993; Jusczyk et al., 1994; Mattys et al., 

1999). 

Surrogate data comparison 
Additionally, the comparison of the coherence values with the surrogate data revealed that over a 

third of the participant*condition files had significant coherence values for the prosodic and syllable 

rates; in the Hilbert coherence, 58% had significant coherence values for the prosodic rate and 21% 

for the syllable rate. It seems the slower frequencies were easier to follow, which is in line with 

present literature, since it’s at these slower frequencies that one can find the most salient prosodic 

features of speech. At slower frequencies (i.e., 0.5-2Hz) is where the tact of the rhyme becomes 

apparent, i.e., the stress of the syllable. The prosodic features that give the stress (pitch, tempo, 

amplitude, and rhythm) help young infants orient towards and maintain attention for the speech 

stream (Martinez-Alvarez et al., 2023), and it has been previously shown that young infants have 
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stronger cortical tracking for these low frequencies (delta, 0.5-4Hz) compared to theta or alpha 

(Attaheri et al., 2022). 

Correlations of cortical tracking with maternal distress and later infant language development 
Higher maternal depression scores during pregnancy correlated with more tracking of the familiar 

rhyme, which seems counterintuitive considering that prenatal maternal depression is considered to 

negatively impact infant’s cognitive outcome (Barker et al., 2013; Deave et al., 2008; Field, 2011). 

However, the depression scores in our sample were strongly skewed to the right, with most mothers 

having low depression scores and just 6% of them having scores above 9, indicating symptoms of 

depression. This suggests that the slightly higher depression score might also indicate a moderate 

level of maternal distress, which has been found to associate with better infant cognitive outcome in 

healthy populations (such as our sample) (DiPietro et al., 2006). Other studies found non-toxic levels 

of maternal hair cortisol to positively correlate with the infant’s cognitive skills (Caparros-Gonzalez et 

al., 2019), also pointing towards a stimulative role of moderate maternal stress levels. 

The fetal stress however was negatively associated with cortical tracking, with lower Hilbert 

coherence in the familiar rhymes for children with higher hair cortisol. Fetal stress is not just 

influenced by maternal mood, and therefore the direct assessment is important. The negative impact 

of fetal stress has been also described by Bergman and colleagues (Bergman et al., 2010), where the 

levels of cortisol in the amniotic fluid negatively predicted cognitive abilities at 17 months of age. In 

our case, however, hair cortisol is a marker of chronic fetal stress, reflecting long-term exposure, not 

the levels at a single timepoint. 

Most importantly, the newborn’s ability to track the familiar rhyme (as measured with classical 

coherence) was positively correlated with the language development at 6 months of age, both with 

the receptive and expressive scores of the Bayley scales. Earlier studies indicated similar predictive 

value of cortical tracking (Menn, Ward, et al., 2022; Ní Choisdealbha et al., 2023). This shows how 

critical the development of non-invasive assessment methods for pre-verbal infants can be. 

Measuring the neural speech tracking after birth can become a screening method for infants at risk, 

or a method to evaluate therapeutic interventions without having to wait until the child speaks to be 

able to measure the intervention’s effect. 

Methods comparison 
All the four methods used in the current study measure the relationship between the brain signal 

and the auditory stimulus, but they each uncover specific details and measure slightly different 

aspects of this relationship. This is why results are sometimes different between methods, though 

most of the time, if there was an effect or a trend, it was present in more than one method, and with 

the same directionality. By applying multiple methods to the same dataset, the current study offers a 

fresh perspective on the challenges that infant data analysis can pose. Often studies only report 

specific methods and it remains unclear whether other methods and parameter settings, such as 

filters, frequency bands, or transformations, were also tested. Adapting a method is justified, 

because infants studies are usually heavily contaminated with noise (movement, crying, fussing, 

external factors, e.g., maternal pulse or heart rate artifacts) which can be different from one setting, 

sample, or age group to another. Furthermore, interindividual variability at this age is higher than in 

adults, which increases variance and decreases the study’s power. The expected effects in infants are 

also quite small, considering the lack of brain maturation, which makes brain activity between small 

regions less synchronized and more spread over time, leading to a wash-out of the possible 

differences. All these factors contribute to the weak effects, which might only become significant in a 

specific constellation of parameters, with a specific method. Therefore, we considered the current 

comparative report of methods to be useful for future reference and we think that trying (and 

reporting) more methods should be encouraged in the case of infants’ data. 
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Limitations 
The most important limitations in our study that lead to the weak effects are the artifacts 

contamination of the data and high inter-subject variability (large standard deviations), which are 

common for most studies on young infants. Another limitation could be the (too) fine difference 

between the original rhymes and their rhythm-manipulated versions. This, however, might be of use 

in later timepoints of analysis (6-months and 12-months after birth), where the same paradigm is 

used. At these older ages, the larger frame-study aims to investigate the infants’ ability to identify a 

correct or incorrect stress on words in their familiar language. Therefore, in the context of the larger 

study, the paradigm is useful for a dynamic comparison between different ages.  

Another possible limitation is that the current study investigates only one-to-one frequency 

correspondences between EEG and speech envelope, as they are both filtered in the same frequency 

band and then the measure of interest is analyzed (coherence, MI, TRF etc.). This was done because, 

as different frequency bands of the EEG track different elements of the language stimulus (Cogan & 

Poeppel, 2011), we were interested in the neural tracking of different language structures: syllables 

(within the syllable rate) and words (within the prosodic rate). But this approach might be a 

limitation, ignoring higher-frequency properties of speech that may induce low-frequency changes in 

the brain signal. Therefore, further studies should also investigate the relationship between the brain 

signal and higher frequencies of the speech envelope. 

Conclusion 
In the current study, we were able to contribute to the current knowledge on language-specific 

abilities in healthy 2-week-old newborns. We found that newborns can track a continuous stimulus, 

as shown by significant cortical tracking, especially at the prosodic (stressed syllables) rate. 

Importantly, we found that newborns can discriminate between a familiar and unfamiliar rhyme, 

indicating prenatal learning. Furthermore, violating the phonotactic rules of the familiar (native) 

language in the backward speech condition, as well as degrading the phonological cues in the low-

pass filtered condition, made the cortical tracking more difficult than for the familiar, unmanipulated 

rhyme. This indicates some degree of phonotactic sensitivity at this young age, i.e., that there is 

already some knowledge on what syllables should sound like and where they are allowed to be 

placed in a sentence. Additionally, we found that the recognition of the familiar rhyme was 

negatively impacted by the manipulation of its rhythm, rendering it more difficult to track. Moreover, 

in analyzing the data with four common approaches, we highlight the variability of the outcomes and 

point to the difficulty when it comes to comparing such studies. The correlations of fetal stress, 

maternal mood, and later infant language development with the newborn’s ability to track the 

rhymes underline the importance of an early assessment method of language processing. More 

infant studies using multiple methods are needed in order to come up with a recommendation and 

agreement how to analyze reproducible speech-envelope data at this early stage.  
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