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Abstract

The microbiota in individual habitats differ both in relative composition and absolute
abundance. While sequencing approaches determine only the relative abundances of taxa and
genes, experimental techniques for absolute abundance determination are rarely applied to
large-scale microbiome studies. Here, we developed a machine learning approach to predict
fecal microbial loads (microbial cells per gram) solely from relative abundance data. Applied
to large-scale datasets (n = 34,539), we demonstrate that microbial load is the major
determinant of gut microbiome variation and associated with numerous host factors. We found
that for several diseases, the altered microbial load, not the disease itself, was the main driver
of the gut microbiome changes. Adjusting for this effect substantially reduced the significance
of more than half of the disease-associated species. Our analysis reveals that the fecal microbial
load is a major confounder in microbiome studies, highlighting its importance for

understanding microbiome variation in health and disease.
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Introduction
Shotgun metagenomic sequencing facilitates high-throughput profiling of complex microbial

3

communities in environmental samples!™. Applied to the human gut microbiome,

metagenomics reveals its structure, function, and variations*%, as well as its associations with
host physiologies including diseases, immune function, and response to cancer therapy’ '
However, the microbial profile obtained from metagenomic analysis is inherently
compositional, with the abundance of each microbial species represented in relative
proportions (fraction of total reads)'?>~!4. In such compositional data, changes in one microbial
species result in concurrent relative changes in others, leading to negative correlation bias that
can cause false positives and false negatives in association studies'?!3. Moreover, sequencing
data does not provide information on microbial load (i.e. the total absolute abundance of
microbial species per gram or microbial density), which is closely associated with fecal transit

15-17

time!>17, stool consistency'®, water content!®, and pH?%?! in the gut, and is a key ecological

factor in shaping the diversity, metabolism, and inter-individual variation of the
microbiome!?22,

To overcome these issues and to factor in total absolute abundances, various experimental
methods are applied to microbiome studies, such as flow cytometry-based cell counting!®23-24,
quantitative PCR?>~?7, or internal standard provision (e.g. spike-in DNA)?%-! that quantify the
microbial load in environmental samples. Such additional data help avoid pitfalls associated
with compositional data'® and link microbiome variation across individuals with changes in
microbial load!'®32. However, generating such quantitative profiles requires extra experiments
that are labor-intensive, costly, and impractical for large-scale microbiome studies. Hence, the
vast majority of public or ongoing metagenomic studies do not report associated microbial
loads.

Here, we present a machine learning model capable of robustly predicting microbial
load without requiring additional wet lab assays. Using large-scale paired datasets of
metagenomes and microbial load data from two independent study populations
(GALAXY/MicrobLiver and MetaCardis), we first train our model to predict the microbial
load of a human fecal sample directly from relative microbiome profiles. We then demonstrate
the utility of our model by applying it to a large-scale collection of public metagenomic datasets
(n = 34,539), revealing novel associations between various host physiologies and microbial
load. Furthermore, we show that microbial load is a major determinant of microbiome variation

and frequently confounds disease associations of microbial species, with implications for

biomarker development.
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Results

Microbial loads are robustly predicted from the relative taxonomic and functional
profiles of the microbiome

We based our analysis on fecal samples collected in two independent large-scale study
populations by the GALAXY/MicrobLiver (n = 1,894, 46.7 + 20.3 years old [mean + s.d.],
males 69.5%) and MetaCardis consortia (n = 1,812, 54.6 &= 13.0 years old [mean + s.d.], males
44.8%)**73°,  GALAXY/MicrobLiver encompassed various sub-cohorts including
heterogeneous individuals such as healthy controls, early- to advanced-stage liver disease
patients, individuals who participated in intervention trials, and children/adolescents with
obesity (Methods, Supplementary Table 1). Meanwhile, MetaCardis focused on
cardiometabolic disease patients (e.g. coronary artery disease, metabolic syndrome, type 2
diabetes, and severe/morbid obesity) as well as healthy individuals**—3> (Supplementary Figure
1 and Table 1). While the data on MetaCardis has been reported elsewhere*—3>, we present
here newly obtained metagenomes and flow cytometry-based cell count data from the
GALAXY/MicrobLiver consortium (Supplementary Table 2). We obtained species-level
taxonomic and functional (gene) profiles with a marker gene-based method using the mOTUs
profiler*® and the Global Microbial Gene Catalog (GMGC)?*’, respectively. The microbial loads
in the two study populations were significantly different (mean values were 6.5 + 2.7e+10 and
11.1 + 5.8e+10 for the GALAXY/MicrobLiver and MetaCardis study populations,
respectively), suggesting possible study effects due to differences in experimental techniques
used to measure load in respective study populations (Methods, Supplementary Figure 2).
Nonetheless, taxonomic and functional profiles of the microbiome were consistently associated
with the microbial loads in both study populations (Supplementary Figure 3, Supplementary
Tables 3 and 4).

We first associated the experimentally measured microbial loads with three
enterotypes®®* (Methods). The microbial load was the highest in Firmicutes (Ruminococcus)
enterotype followed by Prevotella, and Bacteroides enterotypes in both study populations
(Figure 1A, B). Diversity indexes (e.g. Shannon diversity, species richness, and Simpson
diversity) of the microbiome had consistent positive correlations with microbial load, with
Shannon diversity showing one of the strongest positive associations in both study populations
(Figure 1C). We next studied correlations between relative species abundance and total
microbial load, and observed positive correlations for various uncultured species in Firmicutes
phylum as well as short-chain fatty acid producers* and slow-growing*' species (e.g.

Oscillibacter, Faecalibacterium, and Eubacterium spp.). In contrast, we observed negative
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correlations for disease-associated species such as Ruminococcus gnavus (inflammatory bowel
disease)*** and Flavonifractor plautii (colorectal cancer)* (Figure 1C, Supplementary Table
3). Typical oral species also found in stool such as Streptococcus and Veillonella spp. were
also negatively associated with the microbial load (Supplementary Figure 4).

When correlating the microbial loads with the relative functional profiles of the human
gut metagenome, we found that microbial genes for lipopolysaccharide (LPS) biosynthesis
were enriched in samples with low microbial loads in both study populations (Supplementary
Figure 5, Supplementary Table 4). Similarly, genes for sugar metabolism including the
phosphotransferase system, fructose/mannose metabolism, and glycan degradation were
consistently associated with lower microbial loads in both study populations. On the other
hand, genes involved in flagella assembly and bacterial chemotaxis were positively correlated
with the high microbial load in both study populations (Supplementary Figure 5). As increased
LPS levels in the gut could cause inflammation and diarrhea (i.e. shorter transit time)*, these
genes might be also associated with fecal transit time.

As we observed strong associations between microbial load and relative gut
microbiome profiles, we hypothesized that the microbial load of a fecal sample could be
predicted from relative abundances of taxa. We thus trained eXtreme Gradient Boosting
(XGBoost) regression models*® based on relative abundance of each microbial species as well
as the Shannon diversity index (Methods). Internal 5-times repeated 10-fold cross-validation
in each study population showed that both models predicted the microbial load with Pearson
correlation coefficients of 0.67 + 0.0068 and 0.68 + 0.0069 (mean + s.d.) for the
GALAXY/MicrobLiver and MetaCardis study populations, respectively (Figure 1D). To
evaluate the robustness of the model in an external dataset, we applied each model to the other
dataset (Supplementary Figure 1) and found that both models again predicted the microbial
loads significantly (Figure 1E, Pearson correlations = 0.56 for both the GALAXY/MicrobLiver
and MetaCardis models). Functional profiles of the gut microbiomes also predicted the
microbial loads with comparable accuracies to those trained by the species-level taxonomic
profiles (Supplementary Figure 6A and B). These results demonstrated robust prediction of
microbial loads in fecal samples from relative microbiome profiles obtained by metagenomic
sequencing.

Since the GALAXY/MicrobLiver and MetaCardis study populations included
individuals with different phenotypes and demographic factors (e.g. healthy adults, diseased
patients, and children/adolescents, Supplementary Table 1), we next examined how prediction

accuracy differed among these groups. Notably, we found that both models robustly predicted
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microbial load not only in healthy samples, but also in diseased samples that were not included
in the model's training (Supplementary Figure 7). Specifically, the MetaCardis model, which
was trained on samples from healthy adults and cardiometabolic disease patients, showed
comparative accuracy among the sub-cohorts in the GALAXY/MicrobLiver study population,
such as the cohort of healthy individuals (GALA-ALD: Pearson correlation = 0.52), liver
disease patients (GALA-ALD: 0.47, GALA-RIF: 0.58, and TIPS: 0.62), and
children/adolescents (HOLBAEK: 0.53). Similarly, the GALAXY/MicrobLiver model also
showed comparative accuracies for individuals with various diseases in the MetaCardis dataset,
such as healthy individuals (Pearson correlation = 0.44), patients with coronary artery disease
(0.43), diabetes (0.56), metabolic syndrome (0.48), and severe obesity/morbid obesity (0.63).
As such, the models robustly predict microbial load even for samples with phenotypes not
included in the training data.

To further explore the applicability to different sequencing technologies, we collected
additional paired data of 16S rRNA gene sequencing and fecal microbial loads from two
previous studies!®?* (Supplementary Table 5). The internal and external validations of the
model between the two studies also demonstrated robust prediction of microbial load (Pearson
correlations = 0.79 for the internal validation and 0.60 for the external validation,
Supplementary Figure 6C and D), indicating that with sufficient data, fecal microbial loads can

be predicted from different relative abundance measures.

Predicted microbial loads are associated with various host factors
To discover associations between predicted microbial loads and host factors such as disease
status, medication, and lifestyle, we collected public gut metagenomes from 159 previous
studies across 45 countries (n = 27,832, 46.3 £ 19.3 years old [mean + s.d.], 52.9% males,
Supplementary Tables 6 and 7). Additionally, we collected metagenomes from two large
population studies*’*: Japanese 4D cohort (n = 4,198, 66.4 + 12.6 years old [mean =+ s.d.],
58.8% males) and Estonian Microbiome cohort (n =2,509, 50.0 £+ 14.9 years old [mean £ s.d.],
29.7% males), in which deep phenotyping was performed (Supplementary Tables 6 and 8).
Since the former data were derived from various smaller studies with less host intrinsic and
extrinsic factor information, they were combined into a global dataset. We prepared species-
level taxonomic profiles of each sample and predicted the microbial load using the MetaCardis
prediction model (Methods, Supplementary Figure 1).

In the global dataset, samples from high-income countries showed significantly higher

predicted microbial loads than those from low-income countries (Figures 2A and B). This
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difference could not be attributed to the potential bias that the model was trained on samples
from high-income countries (Supplementary Figure 8), suggesting that factors associated with
increased income such as lifestyle, diet, or hygiene affect the microbial load. In the Japanese
4D and Estonian Microbiome cohorts, the medication category showed the strongest
association with the predicted microbial load among the metadata categories (Figure 2C,
Supplementary Table 8), which was consistent with the strongest impact of medication on the
relative gut microbiome profile observed previously*’. Anthropometric factors and disease
status followed in the Japanese 4D cohort, while diet and other factors ranked next in the
Estonian Microbiome cohort. Among the available host factors in the Japanese 4D and
Estonian Microbiome cohorts, 65 (26.3%) and 8 (3.2%) showed significant associations with
the predicted microbial loads, respectively (FDR < 0.05, Figure 2D, Supplementary Table 9).
In the three datasets, the self-reported Bristol stool scale (an index that classifies categories of
fecal consistency) showed consistent negative correlations with the predicted microbial loads
(Figure 2E, Supplementary Figure 9A). The frequency of defecation, surveyed in the Estonian
Microbiome cohort, was also negatively associated with the microbial load (Figure 2F). These
results are consistent with findings from previous studies suggesting that fast transit time (e.g.
frequent defecation and diarrhea) reduces microbial loads while slow transit time (e.g.
infrequent defecation and constipation) increases microbial loads since fecal bacteria grow
along the gastrointestinal tract gradually'®22. Age was positively associated with the microbial
load in both Japanese 4D and global datasets, but not in the Estonian Microbiome dataset
(Supplementary Figure 9B). Overall, elderly individuals (>70 years old) had 9.7% higher
microbial load than younger individuals (<30 years old) in the combined datasets (Figure 2G).
Sex was consistently associated with the microbial load in all three datasets (Figure 2H,
Supplementary Figure 9C), with women having a 3.5% higher microbial load than men on
average. These results are consistent with epidemiological studies that showed slower transit
time in elderly people and females**-°. Interestingly, elderly individuals and females showed
higher microbiome diversity than younger individuals and males as observed in previous

studies’!?

, while the strength of these associations decreased once adjusted for the effect of
the microbial load (Supplementary Figure 10). This suggests that the higher microbial load or
slower transit time contributes to increased gut microbiome diversity in elderly individuals and
females. Other factors significantly associated with microbial load in the Japanese 4D cohort
included various medications (e.g. platelet aggregation inhibitors, aminosalicylic acid, osmotic

laxatives), diseases (e.g. Crohn’s disease, ulcerative colitis, HIV infection), diet (e.g. fruits,

mushrooms, green tea, vinegar), and lifestyle (e.g. alcohol consumption) (Figure 2D).
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Among medications, antibiotics substantially disrupt the microbial community in the
human gut>*>4, but only a few small-scale studies quantified changes in the microbial load*?->>,
As expected, recent antibiotic treatment was negatively associated with predicted microbial
loads in all three datasets (Figure 21 and Supplementary Figure 9D). Using detailed information
on classes of antibiotics from the Japanese 4D and Estonian Microbiome cohorts, we found
that many had significant impact on the microbial loads, such as sulfonamides, third-generation
cephalosporins, macrolides, and fluoroquinolone (Figure 2J). We did not find any differences
between bactericidal (i.e. those that kill bacteria) and bacteriostatic (i.e. those that prevent
bacterial growth) antibiotics, in line with recent findings that there might not be such a clear
separation between bactericidal and bacteriostatic groups®. To further explore changes in the
microbial loads, we focused on two public time-series metagenomic datasets, with data up to
180 days post-antibiotic treatment>*>3. In one of these®, individuals were treated with a
combination of three broad-spectrum antibiotics (vancomycin, gentamicin, and meropenem)
while in the other’, individuals were treated with a second-generation cephalosporin
(cefprozil). We found that the microbial loads gradually recovered after the treatment and
returned to the baseline level in 180 and 90 days, respectively (Figure 2K). However, the
microbial load was still significantly reduced at day 42 following combinatorial treatment>*,
These results suggest that recovery of microbial load after antibiotic treatments takes at least
several weeks. This is consistent with studies on relative abundances, reporting recovery only

after months>*>7.

Numerous diseases are associated with altered microbial loads

Identification of disease-associated gut species is an important step in developing microbial
biomarkers, investigating the etiology of diseases, and developing targeted therapies!!->%,
However, the association between microbial load and disease is still largely unexplored, except
in a few cases where microbial loads were experimentally determined!®*2. To evaluate
associations between various diseases and the fecal microbial loads, we performed a large-
scale case-control analysis by combining the datasets from the global and Japanese 4D datasets,
capturing sufficient data for 26 diseases (i.e. >50 cases and controls for each disease) across
11,807 cases and 17,118 controls (Supplementary Table 10, Supplementary Figure 11). The
analysis revealed that the majority of diseases (14/26) were significantly associated with
microbial load (FDR < 0.05). Nine of the significantly associated diseases showed negative

associations with microbial load while five showed positive associations (Figure 3,

Supplementary Table 11). The negatively-associated diseases included Crohn’s disease,
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ulcerative colitis, liver cirrhosis, C. difficile infection, and HIV infection, all of which are
frequently associated with diarrhea®-%2, On average, these patients with these conditions had
17.3% lower microbial loads than controls (Supplementary Table 11). Positively associated
diseases included slow transit constipation, along with conditions often associated with
constipation such as multiple sclerosis, colorectal cancer, and hypertension®®*4, On average,
these patients exhibited 7.7% higher microbial load than the controls. In irritable bowel
syndrome (IBS), which is classified into different subtypes according to symptoms, the
diarrhea type (IBS-D) showed a significant negative correlation (FDR = 3.6e-07), while the
constipation type (IBS-C) showed a significant positive correlation with microbial load as
expected (FDR = 0.042, Figure 3).

To further characterize microbiome profiles in these diseases, we performed a meta-
analysis of the relative microbial compositions between cases and controls, and defined
microbial signatures for each disease based on the coefficient for each species obtained from
the regression model (Methods). Comparison of the signatures between positively and
negatively-associated diseases revealed a significant difference between the two groups (P =
0.0002, Supplementary Figure 12). The majority of the negatively-associated diseases was
characterized by significantly less diverse microbiomes (e.g. in Crohn’s disease, C. difficile
infection, and ulcerative colitis), which was in line with previous findings that diseases
accompanied by diarrhea commonly present reduced microbiome diversity®. In contrast, some
of the positively-associated diseases showed significantly increased microbiome diversity (e.g.
slow transit constipation, type 2 diabetes, and Parkinson’s disease). Additionally, we identified
87 species that distinguished positively- and negatively-associated diseases (FDR < 0.05), such
as Alistipes (A. putredinis, A. indistinctus and A. shahii), Bacteroides (B. eggerthii, B.
intestinalis, and B. clarus), and Eubacterium spp. (E. siraeum and E. sp. CAG:202) as well as
uncultured Clostridiales. The majority of these species were consistently depleted in the
patients with negatively-associated diseases, while enriched in those with positively-associated
diseases (Figure 3, Supplementary Table 12). These species also included Bilophila
wadsworthia, a hydrogen sulfide-producing bacteria that may cause systemic
inflammation®®®’, and Akkermansia muciniphila, a potential beneficial microbe that may
enhance the gut barrier integrity®®. An unclassified Burkholderiales species was the only
species consistently enriched in the negatively-associated disease patients while depleted in
positively-associated disease patients (Supplementary Table 12). The presence of these
consistent disease-microbe associations across different diseases suggests that they are

confounded by the microbial load.
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Microbial load substantially confounds disease-microbe associations

To disentangle species association with disease from those with microbial load in the case-
control analyses, we next incorporated microbial load as a covariate in a regression model,
which is a method to effectively adjust for such confounding effects in microbiome studies®-"
(Methods). We excluded Vogt-Koyanagi-Harada disease and Alzheimer’s disease from the
following analyses since no significant species were identified in these two diseases (FDR >
0.05). The adjustment led to a considerable reduction in the effect size of the disease-species
associations and their statistical significance (in terms of p-value) in several diseases. This was
especially the case for seven diseases, namely Crohn’s disease, ulcerative colitis, liver
cirrhosis, IBS-D, breast cancer, C. difficile infection, and slow transit constipation (Figure 4).
For these conditions, the adjustment led to a decrease in the average effect size on species by
21.9 to 49.9% (35.5% on average, Figure 4A), and consequently, 23.6 to 75.0% (48.0% on
average) of the previously significant disease-species associations (FDR < 0.05) were no longer
significant (FDR > 0.05, Figure 4B and C). Of these seven diseases that were particularly
affected by the adjustment, six, except for slow transit constipation, were the ones negatively
associated with microbial load. On the other hand, several diseases positively associated with
microbial load, such as end—stage renal disease, colorectal cancer, and multiple sclerosis
showed slight increases in the number of significantly associated species with them (Figure
4C).

Microbial species that lost their significance across different diseases after the
adjustment included Clostridium phoceensis, Bacteroides intestinalis, Eubacterium eligens,
Parabacteroides merdae, and Faecalibacterium prausnitzii (Figure 4E, Supplementary Figure
13, and Supplementary Table 13), suggesting that significant changes in their abundances are
mainly due to the changes in the microbial load rather than the disease status. The majority of
these species substantially affected by the adjustment were those depleted in the disease
patients. In contrast, several species significantly enriched in disease patients were not
substantially affected by the adjustment, such as Fusobacterium nucleatum in colorectal
cancer, Flavonifractor plautii in Crohn's disease and ulcerative colitis, and Streptococcus
anginosus in liver cirrhosis and pancreatic cancer (Supplementary Table 13). Additionally, the
adjustment decreased the statistical significance of Shannon diversity (Figure 4D), which is

one of the most common characteristics to decrease in individuals with diseases’!-’2

, in all of
the 11 diseases significantly associated with it before the adjustment. In four diseases

(ulcerative colitis, ankylosing spondylitis, IBS-D, and slow transit constipation), associations
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with Shannon diversity were not significant after the adjustment (FDR > 0.05). Overall, our
results suggest that microbial loads could confound a substantial portion of disease-associated
gut microbial species.

Finally, when deriving absolute abundances of microbial species by taking into account
the predicted load, we found that quantitative species profiles reduced biases in relative
abundance profiles, therefore reducing over- or underestimation of the significance of species

in several diseases associated with microbial load (Supplementary Figure 14).

Discussion

In this study, we developed novel machine-learning models to predict microbial loads solely
based on the relative species and gene abundances of the fecal sample (Figure 1). The
benchmarking (cross-validation within the training cohorts and application to independent
study populations) as well as the consistency with existing knowledge on microbial load
changes (e.g. after antibiotic treatment) supported the robustness of the prediction. Although
various methods are available to experimentally quantify microbial load in fecal samples (e.g.
flow cytometry, qPCR, and spike-in DNA), the present models are a convenient way to predict
load without additional wet lab assays, particularly for existing public fecal metagenomes, as
it can be directly inferred from relative microbiome profiles.

Application of the prediction models to the large-scale microbiome datasets uncovered
various host and environmental factors significantly associated with predicted microbial loads,
including age, sex, diet, diseases, and medications (Figure 2). Although many of these factors
are interdependent, microbial load appears as a major factor that could explain indirect
associations whose mechanisms were unknown (e.g. higher microbial diversity for elderly
people and females). Our analysis also revealed significant differences in microbial loads
across various diseases (Figure 3), which indicates that patient microbiomes are not only
affected directly by the disease, but also indirectly by physiological (e.g. water content, oxygen
concentration, and pH) and physical (e.g. transit time) changes that accompany the disease. For
example, diarrhea is common in various gastrointestinal and infectious diseases’>~"°, while
constipation is a common complication for several neurological diseases such as Parkinson’s
disease™, Alzheimer’s disease’®, and multiple sclerosis’’, and a risk factor for colorectal
cancer’8. Furthermore, drug treatment could change bowel movement and induce constipation
(e.g. opioids, antipsychotics, and non-steroidal anti-inflammatory drugs [NSAIDs])”. These
observations and findings that more than half of the disease-microbe associations lost their

significance after the adjustment in several diseases (Figure 4), suggest that the microbial load
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can be a major confounder in disease association studies. This may partly explain the reason
why the microbial signatures of a particular disease are often non-specific and shared across
multiple diseases, as observed in previous meta-analysis studies®>#%3! Although various
interconnected factors shape microbial load (e.g. transit time, diarrhea/constipation, and
inflammation), determine the gut microbial composition in general, and confound disease
signatures in particular, the predicted microbial load is useful in disentangling such
confounding effects in microbiome studies. By incorporating the fecal microbial load as a
baseline factor and excluding associated species, we might better identify gut microbes
associated with a disease and develop biomarkers with improved specificity.

The machine-learning model that predicts fecal microbial loads, exclusively based on
the relative species abundances, is freely available (MLP: Microbial Load Predictor,

https://microbiome-tools.embl.de/mlp/). Although the model was accurate enough to capture

known and unknown biological associations, its accuracy will likely increase through
refinement with more data or better machine-learning algorithms. In principle, the approach
can also be applied to other habitats, making microbial loads comparable, for example enabling

important global studies, such as better estimates of biomass on Earth.
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Figure legends

Figure 1 | Machine-learning models robustly predict microbial loads of fecal samples

A, Multidimensional scaling plot of the species-level taxonomic profile of the microbiomes in
the GALAXY/MicrobLiver (n = 1,894) and MetaCardis (n = 1,812) study populations. Each
point represents a sample and the color shows the logl0 transformed microbial load of the
sample. Arrows represent the three enterotypes plotted by the envfit function in R. The
direction of the arrow indicates the centroid of each enterotype, and the length indicates the
strength of the correlation with the enterotype. B, Associations between the microbial loads
and the enterotypes. Boxplots show the logl0-transformed microbial load across the three
enterotypes in each cohort. **** P < (0.0001, *** P < 0.001 (Wilcoxon rank-sum test). C,
Pearson correlations between microbial load and relative abundances of microbial species
(both values were log10 transformed). The three diversity indexes and the top 40 species with
the highest correlations are shown. Scatter plots for the two diversity indexes and two microbial
species are shown above the heatmap, as examples. D, E, Internal (D) and external (E)
validation of the XGBoost prediction models. Scatter plots show the actual microbial load of
fecal samples (logl0) on the x-axis and predicted values on the y-axis. The solid blue lines
show regression lines and the gray dashed lines represent 1:1 reference lines. For internal
validation, the models were evaluated with a 5-times repeated 10-fold cross-validation. For
external validation, the GALAXY/MicrobLiver and MetaCardis models were applied to each
other’s datasets. Pearson correlation was used to evaluate the model’s accuracy.

Figure 2 | Predicted microbial loads are associated with various host factors

A, Predicted microbial loads of the collected metagenomes across different countries.
Individuals treated with antibiotics and those with any diseases were excluded. The average
microbial loads of the 34 countries with at least 20 individuals are shown. B, Comparison of
the predicted microbial loads among four groups of countries divided by economic size.
Definitions of the groups were obtained from the World Bank. The letters above the boxes (a,
b, and c) indicate statistically significant differences (P < 0.01) between groups with different
letters. C, Associations between the predicted microbial load and various host factors in the
Japanese 4D and Estonian Microbiome cohorts. The explained variances by the host factors
(coefficient of determination) were assessed by linear regression models including these host
factors as explanatory variables and the loglO transformed microbial load as a response
variable. D, Associations between the predicted microbial load and each host factor. The
explained variance was assessed by linear regression models and the top 40 factors with the
strongest associations in the Japanese 4D cohort (FDR < 0.05) and eight factors with FDR <
0.05 in the Estonian Microbiome cohort are shown in the figure. For visualization, the
explained variance for age in the Japanese 4D cohort (2.8%) is plotted above 2.0% on the y-
axis. E, F, G, H, I, Correlations between the predicted microbial load and various host factors,
such as Bristol stool scale (E), gut emptying frequency (F), age (G), sex (H), and antibiotics
(I). Associations were evaluated with Pearson correlation for e, f, g, and Wilcoxon rank-sum
test for H and I. J, Effects of different types of antibiotics on the predicted microbial load in
the Japanese 4D, and Estonian Microbiome cohorts. Each circle shows the effect size (beta
coefficient) determined by a linear regression analysis and the error bar represents 95%
confidence intervals. Blue and yellow colors show bactericidal and bacteriostatic antibiotics,
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respectively. K, Recovery of the predicted microbial load after antibiotic treatment. Boxplot
showing the predicted microbial load of each individual at the respective time point. The
datasets were collected from Palleja ef al. (n = 12) and Raymond et al. (n = 24) studies.
Numbers in the plot indicate the P values of each time point in comparison with the baseline
(paired Wilcoxon rank-sum test).

Figure 3 | Predicted microbial loads are associated with various diseases

The left forest plot shows the effect sizes of the disease on the predicted microbial load. Blue
and red colors represent negative and positive associations with the microbial load compared
to the controls, respectively. Filled and empty circles represent significant (FDR < 0.05) and
non-significant (FDR > 0.05) diseases, respectively. Effect sizes were assessed by a linear
regression model including loglO transformed microbial load as a response variable and
disease status (i.e. case or control) and each study as explanatory variables. The middle
heatmap shows enrichments and depletions of microbial species across different diseases. Blue
and red colors represent negative and positive associations, respectively, compared with the
controls in each disease dataset. The top 30 species with the strongest differences (FDR < 0.05)
in their effect sizes between positively- and negatively-associated diseases are shown. ** P <
0.01, * P < 0.05 (linear regression analysis). The right bar plot represents the number of
samples included in the comparison.

Figure 4 | Microbial loads confound disease-microbe associations.

A, Fold change in effect size before and after adjustment for species that were significantly
associated with the disease (FDR < 0.05) before the adjustment for the microbial load. The y-
axis shows the geometric mean of the ratio of the effect size on the species before and after the
adjustment. The error bars show the 95% confidence interval of the geometric mean.
Associations between the disease and species abundances were assessed by linear regression
analysis with and without the microbial load as a covariate (Methods). Results for 24 diseases
are shown in the plot as Vogt-Koyanagi-Harada disease and Alzheimer’s disease had no
significant associations with any species (FDR > 0.05). B, Comparison of the statistical
significance (i.e. FDR) of species before and after the adjustment. For visualization, the
maximum on the y-axis was set at 20 (i.e. FDR = le-20), and some extremely lower FDRs
were plotted there. C, Comparison of the number of significantly associated species (FDR <
0.05) before and after the adjustment. D, Comparison of the statistical significance of the
Shannon diversity before and after the adjustment. Arrows represent the changes in the FDR
before and after the adjustment. Red horizontal line represents FDR = 0.05. For visualization,
the FDR for Crohn’s disease before adjustment (2.2e-25) is plotted above 20 on the y-axis. e,
The top species (n = 20) that lost their significant associations to at least 5 of the 26 diseases
due to the adjustment.


https://doi.org/10.1101/2024.03.18.584290
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.18.584290; this version posted March 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Methods

GALAXY/MicrobLiver study population

A total of 1,906 fecal samples were collected in the GALAXY/MicrobLiver study population.
These samples were derived from 9 different cohorts (GALA-ALD® 84 GALA-HP3%86,
GALA-RIF®#8,  AlcoChallenge®2, HCO%%, GALA-POSTBIO, GastricBypass, The
HOLBAEK Study (HOLBAEK)®, and TIPS®**?) with different study designs and objectives.
These studies involved diverse participant groups, including healthy individuals (GALA-HP),
patients with chronic alcohol-related liver disease (ALD) (GALA-ALD and TIPS), those with
severe obesity (GastricBypass), those born with low birth weight (HCO), children and
adolescents with obesity (HOLBAEK), and patients with dietary (GALA-POSTBIO), alcohol
(AlcoChallenge), and drug interventions (GALA-RIF). Out of the 1,906 samples, 12 samples
were excluded as outliers from the downstream analyses due to having substantially lower
microbial loads than other samples (<10% of the median value of other samples). In total, 1,894
fecal samples from 1,351 participants were used in the study (Supplementary Tables 1 and 2).
The objective of each cohort, study design, inclusion, and exclusion criteria were described as

follows.

GALA-ALD

This is a prospective, single-center, biopsy-controlled, cross-sectional study covering the full
range of alcohol-related liver disease (ALD)3?%4, Patients were recruited between 2013 and
2018 in the Region of Southern Denmark. Inclusion criteria comprised individuals aged 18-75
years with prior or current chronic alcohol overuse, which was defined as more than 24 g/day
for women and more than 36 g/day for men for over a year, and informed consent to a liver
biopsy. Exclusion criteria included solid evidence of cirrhosis, concurrent liver diseases, severe
illnesses with less than 12 months expected survival, contraindications to percutaneous liver
biopsy, severe alcohol-related hepatitis, hepatic congestion or bile duct dilation as shown by
ultrasound, HIV positive status, ongoing substance abuse other than alcohol, and inability to
comply with the study protocol. Participants were sourced from both primary and secondary

healthcare, encompassing populations at low versus moderate-high prevalence of cirrhosis.

GALA-HP
This longitudinal study involved healthy participants recruited between 2016 and 2018 at
Odense University Hospital in Denmark. The inclusion criteria specified individuals aged 18-

75 who were matched by sex, age and (partially) BMI to patients from the GALA-ALD
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study®>86. The exclusion criteria included current alcohol consumption exceeding 7 units per
week, prior harmful alcohol use, known liver disease, elevated liver enzymes or altered liver
function tests, signs of altered glucose metabolism, signs of other metabolic diseases,
infection/inflammation, significant vitamin/mineral deficiencies, any known chronic diseases,
ongoing substance abuse, use of any medication (besides infrequent use of mild pain relievers),
and use of antibiotics within the last six months. Stool samples were collected at home, frozen
in the home freezer immediately, and brought to our unit (with cooling elements to remain
frozen) for —80 °C storage within 24 hours.

The study protocol for the GALA-ALD and GALA-HP was approved by the ethics
committee for the Region of Southern Denmark (nos. S-20160006G, S-20120071, S-20160021
and S-20170087) and is registered with both the Danish Data Protection Agency (nos. 13/8204,
16/3492 and 18/22692) and Odense Patient Data Exploratory Network (under study
identification nos. OP_040 and OP_239 [open.rsyd.dk/OpenProjects/da/openProjectList.jsp]).
These studies were conducted according to the principles of the Declaration of Helsinki, and

oral and written informed consent was obtained from all participants.

GALA-RIF

The GALA-RIF trial, an investigator-initiated, randomized, double-blind, placebo-controlled,
single-center, phase 2 study, was conducted to evaluate the efficacy of rifaximin-a in patients
diagnosed with alcohol-related liver disease through liver biopsy®”-#. Patients were allocated
in a 1:1 ratio to either rifaximin-a or placebo for 18 months. Patients were recruited at the
Department of Gastroenterology and Hepatology at Odense University Hospital in Denmark.
Ethical approval was granted by the regional ethics committee (S-20140078), and the study
adhered to the International Conference on Harmonization Good Clinical Practice guidelines,
with external monitoring by the Good Clinical Practice Unit at Odense University Hospital.
Participants were identified from a cross-sectional study (GALA-ALD) focusing on alcohol-
related liver disease. Alcohol overuse was defined as a daily intake of 24g or more for women
and 36g or more for men for at least a year. The study excluded patients with a history of
hepatic decompensation or any known liver disease. Following the screening, patients at risk
of liver fibrosis underwent liver biopsy. From these, patients aged 18—75 years with liver
fibrosis and histological features of alcohol-related liver disease were included in the study.
Stool samples analyzed in this study were derived from baseline, 1 month, and 18 months (at

the end of treatment). EudraCT, number: 2014-001856-51.
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AlcoChallenge

This clinical study aimed to investigate the acute impact of alcohol consumption on the
intestine with the hypothesis that acute alcohol intake increased intestinal permeability and
inflow of bacterial products to the liver®®-*2. Participants aged 18-75 who met the criteria for
ALD, metabolic dysfunction-associated steatotic liver disease (MASLD), or healthy controls
were included. Patients with other known causes of liver disease, total alcohol abstinence or
desire for it, insulin-dependent diabetes mellitus, cirrhosis, pregnancy, recent antibiotic
treatment, liver cancer, severe comorbidities, or inability to follow instructions were excluded.
Participants were asked to maintain their habitual diet and alcohol consumption until two days
before the alcohol intervention. On the investigation day, participants were fasting and
abstained from alcohol for 48 hours. Stool samples were collected by the participants within
24 hours of each visit. Participants were given instructions and material for sample collection.
The samples were collected in sealed test tubes and stored immediately in the participants’
freezer. The samples were transported to the hospital as cold as possible using a cooler bag and
cooling elements. Upon arrival at the hospital, the samples were stored in a —80 °C freezer. The
study was approved by the Ethical Committee of Southern Denmark (S-20160083) and
registered at ClinicalTrials.gov (NCT03018990).

HCO

This study aims to investigate whether 12 weeks of exercise training can revert and/or minimize
the deleterious cardiometabolic effects of 4 weeks of carbohydrate overfeeding in individuals
born with low birth weight and increased risk of developing type 2 diabetes. This study
recruited healthy Caucasian males, born between 1979 and 1980 at full term (gestational weeks
39-41)%%*, Exclusion criteria for participants included having diabetes in their first-degree
relatives, any chronic or acute diseases, medication intake that could affect the study’s
outcomes, BMI > 30 kg/m?, physical activity >10 hours per week, alcohol consumption
exceeding the national recommendations, and significant weight changes (>2 kg) in the past 6
months. Feces were sampled at home and immediately stored in the freezer at —18 °C or cooler.
The samples were picked up by the staff and transported on dry ice to the laboratory and stored
at —80 °C. The study was conducted in compliance with the Declaration of Helsinki II and
approved by the ethical committee of the Capital Region of Denmark, with identifier H-4-
2014-128. The research has been registered under the ClinicalTrials.gov identifier:
NCT02982408. All participants provided written informed consent to participate in the study.
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GALA-POSTBIO

A 24-week prospective, randomized controlled clinical trial aiming to investigate if a postbiotic
drink made of fermented oats, ReFerm®, could alter the progression of liver disease compared
to an active comparator, Fresubin®. From March 2019 to January 2021, 56 patients were
recruited and included in the study. The trial was held at the Department of Gastroenterology
and Hepatology at Odense University Hospital in Denmark. Ethical approval was granted by
the regional ethics committee (S-20170163) and the Danish Data Protection Agency (19/6646).
Patients were allocated in a 1:1 ratio to either ReFerm® or Fresubin® treatment groups.
Clinical investigations were conducted at baseline, 4 weeks, 24 weeks (end of intervention),
and after a wash-out period of 6 to 8 weeks. Inclusion criteria were outpatients with stable,
compensated advanced chronic alcohol-related liver disease between 30 and 75 years.
Compensated advanced chronic alcohol-related liver disease was defined as liver stiffness >15
kPa or a newly performed (<6mdr) liver biopsy with Kleiner Fibrosis Stage > 3 or a liver biopsy
> 6 months with Kleiner Fibrosis Stage > 3 and a current liver stiffness >10 kPa. Eligible
patients had a prior or ongoing harmful alcohol intake defined as an average of >24g
alcohol/day for women and >36 g/d for men for > 5 years. Exclusion criteria were Child-Pugh
C score, Meld-Na >15, hospitalization within three months, moderate or severe ascites, high-
risk varices needing interventional treatment, known liver disease other than alcohol-related,
antibiotic treatment in the prior three months, and treatment with nutritional drinks, probiotics

or prebiotics within the last three months. ClinicalTrials.gov ID: NCT03863730.

GastricBypass

The bariatric study cohort is based on 70 patients with a BMI > 35.0 kg/m2 undergoing
laparoscopic bariatric surgery (either Roux-en-Y gastric bypass (n=30) or sleeve gastrectomy
(n=40)). The design is best described as a prospective cohort study. Study subjects were
included between December 2016 and September 2019 at Copenhagen University Hospital
Hvidovre. The study subjects fulfilled the existing criteria for bariatric surgery issued by the
Danish Health Authorities (BMI>35.0 kg and metabolic comorbidity and/or arthrosis in lower
extremities OR BMI>50 with or without metabolic comorbidity/arthrosis in lower extremities),
including a mandatory weight loss of 8% before surgery. The mode of surgery (Roux-en-Y
gastric bypass or sleeve gastrectomy) was decided by the endocrinologists at the Endocrinology
Department. Study-specific exclusion criteria were current or previous alcohol consumption of
> 2.5 units/day for men and > 1.5 units/day for women, use of antibiotics within one month

prior to surgery, preexisting liver disease other than metabolic dysfunction-associated steatotic
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liver disease, pre-existing disease in the lipid metabolism and acute or chronic inflammatory
disease, or an ethnic origin other than North European. On the day of surgery (aka baseline
visit) fasting project blood samples were collected. The fecal samples were collected 1-7 days
prior to surgery and immediately frozen. During surgery, liver and adipose tissue were
sampled. Follow-up visits including collection of fecal- and blood samples were conducted
three, six, and 12 months after surgery. Fecal samples at the baseline, three, and 12 months
were analyzed in this study. The study protocol was approved by the Regional Scientific Ethics
Committee (H-16030784 and H-16030782). Written and oral informed consent was obtained

from all study participants. The study was conducted according to the Declaration of Helsinki.

The HOLBAEK Study

We collected fecal samples from 397 5—19-year-olds of which 331 were from a hospital-based
obesity clinic cohort and 66 were from a population-based cohort. The hospital-based obesity
clinic cohort consists of children and adolescents enrolled in multifaceted obesity management
from January 2008 onwards at a hospital-based obesity clinic?®. These patients were referred
from general practitioners, pediatric departments, or community-based doctors. In the hospital-
based obesity clinic cohort, the longitudinal data collection began just prior to the initiation of
non-pharmacological obesity treatment and continued with the subsequent contacts in the clinic
in a systematic, family-based, person-centred, chronic care setting. The only inclusion criterion
was a referral to the hospital-based obesity clinic. Importantly, no a priori age- or other
exclusion criteria would make a child or adolescent ineligible for treatment or inclusion in the
clinic. The population-based cohort consists of children and adolescents recruited from October
2010 onwards without selection pertaining to body weight or BMI. Recruitment took place at
schools and high schools across 11 municipalities in Region Zealand and the Capital Region
in Denmark. All children and adolescents at the participating schools were considered eligible
for inclusion regardless of age, and no exclusion criteria were applied. Informative recruitment
meetings for potential participants were held during school hours and written material was
delivered to the parents. Stool samples were collected at participants' homes, immediately
frozen in their home freezers, and then transported to the laboratory with cooling elements to
ensure they remained frozen. Upon arrival, the samples were stored in freezers at a temperature
of =80 °C within 24 hours of collection. The HOLBAEK Study was approved by the Ethical
Committee of Region Zealand (Project number: SJ-104), The Danish Data Protection Agency
(REG-043-2013), and other collateral project approvals and was registered at
ClinicalTrials.gov on June 26, 2009 (NCT00928473). All procedures in relation to the biobank
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are performed in accordance with the Helsinki Declaration. Written informed consent was
obtained from parents/legal guardians or from the adolescents themselves when above the age

of 18 years.

TIPS

The TIPS study is a single-center prospective study in patients with decompensated cirrhosis
who received a transjugular portosystemic shunt as part of the NEPTUN study (NCT03628807)
at the Department of Internal Medicine I, University Clinic Bonn (Germany)®**°. For this
study, stool samples from 84 patients were obtained between 2014 and 2018. The mean age
was 58 years (range 18-84 years), 53% of the patients were male and the majority of patients
had alcohol-induced cirrhosis (n=62), followed by viral hepatitis (n=8) and other etiologies
(n=18). The stool samples were collected during the inpatient treatment of the patients shortly
before the TIPS procedure and stored directly at -80 °C degrees until further use. The study
was approved by the local ethics committee of the University of Bonn (029/13), and all patients

signed an informed written consent in accordance with the Helsinki Declaration.

DNA sequencing of fecal samples

Microbial DNA was extracted from collected stool samples using Qiagen AllPrep PowerFecal
DNA/RNA Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol in the
GALA-RIF, AlcoChallenge, HCO, GALA-POSTBIO, and TIPS cohorts. The same protocol,
except for an additional phenol-chloroform extraction step after the step of lysing microbial
cells, was used in the GALA-ALD, GALA-HP, HOLBAEK, and GastricBypass cohorts.
Metagenomic sequencing libraries were prepared using the NEBNext Ultra II DNA Library
Prep kit (New England Biolabs, MA, USA) with a targeted insert size of 350-400bp and Dual
Index multiplex oligos. Libraries were prepared using a liquid automated system (Beckman
Coulter 17 Series) and sequenced on an Illumina HiSeq 4000 platform (Illumina, San Diego,

CA, USA) with 2x150bp paired-end reads.

Quality control of sequenced reads

Sequenced reads were processed to remove low-quality reads and host-derived reads using
ngless (v1.1)!%°, Nucleotide calls with a Phred quality score of less than 25 were removed from
the 3’ end and reads less than 45 nucleotides long after the removal were discarded. Reads
representing human DNA were identified by comparing all reads’ sequence similarity to the

human reference genome (hg38). Any reads with greater than 90% similarity to the human
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genome were discarded. After this quality control, reads were re-classified as paired or as
singles, where, respectively, both or only the forward and reverse reads are present in the final

dataset.

Cell counting

Bacterial cell counting was performed as previously described!?!. Briefly, frozen (-80°C) fecal
samples were diluted, mechanically homogenized and afterward fixed with 2%
Paraformaldehyde (10 min, RT; VWR). To minimize clumps, the samples were filtered
through a cell strainer. The resulting bacterial cell suspension was stained with SYBR Green I
(1:200,000 (Fisher Scientific), in DMSO (Sigma-Aldrich)) and incubated in the dark for 30
min. Measurements were performed at a pre-set flow rate of 0.5 ul/sec, and a known
concentration of 123count eBeads (Invitrogen) was added for accurate bacterial cell count
estimation. Measurements were performed using a BD Fortessa LSRII flow cytometer (BD
Biosciences) (GALA-HP, Alcochallenge, GALA-ALD, TIPS, HCO cohorts) and BD Fortessa
3 flow cytometer (BD Biosciences) (GALA-POSTBIO, GALA-RIF, HOLBAEK,
GastricBypass cohorts), and data were acquired using BD FACSDiVa software. A collection
threshold value of 200 was applied on the FITC (530/30 nm) channel. Fluorescence intensity
was collected at green (530/30 nm, FITC), blue (450/50 nm, Pacific Blue), yellow (575/26 nm,
PE), and red (695/40 nm, PerCP-Cy5.5) fluorescence channels. Forward- and side-scattered
(FSC and SSC) light intensities were also collected. Data was processed in R using the flowcore
package (v1.11.20)!°2 in R Studio (v4.1.2). Fixed gating strategy was applied for all samples
to allow direct comparison between measured samples. Bacterial cell counts, estimated from
pre-set flow rate, were adjusted with internal control counts, included on each plate, to correct

for batch effects.

Taxonomic and functional profiling of metagenomes

Species-level taxonomic profiles of the samples were obtained with the marker-gene-bases
method using mOTUs (v2.5)*°. Functional profiles were obtained by mapping metagenomic
reads to the sub-catalog of the human gut microbiome in the global microbial gene catalog
(GMGC)?7 using BWA-MEM (v0.7.17)!%® with the default parameters. The genes were
functionally annotated using eggNOG-mapper (v1.0.3)!%* against eggNOG database 5.0'% and
KEGG orthologies' were assigned to each gene. The number of reads mapped to each KEGG
orthology was counted using gffquant (v2.9.1) (https://github.com/cschu/gff quantifier) where
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the count of the number of reads aligning multiple genes was distributed to each gene by

dividing by the number of the genes.

MetaCardis dataset

Fecal metagenomes from the MetaCardis project (n = 1,820)3*-*5 were downloaded from the
European Nucleotide Archive under the accession numbers PRJEB41311, PRJEB38742 and
PRJEB37249. Microbial load data for these samples were obtained in the study of Forslund et
al??. Out of 1820 samples, eight samples were excluded from the downstream analyses as
outliers due to significantly lower microbial loads than other samples (9.7E+09 and 1.1E+11,
respectively). In total, 1,812 samples were used in the following analyses. Taxonomic and

functional profiles of the microbiomes were obtained with the same procedure described above.

Association analysis between the gut microbiome and microbial loads

To investigate correlations between the microbiome profile (i.e. species-level taxonomic and
functional compositions) and the experimentally measured microbial load, Pearson correlation
coefficients were calculated between the logl0O transformed relative abundance of each
microbial species/functions and the microbial load in each cohort separately. Additionally, the
analysis was also performed for diversity indexes of the taxonomic profiles such as Shannon
diversity, species richness (i.e. the number of detected species), and Simpson diversity. The
over-representation of KEGG pathways in the positively- and negatively-correlated functions
was identified with the gene set enrichment analysis using the GSEA function in the
clusterProfiler package (v4.8.3)'7. Multidimensional Scaling (MDS) analysis was performed
using the metaMDS function in the vegan package (v2.6.4), based on a Euclidean distance
matrix derived from log10-transformed relative abundance data with half of the minimum non-
zero value as pseudocounts. Enterotypes (i.e. Bacteroides, Prevotella, and Firmicutes
types)*®3? of the gut microbiome were determined as described previously (Keller M1 et al, in
preparation) using the pam3 model and they were plotted into the MDS ordination using the

envfit functions in the vegan package.

Construction of prediction models

To construct machine-learning models to predict the microbial load, we employed the eXtreme
Gradient Boosting (XGBoost) algorithm?*, available in the xgboost R package (v1.7.5.1). Prior
to model training, we performed unsupervised feature filtering on the species-level taxonomic

profiles of the microbiome to exclude minor species (those with < 0.1% average abundance or
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< 10% prevalence). The relative abundances of each species and the microbial loads were then
log10 transformed before the training. For the species, we added half of the non-zero minimum
values in the dataset to each abundance to avoid log10 transformation of 0 values, and further
standardized (i.e. z-score). The models were trained using the train function in the caret R
package (v6.0.94)!% in the GALAXY/MicrobLiver and MetaCardis datasets separately,
employing a 5-times repeated 10-fold cross-validation procedure to maximize the root-mean-
square error (RMSE) in the model. The hyperparameters were determined through a grid
search. For internal validation, we calculated the average predicted microbial loads across the
test datasets for each sample and compared these with the actual microbial loads. For external
validation, we applied the GALAXY/MicrobLiver model to the MetaCardis dataset, and vice

versa, comparing the predicted and actual microbial loads.

Analysis of 16S rRNA gene data from previous studies

Additional paired data of 16S rRNA gene sequencing and fecal microbial loads were collected
from two previous studies!®?*. For Vandeputte et al. 2021 study, the genus-level taxonomic
profiles were obtained from the paper. For Vandeputte et al. 2017 study, 16S rRNA gene
sequencing data were downloaded from the European Nucleotide Archive, under the accession
numbers PRJEB21504 and ERP023761. The 16S rRNA gene sequencing data was processed
using the DADA?2 pipeline and the taxonomic annotation was performed using the RDP
training data rdp train set 16. A prediction model was constructed based on the data of
Vandeputte et al. 2021 (n = 707) using the same procedure described above. Then, the model
was applied to the other dataset of Vandeputte ez al. 2017 (n = 95) for external validation.

Collection of external microbiome datasets
Global dataset: Publicly available human gut metagenomes were downloaded from the

European Nucleotide Archive. The dataset was part of a previous study'®

and was composed
of 27,832 samples across 45 countries from 159 studies (Supplementary Table 7). After the
downloading, quality filtering was performed using ngless, and bases with <25 Phred quality
score were trimmed from the 3° end, and reads less than 45 bp were excluded. Host metadata
such as age, sex, country, antibiotic treatment, and disease were collected from respective study
papers manually. Samples from infants, children under 3 years old, and patients who received
fecal microbiota transplantation were excluded since their gut microbiomes are substantially

different from those of adults!!%!!'!. Also, samples with a low number of sequenced reads (ie.

<1 million) were excluded. Countries were classified into four groups according to the World
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Bank definition (https://www.worldbank.org/en/home/, accessed in February 2024), which

defines high-income, upper-middle, lower-middle, and low-income economies based on gross

national income per capita.

Japanese 4D dataset: The Japanese 4D (Disease, Drug, Diet, Daily life) microbiome cohort is
a prospective, multicenter, hospital-based cohort established in the Tokyo metropolitan area.
A total of 4,198 fecal samples were collected from the participants and processed as described
previously*”!'2, Various intrinsic and extrinsic factors (n = 244) were collected from the
participants through a combination of self-reported questionnaires, face-to-face interviews, and
physicians’ electronic medical records. These factors included anthropometric measurements,
lifestyles, dietary habits, physical activities, diseases, and medications (Supplementary Table
8). The protocol for the project was approved by the medical ethics committees of the Tokyo
Medical University (approval No.: T2019-0119), National Center for Global Health and
Medicine (approval No.: 1690), the University of Tokyo (approval No.: 2019185NI), Waseda
University (approval No.: 2018-318), and the RIKEN Center for Integrative Medical Sciences
(approval No.: H30-7). All participants provided written informed consent before participation

in the project.

Estonian Microbiome dataset: The Estonian Microbiome cohort!!3 is a volunteer-based cohort
that currently includes genotyped adults (> 18 years old) across Estonia. Fecal samples were
collected from 2,509 participants in the cohort and sequenced as described previously*®. All
the participants provided informed consent for the data and samples to be used for scientific
purposes. This study received approval from the Research Ethics Committee of the University
of Tartu (approval No. 266/T10) and from the Estonian Committee on Bioethics and Human
Research (Estonian Ministry of Social Affairs; approval No. 1.1-12/17). Host factors such as
anthropometric measurements, lifestyle, diet, disease, and medication were collected from self-

reported questionnaires and electronic health records (n = 251, Supplementary Table 8).

Analysis of the external metagenomic datasets

Species-level taxonomic profiles of the global, Japanese 4D, and Estonian Microbiome
samples were obtained with the same method described above. The relative abundance of each
microbial species was logl0-transformed (1e-4 was added as a pseudo count beforehand) and
standardized before the prediction. The MetaCardis prediction model was applied to the

profiles and microbial loads were predicted for each sample. The MetaCardis model was
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employed for the analysis since it was trained on samples derived from more individuals (n =
1,812) than the GALAXY/MicrobLiver model (n = 1,351).

To determine the explained variance of the predicted microbial loads (coefficient of
determination) by the collected host factors in the Japanese 4D and Estonian Microbiome
cohorts, linear regression analysis was performed using the glm function with the logl0
transformed microbial load as a response variable and all the host factors as explanatory
variables. Furthermore, the analysis was performed for each metadata category (e.g. lifestyle,
diet, medication, and disease) separately, and the explained variance by each category was
determined. P-values were adjusted for the multiple comparisons with the Benjamini-Hochberg

method!!4.

Association analysis between diseases and the microbial load
To explore associations between diseases and microbial loads, we performed a meta-analysis
of case-control comparisons by combining samples in the global and Japanese 4D datasets. In
the global dataset, 58 studies including at least 10 cases and 10 controls were picked up and
the case and control samples were collected (Supplementary Table 10). In the Japanese 4D
dataset, 9 diseases with >10 patients were selected and age, sex, and BMI matched-controls
were defined for each disease using the matchit function of the Matchlt R package (v4.5.3)!15.
Disease-to-control ratios were set to 1:4 when there were enough control samples in the
Japanese 4D dataset'!®, while set to 1:1 when the number of samples was insufficient
(Supplementary Table 10).

The case and control samples collected above were combined for each disease and a
total of 26 diseases with >50 cases and >50 controls were analyzed (Supplementary Table 10).
Associations between the diseases and the logl0 transformed microbial load were assessed
using the glm function with the microbial load as a response variable and the disease condition
(i.e. case or control) as an explanatory variable including each study as a covariate. P-values

were adjusted for the multiple comparisons with the Benjamini-Hochberg method.

Association analysis between diseases and the microbiome composition

For the 26 diseases selected, case-control comparisons of the microbiome profiles were
conducted. For each disease dataset, species with an average relative abundance of >0.1% and
prevalence of >10% were included in the analysis. The relative abundance was logl0
transformed after adding half of the non-zero minimum value as a pseudo value. For each

microbial species, a linear regression model was applied using the glm function. In this model,
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the species abundance was included as a response variable and disease condition (i.e. case or
control) as an explanatory variable, with each study as a covariate. P-values were adjusted for
the number of species for each disease with the Benjamini-Hochberg method!!4.

The set of the obtained effect sizes (beta coefficients) of each species was defined as
the microbial signature for the disease. A distance matrix among the 26 diseases was then
constructed based on the signature, using Spearman’s correlation coefficient as a distance
metric ([1 - Spearman’s correlation] / 2). Then, principal coordinate analysis was performed
on this distance matrix using the cmdscale function in the vegan package'!’. The differences
in the microbial signatures between the positively- and negatively-associated diseases were
examined with permutational analysis of variance using the adonis function in the vegan
package with 9,999 permutations for p-value calculation. Additionally, the effect sizes of each
disease were compared between the positively- and negatively-associated diseases through a
linear regression model, and species discriminating between these two groups were
investigated.

To adjust the effect of the microbial load in the case-control comparisons, linear
regression models were constructed for each species again by adding the microbial load as a
covariate. Effect sizes of each disease on the species and associated P-values were compared

between the models with and without the adjustment of the microbial load.

Comparison of quantitative and relative microbiome profiles in disease association
analysis

To explore the advantages of the quantitative microbiome analysis in disease association
analysis, we transformed the relative microbiome profiles (RMP) into quantitative microbiome
profiles (QMP) (i.e. a profile where species abundances were represented by absolute
abundances) by multiplying the relative abundance of each microbial species by the predicted
microbial load of the sample. To evaluate the association between each species and disease,
the same statistical analyses used for the RMP were performed on the QMP of the same 26
disease datasets. The effect sizes and statistical significance (i.e. p-value) obtained from the

analyses were compared with those obtained based on the RMP.

Data availability
Shotgun metagenomic data sequenced in the GALAXY/MicrobLiver consortia (n = 1,894) are
publicly available (upon publication) in the European Nucleotide Archive under the accession

number of PRJEB65485 (GALA-ALD), PRJEB65753 (GALA-HP), PRJEB65967
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(AlcoChallenge), PRIEB66277 (GALA-RIF), PRIEB67442 (GastricBypass), PRIEB66128
(HCO), PRIEB67944 (GALA-POSTBIO), PRJEB71382 (HOLBAEK), and PRJEB67347
(TTIPS). The microbial load of these fecal samples are available in the Supplementary Table 2.
Metagenomic data of the Estonian Microbiome Cohort is available in the European Genome-
Phenome Archive database (EGAS00001008448). The prediction models we constructed

(MLP: Microbial Load Predictor) are available at https://microbiome-tools.embl.de/mlp/ or as

R package at https://github.com/grp-bork/microbial load predictor/. R codes used to train and

construct the prediction models and to generate figures are available at https://github.com/grp-

bork/CellCount Nishijima 2024/.
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