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Abstract 

The microbiota in individual habitats differ both in relative composition and absolute 

abundance. While sequencing approaches determine only the relative abundances of taxa and 

genes, experimental techniques for absolute abundance determination are rarely applied to 

large-scale microbiome studies. Here, we developed a machine learning approach to predict 

fecal microbial loads (microbial cells per gram) solely from relative abundance data. Applied 

to large-scale datasets (n = 34,539), we demonstrate that microbial load is the major 

determinant of gut microbiome variation and associated with numerous host factors. We found 

that for several diseases, the altered microbial load, not the disease itself, was the main driver 

of the gut microbiome changes. Adjusting for this effect substantially reduced the significance 

of more than half of the disease-associated species. Our analysis reveals that the fecal microbial 

load is a major confounder in microbiome studies, highlighting its importance for 

understanding microbiome variation in health and disease. 
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Introduction 

Shotgun metagenomic sequencing facilitates high-throughput profiling of complex microbial 

communities in environmental samples1–3. Applied to the human gut microbiome, 

metagenomics reveals its structure, function, and variations4–6, as well as its associations with 

host physiologies including diseases, immune function, and response to cancer therapy7–11. 

However, the microbial profile obtained from metagenomic analysis is inherently 

compositional, with the abundance of each microbial species represented in relative 

proportions (fraction of total reads)12–14. In such compositional data, changes in one microbial 

species result in concurrent relative changes in others, leading to negative correlation bias that 

can cause false positives and false negatives in association studies12,13. Moreover, sequencing 

data does not provide information on microbial load (i.e. the total absolute abundance of 

microbial species per gram or microbial density), which is closely associated with fecal transit 

time15–17, stool consistency18, water content19, and pH20,21 in the gut, and is a key ecological 

factor in shaping the diversity, metabolism, and inter-individual variation of the 

microbiome19,22. 

 To overcome these issues and to factor in total absolute abundances, various experimental 

methods are applied to microbiome studies, such as flow cytometry-based cell counting19,23,24, 

quantitative PCR25–27, or internal standard provision (e.g. spike-in DNA)28–31 that quantify the 

microbial load in environmental samples. Such additional data help avoid pitfalls associated 

with compositional data13 and link microbiome variation across individuals with changes in 

microbial load19,32. However, generating such quantitative profiles requires extra experiments 

that are labor-intensive, costly, and impractical for large-scale microbiome studies. Hence, the 

vast majority of public or ongoing metagenomic studies do not report associated microbial 

loads.  

Here, we present a machine learning model capable of robustly predicting microbial 

load without requiring additional wet lab assays. Using large-scale paired datasets of 

metagenomes and microbial load data from two independent study populations 

(GALAXY/MicrobLiver and MetaCardis), we first train our model to predict the microbial 

load of a human fecal sample directly from relative microbiome profiles. We then demonstrate 

the utility of our model by applying it to a large-scale collection of public metagenomic datasets 

(n = 34,539), revealing novel associations between various host physiologies and microbial 

load. Furthermore, we show that microbial load is a major determinant of microbiome variation 

and frequently confounds disease associations of microbial species, with implications for 

biomarker development. 
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Results 

Microbial loads are robustly predicted from the relative taxonomic and functional 

profiles of the microbiome 

We based our analysis on fecal samples collected in two independent large-scale study 

populations by the GALAXY/MicrobLiver (n = 1,894, 46.7 ± 20.3 years old [mean ± s.d.], 

males 69.5%) and MetaCardis consortia (n = 1,812, 54.6 ± 13.0 years old [mean ± s.d.], males 

44.8%)33–35. GALAXY/MicrobLiver encompassed various sub-cohorts including 

heterogeneous individuals such as healthy controls, early- to advanced-stage liver disease 

patients, individuals who participated in intervention trials, and children/adolescents with 

obesity (Methods, Supplementary Table 1). Meanwhile, MetaCardis focused on 

cardiometabolic disease patients (e.g. coronary artery disease, metabolic syndrome, type 2 

diabetes, and severe/morbid obesity) as well as healthy individuals33–35 (Supplementary Figure 

1 and Table 1). While the data on MetaCardis has been reported elsewhere33–35, we present 

here newly obtained metagenomes and flow cytometry-based cell count data from the 

GALAXY/MicrobLiver consortium (Supplementary Table 2). We obtained species-level 

taxonomic and functional (gene) profiles with a marker gene-based method using the mOTUs 

profiler36 and the Global Microbial Gene Catalog (GMGC)37, respectively. The microbial loads 

in the two study populations were significantly different (mean values were 6.5 ± 2.7e+10 and 

11.1 ± 5.8e+10 for the GALAXY/MicrobLiver and MetaCardis study populations, 

respectively), suggesting possible study effects due to differences in experimental techniques 

used to measure load in respective study populations (Methods, Supplementary Figure 2). 

Nonetheless, taxonomic and functional profiles of the microbiome were consistently associated 

with the microbial loads in both study populations (Supplementary Figure 3, Supplementary 

Tables 3 and 4).  

We first associated the experimentally measured microbial loads with three 

enterotypes38,39 (Methods). The microbial load was the highest in Firmicutes (Ruminococcus) 

enterotype followed by Prevotella, and Bacteroides enterotypes in both study populations 

(Figure 1A, B). Diversity indexes (e.g. Shannon diversity, species richness, and Simpson 

diversity) of the microbiome had consistent positive correlations with microbial load, with 

Shannon diversity showing one of the strongest positive associations in both study populations 

(Figure 1C). We next studied correlations between relative species abundance and total 

microbial load, and observed positive correlations for various uncultured species in Firmicutes 

phylum as well as short-chain fatty acid producers40 and slow-growing41 species (e.g. 

Oscillibacter, Faecalibacterium, and Eubacterium spp.). In contrast, we observed negative 
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correlations for disease-associated species such as Ruminococcus gnavus (inflammatory bowel 

disease)42,43 and Flavonifractor plautii (colorectal cancer)44 (Figure 1C, Supplementary Table 

3). Typical oral species also found in stool such as Streptococcus and Veillonella spp. were 

also negatively associated with the microbial load (Supplementary Figure 4).  

When correlating the microbial loads with the relative functional profiles of the human 

gut metagenome, we found that microbial genes for lipopolysaccharide (LPS) biosynthesis 

were enriched in samples with low microbial loads in both study populations (Supplementary 

Figure 5, Supplementary Table 4). Similarly, genes for sugar metabolism including the 

phosphotransferase system, fructose/mannose metabolism, and glycan degradation were 

consistently associated with lower microbial loads in both study populations. On the other 

hand, genes involved in flagella assembly and bacterial chemotaxis were positively correlated 

with the high microbial load in both study populations (Supplementary Figure 5). As increased 

LPS levels in the gut could cause inflammation and diarrhea (i.e. shorter transit time)45, these 

genes might be also associated with fecal transit time.  

As we observed strong associations between microbial load and relative gut 

microbiome profiles, we hypothesized that the microbial load of a fecal sample could be 

predicted from relative abundances of taxa. We thus trained eXtreme Gradient Boosting 

(XGBoost) regression models46 based on relative abundance of each microbial species as well 

as the Shannon diversity index (Methods). Internal 5-times repeated 10-fold cross-validation 

in each study population showed that both models predicted the microbial load with Pearson 

correlation coefficients of 0.67 ± 0.0068 and 0.68 ± 0.0069 (mean ± s.d.) for the 

GALAXY/MicrobLiver and MetaCardis study populations, respectively (Figure 1D). To 

evaluate the robustness of the model in an external dataset, we applied each model to the other 

dataset (Supplementary Figure 1) and found that both models again predicted the microbial 

loads significantly (Figure 1E, Pearson correlations = 0.56 for both the GALAXY/MicrobLiver 

and MetaCardis models). Functional profiles of the gut microbiomes also predicted the 

microbial loads with comparable accuracies to those trained by the species-level taxonomic 

profiles (Supplementary Figure 6A and B). These results demonstrated robust prediction of 

microbial loads in fecal samples from relative microbiome profiles obtained by metagenomic 

sequencing.  

Since the GALAXY/MicrobLiver and MetaCardis study populations included 

individuals with different phenotypes and demographic factors (e.g. healthy adults, diseased 

patients, and children/adolescents, Supplementary Table 1), we next examined how prediction 

accuracy differed among these groups. Notably, we found that both models robustly predicted 
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microbial load not only in healthy samples, but also in diseased samples that were not included 

in the model's training (Supplementary Figure 7). Specifically, the MetaCardis model, which 

was trained on samples from healthy adults and cardiometabolic disease patients, showed 

comparative accuracy among the sub-cohorts in the GALAXY/MicrobLiver study population, 

such as the cohort of healthy individuals (GALA-ALD: Pearson correlation = 0.52), liver 

disease patients (GALA-ALD: 0.47, GALA-RIF: 0.58, and TIPS: 0.62), and 

children/adolescents (HOLBAEK: 0.53). Similarly, the GALAXY/MicrobLiver model also 

showed comparative accuracies for individuals with various diseases in the MetaCardis dataset, 

such as healthy individuals (Pearson correlation = 0.44), patients with coronary artery disease 

(0.43), diabetes (0.56), metabolic syndrome (0.48), and severe obesity/morbid obesity (0.63). 

As such, the models robustly predict microbial load even for samples with phenotypes not 

included in the training data. 

To further explore the applicability to different sequencing technologies, we collected 

additional paired data of 16S rRNA gene sequencing and fecal microbial loads from two 

previous studies19,24 (Supplementary Table 5). The internal and external validations of the 

model between the two studies also demonstrated robust prediction of microbial load (Pearson 

correlations = 0.79 for the internal validation and 0.60 for the external validation, 

Supplementary Figure 6C and D), indicating that with sufficient data, fecal microbial loads can 

be predicted from different relative abundance measures. 

 

Predicted microbial loads are associated with various host factors 

To discover associations between predicted microbial loads and host factors such as disease 

status, medication, and lifestyle, we collected public gut metagenomes from 159 previous 

studies across 45 countries (n = 27,832, 46.3 ± 19.3 years old [mean ± s.d.], 52.9% males, 

Supplementary Tables 6 and 7). Additionally, we collected metagenomes from two large 

population studies47,48: Japanese 4D cohort (n = 4,198, 66.4 ± 12.6 years old [mean ± s.d.], 

58.8% males) and Estonian Microbiome cohort (n = 2,509, 50.0 ± 14.9 years old [mean ± s.d.], 

29.7% males), in which deep phenotyping was performed (Supplementary Tables 6 and 8). 

Since the former data were derived from various smaller studies with less host intrinsic and 

extrinsic factor information, they were combined into a global dataset. We prepared species-

level taxonomic profiles of each sample and predicted the microbial load using the MetaCardis 

prediction model (Methods, Supplementary Figure 1).  

In the global dataset, samples from high-income countries showed significantly higher 

predicted microbial loads than those from low-income countries (Figures 2A and B). This 
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difference could not be attributed to the potential bias that the model was trained on samples 

from high-income countries (Supplementary Figure 8), suggesting that factors associated with 

increased income such as lifestyle, diet, or hygiene affect the microbial load. In the Japanese 

4D and Estonian Microbiome cohorts, the medication category showed the strongest 

association with the predicted microbial load among the metadata categories (Figure 2C, 

Supplementary Table 8), which was consistent with the strongest impact of medication on the 

relative gut microbiome profile observed previously47. Anthropometric factors and disease 

status followed in the Japanese 4D cohort, while diet and other factors ranked next in the 

Estonian Microbiome cohort. Among the available host factors in the Japanese 4D and 

Estonian Microbiome cohorts, 65 (26.3%) and 8 (3.2%) showed significant associations with 

the predicted microbial loads, respectively (FDR < 0.05, Figure 2D, Supplementary Table 9). 

In the three datasets, the self-reported Bristol stool scale (an index that classifies categories of 

fecal consistency) showed consistent negative correlations with the predicted microbial loads 

(Figure 2E, Supplementary Figure 9A). The frequency of defecation, surveyed in the Estonian 

Microbiome cohort, was also negatively associated with the microbial load (Figure 2F). These 

results are consistent with findings from previous studies suggesting that fast transit time (e.g. 

frequent defecation and diarrhea) reduces microbial loads while slow transit time (e.g. 

infrequent defecation and constipation) increases microbial loads since fecal bacteria grow 

along the gastrointestinal tract gradually18,22. Age was positively associated with the microbial 

load in both Japanese 4D and global datasets, but not in the Estonian Microbiome dataset 

(Supplementary Figure 9B). Overall, elderly individuals (>70 years old) had 9.7% higher 

microbial load than younger individuals (<30 years old) in the combined datasets (Figure 2G). 

Sex was consistently associated with the microbial load in all three datasets (Figure 2H, 

Supplementary Figure 9C), with women having a 3.5% higher microbial load than men on 

average. These results are consistent with epidemiological studies that showed slower transit 

time in elderly people and females49,50. Interestingly, elderly individuals and females showed 

higher microbiome diversity than younger individuals and males as observed in previous 

studies51,52, while the strength of these associations decreased once adjusted for the effect of 

the microbial load (Supplementary Figure 10). This suggests that the higher microbial load or 

slower transit time contributes to increased gut microbiome diversity in elderly individuals and 

females. Other factors significantly associated with microbial load in the Japanese 4D cohort 

included various medications (e.g. platelet aggregation inhibitors, aminosalicylic acid, osmotic 

laxatives), diseases (e.g. Crohn’s disease, ulcerative colitis, HIV infection), diet (e.g. fruits, 

mushrooms, green tea, vinegar), and lifestyle (e.g. alcohol consumption) (Figure 2D).  
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Among medications, antibiotics substantially disrupt the microbial community in the 

human gut53,54, but only a few small-scale studies quantified changes in the microbial load32,55. 

As expected, recent antibiotic treatment was negatively associated with predicted microbial 

loads in all three datasets (Figure 2I and Supplementary Figure 9D). Using detailed information 

on classes of antibiotics from the Japanese 4D and Estonian Microbiome cohorts, we found 

that many had significant impact on the microbial loads, such as sulfonamides, third-generation 

cephalosporins, macrolides, and fluoroquinolone (Figure 2J). We did not find any differences 

between bactericidal (i.e. those that kill bacteria) and bacteriostatic (i.e. those that prevent 

bacterial growth) antibiotics, in line with recent findings that there might not be such a clear 

separation between bactericidal and bacteriostatic groups56. To further explore changes in the 

microbial loads, we focused on two public time-series metagenomic datasets, with data up to 

180 days post-antibiotic treatment54,53. In one of these54, individuals were treated with a 

combination of three broad-spectrum antibiotics (vancomycin, gentamicin, and meropenem) 

while in the other53, individuals were treated with a second-generation cephalosporin 

(cefprozil). We found that the microbial loads gradually recovered after the treatment and 

returned to the baseline level in 180 and 90 days, respectively (Figure 2K). However, the 

microbial load was still significantly reduced at day 42 following combinatorial treatment54. 

These results suggest that recovery of microbial load after antibiotic treatments takes at least 

several weeks. This is consistent with studies on relative abundances, reporting recovery only 

after months54,57.  

 

Numerous diseases are associated with altered microbial loads 

Identification of disease-associated gut species is an important step in developing microbial 

biomarkers, investigating the etiology of diseases, and developing targeted therapies11,58,59. 

However, the association between microbial load and disease is still largely unexplored, except 

in a few cases where microbial loads were experimentally determined19,32. To evaluate 

associations between various diseases and the fecal microbial loads, we performed a large-

scale case-control analysis by combining the datasets from the global and Japanese 4D datasets, 

capturing sufficient data for 26 diseases (i.e. >50 cases and controls for each disease) across 

11,807 cases and 17,118 controls (Supplementary Table 10, Supplementary Figure 11). The 

analysis revealed that the majority of diseases (14/26) were significantly associated with 

microbial load (FDR < 0.05). Nine of the significantly associated diseases showed negative 

associations with microbial load while five showed positive associations (Figure 3, 

Supplementary Table 11). The negatively-associated diseases included Crohn’s disease, 
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ulcerative colitis, liver cirrhosis, C. difficile infection, and HIV infection, all of which are 

frequently associated with diarrhea60–62. On average, these patients with these conditions had 

17.3% lower microbial loads than controls (Supplementary Table 11). Positively associated 

diseases included slow transit constipation, along with conditions often associated with 

constipation such as multiple sclerosis, colorectal cancer, and hypertension63,64. On average, 

these patients exhibited 7.7% higher microbial load than the controls. In irritable bowel 

syndrome (IBS), which is classified into different subtypes according to symptoms, the 

diarrhea type (IBS-D) showed a significant negative correlation (FDR = 3.6e-07), while the 

constipation type (IBS-C) showed a significant positive correlation with microbial load as 

expected (FDR = 0.042, Figure 3).  

To further characterize microbiome profiles in these diseases, we performed a meta-

analysis of the relative microbial compositions between cases and controls, and defined 

microbial signatures for each disease based on the coefficient for each species obtained from 

the regression model (Methods). Comparison of the signatures between positively and 

negatively-associated diseases revealed a significant difference between the two groups (P = 

0.0002, Supplementary Figure 12). The majority of the negatively-associated diseases was 

characterized by significantly less diverse microbiomes (e.g. in Crohn’s disease, C. difficile 

infection, and ulcerative colitis), which was in line with previous findings that diseases 

accompanied by diarrhea commonly present reduced microbiome diversity65. In contrast, some 

of the positively-associated diseases showed significantly increased microbiome diversity (e.g. 

slow transit constipation, type 2 diabetes, and Parkinson’s disease). Additionally, we identified 

87 species that distinguished positively- and negatively-associated diseases (FDR < 0.05), such 

as Alistipes (A. putredinis, A. indistinctus and A. shahii), Bacteroides (B. eggerthii, B. 

intestinalis, and B. clarus), and Eubacterium spp. (E. siraeum and E. sp. CAG:202) as well as 

uncultured Clostridiales. The majority of these species were consistently depleted in the 

patients with negatively-associated diseases, while enriched in those with positively-associated 

diseases (Figure 3, Supplementary Table 12). These species also included Bilophila 

wadsworthia, a hydrogen sulfide-producing bacteria that may cause systemic 

inflammation66,67, and Akkermansia muciniphila, a potential beneficial microbe that may 

enhance the gut barrier integrity68. An unclassified Burkholderiales species was the only 

species consistently enriched in the negatively-associated disease patients while depleted in 

positively-associated disease patients (Supplementary Table 12). The presence of these 

consistent disease-microbe associations across different diseases suggests that they are 

confounded by the microbial load. 
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Microbial load substantially confounds disease-microbe associations  

To disentangle species association with disease from those with microbial load in the case-

control analyses, we next incorporated microbial load as a covariate in a regression model, 

which is a method to effectively adjust for such confounding effects in microbiome studies69,70 

(Methods). We excluded Vogt-Koyanagi-Harada disease and Alzheimer’s disease from the 

following analyses since no significant species were identified in these two diseases (FDR > 

0.05). The adjustment led to a considerable reduction in the effect size of the disease-species 

associations and their statistical significance (in terms of p-value) in several diseases. This was 

especially the case for seven diseases, namely Crohn’s disease, ulcerative colitis, liver 

cirrhosis, IBS-D, breast cancer, C. difficile infection, and slow transit constipation (Figure 4). 

For these conditions, the adjustment led to a decrease in the average effect size on species by 

21.9 to 49.9% (35.5% on average, Figure 4A), and consequently, 23.6 to 75.0% (48.0% on 

average) of the previously significant disease-species associations (FDR < 0.05) were no longer 

significant (FDR > 0.05, Figure 4B and C). Of these seven diseases that were particularly 

affected by the adjustment, six, except for slow transit constipation, were the ones negatively 

associated with microbial load. On the other hand, several diseases positively associated with 

microbial load, such as end−stage renal disease, colorectal cancer, and multiple sclerosis 

showed slight increases in the number of significantly associated species with them (Figure 

4C). 

Microbial species that lost their significance across different diseases after the 

adjustment included Clostridium phoceensis, Bacteroides intestinalis, Eubacterium eligens, 

Parabacteroides merdae, and Faecalibacterium prausnitzii (Figure 4E, Supplementary Figure 

13, and Supplementary Table 13), suggesting that significant changes in their abundances are 

mainly due to the changes in the microbial load rather than the disease status. The majority of 

these species substantially affected by the adjustment were those depleted in the disease 

patients. In contrast, several species significantly enriched in disease patients were not 

substantially affected by the adjustment, such as Fusobacterium nucleatum in colorectal 

cancer, Flavonifractor plautii in Crohn's disease and ulcerative colitis, and Streptococcus 

anginosus in liver cirrhosis and pancreatic cancer (Supplementary Table 13). Additionally, the 

adjustment decreased the statistical significance of Shannon diversity (Figure 4D), which is 

one of the most common characteristics to decrease in individuals with diseases71,72, in all of 

the 11 diseases significantly associated with it before the adjustment. In four diseases 

(ulcerative colitis, ankylosing spondylitis, IBS-D, and slow transit constipation), associations 
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with Shannon diversity were not significant after the adjustment (FDR > 0.05). Overall, our 

results suggest that microbial loads could confound a substantial portion of disease-associated 

gut microbial species. 

Finally, when deriving absolute abundances of microbial species by taking into account 

the predicted load, we found that quantitative species profiles reduced biases in relative 

abundance profiles, therefore reducing over- or underestimation of the significance of species 

in several diseases associated with microbial load (Supplementary Figure 14). 

 

Discussion 

In this study, we developed novel machine-learning models to predict microbial loads solely 

based on the relative species and gene abundances of the fecal sample (Figure 1). The 

benchmarking (cross-validation within the training cohorts and application to independent 

study populations) as well as the consistency with existing knowledge on microbial load 

changes (e.g. after antibiotic treatment) supported the robustness of the prediction. Although 

various methods are available to experimentally quantify microbial load in fecal samples (e.g. 

flow cytometry, qPCR, and spike-in DNA), the present models are a convenient way to predict 

load without additional wet lab assays, particularly for existing public fecal metagenomes, as 

it can be directly inferred from relative microbiome profiles.  

Application of the prediction models to the large-scale microbiome datasets uncovered 

various host and environmental factors significantly associated with predicted microbial loads, 

including age, sex, diet, diseases, and medications (Figure 2). Although many of these factors 

are interdependent, microbial load appears as a major factor that could explain indirect 

associations whose mechanisms were unknown (e.g. higher microbial diversity for elderly 

people and females). Our analysis also revealed significant differences in microbial loads 

across various diseases (Figure 3), which indicates that patient microbiomes are not only 

affected directly by the disease, but also indirectly by physiological (e.g. water content, oxygen 

concentration, and pH) and physical (e.g. transit time) changes that accompany the disease. For 

example, diarrhea is common in various gastrointestinal and infectious diseases73–75, while 

constipation is a common complication for several neurological diseases such as Parkinson’s 

disease76, Alzheimer’s disease76, and multiple sclerosis77, and a risk factor for colorectal 

cancer78. Furthermore, drug treatment could change bowel movement and induce constipation 

(e.g. opioids, antipsychotics, and non-steroidal anti-inflammatory drugs [NSAIDs])79. These 

observations and findings that more than half of the disease-microbe associations lost their 

significance after the adjustment in several diseases (Figure 4), suggest that the microbial load 
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can be a major confounder in disease association studies. This may partly explain the reason 

why the microbial signatures of a particular disease are often non-specific and shared across 

multiple diseases, as observed in previous meta-analysis studies65,80,81. Although various 

interconnected factors shape microbial load (e.g. transit time, diarrhea/constipation, and 

inflammation), determine the gut microbial composition in general, and confound disease 

signatures in particular, the predicted microbial load is useful in disentangling such 

confounding effects in microbiome studies. By incorporating the fecal microbial load as a 

baseline factor and excluding associated species, we might better identify gut microbes 

associated with a disease and develop biomarkers with improved specificity. 

 The machine-learning model that predicts fecal microbial loads, exclusively based on 

the relative species abundances, is freely available (MLP: Microbial Load Predictor, 

https://microbiome-tools.embl.de/mlp/). Although the model was accurate enough to capture 

known and unknown biological associations, its accuracy will likely increase through 

refinement with more data or better machine-learning algorithms. In principle, the approach 

can also be applied to other habitats, making microbial loads comparable, for example enabling 

important global studies, such as better estimates of biomass on Earth.  
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Figure legends 
Figure 1 | Machine-learning models robustly predict microbial loads of fecal samples  
A, Multidimensional scaling plot of the species-level taxonomic profile of the microbiomes in 
the GALAXY/MicrobLiver (n = 1,894) and MetaCardis (n = 1,812) study populations. Each 
point represents a sample and the color shows the log10 transformed microbial load of the 
sample. Arrows represent the three enterotypes plotted by the envfit function in R. The 
direction of the arrow indicates the centroid of each enterotype, and the length indicates the 
strength of the correlation with the enterotype. B, Associations between the microbial loads 
and the enterotypes. Boxplots show the log10-transformed microbial load across the three 
enterotypes in each cohort. **** P < 0.0001, *** P < 0.001 (Wilcoxon rank-sum test). C, 
Pearson correlations between microbial load and relative abundances of microbial species 
(both values were log10 transformed). The three diversity indexes and the top 40 species with 
the highest correlations are shown. Scatter plots for the two diversity indexes and two microbial 
species are shown above the heatmap, as examples. D, E, Internal (D) and external (E) 
validation of the XGBoost prediction models. Scatter plots show the actual microbial load of 
fecal samples (log10) on the x-axis and predicted values on the y-axis. The solid blue lines 
show regression lines and the gray dashed lines represent 1:1 reference lines. For internal 
validation, the models were evaluated with a 5-times repeated 10-fold cross-validation. For 
external validation, the GALAXY/MicrobLiver and MetaCardis models were applied to each 
other’s datasets. Pearson correlation was used to evaluate the model’s accuracy.  
 
Figure 2 | Predicted microbial loads are associated with various host factors 
A, Predicted microbial loads of the collected metagenomes across different countries. 
Individuals treated with antibiotics and those with any diseases were excluded. The average 
microbial loads of the 34 countries with at least 20 individuals are shown. B, Comparison of 
the predicted microbial loads among four groups of countries divided by economic size. 
Definitions of the groups were obtained from the World Bank. The letters above the boxes (a, 
b, and c) indicate statistically significant differences  (P < 0.01) between groups with different 
letters. C, Associations between the predicted microbial load and various host factors in the 
Japanese 4D and Estonian Microbiome cohorts. The explained variances by the host factors 
(coefficient of determination) were assessed by linear regression models including these host 
factors as explanatory variables and the log10 transformed microbial load as a response 
variable. D, Associations between the predicted microbial load and each host factor. The 
explained variance was assessed by linear regression models and the top 40 factors with the 
strongest associations in the Japanese 4D cohort (FDR < 0.05) and eight factors with FDR < 
0.05 in the Estonian Microbiome cohort are shown in the figure. For visualization, the 
explained variance for age in the Japanese 4D cohort (2.8%) is plotted above 2.0% on the y-
axis. E, F, G, H, I, Correlations between the predicted microbial load and various host factors, 
such as Bristol stool scale (E), gut emptying frequency (F), age (G), sex (H), and antibiotics 
(I). Associations were evaluated with Pearson correlation for e, f, g, and Wilcoxon rank-sum 
test for H and I. J, Effects of different types of antibiotics on the predicted microbial load in 
the Japanese 4D, and Estonian Microbiome cohorts. Each circle shows the effect size (beta 
coefficient) determined by a linear regression analysis and the error bar represents 95% 
confidence intervals. Blue and yellow colors show bactericidal and bacteriostatic antibiotics, 
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respectively. K, Recovery of the predicted microbial load after antibiotic treatment. Boxplot 
showing the predicted microbial load of each individual at the respective time point. The 
datasets were collected from Palleja et al. (n = 12) and Raymond et al. (n = 24) studies. 
Numbers in the plot indicate the P values of each time point in comparison with the baseline 
(paired Wilcoxon rank-sum test).  
 
Figure 3 | Predicted microbial loads are associated with various diseases 
The left forest plot shows the effect sizes of the disease on the predicted microbial load. Blue 
and red colors represent negative and positive associations with the microbial load compared 
to the controls, respectively. Filled and empty circles represent significant (FDR < 0.05) and 
non-significant (FDR > 0.05) diseases, respectively. Effect sizes were assessed by a linear 
regression model including log10 transformed microbial load as a response variable and 
disease status (i.e. case or control) and each study as explanatory variables. The middle 
heatmap shows enrichments and depletions of microbial species across different diseases. Blue 
and red colors represent negative and positive associations, respectively, compared with the 
controls in each disease dataset. The top 30 species with the strongest differences (FDR < 0.05) 
in their effect sizes between positively- and negatively-associated diseases are shown. ** P < 
0.01, * P < 0.05 (linear regression analysis). The right bar plot represents the number of 
samples included in the comparison.  
 
 
Figure 4 | Microbial loads confound disease-microbe associations. 
A, Fold change in effect size before and after adjustment for species that were significantly 
associated with the disease (FDR < 0.05) before the adjustment for the microbial load. The y-
axis shows the geometric mean of the ratio of the effect size on the species before and after the 
adjustment. The error bars show the 95% confidence interval of the geometric mean. 
Associations between the disease and species abundances were assessed by linear regression 
analysis with and without the microbial load as a covariate (Methods). Results for 24 diseases 
are shown in the plot as Vogt-Koyanagi-Harada disease and Alzheimer’s disease had no 
significant associations with any species (FDR > 0.05). B, Comparison of the statistical 
significance (i.e. FDR) of species before and after the adjustment. For visualization, the 
maximum on the y-axis was set at 20 (i.e. FDR = 1e-20), and some extremely lower FDRs 
were plotted there. C, Comparison of the number of significantly associated species (FDR < 
0.05) before and after the adjustment. D, Comparison of the statistical significance of the 
Shannon diversity before and after the adjustment. Arrows represent the changes in the FDR 
before and after the adjustment. Red horizontal line represents FDR = 0.05. For visualization, 
the FDR for Crohn’s disease before adjustment (2.2e-25) is plotted above 20 on the y-axis. e, 
The top species (n = 20) that lost their significant associations to at least 5 of the 26 diseases 
due to the adjustment.  
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Methods 

GALAXY/MicrobLiver study population 

A total of 1,906 fecal samples were collected in the GALAXY/MicrobLiver study population. 

These samples were derived from 9 different cohorts (GALA-ALD82–84, GALA-HP85,86, 

GALA-RIF87,88, AlcoChallenge89–92, HCO93,94, GALA-POSTBIO, GastricBypass, The 

HOLBAEK Study (HOLBAEK)95, and TIPS96–99) with different study designs and objectives. 

These studies involved diverse participant groups, including healthy individuals (GALA-HP), 

patients with chronic alcohol-related liver disease (ALD) (GALA-ALD and TIPS), those with 

severe obesity (GastricBypass), those born with low birth weight (HCO), children and 

adolescents with obesity (HOLBAEK), and patients with dietary (GALA-POSTBIO), alcohol 

(AlcoChallenge), and drug interventions (GALA-RIF). Out of the 1,906 samples, 12 samples 

were excluded as outliers from the downstream analyses due to having substantially lower 

microbial loads than other samples (<10% of the median value of other samples). In total, 1,894 

fecal samples from 1,351 participants were used in the study (Supplementary Tables 1 and 2). 

The objective of each cohort, study design, inclusion, and exclusion criteria were described as 

follows.  

 

GALA-ALD  

This is a prospective, single-center, biopsy-controlled, cross-sectional study covering the full 

range of alcohol-related liver disease (ALD)82–84. Patients were recruited between 2013 and 

2018 in the Region of Southern Denmark. Inclusion criteria comprised individuals aged 18-75 

years with prior or current chronic alcohol overuse, which was defined as more than 24 g/day 

for women and more than 36 g/day for men for over a year, and informed consent to a liver 

biopsy. Exclusion criteria included solid evidence of cirrhosis, concurrent liver diseases, severe 

illnesses with less than 12 months expected survival, contraindications to percutaneous liver 

biopsy, severe alcohol-related hepatitis, hepatic congestion or bile duct dilation as shown by 

ultrasound, HIV positive status, ongoing substance abuse other than alcohol, and inability to 

comply with the study protocol. Participants were sourced from both primary and secondary 

healthcare, encompassing populations at low versus moderate-high prevalence of cirrhosis.  

 

GALA-HP 

This longitudinal study involved healthy participants recruited between 2016 and 2018 at 

Odense University Hospital in Denmark. The inclusion criteria specified individuals aged 18-

75 who were matched by sex, age and (partially) BMI to patients from the GALA-ALD 
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study85,86. The exclusion criteria included current alcohol consumption exceeding 7 units per 

week, prior harmful alcohol use, known liver disease, elevated liver enzymes or altered liver 

function tests, signs of altered glucose metabolism, signs of other metabolic diseases, 

infection/inflammation, significant vitamin/mineral deficiencies, any known chronic diseases, 

ongoing substance abuse, use of any medication (besides infrequent use of mild pain relievers), 

and use of antibiotics within the last six months. Stool samples were collected at home, frozen 

in the home freezer immediately, and brought to our unit (with cooling elements to remain 

frozen) for –80 °C storage within 24 hours. 

The study protocol for the GALA-ALD and GALA-HP was approved by the ethics 

committee for the Region of Southern Denmark (nos. S-20160006G, S-20120071, S-20160021 

and S-20170087) and is registered with both the Danish Data Protection Agency (nos. 13/8204, 

16/3492 and 18/22692) and Odense Patient Data Exploratory Network (under study 

identification nos. OP_040 and OP_239 [open.rsyd.dk/OpenProjects/da/openProjectList.jsp]). 

These studies were conducted according to the principles of the Declaration of Helsinki, and 

oral and written informed consent was obtained from all participants. 

 

GALA-RIF 

The GALA-RIF trial, an investigator-initiated, randomized, double-blind, placebo-controlled, 

single-center, phase 2 study, was conducted to evaluate the efficacy of rifaximin-α in patients 

diagnosed with alcohol-related liver disease through liver biopsy87,88. Patients were allocated 

in a 1:1 ratio to either rifaximin-α or placebo for 18 months. Patients were recruited at the 

Department of Gastroenterology and Hepatology at Odense University Hospital in Denmark. 

Ethical approval was granted by the regional ethics committee (S-20140078), and the study 

adhered to the International Conference on Harmonization Good Clinical Practice guidelines, 

with external monitoring by the Good Clinical Practice Unit at Odense University Hospital. 

Participants were identified from a cross-sectional study (GALA-ALD) focusing on alcohol-

related liver disease. Alcohol overuse was defined as a daily intake of 24g or more for women 

and 36g or more for men for at least a year. The study excluded patients with a history of 

hepatic decompensation or any known liver disease. Following the screening, patients at risk 

of liver fibrosis underwent liver biopsy. From these, patients aged 18–75 years with liver 

fibrosis and histological features of alcohol-related liver disease were included in the study. 

Stool samples analyzed in this study were derived from baseline, 1 month, and 18 months (at 

the end of treatment). EudraCT, number: 2014–001856-51. 
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AlcoChallenge 

This clinical study aimed to investigate the acute impact of alcohol consumption on the 

intestine with the hypothesis that acute alcohol intake increased intestinal permeability and 

inflow of bacterial products to the liver89–92. Participants aged 18-75 who met the criteria for 

ALD, metabolic dysfunction-associated steatotic liver disease (MASLD), or healthy controls 

were included. Patients with other known causes of liver disease, total alcohol abstinence or 

desire for it, insulin-dependent diabetes mellitus, cirrhosis, pregnancy, recent antibiotic 

treatment, liver cancer, severe comorbidities, or inability to follow instructions were excluded. 

Participants were asked to maintain their habitual diet and alcohol consumption until two days 

before the alcohol intervention. On the investigation day, participants were fasting and 

abstained from alcohol for 48 hours. Stool samples were collected by the participants within 

24 hours of each visit. Participants were given instructions and material for sample collection. 

The samples were collected in sealed test tubes and stored immediately in the participants’ 

freezer. The samples were transported to the hospital as cold as possible using a cooler bag and 

cooling elements. Upon arrival at the hospital, the samples were stored in a –80 °C freezer. The 

study was approved by the Ethical Committee of Southern Denmark (S-20160083) and 

registered at ClinicalTrials.gov (NCT03018990).  

 

HCO 

This study aims to investigate whether 12 weeks of exercise training can revert and/or minimize 

the deleterious cardiometabolic effects of 4 weeks of carbohydrate overfeeding in individuals 

born with low birth weight and increased risk of developing type 2 diabetes. This study 

recruited healthy Caucasian males, born between 1979 and 1980 at full term (gestational weeks 

39–41)93,94. Exclusion criteria for participants included having diabetes in their first-degree 

relatives, any chronic or acute diseases, medication intake that could affect the study’s 

outcomes, BMI > 30 kg/m2, physical activity >10 hours per week, alcohol consumption 

exceeding the national recommendations, and significant weight changes (>2 kg) in the past 6 

months. Feces were sampled at home and immediately stored in the freezer at –18 °C or cooler. 

The samples were picked up by the staff and transported on dry ice to the laboratory and stored 

at –80 °C. The study was conducted in compliance with the Declaration of Helsinki II and 

approved by the ethical committee of the Capital Region of Denmark, with identifier H-4-

2014-128. The research has been registered under the ClinicalTrials.gov identifier: 

NCT02982408. All participants provided written informed consent to participate in the study. 
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GALA-POSTBIO 

A 24-week prospective, randomized controlled clinical trial aiming to investigate if a postbiotic 

drink made of fermented oats, ReFerm®, could alter the progression of liver disease compared 

to an active comparator, Fresubin®. From March 2019 to January 2021, 56 patients were 

recruited and included in the study. The trial was held at the Department of Gastroenterology 

and Hepatology at Odense University Hospital in Denmark. Ethical approval was granted by 

the regional ethics committee (S-20170163) and the Danish Data Protection Agency (19/6646). 

Patients were allocated in a 1:1 ratio to either ReFerm® or Fresubin® treatment groups. 

Clinical investigations were conducted at baseline, 4 weeks, 24 weeks (end of intervention), 

and after a wash-out period of 6 to 8 weeks. Inclusion criteria were outpatients with stable, 

compensated advanced chronic alcohol-related liver disease between 30 and 75 years. 

Compensated advanced chronic alcohol-related liver disease was defined as liver stiffness ≥15 

kPa or a newly performed (<6mdr) liver biopsy with Kleiner Fibrosis Stage ≥ 3 or a liver biopsy 

> 6 months with Kleiner Fibrosis Stage ≥ 3 and a current liver stiffness ≥10 kPa. Eligible 

patients had a prior or ongoing harmful alcohol intake defined as an average of ≥24g 

alcohol/day for women and ≥36 g/d for men for ≥ 5 years. Exclusion criteria were Child-Pugh 

C score, Meld-Na ≥15, hospitalization within three months, moderate or severe ascites, high-

risk varices needing interventional treatment, known liver disease other than alcohol-related, 

antibiotic treatment in the prior three months, and treatment with nutritional drinks, probiotics 

or prebiotics within the last three months. ClinicalTrials.gov ID: NCT03863730. 

 

GastricBypass 

The bariatric study cohort is based on 70 patients with a BMI > 35.0 kg/m2 undergoing 

laparoscopic bariatric surgery (either Roux-en-Y gastric bypass (n=30) or sleeve gastrectomy 

(n=40)). The design is best described as a prospective cohort study. Study subjects were 

included between December 2016 and September 2019 at Copenhagen University Hospital 

Hvidovre. The study subjects fulfilled the existing criteria for bariatric surgery issued by the 

Danish Health Authorities (BMI>35.0 kg and metabolic comorbidity and/or arthrosis in lower 

extremities OR BMI>50 with or without metabolic comorbidity/arthrosis in lower extremities), 

including a mandatory weight loss of 8% before surgery. The mode of surgery (Roux-en-Y 

gastric bypass or sleeve gastrectomy) was decided by the endocrinologists at the Endocrinology 

Department. Study-specific exclusion criteria were current or previous alcohol consumption of 

> 2.5 units/day for men and > 1.5 units/day for women, use of antibiotics within one month 

prior to surgery, preexisting liver disease other than metabolic dysfunction-associated steatotic 
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liver disease, pre-existing disease in the lipid metabolism and acute or chronic inflammatory 

disease, or an ethnic origin other than North European. On the day of surgery (aka baseline 

visit) fasting project blood samples were collected. The fecal samples were collected 1-7 days 

prior to surgery and immediately frozen. During surgery, liver and adipose tissue were 

sampled. Follow-up visits including collection of fecal- and blood samples were conducted 

three, six, and 12 months after surgery. Fecal samples at the baseline, three, and 12 months 

were analyzed in this study. The study protocol was approved by the Regional Scientific Ethics 

Committee (H-16030784 and H-16030782). Written and oral informed consent was obtained 

from all study participants. The study was conducted according to the Declaration of Helsinki. 

 

The HOLBAEK Study 

We collected fecal samples from 397 5–19-year-olds of which 331 were from a hospital-based 

obesity clinic cohort and 66 were from a population-based cohort. The hospital-based obesity 

clinic cohort consists of children and adolescents enrolled in multifaceted obesity management 

from January 2008 onwards at a hospital-based obesity clinic95. These patients were referred 

from general practitioners, pediatric departments, or community-based doctors. In the hospital-

based obesity clinic cohort, the longitudinal data collection began just prior to the initiation of 

non-pharmacological obesity treatment and continued with the subsequent contacts in the clinic 

in a systematic, family-based, person-centred, chronic care setting. The only inclusion criterion 

was a referral to the hospital-based obesity clinic. Importantly, no a priori age- or other 

exclusion criteria would make a child or adolescent ineligible for treatment or inclusion in the 

clinic. The population-based cohort consists of children and adolescents recruited from October 

2010 onwards without selection pertaining to body weight or BMI. Recruitment took place at 

schools and high schools across 11 municipalities in Region Zealand and the Capital Region 

in Denmark. All children and adolescents at the participating schools were considered eligible 

for inclusion regardless of age, and no exclusion criteria were applied. Informative recruitment 

meetings for potential participants were held during school hours and written material was 

delivered to the parents. Stool samples were collected at participants' homes, immediately 

frozen in their home freezers, and then transported to the laboratory with cooling elements to 

ensure they remained frozen. Upon arrival, the samples were stored in freezers at a temperature 

of –80 °C within 24 hours of collection. The HOLBAEK Study was approved by the Ethical 

Committee of Region Zealand (Project number: SJ-104), The Danish Data Protection Agency 

(REG-043-2013), and other collateral project approvals and was registered at 

ClinicalTrials.gov on June 26, 2009 (NCT00928473). All procedures in relation to the biobank 
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are performed in accordance with the Helsinki Declaration. Written informed consent was 

obtained from parents/legal guardians or from the adolescents themselves when above the age 

of 18 years. 

 

TIPS 

The TIPS study is a single-center prospective study in patients with decompensated cirrhosis 

who received a transjugular portosystemic shunt as part of the NEPTUN study (NCT03628807) 

at the Department of Internal Medicine I, University Clinic Bonn (Germany)96–99. For this 

study, stool samples from 84 patients were obtained between 2014 and 2018. The mean age 

was 58 years (range 18-84 years), 53% of the patients were male and the majority of patients 

had alcohol-induced cirrhosis (n=62), followed by viral hepatitis (n=8) and other etiologies 

(n=18). The stool samples were collected during the inpatient treatment of the patients shortly 

before the TIPS procedure and stored directly at -80 °C degrees until further use. The study 

was approved by the local ethics committee of the University of Bonn (029/13), and all patients 

signed an informed written consent in accordance with the Helsinki Declaration. 

 

DNA sequencing of fecal samples 

Microbial DNA was extracted from collected stool samples using Qiagen AllPrep PowerFecal 

DNA/RNA Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol in the 

GALA-RIF, AlcoChallenge, HCO, GALA-POSTBIO, and TIPS cohorts. The same protocol, 

except for an additional phenol-chloroform extraction step after the step of lysing microbial 

cells, was used in the GALA-ALD, GALA-HP, HOLBAEK, and GastricBypass cohorts. 

Metagenomic sequencing libraries were prepared using the NEBNext Ultra II DNA Library 

Prep kit (New England Biolabs, MA, USA) with a targeted insert size of 350-400bp and Dual 

Index multiplex oligos. Libraries were prepared using a liquid automated system (Beckman 

Coulter i7 Series) and sequenced on an Illumina HiSeq 4000 platform (Illumina, San Diego, 

CA, USA) with 2x150bp paired-end reads. 

 

Quality control of sequenced reads 

Sequenced reads were processed to remove low-quality reads and host-derived reads using 

ngless (v1.1)100. Nucleotide calls with a Phred quality score of less than 25 were removed from 

the 3’ end and reads less than 45 nucleotides long after the removal were discarded. Reads 

representing human DNA were identified by comparing all reads’ sequence similarity to the 

human reference genome (hg38). Any reads with greater than 90% similarity to the human 
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genome were discarded. After this quality control, reads were re-classified as paired or as 

singles, where, respectively, both or only the forward and reverse reads are present in the final 

dataset.  

 

Cell counting 

Bacterial cell counting was performed as previously described101. Briefly, frozen (-80°C) fecal 

samples were diluted, mechanically homogenized and afterward fixed with 2% 

Paraformaldehyde (10 min, RT; VWR). To minimize clumps, the samples were filtered 

through a cell strainer. The resulting bacterial cell suspension was stained with SYBR Green I 

(1:200,000 (Fisher Scientific), in DMSO (Sigma-Aldrich)) and incubated in the dark for 30 

min. Measurements were performed at a pre-set flow rate of 0.5 μL/sec, and a known 

concentration of 123count eBeads (Invitrogen) was added for accurate bacterial cell count 

estimation. Measurements were performed using a BD Fortessa LSRII flow cytometer (BD 

Biosciences) (GALA-HP, Alcochallenge, GALA-ALD, TIPS, HCO cohorts) and BD Fortessa 

3 flow cytometer (BD Biosciences) (GALA-POSTBIO, GALA-RIF, HOLBAEK, 

GastricBypass cohorts), and data were acquired using BD FACSDiVa software. A collection 

threshold value of 200 was applied on the FITC (530/30 nm) channel. Fluorescence intensity 

was collected at green (530/30 nm, FITC), blue (450/50 nm, Pacific Blue), yellow (575/26 nm, 

PE), and red (695/40 nm, PerCP-Cy5.5) fluorescence channels. Forward- and side-scattered 

(FSC and SSC) light intensities were also collected. Data was processed in R using the flowcore 

package (v1.11.20)102 in R Studio (v4.1.2). Fixed gating strategy was applied for all samples 

to allow direct comparison between measured samples. Bacterial cell counts, estimated from 

pre-set flow rate, were adjusted with internal control counts, included on each plate, to correct 

for batch effects. 

 

Taxonomic and functional profiling of metagenomes 

Species-level taxonomic profiles of the samples were obtained with the marker-gene-bases 

method using mOTUs (v2.5)36. Functional profiles were obtained by mapping metagenomic 

reads to the sub-catalog of the human gut microbiome in the global microbial gene catalog 

(GMGC)37 using BWA-MEM (v0.7.17)103 with the default parameters. The genes were 

functionally annotated using eggNOG-mapper (v1.0.3)104 against eggNOG database 5.0105 and 

KEGG orthologies106 were assigned to each gene. The number of reads mapped to each KEGG 

orthology was counted using gffquant (v2.9.1) (https://github.com/cschu/gff_quantifier) where 
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the count of the number of reads aligning multiple genes was distributed to each gene by 

dividing by the number of the genes.  

 

MetaCardis dataset 

Fecal metagenomes from the MetaCardis project (n = 1,820)33–35 were downloaded from the 

European Nucleotide Archive under the accession numbers PRJEB41311, PRJEB38742 and 

PRJEB37249. Microbial load data for these samples were obtained in the study of Forslund et 

al34. Out of 1820 samples, eight samples were excluded from the downstream analyses as 

outliers due to significantly lower microbial loads than other samples (9.7E+09 and 1.1E+11, 

respectively). In total, 1,812 samples were used in the following analyses. Taxonomic and 

functional profiles of the microbiomes were obtained with the same procedure described above.  

 

Association analysis between the gut microbiome and microbial loads 

To investigate correlations between the microbiome profile (i.e. species-level taxonomic and 

functional compositions) and the experimentally measured microbial load, Pearson correlation 

coefficients were calculated between the log10 transformed relative abundance of each 

microbial species/functions and the microbial load in each cohort separately. Additionally, the 

analysis was also performed for diversity indexes of the taxonomic profiles such as Shannon 

diversity, species richness (i.e. the number of detected species), and Simpson diversity. The 

over-representation of KEGG pathways in the positively- and negatively-correlated functions 

was identified with the gene set enrichment analysis using the GSEA function in the 

clusterProfiler package (v4.8.3)107. Multidimensional Scaling (MDS) analysis was performed 

using the metaMDS function in the vegan package (v2.6.4), based on a Euclidean distance 

matrix derived from log10-transformed relative abundance data with half of the minimum non-

zero value as pseudocounts. Enterotypes (i.e. Bacteroides, Prevotella, and Firmicutes 

types)38,39 of the gut microbiome were determined as described previously (Keller MI et al, in 

preparation) using the pam3 model and they were plotted into the MDS ordination using the 

envfit functions in the vegan package.  

  

Construction of prediction models 

To construct machine-learning models to predict the microbial load, we employed the eXtreme 

Gradient Boosting (XGBoost) algorithm46, available in the xgboost R package (v1.7.5.1). Prior 

to model training, we performed unsupervised feature filtering on the species-level taxonomic 

profiles of the microbiome to exclude minor species (those with < 0.1% average abundance or 
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< 10% prevalence). The relative abundances of each species and the microbial loads were then 

log10 transformed before the training. For the species, we added half of the non-zero minimum 

values in the dataset to each abundance to avoid log10 transformation of 0 values, and further 

standardized (i.e. z-score). The models were trained using the train function in the caret R 

package (v6.0.94)108 in the GALAXY/MicrobLiver and MetaCardis datasets separately, 

employing a 5-times repeated 10-fold cross-validation procedure to maximize the root-mean-

square error (RMSE) in the model. The hyperparameters were determined through a grid 

search. For internal validation, we calculated the average predicted microbial loads across the 

test datasets for each sample and compared these with the actual microbial loads. For external 

validation, we applied the GALAXY/MicrobLiver model to the MetaCardis dataset, and vice 

versa, comparing the predicted and actual microbial loads.  

 

Analysis of 16S rRNA gene data from previous studies 

Additional paired data of 16S rRNA gene sequencing and fecal microbial loads were collected 

from two previous studies19,24. For Vandeputte et al. 2021 study, the genus-level taxonomic 

profiles were obtained from the paper. For Vandeputte et al. 2017 study, 16S rRNA gene 

sequencing data were downloaded from the European Nucleotide Archive, under the accession 

numbers PRJEB21504 and ERP023761. The 16S rRNA gene sequencing data was processed 

using the DADA2 pipeline and the taxonomic annotation was performed using the RDP 

training data rdp_train_set_16. A prediction model was constructed based on the data of 

Vandeputte et al. 2021 (n = 707) using the same procedure described above. Then, the model 

was applied to the other dataset of Vandeputte et al. 2017 (n = 95) for external validation.  

 

Collection of external microbiome datasets 

Global dataset: Publicly available human gut metagenomes were downloaded from the 

European Nucleotide Archive. The dataset was part of a previous study109 and was composed 

of 27,832 samples across 45 countries from 159 studies (Supplementary Table 7). After the 

downloading, quality filtering was performed using ngless, and bases with <25 Phred quality 

score were trimmed from the 3’ end, and reads less than 45 bp were excluded. Host metadata 

such as age, sex, country, antibiotic treatment, and disease were collected from respective study 

papers manually. Samples from infants, children under 3 years old, and patients who received 

fecal microbiota transplantation were excluded since their gut microbiomes are substantially 

different from those of adults110,111. Also, samples with a low number of sequenced reads (ie. 

<1 million) were excluded. Countries were classified into four groups according to the World 
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Bank definition (https://www.worldbank.org/en/home/, accessed in February 2024), which 

defines high-income, upper-middle, lower-middle, and low-income economies based on gross 

national income per capita.  

 

Japanese 4D dataset: The Japanese 4D (Disease, Drug, Diet, Daily life) microbiome cohort is 

a prospective, multicenter, hospital-based cohort established in the Tokyo metropolitan area. 

A total of 4,198 fecal samples were collected from the participants and processed as described 

previously47,112. Various intrinsic and extrinsic factors (n = 244) were collected from the 

participants through a combination of self-reported questionnaires, face-to-face interviews, and 

physicians’ electronic medical records. These factors included anthropometric measurements, 

lifestyles, dietary habits, physical activities, diseases, and medications (Supplementary Table 

8). The protocol for the project was approved by the medical ethics committees of the Tokyo 

Medical University (approval No.: T2019-0119), National Center for Global Health and 

Medicine (approval No.: 1690), the University of Tokyo (approval No.: 2019185NI), Waseda 

University (approval No.: 2018-318), and the RIKEN Center for Integrative Medical Sciences 

(approval No.: H30-7). All participants provided written informed consent before participation 

in the project.  

 

Estonian Microbiome dataset: The Estonian Microbiome cohort113 is a volunteer-based cohort 

that currently includes genotyped adults (≥ 18 years old) across Estonia. Fecal samples were 

collected from 2,509 participants in the cohort and sequenced as described previously48. All 

the participants provided informed consent for the data and samples to be used for scientific 

purposes. This study received approval from the Research Ethics Committee of the University 

of Tartu (approval No. 266/T10) and from the Estonian Committee on Bioethics and Human 

Research (Estonian Ministry of Social Affairs; approval No. 1.1-12/17). Host factors such as 

anthropometric measurements, lifestyle, diet, disease, and medication were collected from self-

reported questionnaires and electronic health records (n = 251, Supplementary Table 8).  

 

Analysis of the external metagenomic datasets 

Species-level taxonomic profiles of the global, Japanese 4D, and Estonian Microbiome 

samples were obtained with the same method described above. The relative abundance of each 

microbial species was log10-transformed (1e-4 was added as a pseudo count beforehand) and 

standardized before the prediction. The MetaCardis prediction model was applied to the 

profiles and microbial loads were predicted for each sample. The MetaCardis model was 
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employed for the analysis since it was trained on samples derived from more individuals (n = 

1,812) than the GALAXY/MicrobLiver model (n = 1,351). 

To determine the explained variance of the predicted microbial loads (coefficient of 

determination) by the collected host factors in the Japanese 4D and Estonian Microbiome 

cohorts, linear regression analysis was performed using the glm function with the log10 

transformed microbial load as a response variable and all the host factors as explanatory 

variables. Furthermore, the analysis was performed for each metadata category (e.g. lifestyle, 

diet, medication, and disease) separately, and the explained variance by each category was 

determined. P-values were adjusted for the multiple comparisons with the Benjamini-Hochberg 

method114.  

 

Association analysis between diseases and the microbial load  

To explore associations between diseases and microbial loads, we performed a meta-analysis 

of case-control comparisons by combining samples in the global and Japanese 4D datasets. In 

the global dataset, 58 studies including at least 10 cases and 10 controls were picked up and 

the case and control samples were collected (Supplementary Table 10). In the Japanese 4D 

dataset, 9 diseases with >10 patients were selected and age, sex, and BMI matched-controls 

were defined for each disease using the matchit function of the MatchIt R package (v4.5.3)115. 

Disease-to-control ratios were set to 1:4 when there were enough control samples in the 

Japanese 4D dataset116, while set to 1:1 when the number of samples was insufficient 

(Supplementary Table 10).  

The case and control samples collected above were combined for each disease and a 

total of 26 diseases with >50 cases and >50 controls were analyzed (Supplementary Table 10). 

Associations between the diseases and the log10 transformed microbial load were assessed 

using the glm function with the microbial load as a response variable and the disease condition 

(i.e. case or control) as an explanatory variable including each study as a covariate. P-values 

were adjusted for the multiple comparisons with the Benjamini-Hochberg method.  

 

Association analysis between diseases and the microbiome composition 

For the 26 diseases selected, case-control comparisons of the microbiome profiles were 

conducted. For each disease dataset, species with an average relative abundance of >0.1% and 

prevalence of >10% were included in the analysis. The relative abundance was log10 

transformed after adding half of the non-zero minimum value as a pseudo value. For each 

microbial species, a linear regression model was applied using the glm function. In this model, 
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the species abundance was included as a response variable and disease condition (i.e. case or 

control) as an explanatory variable, with each study as a covariate. P-values were adjusted for 

the number of species for each disease with the Benjamini-Hochberg method114.  

The set of the obtained effect sizes (beta coefficients) of each species was defined as 

the microbial signature for the disease. A distance matrix among the 26 diseases was then 

constructed based on the signature, using Spearman’s correlation coefficient as a distance 

metric ([1 - Spearman’s correlation] / 2). Then, principal coordinate analysis was performed 

on this distance matrix using the cmdscale function in the vegan package117. The differences 

in the microbial signatures between the positively- and negatively-associated diseases were 

examined with permutational analysis of variance using the adonis function in the vegan 

package with 9,999 permutations for p-value calculation. Additionally, the effect sizes of each 

disease were compared between the positively- and negatively-associated diseases through a 

linear regression model, and species discriminating between these two groups were 

investigated.  

To adjust the effect of the microbial load in the case-control comparisons, linear 

regression models were constructed for each species again by adding the microbial load as a 

covariate. Effect sizes of each disease on the species and associated P-values were compared 

between the models with and without the adjustment of the microbial load.  

 

Comparison of quantitative and relative microbiome profiles in disease association 

analysis 

To explore the advantages of the quantitative microbiome analysis in disease association 

analysis, we transformed the relative microbiome profiles (RMP) into quantitative microbiome 

profiles (QMP) (i.e. a profile where species abundances were represented by absolute 

abundances) by multiplying the relative abundance of each microbial species by the predicted 

microbial load of the sample. To evaluate the association between each species and disease, 

the same statistical analyses used for the RMP were performed on the QMP of the same 26 

disease datasets. The effect sizes and statistical significance (i.e. p-value) obtained from the 

analyses were compared with those obtained based on the RMP.  

 

Data availability 

Shotgun metagenomic data sequenced in the GALAXY/MicrobLiver consortia (n = 1,894) are 

publicly available (upon publication) in the European Nucleotide Archive under the accession 

number of PRJEB65485 (GALA-ALD), PRJEB65753 (GALA-HP), PRJEB65967 
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(AlcoChallenge), PRJEB66277 (GALA-RIF), PRJEB67442 (GastricBypass), PRJEB66128 

(HCO), PRJEB67944 (GALA-POSTBIO), PRJEB71382 (HOLBAEK), and PRJEB67347 

(TIPS). The microbial load of these fecal samples are available in the Supplementary Table 2.  

Metagenomic data of the Estonian Microbiome Cohort is available in the European Genome-

Phenome Archive database (EGAS00001008448). The prediction models we constructed 

(MLP: Microbial Load Predictor) are available at https://microbiome-tools.embl.de/mlp/ or as 

R package at https://github.com/grp-bork/microbial_load_predictor/. R codes used to train and 

construct the prediction models and to generate figures are available at https://github.com/grp-

bork/CellCount_Nishijima_2024/.   
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