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Abstract: Tumor protein p63 isoform ANp63 plays roles in the squamous epithelium and
squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data
from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and
clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of
ANp63 in ESCC. We showed that ANp63 maintains the repression of cancer cell endogenous
retrotransposon expression and cellular double-stranded RNA sensing. These subsequently
lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-
suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and
activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The
cancer cell ANp63-IFN-I signaling axis affects both the cancer cell and tumor-infiltrating
immune cell (TIIC) compartments. In cancer cells, depletion of ANp63 resulted in reduced cell
viability. ANp63 expression is negatively associated with the anticancer responses to viral
mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell
TP63 expression negatively correlates with multiple TIIC signatures in ESCC clinical samples.
ANp63 depletion leads to increased cancer cell antigen presentation molecule expression and
enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I
signaling and TIIC signature association with ANp63 were also observed in lung SCC. These
results support the potential application of ANp63 as a therapeutic target and a biomarker to

guide candidate anticancer treatments exploring viral mimicry responses.

Page 2 of 35


https://doi.org/10.1101/2024.03.17.585449
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.17.585449; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

made available under aCC-BY-NC-ND 4.0 International license.

INTRODUCTION

Squamous cell carcinomas (SCCs) are among the most prevalent cancers. Esophageal
squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Asia and
is one of the deadliest SCCs, with a dismal five-year survival rate of 10-20%. The molecular
pathogenesis of ESCC is not fully understood. Thus, treatment options for ESCC are highly
limited. An improved thorough understanding of the disease is essential for better disease
management.

Tumor protein p63 (TP63), encoding the transcription factor (TF) p63, plays a
fundamental role in stratified epithelial biology. Two main p63 isoforms exist, including the
full-length TAp63 and the truncated ANp63; the latter lacks the N-terminal transcription
activation domain but retains TF activity. In the esophagus, ANp63 is the predominant isoform
and is required for normal epithelial development with a basal layer-restricted expression
pattern (1). ESCC retains the predominant expression of ANp63 with a relatively homogenous
pattern observed in most cancer cells (2). ANp63 also plays critical oncogenic roles in several
other SCCs (3).

Endogenous retrotransposons are actively involved in cancer biology. Developed cancer
cells maintain a repressed retrotransposon expression. Derepressed elevated retrotransposon
expression, either due to genetic predisposition or anticancer treatment, enhances cancer cell
viral mimicry response, a tumor-suppressive cellular state of antiviral response triggered by
endogenous stimuli. Expression of retrotransposon-encoded RNAs is prone to cytosolic
double-stranded RNA (dsRNA) formation, which is recognized by sensor proteins and is
capable of inducing anticancer responses, including type I interferon (IFN-I) signaling (4-7).
The awakening of cancer cell IFN-I signaling triggers anticancer immune responses (8). The
cancer cell retrotransposon expression has recently gained significant attention in the context

of epigenetic therapy (8). Retrotransposon expression regulation serves as a cancer-specific
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therapeutic vulnerability to exploit for synergistic epigenetic therapies and immunotherapies
(4,8).

In the present study, we scrutinized the influences of ANp63 expression in ESCC. By
detailed functional and molecular characterizations, coupled with multi-method analyses of
transcriptomic data, we identified a novel function of cancer cell ANp63 in restricting
endogenous retrotransposon expression and suppressing tumor-suppressive IFN-I signaling.
Cancer cell ANp63 expression exerts oncogenic effects on cancer cells and tumor-infiltrating

immune cells (TIICs).

MATERIALS AND METHODS
Reagents and antibodies

Chemical reagents used in this study were purchased from MedChemExpress
(Monmouth Junction, NJ) unless otherwise stated. Cell culture reagents were purchased from
Thermo Fisher Scientific (Waltham, MA) unless otherwise stated. Details of primers and

antibodies are in Supplementary Tables 1 and 2.

Cell lines

Immortalized human esophageal epithelial cell lines, including NE1 (Research resource
identifier:CVCL E306), NE2 (9), and NE083 (10), and ESCC cell lines, including EC109
(CVCL_6898), KYSE30 (CVCL_1351)/KYSE30TSI, KYSE70 (CVCL_1356)/KYSE70TS,
KYSE150 (CVCL_1348), KYSE180 (CVCL _1349)/KYSE180TS, KYSE450 (CVCL_1353)
were cultured as described (11). KYSE30TSI, KYSE70TS, and KYSE180TS were established
from parental nude mouse subcutaneous xenograft tumor segregants (11,12) and used for in
vivo studies. L-WRN (CVCL DAO06) was acquired from AddexBio (San Diego, CA). The L-

WRN conditioned medium (CM) containing Wnt-3a, R-spondin, and Noggin was produced as
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94  described (13) and used for PDO cultures. HEK293T (CVCL _0063) was used for lentiviral

95  particle production. Cell line authentication by STR DNA profiling was performed for all cell

96 lines. Mycoplasma test by PCR amplification of mycoplasma DNA was routinely performed

97  for all in vitro cultures.

98

99  Organoid culture establishment and maintenance
100 Patient tissue samples were obtained during endoscopic examinations at diagnosis (tumor
101 tissue only), upfront surgery on patients without prior treatment (both tumor tissue and adjacent
102  non-neoplastic tissue), and surgery on patients following neoadjuvant chemoradiotherapy or
103 chemotherapy (both tumor tissue and adjacent normal tissue) in Queen Mary Hospital Hong
104  Kong from 2017-2021, with the volumes of the samples around a few cubic millimeters. The
105 Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong
106  West Cluster oversaw the study.
107 Tissue samples were cut into smaller pieces and subjected to dissociation (50ng/mL EGF,
108  Smg/mL Collagenase type IV, Spg/mL DNase I, 0.25% trypsin, 10uM Y-27632, 1x Primocin,
109  15mM HEPES, in DMEM/F12-Glutamax base medium) with mild agitation for 15-30 mins to
110  dissociate tissue chunks up to 200um in diameter. Red blood cell (RBC) lysis was performed
111 for samples with significant RBC contents. The cells were then embedded in Matrigel Growth
112 Factor Reduced Basement Membrane Matrix (Corning, Corning, NY) and seeded in ultra-low
113 attachment microplates (Corning), supplied with PDO medium (40% v/v L-WRN CM,
114  additional 2% fetal bovine serum, 1x N-2 supplement, 1x B-27 supplement, ImM N-
115  Acetylcysteine, 10mM Nicotinamide, 50ng/mL EGF, 10uM SB202190, 0.5uM A83-01, 10uM
116 Y-27632, 10nM Gastrin I, 1x Primocin, 15mM HEPES, in DMEM/F12-Glutamax) for
117  ESCC/EAC tissues and hNEEO medium (10uM Y-27632, 1x Primocin, in Keratinocyte SFM,

118  with additional 0.6mM CaCl,) for adjacent normal tissues, respectively. Additionally, ANEEOs
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119  were also established from biopsied ESCC tissues by incubating the dissociated tissues with
120 hNEEO medium to selectively promote the growth of non-neoplastic esophageal epithelial
121 cells within the acquired tumor biopsy. ESCC/EAC PDOs and hNEEOs showed distinctive
122 morphological characteristics. The two media were highly selective for the specific organoid
123 type, as PDOs and hNEEOs only grow in the respective medium. Therefore, contamination of
124  different cell types was minimized.

125 For passaging, Matrigel containing PDO/hNEEO colonies were dissolved and
126  dissociated by incubation with 1x TrypLE Express Enzyme and re-seeded. Passaging was
127  performed every 10-14 days. For cryopreservation, colonies were similarly dissociated,
128  followed by suspension in Recovery Cell Culture Freezing Medium and storage in liquid
129  nitrogen. Multiple freezing/thawing cycles and long-term continuous passaging of established
130  PDOs have been well achieved (continuous passaging over one year until passage 33 with no
131 signs of proliferation defeat or morphological changes); however, proliferative hNEEOs can
132 only be maintained within the first two months of establishment, which is consistent with a
133 previous study (14).

134

135  Plasmids and lentivirus infection

136 Preparations of plasmids of CRISPR constructs and lentiviral infection on cell lines were
137  performed as previously described (11,12). In brief, oligonucleotides encoding p63-
138  (GCTGAGCCGTGAATTCAACG; TGTGTGTTCTGACGAAACGC), STATI-
139 (TGCTGGCACCAGAACGAATG), MAVS- (CAGGGAACCGGGACACCCTC), IRFI-
140  targeted sgRNA (CTCCCTGCCAGATATCGAGG), and non-targeting control sgRNAs
141  (GTTCCGCGTTACATAACTTA; CTCTGGCTAACGGTACGCGTA) were cloned into
142 lentiCRISPRv2  vector from Feng Zhang (Addgene plasmid # 52961,

143  http://n2t.net/addgene:52961; RRID: Addgene 52961). The protein depletion efficiency of
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144  sgRNA of each target was verified individually by Western Blotting (WB) analysis and pooled
145  together in experiments. For genetic manipulation on organoid cultures by lentiviral infection,
146  organoid cultures were dissociated, and the single-cell suspensions in the respective medium
147  were incubated with viral particles and polybrene overnight on top of a layer of Matrigel;
148  medium containing residual viral particles, polybrene, and unattached cells were removed
149  followed by covering of another layer of Matrigel to fully embed all cells within the matrix
150  before addition of selection antibiotics. The pLenti.PGK.blast-Renilla Luciferase vector from
151  Reuben Shaw (Addgene plasmid # 74444; http://n2t.net/addgene:74444; RRID:
152  Addgene 74444) was used to label cell lines and organoid cultures for in vitro cell viability
153  measurements. For the inducible CRISPR/Cas9 system, the Lenti-iCas9-neo vector from Qin
154  Yan (Addgene plasmid # 85400; http://n2t.net/addgene:85400; RRID: Addgene 85400) was
155  used to express a doxycycline-inducible Cas9 in cell lines, while the sgRNA was delivered
156  separately using the LentiGuide-puro vector from Feng Zhang (Addgene plasmid #52963).
157

158  Animal experiments

159 Subcutaneous injection of cancer cells was performed as previously described (11).
160 BALB/cAnN-nu (Nude) mice, C.B-17/Icr-scid (SCID) mice, and NOD.CB17-Prkdc*/J
161  (NOD/SCID) mice were used as indicated. Animals were housed in individually ventilated
162  cages under a 12:12 dark/light cycle within environmentally controlled rooms. All
163  experimental procedures were approved by the Committee on the Use of Live Animals in
164  Teaching and Research and performed in AAALAC International accredited Centre for
165  Comparative Medicine Research of the University of Hong Kong Li Ka Shing Faculty of
166  Medicine under licenses from the Hong Kong SAR Government’s Department of Health.

167 For in vivo doxycycline induction experiments in CDXs, engineered cells were

168  subcutaneously inoculated. The doxycycline-induced CRISPR protein depletion started when
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169  the tumors reached approximately 100mm? in size. The mice of all groups were supplemented
170  with 0.2mg/mL doxycycline and 2.5% sucrose in drinking water.

171

172 Cell line in vitro viability test

173 Luciferase-labeled cells were quantified by bioluminescence-based live-cell imaging on
174  a CLARIOstar Plus microplate reader (BMG Labtech, Ortenberg, Germany) using Enduren
175  (Promega Corporation, Madison, WI) as the substrate for Renilla luciferase.

176

177 Immunohistochemical staining of in vitro PDO cultures

178 Intact PDO cultures in Matrigel were fixed by 4% paraformaldehyde in PBS for 2 hours
179  at room temperature. Fixed Matrigel containing PDO cultures were gently dissociated by
180  pipetting and embedded in HistoGel Specimen Processing Gel (Thermo Fisher Scientific),
181  followed by standard immunohistochemical procedures as previously described (11).

182

183  Transcriptomic profiling and pathway analysis

184 RNA sequencing was performed at the University of Hong Kong Li Ka Shing Faculty of
185  Medicine Centre for PanorOmic Sciences and analyzed as previously described (12). We
186  sequenced the ribosomal RNA-depleted total RNA from two ESCC cell lines, KYSE180TS
187 and KYSE450, with ANp63 depletion and control in duplicates. We sequenced the poly-A
188  enriched RNA of the ESCC/EAC/hNEEO organoid cultures panel. The transcriptomic data are
189  available (BioProject ID PRINA995358 for ANp63 depletion in cell lines and PRINA1009949
190 for organoid profiling). GSEA and GeneMANIA network analyses were performed as
191  described (15,16). Endogenous retrotransposon expression profiling by TEcounts(17) was
192  performed as described (5).

193 For TF target enrichment analysis on macrophages from the single-cell transcriptomic
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194  data, global gene expression profiles of the macrophages in each sample were gathered,
195 normalized, and subjected to correlation analysis with the cancer cell 7P63 expression in the
196  same sample. Genes significantly positively or negatively correlated to cancer cell 7P63
197  expression were subjected to TF target enrichment analysis using the Human MsigDB TFT
198  transcription factor target geneset database. Only genes of top 2000 expression levels in
199  macrophages, while showing expression in more than half of the samples, were considered due
200  to the limitation on primary immune cells profiling of the 10X Chromium Single Cell RNA
201  sequencing platform (18).

202

203  RNA and protein expression assays

204 Quantitative PCR and WB analysis were performed as previously described(11). Data of
205  quantitative PCR were normalized to the expressions of RPS13 or HSPA4 as indicated. Data
206  of WB analysis were normalized to the expression of p84, Histone H3, or Histone H2A as
207  indicated. Quantitative fluorescent WB data was acquired and analyzed using a Typhoon 5
208  Biomolecular Imager (Cytiva, Marlborough, MA).

209 For dsRNA analysis of endogenous retrotransposon expression, single-stranded RNAs
210  (ssRNA) were depleted by digestion with a ssRNA-specific RNase as described (7). The
211  quantitative dsSRNA expression was then normalized to the ssSRNA expression of HSPA4.

212

213 LINE1 methylation assay

214 LINET methylation was used as the indicator to assess the whole-genome methylation of
215  retrotransposons. Genomic bisulfite conversion was performed as previously described (19).
216  QPCR was used to evaluate the LINE1 methylation and unmethylation level, and the relative
217  methylation index was calculated by the formula 2C{unmetLINED-CimetLINED) 54 qegcribed (20). The

218  hypomethylated EBV-infected 550 cell line and the hypermethylated C666 cell line were used
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219  as the negative and positive controls, respectively (19).

220

221  ESCC PDO drug treatment

222 ESCC PDOs were seeded in ultra-low attachment 96-well plates (embedded in 50uL
223 Matrigel per well) for three days before treatments started. Treatments started in PDO medium
224 without A83-01, SB202190, or Y-27632 (-ASY) to minimize non-specific drug interactions;
225  expanded PDO colonies (seeded in Matrigel for >2 days) show comparable growth in both
226 PDO and -ASY media. Treatments lasted for six days with replenishment of drug-containing
227  media. Endpoint colony formation was quantified by bioluminescence imaging.

228

229  Flow cytometry analysis

230 For in vitro cancer cell HLA expression analysis, cells were dissociated, filtered, and
231  incubated with the conjugated antibody for one hour before being subjected to flow cytometry
232 analysis on an ACEA NovoCyte Quanteon analyzer (Agilent, Santa Clara, CA). For xenograft
233 TME cellular profiling and in vivo cancer cell HLA expression analysis, xenografts were
234  dissociated into RBC-lysed single-cell aliquots for cryopreservation following the above
235  procedures for organoid culture establishment without the EGF treatment. Aliquots were
236 thawed and incubated with the panel of antibodies following the blockade of non-specific
237  binding of the immunoglobulin to the Fc receptors by TruStain FcX (BioLegend, San Diego,
238 CA). LIVE/DEAD Fixable Near-IR Dead Cell Stain dye (Thermo Fisher Scientific) was used
239  to denote live and dead cells. EPCAM and H-2K¢ expressions were used to differentiate human
240  cancer cells and mouse stromal/immune cells, respectively.

241

242 Deconvolution

243 We estimated the proportion of cell types of interest according to the bulk RNA-
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244  sequencing data by performing a deconvolution analysis using the CIBERSORT package (21).
245  As the gene expression patterns of cells vary with the microenvironment (e.g., healthy
246  epithelial tissue or areas of different cancer types), we constructed a signature matrix of
247  expected gene expression levels for the major cell types in ESCC samples as described (22).
248  The matrix was derived based on the single-cell sequencing data (23) by separating the cells
249  into 14 cell types and selecting cell type-specific genes. The selected genes are significantly
250  enriched in one cell type with p<0.01 in the Wilcoxon test with Benjamini-Hochberg correction.
251

252 Cancer Cell Line Encyclopedia (CCLE) lung SCC cell line analysis

253 The CCLE cell line transcriptomic data was acquired from the Dependency Map portal
254  (https://depmap.org/portal/). The lung SCC cell lines were categorized according to the 7P63
255  Transcripts Per Million (TPM) score and denoted as 7P63 cell lines (N=15; TPM ranging from
256 0.029 to 0.333) and TP63" cell lines (N=11; TPM ranging from 1.057 to 9.147). The latter,
257 including CALUI1, SW900, SKMESI, EPLC272H, KSN62, HARA, LUDLUI, LCIF,
258  LCISQSF, HCC95, and HCC2814, showed a comparable 7P63 expression profile (medium
259  TPM = 6.403) to CCLE ESCC cell lines (TPM ranging from 0.880 to 8.690; medium TPM =
260  6.025) and was included for further correlation analysis.

261

262 Statistical analysis

263 Independent samples z-test was applied unless indicated otherwise. A p-value less than
264  0.05 was considered statistically significant. All tests of significance were 2-sided. The error
265  bars shown in the figures represent the 95% confidence interval. For multiple-test comparisons,
266  the p-value was adjusted by the Benjamini-Hochberg correction. An adjusted p-value of less
267 than 0.05 is considered significant. An adjusted p-value of less than 0.1 is considered

268  marginally significant.
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269

270  Data and materials availability: Transcriptomic datasets are available in public repository as
271 described. All cultures are available from the authors upon request.

272

273  RESULTS

274  ANp63 depletion triggers tumor-suppressive interferon signaling in ESCC cell lines

275 Most human ESCC tissue samples and in vitro cultures predominately express higher
276  levels of TP63 variants encoding ANp63, with a lack of expression of variants encoding TAp63
277  (Fig. 1A; Supplementary Table 3). ESCC cell lines show differential expression of ANp63
278  protein (Fig. 1B). To elucidate the functional influence of ANp63, we deployed an efficient
279  and specific clustered regularly interspaced short palindromic repeats (CRISPR)-mediated
280  protein depletion procedure targeting the 7P63 locus to deplete ANp63 protein expression in
281  ESCC cell lines (Supplementary Fig. 1A). Tumorigenesis assays on athymic nude mice by
282  inoculations of ANp63-depleted cells confirmed that ANp63 expression is essential for ESCC
283  tumorigenesis (Fig. 1C). The effect of ANp63 depletion in established xenografts was further
284  demonstrated using an inducible CRISPR-mediated protein depletion system (Fig. 1D;
285  Supplementary Fig. 1B and 1C) since p63 inhibitors are unavailable. Consistently, ANp63
286  depletion in in vitro cell culture models decreased cell viability (Fig. 1E).

287 The molecular impacts upon ANp63 depletion in ESCC cell lines were further examined
288 by transcriptomic profiling to reveal the differentially-expressed genes significantly altered in
289  both cell lines tested (Supplementary Table 4). Interestingly, gene network analysis by
290 GeneMANIA identified IFN-I signaling among the top networks enriched in ANp63-depleted
291  cells (Fig. 1F; Supplementary Table 5), which was further verified by gene set enrichment
292  analysis (GSEA) showing IFN-I signaling-related pathways, as the top gene ontology pathway

293 enriched upon ANp63 depletion (Fig. 1G and 1H; Supplementary Table 6).
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294

295  TP63 expression level shows negative correlations with IFN-I signaling enrichment in
296  ESCC patient-derived organoids (PDOs)

297 Cancer patient-derived organoid (PDO) cultures preserve the malignant epithelial
298  compartment and serve as better models than traditional cell lines, with more significant
299  heterogeneity and better representation of cancer phenotypic and molecular spectra(24). Short-
300 term culture of ESCC biopsy samples has been explored, which demonstrates promising
301 clinical application potential (25). To facilitate ESCC research, we established a biobankable
302  panel of human non-neoplastic esophageal epithelial organoids (WNEEO) and ESCC PDO
303  cultures from freshly collected patient tissue samples (Fig. 2A, 2B, and 2C; Supplementary
304 Table 7). Consistent with previous studies (26), ESCC PDOs express a comparably higher level
305 of TP63 compared to hNEEO, while esophageal adenocarcinoma PDOs do not express 7P63
306 (Fig. 1A).

307 To complement the findings from the genetically manipulated cell lines, GSEA of the
308 transcriptomic data of the unmanipulated ESCC PDO panel consistently showed that 7P63
309 RNA expression level was negatively associated with IFN-I signaling-related pathway
310 enrichment (Fig. 2D, 2E, and 2F; Supplementary Table 8).

311

312 Signal transducer and activator of transcription 1 (STATI) mediates the IFN-I signaling
313  regulation by ANp63

314 Cancer cell IFN-I signaling plays tumor-suppressive roles (27-29). We verified the
315  upregulation of a panel of IFN-I-regulated interferon-stimulated genes (ISGs) (4,5) upon
316  ANp63 depletion in ESCC cell lines and xenografts by quantitative PCR (QPCR) (Fig. 3A and
317  3B). STATI is among the primordial signal mediators for IFN-I signaling (30) and plays a

318  tumor-suppressive role in ESCC (31). Consistently, GSEA focusing on TF targets revealed that
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319  genesets of STAT] target genes were enriched in cell lines upon ANp63 depletion and in ESCC
320 PDOs with the lowest 7P63 expression (Fig. 3C, 3D, and 3E; Supplementary Tables 9 and 10),
321  as compared to control cells and ESCC PDOs with the highest 7P63 expression, respectively.
322 Furthermore, we found that ANp63 depletion upregulates the activated phosphorylated-STAT]1
323  in ESCC cell lines (Fig. 3F). STAT1 depletion dramatically rescues the reduced viability upon
324  ANp63 depletion (Fig. 3G; Supplementary Fig. 2A), suggesting the critical involvement of
325  STATI/IFN-I signaling in mediating reduced cell viability upon ANp63 depletion. Together,
326  these data support an inhibitory role of ANp63 in IFN-I signaling in ESCC cells. IFN-I
327  signaling has previously not been connected to p63/ANp63 in any cancer type.

328

329  IFN-I signaling regulation by ANp63 is cancer-specific

330 To examine whether ANp63 regulates IFN-I signaling in pre-malignant cells, we
331  performed transcriptomic profiling on hNEEO cultures followed by GSEA. In contrast to the
332 ESCC cell line and PDO findings, the expression of 7P63 is not significantly associated with
333  IFN-I signaling-related pathways in hNEEO cultures (Supplementary Table 11). ANp63
334  depletion in NEI, a commonly used immortalized esophageal epithelial cell line, showed no
335  alterations of ISG expression (Supplementary Fig. 2B). ANp63 may play distinct roles in ESCC
336 compared to pre-malignant esophageal epithelial cells, likely due to the differential regulation
337  of retrotransposon expression among normal and malignant cells.

338

339  ANp63 depletion derepresses endogenous retrotransposon expression

340 IFN-Is are canonical inducers of the IFN-I signaling through an autocrine/paracrine
341  manner. We reasoned that interferon expression mediates the IFN-I signaling induction upon
342  ANp63 depletion. However, genes encoding several [FN-Is had negligible basal expression in

343  ESCC PDOs and cell lines and were not upregulated upon ANp63 depletion (Supplementary
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344  Table 12). This is most likely due to the frequent loss of the chromosome 9p21 region
345  containing genes encoding several IFN-Is in ESCC (32,33), which further indicates a potential
346  tumor-suppressive role of cancer cell-derived IFN-Is (34,35).

347 Alternatively, the formation of cytosolic dsRNA derived from the expression of
348 endogenous retrotransposon-encoded RNAs is recognized by cytoplasmic and endosomal
349  sensor proteins and induces IFN-I signaling. A retrotransposon expression quantification
350 algorithm, TEcounts, was applied to quantify global retrotransposon expression (5,17) using
351  the ANp63-depleted cell line transcriptomic data and to identify a list of differentially-
352 expressed retrotransposons (Supplementary Table 13). Interestingly, ANp63 depletion
353  increased retrotransposon expression (Fig. 4A), which was verified through dsRNA-enriched
354  QPCR examination (Fig. 4B).

355 Expression of RNA-induced silencing complex components regulating retrotransposon
356  expression in cancer cells (5,36) was not altered upon ANp63 depletion in ESCC cell lines
357  (Supplementary Table 14). The global genomic DNA methylation and specific histone
358  modification marks, the two key mechanisms maintaining the repression of retrotransposons
359  (37), showed no alterations upon ANp63 depletion (Supplementary Fig. 3A and 3B).

360

361  ANp63 regulates canonical dsRNA sensors and suppresses dsRNA sensing

362 We further profiled the cellular dSRNA sensory machinery. The pattern recognition
363  receptors, including the Toll-like receptor 3 (TLR3), DexD/H-Box Helicase 58 (DDX58)
364  encoding RIG-I, and Interferon induced with helicase C domain 1 (IFIHI) encoding MDA-5,
365  play essential roles in cellular dsSRNA sensing and IFN-I signaling induction (38). Interestingly,
366 QPCR analysis demonstrated the upregulated expression of all three sensors upon ANp63
367  depletion (Fig. 4C). Chemical inhibition of the TLR3-dsRNA interaction or genetic depletion

368  of the mitochondrial antiviral protein (MAVS), the common adaptor protein for RIG-I and
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369 MDA-5, partially restores the reduced cell viability upon ANp63 depletion (Fig. 4D;
370  Supplementary Fig. 3C). Furthermore, exogenous synthetic ~dsRNA analog
371  polyinosinic:polycytidylic acid (polyl:C), known to trigger cellular dsSRNA sensing and
372 antiviral/anticancer signaling induction (39), further reduced cell viability upon ANp63
373  depletion (Fig. 4E), which verifies the enhanced dsSRNA sensory machinery in ANp63-depleted
374 cells.

375

376  ANp63 suppresses Interferon regulatory factor 1 (IRF1) signaling

377 Key pathways and mediators downstream of dsRNA sensing in cancer cells were further
378  scrutinized. The TANK-binding kinase 1 (TBKI)/interferon regulatory factor 3 (IRF3) axis
379  mediates the cellular dSRNA sensory machinery activation and antiviral/anticancer signaling
380 induction (8). However, no rescue effect on cell viability was observed when ANp63-depleted
381  cells were treated with a TBK1 inhibitor (Supplementary Fig. 3D). Alternatively, /RF'I has
382  been shown to mediate IFN-I signaling independent of other interferon regulatory factors,
383  including /RF3 (40), in a STATI1-dependent (41) or independent manner (42). Interestingly,
384  genesets containing IRF1 target genes showed significant enrichment in ANp63-depleted cells
385 and ESCC PDOs with the lowest 7P63 expression (Fig. 3C, 3D, and 4F; Supplementary Tables
386 9 and 10), as compared to control cells and ESCC PDOs with the highest 7P63 expression,
387  respectively. Upregulation of expression of /RFI and known IRF1 targets (APOLI, APOLG,
388  PLAAT4, PSMB9,TRIM22, UBA7,and UBE2L6) (42) was observed in differentially-expressed
389  genes upon ANp63 depletion (Supplementary Table 4), which was verified by QPCR (Fig. 4G).
390 IRF1 depletion partially rescues the reduced cell viability upon ANp63 depletion (Fig. 4H;
391  Supplementary Fig. 3E). These data indicate that IRF1 meditates the anticancer effects
392  downstream of ANp63 depletion.

393
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394  ¢GAS-STING is involved in IFN-I signaling induction upon ANp63 depletion

395 In addition to the canonical antiviral pathways involved in dsRNA sensing, the classic
396  cytosolic DNA-sensing cGAS—STING axis also exerts intracellular antiviral responses in
397  cancer cells (43). STING also plays roles in RNA virus sensing and potentiates the induction
398  of IFN-I signaling and other antiviral signaling pathways (43). A STING agonist (44)
399  suppressed the viability of a panel of ESCC PDO cultures (Fig. 5A), verifying the tumor-
400  suppressive role of the activated STING in ESCC.

401 Elevated retrotransposon expression, especially LINE-1 retrotransposon, leads to the
402  accumulation of cDNA intermediates and potentially triggers the cGAS-STING (45,46). LINE-
403 1 ORF1 expression increased upon ANp63 depletion (Fig. 5B). Administration of a small
404  chemical STING inhibitor leads to partial rescue of the reduced cell viability in ANp63-
405  depleted cells (Fig. 5C). ANp63 depletion increased STING protein expression in cell lines
406  (Fig. 5D). A similar negative trend of a ANp63/STING-expression was observed in the ESCC
407  PDO panel (Fig. SE). These data suggest that elevated STING expression and enhanced cGAS-
408  STING axis play significant roles in mediating the anticancer effects downstream of ANp63
409  depletion.

410 All findings suggest a novel function of ANp63 in repressing retrotransposon expression
411  and suppressing dsRNA sensing in cancer cells; ANp63 depletion triggers viral mimicry
412  response and suppression.

413

414  ANp63 expression level indicates therapeutic opportunities for employing cancer cell-
415  targeted viral mimicry boosters

416 We further explored potential ANp63 expression-guided therapeutic opportunities.
417  ANp63 depletion in cancer cells results in enhanced dsRNA sensing and sensitizes cells to

418  synthetic dsSRNA analog polyl:C treatment in ESCC cell lines (Fig. 4E). Polyl:C and its
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419  stabilized derivative polyICLC have been explored clinically to inhibit tumor growth via
420  regulating proliferation/apoptosis (39). Interestingly, ESCC PDOs with the lowest ANp63
421  expression levels demonstrate hypersensitivity to polyl:C treatment, compared to PDOs with
422 the highest ANp63 expression (Fig. SF). This verifies the findings from the cell lines and further
423 suggests that such increased dsRNA sensing in ESCC cells with lower 7P63 expression can be
424  explored pharmaceutically.

425 Cancer cells maintain retrotransposon expression at a sublethal level to minimize tumor-
426  suppressive antiviral/IFN-I signaling induction (8). Interestingly, treatment of Decitabine, a
427  clinically approved anticancer agent, performed on the ESCC PDO panel showed that PDOs
428  with the lowest ANp63 expression respond better to the treatment (Fig. 5G), indicating that
429  ANp63 expression may serve as a biomarker for Decitabine responsiveness or other viral
430  mimicry boosting treatments. Based on our findings, we hypothesized that cancer cells with
431 lower ANp63 expression may possess higher basal IFN-I signaling activity that is near or
432 beyond tolerable thresholds; the cells may, therefore, become exquisitely vulnerable to further
433 treatments such as Decitabine treatment that magnifies retrotransposon expression and viral
434  mimicry responses to suppress tumor growth (6,8) (Fig. SH).

435

436  TP63 expression negatively correlates with TIIC signatures in ESCC patient samples
437 We have examined the functional influence of ANp63 expression in cancer cells.
438  Additionally, cancer cell viral mimicry response and IFN-I signaling boost antitumor immunity
439  in several aspects, including elevating antigen presentation, reducing immunosuppression, and
440  enhancing the recruitment and activation of cytotoxic TIICs (4-8,34,36). To explore the
441  influence of ANp63 on TIICs in ESCC, we analyzed public bulk transcriptomic datasets of
442  clinical samples. First, a non-deconvolution The Cancer Genome Atlas (TCGA) data-derived

443  metagene/GSEA-based immune cell abundance signature profile (47) was used for 7P63
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444  correlation analysis (48). Remarkably, general negative correlations between TP63 expression
445  and TIIC signatures were observed in ESCC (Fig. 6A). Specifically, molecular signatures of
446  tumor-infiltrating monocytes, tumor-associated macrophages (TAMs), and effector memory
447  CDS8' T cells were among the most negatively correlated immune cell signatures with TP63
448  expression.

449 The latest deconvolution-based cellular profiling method was also employed to
450  decompose immune cell identities and estimate relative cell abundance for public TCGA ESCC
451  bulk RNA-sequencing and microarray datasets. Consistently, cancer cell 7P63 expression level
452  showed a significant negative correlation to T/NK cells, B cells, and tumor-infiltrating
453  monocytes/TAMs in both datasets (Fig. 6B and 6C).

454 These data indicate that cancer cell 7P63 expression negatively correlates with the
455  abundance of TIICs in patient samples, which suggests that cancer cells with discrete ANp63
456  expression vary in ability to attract immune-cell infiltrates, likely due to IFN-I signaling-
457  mediated cytokine secretions (5). Low ANp63 expression in cancer cells may lead to the
458  formation of TIIC-rich tumor mass.

459

460  ANp63 depletion results in increased infiltration of reprogrammed myeloid cells

461 We observed negative correlations between tumor-infiltrating monocytes/TAM
462  signatures and cancer cell TP63 expression in clinical samples. Consistently, in cell line-
463  derived xenografts (CDXs) examined by flow cytometry following tumor dissociation, a
464  significantly increased proportion of the Cd45°Cd49b- myeloid compartment was observed
465 upon doxycycline-induced cancer cell ANp63 depletion (Fig. 6D). Specifically, increased
466  Ly6gLy6cMF4/80" tumor-infiltrating monocyte and Ly6gLy6c'°F4/80" TAM populations
467  were observed.

468 Besides tumor-infiltrating monocytes/TAMs, myeloid-derived suppressor cells (MDSCs)

Page 19 of 35


https://doi.org/10.1101/2024.03.17.585449
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.17.585449; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

469  also play crucial roles in tumor development and tumor microenvironment (TME) modulation
470  (49-51). Consistent with the Ly6g  tumor-infiltrating monocytes/TAM population, the
471 monocyte-derived Ly6g Ly6c"F4/80" tumor-infiltrating monocytic MDSCs (M-MDSCs) (52)
472 showed a trend of increased infiltration in xenografts of ANp63-depleted cells; in contrast, the
473  proportion of Ly6g" cells, commonly recognized as granulocyte-derived tumor-infiltrating
474  polymorphonuclear MDSCs (PMN-MDSCs), remained largely unaltered (Supplementary Fig.
475  4A). Interestingly, both MDSC populations demonstrated increased proportions of MHCII™
476  cells in ANp63-depleted xenografts (Fig. 6E). This is consistent with a previous study showing
477  that dsRNA analog polyl:C treatment increased MHCII expression in tumor-infiltrating
478  MDSCs to attenuate the immunosuppressive activity of MDSCs (53). The study also showed
479  that polyl:C treatment polarized various myeloid cells into a tumor-suppressive state. These
480 data suggested that ANp63 expression modulates intratumoral myeloid recruitment and
481  reprogramming towards a pro-cancer state through suppressing IFN-I signaling.

482 Much more significant in vivo effects upon cancer cell ANp63 depletion were observed
483  when inoculated on nude mice (Fig. 1C), as compared to those in the in vitro cultures (Fig. 1E).
484  Given the increased myeloid cell infiltration in nude mice xenografts upon ANp63 depletion,
485  we hypothesized that the reprogrammed myeloid population plays a significant anticancer role.
486  Immunocompromised NOD/SCID mice differ from athymic nude mice, showing impaired
487  tissue myeloid maturation and mononuclear phagocyte functions (54,55). The ANp63-depleted
488  cells were inoculated on NOD/SCID mice. Increased monocyte infiltration in ANp63-depleted
489  NOD/SCID xenografts was consistently observed (Supplementary Fig. 4B). However, the
490 TAM population was unaltered, likely reflecting the myeloid maturation defect of NOD/SCID
491  mice. Furthermore, a dampened effect upon ANp63 depletion was observed compared to that
492  on athymic mice (Fig. 6F), supporting the hypothesis that reprogrammed myeloid cells,

493  including TAMs, play a critical role in mediating ANp63 depletion-induced tumor suppression.
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494

495  ANp63 modulates MHC class I expression in cancer cells

496 Antigen processing and presentation by cancer cell MHCI molecules are crucial for
497  antitumor immune surveillance. This is regulated by IFN-I signaling (5,8) and potentiates
498  cytotoxic immune cell recruitment and activation (56,57). Consistently, genes encoding MHCI
499  molecules HLA-A/B/C/F were upregulated in in vitro ANp63-depleted ESCC cells, along with
500 genes encoding peptide transporters TAP1 and TAP2 (Supplementary Table 15). Flow
501  cytometric analysis confirmed that ANp63 regulates HLA-A/B/C cell surface expression in a
502 STATI1-dependent manner, as STAT1 depletion dramatically rescues the reduced HLA
503  expression upon ANp63 depletion (Fig. 7A). Furthermore, flow cytometric analysis on the
504 CDX models further showed increased HLA-A/B/C cell surface expression in ANp63-depleted
505 ESCC cells from dissociated CDXs on both mouse models tested (Fig. 7B).

506

507  TP63 expression negatively correlates with ISG expression in lung SCC cell lines and with
508  TIIC signatures in lung SCC patient samples

509 To extend our findings in ESCC to other SCCs, we examined 7P63 in lung SCC, the
510  cancer type sharing similar tissue differentiation and molecular characteristics with ESCC (58)
511  and explicitly expressing ANp63 (59). By exploring the public bulk transcriptomic data of a
512  panel of lung SCC cell lines (60), we observed that the majority of ISGs and IFN-I signaling-
513  related genes regulated by ANp63 in ESCC cell lines and xenografts also showed specific and
514  significant negative correlations with 7P63 expression in 7P63" lung SCC cell lines (Fig. 7C
515 and 7D; Supplementary Table 16).

516 Furthermore, the correlation between 7P63 and TIIC infiltration in lung SCC was
517 analyzed. We explored the TCGA data-derived non-deconvolution metagene immune cell

518 abundance signature profile (47). Remarkably, significant negative correlations between 7P63
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519  expression and TIIC signatures were observed in lung SCC clinical samples similar to ESCC
520 (Fig. 6A). Among tumor-infiltrating lymphocytes (TILs), molecular signatures of several CD8"
521 T cell populations, including activated CD8" and effector memory CD8" T cells, showed
522  substantial negative correlations with 7P63 expression. Consistently, 7P63 expression
523  negatively correlated with the tumor-infiltrating monocytes/TAM signatures. These data
524  strongly suggested that ANp63 expression in lung SCC cells plays a similar role in suppressing
525  IFN-I signaling and TIIC infiltration.

526

527  DISCUSSION

528 In this study, we demonstrated that p63/ANp63 exerts a previously undefined oncogenic
529 role in SCC (Fig. 7E). ANp63 regulates several key aspects of cancer progression, including
530 cancer stem cell maintenance and drug resistance (61). Our study revealed novel cancer-
531  specific functions of ANp63 in suppressing cancer cell viral mimicry response and remodeling
532 the TME towards an oncogenic state. In brief, ANp63 represses endogenous retrotransposon
533  expression and dsRNA sensing, which restricts cancer cell viral mimicry response and affects
534  both the cancer cell and the TME, in alignment with previous studies on cancer cell viral
535  mimicry response and antitumor immunity in breast cancer, colorectal cancer, melanoma, and
536  ovarian cancer (4—7). In cancer cells, ANp63 maintains cell viability, likely through inhibiting
537 STATI-mediated cell death (62). In the TME, cancer cell ANp63 suppresses antitumor TME
538  generation, which may depend on STATI-IFN-I signaling-mediated immune-regulatory
539  cytokine secretion (7,63).

540 Human ESCC samples frequently display homozygous loss of the 9p21.3 region,
541  harboring classic tumor suppressors CDKN2A/B (32,33). Two recent studies revealed an
542  additional selective advantage of losing 9p21.3 in cancer cells, attributed to the IFN-I gene

543  cluster in the region (34,35). Specific disruption of the cluster resulted in substantial changes
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544  in infiltrating immune cells and escape from CD8" T cell surveillance. Since the genetic loss
545  of the IFN-I gene cluster is irreversible, interferon production-independent IFN-I signaling
546  activation triggered by viral mimicry response supplies additional anticancer mechanisms.

547 Cancer cells exhibit elevated retrotransposon expression and activity than normal cells,
548  contributing to cancer initiation and development (64). This is usually accompanied by
549  suppressed sublethal tumor-suppressive IFN-I signaling activation. We showed that enhanced
550  IFN-I signaling triggered by dsRNA stress (expression and sensing) due to experimental
551  manipulation (e.g., ANp63 depletion) reduces cancer cell viability. The cells may further
552  develop exquisite sensitivity to additional anticancer treatments that exaggerate the increase of
553  dsRNA expression, leading to maximized viral mimicry response activity and cell death. Drug
554  response profiling on the ESCC PDO panel suggests that cancer cells with a specific genetic
555  or transcriptomic predisposition (e.g., low ANp63 expression) exhibit hypersensitivity to viral
556  mimicry-boosting treatments (e.g., polyl:C and Decitabine), in alignment with previous studies
557  (8). Therefore, we hypothesize that ESCC cases with low basal ANp63 protein expression,
558  accounting for around 20-40% of all clinical cases (65,66), may be considered “primed” for
559  cancer cell-targeted viral mimicry response boosting and the resultant tumor suppression (Fig.
560 5H). A similar scenario may apply to lung SCC cases as well. Future studies are needed to
561  explore the patient stratification potential of ANp63 expression and the utilization of boosters.
562 Cancer cell viral mimicry response and IFN-I signaling activation promote the generation
563  of a tumor-suppressive TME and modulate antitumor immunity (4—7). Our analyses on TIIC
564  signatures of bulk transcriptomic data consistently showed that cancer cell TP63 expression
565 level negatively correlates with the multiple signatures of TILs and tumor-infiltrating myeloid
566  cells in patient samples of ESCC and lung SCC. A recent pioneering study subtyping ESCC
567 utilizing integrated multi-omics profiling described a substantial CD8" T cells- and CD68"

568 myeloid cells-enriched “immune modulation” subtype that specifically possesses low 7P63
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569  expression (67), consistent with our analysis. The study also indicated that patients of the
570  “immune modulation” subtype respond better to immune checkpoint blockade (ICB)
571  treatments than other subtypes. Another milestone multi-omics study subtyping lung SCC
572  identified a “classical” subtype featuring amplification and expression of 7P63/ANp63 along
573  with downregulation of immune signaling (59). Immunotherapy has been increasingly
574  explored and utilized in ESCC and lung SCC management (68,69). Identifying patients
575  responsive to immunotherapy is crucial. Our analysis provides a mechanistic insight into these
576  clinical subtyping analyses. It suggests that 7P63/ANp63 expression in ESCC and lung SCC
577  cancer cells contributes to generating an immunosuppressive and low TIIC microenvironment.
578  Future studies are urged to demonstrate 7P63/ANp63 expression as a candidate prognostic and
579  predictive biomarker for ICB immunotherapy.

580 Compared to studies on TILs, tumor-infiltrating myeloid cells have received less
581 attention. We specifically showed that depletion of ANp63 leads to the accumulation of tumor-
582  suppressive reprogrammed myeloid cells in the TME of ESCC xenografts. MDSCs with
583 increased MHCII expression were observed in ESCC xenografts upon cancer cell ANp63
584  depletion, consistently indicating reprogramming toward tumor suppression (53). Together
585  with the regulations of cancer cell MHCI expression, we hypothesize that the regulation of
586 myeloid recruitment and reprogramming by ANp63 mediate the influence of anticancer
587  immunity in ESCC (Fig. 7E). Our analysis also suggests that more attention be paid to myeloid
588  cell reprogramming and heterogeneous subgroup analysis in addition to general myeloid cell
589  recruitment in future studies.

590 A previous study analyzing ICB resistance in melanoma patients showed that ICB-
591  induced F-Box and WD repeat domain containing 7 (FBXW?7) inactivation repressed dsRNA
592  sensing, IFN-I signaling induction, and MHCI expression in cancer cells (70). Inactivation of

593  FBXW?7 also altered the tumor immune microenvironment, including decreased CD8" T cell
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594  and macrophage infiltration. Our current findings phenocopy these data. Intriguing, FBXW7,
595 as an E3-ubiquitin ligase, induces the degradation of p63/ANp63 (71), which is expressed in
596  melanoma (72). Increased p63/ANp63 protein expression following FBXW?7 inactivation may,
597  therefore, mediate the IFN-I signaling repression and TIIC reprogramming observed in
598 melanoma patients, as we showed in the current study in ESCC. This further suggests a broader
599  role of p63/ANp63 in regulating viral mimicry response and TIIC infiltration in other cancer
600  types beyond SCCs.

601 Our multi-method analyses in in vitro cultures, xenograft models, and human tumor
602  tissue samples demonstrate that ANp63 restricts endogenous retrotransposon expression and
603  retrotransposon-induced viral mimicry response and modulates both the cancer cell and the
604  TME. This suggests a translational potential to stratify ESCC and lung SCC patients for viral
605  mimicry-boosting targeted therapy. ANp63 and druggable targets upstream of ANp63,
606  regulating its expression and function (61), may also be considered in combination therapies.
607  The biobankable panel of ESCC organoid cultures established will facilitate future studies.
608
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Figure 1. A) Summary of the RNA expression of 7P63-203 (encoding the dominant ANp63 isoform) in a panel of
PDOs and patient normal/ESCC tissue samples. See Supplementary Table 3 for the detailed statistical analysis. NE:
normal immortalized esophageal epithelial cell lines; N: patient normal esophageal tissues; T: patient ESCC tissues.
B) WB analysis shows the expression of ANp63 in a panel of ESCC cell lines. C) Subcutaneous tumorigenicity assay
reveals the critical oncogenic role of ANp63. The tumorigenesis of a ANp63-negative cell line EC109 was unaffected
upon administration of the CRISPR procedure, affirming the specificity of the procedure. Ctrl: non-targeted oligo
controls; p63fKO: p63 protein functional knockout (fKO). D) Induced ANp63 depletion on established xenografts
leads to significantly suppressed growth and even complete tumor regression. PR: partial response; CR: complete
regression. E) ANp63 depletion results in reduced viability in vitro in KYSEI80TS (K180) and KYSE450 (K450)
cells. F) The functional gene network by GeneMANIA analysis of upregulated genes upon ANp63 depletion
(Supplementary Table 4). Highlighted and top right: the top significant annotation. Black circle: input genes; Grey
circle: calculated related genes. G) Top IFN-I signaling-related genesets significantly correlate with ANp63 depletion
in both K180 and K450 by GSEA. A negative normalized enrichment score (NES) indicates enrichment in ANp63-
depleted cells compared to control cells. See Supplementary Table 6 for the complete list of genesets. H) A
representative geneset enriched in ANp63-depleted cell lines compared to control cells, from G. RM: Rank metric;
ES: Enrichment score. **** p-value < 0.0001; *** p-value < 0.001; **, p-value < 0.01; *, p-value < 0.05; ns, p-
value > 0.05.
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Figure 2. A) An illustration of the organoid establishment workflow. Samples were acquired through surgery or
endoscopic examination. B) Representative microscopic images of in vitro hNEEO, ESCC PDO, and EAC PDO
cultures showing distinctive morphological features of the colonies. Scale bar:100um. C) Representative
histological/IHC analyses showing proliferative squamous cell carcinoma-specific features of the ESCC PDO
cultures. Scale bar 50 um. H&E: Hematoxylin and Eosin staining; panCK: pan-cytokeratin staining. D) WB analysis
verifies the varied relative expression of ANp63 in ESCC PDOs with the lowest (TP63) and highest expressions
(TP63"), ranked based on the TP63 RNA expressions across the panel of PDOs. E) Top IFN-I signaling-related
genesets negatively correlated with ANp63 expression in PDOs by GSEA. A negative NES indicates enrichment in
TP63 PDOs compared to TP63" PDOs. See Supplementary Table 8 for the complete list. F) A representative geneset
enriched in TP63" PDOs compared to TP63" PDOs, from E.
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Figure 3. A and B) ANp63 depletion upregulates ISGs in in vitro cell line cultures (A) and xenografts (B) by QPCR
analysis. Dotted line: 2-fold changes. C and D) Top TF-binding signature genesets enriched in ANp63-depleted cells
in both K180 and K450 cell lines (C) and in TP63% PDOs (D), as compared to control cells and TP63% PDOs,
respectively. E) GSEA results of the gene set ISRE 01 (STAT1 targets) in ANp63-depleted cell lines (Upper) and
ESCC PDO cultures with varied p63 expression (Bottom), from C and D. F) ANp63 depletion increases STATI
tyrosine 702 phosphorylation (pSTATI1) level by WB analysis in ESCC cell lines. G) CRISPR-mediated STATI
depletion dramatically rescues the reduced cell viability upon ANp63 depletion. Shown are the normalized viability of
ANp63-depleted cells to the corresponding control cells.
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Figure 4. A) Endogenous retrotransposon expression profiling in ESCC cell lines upon ANp63 depletion shows
generally increased expression of retrotransposons. A total of 773 and 760 expressed retrotransposons were identified
in the two cell lines, respectively. Shown are all retrotransposons with significantly altered expression (adjusted p-
value < 0.05) upon ANp63 depletion (60 retrotransposons in K180 and 83 in K450). DNA: DNA transposon; LINE:
Long interspersed nuclear element; LTR: Long terminal repeat; SVA: SINE-VNTR-Alus; RNA: small RNA
retrotransposon; SINE: Short interspersed nuclear element. B) Increased retrotransposon expression upon Np63
depletion was verified by QPCR following dsRNA enrichment. RNA expression was normalized to the single-
stranded RNA expression of HSPA4. C) RNA expression of dsRNA sensors is upregulated upon p63 depletion in
ESCC cell lines. The expression of Complement Clg binding protein (C1QBP), a negative regulator of the sensors,
was employed as a control. Data normalized to HSPA4 expression. D) Inhibition of the dsSRNA sensing of TLR3 by
TLR3/dsRNA interaction inhibitor CU-CPT5a and depletion of MAVS by CRISPR-mediated protein depletion
attenuates the proliferation suppressive effect upon ANp63 depletion. Shown are the normalized viability of ANp63-
depleted cells to the corresponding control cells. E) ANp63-depleted cells demonstrate higher sensitivity to poly(I:C)
treatment, leading to further reduced cell viability in ESCC cell lines. F) GSEA result of the gene set
STTTCRNTTT IRF Q6 (IRF1 targets) related to IRF1 binding in ANp63-depleted cell lines (Upper) and PDO
cultures with varied p63 expression (Bottom), from Fig. 3C and 3D. G) ANp63 depletion upregulates IRF1 target
genes in cell lines. Data normalized to HSPA4 expression. The dotted line indicates two-fold changes. H) CRISPR-
mediated IRF1 depletion partially rescues the reduced cell viability upon ANp63 depletion. Shown are the normalized
viability of ANp63-depleted cells to the corresponding control cells.
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Figure 5. A) A cGAS-STING agonist G10 exerts a tumor-suppressive role in a panel of ESCC PDO cultures (N=5).
B) The protein expression of LINE1 ORF1 is upregulated upon ANp63 depletion in ESCC cell lines. C) Inhibition of
STINGI function by small molecular inhibitor H-151 attenuates the proliferation suppressive effect upon ANp63
depletion. Shown are the normalized viability of ANp63-depleted cells to the corresponding control cells. D) Protein
expressions of total STING1 and phosphorylated STING1 (pSTING1) are upregulated upon ANp63 depletion in
ESCC cell lines by WB analysis. E) STING1 and ANp63 protein expression show negative correlations in ESCC
PDOs by WB analysis. Nuclear protein p84 was used as the loading control. F and G) ESCC TP63* PDOs
significantly respond to poly(I:C) treatments (F) and Decitabine treatments (G) compared to TP63" PDOs. H)
Proposed principle for viral mimicry-inducing treatments. Inspired and modified from (8).
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Figure 6. A) Negative correlations between 7P63 expression and multiple TIIC signatures are observed in the non-
deconvolution TCGA immune cell profiles. By,,: memory B cells; By, immature B cells; B,qr: activated B cells;
iDC: interstitial dendritic cells; pDC: plasmacytoid DC; DC,r: activated DC; Ty central memory T cells; Ty,: T
helper 2 cells; Ty, T helper 17 cells; Tycr: activated T cells; T,,: regulatory T cells; Ty,: T follicular helper cells;
Toq: v6 T cells; Ty,: T helper 1 cells; Ty effector memory T cells. B and C) Deconvolution analyses on bulk ESCC
RNA sequencing data (TCGA ESCC dataset; B) and ESCC microarray data (GSE53624; C) reveal negative
correlations between cancer cell 7P63 expression and major TIIC relative abundance. D) Elevated proportions of
tumor-infiltrating mouse myeloid cells, monocytes, and TAM, as normalized to human cancer cells, are observed in
ANp63-depleted KSYE450 CDXs on nude mice. N=3 in each group. E) Tumor-infiltrating M-MDSCs and PMN-
MDSCs with increased MHCII expression were observed in ANp63-depleted KSYE450 CDXs on nude mice. F)
ANp63-depleted KYSE450 cells inoculated in NOD-SCID mice display significant but greatly attenuated tumor
suppression compared to the tumorigenicity profile observed in nude mice (Fig. 1C). ####, adjusted p-value < 0.001;
###, adjusted p-value < 0.01; ##, adjusted p-value < 0.05; #, adjusted p-value <O0.1.
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Figure 7. A) Cancer cell surface HLA-A/B/C expressions are upregulated in ANp63-depleted K180 and K450 cells in
vitro, which is dramatically rescued upon ANp63/STAT1 dual-depletion (dualfKO). B) Cancer cell surface HLA-
A/B/C expressions are upregulated in ANp63-depleted KSYE450 CDXs on both nude and NOD/SCID (N=4) mice
models. C) The ISGs and related genes regulated by ANp63 in ESCC cell lines and xenografts show significant
negative correlations with 7P63 expression in CCLE TP63" lung SCC cell lines (N=11). As controls, known ANp63
target genes KRT15 and HAS3 show significant positive correlations to 7P63 expression, while housekeeping genes
HSPA4 and THOCI show no significant correlations. Genes from different categories detailed in Supplementary
Table 16, analyzed by Pearson correlation. D) Selected representative negative correlations between TP63/IFIT3 and
TP63/HLA-B, from C. E) Summary diagram of the novel oncogenic roles of ANp63. Lighting sign indicates a
pharmaceutical opportunity for viral mimicry boosting treatment; Stars suggest a pharmaceutical opportunity for ICB

therapy.
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