

1 **Title: Δ Np63-restricted viral mimicry response impedes cancer cell viability**
2 **and remodels tumor microenvironment in esophageal squamous cell**
3 **carcinoma**

4

5 **Authors:** Valen Zhuoyou Yu^{1†}, Shan Shan So^{1†}, Bryan Chee-chad Lung¹, George Zhaozheng
6 Hou¹, Carissa Wing-yan Wong¹, Larry Ka-yue Chow¹, Michael King-yung Chung¹, Ian Yu-
7 hong Wong², Claudia Lai-yin Wong², Desmond Kwan-kit Chan², Fion Siu-yin Chan², Betty
8 Tsz-ting Law², Kaiyan Xu¹, Zack Zhen Tan¹, Ka-on Lam¹, Anthony Wing-ip Lo³, Alfred King-
9 yin Lam⁴, Dora Lai-wan Kwong¹, Josephine Mun-yee Ko¹, Wei Dai¹, Simon Law², Maria Li
10 Lung^{1*}.

11

12 **Affiliations:**

13 ¹Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine,
14 Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong (SAR).

15 ²Department of Surgery, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The
16 University of Hong Kong, Pokfulam, Hong Kong (SAR).

17 ³Division of Anatomical Pathology, Queen Mary Hospital, Pokfulam, Hong Kong (SAR).

18 ⁴Division of Cancer Molecular Pathology, School of Medicine and Dentistry and Menzies
19 Health Institute Queensland, Griffith University, Gold Coast, Australia.

20 *Corresponding author. Email: mlilung@hku.hk.

21 †These authors contributed equally;

22

23 **Running title:** Δ Np63 restricts viral mimicry response to support ESCC

24

25 **Abstract:** Tumor protein p63 isoform Δ Np63 plays roles in the squamous epithelium and
26 squamous cell carcinomas (SCCs), including esophageal SCC (ESCC). By integrating data
27 from cell lines and our latest patient-derived organoid cultures, derived xenograft models, and
28 clinical sample transcriptomic analyses, we identified a novel and robust oncogenic role of
29 Δ Np63 in ESCC. We showed that Δ Np63 maintains the repression of cancer cell endogenous
30 retrotransposon expression and cellular double-stranded RNA sensing. These subsequently
31 lead to a restricted cancer cell viral mimicry response and suppressed induction of tumor-
32 suppressive type I interferon (IFN-I) signaling through the regulations of Signal transducer and
33 activator of transcription 1, Interferon regulatory factor 1, and cGAS-STING pathway. The
34 cancer cell Δ Np63-IFN-I signaling axis affects both the cancer cell and tumor-infiltrating
35 immune cell (TIIC) compartments. In cancer cells, depletion of Δ Np63 resulted in reduced cell
36 viability. Δ Np63 expression is negatively associated with the anticancer responses to viral
37 mimicry booster treatments targeting cancer cells. In the tumor microenvironment, cancer cell
38 *TP63* expression negatively correlates with multiple TIIC signatures in ESCC clinical samples.
39 Δ Np63 depletion leads to increased cancer cell antigen presentation molecule expression and
40 enhanced recruitment and reprogramming of tumor-infiltrating myeloid cells. Similar IFN-I
41 signaling and TIIC signature association with Δ Np63 were also observed in lung SCC. These
42 results support the potential application of Δ Np63 as a therapeutic target and a biomarker to
43 guide candidate anticancer treatments exploring viral mimicry responses.

44 INTRODUCTION

45 Squamous cell carcinomas (SCCs) are among the most prevalent cancers. Esophageal
46 squamous cell carcinoma (ESCC) is the predominant subtype of esophageal cancer in Asia and
47 is one of the deadliest SCCs, with a dismal five-year survival rate of 10-20%. The molecular
48 pathogenesis of ESCC is not fully understood. Thus, treatment options for ESCC are highly
49 limited. An improved thorough understanding of the disease is essential for better disease
50 management.

51 *Tumor protein p63* (*TP63*), encoding the transcription factor (TF) p63, plays a
52 fundamental role in stratified epithelial biology. Two main p63 isoforms exist, including the
53 full-length TAp63 and the truncated Δ Np63; the latter lacks the N-terminal transcription
54 activation domain but retains TF activity. In the esophagus, Δ Np63 is the predominant isoform
55 and is required for normal epithelial development with a basal layer-restricted expression
56 pattern (1). ESCC retains the predominant expression of Δ Np63 with a relatively homogenous
57 pattern observed in most cancer cells (2). Δ Np63 also plays critical oncogenic roles in several
58 other SCCs (3).

59 Endogenous retrotransposons are actively involved in cancer biology. Developed cancer
60 cells maintain a repressed retrotransposon expression. Derepressed elevated retrotransposon
61 expression, either due to genetic predisposition or anticancer treatment, enhances cancer cell
62 viral mimicry response, a tumor-suppressive cellular state of antiviral response triggered by
63 endogenous stimuli. Expression of retrotransposon-encoded RNAs is prone to cytosolic
64 double-stranded RNA (dsRNA) formation, which is recognized by sensor proteins and is
65 capable of inducing anticancer responses, including type I interferon (IFN-I) signaling (4–7).
66 The awakening of cancer cell IFN-I signaling triggers anticancer immune responses (8). The
67 cancer cell retrotransposon expression has recently gained significant attention in the context
68 of epigenetic therapy (8). Retrotransposon expression regulation serves as a cancer-specific

69 therapeutic vulnerability to exploit for synergistic epigenetic therapies and immunotherapies
70 (4,8).

71 In the present study, we scrutinized the influences of Δ Np63 expression in ESCC. By
72 detailed functional and molecular characterizations, coupled with multi-method analyses of
73 transcriptomic data, we identified a novel function of cancer cell Δ Np63 in restricting
74 endogenous retrotransposon expression and suppressing tumor-suppressive IFN-I signaling.
75 Cancer cell Δ Np63 expression exerts oncogenic effects on cancer cells and tumor-infiltrating
76 immune cells (TIICs).

77

78 MATERIALS AND METHODS

79 Reagents and antibodies

80 Chemical reagents used in this study were purchased from MedChemExpress
81 (Monmouth Junction, NJ) unless otherwise stated. Cell culture reagents were purchased from
82 Thermo Fisher Scientific (Waltham, MA) unless otherwise stated. Details of primers and
83 antibodies are in [Supplementary Tables 1 and 2](#).

84

85 Cell lines

86 Immortalized human esophageal epithelial cell lines, including NE1 (Research resource
87 identifier:CVCL_E306), NE2 (9), and NE083 (10), and ESCC cell lines, including EC109
88 (CVCL_6898), KYSE30 (CVCL_1351)/KYSE30TSI, KYSE70 (CVCL_1356)/KYSE70TS,
89 KYSE150 (CVCL_1348), KYSE180 (CVCL_1349)/KYSE180TS, KYSE450 (CVCL_1353)
90 were cultured as described (11). KYSE30TSI, KYSE70TS, and KYSE180TS were established
91 from parental nude mouse subcutaneous xenograft tumor segregants (11,12) and used for *in*
92 *vivo* studies. L-WRN (CVCL_DA06) was acquired from AddexBio (San Diego, CA). The L-
93 WRN conditioned medium (CM) containing Wnt-3a, R-spondin, and Noggin was produced as

94 described (13) and used for PDO cultures. HEK293T (CVCL_0063) was used for lentiviral
95 particle production. Cell line authentication by STR DNA profiling was performed for all cell
96 lines. Mycoplasma test by PCR amplification of mycoplasma DNA was routinely performed
97 for all *in vitro* cultures.

98

99 **Organoid culture establishment and maintenance**

100 Patient tissue samples were obtained during endoscopic examinations at diagnosis (tumor
101 tissue only), upfront surgery on patients without prior treatment (both tumor tissue and adjacent
102 non-neoplastic tissue), and surgery on patients following neoadjuvant chemoradiotherapy or
103 chemotherapy (both tumor tissue and adjacent normal tissue) in Queen Mary Hospital Hong
104 Kong from 2017-2021, with the volumes of the samples around a few cubic millimeters. The
105 Institutional Review Board of The University of Hong Kong/Hospital Authority Hong Kong
106 West Cluster oversaw the study.

107 Tissue samples were cut into smaller pieces and subjected to dissociation (50ng/mL EGF,
108 5mg/mL Collagenase type IV, 5 μ g/mL DNase I, 0.25% trypsin, 10 μ M Y-27632, 1 \times Primocin,
109 15mM HEPES, in DMEM/F12-Glutamax base medium) with mild agitation for 15-30 mins to
110 dissociate tissue chunks up to 200 μ m in diameter. Red blood cell (RBC) lysis was performed
111 for samples with significant RBC contents. The cells were then embedded in Matrigel Growth
112 Factor Reduced Basement Membrane Matrix (Corning, Corning, NY) and seeded in ultra-low
113 attachment microplates (Corning), supplied with PDO medium (40% v/v L-WRN CM,
114 additional 2% fetal bovine serum, 1 \times N-2 supplement, 1 \times B-27 supplement, 1mM N-
115 Acetylcysteine, 10mM Nicotinamide, 50ng/mL EGF, 10 μ M SB202190, 0.5 μ M A83-01, 10 μ M
116 Y-27632, 10nM Gastrin I, 1 \times Primocin, 15mM HEPES, in DMEM/F12-Glutamax) for
117 ESCC/EAC tissues and hNEEO medium (10 μ M Y-27632, 1 \times Primocin, in Keratinocyte SFM,
118 with additional 0.6mM CaCl₂) for adjacent normal tissues, respectively. Additionally, hNEEOs

119 were also established from biopsied ESCC tissues by incubating the dissociated tissues with
120 hNEEO medium to selectively promote the growth of non-neoplastic esophageal epithelial
121 cells within the acquired tumor biopsy. ESCC/EAC PDOs and hNEEOs showed distinctive
122 morphological characteristics. The two media were highly selective for the specific organoid
123 type, as PDOs and hNEEOs only grow in the respective medium. Therefore, contamination of
124 different cell types was minimized.

125 For passaging, Matrigel containing PDO/hNEEO colonies were dissolved and
126 dissociated by incubation with 1× TrypLE Express Enzyme and re-seeded. Passaging was
127 performed every 10-14 days. For cryopreservation, colonies were similarly dissociated,
128 followed by suspension in Recovery Cell Culture Freezing Medium and storage in liquid
129 nitrogen. Multiple freezing/thawing cycles and long-term continuous passaging of established
130 PDOs have been well achieved (continuous passaging over one year until passage 33 with no
131 signs of proliferation defeat or morphological changes); however, proliferative hNEEOs can
132 only be maintained within the first two months of establishment, which is consistent with a
133 previous study (14).

134

135 **Plasmids and lentivirus infection**

136 Preparations of plasmids of CRISPR constructs and lentiviral infection on cell lines were
137 performed as previously described (11,12). In brief, oligonucleotides encoding p63-
138 (GCTGAGCCGTGAATTCAACG; TGTGTGTTCTGACGAAACGC), STAT1-
139 (TGCTGGCACCAAGAACGAATG), MAVS- (CAGGGAACCGGGACACCCTC), IRF1-
140 targeted sgRNA (CTCCCTGCCAGATATCGAGG), and non-targeting control sgRNAs
141 (GTTCCCGCGTTACATAACTTA; CTCTGGCTAACGGTACCGCGTA) were cloned into
142 lentiCRISPRv2 vector from Feng Zhang (Addgene plasmid # 52961;
143 <http://n2t.net/addgene:52961>; RRID: Addgene_52961). The protein depletion efficiency of

144 sgRNA of each target was verified individually by Western Blotting (WB) analysis and pooled
145 together in experiments. For genetic manipulation on organoid cultures by lentiviral infection,
146 organoid cultures were dissociated, and the single-cell suspensions in the respective medium
147 were incubated with viral particles and polybrene overnight on top of a layer of Matrigel;
148 medium containing residual viral particles, polybrene, and unattached cells were removed
149 followed by covering of another layer of Matrigel to fully embed all cells within the matrix
150 before addition of selection antibiotics. The pLenti.PGK.blast-Renilla_Luciferase vector from
151 Reuben Shaw (Addgene plasmid # 74444; <http://n2t.net/addgene:74444>; RRID:
152 Addgene_74444) was used to label cell lines and organoid cultures for *in vitro* cell viability
153 measurements. For the inducible CRISPR/Cas9 system, the Lenti-iCas9-neo vector from Qin
154 Yan (Addgene plasmid # 85400; <http://n2t.net/addgene:85400>; RRID: Addgene_85400) was
155 used to express a doxycycline-inducible Cas9 in cell lines, while the sgRNA was delivered
156 separately using the LentiGuide-puro vector from Feng Zhang (Addgene plasmid #52963).

157

158 **Animal experiments**

159 Subcutaneous injection of cancer cells was performed as previously described (11).
160 BALB/cAnN-nu (Nude) mice, C.B-17/Icr-scid (SCID) mice, and NOD.CB17-Prkdc^{scid}/J
161 (NOD/SCID) mice were used as indicated. Animals were housed in individually ventilated
162 cages under a 12:12 dark/light cycle within environmentally controlled rooms. All
163 experimental procedures were approved by the Committee on the Use of Live Animals in
164 Teaching and Research and performed in AAALAC International accredited Centre for
165 Comparative Medicine Research of the University of Hong Kong Li Ka Shing Faculty of
166 Medicine under licenses from the Hong Kong SAR Government's Department of Health.

167 For *in vivo* doxycycline induction experiments in CDXs, engineered cells were
168 subcutaneously inoculated. The doxycycline-induced CRISPR protein depletion started when

169 the tumors reached approximately 100mm³ in size. The mice of all groups were supplemented
170 with 0.2mg/mL doxycycline and 2.5% sucrose in drinking water.

171

172 **Cell line *in vitro* viability test**

173 Luciferase-labeled cells were quantified by bioluminescence-based live-cell imaging on
174 a CLARIOstar Plus microplate reader (BMG Labtech, Ortenberg, Germany) using Enduren
175 (Promega Corporation, Madison, WI) as the substrate for Renilla luciferase.

176

177 **Immunohistochemical staining of *in vitro* PDO cultures**

178 Intact PDO cultures in Matrigel were fixed by 4% paraformaldehyde in PBS for 2 hours
179 at room temperature. Fixed Matrigel containing PDO cultures were gently dissociated by
180 pipetting and embedded in HistoGel Specimen Processing Gel (Thermo Fisher Scientific),
181 followed by standard immunohistochemical procedures as previously described (11).

182

183 **Transcriptomic profiling and pathway analysis**

184 RNA sequencing was performed at the University of Hong Kong Li Ka Shing Faculty of
185 Medicine Centre for PanorOmic Sciences and analyzed as previously described (12). We
186 sequenced the ribosomal RNA-depleted total RNA from two ESCC cell lines, KYSE180TS
187 and KYSE450, with ΔNp63 depletion and control in duplicates. We sequenced the poly-A
188 enriched RNA of the ESCC/EAC/hNEEO organoid cultures panel. The transcriptomic data are
189 available (BioProject ID PRJNA995358 for ΔNp63 depletion in cell lines and PRJNA1009949
190 for organoid profiling). GSEA and GeneMANIA network analyses were performed as
191 described (15,16). Endogenous retrotransposon expression profiling by TEcounts(17) was
192 performed as described (5).

193 For TF target enrichment analysis on macrophages from the single-cell transcriptomic

194 data, global gene expression profiles of the macrophages in each sample were gathered,
195 normalized, and subjected to correlation analysis with the cancer cell *TP63* expression in the
196 same sample. Genes significantly positively or negatively correlated to cancer cell *TP63*
197 expression were subjected to TF target enrichment analysis using the Human MsigDB TFT
198 transcription factor target geneset database. Only genes of top 2000 expression levels in
199 macrophages, while showing expression in more than half of the samples, were considered due
200 to the limitation on primary immune cells profiling of the 10X Chromium Single Cell RNA
201 sequencing platform (18).

202

203 **RNA and protein expression assays**

204 Quantitative PCR and WB analysis were performed as previously described(11). Data of
205 quantitative PCR were normalized to the expressions of *RPS13* or *HSPA4* as indicated. Data
206 of WB analysis were normalized to the expression of p84, Histone H3, or Histone H2A as
207 indicated. Quantitative fluorescent WB data was acquired and analyzed using a Typhoon 5
208 Biomolecular Imager (Cytiva, Marlborough, MA).

209 For dsRNA analysis of endogenous retrotransposon expression, single-stranded RNAs
210 (ssRNA) were depleted by digestion with a ssRNA-specific RNase as described (7). The
211 quantitative dsRNA expression was then normalized to the ssRNA expression of *HSPA4*.

212

213 **LINE1 methylation assay**

214 LINE1 methylation was used as the indicator to assess the whole-genome methylation of
215 retrotransposons. Genomic bisulfite conversion was performed as previously described (19).
216 QPCR was used to evaluate the LINE1 methylation and unmethylation level, and the relative
217 methylation index was calculated by the formula $2^{Ct(\text{unmetLINE1})-Ct(\text{metLINE1})}$ as described (20). The
218 hypomethylated EBV-infected 550 cell line and the hypermethylated C666 cell line were used

219 as the negative and positive controls, respectively (19).

220

221 **ESCC PDO drug treatment**

222 ESCC PDOs were seeded in ultra-low attachment 96-well plates (embedded in 50uL
223 Matrigel per well) for three days before treatments started. Treatments started in PDO medium
224 without A83-01, SB202190, or Y-27632 (-ASY) to minimize non-specific drug interactions;
225 expanded PDO colonies (seeded in Matrigel for ≥ 2 days) show comparable growth in both
226 PDO and -ASY media. Treatments lasted for six days with replenishment of drug-containing
227 media. Endpoint colony formation was quantified by bioluminescence imaging.

228

229 **Flow cytometry analysis**

230 For *in vitro* cancer cell HLA expression analysis, cells were dissociated, filtered, and
231 incubated with the conjugated antibody for one hour before being subjected to flow cytometry
232 analysis on an ACEA NovoCyte Quanteon analyzer (Agilent, Santa Clara, CA). For xenograft
233 TME cellular profiling and *in vivo* cancer cell HLA expression analysis, xenografts were
234 dissociated into RBC-lysed single-cell aliquots for cryopreservation following the above
235 procedures for organoid culture establishment without the EGF treatment. Aliquots were
236 thawed and incubated with the panel of antibodies following the blockade of non-specific
237 binding of the immunoglobulin to the Fc receptors by TruStain FcX (BioLegend, San Diego,
238 CA). LIVE/DEAD Fixable Near-IR Dead Cell Stain dye (Thermo Fisher Scientific) was used
239 to denote live and dead cells. EPCAM and H-2K^d expressions were used to differentiate human
240 cancer cells and mouse stromal/immune cells, respectively.

241

242 **Deconvolution**

243 We estimated the proportion of cell types of interest according to the bulk RNA-

244 sequencing data by performing a deconvolution analysis using the CIBERSORT package (21).
245 As the gene expression patterns of cells vary with the microenvironment (e.g., healthy
246 epithelial tissue or areas of different cancer types), we constructed a signature matrix of
247 expected gene expression levels for the major cell types in ESCC samples as described (22).
248 The matrix was derived based on the single-cell sequencing data (23) by separating the cells
249 into 14 cell types and selecting cell type-specific genes. The selected genes are significantly
250 enriched in one cell type with $p < 0.01$ in the Wilcoxon test with Benjamini-Hochberg correction.

251

252 **Cancer Cell Line Encyclopedia (CCLE) lung SCC cell line analysis**

253 The CCLE cell line transcriptomic data was acquired from the Dependency Map portal
254 (<https://depmap.org/portal/>). The lung SCC cell lines were categorized according to the *TP63*
255 Transcripts Per Million (TPM) score and denoted as *TP63*⁻ cell lines (N=15; TPM ranging from
256 0.029 to 0.333) and *TP63*⁺ cell lines (N=11; TPM ranging from 1.057 to 9.147). The latter,
257 including CALU1, SW900, SKMES1, EPLC272H, KSN62, HARA, LUDLU1, LC1F,
258 LC1SQSF, HCC95, and HCC2814, showed a comparable *TP63* expression profile (medium
259 TPM = 6.403) to CCLE ESCC cell lines (TPM ranging from 0.880 to 8.690; medium TPM =
260 6.025) and was included for further correlation analysis.

261

262 **Statistical analysis**

263 Independent samples *t*-test was applied unless indicated otherwise. A *p*-value less than
264 0.05 was considered statistically significant. All tests of significance were 2-sided. The error
265 bars shown in the figures represent the 95% confidence interval. For multiple-test comparisons,
266 the *p*-value was adjusted by the Benjamini-Hochberg correction. An adjusted *p*-value of less
267 than 0.05 is considered significant. An adjusted *p*-value of less than 0.1 is considered
268 marginally significant.

269

270 **Data and materials availability:** Transcriptomic datasets are available in public repository as
271 described. All cultures are available from the authors upon request.

272

273 **RESULTS**

274 **ΔNp63 depletion triggers tumor-suppressive interferon signaling in ESCC cell lines**

275 Most human ESCC tissue samples and *in vitro* cultures predominately express higher
276 levels of *TP63* variants encoding ΔNp63, with a lack of expression of variants encoding TAp63
277 (Fig. 1A; Supplementary Table 3). ESCC cell lines show differential expression of ΔNp63
278 protein (Fig. 1B). To elucidate the functional influence of ΔNp63, we deployed an efficient
279 and specific clustered regularly interspaced short palindromic repeats (CRISPR)-mediated
280 protein depletion procedure targeting the *TP63* locus to deplete ΔNp63 protein expression in
281 ESCC cell lines (Supplementary Fig. 1A). Tumorigenesis assays on athymic nude mice by
282 inoculations of ΔNp63-depleted cells confirmed that ΔNp63 expression is essential for ESCC
283 tumorigenesis (Fig. 1C). The effect of ΔNp63 depletion in established xenografts was further
284 demonstrated using an inducible CRISPR-mediated protein depletion system (Fig. 1D;
285 Supplementary Fig. 1B and 1C) since p63 inhibitors are unavailable. Consistently, ΔNp63
286 depletion in *in vitro* cell culture models decreased cell viability (Fig. 1E).

287 The molecular impacts upon ΔNp63 depletion in ESCC cell lines were further examined
288 by transcriptomic profiling to reveal the differentially-expressed genes significantly altered in
289 both cell lines tested (Supplementary Table 4). Interestingly, gene network analysis by
290 GeneMANIA identified IFN-I signaling among the top networks enriched in ΔNp63-depleted
291 cells (Fig. 1F; Supplementary Table 5), which was further verified by gene set enrichment
292 analysis (GSEA) showing IFN-I signaling-related pathways, as the top gene ontology pathway
293 enriched upon ΔNp63 depletion (Fig. 1G and 1H; Supplementary Table 6).

294

295 **TP63 expression level shows negative correlations with IFN-I signaling enrichment in**
296 **ESCC patient-derived organoids (PDOs)**

297 Cancer patient-derived organoid (PDO) cultures preserve the malignant epithelial
298 compartment and serve as better models than traditional cell lines, with more significant
299 heterogeneity and better representation of cancer phenotypic and molecular spectra(24). Short-
300 term culture of ESCC biopsy samples has been explored, which demonstrates promising
301 clinical application potential (25). To facilitate ESCC research, we established a biobankable
302 panel of human non-neoplastic esophageal epithelial organoids (hNEEO) and ESCC PDO
303 cultures from freshly collected patient tissue samples (Fig. 2A, 2B, and 2C; Supplementary
304 Table 7). Consistent with previous studies (26), ESCC PDOs express a comparably higher level
305 of *TP63* compared to hNEEO, while esophageal adenocarcinoma PDOs do not express *TP63*
306 (Fig. 1A).

307 To complement the findings from the genetically manipulated cell lines, GSEA of the
308 transcriptomic data of the unmanipulated ESCC PDO panel consistently showed that *TP63*
309 RNA expression level was negatively associated with IFN-I signaling-related pathway
310 enrichment (Fig. 2D, 2E, and 2F; Supplementary Table 8).

311

312 ***Signal transducer and activator of transcription 1 (STAT1) mediates the IFN-I signaling***
313 ***regulation by ΔNp63***

314 Cancer cell IFN-I signaling plays tumor-suppressive roles (27–29). We verified the
315 upregulation of a panel of IFN-I-regulated interferon-stimulated genes (ISGs) (4,5) upon
316 ΔNp63 depletion in ESCC cell lines and xenografts by quantitative PCR (QPCR) (Fig. 3A and
317 3B). *STAT1* is among the primordial signal mediators for IFN-I signaling (30) and plays a
318 tumor-suppressive role in ESCC (31). Consistently, GSEA focusing on TF targets revealed that

319 genesets of STAT1 target genes were enriched in cell lines upon Δ Np63 depletion and in ESCC
320 PDOs with the lowest *TP63* expression (Fig. 3C, 3D, and 3E; Supplementary Tables 9 and 10),
321 as compared to control cells and ESCC PDOs with the highest *TP63* expression, respectively.
322 Furthermore, we found that Δ Np63 depletion upregulates the activated phosphorylated-STAT1
323 in ESCC cell lines (Fig. 3F). STAT1 depletion dramatically rescues the reduced viability upon
324 Δ Np63 depletion (Fig. 3G; Supplementary Fig. 2A), suggesting the critical involvement of
325 STAT1/IFN-I signaling in mediating reduced cell viability upon Δ Np63 depletion. Together,
326 these data support an inhibitory role of Δ Np63 in IFN-I signaling in ESCC cells. IFN-I
327 signaling has previously not been connected to p63/ Δ Np63 in any cancer type.

328

329 **IFN-I signaling regulation by Δ Np63 is cancer-specific**

330 To examine whether Δ Np63 regulates IFN-I signaling in pre-malignant cells, we
331 performed transcriptomic profiling on hNEEO cultures followed by GSEA. In contrast to the
332 ESCC cell line and PDO findings, the expression of *TP63* is not significantly associated with
333 IFN-I signaling-related pathways in hNEEO cultures (Supplementary Table 11). Δ Np63
334 depletion in NE1, a commonly used immortalized esophageal epithelial cell line, showed no
335 alterations of ISG expression (Supplementary Fig. 2B). Δ Np63 may play distinct roles in ESCC
336 compared to pre-malignant esophageal epithelial cells, likely due to the differential regulation
337 of retrotransposon expression among normal and malignant cells.

338

339 **Δ Np63 depletion derepresses endogenous retrotransposon expression**

340 IFN-Is are canonical inducers of the IFN-I signaling through an autocrine/paracrine
341 manner. We reasoned that interferon expression mediates the IFN-I signaling induction upon
342 Δ Np63 depletion. However, genes encoding several IFN-Is had negligible basal expression in
343 ESCC PDOs and cell lines and were not upregulated upon Δ Np63 depletion (Supplementary

344 **Table 12**). This is most likely due to the frequent loss of the chromosome 9p21 region
345 containing genes encoding several IFN-Is in ESCC (32,33), which further indicates a potential
346 tumor-suppressive role of cancer cell-derived IFN-Is (34,35).

347 Alternatively, the formation of cytosolic dsRNA derived from the expression of
348 endogenous retrotransposon-encoded RNAs is recognized by cytoplasmic and endosomal
349 sensor proteins and induces IFN-I signaling. A retrotransposon expression quantification
350 algorithm, TEcounts, was applied to quantify global retrotransposon expression (5,17) using
351 the Δ Np63-depleted cell line transcriptomic data and to identify a list of differentially-
352 expressed retrotransposons (Supplementary Table 13). Interestingly, Δ Np63 depletion
353 increased retrotransposon expression (Fig. 4A), which was verified through dsRNA-enriched
354 QPCR examination (Fig. 4B).

355 Expression of RNA-induced silencing complex components regulating retrotransposon
356 expression in cancer cells (5,36) was not altered upon Δ Np63 depletion in ESCC cell lines
357 (Supplementary Table 14). The global genomic DNA methylation and specific histone
358 modification marks, the two key mechanisms maintaining the repression of retrotransposons
359 (37), showed no alterations upon Δ Np63 depletion (Supplementary Fig. 3A and 3B).

360

361 **Δ Np63 regulates canonical dsRNA sensors and suppresses dsRNA sensing**

362 We further profiled the cellular dsRNA sensory machinery. The pattern recognition
363 receptors, including the *Toll-like receptor 3* (*TLR3*), *DexD/H-Box Helicase 58* (*DDX58*)
364 encoding RIG-I, and *Interferon induced with helicase C domain 1* (*IFIH1*) encoding MDA-5,
365 play essential roles in cellular dsRNA sensing and IFN-I signaling induction (38). Interestingly,
366 QPCR analysis demonstrated the upregulated expression of all three sensors upon Δ Np63
367 depletion (Fig. 4C). Chemical inhibition of the TLR3-dsRNA interaction or genetic depletion
368 of the mitochondrial antiviral protein (MAVS), the common adaptor protein for RIG-I and

369 MDA-5, partially restores the reduced cell viability upon Δ Np63 depletion (Fig. 4D;
370 **Supplementary Fig. 3C**). Furthermore, exogenous synthetic dsRNA analog
371 polyinosinic:polycytidylic acid (polyI:C), known to trigger cellular dsRNA sensing and
372 antiviral/anticancer signaling induction (39), further reduced cell viability upon Δ Np63
373 depletion (Fig. 4E), which verifies the enhanced dsRNA sensory machinery in Δ Np63-depleted
374 cells.

375

376 **Δ Np63 suppresses Interferon regulatory factor 1 (IRF1) signaling**

377 Key pathways and mediators downstream of dsRNA sensing in cancer cells were further
378 scrutinized. The *TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3)* axis
379 mediates the cellular dsRNA sensory machinery activation and antiviral/anticancer signaling
380 induction (8). However, no rescue effect on cell viability was observed when Δ Np63-depleted
381 cells were treated with a TBK1 inhibitor (**Supplementary Fig. 3D**). Alternatively, *IRF1* has
382 been shown to mediate IFN-I signaling independent of other interferon regulatory factors,
383 including *IRF3* (40), in a STAT1-dependent (41) or independent manner (42). Interestingly,
384 genesets containing *IRF1* target genes showed significant enrichment in Δ Np63-depleted cells
385 and ESCC PDOs with the lowest *TP63* expression (Fig. 3C, 3D, and 4F; **Supplementary Tables**
386 **9 and 10**), as compared to control cells and ESCC PDOs with the highest *TP63* expression,
387 respectively. Upregulation of expression of *IRF1* and known *IRF1* targets (*APOL1*, *APOL6*,
388 *PLAAT4*, *PSMB9*, *TRIM22*, *UBA7*, and *UBE2L6*) (42) was observed in differentially-expressed
389 genes upon Δ Np63 depletion (**Supplementary Table 4**), which was verified by QPCR (Fig. 4G).
390 *IRF1* depletion partially rescues the reduced cell viability upon Δ Np63 depletion (Fig. 4H;
391 **Supplementary Fig. 3E**). These data indicate that *IRF1* mediates the anticancer effects
392 downstream of Δ Np63 depletion.

393

394 **cGAS-STING is involved in IFN-I signaling induction upon Δ Np63 depletion**

395 In addition to the canonical antiviral pathways involved in dsRNA sensing, the classic
396 cytosolic DNA-sensing cGAS-STING axis also exerts intracellular antiviral responses in
397 cancer cells (43). STING also plays roles in RNA virus sensing and potentiates the induction
398 of IFN-I signaling and other antiviral signaling pathways (43). A STING agonist (44)
399 suppressed the viability of a panel of ESCC PDO cultures (Fig. 5A), verifying the tumor-
400 suppressive role of the activated STING in ESCC.

401 Elevated retrotransposon expression, especially LINE-1 retrotransposon, leads to the
402 accumulation of cDNA intermediates and potentially triggers the cGAS-STING (45,46). LINE-
403 1 ORF1 expression increased upon Δ Np63 depletion (Fig. 5B). Administration of a small
404 chemical STING inhibitor leads to partial rescue of the reduced cell viability in Δ Np63-
405 depleted cells (Fig. 5C). Δ Np63 depletion increased STING protein expression in cell lines
406 (Fig. 5D). A similar negative trend of a Δ Np63/STING-expression was observed in the ESCC
407 PDO panel (Fig. 5E). These data suggest that elevated STING expression and enhanced cGAS-
408 STING axis play significant roles in mediating the anticancer effects downstream of Δ Np63
409 depletion.

410 All findings suggest a novel function of Δ Np63 in repressing retrotransposon expression
411 and suppressing dsRNA sensing in cancer cells; Δ Np63 depletion triggers viral mimicry
412 response and suppression.

413

414 **Δ Np63 expression level indicates therapeutic opportunities for employing cancer cell-
415 targeted viral mimicry boosters**

416 We further explored potential Δ Np63 expression-guided therapeutic opportunities.
417 Δ Np63 depletion in cancer cells results in enhanced dsRNA sensing and sensitizes cells to
418 synthetic dsRNA analog polyI:C treatment in ESCC cell lines (Fig. 4E). PolyI:C and its

419 stabilized derivative polyICLC have been explored clinically to inhibit tumor growth via
420 regulating proliferation/apoptosis (39). Interestingly, ESCC PDOs with the lowest Δ Np63
421 expression levels demonstrate hypersensitivity to polyI:C treatment, compared to PDOs with
422 the highest Δ Np63 expression (Fig. 5F). This verifies the findings from the cell lines and further
423 suggests that such increased dsRNA sensing in ESCC cells with lower *TP63* expression can be
424 explored pharmaceutically.

425 Cancer cells maintain retrotransposon expression at a sublethal level to minimize tumor-
426 suppressive antiviral/IFN-I signaling induction (8). Interestingly, treatment of Decitabine, a
427 clinically approved anticancer agent, performed on the ESCC PDO panel showed that PDOs
428 with the lowest Δ Np63 expression respond better to the treatment (Fig. 5G), indicating that
429 Δ Np63 expression may serve as a biomarker for Decitabine responsiveness or other viral
430 mimicry boosting treatments. Based on our findings, we hypothesized that cancer cells with
431 lower Δ Np63 expression may possess higher basal IFN-I signaling activity that is near or
432 beyond tolerable thresholds; the cells may, therefore, become exquisitely vulnerable to further
433 treatments such as Decitabine treatment that magnifies retrotransposon expression and viral
434 mimicry responses to suppress tumor growth (6,8) (Fig. 5H).

435

436 ***TP63* expression negatively correlates with TIIC signatures in ESCC patient samples**

437 We have examined the functional influence of Δ Np63 expression in cancer cells.
438 Additionally, cancer cell viral mimicry response and IFN-I signaling boost antitumor immunity
439 in several aspects, including elevating antigen presentation, reducing immunosuppression, and
440 enhancing the recruitment and activation of cytotoxic TIICs (4–8,34,36). To explore the
441 influence of Δ Np63 on TIICs in ESCC, we analyzed public bulk transcriptomic datasets of
442 clinical samples. First, a non-deconvolution The Cancer Genome Atlas (TCGA) data-derived
443 metagene/GSEA-based immune cell abundance signature profile (47) was used for *TP63*

444 correlation analysis (48). Remarkably, general negative correlations between *TP63* expression
445 and TIIC signatures were observed in ESCC (Fig. 6A). Specifically, molecular signatures of
446 tumor-infiltrating monocytes, tumor-associated macrophages (TAMs), and effector memory
447 CD8⁺ T cells were among the most negatively correlated immune cell signatures with *TP63*
448 expression.

449 The latest deconvolution-based cellular profiling method was also employed to
450 decompose immune cell identities and estimate relative cell abundance for public TCGA ESCC
451 bulk RNA-sequencing and microarray datasets. Consistently, cancer cell *TP63* expression level
452 showed a significant negative correlation to T/NK cells, B cells, and tumor-infiltrating
453 monocytes/TAMs in both datasets (Fig. 6B and 6C).

454 These data indicate that cancer cell *TP63* expression negatively correlates with the
455 abundance of TIICs in patient samples, which suggests that cancer cells with discrete Δ Np63
456 expression vary in ability to attract immune-cell infiltrates, likely due to IFN-I signaling-
457 mediated cytokine secretions (5). Low Δ Np63 expression in cancer cells may lead to the
458 formation of TIIC-rich tumor mass.

459

460 **Δ Np63 depletion results in increased infiltration of reprogrammed myeloid cells**

461 We observed negative correlations between tumor-infiltrating monocytes/TAM
462 signatures and cancer cell *TP63* expression in clinical samples. Consistently, in cell line-
463 derived xenografts (CDXs) examined by flow cytometry following tumor dissociation, a
464 significantly increased proportion of the Cd45⁺Cd49b⁻ myeloid compartment was observed
465 upon doxycycline-induced cancer cell Δ Np63 depletion (Fig. 6D). Specifically, increased
466 Ly6g⁻Ly6c^{hi}F4/80⁻ tumor-infiltrating monocyte and Ly6g⁻Ly6c^{lo}F4/80^{hi} TAM populations
467 were observed.

468 Besides tumor-infiltrating monocytes/TAMs, myeloid-derived suppressor cells (MDSCs)

469 also play crucial roles in tumor development and tumor microenvironment (TME) modulation
470 (49–51). Consistent with the Ly6g[−] tumor-infiltrating monocytes/TAM population, the
471 monocyte-derived Ly6g⁺Ly6c^{hi}F4/80⁺ tumor-infiltrating monocytic MDSCs (M-MDSCs) (52)
472 showed a trend of increased infiltration in xenografts of ΔNp63-depleted cells; in contrast, the
473 proportion of Ly6g⁺ cells, commonly recognized as granulocyte-derived tumor-infiltrating
474 polymorphonuclear MDSCs (PMN-MDSCs), remained largely unaltered (Supplementary Fig.
475 4A). Interestingly, both MDSC populations demonstrated increased proportions of MHCII^{hi}
476 cells in ΔNp63-depleted xenografts (Fig. 6E). This is consistent with a previous study showing
477 that dsRNA analog polyI:C treatment increased MHCII expression in tumor-infiltrating
478 MDSCs to attenuate the immunosuppressive activity of MDSCs (53). The study also showed
479 that polyI:C treatment polarized various myeloid cells into a tumor-suppressive state. These
480 data suggested that ΔNp63 expression modulates intratumoral myeloid recruitment and
481 reprogramming towards a pro-cancer state through suppressing IFN-I signaling.

482 Much more significant *in vivo* effects upon cancer cell ΔNp63 depletion were observed
483 when inoculated on nude mice (Fig. 1C), as compared to those in the *in vitro* cultures (Fig. 1E).
484 Given the increased myeloid cell infiltration in nude mice xenografts upon ΔNp63 depletion,
485 we hypothesized that the reprogrammed myeloid population plays a significant anticancer role.
486 Immunocompromised NOD/SCID mice differ from athymic nude mice, showing impaired
487 tissue myeloid maturation and mononuclear phagocyte functions (54,55). The ΔNp63-depleted
488 cells were inoculated on NOD/SCID mice. Increased monocyte infiltration in ΔNp63-depleted
489 NOD/SCID xenografts was consistently observed (Supplementary Fig. 4B). However, the
490 TAM population was unaltered, likely reflecting the myeloid maturation defect of NOD/SCID
491 mice. Furthermore, a dampened effect upon ΔNp63 depletion was observed compared to that
492 on athymic mice (Fig. 6F), supporting the hypothesis that reprogrammed myeloid cells,
493 including TAMs, play a critical role in mediating ΔNp63 depletion-induced tumor suppression.

494

495 **ΔNp63 modulates MHC class I expression in cancer cells**

496 Antigen processing and presentation by cancer cell MHCI molecules are crucial for
497 antitumor immune surveillance. This is regulated by IFN-I signaling (5,8) and potentiates
498 cytotoxic immune cell recruitment and activation (56,57). Consistently, genes encoding MHCI
499 molecules HLA-A/B/C/F were upregulated in *in vitro* ΔNp63-depleted ESCC cells, along with
500 genes encoding peptide transporters TAP1 and TAP2 (Supplementary Table 15). Flow
501 cytometric analysis confirmed that ΔNp63 regulates HLA-A/B/C cell surface expression in a
502 STAT1-dependent manner, as STAT1 depletion dramatically rescues the reduced HLA
503 expression upon ΔNp63 depletion (Fig. 7A). Furthermore, flow cytometric analysis on the
504 CDX models further showed increased HLA-A/B/C cell surface expression in ΔNp63-depleted
505 ESCC cells from dissociated CDXs on both mouse models tested (Fig. 7B).

506

507 **TP63 expression negatively correlates with ISG expression in lung SCC cell lines and with
508 TIIC signatures in lung SCC patient samples**

509 To extend our findings in ESCC to other SCCs, we examined *TP63* in lung SCC, the
510 cancer type sharing similar tissue differentiation and molecular characteristics with ESCC (58)
511 and explicitly expressing ΔNp63 (59). By exploring the public bulk transcriptomic data of a
512 panel of lung SCC cell lines (60), we observed that the majority of ISGs and IFN-I signaling-
513 related genes regulated by ΔNp63 in ESCC cell lines and xenografts also showed specific and
514 significant negative correlations with *TP63* expression in *TP63*⁺ lung SCC cell lines (Fig. 7C
515 and 7D; Supplementary Table 16).

516 Furthermore, the correlation between *TP63* and TIIC infiltration in lung SCC was
517 analyzed. We explored the TCGA data-derived non-deconvolution metagene immune cell
518 abundance signature profile (47). Remarkably, significant negative correlations between *TP63*

519 expression and TIIC signatures were observed in lung SCC clinical samples similar to ESCC
520 (Fig. 6A). Among tumor-infiltrating lymphocytes (TILs), molecular signatures of several CD8⁺
521 T cell populations, including activated CD8⁺ and effector memory CD8⁺ T cells, showed
522 substantial negative correlations with *TP63* expression. Consistently, *TP63* expression
523 negatively correlated with the tumor-infiltrating monocytes/TAM signatures. These data
524 strongly suggested that Δ Np63 expression in lung SCC cells plays a similar role in suppressing
525 IFN-I signaling and TIIC infiltration.

526

527 DISCUSSION

528 In this study, we demonstrated that p63/ Δ Np63 exerts a previously undefined oncogenic
529 role in SCC (Fig. 7E). Δ Np63 regulates several key aspects of cancer progression, including
530 cancer stem cell maintenance and drug resistance (61). Our study revealed novel cancer-
531 specific functions of Δ Np63 in suppressing cancer cell viral mimicry response and remodeling
532 the TME towards an oncogenic state. In brief, Δ Np63 represses endogenous retrotransposon
533 expression and dsRNA sensing, which restricts cancer cell viral mimicry response and affects
534 both the cancer cell and the TME, in alignment with previous studies on cancer cell viral
535 mimicry response and antitumor immunity in breast cancer, colorectal cancer, melanoma, and
536 ovarian cancer (4–7). In cancer cells, Δ Np63 maintains cell viability, likely through inhibiting
537 STAT1-mediated cell death (62). In the TME, cancer cell Δ Np63 suppresses antitumor TME
538 generation, which may depend on STAT1-IFN-I signaling-mediated immune-regulatory
539 cytokine secretion (7,63).

540 Human ESCC samples frequently display homozygous loss of the 9p21.3 region,
541 harboring classic tumor suppressors *CDKN2A/B* (32,33). Two recent studies revealed an
542 additional selective advantage of losing 9p21.3 in cancer cells, attributed to the IFN-I gene
543 cluster in the region (34,35). Specific disruption of the cluster resulted in substantial changes

544 in infiltrating immune cells and escape from CD8⁺ T cell surveillance. Since the genetic loss
545 of the IFN-I gene cluster is irreversible, interferon production-independent IFN-I signaling
546 activation triggered by viral mimicry response supplies additional anticancer mechanisms.

547 Cancer cells exhibit elevated retrotransposon expression and activity than normal cells,
548 contributing to cancer initiation and development (64). This is usually accompanied by
549 suppressed sublethal tumor-suppressive IFN-I signaling activation. We showed that enhanced
550 IFN-I signaling triggered by dsRNA stress (expression and sensing) due to experimental
551 manipulation (e.g., Δ Np63 depletion) reduces cancer cell viability. The cells may further
552 develop exquisite sensitivity to additional anticancer treatments that exaggerate the increase of
553 dsRNA expression, leading to maximized viral mimicry response activity and cell death. Drug
554 response profiling on the ESCC PDO panel suggests that cancer cells with a specific genetic
555 or transcriptomic predisposition (e.g., low Δ Np63 expression) exhibit hypersensitivity to viral
556 mimicry-boosting treatments (e.g., polyI:C and Decitabine), in alignment with previous studies
557 (8). Therefore, we hypothesize that ESCC cases with low basal Δ Np63 protein expression,
558 accounting for around 20-40% of all clinical cases (65,66), may be considered “primed” for
559 cancer cell-targeted viral mimicry response boosting and the resultant tumor suppression (Fig.
560 5H). A similar scenario may apply to lung SCC cases as well. Future studies are needed to
561 explore the patient stratification potential of Δ Np63 expression and the utilization of boosters.

562 Cancer cell viral mimicry response and IFN-I signaling activation promote the generation
563 of a tumor-suppressive TME and modulate antitumor immunity (4–7). Our analyses on TIIC
564 signatures of bulk transcriptomic data consistently showed that cancer cell *TP63* expression
565 level negatively correlates with the multiple signatures of TILs and tumor-infiltrating myeloid
566 cells in patient samples of ESCC and lung SCC. A recent pioneering study subtyping ESCC
567 utilizing integrated multi-omics profiling described a substantial CD8⁺ T cells- and CD68⁺
568 myeloid cells-enriched “immune modulation” subtype that specifically possesses low *TP63*

569 expression (67), consistent with our analysis. The study also indicated that patients of the
570 “immune modulation” subtype respond better to immune checkpoint blockade (ICB)
571 treatments than other subtypes. Another milestone multi-omics study subtyping lung SCC
572 identified a “classical” subtype featuring amplification and expression of *TP63/ΔNp63* along
573 with downregulation of immune signaling (59). Immunotherapy has been increasingly
574 explored and utilized in ESCC and lung SCC management (68,69). Identifying patients
575 responsive to immunotherapy is crucial. Our analysis provides a mechanistic insight into these
576 clinical subtyping analyses. It suggests that *TP63/ΔNp63* expression in ESCC and lung SCC
577 cancer cells contributes to generating an immunosuppressive and low TIIC microenvironment.
578 Future studies are urged to demonstrate *TP63/ΔNp63* expression as a candidate prognostic and
579 predictive biomarker for ICB immunotherapy.

580 Compared to studies on TILs, tumor-infiltrating myeloid cells have received less
581 attention. We specifically showed that depletion of $\Delta Np63$ leads to the accumulation of tumor-
582 suppressive reprogrammed myeloid cells in the TME of ESCC xenografts. MDSCs with
583 increased MHCII expression were observed in ESCC xenografts upon cancer cell $\Delta Np63$
584 depletion, consistently indicating reprogramming toward tumor suppression (53). Together
585 with the regulations of cancer cell MHCII expression, we hypothesize that the regulation of
586 myeloid recruitment and reprogramming by $\Delta Np63$ mediate the influence of anticancer
587 immunity in ESCC (Fig. 7E). Our analysis also suggests that more attention be paid to myeloid
588 cell reprogramming and heterogeneous subgroup analysis in addition to general myeloid cell
589 recruitment in future studies.

590 A previous study analyzing ICB resistance in melanoma patients showed that ICB-
591 induced *F-Box and WD repeat domain containing 7* (*FBXW7*) inactivation repressed dsRNA
592 sensing, IFN-I signaling induction, and MHCII expression in cancer cells (70). Inactivation of
593 *FBXW7* also altered the tumor immune microenvironment, including decreased CD8⁺ T cell

594 and macrophage infiltration. Our current findings phenocopy these data. Intriguing, FBXW7,
595 as an E3-ubiquitin ligase, induces the degradation of p63/ΔNp63 (71), which is expressed in
596 melanoma (72). Increased p63/ΔNp63 protein expression following *FBXW7* inactivation may,
597 therefore, mediate the IFN-I signaling repression and TIIC reprogramming observed in
598 melanoma patients, as we showed in the current study in ESCC. This further suggests a broader
599 role of p63/ΔNp63 in regulating viral mimicry response and TIIC infiltration in other cancer
600 types beyond SCCs.

601 Our multi-method analyses in *in vitro* cultures, xenograft models, and human tumor
602 tissue samples demonstrate that ΔNp63 restricts endogenous retrotransposon expression and
603 retrotransposon-induced viral mimicry response and modulates both the cancer cell and the
604 TME. This suggests a translational potential to stratify ESCC and lung SCC patients for viral
605 mimicry-boosting targeted therapy. ΔNp63 and druggable targets upstream of ΔNp63,
606 regulating its expression and function (61), may also be considered in combination therapies.
607 The biobankable panel of ESCC organoid cultures established will facilitate future studies.

608

609 **ACKNOWLEDGEMENTS:** We acknowledge DSMZ (German Collection of
610 Microorganisms and Cell Culture) for the KYSE cell lines. We thank Prof. Gopesh Srivastava
611 and the late Prof. George Tsao for the cell lines. We acknowledge the University of Hong Kong
612 Li Ka Shing Faculty of Medicine Centre for PanorOmic Sciences for providing flow cytometry,
613 live-cell bioluminescence imaging facilities, and mycoplasma screening service. We
614 acknowledge Food and Health Bureau Hong Kong (Health and Medical Research Fund
615 6171566 to VZY) and Research Grants Council Hong Kong (Theme-based Research Scheme
616 T12-701/17-R to MLL) for funding support.

617

618 **AUTHOR CONTRIBUTIONS:**

619 Conceptualization: VZY, MLL
620 Methodology: VZY, SSS, BCL, GZH
621 Investigation: VZY, SSS, BCL, GZH, CWW, MKC, LKC, KX, ZZT, IYW, CLW,
622 DKC, FSC, BTL, KL, AWL, AKL, DLK, SL, MLL
623 Visualization: VZY, SSS, CWW, LKC
624 Funding acquisition: VZY, MLL
625 Project administration: SL, MLL
626 Supervision: VZY, SL, MLL
627 Writing – original draft: VZY, SSS
628 Writing – review & editing: VZY, JMK, AWL, AKL, WD, MLL

630 **COMPETING INTERESTS:** The authors declare no competing interests

632 REFERENCES

633 1. Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, et al. Critical role of p63
634 in the development of a normal esophageal and tracheobronchial epithelium. *Am J Physiol*
635 *Cell Physiol*. American Physiological Society; 2004;287:C171-81.

636 2. Hu H, Xia S-H, Li A-D, Xu X, Cai Y, Han Y-L, et al. Elevated expression of p63 protein
637 in human esophageal squamous cell carcinomas. *International Journal of Cancer*. Wiley
638 Subscription Services, Inc., A Wiley Company; 2002;102:580–3.

639 3. Gatti V, Fierro C, Annicchiarico-Petruzzelli M, Melino G, Peschiaroli A. ΔNp63 in
640 squamous cell carcinoma: defining the oncogenic routes affecting epigenetic landscape
641 and tumour microenvironment. *Mol Oncol*. 2019;13:981–1001.

642 4. Wu Q, Nie DY, Ba-Alawi W, Ji Y, Zhang Z, Cruickshank J, et al. PRMT inhibition induces
643 a viral mimicry response in triple-negative breast cancer. *Nat Chem Biol* [Internet]. 2022;

644 Available from: <http://dx.doi.org/10.1038/s41589-022-01024-4>

645 5. Zhou X, Singh M, Sanz Santos G, Guerlavais V, Carvajal LA, Aivado M, et al.

646 Pharmacologic Activation of p53 Triggers Viral Mimicry Response Thereby Abolishing

647 Tumor Immune Evasion and Promoting Antitumor Immunity. *Cancer Discov.*

648 2021;11:3090–105.

649 6. Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting

650 DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including

651 Endogenous Retroviruses. *Cell.* 2015;162:974–86.

652 7. Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-

653 Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by

654 Endogenous Transcripts. *Cell.* 2015;162:961–73.

655 8. Chen R, Ishak CA, De Carvalho DD. Endogenous Retroelements and the Viral Mimicry

656 Response in Cancer Therapy and Cellular Homeostasis. *Cancer Discov.* 2021;11:2707–25.

657 9. Cheung PY, Deng W, Man C, Tse WW, Srivastava G, Law S, et al. Genetic alterations in

658 a telomerase-immortalized human esophageal epithelial cell line: implications for

659 carcinogenesis. *Cancer Lett.* Elsevier BV; 2010;293:41–51.

660 10. Zhang H, Jin Y, Chen X, Jin C, Law S, Tsao S-W, et al. Cytogenetic aberrations in

661 immortalization of esophageal epithelial cells. *Cancer Genet Cytogenet.* Elsevier BV;

662 2006;165:25–35.

663 11. Yu VZ, Wong VC-L, Dai W, Ko JM-Y, Lam AK-Y, Chan KW, et al. Nuclear localization

664 of DNAJB6 is associated with survival of patients with esophageal cancer and reduces

665 AKT signaling and proliferation of cancer cells. *Gastroenterology.* Elsevier BV;

666 2015;149:1825-1836.e5.

667 12. Yu VZ, Ko JMY, Ning L, Dai W, Law S, Lung ML. Endoplasmic reticulum-localized

668 ECM1b suppresses tumor growth and regulates MYC and MTORC1 through modulating

669 MTORC2 activation in esophageal squamous cell carcinoma. *Cancer Lett.* Elsevier BV;
670 2019;461:56–64.

671 13. Miyoshi H, Stappenbeck TS. In vitro expansion and genetic modification of
672 gastrointestinal stem cells in spheroid culture. *Nat Protoc.* 2013;8:2471–82.

673 14. Kasagi Y, Chandramouleeswaran PM, Whelan KA, Tanaka K, Giroux V, Sharma M, et al.
674 The Esophageal Organoid System Reveals Functional Interplay Between Notch and
675 Cytokines in Reactive Epithelial Changes. *Cmgh.* Elsevier Inc; 2018;5:333–52.

676 15. Dai W, Ko JMY, Choi SSA, Yu Z, Ning L, Zheng H, et al. Whole-exome sequencing
677 reveals critical genes underlying metastasis in oesophageal squamous cell carcinoma. *J*
678 *Pathol.* 2017;242:500–10.

679 16. Gong L, Kwong DL-W, Dai W, Wu P, Li S, Yan Q, et al. Comprehensive single-cell
680 sequencing reveals the stromal dynamics and tumor-specific characteristics in the
681 microenvironment of nasopharyngeal carcinoma. *Nat Commun.* Springer Science and
682 Business Media LLC; 2021;12:1540.

683 17. Jin Y, Tam OH, Paniagua E, Hammell M. TEtranscripts: a package for including
684 transposable elements in differential expression analysis of RNA-seq datasets.
685 *Bioinformatics.* Oxford University Press (OUP); 2015;31:3593–9.

686 18. See P, Lum J, Chen J, Ginhoux F. A single-cell sequencing guide for immunologists. *Front*
687 *Immunol.* Frontiers Media SA; 2018;9:2425.

688 19. Ka-Yue Chow L, Lai-Shun Chung D, Tao L, Chan KF, Tung SY, Cheong Ngan RK, et al.
689 Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory
690 epigenome reprogramming in nasopharyngeal carcinoma. *EBioMedicine.* Elsevier BV;
691 2022;86:104357.

692 20. Iacopetta B, Grieu F, Phillips M, Ruszkiewicz A, Moore J, Minamoto T, et al. Methylation
693 levels of LINE-1 repeats and CpG island loci are inversely related in normal colonic

694 mucosa. *Cancer Sci.* Wiley; 2007;98:1454–60.

695 21. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating
696 immune cells with CIBERSORT. *Methods Mol Biol.* 2018;1711:243–59.

697 22. Vallania F, Tam A, Lofgren S, Schaffert S, Azad TD, Bongen E, et al. Leveraging
698 heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and
699 reduces biological and technical biases. *Nat Commun.* Springer Science and Business
700 Media LLC; 2018;9:4735.

701 23. Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting esophageal squamous-
702 cell carcinoma ecosystem by single-cell transcriptomic analysis. *Nat Commun.* Springer
703 Science and Business Media LLC; 2021;12:5291.

704 24. Sachs N, Clevers H. Organoid cultures for the analysis of cancer phenotypes. *Curr Opin
705 Genet Dev.* 2014;24:68–73.

706 25. Kijima T, Nakagawa H, Shimonosono M, Chandramouleeswaran PM, Hara T, Sahu V, et
707 al. Three-dimensional organoids reveal therapy resistance of esophageal and
708 oropharyngeal squamous cell carcinoma cells. *Cell Mol Gastroenterol Hepatol.* Elsevier
709 BV; 2019;7:73–91.

710 26. Kim J, Bowlby R, Mungall AJ, Robertson AG, Odze RD, Cherniack AD, et al. Integrated
711 genomic characterization of oesophageal carcinoma. *Nature.* Nature Research;
712 2017;541:169–75.

713 27. Budhwani M, Mazzieri R, Dolcetti R. Plasticity of Type I Interferon-Mediated Responses
714 in Cancer Therapy: From Anti-tumor Immunity to Resistance. *Front Oncol.* 2018;8:322.

715 28. Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell-
716 autonomous contribution of type I interferon signaling to the efficacy of chemotherapy.
717 *Nat Med.* 2014;20:1301–9.

718 29. Fan J-B, Miyauchi S, Xu H-Z, Liu D, Kim LKY, Burkart C, et al. Type I Interferon

719 Regulates a Coordinated Gene Network to Enhance Cytotoxic T Cell-Mediated Tumor
720 Killing. *Cancer Discov.* 2020;10:382–93.

721 30. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. *Nat Rev Immunol.*
722 Springer Science and Business Media LLC; 2014;14:36–49.

723 31. Zhang Y, Molavi O, Su M, Lai R. The clinical and biological significance of STAT1 in
724 esophageal squamous cell carcinoma. *BMC Cancer.* Springer Science and Business Media
725 LLC; 2014;14:791.

726 32. Bandla S, Pennathur A, Luketich JD, Beer DG, Lin L, Bass AJ, et al. Comparative
727 genomics of esophageal adenocarcinoma and squamous cell carcinoma. *Ann Thorac Surg.*
728 Elsevier BV; 2012;93:1101–6.

729 33. Hu N, Wang C, Ng D, Clifford R, Yang HH, Tang Z-Z, et al. Genomic characterization of
730 esophageal squamous cell carcinoma from a high-risk population in China. *Cancer Res.*
731 2009;69:5908–17.

732 34. Barriga FM, Tsanov KM, Ho Y-J, Sohail N, Zhang A, Baslan T, et al. MACHETE
733 identifies interferon-encompassing chromosome 9p21.3 deletions as mediators of immune
734 evasion and metastasis. *Nat Cancer.* Springer Science and Business Media LLC;
735 2022;3:1367–85.

736 35. Perelli L, Carbone F, Zhang L, Huang JK, Le C, Khan H, et al. Interferon signaling
737 promotes tolerance to chromosomal instability during metastatic evolution in renal cancer.
738 *Nat Cancer* [Internet]. 2023; Available from: <http://dx.doi.org/10.1038/s43018-023-00584-1>

740 36. Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A, Conway JR, et al. LSD1
741 ablation stimulates anti-tumor immunity and enables checkpoint blockade. *Cell.*
742 2018;174:549–563.e19.

743 37. Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses:

744 An Overview. Viruses [Internet]. 2020;12. Available from:
745 <http://dx.doi.org/10.3390/v12080884>

746 38. Chen YG, Hur S. Cellular origins of dsRNA, their recognition and consequences. *Nat Rev Mol Cell Biol.* 2022;23:286–301.

747 39. Ammi R, De Waele J, Willemen Y, Van Brussel I, Schrijvers DM, Lion E, et al. Poly(I:C)
749 as cancer vaccine adjuvant: knocking on the door of medical breakthroughs. *Pharmacol Ther.* Elsevier BV; 2015;146:120–31.

750 751 40. Carlin AF, Plummer EM, Vizcarra EA, Sheets N, Joo Y, Tang W, et al. An IRF-3-, IRF-
752 5-, and IRF-7-independent pathway of dengue viral resistance utilizes IRF-1 to stimulate
753 type I and II interferon responses. *Cell Rep.* 2017;21:1600–12.

754 41. Zenke K, Muroi M, Tanamoto K-I. IRF1 supports DNA binding of STAT1 by promoting
755 its phosphorylation. *Immunol Cell Biol.* 2018;96:1095–103.

756 42. Yamane D, Feng H, Rivera-Serrano EE, Selitsky SR, Hirai-Yuki A, Das A, et al. Basal
757 expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to
758 multiple RNA viruses. *Nat Microbiol.* Springer Science and Business Media LLC;
759 2019;4:1096–104.

760 43. Hopfner K-P, Hornung V. Molecular mechanisms and cellular functions of cGAS-STING
761 signalling. *Nat Rev Mol Cell Biol.* Springer Science and Business Media LLC;
762 2020;21:501–21.

763 44. Sali TM, Pryke KM, Abraham J, Liu A, Archer I, Broeckel R, et al. Characterization of a
764 novel human-specific STING agonist that elicits antiviral activity against emerging
765 Alphaviruses. *PLoS Pathog.* Public Library of Science (PLoS); 2015;11:e1005324.

766 45. Decout A, Katz JD, Venkatraman S, Ablasser A. The cGAS-STING pathway as a
767 therapeutic target in inflammatory diseases. *Nat Rev Immunol.* Springer Science and
768 Business Media LLC; 2021;21:548–69.

769 46. De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, et al. L1 drives IFN
770 in senescent cells and promotes age-associated inflammation. *Nature*. 2019;566:73–8.

771 47. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al. Pan-
772 cancer immunogenomic analyses reveal genotype-immunophenotype relationships and
773 predictors of response to checkpoint blockade. *Cell Rep*. 2017;18:248–62.

774 48. Ru B, Wong CN, Tong Y, Zhong JY, Zhong SSW, Wu WC, et al. TISIDB: an integrated
775 repository portal for tumor-immune system interactions. *Bioinformatics*. Oxford
776 University Press (OUP); 2019;35:4200–2.

777 49. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive landscape in
778 the human esophageal squamous cell carcinoma microenvironment. *Nat Commun*.
779 2020;11:6268.

780 50. Wu Y, Yi M, Niu M, Mei Q, Wu K. Myeloid-derived suppressor cells: an emerging target
781 for anticancer immunotherapy. *Mol Cancer*. 2022;21:184.

782 51. Dysthe M, Parihar R. Myeloid-derived suppressor cells in the tumor microenvironment.
783 *Adv Exp Med Biol*. 2020;1224:117–40.

784 52. Mitchem JB, Brennan DJ, Knolhoff BL, Belt BA, Zhu Y, Sanford DE, et al. Targeting
785 tumor-infiltrating macrophages decreases tumor-initiating cells, relieves
786 immunosuppression, and improves chemotherapeutic responses. *Cancer Res*. American
787 Association for Cancer Research (AACR); 2013;73:1128–41.

788 53. Metzger P, Kirchleitner SV, Kluge M, Koenig LM, Hörth C, Rambuscheck CA, et al.
789 Immunostimulatory RNA leads to functional reprogramming of myeloid-derived
790 suppressor cells in pancreatic cancer. *J Immunother Cancer*. BMJ; 2019;7:288.

791 54. Shultz LD, Schweitzer PA, Christianson SW, Gott B, Schweitzer IB, Tennent B, et al.
792 Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. *J*
793 *Immunol*. The American Association of Immunologists; 1995;154:180–91.

794 55. Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, et al. The development and improvement
795 of immunodeficient mice and humanized immune system mouse models. *Front Immunol.*
796 Frontiers Media SA; 2022;13:1007579.

797 56. Luo N, Nixon MJ, Gonzalez-Ericsson PI, Sanchez V, Opalenik SR, Li H, et al. DNA
798 methyltransferase inhibition upregulates MHC-I to potentiate cytotoxic T lymphocyte
799 responses in breast cancer. *Nat Commun.* 2018;9:248.

800 57. Westrich JA, Vermeer DW, Silva A, Bonney S, Berger JN, Cicchini L, et al. CXCL14
801 suppresses human papillomavirus-associated head and neck cancer through antigen-
802 specific CD8+ T-cell responses by upregulating MHC-I expression. *Oncogene.* Springer
803 Science and Business Media LLC; 2019;38:7166–80.

804 58. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, et al. SOX2 is an
805 amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas.
806 *Nat Genet.* Springer Science and Business Media LLC; 2009;41:1238–42.

807 59. Satpathy S, Krug K, Jean Beltran PM, Savage SR, Petralia F, Kumar-Sinha C, et al. A
808 proteogenomic portrait of lung squamous cell carcinoma. *Cell.* 2021;184:4348-4371.e40.

809 60. Cancer cell line encyclopedia (CCLE) [Internet]. [cited 2023 Aug 28]. Available from:
810 <https://portals.broadinstitute.org/ccle>

811 61. Fisher ML, Balinth S, Mills AA. Δ Np63 α in cancer: importance and therapeutic
812 opportunities. *Trends Cell Biol.* Elsevier BV; 2023;33:280–92.

813 62. Meissl K, Macho-Maschler S, Müller M, Strobl B. The good and the bad faces of STAT1
814 in solid tumours. *Cytokine.* 2017;89:12–20.

815 63. Burkholder B, Huang R-Y, Burgess R, Luo S, Jones VS, Zhang W, et al. Tumor-induced
816 perturbations of cytokines and immune cell networks. *Biochim Biophys Acta.* Elsevier
817 BV; 2014;1845:182–201.

818 64. Anwar SL, Wulaningsih W, Lehmann U. Transposable elements in human cancer: Causes

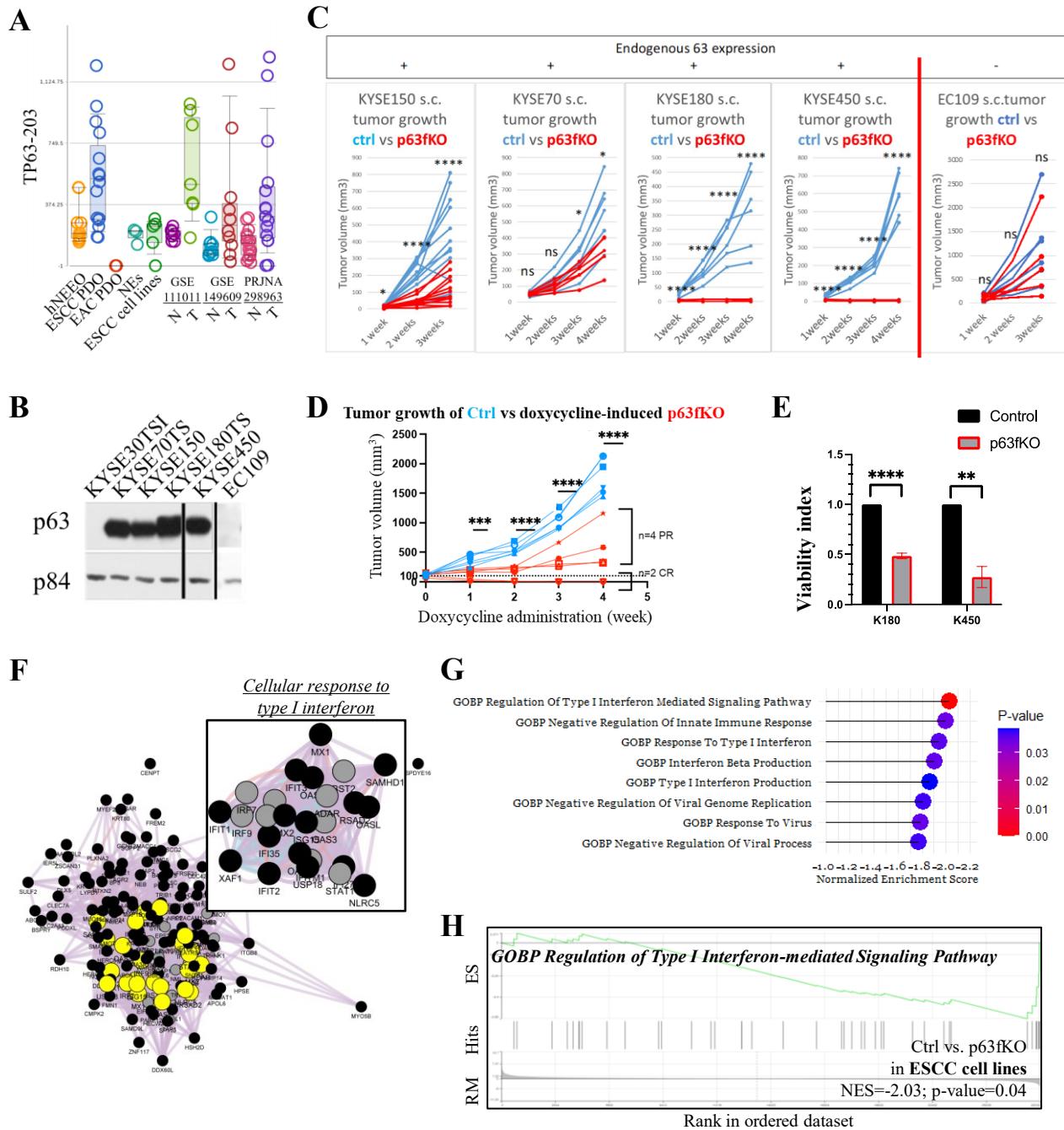
819 and consequences of deregulation. *Int J Mol Sci* [Internet]. 2017;18. Available from:
820 <http://dx.doi.org/10.3390/ijms18050974>

821 65. Kumakura Y, Rokudai S, Iijima M, Altan B, Yoshida T, Bao H, et al. Elevated expression
822 of Δ Np63 in advanced esophageal squamous cell carcinoma. *Cancer Sci*. 2017;108:2149–
823 55.

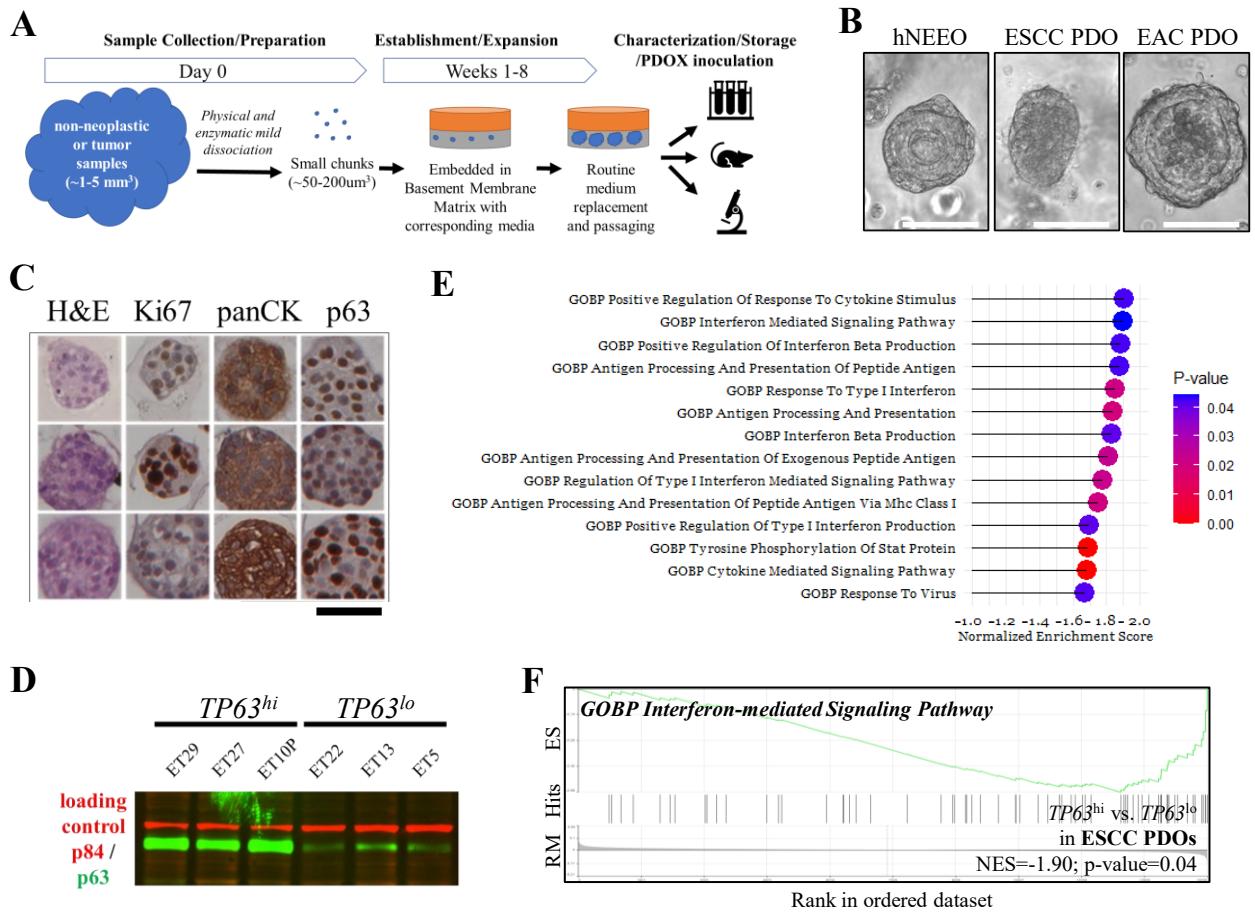
824 66. Yin Y, Li H, Jiang Y, Zhang HF. Expression and clinical significance of S100A2 and p63
825 in esophageal carcinoma Cao LY. *World J Gastroenterol*. 2009;15:4183–8.

826 67. Liu Z, Zhao Y, Kong P, Liu Y, Huang J, Xu E, et al. Integrated multi-omics profiling
827 yields a clinically relevant molecular classification for esophageal squamous cell
828 carcinoma. *Cancer Cell* [Internet]. 2022; Available from:
829 <https://www.sciencedirect.com/science/article/pii/S1535610822005906>

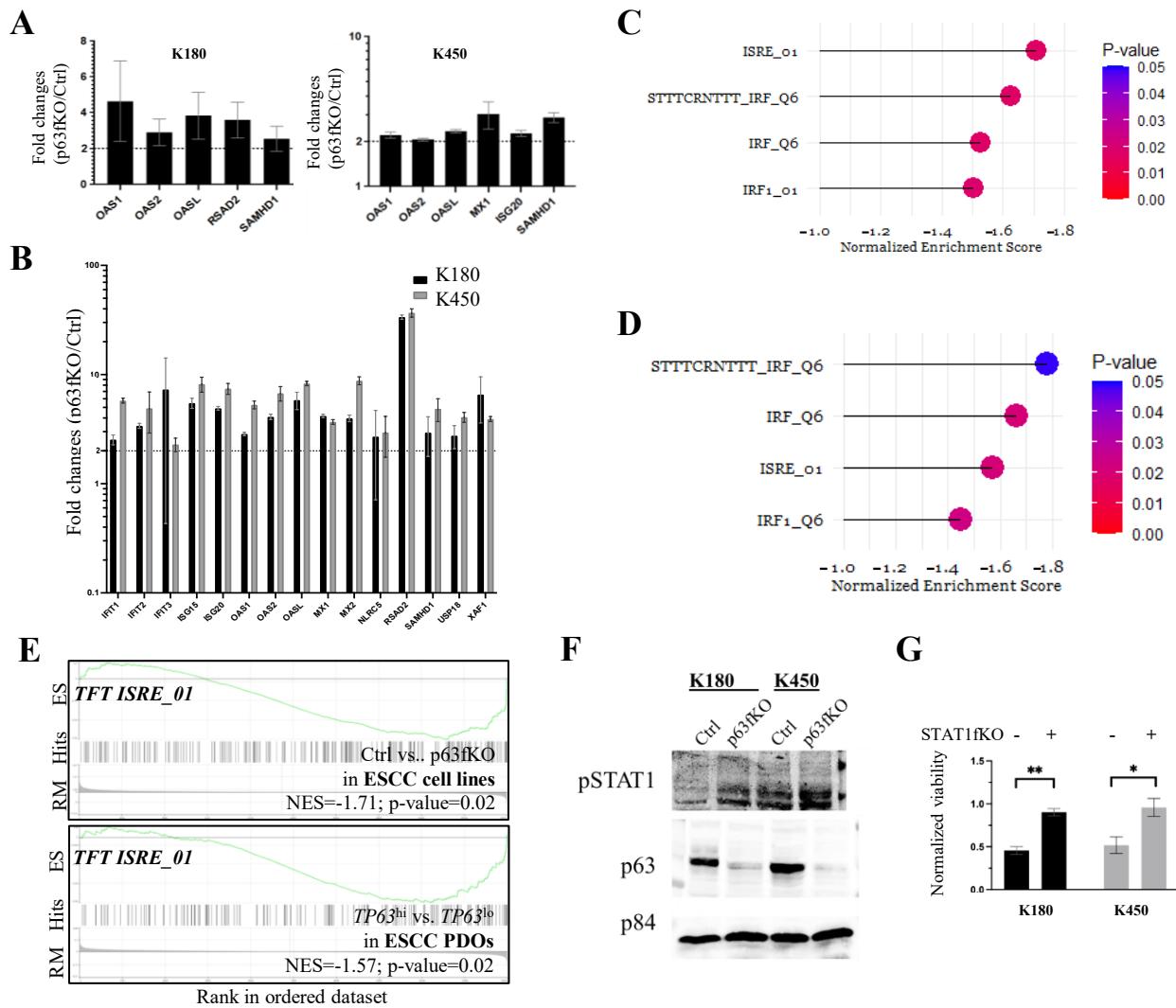
830 68. Lu Y, Wang W, Wang F. Clinical benefits of PD-1 inhibitors in specific subgroups of
831 patients with advanced esophageal squamous cell carcinoma: a systematic review and
832 meta-analysis of phase 3 randomized clinical trials. *Front Immunol*. 2023;14:1171671.

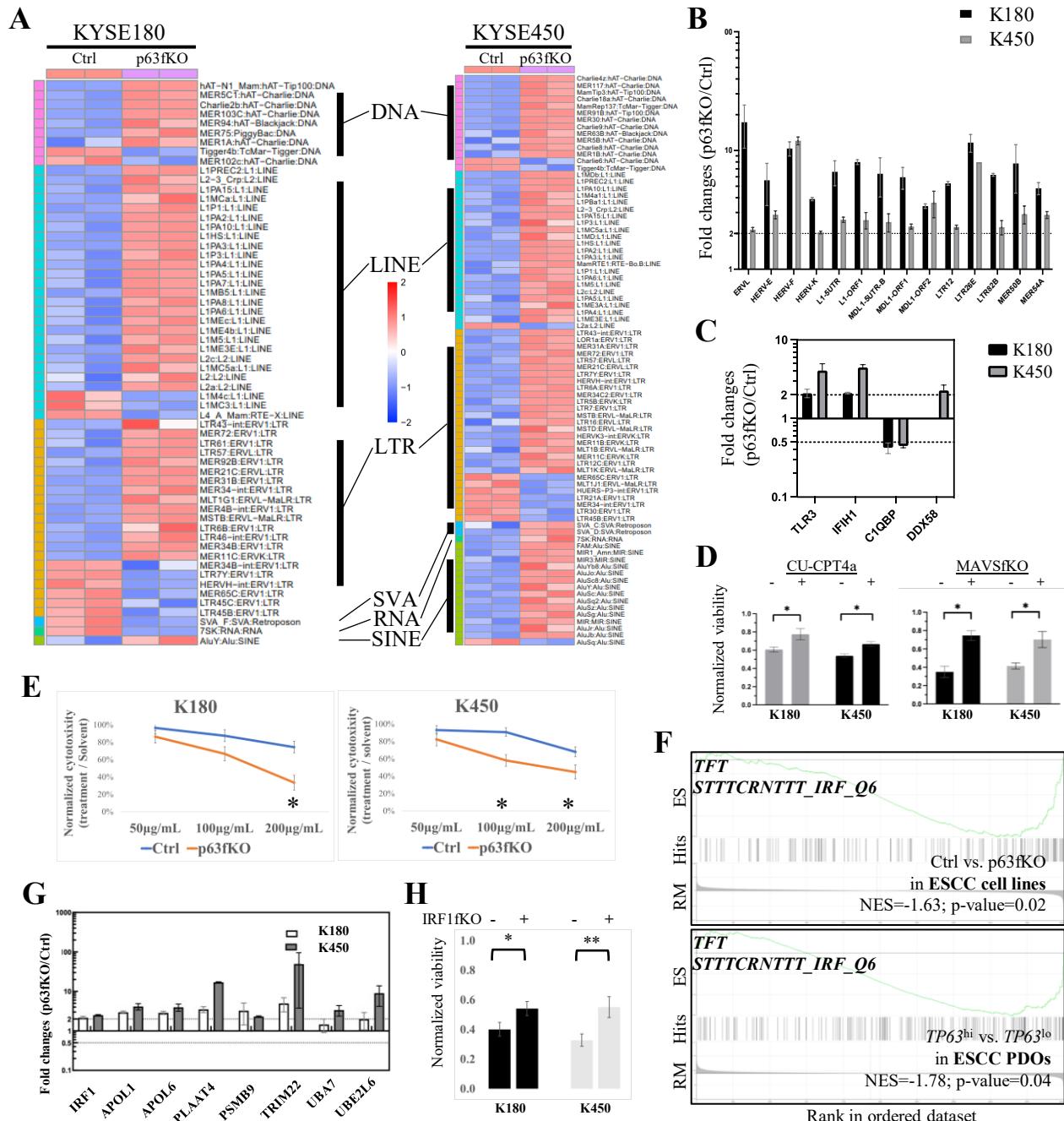

833 69. Lim SM, Hong MH, Kim HR. Immunotherapy for non-small cell lung cancer: Current
834 landscape and future perspectives. *Immune Netw*. The Korean Association of
835 Immunobiologists; 2020;20:e10.

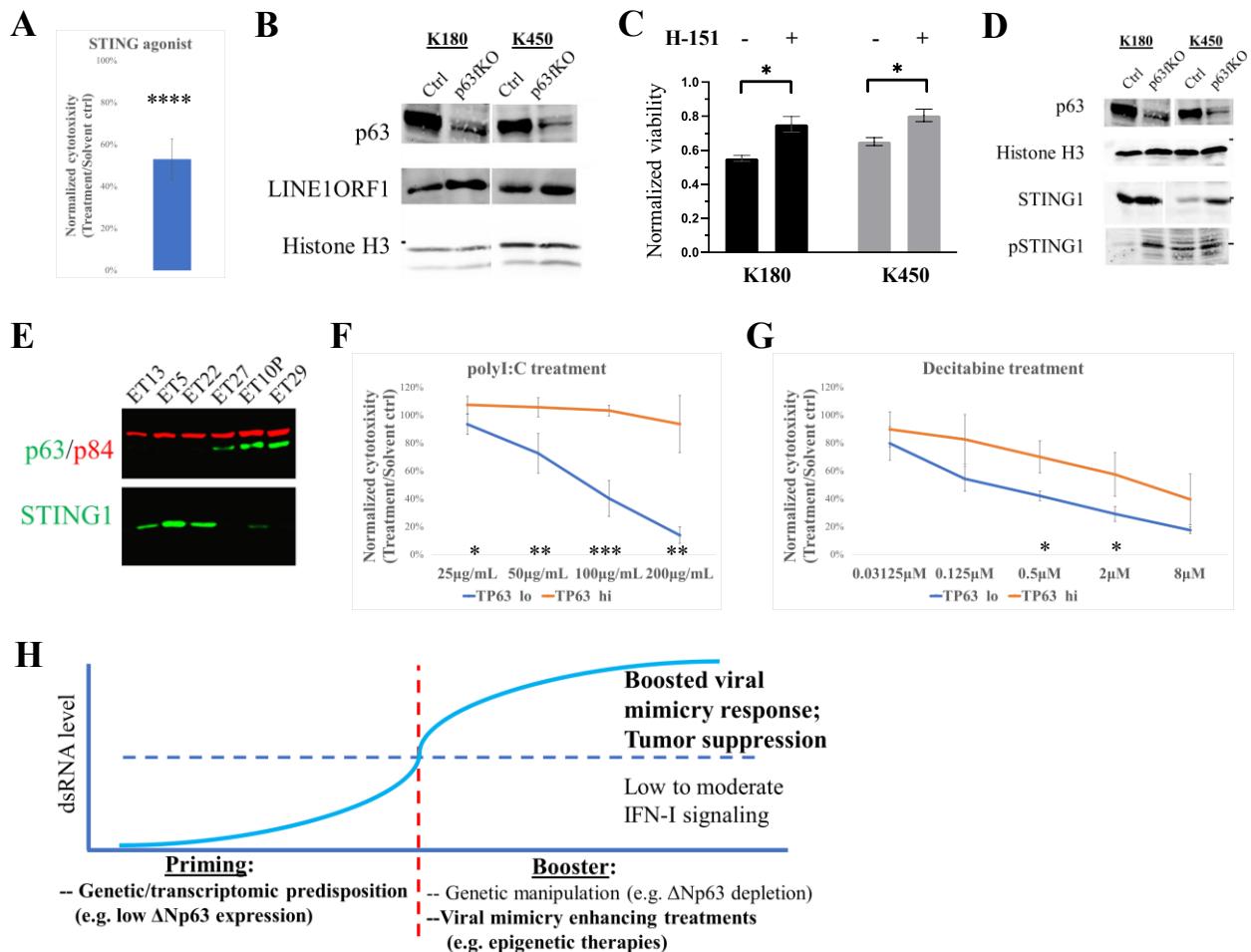
836 70. Gstaiger C, Liu D, Miao D, Lutterbach B, DeVine AL, Lin C, et al. Inactivation of Fbxw7
837 impairs dsRNA sensing and confers resistance to PD-1 blockade. *Cancer Discov*.
838 American Association for Cancer Research (AACR); 2020;10:1296–311.

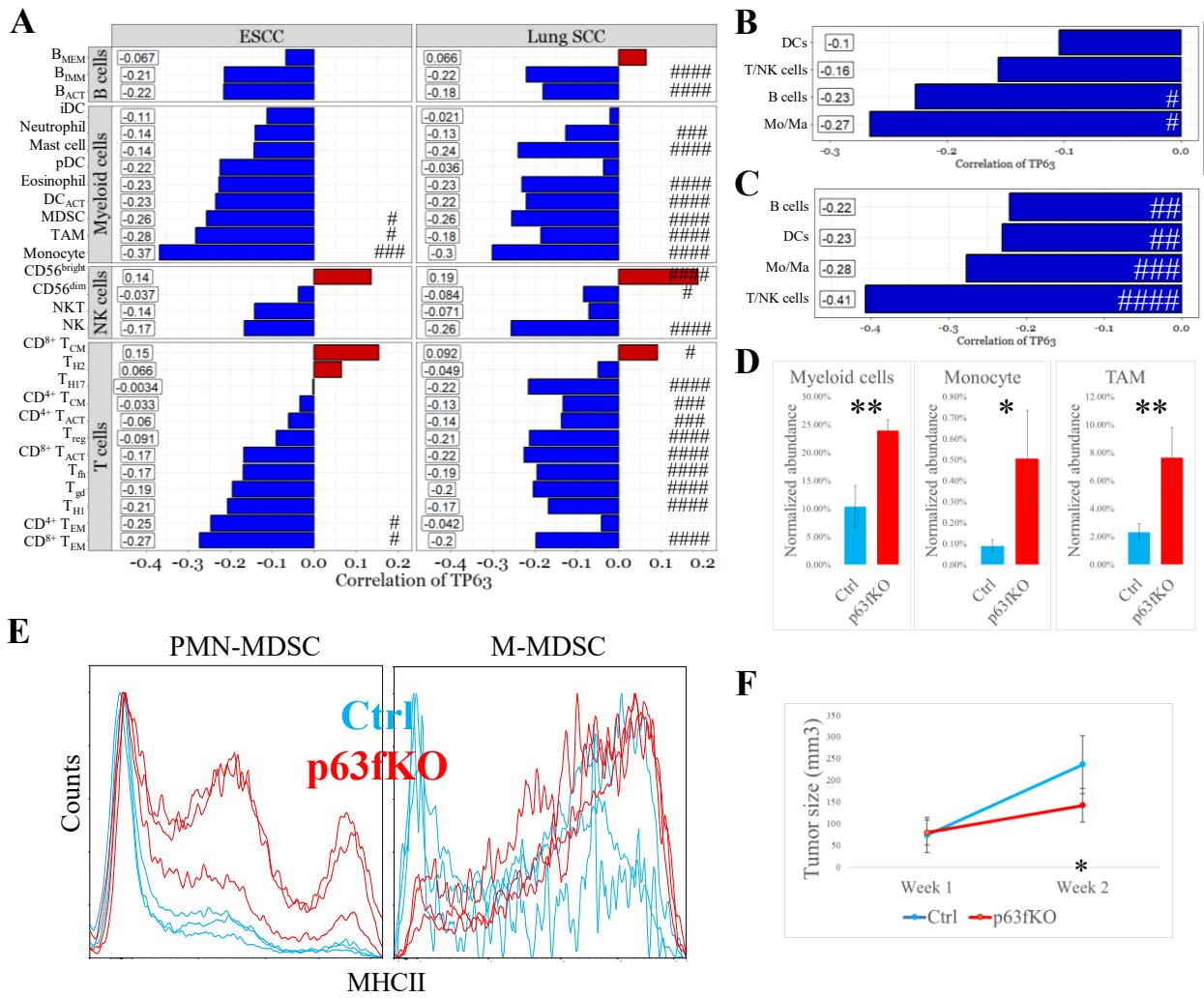

839 71. Galli F, Rossi M, D'Alessandra Y, De Simone M, Lopardo T, Haupt Y, et al. MDM2 and
840 Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell
841 differentiation. *J Cell Sci*. The Company of Biologists; 2010;123:2423–33.

842 72. Matin RN, Chikh A, Chong SLP, Mesher D, Graf M, Sanza' P, et al. P63 is an alternative
843 p53 repressor in melanoma that confers chemoresistance and a poor prognosis. *J Exp Med*.




Figure 1. **A)** Summary of the RNA expression of *TP63-203* (encoding the dominant Δ Np63 isoform) in a panel of PDOs and patient normal/ESCC tissue samples. See Supplementary Table 3 for the detailed statistical analysis. NE: normal immortalized esophageal epithelial cell lines; N: patient normal esophageal tissues; T: patient ESCC tissues. **B)** WB analysis shows the expression of Δ Np63 in a panel of ESCC cell lines. **C)** Subcutaneous tumorigenicity assay reveals the critical oncogenic role of Δ Np63. The tumorigenesis of a Δ Np63-negative cell line EC109 was unaffected upon administration of the CRISPR procedure, affirming the specificity of the procedure. Ctrl: non-targeted oligo controls; p63fKO: p63 protein functional knockout (fKO). **D)** Induced Δ Np63 depletion on established xenografts leads to significantly suppressed growth and even complete tumor regression. PR: partial response; CR: complete regression. **E)** Δ Np63 depletion results in reduced viability *in vitro* in KYSE180TS (K180) and KYSE450 (K450) cells. **F)** The functional gene network by GeneMANIA analysis of upregulated genes upon Δ Np63 depletion (Supplementary Table 4). Highlighted and top right: the top significant annotation. Black circle: input genes; Grey circle: calculated related genes. **G)** Top IFN-I signaling-related genesets significantly correlate with Δ Np63 depletion in both K180 and K450 by GSEA. A negative normalized enrichment score (NES) indicates enrichment in Δ Np63-depleted cells compared to control cells. See Supplementary Table 6 for the complete list of genesets. **H)** A representative geneset enriched in Δ Np63-depleted cell lines compared to control cells, from G. RM: Rank metric; ES: Enrichment score. ****, p-value < 0.0001; ***, p-value < 0.001; **, p-value < 0.01; *, p-value < 0.05; ns, p-value > 0.05.


Figure 2. A) An illustration of the organoid establishment workflow. Samples were acquired through surgery or endoscopic examination. **B)** Representative microscopic images of *in vitro* hNEEO, ESCC PDO, and EAC PDO cultures showing distinctive morphological features of the colonies. Scale bar:100um. **C)** Representative histological/IHC analyses showing proliferative squamous cell carcinoma-specific features of the ESCC PDO cultures. Scale bar 50 μ m. H&E: Hematoxylin and Eosin staining; panCK: pan-cytokeratin staining. **D)** WB analysis verifies the varied relative expression of Δ Np63 in ESCC PDOs with the lowest ($TP63^{lo}$) and highest expressions ($TP63^{hi}$), ranked based on the $TP63$ RNA expressions across the panel of PDOs. **E)** Top IFN-I signaling-related genesets negatively correlated with Δ Np63 expression in PDOs by GSEA. A negative NES indicates enrichment in $TP63^{lo}$ PDOs compared to $TP63^{hi}$ PDOs. See Supplementary Table 8 for the complete list. **F)** A representative geneset enriched in $TP63^{lo}$ PDOs compared to $TP63^{hi}$ PDOs, from E.


Figure 3. A and B) Δ Np63 depletion upregulates ISGs in *in vitro* cell line cultures (A) and xenografts (B) by QPCR analysis. Dotted line: 2-fold changes. **C and D**) Top TF-binding signature genesets enriched in Δ Np63-depleted cells in both K180 and K450 cell lines (C) and in *TP63^{lo}* PDOs (D), as compared to control cells and *TP63^{hi}* PDOs, respectively. **E**) GSEA results of the gene set ISRE_01 (STAT1 targets) in Δ Np63-depleted cell lines (Upper) and ESCC PDO cultures with varied p63 expression (Bottom), from C and D. **F**) Δ Np63 depletion increases STAT1 tyrosine 702 phosphorylation (pSTAT1) level by WB analysis in ESCC cell lines. **G**) CRISPR-mediated STAT1 depletion dramatically rescues the reduced cell viability upon Δ Np63 depletion. Shown are the normalized viability of Δ Np63-depleted cells to the corresponding control cells.

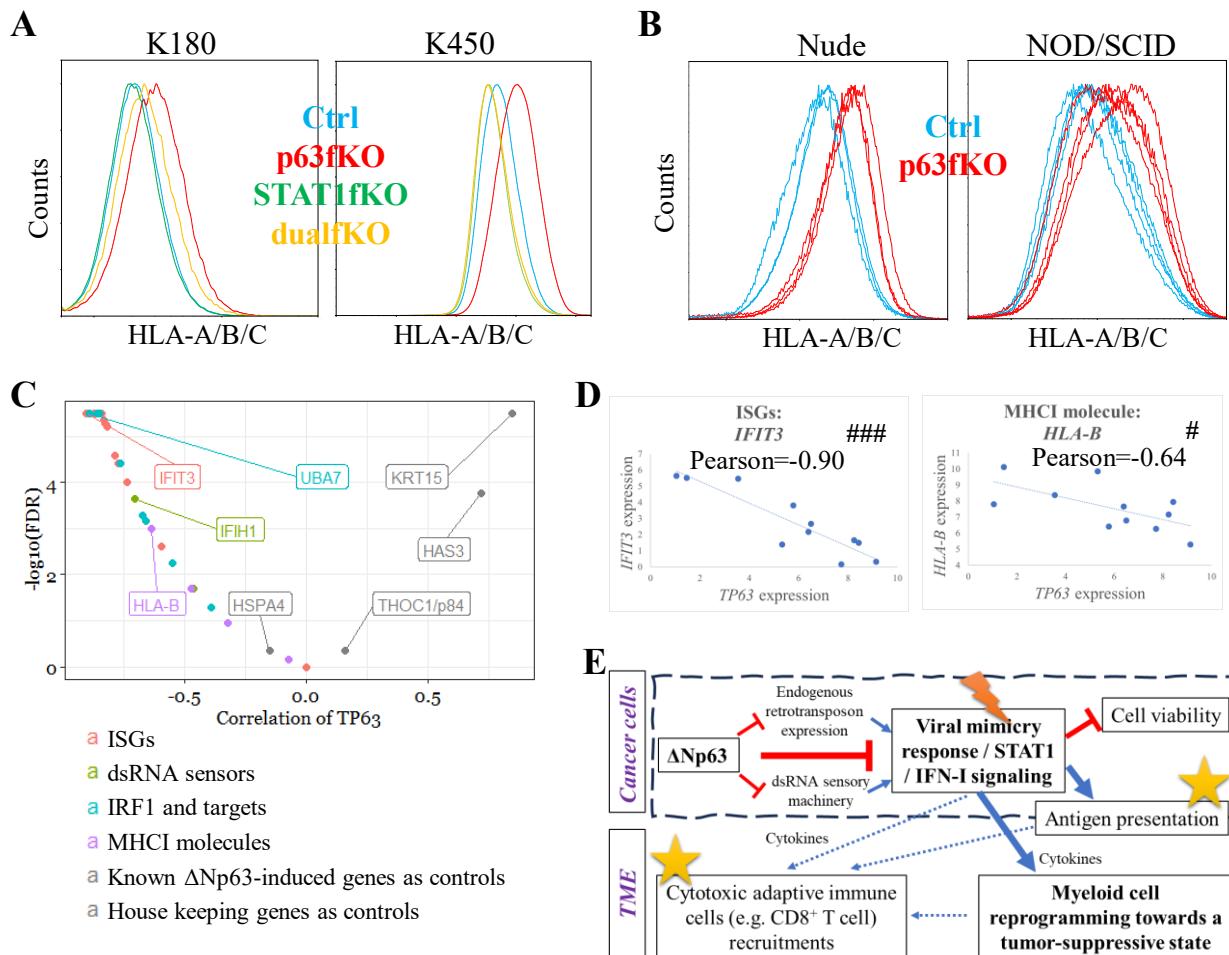

Figure 4. A) Endogenous retrotransposon expression profiling in ESCC cell lines upon Δ Np63 depletion shows generally increased expression of retrotransposons. A total of 773 and 760 expressed retrotransposons were identified in the two cell lines, respectively. Shown are all retrotransposons with significantly altered expression (adjusted p -value < 0.05) upon Δ Np63 depletion (60 retrotransposons in K180 and 83 in K450). DNA: DNA transposon; LINE: Long interspersed nuclear element; LTR: Long terminal repeat; SVA: SINE-VNTR-Alus; RNA: small RNA retrotransposon; SINE: Short interspersed nuclear element. **B)** Increased retrotransposon expression upon Np63 depletion was verified by QPCR following dsRNA enrichment. RNA expression was normalized to the single-stranded RNA expression of *HSPA4*. **C)** RNA expression of dsRNA sensors is upregulated upon p63 depletion in ESCC cell lines. The expression of *Complement C1q binding protein (C1QBP)*, a negative regulator of the sensors, was employed as a control. Data normalized to *HSPA4* expression. **D)** Inhibition of the dsRNA sensing of TLR3 by TLR3/dsRNA interaction inhibitor CU-CPT5a and depletion of MAVS by CRISPR-mediated protein depletion attenuates the proliferation suppressive effect upon Δ Np63 depletion. Shown are the normalized viability of Δ Np63-depleted cells to the corresponding control cells. **E)** Δ Np63-depleted cells demonstrate higher sensitivity to poly(I:C) treatment, leading to further reduced cell viability in ESCC cell lines. **F)** GSEA result of the gene set STTTCRNTTT_IRF_Q6 (IRF1 targets) related to IRF1 binding in Δ Np63-depleted cell lines (Upper) and PDO cultures with varied p63 expression (Bottom), from Fig. 3C and 3D. **G)** Δ Np63 depletion upregulates IRF1 target genes in cell lines. Data normalized to *HSPA4* expression. The dotted line indicates two-fold changes. **H)** CRISPR-mediated IRF1 depletion partially rescues the reduced cell viability upon Δ Np63 depletion. Shown are the normalized viability of Δ Np63-depleted cells to the corresponding control cells.

Figure 5. **A)** A cGAS-STING agonist G10 exerts a tumor-suppressive role in a panel of ESCC PDO cultures (N=5). **B)** The protein expression of LINE1 ORF1 is upregulated upon Δ Np63 depletion in ESCC cell lines. **C)** Inhibition of STING1 function by small molecular inhibitor H-151 attenuates the proliferation suppressive effect upon Δ Np63 depletion. Shown are the normalized viability of Δ Np63-depleted cells to the corresponding control cells. **D)** Protein expressions of total STING1 and phosphorylated STING1 (pSTING1) are upregulated upon Δ Np63 depletion in ESCC cell lines by WB analysis. **E)** STING1 and Δ Np63 protein expression show negative correlations in ESCC PDOs by WB analysis. Nuclear protein p84 was used as the loading control. **F** and **G**) ESCC $TP63^{lo}$ PDOs significantly respond to poly(I:C) treatments (F) and Decitabine treatments (G) compared to $TP63^{hi}$ PDOs. **H)** Proposed principle for viral mimicry-inducing treatments. Inspired and modified from (8).

Figure 6. A) Negative correlations between *TP63* expression and multiple TIIC signatures are observed in the non-deconvolution TCGA immune cell profiles. B_{MEM} : memory B cells; B_{IMM} : immature B cells; B_{ACT} : activated B cells; iDC: interstitial dendritic cells; pDC: plasmacytoid DC; DC_{ACT} : activated DC; T_{CM} : central memory T cells; T_{H2} : T helper 2 cells; T_{H17} : T helper 17 cells; T_{ACT} : activated T cells; T_{reg} : regulatory T cells; T_{fh} : T follicular helper cells; T_{gd} : $\gamma\delta$ T cells; T_{H1} : T helper 1 cells; T_{EM} : effector memory T cells. **B** and **C**) Deconvolution analyses on bulk ESCC RNA sequencing data (TCGA ESCC dataset; B) and ESCC microarray data (GSE53624; C) reveal negative correlations between cancer cell *TP63* expression and major TIIC relative abundance. **D**) Elevated proportions of tumor-infiltrating mouse myeloid cells, monocytes, and TAM, as normalized to human cancer cells, are observed in Δ Np63-depleted KSYE450 CDXs on nude mice. N=3 in each group. **E**) Tumor-infiltrating M-MDSCs and PMN-MDSCs with increased MHCII expression were observed in Δ Np63-depleted KSYE450 CDXs on nude mice. **F**) Δ Np63-depleted KSYE450 cells inoculated in NOD-SCID mice display significant but greatly attenuated tumor suppression compared to the tumorigenicity profile observed in nude mice (Fig. 1C). ####, adjusted p-value < 0.001; ##, adjusted p-value < 0.01; ##, adjusted p-value < 0.05; #, adjusted p-value < 0.1.

Figure 7. A) Cancer cell surface HLA-A/B/C expressions are upregulated in Δ Np63-depleted K180 and K450 cells *in vitro*, which is dramatically rescued upon Δ Np63/STAT1 dual-depletion (dualfKO). **B)** Cancer cell surface HLA-A/B/C expressions are upregulated in Δ Np63-depleted KSYE450 CDXs on both nude and NOD/SCID (N=4) mice models. **C)** The ISGs and related genes regulated by Δ Np63 in ESCC cell lines and xenografts show significant negative correlations with *TP63* expression in CCLE *TP63*⁺ lung SCC cell lines (N=11). As controls, known Δ Np63 target genes *KRT15* and *HAS3* show significant positive correlations to *TP63* expression, while housekeeping genes *HSPA4* and *THOC1* show no significant correlations. Genes from different categories detailed in Supplementary Table 16, analyzed by Pearson correlation. **D)** Selected representative negative correlations between *TP63*/IFIT3 and *TP63*/HLA-B, from C. **E)** Summary diagram of the novel oncogenic roles of Δ Np63. Lighting sign indicates a pharmaceutical opportunity for viral mimicry boosting treatment; Stars suggest a pharmaceutical opportunity for ICB therapy.