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Abstract 

Alzheimer’s disease is a neurodegenerative disorder characterized by progressive amyloid 
plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, 
and changes in neural circuit activation that lead to cognitive decline and dementia. Early 
molecular and cellular disease-instigating events occur 20 or more years prior to presentation of 
symptoms, making them difficult to study, and for many years amyloid-β, the aggregating peptide 
seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. 
However, strategies targeting amyloid-β aggregation and deposition have largely failed to 
produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive 
outcomes. However, a role still exists for amyloid-β in the variation in an individual’s immune 
response to early, soluble forms of aggregates, and the downstream consequences of this 
immune response for aberrant cellular behaviors and creation of a detrimental tissue environment 
that harms neuron health and causes changes in neural circuit activation. Here, we perform 
functional magnetic resonance imaging of awake, unanesthetized Alzheimer’s disease mice to 
map changes in functional connectivity over the course of disease progression, in comparison to 
wild-type littermates. In these same individual animals, we spatiotemporally profile the immune 
milieu by measuring cytokines, chemokines, and growth factors across various brain regions and 
over the course of disease progression from pre-pathology through established cognitive deficit. 
We identify specific signatures of immune activation predicting hyperactivity followed by 
suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant 
brain regions, following the pattern of spread of amyloid pathology. 
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Introduction 

13.8 million people are projected to be afflicted with Alzheimer’s disease (AD) over the next couple 
decades (1,2, 3). It is a neurodegenerative condition characterized by an entanglement of disease 
pathologies, and cognitive impairment resulting in a decrease in quality of life (4, 5). Classical 
hallmarks of Alzheimer’s Disease are the development and spread of neurotoxic amyloid-β 
peptides and oligomers (6-17) and neurofibrillary tau tangles (13-17) in parallel with 
neuroinflammation (15-20) and, ultimately, neuronal loss and brain tissue atrophy. The clinical 
symptomatic aspect of the described pathologies is the loss in cognitive performance, with 
cognitive impairment manifesting in spatial cognition, working memory and executive functions 
(16, 21). However, current treatment options for Alzheimer’s Disease have failed to safely and 
meaningfully delay, slow, or halt disease, let alone reverse the effects on cognition (22, 23), 
potentially due to focus on single molecular targets. Integration of information from multiple 
aspects of AD pathology is likely needed to interrogate and correct the complex, systems-level 
mechanisms negatively impacting neuronal health, brain function, and cognition in AD. 

One of the emerging biological factors of interest is the role that inflammation plays in the 
progression of Alzheimer’s Disease. It has been detailed that neuroinflammation occurs over the 
progression of Alzheimer’s Disease (15-20). On a more foundational level, it has been shown that 
neuroinflammation can have detrimental effects on neuronal behavior, such as predisposing 
neurons to be more sensitive to intrinsic excitability, resulting in increased rates of spontaneous 
action potentials, leading to an uncoordinated neuro-electrical behavior (27, 28). Moreover, 
cytokines have also been shown to have a profound effect on synaptic plasticity (28-30), 
demonstrating that microglia responses to adverse stimuli can affect neuronal behavior. Such 
effects can manifest in alterations to cognitive performance (28, 31), thus establishing a link 
between neuroinflammation and cognitive ability.  
While the inflammatory environment is one neurophysiological event that influences cognitive 
behavior, another quintessential factor to driving cognitive performance is the level of neuronal 
activity (35, 36). This neurophysiological event can be described by brain regional activity and the 
regional combined behavior during a specific cognitive state. Thus, depending on the 
experimental paradigm, one can quantify how particular brain regions are involved at specific 
tasks (32-34), providing insight as to which region are involved in executing a particular task, 
quantifying what is called a functional network. While task based functional connectivity metrics 
yield insight into task specific networks, studies focusing on resting state functional connectivity 
(rsFC) have yielded a wealth of information as to how the brain organizes when no task is being 
performed (37, 38). It was found that such networks quantified during the resting state were 
different between comparing healthy controls to diseased populations or subjects afflicted with 
cognitive impairment (35, 36, 39-41).   
Therefore, there is sufficient evidence that the regional inflammatory environment surrounding 
bodies of neurons can affect their behavior, and thus affect the spontaneous activations of brain 
regions that could influence cognitive behavior. However, the major limitation is that the majority 
of studies examining the above-mentioned factors study them in a univariate manner, excluding 
details how each individual factor affect each other over the progression of Alzheimer’s Disease. 
Existing efforts to rectify the limitation includes the use deep learning or artificial intelligence to 
evaluate relationship cross-modality in large datasets (24-26). These datasets contain a wealth 
of information, and online databases such as the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) offer a more comprehensive quantification of disease pathology.  However, such datasets 
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lack spatial resolution when it comes to examining the inflammatory environment of individual 
brain regions, and only provide terminal data when quantifying the inflammatory environment of 
the brain. The consequence is that one can not determine how the development of Alzheimer’s 
Disease can affect brain regions, thus driving changes to functional connectivity which then 
manifest as alterations to cognitive performance. 
In our attempt to address the current limitation in the field, we describe an experiment that is 
centered around a well stereotyped mouse model of Alzheimer’s Disease, and quantify the 
inflammatory environment of 3 cortical brain regions over four time points that are related to 
cumulative key events that occur during Alzheimer’s Disease progression; before the 
development of disease pathology at month 1.5 (42), extracellular amyloid deposition occurring 
at month 2 (42, 43), deterioration of basal synaptic transmission in hippocampal CA1 at month 4 
(42), and neuron loss at month 6 (42, 44-46). Additionally, we utilize awake resting state functional 
magnetic resonance imaging (rs-fMRI) to quantify the resting state functional connectivity during 
those four time points to correlate the functional connectivity to regional brain inflammation over 
disease progression. Our findings provide a new insight into how neuroinflammation and 
functional connectivity are intertwined in Alzheimer’s Disease, thus highlighting which brain 
regions and networks are implicated in disease pathology at different stages of the 
neurodegenerative disease.  

 

Methods 

Animal subjects. Institutional and national guidelines for the care and use of laboratory animals 
were followed and approved by the Penn State Institutional Animal Care and Use Committee 
(PRAMS201647005). 5xFAD hemizygous B6SJL (MMRRC Strain #034840-JAX) background 
strain and wildtype mice were used to breed a colony of mice that were either hemizygous for the 
5xFAD related genes, or wild-type littermates. All mice were genotyped following the protocol 
provided by Jackson Labs (Protocol Number: 31769). All mice were also genotyped for the retinal 
degenerative gene Pde6B using the protocol provided by Jackson Labs (Protocol Number: 
31378). Animals that were found to be homozygous for the Pde6B gene were excluded from the 
study. Both male and female animals are included in the study. Mice were singly housed following 
headpost surgery (procedure below) at 1 month old. Food and water were provided ad libitum. 
Nesting material and chew blocks were provided to singly-housed mice as enrichment. The 
housing room was kept at 70 °C and adhered to a 12-hour light and 12-hour dark cycle. The study 
consisted of 160 mice: 27 for longitudinal imaging studies, 31 for age 1.5 months single timepoint, 
33 for age 2 months single timepoint, 34 for age 4 months single timepoint, and 35 for age 6 
months single timepoint. All mice underwent rs-fMRI. Cytokine protein levels were profiled in 105 
animal brains from the same cohort of animals that underwent rs-fMRI: 25 mice for age 1.5 
months, 26 for age 2 months, 27 for age 4 months, and 26 for age 6 months. All experiments 
were conducted during the 12-hour dark cycle to better capture the properties of the awake state, 
with euthanasia and tissue collection (procedure below)_directly following imaging. All 
experiments in the present study were approved by the Institutional Animal Care and Use 
Committee (IACUC) at the Pennsylvania State University. 

Surgical Procedures. Mice had headpost implantation surgery done at 1 month old. Mice were 
anesthetized with 3% isoflurane and an oxygen flow of 1.0 L/min within an isoflurane chamber. 
The surgical plane of anesthesia was confirmed by pinching the lower limbs of the mouse, and if 
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no reaction was observed, the mouse was successfully anesthetized.  The scalp of the mouse is 
then shaved using an electric clipper in preparation for surgery. A heating mat with a rectal probe 
(PhysioSuite with RightTemp from Kent Scientific) is used to maintain a body temperature around 
36-37 degrees Celsius. A custom surgical setup that features the boundaries of the awake animal 
restrainer used in neuroimaging experiments is used. Once the mouse is in position, and the head 
is fixed for surgery, the scalp is cleaned twice alternating between provodine iodine and 70% 
isopropyl alcohol. Ophthalmic ointment is applied to the animal’s eyes to prevent dryness during 
the course of surgery. The scalp is infiltrated with Bupivacaine (4mg/kg), followed by an anterior 
to posterior incision before excising the skin to form a circular excision anterior to the ears, and 
posterior to the eyes. All relevant soft tissue is then removed such as the periosteum, leaving only 
the skull exposed. The site is washed one time with sterilized saline solution. Once dried, an 
etching solution (composed of citric acid) is applied to the skull for 30 seconds before being rinsed 
off using saline solution. Dental cement (C&B Metabond) consisting of a ratio of 1 drop catalyst 
(C&B Metabond), 4 drops of “quick!” base (C&B Metabond), and 2 scoops of clear L powder (C&B 
Metabond) is applied to the exposed skull using a fine tipped brush. Rough edges are smoothed 
out during the process. Once set and cured, a custom head post constructed from polylactic acid 
(product number) is adhered to the dental cap using dental cement of the same recipe. Upon 
completion of procedure, meloxicam (5 mg/kg) is administered 2 days post-surgery. Weight and 
behavior in home cage is subsequently monitored for seven days where any weight drop lower 
than 20% of pre-surgical weight is recorded as a failure to recover from surgical procedure, and 
thus excluded from subsequent experiments. If weight and behavior is observed to be satisfactory 
(no weight loss, no abnormal behavior in home cage) for 4 consecutive days post-surgery, the 
mouse is then moved to subsequent experiments detailed below.  

Acclimation Procedure. Mice were acclimated for awake animal imaging using a procedure 
adapted from an in-house pipeline. The mice were habituated to the restrainer used for imaging 
where the process lasted 4 days prior to the imaging experiment. An acclimation box was used 
alongside custom made holders that mimic the interior of a scanner. All mice were first 
anesthetized using 3% isoflurane, and an oxygen flow of 1.0 L/min. Once anesthetized, mice had 
their front limbs bounded together using tape before restraining the mice by attaching a custom-
made head bar that connected the implanted headpost to the custom-made restrainer. Once the 
animals were confirmed to be awake, they were given five minutes to adjust to being restrained 
before the acclimation process started. The first day of acclimation was 15 minutes with no sound. 
The second, third and fourth day of acclimation was 30 minutes, 45 minutes, and 60 minutes 
respectively. A soundtrack that had the recording of the noise heard during an fMRI session was 
played for the stated durations at the second, third and fourth day at 110 db. Once acclimation 
was over, the mice were anesthetized before being removed from the restrainer, and then placed 
back into their home cage. Weights before and after restraining were recorded, alongside any 
behavioral abnormalities such as tears forming.  

fMRI Imaging. Awake resting state imaging was conducted on a 7T MRI system interfaced with 
a Bruker Console (Billerica, MA) housed at the High Field MRI Facility at Pennsylvania State 
University, University Park. Gradient Echo images were acquired using an echo-planar imaging 
(EPI) sequence with the following parameters: repetition time (TR) of 1.5 second, echo time (TE) 
of 15 milliseconds, flip angle = 60o, matrix size = 64 x 64, FOV = 1.6 x 1.6 cm2 number of slices = 
16, slice dimensions = 0.25 mm x 0.25 mm x 0.75 mm. 10 or 32 dummy scans were taken before 
each EPI acquisition. A trigger delay of 10 milliseconds was set at the beginning of each volume 
acquisition such that real time monitoring of respiration rate can be synchronized to the volume 
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acquisition. Respiration was monitored using a custom-made nose cone perforated with angled 
holes to allow carbon dioxide to diffuse out and oxygen to diffuse in without significant loss of 
pressure. The respiration monitoring system was connected to the 7T MRI system using a MR-
compatible monitoring and gating system (Model 1030 from Small Animal Instruments Inc.), which 
was also interfaced with a desktop that housed the respiration monitoring software from Small 
Animal Instruments Inc. A total of 4 or 5 EPI scans were collected for every imaging session.  
Following the completion of EPI acquisition, a structural T1 RARE image was collected. The 
imaging parameters are as follows: repetition time (TR) of 1500 seconds, echo time (TE) of 8 
milliseconds, flip angle = 90o, matrix size = 256 x 256, FOV = 1.6 x 1.6 cm2 number of slices = 16, 
slice dimensions = 0.25 mm x 0.25 mm x 0.75 mm.  

fMRI Image Preprocessing. fMRI images and the corresponding T1RARE structural images 
were preprocessed following a paradigm adapted from an in-house pipeline (47, 48). All 
processes and scripts described in this section were done using MATLAB 2022b. Briefly 
described, EPI time courses were first converted from the standard Bruker file format to a .sdt file 
format before undergoing motion scrubbing. The following formula was used to determine the 
degree of motion for an isotropic shape: 

Motion	Parameter = |𝑇!| + 0𝑇"0 + |𝑇#| + |𝜃#𝑟!| + 0𝜃"𝑟!0 + |𝜃!𝑟#| 

Euler angles were back computed from the affine transformation matrix calculated using an 
internal MATLAB function. Volumes that exceeded half a voxel size of displacement (0.125 mm) 
were discarded, along with one volume preceding it, and one volume after the volume exhibiting 
excessive motion. Scans that had more than 10% of volumes discarded due to motion (including 
the number of neighboring volumes) were discarded. Thus, scans with at least 90% remaining 
volumes post motion scrubbing were kept for following preprocessing.  
Post motion scrubbing, each scan will undergo the process of co-registration and normalization. 
First, the first frame for each EPI scan is co registered to the relevant subject’s T1RARE structural 
image using an in-house GUI made in MATLAB. Following co-registration, the subjects T1RARE 
image is then normalized to a reference brain atlas from the Allen Brain Atlas (WEBSITE). After 
successful normalization, the affine transformation matrix from the normalization process is then 
applied to the co-registered EPI images to align the EPI images to the reference brain atlas. Once 
the first frame for every EPI scan has been successfully aligned to the reference template 
following the beforementioned procedure, the scans are then motion corrected using functions 
from Statistical Parametric Mapping (SPM12, 49). Post motion correction, a custom mask for 
every EPI scan was manually drawn using the first frame for every motion corrected scan. The 
custom mask excludes areas with significant signal distortion, and is subsequently applied to the 
postprocessing step. White matter and cerebral spinal fluid (WM-CSF) masks are constructed 
using the reference atlas to determine the spatial location of the specified features. The signal in 
the WM-CSF mask is then used as a nuisance regressor alongside the motion parameters 
calculated from motion correction using SPM12 in a general linear model. The residuals from the 
general linear model is then spatially smoothed using a 3x3 Gaussian kernel, followed by temporal 
filtering using a bandpass filter with a cutoff frequency of 0.01 Hz and 0.1 Hz. The end result is a 
correlation matrix consisting of pairwise correlations between each ROI in the mouse’s brain.  

fMRI Image Postprocessing. fMRI ROIs were grouped into seven anatomical systems for 
system ROI analysis. These seven systems were the Sensorimotor Cortex, Heteromodal Cortex, 
Olfactory Cortex, Hippocampus, Striatum-Pallidum, Thalamus, and Hypothalamus. System 
representative functional connectivity values are calculated as the mean correlation value where 
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all related ROIs correlation values first undergo fisher Z transformation from r space to z space, 
before calculating the mean, and then back transformed into r space. The process is repeated for 
every scan within a group, and the group average are also quantified in the same manner.  
The initial evaluation of the entire dataset comprised of examining the correlation matrices in a 
univariate manner, where every pairwise functional connectivity value is fisher-z transformed 
(using the arctanh function), followed by implementing a linear mixed effect model of the following 
structure: 

y = 	Xβ + Zu + 	ε							 
Where 𝑦 is the response vector with 𝑛	x	1 dimensions, 𝑛 being the number of subjects. X is defined 
as the predictor matrix, with 𝑛	x	𝑝 dimensions, where 𝑝 is the number of fixed effect predictors 
(dependent on analysis), β is the	𝑝	x	1 vector of fixed effect coefficients. Z is a 𝑛	x	𝑞 ∙ 𝑚 matrix 
where there are	𝑞 random effects and 𝑚 groups. u is defined as a random vector with dimensions 
𝑞 ∙ 𝑚	x	1 for 𝑚 groups. ε is the residual vector for 𝑛 groups. The random effects are the subjects 
While the fixed effects are some combination of genotype and timepoint, dependent on the 
statistical question being evaluated (e.g. time point segregated data will only have genotype as 
the fixed effect to evaluate differences at a single time point).  A two-way ANOVA or two-tailed t-
test (depending on the model) is conducted to evaluate the statistical significance of the 
coefficients derived from the linear mixed effect model.  

Anatomical System definitions. Anatomical systems such as the Sensorimotor Cortex, 
Heteromodal Cortex, Olfactory Cortex, Hippocampal Region, Basal Ganglia, Thalamus, 
Hypothalamus consists of sub ROIs featured in the respective systems. The quantification of the 
inter and intra system connectivity is achieved by calculating the mean of the fisher z’s 
transformed correlation values of all ROIs within a system-system interaction. For example, if we 
are to calculate the system connectivity between the Hippocampal region and the Heteromodal 
Cortex, then all functional connectivity values between the ROIs within both systems are averaged 
following the steps described previously. The system definitions for each individual ROI is listed 
in a table in the supplementary materials.  

Brain Extraction. Mice were euthanized via decapitation by placing the awake mouse into a 
decapicone and using a guillotine. The decapitated head was then sprayed with 70% sterile 
ethanol. The skin and muscle are removed from the skull by removing the skin surrounding the 
cement cap. Forceps are used to grasp the head post attachment and apply a measured amount 
of force to slowly rock the dental cap back and forth to slowly loosen the cement cap from the 
skull. Once the cement cap is ‘peeled’ off from the skull, dissection scissors are used to cut up 
the side of the spinal cord and around the base of the skull at the lateral and ventral borders. The 
scissors are then inserted at the base of the skull and are used to make a cut down the midline 
of the skull from posterior to anterior direction. The dorsal part of the skull is then removed and 
the brain is slowly and carefully dislodged and placed in a separate cell culture dish containing 
chilled dissection media (x mL of HBSS and x/90 mL 1 M HEPES) hosted within a bed of ice and 
placed on top of a chilled copper plate.  
The brain is then halved into two separate hemispheres, with the right hemisphere to be dissected 
into individual brain regions. The brain regions are the Cerebellum, Hypothalamus, Thalamus, 
Striatum, Hippocampus, Occipital Lobe, Temporal Lobe, Parietal Lobe, and Frontal Lobe. Each 
individual brain region is placed into their own respective centrifuge tubes that holds a mixture of 
lysis buffer and protease inhibitor. The brain regions are homogenized by mechanical titration 
before sitting for 20 minutes on ice before being centrifuged at 5000 rpm for 5 minutes at 4 
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degrees Celsius. The supernatant is then placed into a separate tube, and flash frozen in liquid 
nitrogen and stored at a -80 degrees Celsius freezer until further use.  

Quantification of protein. Total protein content in the supernatant was quantified using the 
Pierce BCA Protein Assay kit (Fisher 23225). Manufacturer’s instructions were followed 
accordingly. Samples were run using technical duplicates and absorbance was quantified using 
a SpectraMax i3 minimax 300 imaging cytometer (Molecular Devices). Linear regression was 
used to quantify protein concentration.  

Multiplex Assay. Cytokine concentrations of dissected homogenized brain regions from 5xFAD 
mice were quantified using the Bio-Plex Pro Mouse Cytokines Grp1 Panel 23 Plex (Cat. 
#M60009RDPD) using the Luminex FLEXMAP3D platform. Manufacturer’s protocol was 
performed with minor modifications to accommodate the use of a 384 well plate. Following steps 
are applied using existing in-lab protocols (58). Streptavidin-phycoerythin was used at half volume 
While magnetic beads and antibody solutions were diluted 1:1 and used at half volume. Equal 
parts of lysis buffer lysis assay buffer were used in the preparation of standards and blanks.  

Cytokine Data Cleaning. The Xponent software provided by the Luminex System was used to 
interpolate sample cytokine concentrations using standard curves derived from using the 5 point 
logistic regression model. Concentrations below or above the standard limit are either set to 0 
pg/mL or the maximum concentration on the curve respectively. An in-house pipeline was 
used to clean the cytokine data (64): https://github.com/elizabethproctor/Luminex-Data-
Cleaning (version 1.05). All cytokines with above-background values for at least half of the 
subjects were used in further analysis of the cytokine data; we included cytokines with fewer 
non-zero values if the non-zeros appeared biased toward a particular group.  

Partial Least Squares Modeling. We utilized a linear, supervised multivariate regression model 
known as Partial Least Squares (PLS) (61,62) to model Cytokine Signatures of disease and 
healthy control states. The ROPLS package in R (63) was used to run both Partial Least Squares 
Regression (PLSR), and Partial Least Squares Discriminant Analysis (PLS-DA). PLSR was used 
to construct a predictive model to model a continuous response variable, such as the timepoint of 
our covariates. PLS-DA was used to create a classification model that sought to discriminate 
disease from healthy control cytokine signature profiles. All cytokine data was z scored to mean 
center the data and have the sample distribution exhibit unit variance.  
Random sub sampling cross validation tests were conducted to select the appropriate number of 
latent variables (LVs) for both PLSR and PLS-DA models. Test sets and training sets were 
determined by randomly sampling the parent dataset. The number of k-folds, consequentially 
determining the size of the training and test sets, was determined by the following criteria (64):  k 
-Folds = 3 if the number of samples exceeded 30, or k-folds = 5 if the number of samples building 
model was less than 30. K-fold cross validation was conducted a hundred times. 3 models 
consisting of either 1, 2, or 3 LVs were constructed in every iteration of the Cross-Validation 
process. All models were then used to predict the response variable, or class identity to quantify 
the prediction accuracy for PLS-DA, or the root mean squared error of cross validation (RMSECV) 
for PLSR. RMSECV has the following formulae: 

RMSECV = 	F
∑ (𝑥$ −	𝑥K$)%&
$'(

𝑛
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Where 𝑥$ is the predicted value for the jth sample, 𝑥K$ is the actual value for the jth sample, and n is 
the number of samples in the test set. Every iteration resulted in a completely new random 
sampling of the parent dataset to produce both the test and training datasets for cross validation. 
The number of LVs was determined by selecting the models, and their number of LVs that they 
represented, that had the lowest RMSECV, or highest predictive accuracy. This model is then 
used for subsequent analysis and significance testing. 
Significance testing of the model was conducted by permutation testing. 1000 permutations were 
done to construct a null distribution of random models, where each iteration involved the 
scrambling of the response variable of interest with respect to the covariates. The final model’s 
predictive accuracy or RMSERCV is then used to calculate a z score: 

𝑍 = 	
𝑥)*+,- −	𝜇./--

𝜎./--
 

Where 𝑥)*+,- is the model’s predictive accuracy or RMSECV, and 𝜇./-- is the mean 
predictive/RMSERCV of the null distribution, and 𝜎./-- is the standard deviation of the null 
distribution simulated by the permutation process. We then calculate the corresponding p value 
for the significance of the model by comparing the calculated Z score to the Z distribution.  
Models that were determined to only have one latent variable will have score plots that show two 
latent variables for ease of visualization. However, only the one latent variable model is used to 
inspect the loadings, and to make interpretations about the cytokine profile with relation to disease 
state. The models here are also orthogonalized for improved interpretability. The 
orthogonalization process results in projecting the maximal amount of covariance in the response 
vector and the covariate matrix onto the first latent variable (65). The variable importance in 
projection (VIP) score was used to threshold which cytokines drove the separation between 
classes with respect to the response of interest (66). Thus, loadings from the first latent variable 
for cytokines that had a VIP score greater than 1 are designated as cytokines of interest, as they 
are implied to have a greater than average contribution to the model. 

Graph Theoretical analysis. Every functional connectivity matrix (the preprocessed correlation 
matrix) is converted into a weighted adjacency matrix where the absolute value of the correlation 
values is used as the weights of each edge. All graph organizational metrics were calculated using 
the Brain Connectivity Toolbox (50). Hub regions were identified by allocating a score of 0-4 based 
on the following criteria: 20% highest strength, 20% highest betweenness centrality, 20% lowest 
path length, and 20% lowest clustering coefficient (51). The graph theory metrics used to 
determine the hub score were quantified on the group average correlation matrix for every group. 
The mathematical definitions for the four topological features are described below: 
Strength (50, 52): 

S0 =	P𝑤0$
$∈2

 

Where Si is defined as the strength for the ith node. WI,j is defined as the weight of the edge between 
node i and its jth neighbor, and N is the set of all nodes. Strength quantifies the degree of 
connection between a node and its neighbors.  
Clustering Coefficient (50, 53): 

𝐶0 =
1

𝑘0(𝑘0 − 1)
P (𝑤0,$𝑤$,4𝑤4,0)(/6
$,4∈2
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Wi,j is the weight between node i and node j, and ki is the number of neighbors of a vertex. The 
clustering coefficient can be interpreted as the degree to which nodes tend to cluster together. 
For the local clustering coefficient, Ci, the coefficient quantifies how close the neighbors are to 
node i to being a clique. N is the set of all nodes. 
Characteristic Path length (50, 55): 

𝐿7 =
1
𝑛
P

∑ 𝑑0$7$∈2,08$

𝑛 − 1
0∈2

 

N is the set of all nodes, n is the total number of nodes, and 𝑑0$7 is the weighted shortest path 
between nodes i and j. Characteristic path length quantifies the proximity with regards to strength 
of connection between nodes. 
Global Efficiency (50, 56): 

𝐸7 =
1
𝑛
P

∑ 𝑑0$7
9(

$∈2,08$

𝑛 − 1
0∈2

 

N is the set of all nodes, n is the total number of nodes, and 𝑑0$7 is the weighted shortest path 
between nodes i and j. Efficiency is essentially the mean of all reciprocals of the weighted 
distances in a network. The metric quantifies how efficient information is exchanged within a 
network. 
Assortativity (50, 57): 

𝑟7 =	
𝑙9(∑ 𝑤0$𝑘07𝑘$7 − [𝑙9( ∑

1
2𝑤0$(𝑘0

7 + 𝑘$7)(0,$)∈< ]%(0,$)∈<

𝑙9( ∑ 1
2𝑤0$(𝑘0

7% + 𝑘$7
%)(0,$)∈< −[𝑙9(∑ 1

2𝑤0$(𝑘0
7 + 𝑘$7)(0,$)∈< ]%

 

Where 𝑘07 and 𝑘$7 are the weighted degrees of nodes i and j. 𝑤0$ is the weight of the edge between 
nodes i and j, l is the total number of edges, While L is the set of all edges within the network. 
Assortativity is used to determine the degree to which nodes connect to other nodes with similar 
properties within the network. 

 

Results 

Hippocampal functional connectivity exhibits local suppression before propagating to 
inter- and intra-regional connectivity loss in thalamus and cortical regions. To investigate 
the effects of Alzheimer’s Disease progression on functional networks, we quantified functional 
connectivity matrices at four different time points: month 1.5, month 2, month 4 and month 6; 
utilizing our awake resting state animal imaging paradigm. What we initially observed was that 
the majority of pairwise ROIs exhibited a time effect, but not an interaction between genotype and 
time (Figure 1A). We noticed that when examining the connectivity values at each timepoint, the 
values diverged at later time points, but were parallel to each other at the earlier stages of disease 
development (Figure 1B), with the divergence in connectivity is markedly shown at the latest 
stage of disease development, but not exhibited in the other three timepoints. Thus, we proceeded 
to investigate differences between disease and wildtype mice at each particular timepoint, acting 
on the assumption that the differences in connectivity values did not follow a linear pattern. The 
connectivity values were found to be statistically different between disease and control (p < 0.05, 
uncorrected for multiple comparisons) vary when transitioning from consecutive timepoints and 
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modeling pairwise ROI differences between them for both 5xFAD and wildtype mice in a two way 
ANOVA model (Figure 1C,D).   
When examining the difference in the global network at each timepoint, we note a couple distinct 
features of the difference matrices. At month 4 we observe a distinct local depression of functional 
connectivity in ROIs located in the hippocampal region, and that at month 6 there is a significant 
increase in the number of pairwise ROI connectivity relationships that are different between the 
disease and control groups (Figure 2). The observation is further confirmed when examining the 
binary matrix which highlights regions that exhibited a statistically significant difference (p < 0.05, 
uncorrected) between the disease and control group. It can be seen that hippocampal ROIs such 
as the Subiculum, Presubiculum, Field CA1, Field CA2, Dentate Gyrus (DG) and the Entorhinal 
area exhibit significantly depressed intra-regional connectivity (pPresubiculum-Field CA2 = 0.0031, 
pPresubiculum-Field CA1= 0.015, pField CA3-Field CA2 = 0.029, pPresubiculum-DG = 0.041, pSubiculum-DG = 0.041, 
pSubiculum-Presubiculum = 0.041, pPresubiculum-Entorhinal area = 0.046) at month 4 for the disease group. Some 

 
Figure 1. Disease-relevant changes in connectivity of anatomically defined ROIs accumulate non-linearly over 
time. A) Color-coded binary plot illustrating which connections between ROIs exhibit a disease effect (linear mixed effect 
model, disease and time as fixed effects, subject as random effect). Interaction term is included. B) Representative time-
course ROI-ROI functional connectivity (Postsubiculum and Taenia Tecta), where mean response is plotted with 95% 
CI. C) Number of ROI-ROI functional connections significantly changed in disease vs. wild-type at each time point, one-
tailed t-test with cutoff p < 0.005. D) Binary masks identifying ROI-ROI functional connections significantly changed in 
disease vs. wild-type at each time point, one tailed t-test with cutoff p < 0.05. 
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of them such as the retrohippocampal ROIs exhibit lower intra-ROI connectivity While the 
hippocampal formation ROIs displayed lower inter-ROI connectivity with retrohippocampal 
regions such as the Presubiculum.  
Another feature that we observe is the level of thalamic ROIs that exhibit differences between the 
two groups at each specific timepoint markedly increases at month 6. Both inter and intra region 
connectivity for the Thalamus was depressed at the fully symptomatic timepoint (Figure 2). One 
interesting result is that the 5xFAD group exhibited a higher level of thalamus to Pallidum 
connectivity relative to the wildtype group at month 2, where both the Globus Pallidus and the 
Substantia innominate displayed stronger connectivity with subregions in the dorsal Thalamus 
(pMidline group of the dorsal thalamus-Globus pallidus = 0.038, pMidline group of the dorsal thalamus-Substantia innominate = 0.036, 
pReticular nucleus of the thalamus-Striatum-like amygdalar nuclei = 0.028) . This particular feature is lost at month 4, and 
instead we note that inter-striatum-thalamic connectivity and inter striatum-hypothalamic 

 
Figure 2. Functional connectivity changes over the course of AD and healthy aging. Symmetric heat maps of 
Pearson’s correlation coefficients between brain regions of interest. Left to right, column 1: 5xFAD transgenic 
Alzheimer’s disease mice at age 1.5, 2, 4, or 6 months (rows 1-4, respectively). Column 2: wild-type littermates at the 
same ages. Column 3: difference matrix representing the changes due to disease (5xFAD minus WT, Z-transformed 
subtraction). Column 4: binary matrix highlighting connectivity values with two-tailed t test p < 0.05 of LME fixed effect 
coefficients. 
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connectivity are higher for 
diseased aging at month 4 
(pHypothalamic lateral zone-Striatum-like 

amygdalar nuclei = 0.021, pHypothalamic 

lateral zone-Fundus of striatum  = 0.019, 
pMidline group of the dorsal thalamus-Striatum-like 

amygdalar nuclei = 0.007, pAnterior group of 

the dorsal thalamus-Striatum-like amygdalar nuclei 
= 8.64 e-2)(Figure 2).   
All segregated datasets and the 
resultant statistics had a linear 
mixed effect model to estimate 
the coefficients of disease. Thus, 
the fixed effect is genotype, and 
the random effect are the 
subjects. Then a two-tailed t test 
is run to test the significance of 
the estimated coefficient. All 
statistics in this section was not 
corrected for multiple 
comparisons. 

Thalamus and hypothalamus 
systems exhibit early-disease 
hyperconnectivity with other 
brain anatomical systems 
followed by suppression at 
later disease stages. We 
grouped ROIs and their relevant 
functional connectivity values into 
anatomical systems in order to 
evaluate the effect of disease 
progression on inter and intra 
system connectivity. One feature 
to note is that month 1.5 and 
month 2 exhibit different 
anatomical network profiles even 
though both timepoints are 
associated with the early stage of 
disease development (Figure 
3A). There is cerebral 
accumulation of Amyloid plaques 
that at months 1.5 and 2 (42, 43). 
However, the difference in 
concentration between the two 
points is steep and so month 2 
can be used as a proxy to 

Figure 3. Brain anatomical systems exhibit hyperconnectivity 
followed by suppression in an AD-relevant spatiotemporal pattern. A) 
Connectivity matrices and the difference matrix at each respective 
timepoint, as in Figure 2. B) Spatial illustration of difference matrix in a 
binarized form superimposed over an anatomical brain slice. Blue: negative 
change in connectivity, Red: positive change in connectivity. Thicker edges 
have higher magnitude of change. Color of node outline indicates 
directionality of intra-system connectivity changes, with greater outline 
thickness indicating greater magnitude of intra-region connectivity change. 
Node color: yellow = sensorimotor cortex, red = heteromodal cortex, purple 
= hippocampus, blue = basal ganglia, orange = thalamus, green = olfactory 
cortex, white = hypothalamus.   
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describe a later stage in disease development (43) relative to month 1.5. This feature is reflected 
in how markedly different the two anatomical networks are, where there is a clear difference in 
the number of depressed anatomical connectivity values for 5xFAD versus the control (Figure 
3A,B). Once again, we note that the thalamic-hypothalamic region in month 2 exhibits a net 
positive connectivity value in the disease group even though the difference was not found to be 
significant (p = 0.2570 uncorrected). The systems at month 1.5, however, exhibit all intra-system 
functional connectivity, excluding the thalamic-thalamic connectivity, to be depressed for the 
5xFAD class (Figure 3A,B). All inter and intra connectivity values were found to statistically 
insignificant (p > 0.05 when corrected for multiple comparisons), and only a handful were shown 
to be different between the disease and control group at both time points: striatum pallidum-
hypothalamus (p = 0.0131 uncorrected, p = 0.1726 FDR corrected) for month 1.5, and intra 
striatum pallidum connectivity ( p= 0.0243 uncorrected, p = 0.1609 FDR corrected) and 
Hippocampal-Heteromodal Cortex for month 2 (p = 0.0494 uncorrected, p =0.1635 FDR 
corrected). The lack of statistical significance when controlling for time falls in line with the 
projected timeline of disease pathology, where the early stages of disease development may not 
manifest significant changes to the anatomical networks. However, it must be stated that even 
though the differences between the two groups in each time point lacked significance, the average 
anatomical system network profiles were different, and strongly suggests that the increase in 
amyloid beta plaques could have had a role in influencing the net positive connectivity values for 
the disease group over the control group at month 2.  
At month 4 we observe that the inter-system connectivity of the olfactory cortex and hippocampal 
region for the 5xFAD animal line is depressed relative to that of wildtype controls (p = 0.0127 
uncorrected, p = 0.3545 FDR corrected) (Figure 3 A,B). What we also observed is that the 
depressed intra-hippocampal connectivity persists at month 6 (p = 0.0011 uncorrected, p = 0.0164 
FDR corrected), and that a greater number of systems showed depressed intra-system 
connectivity at the later stage of disease, such as the sensorimotor cortex (p = 0.0735 
uncorrected, p = 0.0978 FDR corrected), Hetermodal Cortex (p = 0.0656 uncorrected, p = 0.0961 
FDR corrected), and Thalamus (p = 0.01 uncorrected, p = 0.0487 FDR corrected) (figure 3 A) 
There were a number of inter-system connectivity patterns that was implicated at the latest stage 
of disease, such as the Hypothalamus-Sensorimotor Cortex (p = 0.0287 uncorrected, p = 0.06 
FDR corrected), Thalamus-Sensorimotor Cortex (p = 0.0209 uncorrected, p = 0.059 FDR 
corrected), Hypothalamus-Striatum Pallidum system (p = 0.0474 uncorrected, p =0.0771 FDR 
corrected, and Thalamus-Hippocampal connectivity (p = 0.0040 uncorrected, p = 0.0292 FDR 
corrected).  
Statistics were conducted using a linear mixed effect model on timepoint segregated datasets. 
Thus, the fixed effect for each model is the genotype, and the random effect are the subjects. 
Thus, the estimated coefficients that describe the effect of disease on the response is statistically 
interrogated by a two-tailed t test.  

Global brain networks become weaker, less integrated, and less efficient with disease 
progression. Given that prior analysis demonstrated that the ROIs implicated over disease 
progression did not remain consistent throughout the timepoints, and that the system level 
analysis yielded a similar perspective, we wanted to investigate how these different network 
profiles at different timepoints affected network integration and segregation. We utilized the Brain 
Connectivity Toolbox (50) to quantify metrics related to network integration and segregation where 
metrics such as global network clustering and assortativity indicating the degree of segregation, 
and shortest path and efficiency demonstrate integration. We first investigated how disease 
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progression would affect network segregation and integration by first treating timepoints as a 
continuous variable and running a two-way ANCOVA. None of the interaction terms between 
genotype and timepoints were found to be statistically significant (pstrength = 0.19458, pcharPath = 
0.2023, pclustering = 0.19342, pefficiency = 0.19037, passortativity = 0.64371). However, given what we had 
observed in prior analysis regarding how the functional connectivity values did not follow a linear 
pattern over time, we then proceeded to investigate the degree to which disease state was 
correlated to changes in global network properties by treating each timepoint as a categorical 
class. The following analysis was conducted using a two-way ANOVA with genotype and 
timepoint as the factors.  
Global network strength is shown to have differences at particular aging timepoints. The fully 
symptomatic state (timepoint month 6) exhibited a significantly lower degree of network strength 
than the early stages of disease development (p5xFAD:M6 – 5xFAD: M1.5 = 0.005 and p5xFAD:M6 – 5xFAD:M2 = 
0.012), and that the disease development had a distinct effect on network strength when 
compared to healthy aging at the terminal time point (p5xFAD:M6 – WT:M6 = 0.037) (Figure 4A).  On 
the other hand, we did not observe any significant differences in network strength in healthy aging, 
and we note that network strength was not found to be different at the later stages of disease 

 
Figure 4. Global brain network is broadly negatively impacted by AD progression. Strength (A), efficiency (B), clustering 
coefficient (C), and assortativity (D) of the global brain network in transgenic AD (red) and wild-type littermate (blue) mice at the 
indicated ages. Error bars represent the standard error of the mean. Comparisons by two-tailed t test, *p< 0.05, **p< 0.005. 
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development (p5xFAD:M6 – 5xFAD:M4 = 0.252). Another metric that evaluates network integration is 
global efficiency, which is quantified as the inverse of the global characteristic path length 
between all nodes in the network (59). We observe the same pattern regarding global efficiency 
as global network strength. Healthy aged animals exhibited a different global level of efficiency 
than fully developed symptomatic mice (p5xFAD:M6-WT:M6 = 0.036) (Figure 4B). What was surprising 
was that when controlling for age, we do not notice any differences in the networks efficiency until 
we compare fully aged animals against fully symptomatic animals, as such the intermediate state 
of disease development at month 4 exhibited insignificant differences at the efficiency metric 
relative to a healthy animal of the same age (p5xFAD:M4-WT:M4 = 0.630).  
Network integration metrics illustrate how well connected the nodes of the network are, and as a 
result one can infer how efficient information can be transferred across nodes, and what the ease 
of communication is between nodes (59, 67, 69). On the other hand, functional segregation allows 
one to infer how specialized certain regions of a network are. Such metrics can quantify groups 
and communities, some of which may exhibit special properties or functions depending on the 
context (59, 67, 68, 69). Therefore, we’ve quantified a metric of network segregation: clustering 
coefficient. Just like the global metrics of network integration, we observe similar trends regarding 
which age features differences between diseased and healthy animals (Figure 4C). Fully 
symptomatic animals had a lower clustering coefficient than that of healthy aged animals 
(p5xFAD:M6-WT:M6 = 0.033), and that the later stages of disease development resulted in a lower 
clustering coefficient compared to early states of disease progression (p5xFAD:M6-5xFAD: M1.5 = 0.007, 
p5xFAD:M6-5xFAD: M2 = 0.013). Once again, the differences between the two groups is not observed at 
month 4 (p5xFAD:M6-WT:M4 = 0.799).  
Another metric of interest is assortativty. Assortativity can be interpreted as a metric that defines 
how one node exhibiting a set of characteristics tend to connect with other nodes with the same 
features (59, 69). Surprisingly, we do not observe any statistical differences between any groups 
and their respective timepoints. One interesting feature to note though is that at the beginning 
stage of disease development, we note that there is an appreciable difference in the Assortativity 
coefficient at month 1.5 (p5xFAD:M1.5-WT:M1.5 = 0.421) (Figure 4D).  
Statistics were conducted by using a two-tailed t test to interrogate if any significant difference 
exists between two metrics of interest (i.e. month 6 control versus month 6 wildtype). All graph 
theory metrics were derived using the Brain Connectivity Toolbox (50), and the graph metrics 
were quantified on every scan for every subject, before a subject average is quantified. Then the 
subjects’ averages are pooled together to quantify an arithmetic mean. 

Distinct regional cytokine signatures predict disease progression. There are regional 
differences regarding which cytokines drive aging for both diseased and healthy groups. We 
identify key cytokines driving aging in both disease and healthy groups separately, and have 
mapped a consensus cytokine list between the two groups per brain region based on cytokines 
that had a VIP score greater than 1 for at least one of the two groups (disease versus healthy). 
From there, we examined how different the loadings are for these cytokines of interest.  
For the parietal cortex, we identify key cytokines upregulated in our disease model (3 LVs, p = 
1.939 e-5, RMSECV = 22.201, Figure 5A,B) such as MIP-1α, MIP-1β and CXCL-1 (also known 
as keratinocyte-derived cytokine; KC). Thus, there is an upregulation of cytokines canonically 
associated with having a pro-inflammatory role (71, 72, 73, 74, 75) for diseased aging in the 
Parietal Cortex. However, in the healthy aging group (1 LV, p = 9.399 e-5, RMSECV = 43.202, 
figure 5C), we note that there is an upregulation of cytokines canonically associated with immune 
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regulation such as MCP-1, GCSF, IL-4 and IL-9, and may exhibit neuroprotective roles (76, 77, 
78, 79, 80, 84) in the brain. One key note is that these ‘neuroprotective’ cytokines are not seen 
as a covariate that drives aging in the disease group, but are in the healthy group. Another feature 
is that MIP-1α is significantly more upregulated in the disease group compared to the control 
group. It is observed that cytokines predominantly associated with inflamed environments such 
as TNF-	α, Eotaxin, MIP-1α, and MIP-1β and IL-9 (74, 75, 81, 82, 83) are upregulated in healthy 
aging as well (Figure 5C,D). Therefore, there is some overlap between the two groups with 
regards to aging and the cytokine signatures that covary along with it. One surprising observation 
is that there are more VIP cytokines for healthy aging than there are for diseased aging, with 11 
VIP cytokines for the control group, and only 5 for the diseased group.  
Other brain regions such as the Frontal Cortex displayed a different cytokine signature, but similar 
pattern, that covaried with age. We note that IL-17A (or also known as IL-17), CXCL-1, and MIP-
1β are upregulated in disease aging/disease progression (disease model had 2 LVs, p = 2.120 e-
2, RMSECV = 30.391, Figure 6A). We also observe that IL-2, a cytokine that has shown to have 
a regulatory role in inflammation and neuronal activation (85-87), is downregulated in the 
diseased brain (Figure 6B). RANTES is also seen to be downregulated in diseased aging, and 
interestingly enough there is literature demonstrating that RANTES and IL-2 may have a 
synergistic relationship to promote an ‘optimal’ inflammatory response (88, 89), thus suggesting 
that the downregulation of the two in the diseased group, but elevation of RANTES and a no-
factor effect of IL-2 in healthy aging suggests that the two may form a neuroprotective role within 
the context of the 5xFAD disease development timeline. In contrast to the diseased group, healthy 
aging of the Frontal Cortex involves significantly more cytokines (as determined by the VIP score, 

 
Figure 5. Parietal cortex exhibits progressive and specific up-regulation of microglial activation signature 
coinciding with onset of synaptic dysfunction. A) Scores plot and B) loadings on the first latent variable of an 
orthogonalized partial least squares regression model of cytokine levels in the parietal cortex regressed against age 
as a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type 
littermates. Colored bars indicate cytokines with VIP score > 1. 
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and their relative loading weight to the disease group) with 13 cytokines being labeled as 
covariates that drove the variance in healthy aging (1 LV, p = 3.474 e-5, RMSECV = 37.921, 
Figure 6C). The disease model only had 7 cytokines with the same interpretation. Thus, relative 
to the 5xFAD group, healthy aging has IL-10, Eotaxin, RANTES, IL12-p70 and IL-5 to be more 
upregulated. Interestingly enough, the profile here consists of cytokines canonically associated 
with inflammation such as Eotaxin and RANTES (82, 89, 90), and those that are seen as 
regulators of the inflammatory environment such as IL-10 and IL12-p70 (91, 92, 93). Interestingly 
enough, just like the observation made for healthy aging in the Parietal Cortex, the Frontal Cortex 
seems to have more cytokines that covary with age relative to disease progression (Figure 6D). 
The temporal cortex also exhibits a similar pattern, but different cytokine signature, to the Frontal 
and Parietal Cortex.  The disease model (1 LV, p =2.995 e-3, RMSECV = 30.238, Figure 7A) is 
shown to have RANTES, MIP-1α, MIP-1β, and IL-17A to be upregulated, While having IL12p70 
to be down regulated (Figure 7B). By comparison, the healthy aging model (2 LVs, p = 7.074 e-
6, RMSECV = 35.251, Figure 7C) has a myriad of cytokines that are upregulated and covary in 
the same direction as aging. Notable ones would be CCL1 (KC), IL5, IL6, IL12p70, IL17A, and 
interestingly enough TNF-α (Figure 7D). Thus, the temporal cortex cytokine profile for healthy 
aging is a mixture of both inflammatory and anti-inflammatory proteins (73, 82, 89, 90-94), a 
mixture that is distinct when comparing it to the other two cortical regions. The VIP cytokines in 
the disease model have common features to the cytokines profiles of the Frontal and Parietal 
cortex, with the commonality being MIP-1α, MIP-1β, and IL17A all being upregulated, and are 
classified as important covariates, with relation to disease development. Just like the healthy 
aging models for the Parietal and Frontal Cortex, the Temporal Cortex healthy aging model has 

 
Figure 6. Temporal cortex exhibits progressive and specific up-regulation of microglial activation signature 
coinciding with onset of cognitive deficit. A) Scores plot and B) loadings on the first latent variable of an 
orthogonalized partial least squares regression model of cytokine levels in the temporal cortex regressed against age 
as a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type 
littermates. Colored bars indicate cytokines with VIP score > 1. 
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significantly more cytokines that have their expression in the brain region positively covary with 
age, with 9 cytokines being VIP in the healthy aging model, and only 5 in the disease model.  

 

Discussion 

The understanding of Alzheimer’s Disease and its etiology is still incomplete, and the 
consequence of this is the impedance of therapeutic strategies that could successfully reverse 
AD pathology (70). As such we have sought to expand the existing understanding on how the 
progression of the neurodegenerative disease afflicts cognitive networks as the ultimate objective 
would be to ameliorate the impairments that occur over the development of Alzheimer’s Disease. 
The reason for this is because Alzheimer’s proteinpathy does not necessitate mortality, and 
instead it leads to other conditions that increase the risk of mortality such as the inability to take 
care of one’s self, increased risky behavior (97), and the inability of basic physical functions such 
as the ability to swallow ingested food, leading to pneumonia (95, 96). Therefore, we have 
executed a comprehensive, multi-modal experiment to quantify two features of Alzheimer’s 
Disease; the changes in cognitive networks over disease progression, and chronic 
neuroinflammation in the presence of AD pathology (64, 102-105).  
There is extensive literature demonstrating how functional networks are altered between fully 
symptomatic AD patients and their respective healthy controls (98-101). However, one key feature 
that is missing is how functional networks are modulated over the progression of AD, excluding 
information on how and when the global network may be losing the ability to have segregated, 

 
Figure 7. Frontal cortex exhibits progressive and specific up-regulation of microglial activation signature 
coinciding with onset of cognitive deficit. A) Scores plot and B) loadings on the first latent variable of an 
orthogonalized partial least squares regression model of cytokine levels in the frontal cortex regressed against age as 
a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type 
littermates. Colored bars indicate cytokines with VIP score > 1. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2024. ; https://doi.org/10.1101/2024.03.17.585383doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585383
http://creativecommons.org/licenses/by/4.0/


and specialized networks that could contribute to executing complex cognitive tasks (106-108). 
To fill this gap in our understanding of AD development, we have used a well stereotyped mouse 
model of AD and quantified its respective network metrics at 4 distinct time points (Figure 2) that 
correlate to disease states (42-46, 109). Our findings show that early disease pathology at months 
1.5 and 2 exhibit profound changes to networks involving the thalamus and striatum/pallidum. 
Both the anatomical system and the individual ROIs within the Striatum/Pallidum, and Thalamus 
exhibited significant differences between the disease and healthy aging group. This is of particular 
interest given the roles of these two brain regions regarding cognitive functions. Firstly, the 
striatum and pallidum are part of the basal ganglia, a region that has the primary role of regulating 
motor control, and a role in higher order cognitive functions such as emotional processing and 
reward behavior (111-113). The thalamus, on the other hand is highly integrated within the central 
nervous system. Thus, it is commonly interpreted that the Thalamus plays a major role in multiple 
cognitive functions. For example, the Thalamus receives neuromodulatory inputs and excitatory 
inputs from a myriad of brain regions, including the basal ganglia (114-119, 122), and the lesion 
of the Thalamus has resulted in cognitive impairments such as executive dysfunction (120), and 
attention deficits (121). Research into other forms of cognitive impairments such as the classical 
Mild Cognitive Impairment stage (MCI) reinforce the importance of the Basal Ganglia and the 
Thalamus in cognitive health. It has been demonstrated that Basal Ganglia dysfunction is 
correlated with lower metrics of cognitive health (120, 121, 123-125). Thalamic hyper connectivity 
with cortical regions is associated with cognitive defects in schizophrenic subjects (126, 127). 
Therefore, given the highly integrated nature of the Thalamus and Basal Ganglia in cognitive 
functions, it is of particular interest to note that our results indicate changes to Thalamic and Basal 
Ganglia ROIs functional connectivity at the earliest stage of disease development. This would 
suggest that these brain regions are afflicted early at the disease stage. One potential reason for 
this would be that both regions feature efferent connections from the cortex (114, 122, 126). This 
feature is important since intraneuronal amyloid beta accumulates in the cortex of 5xFAD mice at 
months 1.5 (43), leading to a potential spillover to brain regions that have bijective connections to 
the afflicted cortical regions; like the Thalamus and Basal Ganglia.  
Another finding of our experiment is that intra-hippocampal connectivity is depressed relative to 
healthy aging. Both individual ROIs and at the anatomical system level exhibit the depressed 
connectivity characteristic. This is in line with current literature as the hippocampus is the 
predominant brain region known to be afflicted in Alzheimer’s Disease (43, 64, 129-132). What 
our results do provide new insight into is how inter hippocampal connectivity to the thalamus and 
striatum are impacted in the prodromal stage of disease development. Therefore, our findings are 
in line with existing literature detailing how there are return projections from the thalamus to the 
hippocampus (147), and that the two may have a synergistic role in the formation of memories 
(148). Additionally, it has been shown that the dorsal lateral striatum and the hippocampus may 
both have roles in information storage (149, 150). 
Furthermore, our results provide insight as to how the global network architecture is modulated 
at different disease stages. We observe that the fully symptomatic disease state exhibits a lower 
degree of network integration and segregation relative to the healthy aging group. As the ability 
to segregate into specialized nodes corresponds to the ability to execute cognitive tasks (106-
108), it is of extreme interest to observe how both aging and disease aging both have decreased 
levels of network segregation, and that the disease effect is more profound in decreasing the 
network’s level of segregation and integration. Similar results have been observed in human 
studies as well, where heightened disease pathology is associated with lower levels of functional 
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segregation (60, 101, 133). The same trend for network integration was also observed in our 
results, with network efficiency decreasing in both disease and healthy aging, and that the fully 
symptomatic timepoint resulted in a significant difference in network efficiency. Studies that have 
explored network integration over the course of aging have found that expanded cognitive ability 
coincides with higher levels of network integration, and that aging itself is correlated with 
decreased cognitive functionality and levels of integration and segregation (134, 135). The 
interesting observation from our findings is that it is only at the terminal timepoint do these 
differences in network metrics exist between healthy and diseased aging. None of the metrics 
we’ve quantified demonstrate an appreciable difference at month 4, also known as the mid-late 
stage disease development. However, it is between the late stage to fully developed pathological 
state do the differences between healthy aging and AD progression arise. The fact that the 
differences in network characteristics manifest so late in disease development isn’t a total surprise 
given that age is one of the major risk factors for developing sporadic AD. Our results reflect 
similarities in these global metrics in aging, but the difference at the terminal time point could be 
explained by how healthy aging brains may be able to compensate for age-related functionality 
declines (136, 137). It is extremely likely that the diseased brain is unable to undertake such 
processes given the breadth of tissue damage as a result of chronic inflammation due to disease 
pathology (43, 64, 86, 129-132, 138). 
Lastly, our findings show distinct cytokine profiles for different brain regions: Temporal Cortex, 
Parietal Cortex, and the Frontal Cortex. Some of cytokines expressed in their unique signatures 
for diseased aging are commonly found in AD contexts such as MIP-1α, and MIP-1β (139, 140). 
However other key cytokines typically associated with AD such as IFN-γ, TNF-α, IL-1 (141) were 
not found in our measured signatures. That is not to say that the listed cytokines did not exist, but 
that these cytokines did not covary significantly with respect to time. While the different disease 
models share common cytokines, they also feature cytokines unique to their own respective 
models. MCP-1 is upregulated in the Parietal Cortex only, While IL-2 is downregulated in the 
Frontal Cortex, and IL12-p70 is downregulated for the Temporal Cortex. These small differences 
demonstrate the different aspects between the regional disease models. MCP-1 is a chemokine 
expressed by microglia (143), and knocking out MCP-1 from transgenic mice has been correlated 
to making the animals resistant to neurodegeneration (144). However, the downregulation of IL-
2 and IL12-p70 in the other two cortices suggest that disease progression may progress differently 
in those brain regions relative to the Parietal Cortex. The reason for this hypothetical is because 
IL-2 and IL12-p70 are canonically associated with neuroprotective roles (88, 89, 92, 93). The 
regional cytokine profiles of disease progression give credence to the empirical evidence that 
different cortical lobes experience brain atrophy at different rates over the progression of AD. It 
has been shown that the parietal lobe experiences greater levels of atrophy at the prodromal 
stages of AD, While the frontal cortex is shown to experience damage at later stages with a lower 
degree of atrophy (145, 146). The regional specific rate of atrophy, and the regional specific 
cytokine signatures from our results indicate that the varying degree of disease pathology and its 
corresponding consequences are mediated by the expression of neuroprotective cytokines. It is 
only at the later stages of disease development do the expression of IL-2 and IL12-p70 fall off, 
which lines up with existing literature on how the frontal lobe atrophies at a slower, and at a later 
timepoint relative to the Parietal cortex. Our results also elucidated healthy aging and the 
corresponding cytokine signature. A qualitative commonality between the brain regions is that the 
healthy aging cytokine profile is more comprehensive than their diseased counterparts; featuring 
almost twice the number of cytokines than those featured in diseased model. Even though the 
heathy aging models featured canonically proinflammatory cytokines such as TNF-α, MIP-1α, 
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MIP-1β, and CCXL1 (71-75, 83), the healthy signatures also featured at least one anti-
inflammatory cytokine such IL12-p70 (92, 93) for the Frontal and Temporal cortex, and IL-4 (76, 
78) for the Parietal Cortex. It is possible that the upregulation of both anti and pro inflammatory 
cytokines may produce the desired neuroprotective effect, as shown in the synergistic relationship 
between IL-2 and RANTES (88, 89). We observe a similar trend regarding IL-2 and RANTES in 
the frontal cortex for diseased aging, where both RANTES and IL-2 are downregulated as a result 
of disease progression.  

 

Conclusion 

Here, we identify regional cortical specific cytokine signatures that are predictive of disease 
development. We also identify regions of interest where functional circuits could be potentially 
implicated in the early stages of Alzheimer’s Disease. We also observe how network segregation 
and integration are impacted over disease development, and is in line with increasing disease 
pathology, in the form of neuroinflammation, in the cortical regions. All in all, we have elucidated 
how AD pathology can progressively impact the brain’s network architecture, and the progressive 
changes to the architecture are correlated with increasing levels of neuroinflammation at the 
cortical regions of the brain.  
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