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Abstract

Alzheimer’'s disease is a neurodegenerative disorder characterized by progressive amyloid
plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss,
and changes in neural circuit activation that lead to cognitive decline and dementia. Early
molecular and cellular disease-instigating events occur 20 or more years prior to presentation of
symptoms, making them difficult to study, and for many years amyloid-@3, the aggregating peptide
seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit.
However, strategies targeting amyloid-B aggregation and deposition have largely failed to
produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive
outcomes. However, a role still exists for amyloid-B in the variation in an individual’s immune
response to early, soluble forms of aggregates, and the downstream consequences of this
immune response for aberrant cellular behaviors and creation of a detrimental tissue environment
that harms neuron health and causes changes in neural circuit activation. Here, we perform
functional magnetic resonance imaging of awake, unanesthetized Alzheimer’s disease mice to
map changes in functional connectivity over the course of disease progression, in comparison to
wild-type littermates. In these same individual animals, we spatiotemporally profile the immune
milieu by measuring cytokines, chemokines, and growth factors across various brain regions and
over the course of disease progression from pre-pathology through established cognitive deficit.
We identify specific signatures of immune activation predicting hyperactivity followed by
suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant
brain regions, following the pattern of spread of amyloid pathology.
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Introduction

13.8 million people are projected to be afflicted with Alzheimer’s disease (AD) over the next couple
decades (1,2, 3). It is a neurodegenerative condition characterized by an entanglement of disease
pathologies, and cognitive impairment resulting in a decrease in quality of life (4, 5). Classical
hallmarks of Alzheimer’'s Disease are the development and spread of neurotoxic amyloid-$3
peptides and oligomers (6-17) and neurofibrillary tau tangles (13-17) in parallel with
neuroinflammation (15-20) and, ultimately, neuronal loss and brain tissue atrophy. The clinical
symptomatic aspect of the described pathologies is the loss in cognitive performance, with
cognitive impairment manifesting in spatial cognition, working memory and executive functions
(16, 21). However, current treatment options for Alzheimer's Disease have failed to safely and
meaningfully delay, slow, or halt disease, let alone reverse the effects on cognition (22, 23),
potentially due to focus on single molecular targets. Integration of information from multiple
aspects of AD pathology is likely needed to interrogate and correct the complex, systems-level
mechanisms negatively impacting neuronal health, brain function, and cognition in AD.

One of the emerging biological factors of interest is the role that inflammation plays in the
progression of Alzheimer’s Disease. It has been detailed that neuroinflammation occurs over the
progression of Alzheimer’s Disease (15-20). On a more foundational level, it has been shown that
neuroinflammation can have detrimental effects on neuronal behavior, such as predisposing
neurons to be more sensitive to intrinsic excitability, resulting in increased rates of spontaneous
action potentials, leading to an uncoordinated neuro-electrical behavior (27, 28). Moreover,
cytokines have also been shown to have a profound effect on synaptic plasticity (28-30),
demonstrating that microglia responses to adverse stimuli can affect neuronal behavior. Such
effects can manifest in alterations to cognitive performance (28, 31), thus establishing a link
between neuroinflammation and cognitive ability.

While the inflammatory environment is one neurophysiological event that influences cognitive
behavior, another quintessential factor to driving cognitive performance is the level of neuronal
activity (35, 36). This neurophysiological event can be described by brain regional activity and the
regional combined behavior during a specific cognitive state. Thus, depending on the
experimental paradigm, one can quantify how particular brain regions are involved at specific
tasks (32-34), providing insight as to which region are involved in executing a particular task,
quantifying what is called a functional network. While task based functional connectivity metrics
yield insight into task specific networks, studies focusing on resting state functional connectivity
(rsFC) have yielded a wealth of information as to how the brain organizes when no task is being
performed (37, 38). It was found that such networks quantified during the resting state were
different between comparing healthy controls to diseased populations or subjects afflicted with
cognitive impairment (35, 36, 39-41).

Therefore, there is sufficient evidence that the regional inflammatory environment surrounding
bodies of neurons can affect their behavior, and thus affect the spontaneous activations of brain
regions that could influence cognitive behavior. However, the major limitation is that the majority
of studies examining the above-mentioned factors study them in a univariate manner, excluding
details how each individual factor affect each other over the progression of Alzheimer’s Disease.
Existing efforts to rectify the limitation includes the use deep learning or artificial intelligence to
evaluate relationship cross-modality in large datasets (24-26). These datasets contain a wealth
of information, and online databases such as the Alzheimer’'s Disease Neuroimaging Initiative
(ADNI) offer a more comprehensive quantification of disease pathology. However, such datasets
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lack spatial resolution when it comes to examining the inflammatory environment of individual
brain regions, and only provide terminal data when quantifying the inflammatory environment of
the brain. The consequence is that one can not determine how the development of Alzheimer’s
Disease can affect brain regions, thus driving changes to functional connectivity which then
manifest as alterations to cognitive performance.

In our attempt to address the current limitation in the field, we describe an experiment that is
centered around a well stereotyped mouse model of Alzheimer's Disease, and quantify the
inflammatory environment of 3 cortical brain regions over four time points that are related to
cumulative key events that occur during Alzheimer's Disease progression; before the
development of disease pathology at month 1.5 (42), extracellular amyloid deposition occurring
at month 2 (42, 43), deterioration of basal synaptic transmission in hippocampal CA1 at month 4
(42), and neuron loss at month 6 (42, 44-46). Additionally, we utilize awake resting state functional
magnetic resonance imaging (rs-fMRI) to quantify the resting state functional connectivity during
those four time points to correlate the functional connectivity to regional brain inflammation over
disease progression. Our findings provide a new insight into how neuroinflammation and
functional connectivity are intertwined in Alzheimer's Disease, thus highlighting which brain
regions and networks are implicated in disease pathology at different stages of the
neurodegenerative disease.

Methods

Animal subjects. Institutional and national guidelines for the care and use of laboratory animals
were followed and approved by the Penn State Institutional Animal Care and Use Committee
(PRAMS201647005). 5xFAD hemizygous B6SJL (MMRRC Strain #034840-JAX) background
strain and wildtype mice were used to breed a colony of mice that were either hemizygous for the
5xFAD related genes, or wild-type littermates. All mice were genotyped following the protocol
provided by Jackson Labs (Protocol Number: 31769). All mice were also genotyped for the retinal
degenerative gene Pde6B using the protocol provided by Jackson Labs (Protocol Number:
31378). Animals that were found to be homozygous for the Pde6B gene were excluded from the
study. Both male and female animals are included in the study. Mice were singly housed following
headpost surgery (procedure below) at 1 month old. Food and water were provided ad libitum.
Nesting material and chew blocks were provided to singly-housed mice as enrichment. The
housing room was kept at 70 °C and adhered to a 12-hour light and 12-hour dark cycle. The study
consisted of 160 mice: 27 for longitudinal imaging studies, 31 for age 1.5 months single timepoint,
33 for age 2 months single timepoint, 34 for age 4 months single timepoint, and 35 for age 6
months single timepoint. All mice underwent rs-fMRI. Cytokine protein levels were profiled in 105
animal brains from the same cohort of animals that underwent rs-fMRI: 25 mice for age 1.5
months, 26 for age 2 months, 27 for age 4 months, and 26 for age 6 months. All experiments
were conducted during the 12-hour dark cycle to better capture the properties of the awake state,
with euthanasia and tissue collection (procedure below) directly following imaging. All
experiments in the present study were approved by the Institutional Animal Care and Use
Committee (IACUC) at the Pennsylvania State University.

Surgical Procedures. Mice had headpost implantation surgery done at 1 month old. Mice were
anesthetized with 3% isoflurane and an oxygen flow of 1.0 L/min within an isoflurane chamber.
The surgical plane of anesthesia was confirmed by pinching the lower limbs of the mouse, and if
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no reaction was observed, the mouse was successfully anesthetized. The scalp of the mouse is
then shaved using an electric clipper in preparation for surgery. A heating mat with a rectal probe
(PhysioSuite with RightTemp from Kent Scientific) is used to maintain a body temperature around
36-37 degrees Celsius. A custom surgical setup that features the boundaries of the awake animal
restrainer used in neuroimaging experiments is used. Once the mouse is in position, and the head
is fixed for surgery, the scalp is cleaned twice alternating between provodine iodine and 70%
isopropyl alcohol. Ophthalmic ointment is applied to the animal’s eyes to prevent dryness during
the course of surgery. The scalp is infiltrated with Bupivacaine (4mg/kg), followed by an anterior
to posterior incision before excising the skin to form a circular excision anterior to the ears, and
posterior to the eyes. All relevant soft tissue is then removed such as the periosteum, leaving only
the skull exposed. The site is washed one time with sterilized saline solution. Once dried, an
etching solution (composed of citric acid) is applied to the skull for 30 seconds before being rinsed
off using saline solution. Dental cement (C&B Metabond) consisting of a ratio of 1 drop catalyst
(C&B Metabond), 4 drops of “quick!” base (C&B Metabond), and 2 scoops of clear L powder (C&B
Metabond) is applied to the exposed skull using a fine tipped brush. Rough edges are smoothed
out during the process. Once set and cured, a custom head post constructed from polylactic acid
(product number) is adhered to the dental cap using dental cement of the same recipe. Upon
completion of procedure, meloxicam (5 mg/kg) is administered 2 days post-surgery. Weight and
behavior in home cage is subsequently monitored for seven days where any weight drop lower
than 20% of pre-surgical weight is recorded as a failure to recover from surgical procedure, and
thus excluded from subsequent experiments. If weight and behavior is observed to be satisfactory
(no weight loss, no abnormal behavior in home cage) for 4 consecutive days post-surgery, the
mouse is then moved to subsequent experiments detailed below.

Acclimation Procedure. Mice were acclimated for awake animal imaging using a procedure
adapted from an in-house pipeline. The mice were habituated to the restrainer used for imaging
where the process lasted 4 days prior to the imaging experiment. An acclimation box was used
alongside custom made holders that mimic the interior of a scanner. All mice were first
anesthetized using 3% isoflurane, and an oxygen flow of 1.0 L/min. Once anesthetized, mice had
their front limbs bounded together using tape before restraining the mice by attaching a custom-
made head bar that connected the implanted headpost to the custom-made restrainer. Once the
animals were confirmed to be awake, they were given five minutes to adjust to being restrained
before the acclimation process started. The first day of acclimation was 15 minutes with no sound.
The second, third and fourth day of acclimation was 30 minutes, 45 minutes, and 60 minutes
respectively. A soundtrack that had the recording of the noise heard during an fMRI session was
played for the stated durations at the second, third and fourth day at 110 db. Once acclimation
was over, the mice were anesthetized before being removed from the restrainer, and then placed
back into their home cage. Weights before and after restraining were recorded, alongside any
behavioral abnormalities such as tears forming.

fMRI Imaging. Awake resting state imaging was conducted on a 7T MRI system interfaced with
a Bruker Console (Billerica, MA) housed at the High Field MRI Facility at Pennsylvania State
University, University Park. Gradient Echo images were acquired using an echo-planar imaging
(EPI) sequence with the following parameters: repetition time (TR) of 1.5 second, echo time (TE)
of 15 milliseconds, flip angle = 60°, matrix size = 64 x 64, FOV = 1.6 x 1.6 cm? number of slices =
16, slice dimensions = 0.25 mm x 0.25 mm x 0.75 mm. 10 or 32 dummy scans were taken before
each EPI acquisition. A trigger delay of 10 milliseconds was set at the beginning of each volume
acquisition such that real time monitoring of respiration rate can be synchronized to the volume


https://doi.org/10.1101/2024.03.17.585383
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.17.585383; this version posted March 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

acquisition. Respiration was monitored using a custom-made nose cone perforated with angled
holes to allow carbon dioxide to diffuse out and oxygen to diffuse in without significant loss of
pressure. The respiration monitoring system was connected to the 7T MRI system using a MR-
compatible monitoring and gating system (Model 1030 from Small Animal Instruments Inc.), which
was also interfaced with a desktop that housed the respiration monitoring software from Small
Animal Instruments Inc. A total of 4 or 5 EPI scans were collected for every imaging session.

Following the completion of EPI acquisition, a structural T1 RARE image was collected. The
imaging parameters are as follows: repetition time (TR) of 1500 seconds, echo time (TE) of 8
milliseconds, flip angle = 90°, matrix size = 256 x 256, FOV = 1.6 x 1.6 cm? number of slices = 16,
slice dimensions = 0.25 mm x 0.25 mm x 0.75 mm.

fMRI Image Preprocessing. fMRI images and the corresponding T1RARE structural images
were preprocessed following a paradigm adapted from an in-house pipeline (47, 48). All
processes and scripts described in this section were done using MATLAB 2022b. Briefly
described, EPI time courses were first converted from the standard Bruker file format to a .sdt file
format before undergoing motion scrubbing. The following formula was used to determine the
degree of motion for an isotropic shape:

Motion Parameter = |T,| + |Ty| + |T, | + 0,1, | + |9yrz| + 10,7 |

Euler angles were back computed from the affine transformation matrix calculated using an
internal MATLAB function. Volumes that exceeded half a voxel size of displacement (0.125 mm)
were discarded, along with one volume preceding it, and one volume after the volume exhibiting
excessive motion. Scans that had more than 10% of volumes discarded due to motion (including
the number of neighboring volumes) were discarded. Thus, scans with at least 90% remaining
volumes post motion scrubbing were kept for following preprocessing.

Post motion scrubbing, each scan will undergo the process of co-registration and normalization.
First, the first frame for each EPI scan is co registered to the relevant subject’s T1RARE structural
image using an in-house GUI made in MATLAB. Following co-registration, the subjects T1IRARE
image is then normalized to a reference brain atlas from the Allen Brain Atlas (WEBSITE). After
successful normalization, the affine transformation matrix from the normalization process is then
applied to the co-registered EPI images to align the EPl images to the reference brain atlas. Once
the first frame for every EPI scan has been successfully aligned to the reference template
following the beforementioned procedure, the scans are then motion corrected using functions
from Statistical Parametric Mapping (SPM12, 49). Post motion correction, a custom mask for
every EPI scan was manually drawn using the first frame for every motion corrected scan. The
custom mask excludes areas with significant signal distortion, and is subsequently applied to the
postprocessing step. White matter and cerebral spinal fluid (WM-CSF) masks are constructed
using the reference atlas to determine the spatial location of the specified features. The signal in
the WM-CSF mask is then used as a nuisance regressor alongside the motion parameters
calculated from motion correction using SPM12 in a general linear model. The residuals from the
general linear model is then spatially smoothed using a 3x3 Gaussian kernel, followed by temporal
filtering using a bandpass filter with a cutoff frequency of 0.01 Hz and 0.1 Hz. The end result is a
correlation matrix consisting of pairwise correlations between each ROI in the mouse’s brain.

fMRI Image Postprocessing. fMRI ROIs were grouped into seven anatomical systems for
system ROI analysis. These seven systems were the Sensorimotor Cortex, Heteromodal Cortex,
Olfactory Cortex, Hippocampus, Striatum-Pallidum, Thalamus, and Hypothalamus. System
representative functional connectivity values are calculated as the mean correlation value where
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all related ROls correlation values first undergo fisher Z transformation from r space to z space,
before calculating the mean, and then back transformed into r space. The process is repeated for
every scan within a group, and the group average are also quantified in the same manner.

The initial evaluation of the entire dataset comprised of examining the correlation matrices in a
univariate manner, where every pairwise functional connectivity value is fisher-z transformed
(using the arctanh function), followed by implementing a linear mixed effect model of the following
structure:

y=XB+Zu+ ¢

Where y is the response vector with n x 1 dimensions, n being the number of subjects. X is defined
as the predictor matrix, with n x p dimensions, where p is the number of fixed effect predictors
(dependent on analysis), B is the p x 1 vector of fixed effect coefficients. Z is a n x g - m matrix
where there are g random effects and m groups. u is defined as a random vector with dimensions
q -mx 1 for m groups. ¢ is the residual vector for n groups. The random effects are the subjects
While the fixed effects are some combination of genotype and timepoint, dependent on the
statistical question being evaluated (e.g. time point segregated data will only have genotype as
the fixed effect to evaluate differences at a single time point). A two-way ANOVA or two-tailed t-
test (depending on the model) is conducted to evaluate the statistical significance of the
coefficients derived from the linear mixed effect model.

Anatomical System definitions. Anatomical systems such as the Sensorimotor Cortex,
Heteromodal Cortex, Olfactory Cortex, Hippocampal Region, Basal Ganglia, Thalamus,
Hypothalamus consists of sub ROls featured in the respective systems. The quantification of the
inter and intra system connectivity is achieved by calculating the mean of the fisher z's
transformed correlation values of all ROIs within a system-system interaction. For example, if we
are to calculate the system connectivity between the Hippocampal region and the Heteromodal
Cortex, then all functional connectivity values between the ROls within both systems are averaged
following the steps described previously. The system definitions for each individual ROl is listed
in a table in the supplementary materials.

Brain Extraction. Mice were euthanized via decapitation by placing the awake mouse into a
decapicone and using a guillotine. The decapitated head was then sprayed with 70% sterile
ethanol. The skin and muscle are removed from the skull by removing the skin surrounding the
cement cap. Forceps are used to grasp the head post attachment and apply a measured amount
of force to slowly rock the dental cap back and forth to slowly loosen the cement cap from the
skull. Once the cement cap is ‘peeled’ off from the skull, dissection scissors are used to cut up
the side of the spinal cord and around the base of the skull at the lateral and ventral borders. The
scissors are then inserted at the base of the skull and are used to make a cut down the midline
of the skull from posterior to anterior direction. The dorsal part of the skull is then removed and
the brain is slowly and carefully dislodged and placed in a separate cell culture dish containing
chilled dissection media (x mL of HBSS and x/90 mL 1 M HEPES) hosted within a bed of ice and
placed on top of a chilled copper plate.

The brain is then halved into two separate hemispheres, with the right hemisphere to be dissected
into individual brain regions. The brain regions are the Cerebellum, Hypothalamus, Thalamus,
Striatum, Hippocampus, Occipital Lobe, Temporal Lobe, Parietal Lobe, and Frontal Lobe. Each
individual brain region is placed into their own respective centrifuge tubes that holds a mixture of
lysis buffer and protease inhibitor. The brain regions are homogenized by mechanical titration
before sitting for 20 minutes on ice before being centrifuged at 5000 rpm for 5 minutes at 4
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degrees Celsius. The supernatant is then placed into a separate tube, and flash frozen in liquid
nitrogen and stored at a -80 degrees Celsius freezer until further use.

Quantification of protein. Total protein content in the supernatant was quantified using the
Pierce BCA Protein Assay kit (Fisher 23225). Manufacturer’s instructions were followed
accordingly. Samples were run using technical duplicates and absorbance was quantified using
a SpectraMax i3 minimax 300 imaging cytometer (Molecular Devices). Linear regression was
used to quantify protein concentration.

Multiplex Assay. Cytokine concentrations of dissected homogenized brain regions from 5xFAD
mice were quantified using the Bio-Plex Pro Mouse Cytokines Grp1 Panel 23 Plex (Cat.
#M60009RDPD) using the Luminex FLEXMAP3D platform. Manufacturer's protocol was
performed with minor modifications to accommodate the use of a 384 well plate. Following steps
are applied using existing in-lab protocols (58). Streptavidin-phycoerythin was used at half volume
While magnetic beads and antibody solutions were diluted 1:1 and used at half volume. Equal
parts of lysis buffer lysis assay buffer were used in the preparation of standards and blanks.

Cytokine Data Cleaning. The Xponent software provided by the Luminex System was used to
interpolate sample cytokine concentrations using standard curves derived from using the 5 point
logistic regression model. Concentrations below or above the standard limit are either set to 0
pg/mL or the maximum concentration on the curve respectively. An in-house pipeline was
used to clean the cytokine data (64): https://github.com/elizabethproctor/Luminex-Data-
Cleaning (version 1.05). All cytokines with above-background values for at least half of the
subjects were used in further analysis of the cytokine data; we included cytokines with fewer
non-zero values if the non-zeros appeared biased toward a particular group.

Partial Least Squares Modeling. We utilized a linear, supervised multivariate regression model
known as Partial Least Squares (PLS) (61,62) to model Cytokine Signatures of disease and
healthy control states. The ROPLS package in R (63) was used to run both Partial Least Squares
Regression (PLSR), and Partial Least Squares Discriminant Analysis (PLS-DA). PLSR was used
to construct a predictive model to model a continuous response variable, such as the timepoint of
our covariates. PLS-DA was used to create a classification model that sought to discriminate
disease from healthy control cytokine signature profiles. All cytokine data was z scored to mean
center the data and have the sample distribution exhibit unit variance.

Random sub sampling cross validation tests were conducted to select the appropriate number of
latent variables (LVs) for both PLSR and PLS-DA models. Test sets and training sets were
determined by randomly sampling the parent dataset. The number of k-folds, consequentially
determining the size of the training and test sets, was determined by the following criteria (64): k
-Folds = 3 if the number of samples exceeded 30, or k-folds = 5 if the number of samples building
model was less than 30. K-fold cross validation was conducted a hundred times. 3 models
consisting of either 1, 2, or 3 LVs were constructed in every iteration of the Cross-Validation
process. All models were then used to predict the response variable, or class identity to quantify
the prediction accuracy for PLS-DA, or the root mean squared error of cross validation (RMSECV)
for PLSR. RMSECYV has the following formulae:

S0 — £)?

n

RMSECV =
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Where x; is the predicted value for the | sample, %; is the actual value for the j"" sample, and n is
the number of samples in the test set. Every iteration resulted in a completely new random
sampling of the parent dataset to produce both the test and training datasets for cross validation.
The number of LVs was determined by selecting the models, and their number of LVs that they
represented, that had the lowest RMSECYV, or highest predictive accuracy. This model is then
used for subsequent analysis and significance testing.

Significance testing of the model was conducted by permutation testing. 1000 permutations were
done to construct a null distribution of random models, where each iteration involved the
scrambling of the response variable of interest with respect to the covariates. The final model’s
predictive accuracy or RMSERCYV is then used to calculate a z score:

7 = XModel — HNull

ONull
Where xumoqe1 IS the model’s predictive accuracy or RMSECV, and uy,; is the mean
predictive/RMSERCV of the null distribution, and oy, is the standard deviation of the null
distribution simulated by the permutation process. We then calculate the corresponding p value
for the significance of the model by comparing the calculated Z score to the Z distribution.

Models that were determined to only have one latent variable will have score plots that show two
latent variables for ease of visualization. However, only the one latent variable model is used to
inspect the loadings, and to make interpretations about the cytokine profile with relation to disease
state. The models here are also orthogonalized for improved interpretability. The
orthogonalization process results in projecting the maximal amount of covariance in the response
vector and the covariate matrix onto the first latent variable (65). The variable importance in
projection (VIP) score was used to threshold which cytokines drove the separation between
classes with respect to the response of interest (66). Thus, loadings from the first latent variable
for cytokines that had a VIP score greater than 1 are designated as cytokines of interest, as they
are implied to have a greater than average contribution to the model.

Graph Theoretical analysis. Every functional connectivity matrix (the preprocessed correlation
matrix) is converted into a weighted adjacency matrix where the absolute value of the correlation
values is used as the weights of each edge. All graph organizational metrics were calculated using
the Brain Connectivity Toolbox (50). Hub regions were identified by allocating a score of 0-4 based
on the following criteria: 20% highest strength, 20% highest betweenness centrality, 20% lowest
path length, and 20% lowest clustering coefficient (51). The graph theory metrics used to
determine the hub score were quantified on the group average correlation matrix for every group.
The mathematical definitions for the four topological features are described below:

Strength (50, 52):
Si = 2 Wij

Where Siis defined as the strength for the i node. Wi is defined as the weight of the edge between
node i and its j"" neighbor, and N is the set of all nodes. Strength quantifies the degree of
connection between a node and its neighbors.

Clustering Coefficient (50, 53):

1
C=—o— E W )1/3
4 ki(ki IR 1) (Wl,]W],ka,l)

J,KEN
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Wi;is the weight between node i and node j, and kiis the number of neighbors of a vertex. The
clustering coefficient can be interpreted as the degree to which nodes tend to cluster together.
For the local clustering coefficient, Ci, the coefficient quantifies how close the neighbors are to
node i to being a clique. N is the set of all nodes.

Characteristic Path length (50, 55):
v = 12 ZjEN,iij d:'/}{

n&d n-— 1
N is the set of all nodes, n is the total number of nodes, and d;} is the weighted shortest path
between nodes i and j. Characteristic path length quantifies the proximity with regards to strength
of connection between nodes.

Global Efficiency (50, 56):
W—l
W = lz Yjen,izj dif

N 4 n—1
LEN

N is the set of all nodes, n is the total number of nodes, and d;} is the weighted shortest path
between nodes i and j. Efficiency is essentially the mean of all reciprocals of the weighted
distances in a network. The metric quantifies how efficient information is exchanged within a
network.
Assortativity (50, 57):

- _ 1

T B perwiki’ k) — [0 perz wiy (k1 + k)12

1 1
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Where k;” and k;" are the weighted degrees of nodes i and j. w;; is the weight of the edge between

nodes i and j, | is the total number of edges, While L is the set of all edges within the network.
Assortativity is used to determine the degree to which nodes connect to other nodes with similar
properties within the network.

r" =

Results

Hippocampal functional connectivity exhibits local suppression before propagating to
inter- and intra-regional connectivity loss in thalamus and cortical regions. To investigate
the effects of Alzheimer’s Disease progression on functional networks, we quantified functional
connectivity matrices at four different time points: month 1.5, month 2, month 4 and month 6;
utilizing our awake resting state animal imaging paradigm. What we initially observed was that
the majority of pairwise ROIs exhibited a time effect, but not an interaction between genotype and
time (Figure 1A). We noticed that when examining the connectivity values at each timepoint, the
values diverged at later time points, but were parallel to each other at the earlier stages of disease
development (Figure 1B), with the divergence in connectivity is markedly shown at the latest
stage of disease development, but not exhibited in the other three timepoints. Thus, we proceeded
to investigate differences between disease and wildtype mice at each particular timepoint, acting
on the assumption that the differences in connectivity values did not follow a linear pattern. The
connectivity values were found to be statistically different between disease and control (p < 0.05,
uncorrected for multiple comparisons) vary when transitioning from consecutive timepoints and
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Figure 1. Disease-relevant changes in connectivity of anatomically defined ROIs accumulate non-linearly over
time. A) Color-coded binary plot illustrating which connections between ROls exhibit a disease effect (linear mixed effect
model, disease and time as fixed effects, subject as random effect). Interaction term is included. B) Representative time-
course ROI-ROI functional connectivity (Postsubiculum and Taenia Tecta), where mean response is plotted with 95%
Cl. C) Number of ROI-ROI functional connections significantly changed in disease vs. wild-type at each time point, one-
tailed t-test with cutoff p < 0.005. D) Binary masks identifying ROI-ROI functional connections significantly changed in
disease vs. wild-type at each time point, one tailed t-test with cutoff p < 0.05.

modeling pairwise ROI differences between them for both 5xFAD and wildtype mice in a two way
ANOVA model (Figure 1C,D).

When examining the difference in the global network at each timepoint, we note a couple distinct
features of the difference matrices. At month 4 we observe a distinct local depression of functional
connectivity in ROIs located in the hippocampal region, and that at month 6 there is a significant
increase in the number of pairwise ROI connectivity relationships that are different between the
disease and control groups (Figure 2). The observation is further confirmed when examining the
binary matrix which highlights regions that exhibited a statistically significant difference (p < 0.05,
uncorrected) between the disease and control group. It can be seen that hippocampal ROls such
as the Subiculum, Presubiculum, Field CA1, Field CA2, Dentate Gyrus (DG) and the Entorhinal
area exhibit significantly depressed intra-regional connectivity (prresubiculum-Field caz = 0.0031,
Prresubiculum-Field ca1= 0.015, Prield cas-Field ca2 = 0.029, Prresubicuium-ne = 0.041, psubicuum-ne = 0.041,
Psubiculum-Presubiculum = 0041, PPresubiculum-Entorhinal area = 0046) at month 4 for the disease group. Some
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Figure 2. Functional connectivity changes over the course of AD and healthy aging. Symmetric heat maps of
Pearson’s correlation coefficients between brain regions of interest. Left to right, column 1: 5xFAD transgenic
Alzheimer’s disease mice at age 1.5, 2, 4, or 6 months (rows 1-4, respectively). Column 2: wild-type littermates at the
same ages. Column 3: difference matrix representing the changes due to disease (5xFAD minus WT, Z-transformed
subtraction). Column 4: binary matrix highlighting connectivity values with two-tailed t test p < 0.05 of LME fixed effect
coefficients.

of them such as the retrohippocampal ROIs exhibit lower intra-ROI connectivity While the
hippocampal formation ROls displayed lower inter-ROI connectivity with retrohippocampal
regions such as the Presubiculum.

Another feature that we observe is the level of thalamic ROls that exhibit differences between the
two groups at each specific timepoint markedly increases at month 6. Both inter and intra region
connectivity for the Thalamus was depressed at the fully symptomatic timepoint (Figure 2). One
interesting result is that the 5xFAD group exhibited a higher level of thalamus to Pallidum
connectivity relative to the wildtype group at month 2, where both the Globus Pallidus and the
Substantia innominate displayed stronger connectivity with subregions in the dorsal Thalamus
(pMidIine group of the dorsal thalamus-Globus pallidus = 0038, Pwmidline group of the dorsal thalamus-Substantia innominate = 0036,
PReticular nucleus of the thalamus-Striatum-like amygdalar nuclei = 0028) . This particular feature is lost at month 4, and
instead we note that inter-striatum-thalamic connectivity and inter striatum-hypothalamic
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Figure 3. Brain anatomical systems exhibit hyperconnectivity
followed by suppression in an AD-relevant spatiotemporal pattern. A)
Connectivity matrices and the difference matrix at each respective
timepoint, as in Figure 2. B) Spatial illustration of difference matrix in a
binarized form superimposed over an anatomical brain slice. Blue: negative
change in connectivity, Red: positive change in connectivity. Thicker edges
have higher magnitude of change. Color of node outline indicates
directionality of intra-system connectivity changes, with greater outline
thickness indicating greater magnitude of intra-region connectivity change.
Node color: yellow = sensorimotor cortex, red = heteromodal cortex, purple
= hippocampus, blue = basal ganglia, orange = thalamus, green = olfactory
cortex, white = hypothalamus.

connectivity are higher for
diseased aging at month 4
(pHypothaIamic lateral zone-Striatum-like
amygdalar nuclei = 0021, pHypothaIamic

= 0.019,

Pwmidiine group of the dorsal thalamus-Striatum-like

lateral zone-Fundus of striatum

amygdalar nuclei = 0007, PAnterior group of
the dorsal thalamus-Striatum-like amygdalar nuclei
= 8.64 e-2)(Figure 2).

All segregated datasets and the
resultant statistics had a linear
mixed effect model to estimate
the coefficients of disease. Thus,
the fixed effect is genotype, and
the random effect are the
subjects. Then a two-tailed t test
is run to test the significance of
the estimated coefficient. All
statistics in this section was not
corrected for multiple
comparisons.

Thalamus and hypothalamus
systems exhibit early-disease
hyperconnectivity with other

brain anatomical systems
followed by suppression at
later disease stages. We

grouped ROIs and their relevant
functional connectivity values into
anatomical systems in order to
evaluate the effect of disease
progression on inter and intra
system connectivity. One feature
to note is that month 1.5 and
month 2  exhibit different
anatomical network profiles even
though both timepoints are
associated with the early stage of
disease development (Figure
3A). There is cerebral
accumulation of Amyloid plaques
that at months 1.5 and 2 (42, 43).
However, the difference in
concentration between the two
points is steep and so month 2
can be used as a proxy to
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describe a later stage in disease development (43) relative to month 1.5. This feature is reflected
in how markedly different the two anatomical networks are, where there is a clear difference in
the number of depressed anatomical connectivity values for 5xFAD versus the control (Figure
3A,B). Once again, we note that the thalamic-hypothalamic region in month 2 exhibits a net
positive connectivity value in the disease group even though the difference was not found to be
significant (p = 0.2570 uncorrected). The systems at month 1.5, however, exhibit all intra-system
functional connectivity, excluding the thalamic-thalamic connectivity, to be depressed for the
5xFAD class (Figure 3A,B). All inter and intra connectivity values were found to statistically
insignificant (p > 0.05 when corrected for multiple comparisons), and only a handful were shown
to be different between the disease and control group at both time points: striatum pallidum-
hypothalamus (p = 0.0131 uncorrected, p = 0.1726 FDR corrected) for month 1.5, and intra
striatum pallidum connectivity ( p= 0.0243 uncorrected, p = 0.1609 FDR corrected) and
Hippocampal-Heteromodal Cortex for month 2 (p = 0.0494 uncorrected, p =0.1635 FDR
corrected). The lack of statistical significance when controlling for time falls in line with the
projected timeline of disease pathology, where the early stages of disease development may not
manifest significant changes to the anatomical networks. However, it must be stated that even
though the differences between the two groups in each time point lacked significance, the average
anatomical system network profiles were different, and strongly suggests that the increase in
amyloid beta plaques could have had a role in influencing the net positive connectivity values for
the disease group over the control group at month 2.

At month 4 we observe that the inter-system connectivity of the olfactory cortex and hippocampal
region for the 5xFAD animal line is depressed relative to that of wildtype controls (p = 0.0127
uncorrected, p = 0.3545 FDR corrected) (Figure 3 A,B). What we also observed is that the
depressed intra-hippocampal connectivity persists at month 6 (p = 0.0011 uncorrected, p =0.0164
FDR corrected), and that a greater number of systems showed depressed intra-system
connectivity at the later stage of disease, such as the sensorimotor cortex (p = 0.0735
uncorrected, p = 0.0978 FDR corrected), Hetermodal Cortex (p = 0.0656 uncorrected, p = 0.0961
FDR corrected), and Thalamus (p = 0.01 uncorrected, p = 0.0487 FDR corrected) (figure 3 A)
There were a number of inter-system connectivity patterns that was implicated at the latest stage
of disease, such as the Hypothalamus-Sensorimotor Cortex (p = 0.0287 uncorrected, p = 0.06
FDR corrected), Thalamus-Sensorimotor Cortex (p = 0.0209 uncorrected, p = 0.059 FDR
corrected), Hypothalamus-Striatum Pallidum system (p = 0.0474 uncorrected, p =0.0771 FDR
corrected, and Thalamus-Hippocampal connectivity (p = 0.0040 uncorrected, p = 0.0292 FDR
corrected).

Statistics were conducted using a linear mixed effect model on timepoint segregated datasets.
Thus, the fixed effect for each model is the genotype, and the random effect are the subjects.
Thus, the estimated coefficients that describe the effect of disease on the response is statistically
interrogated by a two-tailed t test.

Global brain networks become weaker, less integrated, and less efficient with disease
progression. Given that prior analysis demonstrated that the ROIs implicated over disease
progression did not remain consistent throughout the timepoints, and that the system level
analysis yielded a similar perspective, we wanted to investigate how these different network
profiles at different timepoints affected network integration and segregation. We utilized the Brain
Connectivity Toolbox (50) to quantify metrics related to network integration and segregation where
metrics such as global network clustering and assortativity indicating the degree of segregation,
and shortest path and efficiency demonstrate integration. We first investigated how disease
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Figure 4. Global brain network is broadly negatively impacted by AD progression. Strength (A), efficiency (B), clustering
coefficient (C), and assortativity (D) of the global brain network in transgenic AD (red) and wild-type littermate (blue) mice at the
indicated ages. Error bars represent the standard error of the mean. Comparisons by two-tailed t test, *p< 0.05, **p< 0.005.
progression would affect network segregation and integration by first treating timepoints as a
continuous variable and running a two-way ANCOVA. None of the interaction terms between
genotype and timepoints were found to be statistically significant (Pstrength = 0.19458, pcharpath =
0.2023, peiustering = 0.19342, peficiency = 0.19037, Passortativiy = 0.64371). However, given what we had
observed in prior analysis regarding how the functional connectivity values did not follow a linear
pattern over time, we then proceeded to investigate the degree to which disease state was
correlated to changes in global network properties by treating each timepoint as a categorical
class. The following analysis was conducted using a two-way ANOVA with genotype and
timepoint as the factors.

Global network strength is shown to have differences at particular aging timepoints. The fully
symptomatic state (timepoint month 6) exhibited a significantly lower degree of network strength
than the early stages of disease development (psxrap:ms - sxFap: m1.5 = 0.005 and psxrap:me - 5xFAD:M2 =
0.012), and that the disease development had a distinct effect on network strength when
compared to healthy aging at the terminal time point (psxrap:me - wr:me = 0.037) (Figure 4A). On
the other hand, we did not observe any significant differences in network strength in healthy aging,
and we note that network strength was not found to be different at the later stages of disease
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development (psxrap:vs - sxrap:ma = 0.252). Another metric that evaluates network integration is
global efficiency, which is quantified as the inverse of the global characteristic path length
between all nodes in the network (59). We observe the same pattern regarding global efficiency
as global network strength. Healthy aged animals exhibited a different global level of efficiency
than fully developed symptomatic mice (psxrab:me-wt:ms = 0.036) (Figure 4B). What was surprising
was that when controlling for age, we do not notice any differences in the networks efficiency until
we compare fully aged animals against fully symptomatic animals, as such the intermediate state
of disease development at month 4 exhibited insignificant differences at the efficiency metric
relative to a healthy animal of the same age (psxrap:ma-wr:ma = 0.630).

Network integration metrics illustrate how well connected the nodes of the network are, and as a
result one can infer how efficient information can be transferred across nodes, and what the ease
of communication is between nodes (59, 67, 69). On the other hand, functional segregation allows
one to infer how specialized certain regions of a network are. Such metrics can quantify groups
and communities, some of which may exhibit special properties or functions depending on the
context (59, 67, 68, 69). Therefore, we've quantified a metric of network segregation: clustering
coefficient. Just like the global metrics of network integration, we observe similar trends regarding
which age features differences between diseased and healthy animals (Figure 4C). Fully
symptomatic animals had a lower clustering coefficient than that of healthy aged animals
(psxrap:me-wt:me = 0.033), and that the later stages of disease development resulted in a lower
clustering coefficient compared to early states of disease progression (psxrap:ms-sxFap: m1.5 = 0.007,
psxFap:me-sxFaD: M2 = 0.013). Once again, the differences between the two groups is not observed at
month 4 (psxrab:me-wt:ma = 0.799).

Another metric of interest is assortativty. Assortativity can be interpreted as a metric that defines
how one node exhibiting a set of characteristics tend to connect with other nodes with the same
features (59, 69). Surprisingly, we do not observe any statistical differences between any groups
and their respective timepoints. One interesting feature to note though is that at the beginning
stage of disease development, we note that there is an appreciable difference in the Assortativity
coefficient at month 1.5 (psxrap:m1.5.wrmi1.5= 0.421) (Figure 4D).

Statistics were conducted by using a two-tailed t test to interrogate if any significant difference
exists between two metrics of interest (i.e. month 6 control versus month 6 wildtype). All graph
theory metrics were derived using the Brain Connectivity Toolbox (50), and the graph metrics
were quantified on every scan for every subject, before a subject average is quantified. Then the
subjects’ averages are pooled together to quantify an arithmetic mean.

Distinct regional cytokine signatures predict disease progression. There are regional
differences regarding which cytokines drive aging for both diseased and healthy groups. We
identify key cytokines driving aging in both disease and healthy groups separately, and have
mapped a consensus cytokine list between the two groups per brain region based on cytokines
that had a VIP score greater than 1 for at least one of the two groups (disease versus healthy).
From there, we examined how different the loadings are for these cytokines of interest.

For the parietal cortex, we identify key cytokines upregulated in our disease model (3 LVs, p =
1.939 e-5, RMSECV = 22.201, Figure 5A,B) such as MIP-1a, MIP-13 and CXCL-1 (also known
as keratinocyte-derived cytokine; KC). Thus, there is an upregulation of cytokines canonically
associated with having a pro-inflammatory role (71, 72, 73, 74, 75) for diseased aging in the
Parietal Cortex. However, in the healthy aging group (1 LV, p = 9.399 e-5, RMSECV = 43.202,
figure 5C), we note that there is an upregulation of cytokines canonically associated with immune
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Figure 5. Parietal cortex exhibits progressive and specific up-regulation of microglial activation signature
coinciding with onset of synaptic dysfunction. A) Scores plot and B) loadings on the first latent variable of an
orthogonalized partial least squares regression model of cytokine levels in the parietal cortex regressed against age
as a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type
litermates. Colored bars indicate cytokines with VIP score > 1.

regulation such as MCP-1, GCSF, IL-4 and IL-9, and may exhibit neuroprotective roles (76, 77,
78, 79, 80, 84) in the brain. One key note is that these ‘neuroprotective’ cytokines are not seen
as a covariate that drives aging in the disease group, but are in the healthy group. Another feature
is that MIP-1« is significantly more upregulated in the disease group compared to the control
group. It is observed that cytokines predominantly associated with inflamed environments such
as TNF- a, Eotaxin, MIP-1a, and MIP-1$3 and IL-9 (74, 75, 81, 82, 83) are upregulated in healthy
aging as well (Figure 5C,D). Therefore, there is some overlap between the two groups with
regards to aging and the cytokine signatures that covary along with it. One surprising observation
is that there are more VIP cytokines for healthy aging than there are for diseased aging, with 11
VIP cytokines for the control group, and only 5 for the diseased group.

Other brain regions such as the Frontal Cortex displayed a different cytokine signature, but similar
pattern, that covaried with age. We note that IL-17A (or also known as IL-17), CXCL-1, and MIP-
1B are upregulated in disease aging/disease progression (disease model had 2 LVs, p =2.120 e-
2, RMSECV = 30.391, Figure 6A). We also observe that IL-2, a cytokine that has shown to have
a regulatory role in inflammation and neuronal activation (85-87), is downregulated in the
diseased brain (Figure 6B). RANTES is also seen to be downregulated in diseased aging, and
interestingly enough there is literature demonstrating that RANTES and IL-2 may have a
synergistic relationship to promote an ‘optimal’ inflammatory response (88, 89), thus suggesting
that the downregulation of the two in the diseased group, but elevation of RANTES and a no-
factor effect of IL-2 in healthy aging suggests that the two may form a neuroprotective role within
the context of the 5xFAD disease development timeline. In contrast to the diseased group, healthy
aging of the Frontal Cortex involves significantly more cytokines (as determined by the VIP score,


https://doi.org/10.1101/2024.03.17.585383
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.17.585383; this version posted March 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A ® | * Month& C N/ | * Month6
| * Month 4 © - L) | * Month 4
1 * Month2 1 * Month2
I e Month 15 . 1e Month15
ISSEcas « 4 ° ® I r=r=ye =
N ° = o
2 A o ° o e ° ¢
- c « - ° ® o
S e © S ° o o © R
» » ° °
o °6° o0 o° o ® 2 ] N o © °
S o o o °* L4 S °
3 e 0%, ° n ° ° ° L/
oe .. ° .o 0. ® Y
® . L] A g. o ®
o’ o~ o 8
9 L) ° Y1 e °
T T T T T T
2 0 4 5 0 10
Scores on LV1 Scores on LV1
B D
TNFa TNFa- .
RANTES- RANTES- I
MIP1b- - MiP1b-
MIP1a- - ] MiP1a-
MCP1- 1 Mcp1- I
KC- | KC- |
IL9- IL9-
e~ IL6- - ILG- |
o IL5- o IL5-
2 IL4- = IL4-
3 IL3- | 2 IL3-
o IL2- o IL2-
2 |L1b- 2  |L1b-
T IL1a =] IL1a-
9 IL17A- I § IL17A- I
IL13 1L13-
IL12p70 IL12p70-
IL12p40 IL12p40-
IL10 1L10- |
IFNg- IFNg-
GMCSF GMcsF- I
GCSF- GCSF-
Eotaxin- | I ! I Eotaxin- I
-0.2 0.0 0.2 0.4 0.0 0.1 0.2

Cytokines

Cytokines

Figure 6. Temporal cortex exhibits progressive and specific up-regulation of microglial activation signature
coinciding with onset of cognitive deficit. A) Scores plot and B) loadings on the first latent variable of an
orthogonalized partial least squares regression model of cytokine levels in the temporal cortex regressed against age
as a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type
litermates. Colored bars indicate cytokines with VIP score > 1.

and their relative loading weight to the disease group) with 13 cytokines being labeled as
covariates that drove the variance in healthy aging (1 LV, p = 3.474 e-5, RMSECV = 37.921,
Figure 6C). The disease model only had 7 cytokines with the same interpretation. Thus, relative
to the 5xFAD group, healthy aging has IL-10, Eotaxin, RANTES, IL12-p70 and IL-5 to be more
upregulated. Interestingly enough, the profile here consists of cytokines canonically associated
with inflammation such as Eotaxin and RANTES (82, 89, 90), and those that are seen as
regulators of the inflammatory environment such as IL-10 and IL12-p70 (91, 92, 93). Interestingly
enough, just like the observation made for healthy aging in the Parietal Cortex, the Frontal Cortex
seems to have more cytokines that covary with age relative to disease progression (Figure 6D).

The temporal cortex also exhibits a similar pattern, but different cytokine signature, to the Frontal
and Parietal Cortex. The disease model (1 LV, p =2.995 e-3, RMSECV = 30.238, Figure 7A) is
shown to have RANTES, MIP-1a, MIP-1f3, and IL-17A to be upregulated, While having IL12p70
to be down regulated (Figure 7B). By comparison, the healthy aging model (2 LVs, p = 7.074 e-
6, RMSECV = 35.251, Figure 7C) has a myriad of cytokines that are upregulated and covary in
the same direction as aging. Notable ones would be CCL1 (KC), IL5, IL6, IL12p70, IL17A, and
interestingly enough TNF-a (Figure 7D). Thus, the temporal cortex cytokine profile for healthy
aging is a mixture of both inflammatory and anti-inflammatory proteins (73, 82, 89, 90-94), a
mixture that is distinct when comparing it to the other two cortical regions. The VIP cytokines in
the disease model have common features to the cytokines profiles of the Frontal and Parietal
cortex, with the commonality being MIP-1a, MIP-18, and IL17A all being upregulated, and are
classified as important covariates, with relation to disease development. Just like the healthy
aging models for the Parietal and Frontal Cortex, the Temporal Cortex healthy aging model has


https://doi.org/10.1101/2024.03.17.585383
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.17.585383; this version posted March 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A A 1 * Month 6 C~ A 1 * Month 6
¥ | * Month4 ° | * Month 4
1 * Month2 o 8 ° 1 * Month2
o 1 e Month1.5 1 e Month 15
Y | | ° | [
N N oo
2 o~ ¢ > ° % o
= °® o ° ° L/ 2 ® e °
S - - ° & ) A § 1 ° ° °
3 ° ) 8 .P 1 L4
5 od @ L4 .O 0 ®© ) S °© ® ° °
A ° LI A Qe
-] ®e o ©0° % ° ° < e © o,
T ° LIPS ° i ] ° °
° e o ° ° ° o ®
o 4 ° R ® o ° Y
° ° A
]
T T T T T T T T T T T T
1 0 1 2 3 4 2 0 2 4 6 8
Scores on LV1 Scores on LV1
B D
TNFa- TNFa- |
RANTES- ] RANTES-
MIP1b- I MIP1b- I
MIP1a- | MIP1a- |
MCP1- MCP1-
S5 Ke-
IL9- ILO-
£ IL6- £ IL6- I
g IL5- 2 IL5- ]
e e
o o
) IL2- ) IL2-
£ IL1b- £ IL1b-
s IL1a- g IL1a-
= IL17A- | = IL17A- |
IL13- IL13-
IL12p70- I IL12p70- |
1L12p40- 1L12p40-
IFNg- IFNg-
GMCSF- GMCSF- |

GCSF-
Eotaxin- | ]

-0.25 0.25 0.50
Cytokines

0.00

0.75

GCSF

Eotaxin-

0 0.1 02 03
Cytokines

Figure 7. Frontal cortex exhibits progressive and specific up-regulation of microglial activation signature
coinciding with onset of cognitive deficit. A) Scores plot and B) loadings on the first latent variable of an
orthogonalized partial least squares regression model of cytokine levels in the frontal cortex regressed against age as
a measurement of disease progression. C) Scores plot and D) loadings plot for the companion model in wild-type
litermates. Colored bars indicate cytokines with VIP score > 1.

significantly more cytokines that have their expression in the brain region positively covary with

age, with 9 cytokines being VIP in the healthy aging model, and only 5 in the disease model.

Discussion

The understanding of Alzheimer's Disease and its etiology is still incomplete, and the
consequence of this is the impedance of therapeutic strategies that could successfully reverse
AD pathology (70). As such we have sought to expand the existing understanding on how the
progression of the neurodegenerative disease afflicts cognitive networks as the ultimate objective
would be to ameliorate the impairments that occur over the development of Alzheimer’s Disease.
The reason for this is because Alzheimer’s proteinpathy does not necessitate mortality, and
instead it leads to other conditions that increase the risk of mortality such as the inability to take
care of one’s self, increased risky behavior (97), and the inability of basic physical functions such
as the ability to swallow ingested food, leading to pneumonia (95, 96). Therefore, we have
executed a comprehensive, multi-modal experiment to quantify two features of Alzheimer’s
Disease; the changes in cognitive networks over disease progression, and chronic
neuroinflammation in the presence of AD pathology (64, 102-105).

There is extensive literature demonstrating how functional networks are altered between fully
symptomatic AD patients and their respective healthy controls (98-101). However, one key feature
that is missing is how functional networks are modulated over the progression of AD, excluding
information on how and when the global network may be losing the ability to have segregated,
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and specialized networks that could contribute to executing complex cognitive tasks (106-108).
To fill this gap in our understanding of AD development, we have used a well stereotyped mouse
model of AD and quantified its respective network metrics at 4 distinct time points (Figure 2) that
correlate to disease states (42-46, 109). Our findings show that early disease pathology at months
1.5 and 2 exhibit profound changes to networks involving the thalamus and striatum/pallidum.
Both the anatomical system and the individual ROls within the Striatum/Pallidum, and Thalamus
exhibited significant differences between the disease and healthy aging group. This is of particular
interest given the roles of these two brain regions regarding cognitive functions. Firstly, the
striatum and pallidum are part of the basal ganglia, a region that has the primary role of regulating
motor control, and a role in higher order cognitive functions such as emotional processing and
reward behavior (111-113). The thalamus, on the other hand is highly integrated within the central
nervous system. Thus, it is commonly interpreted that the Thalamus plays a major role in multiple
cognitive functions. For example, the Thalamus receives neuromodulatory inputs and excitatory
inputs from a myriad of brain regions, including the basal ganglia (114-119, 122), and the lesion
of the Thalamus has resulted in cognitive impairments such as executive dysfunction (120), and
attention deficits (121). Research into other forms of cognitive impairments such as the classical
Mild Cognitive Impairment stage (MCI) reinforce the importance of the Basal Ganglia and the
Thalamus in cognitive health. It has been demonstrated that Basal Ganglia dysfunction is
correlated with lower metrics of cognitive health (120, 121, 123-125). Thalamic hyper connectivity
with cortical regions is associated with cognitive defects in schizophrenic subjects (126, 127).
Therefore, given the highly integrated nature of the Thalamus and Basal Ganglia in cognitive
functions, it is of particular interest to note that our results indicate changes to Thalamic and Basal
Ganglia ROIs functional connectivity at the earliest stage of disease development. This would
suggest that these brain regions are afflicted early at the disease stage. One potential reason for
this would be that both regions feature efferent connections from the cortex (114, 122, 126). This
feature is important since intraneuronal amyloid beta accumulates in the cortex of 5xFAD mice at
months 1.5 (43), leading to a potential spillover to brain regions that have bijective connections to
the afflicted cortical regions; like the Thalamus and Basal Ganglia.

Another finding of our experiment is that intra-hippocampal connectivity is depressed relative to
healthy aging. Both individual ROIls and at the anatomical system level exhibit the depressed
connectivity characteristic. This is in line with current literature as the hippocampus is the
predominant brain region known to be afflicted in Alzheimer’s Disease (43, 64, 129-132). What
our results do provide new insight into is how inter hippocampal connectivity to the thalamus and
striatum are impacted in the prodromal stage of disease development. Therefore, our findings are
in line with existing literature detailing how there are return projections from the thalamus to the
hippocampus (147), and that the two may have a synergistic role in the formation of memories
(148). Additionally, it has been shown that the dorsal lateral striatum and the hippocampus may
both have roles in information storage (149, 150).

Furthermore, our results provide insight as to how the global network architecture is modulated
at different disease stages. We observe that the fully symptomatic disease state exhibits a lower
degree of network integration and segregation relative to the healthy aging group. As the ability
to segregate into specialized nodes corresponds to the ability to execute cognitive tasks (106-
108), it is of extreme interest to observe how both aging and disease aging both have decreased
levels of network segregation, and that the disease effect is more profound in decreasing the
network’s level of segregation and integration. Similar results have been observed in human
studies as well, where heightened disease pathology is associated with lower levels of functional
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segregation (60, 101, 133). The same trend for network integration was also observed in our
results, with network efficiency decreasing in both disease and healthy aging, and that the fully
symptomatic timepoint resulted in a significant difference in network efficiency. Studies that have
explored network integration over the course of aging have found that expanded cognitive ability
coincides with higher levels of network integration, and that aging itself is correlated with
decreased cognitive functionality and levels of integration and segregation (134, 135). The
interesting observation from our findings is that it is only at the terminal timepoint do these
differences in network metrics exist between healthy and diseased aging. None of the metrics
we’ve quantified demonstrate an appreciable difference at month 4, also known as the mid-late
stage disease development. However, it is between the late stage to fully developed pathological
state do the differences between healthy aging and AD progression arise. The fact that the
differences in network characteristics manifest so late in disease development isn’t a total surprise
given that age is one of the major risk factors for developing sporadic AD. Our results reflect
similarities in these global metrics in aging, but the difference at the terminal time point could be
explained by how healthy aging brains may be able to compensate for age-related functionality
declines (136, 137). It is extremely likely that the diseased brain is unable to undertake such
processes given the breadth of tissue damage as a result of chronic inflammation due to disease
pathology (43, 64, 86, 129-132, 138).

Lastly, our findings show distinct cytokine profiles for different brain regions: Temporal Cortex,
Parietal Cortex, and the Frontal Cortex. Some of cytokines expressed in their unique signatures
for diseased aging are commonly found in AD contexts such as MIP-1a, and MIP-1 (139, 140).
However other key cytokines typically associated with AD such as IFN-y, TNF-a, IL-1 (141) were
not found in our measured signatures. That is not to say that the listed cytokines did not exist, but
that these cytokines did not covary significantly with respect to time. While the different disease
models share common cytokines, they also feature cytokines unique to their own respective
models. MCP-1 is upregulated in the Parietal Cortex only, While IL-2 is downregulated in the
Frontal Cortex, and IL12-p70 is downregulated for the Temporal Cortex. These small differences
demonstrate the different aspects between the regional disease models. MCP-1 is a chemokine
expressed by microglia (143), and knocking out MCP-1 from transgenic mice has been correlated
to making the animals resistant to neurodegeneration (144). However, the downregulation of IL-
2 and IL12-p70 in the other two cortices suggest that disease progression may progress differently
in those brain regions relative to the Parietal Cortex. The reason for this hypothetical is because
IL-2 and IL12-p70 are canonically associated with neuroprotective roles (88, 89, 92, 93). The
regional cytokine profiles of disease progression give credence to the empirical evidence that
different cortical lobes experience brain atrophy at different rates over the progression of AD. It
has been shown that the parietal lobe experiences greater levels of atrophy at the prodromal
stages of AD, While the frontal cortex is shown to experience damage at later stages with a lower
degree of atrophy (145, 146). The regional specific rate of atrophy, and the regional specific
cytokine signatures from our results indicate that the varying degree of disease pathology and its
corresponding consequences are mediated by the expression of neuroprotective cytokines. It is
only at the later stages of disease development do the expression of IL-2 and IL12-p70 fall off,
which lines up with existing literature on how the frontal lobe atrophies at a slower, and at a later
timepoint relative to the Parietal cortex. Our results also elucidated healthy aging and the
corresponding cytokine signature. A qualitative commonality between the brain regions is that the
healthy aging cytokine profile is more comprehensive than their diseased counterparts; featuring
almost twice the number of cytokines than those featured in diseased model. Even though the
heathy aging models featured canonically proinflammatory cytokines such as TNF-a, MIP-1q,
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MIP-18, and CCXL1 (71-75, 83), the healthy signatures also featured at least one anti-
infammatory cytokine such IL12-p70 (92, 93) for the Frontal and Temporal cortex, and IL-4 (76,
78) for the Parietal Cortex. It is possible that the upregulation of both anti and pro inflammatory
cytokines may produce the desired neuroprotective effect, as shown in the synergistic relationship
between IL-2 and RANTES (88, 89). We observe a similar trend regarding IL-2 and RANTES in
the frontal cortex for diseased aging, where both RANTES and IL-2 are downregulated as a result
of disease progression.

Conclusion

Here, we identify regional cortical specific cytokine signatures that are predictive of disease
development. We also identify regions of interest where functional circuits could be potentially
implicated in the early stages of Alzheimer’s Disease. We also observe how network segregation
and integration are impacted over disease development, and is in line with increasing disease
pathology, in the form of neuroinflammation, in the cortical regions. All in all, we have elucidated
how AD pathology can progressively impact the brain’s network architecture, and the progressive
changes to the architecture are correlated with increasing levels of neuroinflammation at the
cortical regions of the brain.
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