

1 **TITLE**

2 The somatic mutation landscape of normal gastric epithelium

3

4 **AUTHORS**

5 Tim H.H. Coorens<sup>1,2</sup>, Grace Collord<sup>1,3</sup>, Hyungchul Jung<sup>1</sup>, Yichen Wang<sup>1</sup>, Luiza Moore<sup>1</sup>, Yvette  
6 Hooks<sup>1</sup>, Krishnaa Mahbubani<sup>4,5</sup>, Kourosh Saeb-Parsy<sup>4,5</sup>, Peter J. Campbell<sup>1,6,7</sup>, Iñigo  
7 Martincorena<sup>1</sup>, Suet Yi Leung<sup>8</sup>, Michael R. Stratton<sup>1</sup>

8

9 **AFFILIATIONS**

- 10 1. Wellcome Sanger Institute, Hinxton, UK
- 11 2. Broad Institute of MIT and Harvard, Cambridge, USA
- 12 3. University College London Hospital, London, UK
- 13 4. Department of Surgery, University of Cambridge, Cambridge, UK
- 14 5. Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus,  
15 Cambridge, UK
- 16 6. Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus,  
17 Cambridge, UK
- 18 7. Department of Haematology, University of Cambridge, Cambridge, UK
- 19 8. Department of Pathology, The University of Hong Kong, Queen Mary Hospital,  
20 Pokfulam, Hong Kong

21 Correspondence to: [tcoorens@broadinstitute.org](mailto:tcoorens@broadinstitute.org) (T.H.H.C), [mrs@sanger.ac.uk](mailto:mrs@sanger.ac.uk) (M.R.S.)

22

23 **ABSTRACT**

24 The landscapes of somatic mutation in normal cells inform on the processes of mutation and  
25 selection operative throughout life, permitting insight into normal ageing and the earliest  
26 stages of cancer development. Here, by whole-genome sequencing of 238 microdissections  
27 from 30 individuals, including 18 with gastric cancer, we elucidate the developmental  
28 trajectories of normal and malignant gastric epithelium. We find that gastric glands are units  
29 of monoclonal cell populations which accrue ~28 somatic single nucleotide variants per year,  
30 predominantly attributable to endogenous mutational processes. In individuals with gastric  
31 cancer, glands often show elevated mutation burdens due to acceleration of mutational  
32 processes linked to proliferation and oxidative damage. These hypermutant glands were  
33 primarily detected in the gastric antrum and were mostly associated with chronic  
34 inflammation and intestinal metaplasia, known cancer risk factors. Unusually for normal cells,  
35 gastric epithelial cells often carry recurrent trisomies of specific chromosomes, which are  
36 highly enriched in a subset of individuals. Surveying approximately 8,000 gastric glands by  
37 targeted sequencing, we found somatic driver mutations in a distinctive repertoire of known  
38 cancer genes, including *ARID1A*, *CTNNB1*, *KDM6A* and *ARID1B*. Their prevalence increases  
39 with age to occupy approximately 5% of the gastric epithelial lining by age 60 years. Our  
40 findings provide insights into the intrinsic and extrinsic influences on somatic evolution in the  
41 gastric epithelium, in healthy, precancerous and malignant states.

42

43

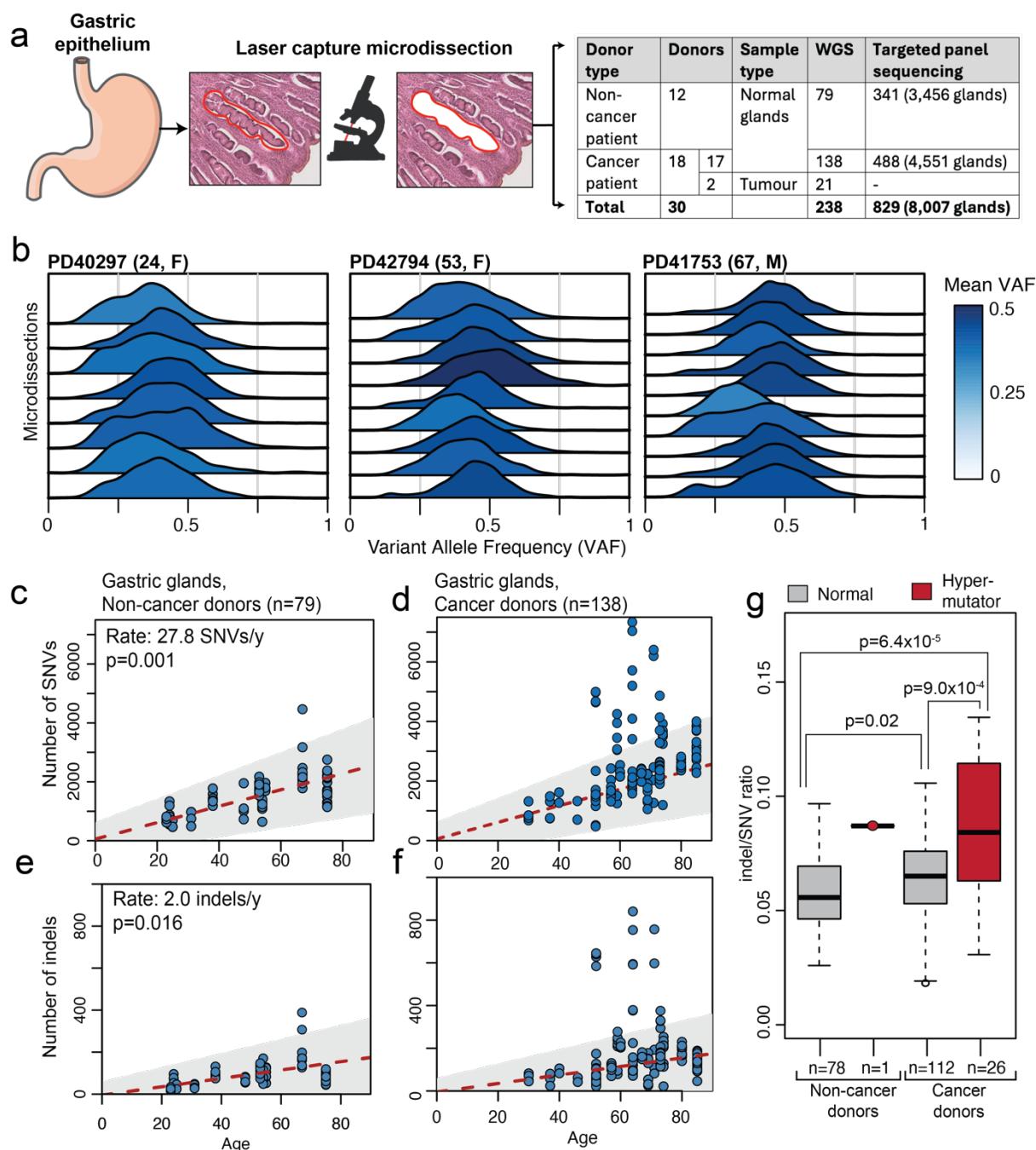
44 **INTRODUCTION**

45 Over the course of a lifetime, cells in the human body acquire somatic mutations, thus  
46 generating genetic diversity and enabling natural selection within tissues. Until recently,  
47 understanding of the somatic mutation landscape of normal cells has been limited compared  
48 to that of cancer cells. However, novel DNA sequencing approaches have enabled exploration  
49 of normal somatic cell genomes, elucidating cell lineages, estimation of mutation rates,  
50 assessment of underlying mutational processes, and detection of clones carrying mutated  
51 genes conferring selective growth advantage<sup>1–3</sup>. These mutation landscapes provide insights  
52 into somatic evolution within normal tissues during an individual's lifetime, and into the  
53 earliest stages of cancer development<sup>4–12</sup>.

54

55 The gastrointestinal tract constitutes four main segments, the oesophagus, stomach, small  
56 intestine and large intestine, which serially process ingested food materials and interface with  
57 very different types of luminal content. The somatic mutation landscapes of normal epithelial  
58 cells lining the oesophagus<sup>4</sup>, small intestine<sup>6</sup> and large intestine<sup>5</sup> have recently been  
59 characterised. The stomach comprises several anatomically and histologically distinct regions,  
60 including the cardia, fundus, body, the lesser and greater curvatures, antrum and pylorus. The  
61 epithelial lining of the stomach is composed of specialist glands producing hydrochloric acid,  
62 digestive enzymes, and hormones.

63


64 Gastric cancer is the fifth commonest cancer diagnosis globally, and the third-leading cause  
65 of cancer-related death<sup>13</sup>. Incidence varies worldwide and is highest in East Asia and South  
66 America<sup>14</sup>. Known risk factors include infection with *Helicobacter pylori* and Epstein-Barr  
67 virus, alcohol use, tobacco, obesity, and diet<sup>13–15</sup>. Cancer risks and the influence of different  
68 risk factors differ profoundly between anatomical domains of the stomach, with the highest  
69 risks in the antrum in regions with high incidence<sup>15</sup> and in the cardia in regions with low  
70 incidence<sup>14,15</sup>. The epidemiology of gastric cancer suggests that many extrinsic factors,  
71 through exposures and chronic inflammation, influence somatic mutagenesis in the stomach.  
72 Here, we investigate the somatic genetic diversity within gastric epithelium from donors with  
73 and without malignancy and begin to shed light on the indistinct boundary between normal  
74 age-related somatic evolution and malignancy.

75

76 **RESULTS**

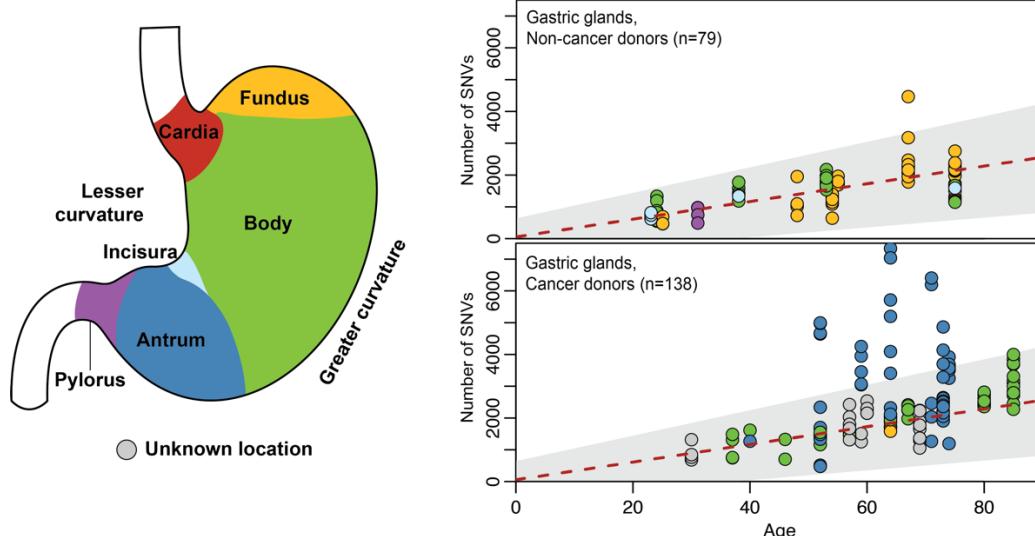
77 **Mutation rates of normal gastric epithelium**

78 The cohort consists of 30 individuals, 18 with gastric cancer and 12 with no gastric pathology,  
79 from Hong Kong, the United States and the United Kingdom (**Extended Data Table 1**). Donors  
80 from Hong Kong were tested for infection with *H. pylori*. 217 normal gastric glands and 21  
81 neoplastic glands from the gastric cancers of two individuals were microdissected and  
82 individually whole genome sequenced to 23-fold median coverage (**Fig. 1a; Extended Data**  
83 **Table 2**). In addition, we subjected a further 829 microdissections of individual or clustered  
84 gastric glands to targeted sequencing of known cancer genes. All classes of somatic mutation  
85 were called by standard approaches (**Methods**). The mean variant allele fractions (VAFs) of  
86 somatic single nucleotide variants (SNVs) and small insertions and deletions (indels) generally  
87 exceeded 0.25 (**Fig. 1b**), indicating that gastric glands are predominantly monoclonal cell  
88 populations derived from recent single stem cell progenitors.



89

90 **Figure 1 | Clonality and mutation burdens**


91 **a**, Overview of the study. Gastric glands were sampled from 30 different donors. 217  
 92 microdissected individual glands and 21 tumour microdissections were whole-genome  
 93 sequenced, while a further 829 microdissections, each comprising several adjacent glands  
 94 (total glands 8,007), were subjected to deep targeted gene sequencing. WGS=whole-genome  
 95 sequencing, TGS=targeted genome sequencing. Data in panels **b-g** is derived from WGS of  
 96 single gastric glands. **b**, VAF distributions of somatic mutations in gastric glands for three  
 97 donors, coloured by the mean VAF. **c-d**, Number of SNVs plotted against the age of the donors  
 98 for gastric glands in (**c**) non-cancer donors and (**d**) cancer donors. The red dashed line indicates  
 99 the estimated age and SNV mutation burden relation estimated from a mixed effects model  
 100 in gastric glands from non-cancer donors (**c**), with the grey shaded area indicating the 95%  
 101 confidence interval. The grey box and red dashed line from **c** are copied in **d** for comparison.  
 102 Number of indels plotted against the age of the donors for gastric glands in (**e**) non-cancer

103 *donors and (f) cancer donors. The red dashed line indicates the estimated age and indel*  
104 *mutation burden relation estimated from a mixed effects model in gastric glands from non-*  
105 *cancer donors (e), with the grey are indicating the 95% confidence interval. The grey are and*  
106 *red dashed line from e is copied in f for comparison. P-values in (c-f) are obtained through an*  
107 *ANOVA test. g, ratio of indels to SNVs for gastric glands from non-cancer and cancer donors,*  
108 *split between hypermutant glands and those with an expected SNV mutation burden. P-value*  
109 *is calculated through two-sided Wilcoxon rank sum tests. For box-and-whisker plots, the*  
110 *central line, box and whiskers represent the median, interquartile range (IQR) from first to*  
111 *third quartiles, and  $1.5 \times IQR$ , respectively.*

112  
113 The total burden of somatic SNVs, corrected for sequencing depth and estimated sensitivity,  
114 in normal glands from the 12 individuals without gastric cancer increased linearly with age  
115 (**Fig. 1c, e**) and their stem cell progenitors were estimated to accrue 27.8 SNVs per year (95%  
116 confidence interval: 16.2-39.4) and 2.0 indels per year (95% confidence interval: 0.67-3.35).  
117 However, a subset of glands (n=27), that were more common in individuals with gastric cancer  
118 (n=26, **Fig. 1d, f**;  $p=5.9 \times 10^{-5}$ , Fisher's exact test), exhibited higher SNV burdens than expected  
119 by age (above the 95% confidence interval), as well as a significantly higher indel to SNV ratio  
120 (**Fig. 1g**). These glands are referred to as hypermutant glands throughout subsequent  
121 analyses.

122  
123 Hypermutant glands were phylogenetically unrelated to each other beyond early  
124 development (except for one clonal expansion detected in PD42789, **Extended Data Fig. 1**).  
125 Therefore, it appears that each gland has independently increased its mutation rate during  
126 the lifetime of the individual in response to a local stomach environment in which a gastric  
127 cancer has developed. While the section of the stomach from which glands were sampled had  
128 no significant influence on the mutation burden in non-cancer donors ( $p=0.15$ , ANOVA test,  
129 **Fig. 2**), hypermutant glands were strongly enriched in the gastric antrum ( $p=6.2 \times 10^{-15}$ , Fisher's  
130 exact test). All but one hypermutant gland in cancer patients were observed in the gastric  
131 antrum. Pathology review of hypermutant glands in the antrum revealed that six out of seven  
132 donors exhibited local chronic inflammation, often associated with intestinal metaplasia,  
133 either complete (one case) or incomplete (two cases) or mixed (two cases) (**Extended Data**  
134 **Fig. 1**). Both are known risk factors for gastric cancer. One case, PD41763, exhibited  
135 hypermutation in the absence of intestinal metaplasia or chronic inflammation.

136  
137 Annotated current or previous *H. pylori* status, where known, did not significantly affect SNV  
138 burdens ( $p=0.07$ , ANOVA test, **Extended Data Fig. 2a**). However, the possibility of undetected,  
139 past infections affecting mutation rates precludes a definitive conclusion. The SNV and indel  
140 burdens of microdissected glands from gastric cancers were further substantially elevated  
141 compared to the mutation loads observed in normal gastric glands, even hypermutant glands  
142 (**Extended Data Fig. 2b-c**).



143

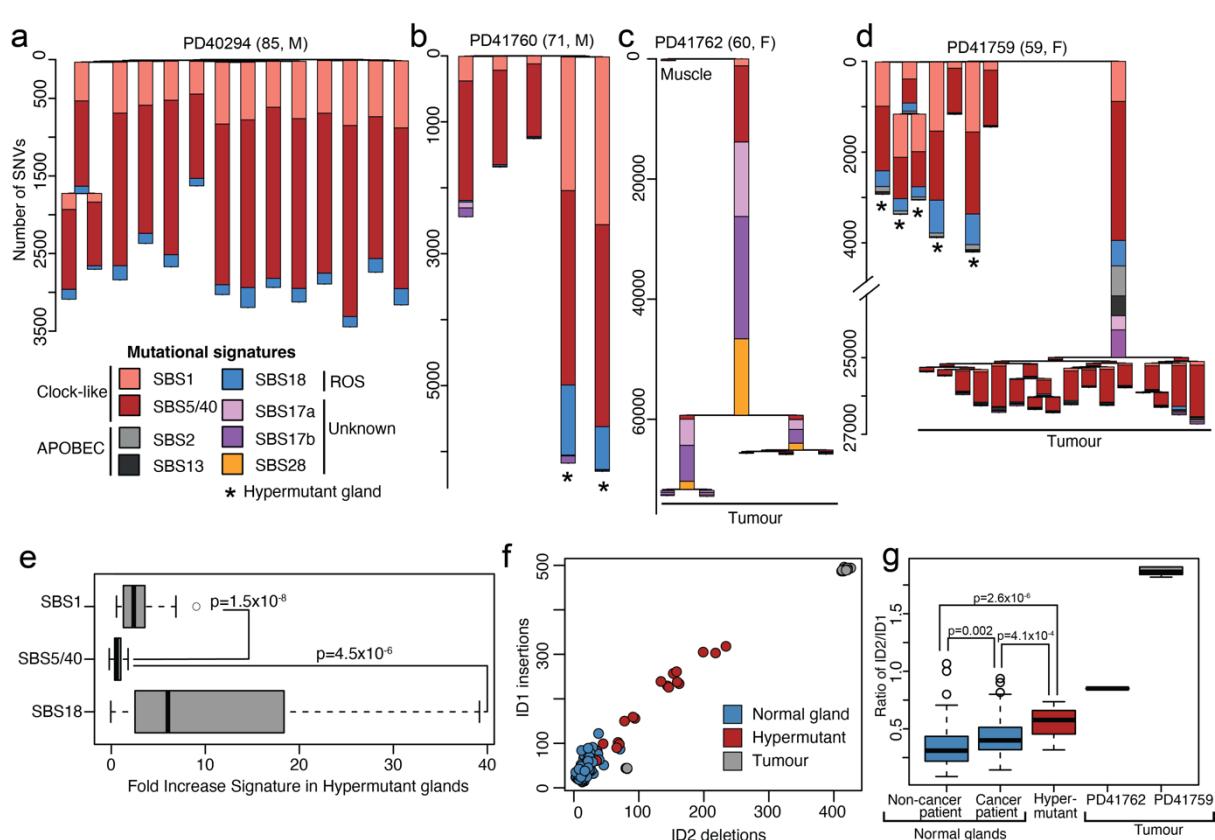
#### 144 **Figure 2 | Gastric sections and prevalence of hypermutant glands**

145 *Schematic of gastric anatomy, and scatterplots number of SNVs plotted against the age of the*  
146 *donors for gastric glands in non-cancer donors and cancer donors, coloured by the section of*  
147 *the stomach sampled, as per the diagram on the left. The red dashed line indicates the*  
148 *estimated age and SNV mutation burden relation estimated from a mixed effects model in*  
149 *gastric glands from non-cancer donors (Fig. 1c), with the grey shaded area indicating the 95%*  
150 *confidence interval.*

151

#### 152 **Mutational signatures and processes in normal gastric epithelium**

153 *Mutational signatures are the patterns of mutation imprinted on the genome by the activity*  
154 *of specific mutational processes. Their contributions to the somatic mutations found in*  
155 *individual samples can be established using mathematical approaches for their deconvolution*  
156 *and attribution. More than 70 single base substitution (SBS) reference signatures have been*  
157 *reported in cancer and normal cells (<https://cancer.sanger.ac.uk/signatures>).*


158

159 *Using the whole genome somatic mutation catalogues of the 217 normal and 21 neoplastic*  
160 *gastric glands eight mutational signatures were extracted (Fig. 3a-d, Extended Data Fig. 3-4),*  
161 *all of which have been previously reported<sup>16,17</sup> (Methods): SBS1, due to spontaneous*  
162 *deamination of 5-methylcytosine; SBS2 and SBS13, due to APOBEC cytidine deaminase DNA*  
163 *editing; SBS5 and SBS40, of unknown aetiologies but thought to be of intrinsic origin; SBS17a*  
164 *and SBS17b, of unknown aetiologies but sometimes associated with exposure to the*  
165 *chemotherapeutic agent 5-fluorouracil; and SBS18, due to DNA damage by endogenously*  
166 *generated reactive oxygen species.*

167

168 *Most SNVs in normal gastric glands were explained by SBS1, SBS5/40 and SBS18 (Fig. 3a-b),*  
169 *which are detected in all gastric glands. SBS1 and SBS5/SBS40 are ubiquitous in human*  
170 *cancers<sup>16</sup> and in normal cells<sup>7,17</sup>. SBS18 is observed in many normal cell types, particularly*  
171 *those with high cell division rates<sup>18</sup>. In normal gastric glands from individuals without gastric*  
172 *cancer the mutation burdens attributable to SBS1 and SBS5/40 linearly correlated with age*  
173 *(Extended Data Fig. 5a-b), indicating that their underlying mutational processes have an*  
174 *approximately constant activity over the lifespan. However, the SBS18 burden was not*  
175 *significantly associated with age (Extended Data Fig. 5c), suggesting that many SBS18*

176 mutations are accumulated early in life during periods of rapid proliferation, consistent with  
 177 reports of high SBS18 loads in developmental tissues<sup>7,18</sup>.  
 178



179  
 180 **Figure 3 | Mutational signatures**

181 **a-d**, Phylogenetic trees of gastric glands with mutational signature proportions overlaid on  
 182 each branch, and with different signatures indicated by different colours (see legend). Branch  
 183 length represents the number of SNVs on each branch. Note the broken y-axis in **d**. Asterisks  
 184 denote hypermutant glands and microdissections of glands from cancers are indicated in the  
 185 phylogenies. M=male, F=female, ROS=reactive oxygen species. **e**, Fold increase of SBS1,  
 186 SBS5/40 and SBS18 in the 27 hypermutant glands estimated by comparing the observed  
 187 mutation burdens of these signatures compared to the expected burdens. P-values are  
 188 obtained through two-sided Wilcoxon rank sum tests. The central line, box and whiskers  
 189 represent the median, interquartile range (IQR) from first to third quartiles, and  $1.5 \times IQR$ ,  
 190 respectively. **f**, Number of ID1 insertions (1bp insertion of T at homopolymer runs of 5+) versus  
 191 ID2 deletions across samples (1bp deletion of T at homopolymer runs of 6+), both due to  
 192 polymerase slippage. **g**, The ratio of ID2 deletions to ID1 insertions for normal glands,  
 193 hypermutant glands and tumour samples. P-values are obtained from two-sided Wilcoxon  
 194 rank sum tests.

195  
 196 The higher-than-expected SNV mutation burdens found in hypermutant gastric glands were  
 197 due to increased mutation burdens of all three of these mutational signatures. However,  
 198 there were greater proportional increases in SBS1 (~4-fold) and SBS18 (~11-fold) mutation  
 199 burdens compared to those attributable to SBS5/40 (~1.7-fold) (Fig. 3e). Since SBS1 and SBS18  
 200 mutation rates have previously been associated with increased cell division rates and  
 201 inflammation it is plausible that the hypermutation in these glands reflects periods of  
 202 increased stem cell proliferation.

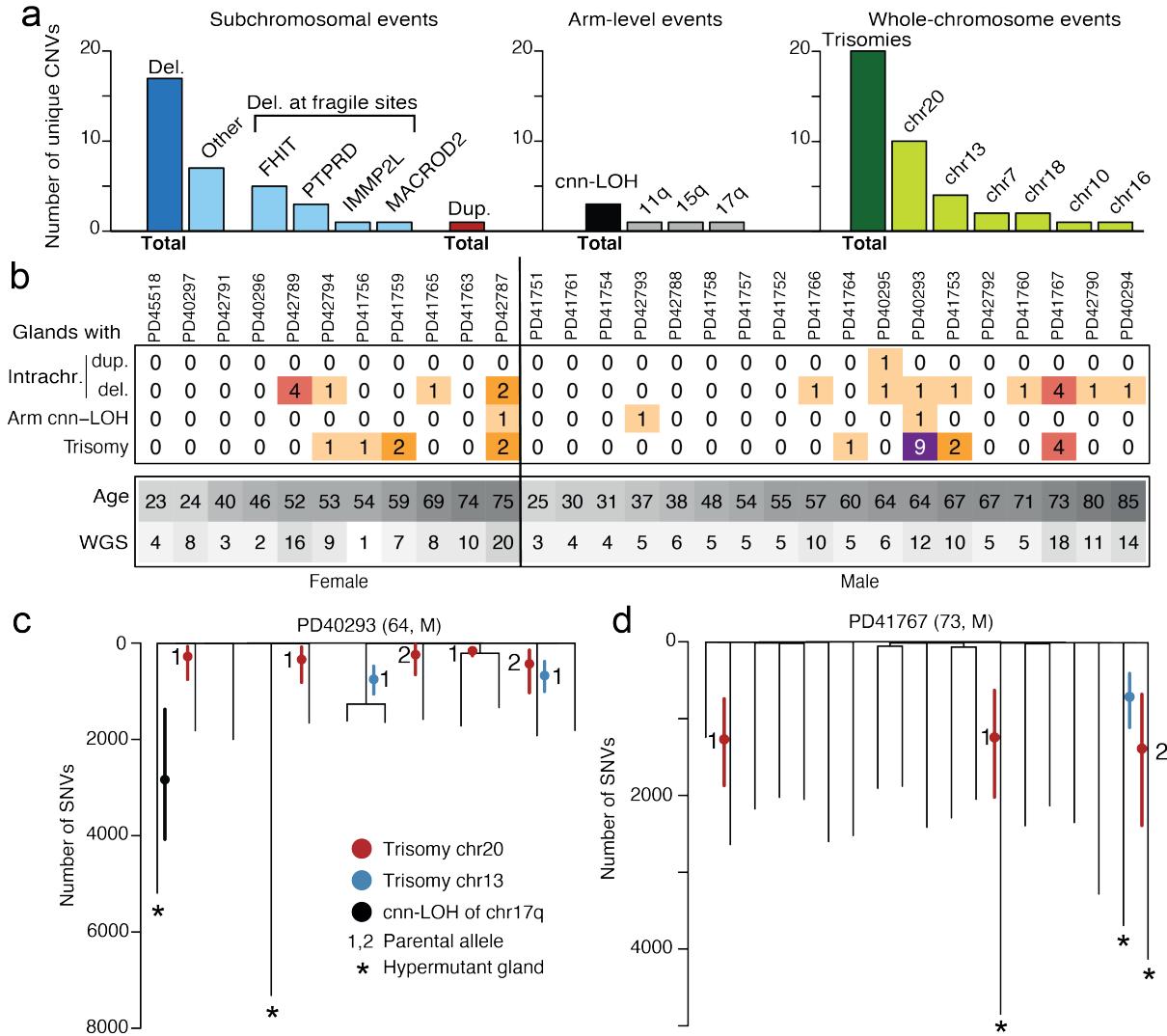
203

204 The hypermutant glands also exhibited higher indel burdens and elevated indel to SNV ratios  
205 than other normal glands (**Fig. 1g**). The excess of indels observed in these hypermutant glands  
206 was primarily composed of single base insertions and deletions at homopolymer runs of T/A  
207 (referred to as ID1 and ID2, respectively) (**Fig. 2f; Extended Data Fig. 6**), both linked to  
208 polymerase slippage during DNA replication. In addition, the ratio of ID2 to ID1 was  
209 significantly elevated in hypermutant glands compared to other normal glands, as observed  
210 in the tumour samples as well (**Fig. 3g**). This further supports periods of increased  
211 proliferation underpinning the observed hypermutation in these glands, plausibly intertwined  
212 with the emergence of metaplasia. All these changes may, in principle, have occurred in  
213 response to the influences leading to the cancer or as a consequence of its presence.

214

215 A small subset of normal gastric glands in individuals with gastric cancer also exhibited modest  
216 burdens of SBS17a and SBS17b (**Fig. 3b**). Substantial SBS17a and SBS17b mutation loads are  
217 common in oesophageal adenocarcinoma<sup>19</sup> and its precursor lesion, Barrett's oesophagus<sup>20</sup>,  
218 as well as in gastric adenocarcinoma<sup>16</sup>, as illustrated by the two cancers sequenced here (**Fig.**  
219 **3c-d**). In contrast, these mutational signatures were rarely observed in normal stomach,  
220 suggesting that the mutational processes underlying SBS17a and SBS17b are primarily  
221 features of neoplastic cells. Nevertheless, SBS17a and SBS17b have only been identified in  
222 one other normal cell type (B lymphocytes<sup>8</sup>) and, thus, there appears to be a particular  
223 propensity of gastric epithelial cells to generate them, or the existence of gastric  
224 microenvironmental factors to induce them.

225


226 The pattern of mutational signatures in glands dissected from the two gastric cancers was  
227 markedly different from that in normal glands. While still exhibiting contributions from SBS1,  
228 SBS5/SBS40 and SBS18, they showed large contributions from SBS17a, SBS17b, SBS2 and  
229 SBS13 (**Fig. 3c-d**), consistent with previously reported series<sup>16</sup>.

230

### 231 **Recurrent trisomies in normal gastric glands**

232 Somatic copy number variants (CNVs) were observed in a minority of normal gastric glands  
233 (40/217), but nevertheless at considerably higher prevalence than other normal human cell  
234 types thus far studied<sup>22</sup>. Moreover, the CNVs in gastric epithelium exhibited a highly  
235 distinctive pattern. Intrachromosomal CNVs were almost exclusively deletions, a high fraction  
236 (10/17) of which involved well-known fragile sites in *FHIT*, *PTPRD*, *IMMP2L* and *MACROD2*<sup>21,22</sup>.  
237 Chromosome arm-level events were all copy number neutral loss of heterozygosity (cnn-  
238 LOH), while whole-chromosome events exclusively comprised somatic trisomies, mostly of  
239 chromosomes 13 and 20 (**Fig. 4a**). Remarkably, trisomies were concentrated in a subset of  
240 individuals and had often arisen independently, multiple times in the same individual (**Fig.**  
241 **4b**). This independent origin of trisomies was inferred from the phylogenetic tree topology  
242 (**Fig. 4c-d**) and further corroborated by the presence of different duplicated SNVs on the  
243 trisomic chromosomes between samples and the duplication of different parental copies in  
244 different gastric glands.

245



246

## 247 **Figure 4 | CNVs and recurrent trisomies**

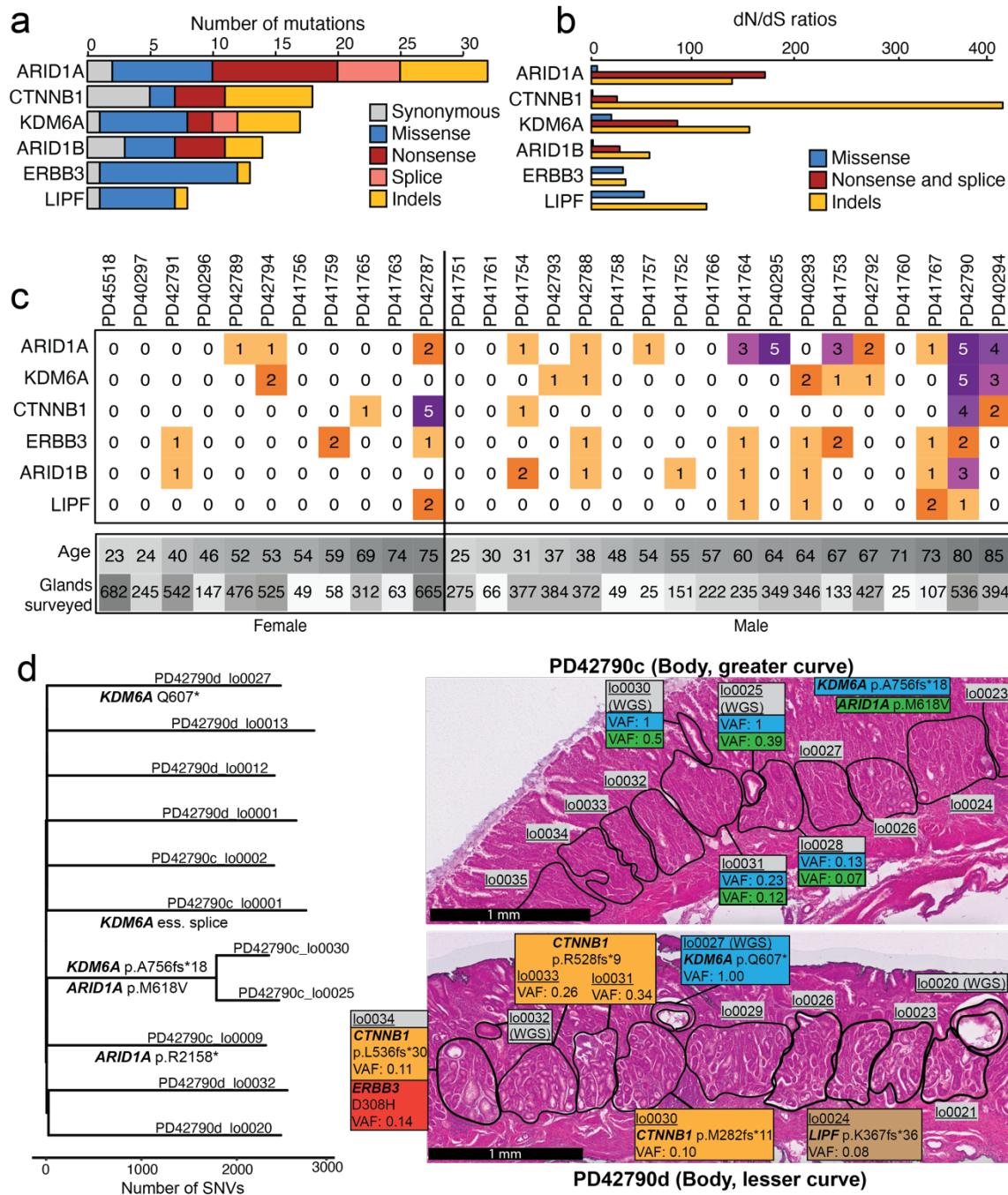
248 *a*, Overview of unique CNVs called across the WGS samples, split by the size of the event and  
 249 further divided by specific site or chromosome. Del.=deletion, dup.=duplication. *b*, Overview  
 250 of numbers of glands with whole-chromosome gains per donor. *c-d*, Phylogenetic trees of  
 251 gastric glands with recurrent gains of chromosome 13 or 20. Branch length represents the  
 252 number of SNVs on each branch. The timing of the gain is indicated by the red (chr20), blue  
 253 (chr13) or black (chr17q cnn-LOH) dot, with solid, coloured lines representing the 95% Poisson  
 254 confidence interval around this estimate. Numbers indicate the parental allele that is gained.  
 255 Asterisks denote hypermutant glands.

256

257 For example, in a 64-year-old male with gastric cancer, PD40293, six out of twelve gastric  
 258 glands analysed exhibited chromosome 20 trisomy, three exhibited chromosome 13 trisomy  
 259 and one exhibited cnn-LOH of 17q (**Fig. 4b**). Eight glands showed just a single CNV, and one  
 260 showed both trisomy 13 and trisomy 20. Thus, nine of twelve glands showed CNVs, indicating  
 261 that a substantial proportion of the gastric epithelium had been colonised by cells with CNVs.  
 262 The results indicate that there were five independent duplications of chromosome 20 and  
 263 two independent duplications of chromosome 13 among the twelve sampled glands. Using  
 264 the relative proportions of duplicated and non-duplicated SNVs, we estimate that all five  
 265 trisomies of chromosome 20 occurred relatively early in life, around or before age 12, the two

266 chromosome 13 duplications around or before age 22, and the cnv-LOH of 17q around or  
267 before age 35. Analyses of gastric cancer genomes indicate trisomy 20 is a predominantly  
268 early event<sup>23</sup>, corroborating the time scales estimated here.

269  
270 The cause of this distinctive pattern of CNVs in gastric glands is uncertain. In PD41767,  
271 trisomies are detected in four of ten glands in one stomach biopsy, but wholly absent from  
272 seven glands sampled from another site. While there was a significant effect of age on the  
273 burden of intrachromosomal deletions and duplications ( $p=0.01$ , ANOVA test), there was no  
274 significant effect of age on the burden of trisomies ( $p=0.42$ , ANOVA test) nor a specific  
275 enrichment of trisomies in a particular anatomical section of the stomach ( $p=0.32$ , Fisher's  
276 exact test). Our data suggests that, rather than a continuous age-associated increase of CNVs,  
277 many trisomies were generated at a specific time during the lifespan of each individual.


278  
279 Glands with trisomies were not enriched in individuals with gastric cancer ( $p=0.48$ , Fisher's  
280 exact test) and were not significantly more likely to harbour driver mutations than glands  
281 without trisomies ( $p=0.74$ , Fisher's exact test). However, there was a modest enrichment of  
282 trisomies in hypermutated glands ( $p=0.03$ , Fisher's exact test), suggesting a role of factors  
283 causing chronic inflammation in their genesis. None of the donors harbouring trisomies were  
284 known to be infected with *H. pylori*. However, had a pathogen been implicated in trisomy  
285 acquisition, the infection may have predated the sampling by decades and would be unlikely  
286 to have persisted at readily detectable levels at the time of biopsy.

287  
288 **Driver mutations in normal gastric glands**  
289 To identify genes under positive selection, we supplemented the data from the 217 glands  
290 with targeted sequencing of 321 known cancer genes in a further 834 microdissections, which  
291 spanned approximately 8,000 individual glands (**Methods**). Six mutated genes showed  
292 statistically significant ( $q<0.1$ ) evidence of positive selection (**Fig. 5a-c**): *ARID1A* and *ARID1B*,  
293 subunits of the SWI/SNF chromatin remodelling complex; *CTNNB1*, a Wnt signalling pathway  
294 transducer and cell adhesion molecule; *ERBB3*, an epidermal growth factor receptor; *KDM6A*,  
295 a regulator of histone methylation; and *LIPF*, encoding gastric lipase. All these genes, with the  
296 exception of *LIPF*, have been reported as frequently mutated in gastric cancer<sup>24</sup>. *LIPF* is a  
297 highly expressed gene in gastric epithelium and may be prone to accelerated mutagenesis, as  
298 previously reported in gastric cancer<sup>25</sup>.

299  
300 Intriguingly, the *CTNNB1* mutations observed in normal gastric glands were predominantly  
301 protein truncating nonsense substitutions and frameshifting indels scattered across the gene  
302 footprint which likely inactivate the encoded protein. This contrasts with the pattern of  
303 clustered hotspot missense *CTNNB1* substitutions reported in gastric cancer, and many other  
304 cancer types, characteristic of oncogene activation. The reason for this difference between  
305 normal and cancer cells in the pattern of *CTNNB1* mutations is unclear but may again highlight  
306 the different selective advantage required for a normal cell to thrive in a normal tissue and  
307 for it to thrive as a cancer cell.

308  
309 In some instances, the incidence of driver mutations was highly confined to a specific location.  
310 For example, PD42790 harboured clones with three independent *CTNNB1* frameshift  
311 mutations (out of the four *CTNNB1* mutations detected in this donor) within millimetres,  
312 suggesting a particularly strong local selective pressure in favour of these mutations (**Fig. 5d**).

313



314

## 315 Figure 5 | Driver mutations

316 **a**, Number of mutations, broken down by functional impact, for genes under significant  
317 positive selection. **b**, dN/dS ratios for genes under positive selection, broken down by type. **c**,  
318 Heatmap of distribution of specific driver mutations gains per donor. **d**, Phylogenetic tree of  
319 donor PD42790 (80, M), annotated with putative driver mutations, along with histology  
320 images from two regions overlaid with driver mutations and their VAF.

321

322 Likely driver mutations in an additional set of genes that did not reach formal significance  
323 levels were identified at known missense mutation hotspots in dominantly acting cancer  
324 genes (*BRAF*, *KRAS*) and, in addition, some protein truncating mutations in tumour suppressor  
325 genes (*APC*, *ARID2*, *BCOR*) may also have conferred clonal growth advantage. However,

326 mutations in *TP53* and *PIK3CA* were not observed in normal gastric glands despite being  
327 common in gastric adenocarcinomas and in some other normal cell types<sup>24</sup>. The average  
328 number of driver mutations per gland per individual correlated with age (p=0.008, ANOVA  
329 test) such that, on average, in 60-year-old individuals approximately 5% of glands were  
330 colonised by clones with drivers (**Extended Data Fig. 7**).

331

## 332 **DISCUSSION**

333 The somatic mutation landscapes of the four major segments of the gastrointestinal tract, the  
334 oesophagus<sup>4,26</sup>, stomach, small intestine<sup>6</sup> and large intestine<sup>5</sup> have now been surveyed to a  
335 first level of resolution exhibiting illustrative similarities and differences. All show an  
336 approximately constant mutation rate that, however, ranges from approximately 30 SNVs per  
337 year in the oesophagus and stomach to approximately 50 SNVs per year in the small and large  
338 intestines.

339

340 Most mutations in all four segments are generated by the biological processes underlying  
341 SBS1, SBS5/40 and SBS18, albeit in different relative contributions. In addition to the three  
342 ubiquitous mutational signatures, other signatures are found only in some segments of the  
343 gastrointestinal tract. SBS2 and SBS13, due to activity of APOBEC cytidine deaminases, are  
344 common in small intestine epithelial cells but rarely found in the oesophagus, stomach, or  
345 large intestine. This is likely due to high APOBEC1 activity in small intestine epithelial cells to  
346 support their function of lipid absorption and transport to the liver. Similarly, SBS88, due to  
347 exposure to colibactin, a mutagenic product of a strain of E.coli present in the microbiome, is  
348 often found in large intestine epithelial cells but rarely elsewhere in the gastrointestinal tract.  
349 As shown here, SBS17a and SBS17b are occasionally found in normal gastric epithelium, but  
350 have not been reported elsewhere in normal cells of the gastrointestinal tract in the absence  
351 of treatment with 5-fluorouracil.

352

353 Overall, however, given the considerable differences in the nature of the luminal contents of  
354 the gastrointestinal tract segments, the differences in somatic mutation rates and mutational  
355 signatures are modest. This degree of similarity in mutational processes between segments  
356 of gastrointestinal tract is presumably a testament to the effectiveness of the various  
357 protective mechanisms operative between luminal contents and epithelial stem cells.

358

359 Mutation rates and mutational signatures can be influenced by surrounding disease  
360 processes. For example, large intestine epithelial cells in areas affected by the inflammatory  
361 bowel diseases Crohn's and ulcerative colitis show elevated mutation burdens with increased  
362 proportions of SBS18 mutations<sup>27</sup>. These changes are reminiscent of the elevated mutation  
363 burdens found here in some normal gastric glands, predominantly in the antrum from  
364 individuals with gastric cancer. These gastric glands may also, therefore, have become  
365 entrapped in localised disease processes in the past. Despite the lack of samples from the  
366 antrum in non-cancer donors, the association with chronic inflammation and metaplasia, the  
367 presence of glands from the antrum with expected mutation burden in cancer patients, and  
368 the near-absence of hypermutant glands in other gastric regions suggest these hypermutant  
369 glands represent deviations from normal mutational patterns in the non-diseased antrum.

370

371 In contrast to the modest differences in SNV and small indel mutation patterns, the gastric  
372 epithelium carries recurrently generated trisomies of 7, 13, 18 and 20 in a subset of

373 individuals, a highly distinctive pattern that is not found in other sectors of the gastrointestinal  
374 tract nor in cell types outside the gastrointestinal tract. The pattern of multiply generated  
375 trisomies of just a subset of different chromosomes in a subset of individuals raises the  
376 possibility of a microenvironment that increases the chromosome duplication rate or selects  
377 stem cells with these trisomic chromosomes to colonise glands and clonally expand.  
378 Nevertheless, glands with trisomies were not enriched in individuals with gastric cancer, did  
379 not carry particular driver mutations, but were associated with hypermutant glands. While a  
380 link with inflammation is probable, the precise nature of the instigating stimulus is unclear.  
381

382 The landscape of cell clones with driver mutations in known cancer genes also differs  
383 markedly between the four segments of the gastrointestinal tract. In the oesophagus, ~60%  
384 of the normal squamous epithelium in 60-year-old individuals is occupied by cell clones with  
385 driver mutations<sup>4,26</sup>. In small and large intestine crypts, this proportion is much lower,  
386 approximately 1%<sup>1,27</sup>. The results shown here indicate that, in 60 year-olds, 5% of the gastric  
387 glandular epithelium is occupied by clones with driver mutations. These differences may, at  
388 least in part, reflect the epithelial architecture, with the continuous stratified squamous  
389 epithelial sheet of the oesophagus allowing lateral spread of clones arising from basal stem  
390 cells, whereas the crypt structure of the small intestine and large intestine hinders clones with  
391 drivers arising from basal crypt stem cells spreading beyond the confines of the individual  
392 crypt. In the stomach, the gland structure, and perhaps iterative damage and repair, may  
393 allow wider colonisation of the epithelial lining than in the small and large intestine. The sets  
394 of frequently mutated genes also differ between the different epithelia, with *NOTCH1*,  
395 *NOTCH2* and *TP53*, encoding proteins involved in wound healing, cell proliferation, and DNA  
396 damage responses, dominating in the oesophagus whereas genes encoding subunits of  
397 chromatin remodelling complexes, regulators of histone methylation, and cell adhesion  
398 proteins dominating in the stomach, a repertoire still different from, but nevertheless more  
399 reminiscent of, mutated genes under selection in normal bladder epithelium<sup>2,27</sup>.  
400

401 Gastric epithelial cells, therefore, exhibit a landscape of somatic mutations with some  
402 similarities to and many differences from those of other gastrointestinal epithelia. The  
403 differences likely reflect differences in intrinsic cell biology, tissue architecture, gut contents,  
404 and currently unknown influences, all contributing to shaping the somatic mutational  
405 landscape of the stomach.

406

## 407 **References**

408

409 1. Moore, L. *et al.* The mutational landscape of human somatic and germline cells. *Nature*  
410 597, 381–386 (2021).

411 2. Coorens, T. H. H. *et al.* Extensive phylogenies of human development inferred from  
412 somatic mutations. *Nature* 597, 387–392 (2021).

413 3. Abascal, F. *et al.* Somatic mutation landscapes at single-molecule resolution. *Nature*  
414 593, 405–410 (2021).

415 4. Martincorena, I. *et al.* Somatic mutant clones colonize the human esophagus with age.  
416 *Science* **362**, 911–917 (2018).

417 5. Lee-Six, H. *et al.* The landscape of somatic mutation in normal colorectal epithelial cells.  
418 *Nature* **574**, 532–537 (2019).

419 6. Wang, Y. *et al.* APOBEC mutagenesis is a common process in normal human small  
420 intestine. *Nat. Genet.* **55**, 246–254 (2023).

421 7. Coorens, T. H. H. *et al.* Inherent mosaicism and extensive mutation of human placentas.  
422 *Nature* **592**, 80–85 (2021).

423 8. Machado, H. E. *et al.* Diverse mutational landscapes in human lymphocytes. *Nature*  
424 **608**, 724–732 (2022).

425 9. Martincorena, I. *et al.* High burden and pervasive positive selection of somatic  
426 mutations in normal human skin. *Science* **348**, 880–886 (2015).

427 10. Moore, L. *et al.* The mutational landscape of normal human endometrial epithelium.  
428 *Nature* **580**, 640–646 (2020).

429 11. Lawson, A. R. J. *et al.* Extensive heterogeneity in somatic mutation and selection in the  
430 human bladder. *Science* **370**, 75–82 (2020).

431 12. Mitchell, E. *et al.* Clonal dynamics of haematopoiesis across the human lifespan. *Nature*  
432 **606**, 343–350 (2022).

433 13. Smyth, E. C., Nilsson, M., Grabsch, H. I., van Grieken, N. C. T. & Lordick, F. Gastric  
434 cancer. *Lancet* **396**, 635–648 (2020).

435 14. Thrift, A. P., Wenker, T. N. & El-Serag, H. B. Global burden of gastric cancer:  
436 epidemiological trends, risk factors, screening and prevention. *Nat. Rev. Clin. Oncol.* **20**,  
437 338–349 (2023).

438 15. Gastric Adenocarcinoma. in *WHO Classification of Tumours Editorial Board. Digestive*  
439 *system tumours*.

440 16. Alexandrov, L. B. *et al.* The repertoire of mutational signatures in human cancer. *Nature*  
441 **578**, 94–101 (2020).

442 17. Degasperi, A. *et al.* Substitution mutational signatures in whole-genome–sequenced  
443 cancers in the UK population. *Science* **376**, abl9283 (2022).

444 18. Bae, T. *et al.* Different mutational rates and mechanisms in human cells at  
445 pregastrulation and neurogenesis. *Science* **359**, 550–555 (2018).

446 19. Secrier, M. *et al.* Mutational signatures in esophageal adenocarcinoma define  
447 etiologically distinct subgroups with therapeutic relevance. *Nat. Genet.* **48**, 1131–1141  
448 (2016).

449 20. Paulson, T. G. *et al.* Somatic whole genome dynamics of precancer in Barrett's  
450 esophagus reveals features associated with disease progression. *Nat. Commun.* **13**,  
451 2300 (2022).

452 21. Li, Y. *et al.* Patterns of somatic structural variation in human cancer genomes. *Nature*  
453 **578**, 112–121 (2020).

454 22. Priestley, P. *et al.* Pan-cancer whole-genome analyses of metastatic solid tumours.  
455 *Nature* **575**, 210–216 (2019).

456 23. Gerstung, M. *et al.* The evolutionary history of 2,658 cancers. *Nature* **578**, 122–128  
457 (2020).

458 24. Martincorena, I. *et al.* Universal Patterns of Selection in Cancer and Somatic Tissues.  
459 *Cell* **173**, 1823 (2018).

460 25. Rheinbay, E. *et al.* Analyses of non-coding somatic drivers in 2,658 cancer whole  
461 genomes. *Nature* **578**, 102–111 (2020).

462 26. Yokoyama, A. *et al.* Age-related remodelling of oesophageal epithelia by mutated  
463 cancer drivers. *Nature* **565**, 312–317 (2019).

464 27. Olafsson, S. *et al.* Somatic Evolution in Non-neoplastic IBD-Affected Colon. *Cell* **182**,  
465 672–684.e11 (2020).

466 28. Ellis, P. *et al.* Reliable detection of somatic mutations in solid tissues by laser-capture  
467 microdissection and low-input DNA sequencing. *Nat. Protoc.* **16**, 841–871 (2021).

468 29. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler  
469 transform. *Bioinformatics* **25**, 1754–1760 (2009).

470 30. Jones, D. *et al.* CgpCaVEManWrapper: Simple execution of CaVEMan in order to detect  
471 somatic single nucleotide variants in NGS data. *Curr. Protoc. Bioinformatics* **56**, 15.10.1–  
472 15.10.18 (2016).

473 31. Ye, K., Schulz, M. H., Long, Q., Apweiler, R. & Ning, Z. Pindel: a pattern growth approach  
474 to detect break points of large deletions and medium sized insertions from paired-end  
475 short reads. *Bioinformatics* **25**, 2865–2871 (2009).

476 32. Cameron, D. L. *et al.* GRIDSS: sensitive and specific genomic rearrangement detection  
477 using positional de Bruijn graph assembly. *Genome Res.* **27**, 2050–2060 (2017).

478 33. Gerstung, M., Papaemmanuil, E. & Campbell, P. J. Subclonal variant calling with  
479 multiple samples and prior knowledge. *Bioinformatics* **30**, 1198–1204 (2014).

480 34. Coorens THH, Spencer Chapman, M, Williams N, Martincorena I, Stratton MR, Nangalia  
481 J, Campbell PJ. Reconstructing phylogenetic trees from genome-wide somatic  
482 mutations in clonal samples. *Nat. Protoc.*

483 35. Hoang, D. T. *et al.* MPBoot: fast phylogenetic maximum parsimony tree inference and  
484 bootstrap approximation. *BMC Evol. Biol.* **18**, (2018).

485 36. Gori, K. & Baez-Ortega, A. *sigfit: flexible Bayesian inference of mutational signatures*.

486 *bioRxiv* (2018) doi:10.1101/372896.

487 37. Robinson, P. S. *et al.* Increased somatic mutation burdens in normal human cells due to

488 defective DNA polymerases. *Nat. Genet.* **53**, 1434–1442 (2021).

489

490 **METHODS**

491

492 **Ethics statement and sample collection**

493 Snap-frozen gastric biopsy samples were obtained from three sources:

- 494 1. Multi-site sampling was performed on gastrectomy specimens removed either as part  
495 of gastric cancer treatment or bariatric surgery. Written informed consent for  
496 participation in research was obtained from all donors in accordance with the  
497 Declaration of Helsinki and protocols approved by the relevant research ethics  
498 committees (RECs): (i) source country approval by the IRB of the University of Hong  
499 Kong/Hospital Authority of Hong Kong West Cluster, REC approval reference number  
500 UW14-257; (ii) UK NHS REC approval from the West Midlands-Coventry and  
501 Warwickshire REC, approval number 17/WM/0295, UK Integrated Research  
502 Application System (IRAS) project ID 228343.
- 503 2. Multi-region gastric biopsies from transplant organ donors with informed consent for  
504 participation in research obtained from the donor's family as part of the Cambridge  
505 Biorepository for Translational Medicine program (UK NHS REC approval reference  
506 number 15/EE/0152; approved by NRES Committee East of England – Cambridge  
507 South).
- 508 3. Gastric samples obtained at autopsy from AmsBio (commercial supplier). UK NHS REC  
509 approving the use of these samples: London-Surrey Research Ethics Committee, REC  
510 approval reference number 17/LO/1801.

511 Further metadata for donors can be found in **Extended Data Table 1**, and metadata for all  
512 samples can be found in **Extended Data Table 2** (whole-genome sequencing) and **Extended  
513 Data Table 3** (targeted panel sequencing).

514

515 **Laser capture microdissection and low-input DNA sequencing**

516 Gastric tissue biopsies were embedded, sectioned and stained for microdissection as  
517 described in detail previously<sup>28</sup>. DNA libraries were constructed from microdissections using  
518 enzymatic fragmentation and subsequently submitted for whole-genome sequencing or  
519 targeted panel sequencing on the Illumina HiSeq X Ten platform. Average sequencing  
520 coverage can be found in **Extended Data Table 2** (whole-genomes sequencing) and **Extended  
521 Data Table 3** (targeted panel sequencing).

522

523 Custom Agilent SureSelect bait set capturing the exonic regions of the following 321 cancer-  
524 associated genes:

525

526 ABL1, ACVR1, ACVR1B, ACVR2A, AJUBA, AKT1, ALB, ALK, AMER1, APC, AR, ARHGAP35,  
527 ARID1A, ARID1B, ARID2, ARID5B, ASXL1, ATM, ATP1A1, ATP1B1, ATP2A2, ATP2B3, ATP7B,  
528 ATR, ATRX, AXIN1, AXIN2, B2M, BAP1, BCOR, BIRC3, BRAF, BRCA1, BRCA2, CACNA1D, CALR,  
529 CARD11, CASP8, CFBF, CBL, CBLB, CCND1, CCNE1, CD58, CD79A, CD79B, CDC73, CDH1, CDK12,  
530 CDK4, CDK6, CDKN1A, CDKN1B, CDKN2A, CDKN2B, CDKN2C, CEBPA, CFH, CIB3, CIC, CMTR2,  
531 CNOT3, COL2A1, CPA2, CREBBP, CRLF2, CSF1R, CSF3R, CTCF, CTNNA1, CTNNB1, CUL3, CUX1,  
532 CXCR4, CYLD, DAXX, DDR2, DDX3X, DICER1, DNM2, DNMT3A, EEF1A1, EGFR, EIF1AX, ELF3,  
533 EML4, EP300, EPHA2, EPS15, ERBB2, ERBB3, ERCC2, ERG, ERF1, ESR1, ETNK1, EZH2,  
534 FAM104A, FAM46C, FAM58A, FAT1, FAT2, FBXO11, FBXW7, FGFR1, FGFR2, FGFR3, FLT1, FLT3,  
535 FLT4, FOSL2, FOXA1, FOXA2, FOXL2, FOXP1, FOXQ1, FTH1, FTL, FUBP1, GAGE12J, GATA1,  
536 GATA2, GATA3, GATA4, GJA1, GNA11, GNA13, GNAQ, GNAS, GPS2, GRIN2A, H3F3A, H3F3B,

537 HAMP, HFE, HFE2, HGF, HIST1H2BD, HIST1H3B, HLA-A, HLA-B, HLAC, HNF1A, HOXB3, HRAS,  
538 IDH1, IDH2, IGF1R, IGSF3, IKBKB, IKZF1, IL6R, IL6ST, IL7R, IRF2, IRF4, JAK1, JAK2, JAK3, KCNJ5,  
539 KDM5C, KDM6A, KDR, KEAP1, KIT, KLF4, KLF5, KLF6, KMT2A, KMT2B, KMT2C, KMT2D, KRAS,  
540 LIPF, LRP1B, MAP2K1, MAP2K2, MAP2K4, MAP2K7, MAP3K1, MAX, MED12, MEN1, MET,  
541 MGA, MLH1, MPL, MSH2, MSH6, MTOR, MYC, MYCN, MYD88, MYOD1, NCOR1, NF1, NF2,  
542 NFE2L2, NFKBIE, NKX2-1, NOTCH1, NOTCH2, NOTCH3, NOTCH4, NPM1, NQO1, NRAS, NSD1,  
543 NT5C2, NTRK3, PALB2, PAX5, PBRM1, PCLO, PCMTD1, PDGFRA, PDYN, PHF6, PHOX2B, PIK3CA,  
544 PIK3R1, PIK3R3, PLCG1, POLE, POT1, POU2AF1, PPM1D, PPP2R1A, PPP6C, PRDM1, PREX2,  
545 PRKACA, PRKAR1A, PTCH1, PTEN, PTPN11, PTPN3, PTPRB, QKI, RAC1, RAC2, RAD21, RASA1,  
546 RB1, RBM10, RET, RHBDL2, RHOA, RHOB, RIT1, RNF43, ROBO2, RPL10, RPL22, RPL5, RPS6KA3,  
547 RREB1, RUNX1, SERPINA1, SETBP1, SETD2, SF3B1, SFTPA1, SFTPB, SFTPC, SH2B3, SLC10A1,  
548 SLC40A1, SMAD2, SMAD4, SMARCA4, SMARCB1, SMC3, SMO, SMTNL2, SOCS1, SOX2, SOX9,  
549 SPEN, SPOP, SRC, SRSF2, STAG2, STAT3, STAT5B, STK11, SUFU, TBL1XR1, TBX3, TCF7L2, TEK,  
550 TENM1, TERT, TET2, TFR2, TG, TGFBR2, TGIF1, TMEM170A, TMEM51, TNFAIP3, TNFRSF14,  
551 TP53, TP63, TRAF7, TSC1, TSC2, TSHZ, TYRO3, U2AF1, UBR5, VEGFA, VHL, WT1, XBP1, XIRP2,  
552 XPO1, ZFHX3, ZFP36L1, ZNF750 and ZRSR2.  
553

#### 554 **DNA sequence processing, mutation calling and filtering**

555 DNA sequences were aligned to the GRCh38 reference genome by the Burrows-Wheeler  
556 algorithm (BWA-MEM)<sup>29</sup>. Single-nucleotide variants (SNVs) and short insertion and deletions  
557 (indels) were called against the reference genome using CaVEMan<sup>30</sup> and Pindel<sup>31</sup>,  
558 respectively. Copy number variants (CNVs) and structural variants (SVs) were called using  
559 GRIDSS<sup>32</sup>, and are listed in **Extended Data Table 4**.

560 Beyond the standard post-processing filters of CaVEMan, we removed variants affected  
561 mapping artefacts associated with BWA-MEM by setting the median alignment score of reads  
562 supporting a mutation as greater than or equal to 140 (ASMD>=140) and requiring that fewer  
563 than half of the reads were clipped (CLPM=0).

564 We force-called the SNVs and indels that were called in any sample across all samples from a  
565 given donor, using a cut-off for read mapping quality (30) and base quality (25). Germline  
566 variants were removed using a one-sided binomial exact test on the number of variant reads  
567 and depth present across largely diploid samples, as previously described. Resulting p-values  
568 were corrected for multiple testing with the Benjamini-Hochberg method and a cut-off was  
569 set at  $q < 10^{-5}$ .

570 To filter out recurrent SNV and indel artefacts, we fitted a beta-binomial distribution was  
571 fitted to the number of reads supporting variants and the total depth across samples from  
572 the same individual. For every indel or SNV, the overdispersion parameter ( $\rho$ ) was determined  
573 in a grid-based way (ranging the value of  $\rho$  from  $10^{-6}$  to  $10^{-0.05}$ ). As artefactual variants appear  
574 in random reads across samples, they are best captured by low overdispersion, while true  
575 somatic SNVs and indels will manifest with high VAFs in some, but completely absent from  
576 other samples, and are therefore highly overdispersed. To distinguish artefacts from true  
577 variants, we used  $\rho = 0.1$  as a threshold for SNVs and  $\rho = 0.15$  for indels, below which variants  
578 were considered to be artefacts. This filtering approach is an adaptation of the Shearwater  
579 variant caller<sup>33</sup>.  
580

581

584 We employed a truncated binomial mixture model to model each whole-genome sample as  
585 a mixture of clones, determine the underlying VAF peaks, and the corresponding clonality of  
586 the sample, as previously described<sup>2,34</sup>. The truncated distribution is necessary to reflect the  
587 minimum number of reads that support a variant (n = 4) that is imposed by variant callers  
588 such as CaVEMan.

589

#### 590 **Mutation rate analysis**

591 To correct for the confounding of sequencing depth and detected number of mutations, we  
592 corrected the observed mutation burden by dividing over the estimated sensitivity. The  
593 sensitivity was estimated as the probability of observing a variant in at least four reads given  
594 the underlying coverage distribution per sample and the observed variant allele frequency  
595 peak per sample. The mean estimated sensitivity was 0.95 and the median 0.97. Raw and  
596 adjusted mutation burden estimates, for both indels and SNVs, are listed in **Extended Data**  
597 **Table 2**.

598

599 To estimate the mutation rate in normal gastric epithelium, we used a linear mixed effects  
600 model, with age as a fixed effect and the donor as a random effect, on mutation burden  
601 estimates from gastric glands of non-cancer donors. To test the effect of gastric site on the  
602 mutation rate, we included site-specific age relations in the mixed effects model. We used an  
603 ANOVA test to discern which models fits the data better.

604

#### 605 **Phylogeny reconstruction and mutation mapping**

606 Phylogenetic trees were reconstructed using the Sequoia algorithm<sup>34</sup>, which employs a  
607 maximum parsimony framework as implemented in MPBoot<sup>35</sup>. Mutation mapping to  
608 branches was done using the treemut R package.

609

#### 610 **Mutational signature analysis**

611 To identify possibly undiscovered mutational signatures in human placenta, we ran the  
612 hierarchical Dirichlet process (HDP) package (<https://github.com/nicolaroberts/hdp>) on the  
613 96 trinucleotide counts of all microdissected samples, divided into separate branches of the  
614 phylogenetic trees. To avoid overfitting, branches with fewer than 50 mutations were not  
615 included in the signature extraction. HDP was run with the different donors as the hierarchy,  
616 with twenty independent chains, 40,000 iterations and a burn-in of 20,000.

617

618 The resulting signatures from HDP were further deconvolved into linear combinations of  
619 known COSMIC reference signatures (v3.3) using an expectation-maximization mixture  
620 model. This resulted in the deconvolution of the HDP signatures into reference signatures  
621 SBS1, SBS2, SBS5, SBS13, SBS17a, SBS17b, SBS18, SBS28 and SBS40. These signatures were  
622 then fitted to all observed SNV counts from individual branches using SigFit<sup>36</sup>. Signature  
623 exposures per sample can be found in **Extended Data Table 2**.

624

625 Of note, SBS5 and SBS40 have relatively flat and featureless mutation profiles, can be difficult  
626 to separate from each other and are therefore combined in analyses, as in previous  
627 reports<sup>1,37</sup>.

628

629 Mutational spectra for indels were plotted based on the indel classification employed by  
630 COSMIC. As ID1 and ID2 are highly specific signatures, their contribution was estimated based

631 on the number of single base insertions and deletions of homopolymer runs of A and T of  
632 length six or greater, respectively.

633

634 The fold increase of specific mutational signatures in hypermutant glands compared to non-  
635 hypermutant glands was estimated by:

- 636 1. calculating the observed number of mutations incurred by each signature by  
637 multiplying the sensitivity-corrected mutation burden with the estimated signature  
638 exposures per sample,
- 639 2. Calculating the expected number of mutations incurred by each signature by  
640 multiplying the expected mutation burden, given the age of the donor, and the  
641 average mutational signature distribution of all non-hypermutant glands of that  
642 donor. The latter accounts for any donor-specific differences in mutational signatures  
643 that may be present.
- 644 3. Dividing the observed over the expected mutation numbers per signature.

645

#### 646 **Selection analysis and driver annotation**

647 We used the dndscv<sup>24</sup> R package to identify genes under positive selection, combining both  
648 the whole-genome sequencing data and the targeted sequencing data. Genes with q-value  
649 below 0.1 were considered to be under positive selection.

650

651 To identify mutations in genes that are associated with cancer but did not appear the positive  
652 selection analysis, we reviewed all mutations for canonical cancer driver mutations and  
653 annotated likely candidates. In brief, this involved annotating hotspot mutations in oncogenes  
654 and inactivating mutations (nonsense, missense and frameshift indels) in tumour suppressor  
655 genes through interrogation of the COSMIC database. Annotated driver mutations are listed  
656 in **Extended Data Table 5**.

657

#### 658 **CNV Timing**

659 Assuming a constant mutation rate, the acquisition of large copy number duplications, such  
660 as trisomies or events causing copy number neutral loss of heterozygosity, can be timed by  
661 comparing the proportion of SNVs acquired before and after the duplication. These  
662 proportions can be estimated by clustering SNVs based on their VAF. As employed previously,  
663 we used a binomial mixture model, using the counts of variant-supporting and total reads, to  
664 estimate the fraction of duplicated and non-duplicated mutations. Mutation clusters were  
665 assigned to be either duplicated or non-duplicated based on the expected VAF from the CNV.  
666 For example, for a trisomy, the two VAF clusters would correspond to two different copy  
667 number states: 0.66 (duplicated, mutations on two out of three copies) and 0.33 (non-  
668 duplicated, mutations on one out of three copies).

669

670 From the duplicated ( $P_D$ ) and non-duplicated ( $P_{ND}$ ) proportions, the total copy number  
671 ( $CN_{total}$ ), the duplicated copy number ( $CN_{dup}$ ), the timing of the CNV ( $T$ ) can then be  
672 estimated as follows:

$$673 T = \frac{CN_{total}}{CN_{dup} + \frac{P_{ND}}{P_D}}$$

674

675 The value of the CNV timing will be between 0 and 1, which – in the case of phylogenetic trees  
676 used here - corresponds to the beginning and end of the branch on which the CNV was  
677 acquired. To obtain a confidence interval around the single timepoint estimate, we employed  
678 an exact Poisson test on the rounded duplicated and non-duplicated mutation counts.  
679  
680

#### 681 **Code availability**

682 Custom R scripts for data analysis, filtering and visualization can be found at  
683 <https://github.com/TimCoorens/Stomach>

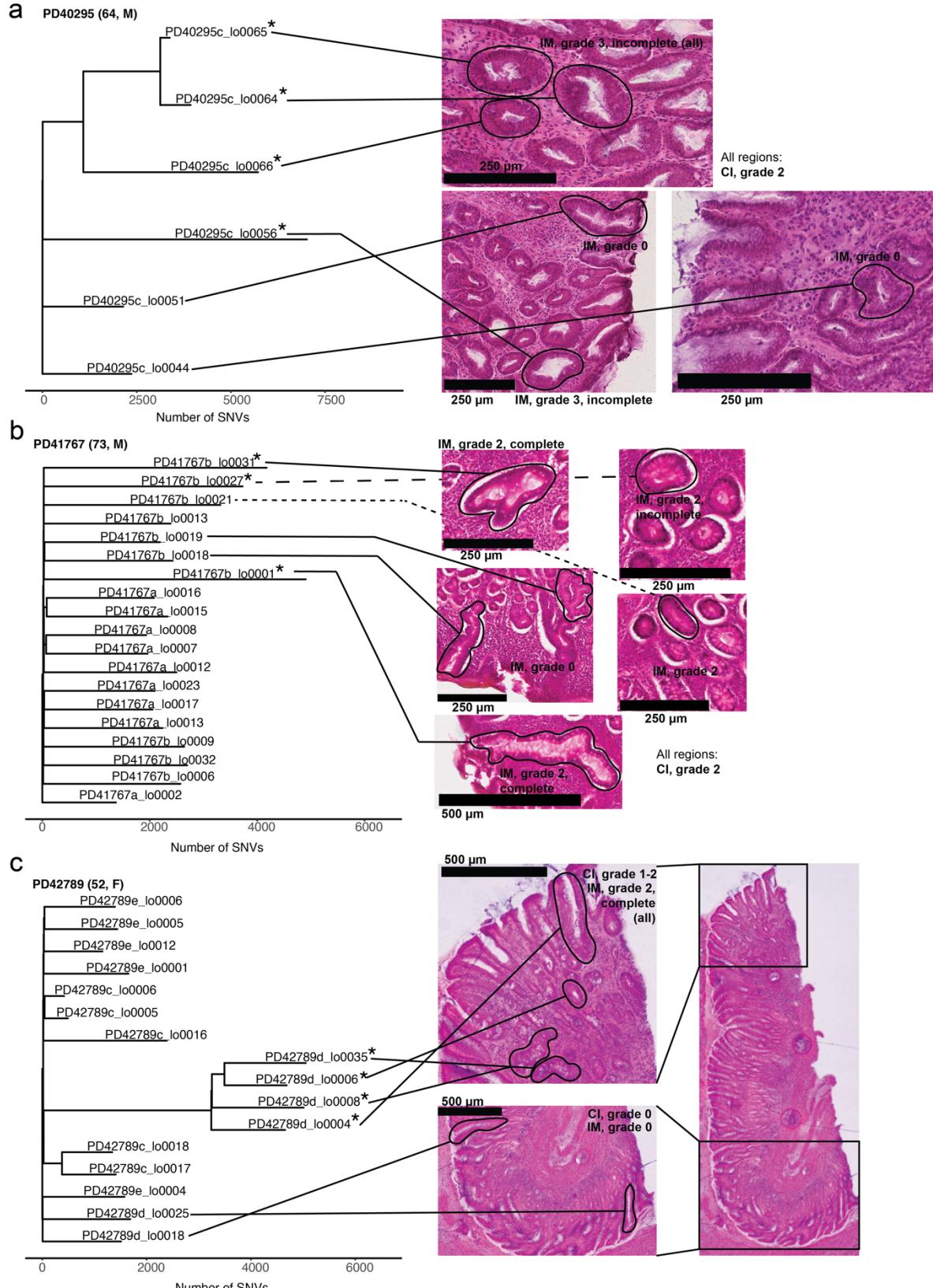
#### 684 **Data availability**

685 DNA sequencing data have been deposited in the European Genome-Phenome Archive (EGA)  
686 with accession codes EGAD00001015351 (whole-genome sequencing) and  
688 EGAD00001015352 (targeted panel sequencing).  
689

#### 690 **ACKNOWLEDGEMENTS**

691 This research is funded by the Wellcome Trust. T.H.H.C. is the recipient of an EMBO long-term  
692 fellowship (ALTF 172-2022). The funders had no role in study design, data collection and  
693 analysis, decision to publish or preparation of the manuscript. We thank the staff of the  
694 Wellcome Sanger Institute Sample Logistics, Genotyping, Pulldown, Sequencing and  
695 Informatics facilities for their support with sample management and laboratory work. We  
696 thank K. Ardlie, S. Behjati, G. Getz and A. Lawson for discussions and critical review of the  
697 manuscript. We are grateful to the deceased transplant donors and their families for the gift  
698 of tissue donation facilitated by the Cambridge Biorepository for Translational Medicine  
699

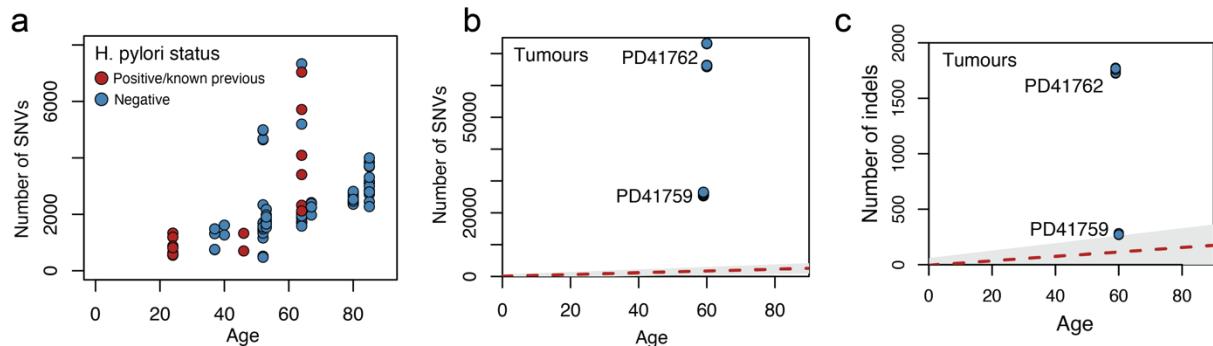
#### 700 **CONTRIBUTIONS**


701 T.H.H.C. performed the analyses with help or input from G.C., H.J., and Y.W. K.M., K.S.-P. and  
702 S.Y.L. contributed tissue samples. G.C. performed the microdissections with support from  
703 L.M. and Y.H. S.Y.L. executed pathology review of tissue slides. M.R.S. oversaw the study, with  
704 input from I.M. and P.J.C. T.H.H.C. and M.R.S. wrote the manuscript with input from all other  
705 authors.  
706

#### 707 **CORRESPONDING AUTHORS**

708 Correspondence to T.H.H.C. ([tcoorens@broadinstitute.org](mailto:tcoorens@broadinstitute.org)) and M.R.S. ([mrs@sanger.ac.uk](mailto:mrs@sanger.ac.uk)).  
709

#### 710 **COMPETING INTEREST STATEMENT**

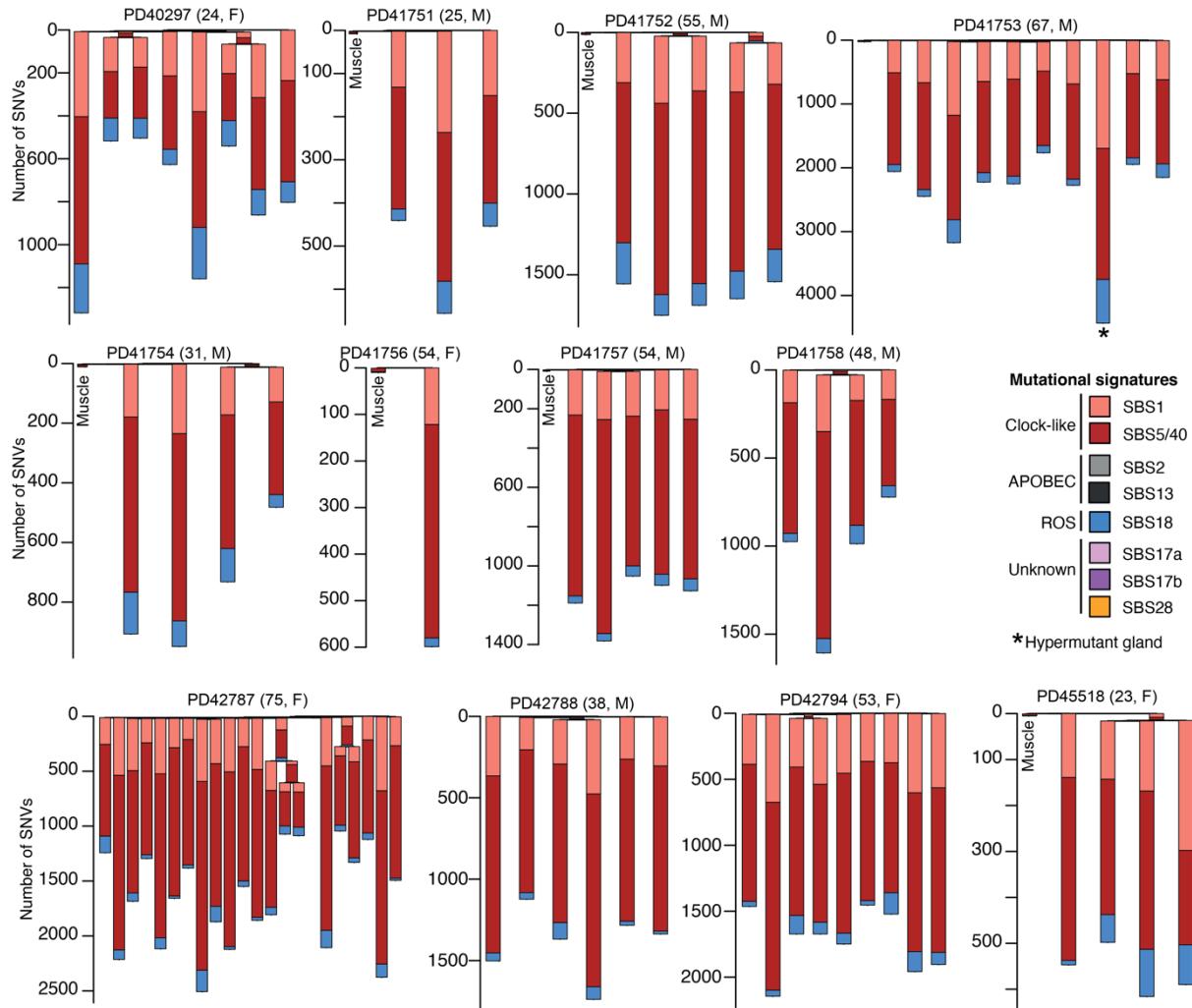

711 I.M., P.J.C. and M.R.S. are co-founders, stockholders and consultants for Quotient  
712 Therapeutics Ltd.  
713  
714



715

## 716 Extended Data Figure 1 | Phylogenies of hypermutant glands

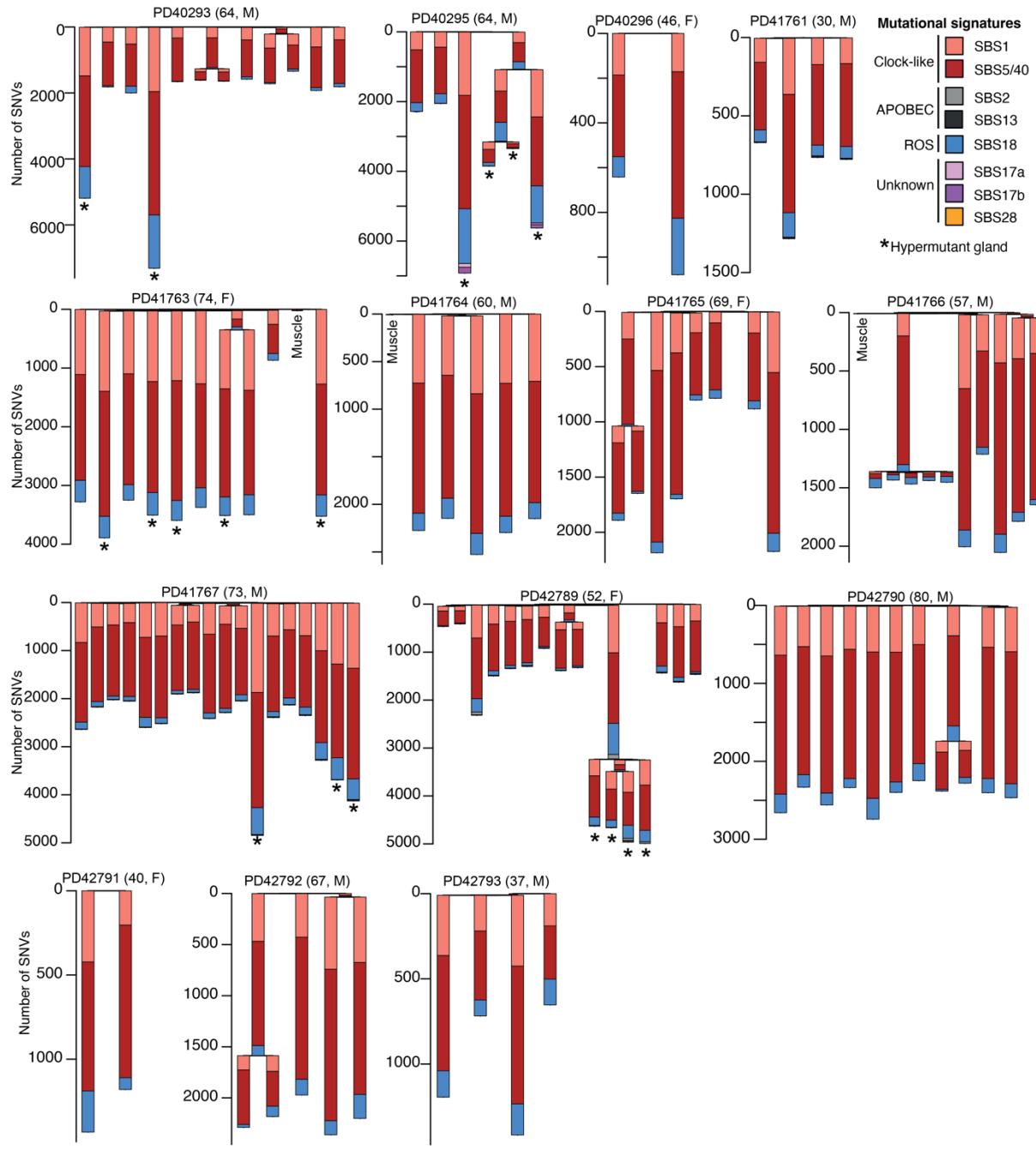
717 Phylogenetic trees of three donors with hypermutant glands (indicated by the asterisk), along  
 718 images of histology, with laser capture microdissections marked in black and pathological  
 719 gradings. All biopsies are from the gastric antrum. CI=chronic inflammation, IM=intestinal  
 720 metaplasia.




721

722 **Extended Data Figure 2 | Mutation burden extended**

723 **a**, Mutation burden in glands with confirmed *H. pylori* status. **b-c**, Detected burden of (**b**) SNVs  
724 and (**c**) indels in microdissections from gastric cancers of PD41759 and PD41762. The red  
725 dashed line indicates the estimated age and SNV and indel mutation burden relation  
726 estimated from a mixed effects model in gastric glands from non-cancer donors (**Fig. 1c** for  
727 SNVs, **Fig. 1e** for indels), with the grey area indicating a confidence interval.


728



729

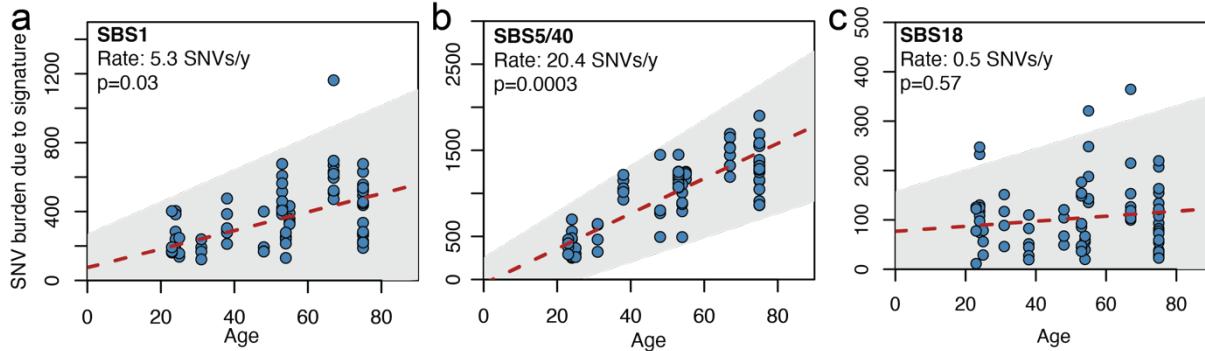
730 **Extended Data Figure 3 | Mutational signatures in non-cancer donors**

731 Phylogenetic trees of gastric glands from non-cancer donors, branch lengths indicate the  
 732 number of SNVs, and barplot per branch indicate the mutational signature proportion.  
 733 Asterisks denote hypermutant glands.

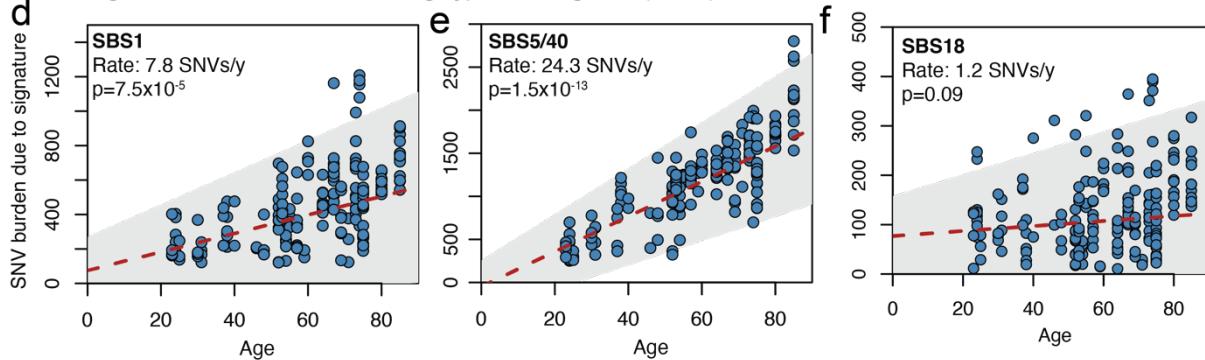


734

735 **Extended Data Figure 4 | Mutational signatures in cancer patients**


736 Phylogenetic trees of gastric glands from cancer patients, branch lengths indicate the number  
 737 of SNVs, and barplot per branch indicate the mutational signature proportion. Asterisks  
 738 denote hypermutant glands. Note that the phylogenies for the four remaining cancer donors  
 739 are shown in Fig. 2a-d.

740


741

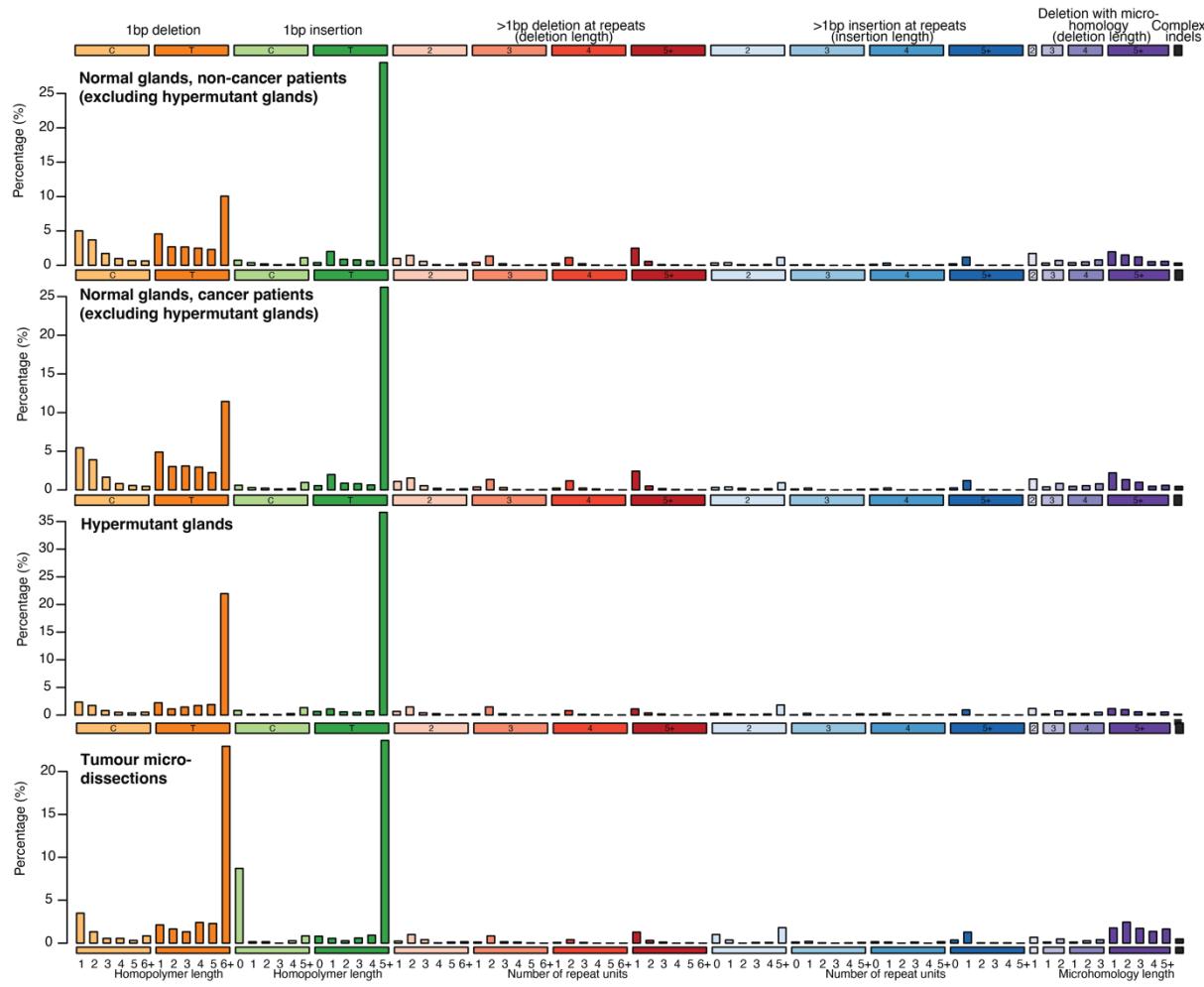
742

Gastric glands from non-cancer donors, excluding hypermutant glands (n=78)



Gastric glands from all donors, excluding hypermutant glands (n=190)




743

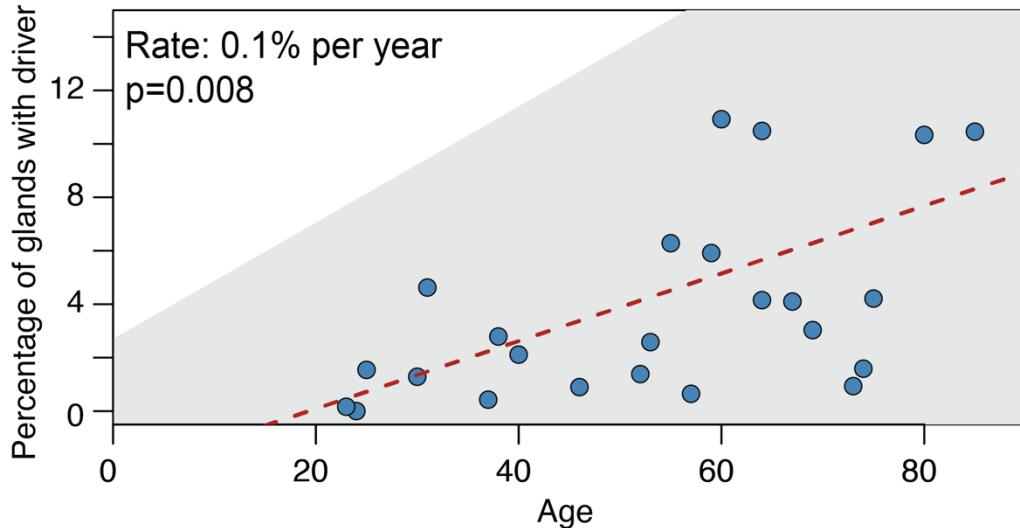
**Extended Data Figure 5 | Accumulation of signature-specific burdens**

Burden of SNVs due to three signatures ubiquitous in gastric epithelium (a) SBS1, (b) SBS5/40 and (c) SBS18 versus age for gastric glands from non-cancer donor, excluding hypermutant glands. The red dashed line indicates the estimated relation between age and SNV mutation burden due to a specific mutational signature obtained from a mixed effects model, with the grey box indicating a confidence interval. P-values are obtained through an ANOVA test. Signature-specific burdens are also shown for gastric glands from all donors (excluding hypermutant glands) for (d) SBS1, (e) SBS5/40 and (f) SBS18.

751

752




753

754

### Extended Data Figure 6 | Mutational patterns of indels

755 Aggregate indel mutational spectra for glands with normal mutation burdens (both in non-  
756 cancer patients and cancer patients), hypermutant glands and tumour samples.

757



758

759 **Extended Data Figure 7 | Driver proportion across age**

760 Percentage of driver-carrying glands versus age across donors. Only donors with more than  
761 50 glands surveyed were included in this analysis. The red dashed line indicates the estimated  
762 relation between age and percentage of gastric glands with drivers obtained from a mixed  
763 effects model, with the grey box indicating a confidence interval. P-value obtained through  
764 an ANOVA test.

765

766 Note: Extended Data Tables 1 to 5 contained in file “Extended\_Data\_Tables\_S1-S5.xlsx”, also  
767 deposited here: <https://github.com/TimCoorens/Stomach>.

768 **Extended Data Table 1 | Overview of cohort**

769 **Extended Data Table 2 | Annotation of WGS samples, mutation burdens and signature  
770 exposures**

771 **Extended Data Table 3 | Annotation of targeted panel sequencing**

772 **Extended Data Table 4 | List of CNVs called**

773 **Extended Data Table 5 | List of drivers annotated**

774