

1 Tuft cells act as regenerative stem cells in the human 2 intestine

3
4 Lulu Huang^{1, 2, 8}, Jochem H. Bernink^{1, 6, 8, *}, Amir Giladi^{1, 2, 8}, Daniel Krueger¹, Gijs J.F. van Son¹,
5 Maarten H. Geurts¹, Georg Busslinger¹, Lin Lin^{1, 3}, Maurice Zandvliet⁴, Peter J. Peters⁵,
6 Carmen López-Iglesias⁵, Christianne J. Buskens⁶, Willem A. Bemelman⁶, Harry Begthel¹,
7 Hans Clevers^{1, 2, 3, 7, *}

8
9
10 ¹Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University
11 Medical Centre Utrecht (UMC) Utrecht, 3584 CT, the Netherlands

12 ² Oncode Institute, Hubrecht Institute, 3584 CT Utrecht, the Netherlands

13 ³ The Princess Maxima Center for Pediatric Oncology, 3584 CS Utrecht, the Netherlands.

14 ⁴ Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine,
15 Utrecht University, the Netherlands

16 ⁵ The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, the
17 Netherlands

18 ⁶ Department of Experimental Immunology, Amsterdam Infection & Immunity Institute (AI&II),
19 Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

20 ⁷ Present address: Pharma, Research and Early Development (pRED) of F. Hoffmann-La
21 Roche Ltd, Basel, Switzerland

22 ⁸ Contributed equally

23 * Corresponding authors

24
25 Correspondence should be addressed to j.h.bernink@amsterdamumc.nl or
26 h.clevers@hubrecht.eu

28 ABSTRACT

29 In mice, intestinal tuft cells have been described as a long-lived, post-mitotic cell type of which
30 two distinct subsets have been identified, named tuft-1 and tuft-2¹. By combining analysis of
31 primary human intestinal resection material and intestinal organoids, we identify four distinct
32 human tuft cell states, two of which overlap with their murine counterparts. We show that tuft
33 cell development depends on the presence of Wnt ligands, and that tuft cell numbers rapidly
34 increase upon interleukin (IL)-4 and IL-13 exposure, as reported previously in mouse²⁻⁴. This
35 occurs through proliferation of pre-existing tuft cells, rather than through increased *de novo*
36 generation from stem cells. Indeed, proliferative tuft cells occur *in vivo* both in fetal and in adult
37 human intestine. Single mature proliferating tuft cells can form organoids that contain all
38 intestinal epithelial cell types. Unlike stem- and progenitor cells, human tuft cells survive
39 irradiation damage and retain the ability to generate all other epithelial cell types. Accordingly,
40 organoids engineered to lack tuft cells fail to recover from radiation-induced damage. Thus,
41 tuft cells represent a damage-induced reserve intestinal stem cell pool in humans.

43 INTRODUCTORY PARAGRAPH

44 The human intestinal tract is responsible for the uptake of food constituents and metabolites,
45 and production of hormones, while adroitly providing protection against pathogens. Its
46 divergent functions are executed by specialized epithelial subsets that are continuously
47 replenished by LGR5⁺ Crypt Base Columnar (CBC) stem cells. Tuft cells represent one such
48 specialized epithelial subset⁵. The majority of our understanding of tuft cell function and
49 ontology derives from studies in mice as there currently exists no *in vitro* approach to generate
50 and manipulate human tuft cells.

51 In mice, intestinal tuft cells have been described as a long-lived, post-mitotic cell type. Two
52 distinct subsets have been identified, named tuft-1 and tuft-2¹. Tuft-1 cells express genes that

54 are associated with neuronal interactions, whereas tuft-2 cells appear primarily involved in
55 providing protective immunity against helminths, protozoans, and bacteria⁶⁻⁹. Mechanistically,
56 murine tuft cells express the cytokine IL-25, which triggers resident type 2 innate lymphoid
57 cells (ILC2s) to secrete IL-13. This cytokine is thought to signal to the CBC stem cells and to
58 uncommitted progenitor cells to promote the appearance of tuft cells in a positive feedback
59 loop²⁻⁴. Tuft-2 cells sense microbe-derived metabolic compounds, resulting in enhanced
60 secretion of arachidonic acid-derived lipid mediators, such as prostaglandins and leukotrienes
61 that in turn activate IL-13 producing ILC2s and mucus-secreting goblet cells.

62 While Lgr5⁺ CBC cells represent the workhorse stem cells of the intestinal epithelium¹⁰, they
63 are highly susceptible to damage and various mechanisms have been shown to compensate
64 for stem cell loss in mice. One such mechanism involves plasticity of fated crypt progenitors.
65 Thus, dedifferentiation of secretory progenitors¹¹⁻¹⁴ and enterocyte progenitors¹⁵ can restore
66 normal numbers of Lgr5⁺ stem cells. Battle and colleagues identified a subpopulation of
67 quiescent Lgr5⁺ stem cells marked by Mex3a that can restore stem cell function¹⁶. Finally, so
68 called revival stem cells (RevSCs), defined by transient induction of Clusterin (Clu) and Sca1,
69 have been proposed to be key to intestinal regeneration, although it is not known from which
70 cells these RevSCs derive^{17,18}.

71 The lack of models to study human tuft cell biology impedes the functional characterization
72 and properties of these cells in detail, while no human intestinal regenerative stem cell has
73 been identified as of yet. Here we use human intestinal organoids in direct comparison with
74 primary intestinal epithelium, to explore human tuft cell development, its subsets and its
75 responses following damage.

76

77 RESULTS

78 **Wnt signaling drives human intestinal tuft cell development**

79 To generate a model for visualization and tracking of human intestinal tuft cell dynamics and
80 function, we mined published single cell RNA-sequencing resources to select markers that are
81 uniformly, yet specifically, expressed among human tuft cells¹⁹. We thus identified *AVIL*, a
82 gene encoding for the structural actin-binding protein Advillin, to be highly expressed in tuft
83 cells and not in other intestinal epithelial cells (>192-fold higher expression than any other
84 epithelial type, Fig. 1a), as previously also documented for murine tuft cells^{20,21}. Histological
85 examination confirmed the specificity of *AVIL* expression in primary human small intestinal
86 and colon tissue (Fig. 1b).

87 We generated clonal organoid lines from human duodenum, ileum and colon in which we
88 fused a green fluorescent protein (mClover) to the C-terminus of *AVIL* using a CRISPR-
89 assisted non-homologous end-joining approach at the *AVIL* locus²² (Fig. 1c). Following an
90 expansion phase of 4 days, *AVIL*-Clover organoids were subjected to multiple differentiation
91 regimens in which growth factors were added either alone or in combination (Fig. 1d). Using
92 flow cytometry for quantification, we observed the highest frequency of *AVIL*-Clover⁺ cells in
93 the presence of Wnt (Fig. 1e-f, Extended Data Fig. 1a). No higher tuft cell numbers were
94 reached by blocking Notch signaling using the gamma-secretase inhibitor DAPT, and addition
95 of epidermal growth factor (EGF) reduced tuft cell frequency (Fig. 1e-f), although these factors
96 increased overall cell survival (Extended Data Fig. 1b). The specificity of the reporter lines was
97 confirmed by antibody staining for endogenous *AVIL* (Extended Data Fig. 1c). Like primary
98 tuft cells, organoid-derived *AVIL*⁺ cells were characterized by flask-shaped contours, and
99 intense bundling of actin fibers towards the tip of the tuft (Fig. 1g-h). Electron microscopy
100 imaging further revealed that, like primary tuft cells, organoid-derived tuft cells formed
101 distinctive lateral protrusions, or interdigitating spinules (Fig. 1i)²³. In agreement with these
102 observations, purified *AVIL*⁺ cells expressed high levels of previously described signature tuft
103 cell genes as demonstrated by quantitative polymerase chain reaction (qPCR) (Fig. 1j)¹⁹.

104 High Wnt levels are present in the intestinal crypts, and inversely correlate with bone
105 morphogenic protein (BMP) signaling, the latter being a key driver of epithelial differentiation,
106 predominantly active in the intestinal villi⁵. Removal of the BMP inhibitor Noggin and addition
107 of BMP2 and BMP4 to differentiating organoids reduced tuft cell frequency (Extended Data
108 Fig. 1d). The observed dependence on Wnt and on BMP inhibition urged us to explore the

109 cellular localization of tuft cells in the human intestine. Indeed, quantifying tuft cells along the
110 crypt-villus axis in the primary human small intestine tissue revealed that these cells are
111 predominantly restricted to the crypt area (Extended Data Fig. 1e).

112

113 **IL-4 signaling drives tuft cell proliferation**

114 Elevated levels of intestinal IL-4 and IL-13, cytokines related to type 2 immunity, drive tuft cell
115 hyperplasia in mice, proposedly by increasing *de novo* generation of tuft cells by Lgr5⁺ stem
116 cells²⁻⁴. We explored cytokine receptor expression profiles in human intestinal epithelial
117 lineages. Tuft cells (rather than stem cells) expressed the highest level of *IL13RA1*, the gene
118 encoding the shared IL-4 and IL-13 receptor (Fig. 2a). Four days exposure of intestinal
119 organoids to IL-4 and IL-13 (but not to IL-25, IL-27, or SCF (KIT ligand)) induced a ten- to
120 fifteen-fold increase in AVIL⁺ cell frequency, most evident in the absence of EGF (Fig. 2b-c,
121 Extended Data Fig. 2a-b). These results raised the question whether proliferation of *bona fide*
122 tuft cells, rather than differentiation of stem or transit-amplifying (TA) cells to tuft cells, is the
123 main driver of elevated tuft cell numbers following exposure to IL-4 and IL-13. Notably, imaging
124 of organoids revealed a pattern of clustered tuft cells (Extended Data Fig 2c-d), suggestive of
125 self-expansion, while IL-4/IL-13-untreated organoids yielded a more scattered profile (Fig. 2d).
126 Moreover, a substantial fraction of IL-4/IL-13-induced tuft cells stained for Ki67, pointing
127 towards local proliferation of differentiated tuft cells (Fig. 2e, Supplementary Video. 1). These
128 findings were not restricted to *in vitro* models, as staining for Ki67 and AVIL in primary human
129 small intestinal tissues also sporadically marked double positive cells (Fig. 2f, Extended Data
130 Fig. 2e-f).

131 To further substantiate these findings, we integrated the Fluorescent Ubiquitination Cell Cycle
132 Indicator (FUCCI) in small intestine organoids using a transposon-based system, allowing to
133 track and quantify the mitotic state in organoids. We identified KIT as a tuft cell-specific surface
134 marker (Fig. 2a, Extended Data Fig. 2g). Indeed, KIT staining displayed a >98% overlap in
135 multiple AVIL-Clover reporter organoid lines (Fig. 2g). This overlap was maintained following
136 exposure to various stimuli (Extended Data Fig. 2h-i), confirming KIT as a robust antigen that
137 specifically marks tuft cells among human intestinal epithelial cells. We further confirmed KIT
138 specificity in both healthy and inflamed intestines, by analyzing publicly available scRNA-seq
139 data of human colon epithelium, obtained from a cohort of pediatric/adult healthy and IBD
140 tissues²⁴ (Extended Data Fig. 2j). Likewise, scRNA-seq of KIT-sorted cells from human adult
141 ileum and colon primary tissue revealed that >97% of sorted cells exhibited a tuft cell
142 transcriptional signature (Fig. 2h, Extended Data Fig. 2k).

143 Thus, KIT specificity allowed us to simultaneously label tuft cells and track their cell cycle
144 progression with the FUCCI construct by flow cytometry analysis. Following IL-4 and IL-13
145 stimulation, up to 8% of the KIT⁺ fraction entered the S/G2/M-phase, while the KIT⁻ fraction
146 remained quiescent (< 1% cycling) (Fig. 2i-j). Of note, non-cytokine exposed tuft cells were
147 occasionally found in the S/G2/M-phase (Extended Data Fig. 3a, Supplementary Video 2).
148 Using live-cell imaging, we observed IL-4/IL-13-stimulated AVIL⁺ cells which divided two times
149 over a 36-hour period, corroborating their capacity to enter a mitotic state (Fig. 2k, Extended
150 Data Fig. 3b-c, Supplementary Video 3-5). In agreement with these findings, IL-4 and IL-13
151 stimulation promoted a continuous phase of mitotic tuft cell as determined by FUCCI organoids
152 (Supplementary Information Fig. 2) and a steady increase in Ki67⁺ AVIL⁺ cell frequency over
153 a 7-day period (Fig. 2l-m). These processes were enhanced in the presence of Wnt signaling
154 (Fig. 2n-o). Importantly, exposure of IL-4 and IL-13 to organoids that did not contain tuft cells
155 (i.e., organoids differentiated in the absence of Wnt), did not induce proliferative tuft
156 cells(Extended Data Fig. 3d). Neither did we observed proliferative tuft cells in sorted and
157 cultured stem cells in expansion medium in the presence of IL-4 and IL-13 over a 7-day period
158 (Extended Data Fig. 3e). This uncoupled IL-4/IL-13-induced tuft cell proliferation from induced
159 differentiation of precursor cells. Taken together, we found tuft cells to be capable of robust
160 proliferation following type-2 cytokine stimulation *in situ*.

161

162 **IL-4 signaling shifts the balance in tuft cell subtypes/states**

163 To gain better understanding of tuft cell function and heterogeneity, we obtained single-cell
164 RNA-sequencing data from 953 ileum organoid-derived epithelial cells, grown in tuft cell
165 differentiation medium with and without exposure to IL-4/IL-13. We used the AVIL-Clover
166 signal to select for tuft cells, resulting in 580 high quality AVIL-expressing cells (Extended Data
167 Fig. 4a-b), and 373 cells from other epithelial lineages (Fig. 3a, Extended Data Fig. 4c). The
168 Metacell package²⁵ grouped cells into transcriptionally homogeneous subsets, identifying four
169 distinct clusters, which we succinctly named tuft-1 to -4 (Fig. 3b-c). Non-tuft cells were
170 identified as *LGR5*⁺ stem cells and two types of goblet cells (Fig. 3c, Extended Data Fig. 4c).
171 All four tuft cell clusters shared a unique tuft cell core gene expression program (absent from
172 the non-tuft cell fraction), including the genes *ALOX5AP*, *POU2F3*, *LRMP*, *GNG13*, *BMX*,
173 *AVIL*, and *KIT* (Fig. 3d, Extended Data Fig. 4d). We also identified some genes not previously
174 linked to tuft cells, such as the neuropeptide Neuromedin U (*NMU*), and the tyrosine-protein
175 kinase *HCK*. Relative tuft cell subset distribution largely depended on medium composition:
176 addition of IL-4 and IL-13 caused a shift towards tuft-3 and tuft-4 (comprising 14.25% and 79%
177 of all IL-4/13 stimulated tuft cells, respectively), whereas under “homeostatic” differentiation
178 conditions these populations were much rarer (3.5% and 3.25%, Fig. 3e). Note that the ratio
179 of tuft cell substates was determined within treatment groups, and that the absolute number
180 of tuft cells within IL-4/IL-13 treated organoids was approximately 10- to 20-fold higher than
181 within non-cytokine treated organoids (Fig. 2c). Direct comparison of the individual tuft cell
182 substates to other epithelial cells showed unique and shared gene expression patterns for
183 each subset with tuft-3 expressing the largest number (>250) of unique differentially expressed
184 genes (DEG), followed by tuft-2 and tuft-4 (Fig. 3f).

185 Gene ontology analysis of the DEG within each tuft cell cluster highlighted the diversity
186 between tuft-1 to -4 (Extended Data Fig. 4e). For example, genes that were enriched in tuft-1
187 cells are involved in processes of neuron differentiation (e.g., *VIM*, *SEMA3C*), tuft-2 genes are
188 involved in immuno-potent lipid biosynthetic processes such as the synthesis of lipoxins,
189 prostaglandins, and cysteinyl-leukotrienes. Tuft-3 is enriched for genes connected to a mitotic
190 phenotype, with high gene expression levels of *MKI67*, *TOP2A*, *TUBB*, *CKS1B*, and tuft-4
191 cells express genes that are involved in regulating immune responses and stimulating
192 regeneration, such as genes encoding the SOCS proteins, *PD-L1* (*CD274*), *EREG*, *HB-EGF*,
193 *TACSTD2*, amongst others (Fig. 3g). Staining AVIL-Clover reporter organoids with tuft cell-
194 state specific markers further confirmed the observed tuft cell heterogeneity (Extended Data
195 Fig. 4f).

196 We next asked whether the heterogeneity we observed in organoid tuft cells informed on tuft
197 cell heterogeneity *in vivo*. In our dataset of KIT-sorted tuft cells from human adult ileum and
198 colon primary tissue, we found a small subset of cells exhibiting a large repertoire of tuft-3
199 genes, implying that tuft cells enter the cell cycle *in vivo* (Extended Data Fig. 4g-h). Combining
200 two published datasets spanning 14 healthy donors^{19,26}, we estimated that 3.9% of intestinal
201 tuft cells are cycling in steady state (Extended Data Fig. 4i). We also detected coordinated
202 expression of tuft-4 genes in a gradient-like manner in primary ileum and colon tuft cells,
203 suggesting variable levels of IL-4/13 activation in the homeostatic intestine (Extended Data
204 Fig. 4j-k). We noted that tuft-3 cells *in vivo* exhibit a significantly higher tuft-4 activation
205 signature compared to other tuft cells, linking tuft cell proliferation to cytokine stimulation,
206 similar to our observations *in vitro* (Extended Data Fig. 4l-m).

207 Taken together, we observed heterogeneity within the human intestinal tuft cell lineage. At
208 steady state, the predominant subsets represent tuft-1 and tuft-2, which phenocopied the two
209 previously described murine intestinal crypt tuft cell subsets¹. IL-4 signaling triggered induction
210 of cycling tuft-3 cells and the dramatic expansion of tuft-4, the latter not recognized in mouse
211 and likely involved in immune regulation and/or epithelial renewal.

212 Next, we explored the transcription factor repertoire of tuft cells, identifying *POU2F3*, amongst
213 others, to be uniquely and uniformly expressed by tuft cells in intestinal organoids and tissue
214 (Fig. 3h, Extended Data Fig. 5a). Using conventional CRISPR-Cas9 and base-editing
215 techniques²⁷, we generated knockouts of prominent tuft cell-expressing transcription factors
216 in AVIL-Clover reporter organoids (Extended Data Fig. 5b) and tested their effect on tuft cell
217 frequency by flow cytometry (Fig. 3i). By quantifying tuft cell frequency in “homeostatic”

218 differentiation medium and IL-4/IL-13-induced medium, we observed that *POU2F3* and the
219 Wnt-signal transducer *TCF7* are essential for tuft cell development (Fig. 3j, Extended Data Fig.
220 5c). Accordingly, *POU2F3* colocalized with *AVIL* in sections of organoids generated from small
221 and large intestines (Fig. 3k-l, Extended Data Fig. 5d), as well as in a transcriptomic dataset
222 derived from primary intestinal tissue (Fig. 3m). Knocking out *SPIB*, a transcription factor that
223 is shared with M-cells and *BEST4⁺* cells^{19,28}, partially reduced tuft cell numbers. In addition,
224 we found that organoids mutant for *HMX2* retained normal tuft cell numbers when cultured in
225 “homeostatic” differentiation medium, but essentially lost the tuft cell proliferation response to
226 IL-4 and IL-13, consistent with the differential expression of *HMX2* in tuft-3 and tuft-4 (Fig. 3h).
227 Of note, several conflicting studies in mice reported tuft cell dependence on the secretory
228 lineage-defining transcription factor *ATOH1*²⁹. We did not detect *ATOH1* expression in human
229 tuft cells, and ectopic over-expression of *ATOH1* in *AVIL*-Clover reporter organoids had a
230 negative effect on tuft cell frequency (Extended Data Fig. 5e-f). Of note, *ATOH1* over-
231 expression induced goblet cells and Paneth cells –but not enteroendocrine cells (Extended
232 Data Fig. 5g). Paradoxically, knocking out *ATOH1* resulted in a strong reduction in tuft cell
233 frequency, while IL-4/IL-13 induced tuft cell proliferation was not affected (Extended Data Fig.
234 5h-i). Analysis of tuft cell-state specific markers did not point towards the loss of a specific
235 subset (Extended Data Fig. 5j). Thus, *ATOH1* appears to be instrumental in a developmental
236 phase towards tuft cells, but dispensable for tuft cell maintenance. Taken together, we
237 identified four tuft cell states, which developed in a *POU2F3*- and *TCF7*-dependent manner,
238 while IL-4/IL-13-induced tuft cell expansion depended on *HMX2*.
239

240 **Single tuft cells give rise to organoids containing all epithelial lineages**

241 Given the tuft cell capacity to expand, we next explored their organoid-forming potential. We
242 purified S/G2/M⁺ tuft cells and non-cycling tuft cells from IL-4 and IL-13 treated FUCCI
243 organoids (Extended Data Fig. 6a). Small spheroids appeared from sorted single KIT⁺ cells at
244 day 3 when cultured in expansion medium (Fig. 4a). Following passaging, tuft cell-derived
245 organoids appeared larger than non-tuft cell-derived organoids (Fig. 4b). Similar results were
246 obtained with sorted organoid-derived single *AVIL*⁺ cells and adult tissue-derived KIT⁺ cells
247 (Extended Data Fig. 6b-c), albeit at a lower frequency, likely as it contained all tuft cell-states
248 rather than proliferating tuft cells only. Of note, following seeding, *AVIL*⁺ cells rapidly
249 downregulated tuft cell-specific genes such as *AVIL* and upregulated stem cell markers such
250 as *LGR5* (Extended Data Fig. 6d).

251 In expansion medium and following differentiation, either with or without IL-4 and IL-13, tuft
252 cell (as determined by expression of KIT or *AVIL*)- and non-tuft cell-derived organoids showed
253 somewhat similar expression levels of genes that define absorptive enterocytes (*FABP1*),
254 goblet cells (*MUC2*), tuft cells (*AVIL*), and stem cells (*LGR5*) (Extended Data Fig. 6e).
255 However, tuft cell-derived organoids expressed higher levels of the entero-endocrine cell
256 (EEC) marker *CHGA* in differentiation medium without IL-4 and IL-13, which was subsequently
257 confirmed by histological analysis (Fig. 4c).

258 This observed divergence in *CHGA* expression between tuft cell- and non-tuft cell-derived
259 organoids normalized following further passaging (Extended Data Fig. 6f-g), indicating that
260 the balance between the distinct epithelial subtypes is reestablished over time. In agreement
261 with this, no differences in cell frequencies between passaged tuft cell and non-tuft cell-derived
262 organoids were detected by single-cell RNA-seq analysis (Fig. 4d-g).

263 This transient effect on *CHGA* expression could not be explained by tuft cells expressing the
264 *CHGA* gene themselves, as WT organoid-derived *AVIL*⁺ purified cells did not express *CHGA*,
265 while the *AVIL*⁻ population did (Extended Data Fig. 6h). Indeed, imaging, as well as flow
266 cytometry analysis of differentiated organoids confirmed the mutually exclusive expression of
267 *AVIL* against either Chromogranin A or Chromogranin B (Extended Data Fig. 6i-k).
268 Interestingly, *POU2F3*-deficient organoids showed reduced *CHGA* expression and protein
269 levels in tuft cell differentiation medium (Extended Data Fig. 6l-m), suggesting the involvement
270 of tuft cells in developing and/or maintaining EEC frequency. Moreover, culture conditions that
271 are known to enhance EEC development and maturation³⁰ induced *CHGA* expression only in
272 WT organoids, and not in *POU2F3*^{-/-} organoids (Extended Data Fig. 6n).

273 We formulated two alternative explanations to *CHGA* dependence on tuft cells: either tuft cells
274 act as support cells for EEC development in a paracrine manner, or tuft cells are precursors
275 to EECs. To address this question, we mixed cells from H2B-iRFP-labeled WT organoids
276 (*WT*^{red}) and *POU2F3*^{-/-} organoids, forming mosaic organoids (Extended Data Fig. 7a-b).
277 Following differentiation, *CHGA*, *SST*, and *TPH1* expression was enriched in *WT*^{Red+} cells, but
278 low expression in the *POU2F3*^{-/-} cells (Extended Data Fig. 7c), suggesting a paracrine effect.
279 We further implemented a CRISPR Cas9-mediated organoid lineage tracing strategy (Fig. 4h).
280 Here, *Cre*^{ERT2} is under the control of *AVIL* expression, driving the excision of a stop-sequence
281 that activates a viral promotor-induced H2B-iRFP construct, following tamoxifen administration
282 (Fig. 4h). We observed expression of iRFP⁺ cells that lost *AVIL* expression, representing tuft
283 cell progeny (Extended Data Fig. 7d-e). We then proceeded to analyze organoids derived from
284 single *AVIL*⁺iRFP⁺ cells (Fig. 4i, Extended Data Fig. 7d-e). These fully iRFP-labeled organoids
285 contained all major intestinal epithelial lineages, including *CHGA*-expressing EECs (Fig. 4j,
286 Extended Data Fig. 7f). Thus, in agreement with the organoid-forming potential of single tuft
287 cells shown above, *AVIL*⁺ cells have stem cell-like properties.
288

289 **IL-4 signaling enhances a regenerative response driven by tuft cells**

290 We found genes associated with intestinal stem cells to be highly expressed by all tuft cells.
291 These included *ASCL2*, *BMI1*, *SOX4*, but not *OLFM4* and *LGR5*³⁷ (Fig. 5a, Extended Data Fig.
292 8a). A few stem cell-associated genes, such as *SMOC2* and *TACSTD2*, were upregulated
293 upon IL-4 and IL-13 exposure, and were indeed upregulated in tuft-3/tuft-4 states (Fig. 5a).
294 Furthermore, organoid-derived tuft cells expressed genes previously associated with fetal gut-
295 like stem cells, facultative stem cells, or revival stem cells, including *TACSTD2*, *MEX3A*,
296 *PROX1*, and *ANXA1*^{13,16,17}, of which the two latter were also expressed in primary tissue (Fig.
297 5a, Extended Data Fig. 8a-b), suggesting a role for tuft cells in epithelial renewal following
298 mechanical injury or other insults.

299 Mechanical passaging of organoids as a model to induce stress and damage did not show
300 differences in organoid outgrowth dynamics or size between wildtype- and *POU2F3*-deficient
301 organoids (Fig. 5b). However, mechanical disruption of differentiated organoids, followed by
302 expansion, showed a diminished expansion potential in *POU2F3*^{-/-} compared to WT organoids
303 (Fig. 5c). These findings suggested a compromised regenerative capacity in organoids that
304 lack tuft cells. To substantiate these observations, we transfected organoids with a
305 doxycycline-inducible construct that ectopically expresses *POU2F3* under the control of a viral
306 promoter. Indeed, ectopic *POU2F3* expression resulted in a higher frequency of KIT⁺ cells and
307 high expression of tuft cell-related genes following differentiation (Extended Data Fig. 8c-d),
308 and triggered enhanced organoid area as compared to control after mechanical disruption (Fig.
309 5d). Fast-cycling cells, including stem cells, are vulnerable to irradiation damage. Hence, we
310 irradiated differentiated organoids (5-6 Gy), followed by a 2-day IL-4 and IL-13 pulse (and a
311 non-pulsed control), after which the organoids were allowed to expand (Figure 5e). After an
312 expansion phase of two weeks, *POU2F3*^{-/-} organoids gradually lost their potential to passage
313 or expand (Fig. 5f). Wildtype organoids recovered from differentiation and irradiation, and this
314 effect was stronger in organoids that had been exposed to IL-4 and IL-13 (Fig. 5g-h). To further
315 explore whether tuft cells play a major role in reconstitution following injury, we mechanically
316 disrupted and irradiated organoids harboring the *AVIL*-lineage tracing construct (Fig. 5i,
317 Extended Data Fig. 8e-f). After a recovery period of 9 days, we detected iRFP labeling of entire
318 organoid segments, as well as an overall increase in labeled cell frequency, further confirming
319 the regenerative capacity of tuft cells in these settings (Fig. 5j-k).

320 Epithelial renewal depends on the presence of growth factors. Our transcriptional analysis
321 showed an IL-4 and IL-13 induced upregulation of *Epiregulin* (*EREG*), and -to a lower extent-
322 *Amphiregulin* (*AREG*) and *heparin binding EGF* (*HB-EGF*) in tuft-3 and tuft-4 cells (Fig. 5a,
323 Extended Data Fig. 8g). The relevance of these growth factors in the context of injury-induced
324 epithelial regeneration was confirmed by employing mechanically disrupted and irradiated
325 organoids engineered to lack *EREG* (Extended Data Fig. 8h-i). Conversely, recombinant
326 *EREG* supplementation to differentiated *POU2F3*^{-/-} organoids partly restored organoid
327 formation (Extended Data Fig. 8j-l). Thus, these experiments implied that tuft cells respond to

328 the wound-repair associated cytokines IL-4 and IL-13 by a rapid proliferative response,
329 providing growth factors, and dedifferentiation of tuft cells to act as reserve stem cells at the
330 affected niche.

331 The observed stem cell-like transcriptional profile and regenerative properties of adult tuft cells
332 raised the question whether tuft cells in developing intestines contribute to intestinal formation.
333 Upon direct comparison to adult intestinal tissue, fetal intestines showed an increased
334 frequency of KIT⁺ cells (Extended Data Fig. 9a). Fetal KIT⁺ cells exhibited a tuft cell signature
335 on par with adult and pediatric intestinal tuft cells as determined by single cell sequencing,
336 and did not express higher levels of genes associated with a stem cell phenotype (Extended
337 Data Fig. 9b-d). Similarly, histological analysis using an antibody against AVIL confirmed the
338 characteristic tuft cell shape (Extended Data Fig. 9e), and revealed their scattered presence
339 throughout the villus and intervillous zones (Extended Data Fig. 9f). Cell-sorting and
340 subsequent culturing of KIT⁺ and KIT⁻ cells from primary fetal intestinal specimen further
341 revealed that these fetal tuft-like cells displayed potent organoid-forming potential, by
342 comparison to non-tuft cells (Extended Data Fig. 9g-i). The presence of tuft cells in fetal tissues
343 suggest that these cells may be involved in the expansion of the intestinal epithelium during
344 the fetal stages.

345

346 DISCUSSION

347 Our study of human intestinal tuft cells reveals four distinct tuft cell states, with differential
348 functions. All four states maintain a shared core tuft cell gene expression profile.

349 Generally, regenerative responses are accompanied by increased IL-4 and IL-13 levels³². Our
350 data suggest that previously reported reserve/revival stem cells in mice^{17,18,33} have many
351 features in common with tuft cells described here. Indeed, tuft cells express markers linked to
352 these facultative stem cells, such as *TACSTD2*, *ANXA1*, *BMI1*, and *CLU*. This notion is further
353 supported by a reinterpretation of early studies in mice that linked *Dclk1*-expressing cells, a
354 then unappreciated murine tuft cell marker, to proliferation in the context of a putative cancer-
355 inducing stem cell population^{34,35}. Indeed, in a study employing a BAC-*Dclk1*::CreERT-
356 dependent strategy to lineage-trace *Dclk1*-positive cells, it was observed that a small subset
357 of *Dclk1*⁺ cells could contribute to tissue regeneration upon damage as assessed by lineage
358 tracing *in vivo*. In the same study, it was shown that *Dclk1*⁺ cells could grow out in short-term
359 3D culture as organoids, expanding over a 1–2-week period³⁶. From the perspective of the
360 current study, we would interpret these combined data to indicate an evolutionary conserved
361 capacity of tuft cells to act as reserve/revival stem cells in the context of intestinal injury.
362 Taken together, the observations in this study may have implications for regenerative medicine,
363 opening up strategies for therapeutic interventions involving interleukins such as IL-4 and IL-
364 13. Although the current study is focused on the intestinal tract, tuft cells are widely present in
365 other endoderm-derived tissues³⁷. It would be of interest to study the potential regenerative
366 roles of tuft cells in other tissues, such as the bile ducts, urinary tract, and airways.

367

368 AUTHOR CONTRIBUTIONS

369 L.H. designed and performed experiments, and interpreted results. J.B. conceptualized and
370 supervised the project, designed, and performed experiments, interpreted the results, and
371 wrote the manuscript. A.G. interpreted the results, analyzed the data and wrote the manuscript.
372 M.G. assisted with base-editing and knockout strategies in organoid lines. D.K. performed and
373 analyzed live cell imaging, generated and provided several constructs. G.A.B. generated and
374 provided constructs G. S. performed experiments, and analyzed single-cell data. H.B.
375 performed immunohistochemistry experiments. L.L. provided constructs. M.Z. supervised and
376 supported irradiation experiments. H.C. supervised the project, interpreted the results, and
377 wrote the manuscript.

378

379 ACKNOWLEDGEMENTS

380 We thank Esther Siteur, Kees Weijer, and Stichting Bloemenhove clinic for providing fetal
381 intestinal material, Theodore Grenier for providing adult intestinal material. Talya Dayton for
382 providing paraffin blocks of human intestinal material. L.H. acknowledges financial support

383 from the China Scholarship Council program (201906210081), J.B. acknowledges financial
384 support from ZonMw Veni fellowship (09.150.161.810.107) and Dutch Lung Fund grant
385 (4.2.18.237). A.G acknowledges financial support from the EMBO fellowship (ALTF 112-2022).
386

387 DECLARATION OF INTERESTS

388 Hans Clevers is the head of Pharma Research and Early Development at Roche, Basel and
389 holds several patents related to organoids technology. His full disclosure:
390 [www.uu.nl/staff/JCClevers/Additional functions](http://www.uu.nl/staff/JCClevers/Additional%20functions)
391

392 REFERENCES

- 393 1 Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature* **551**,
394 333-339, doi:10.1038/nature24489 (2017).
- 395 2 von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates
396 an intestinal ILC2-epithelial response circuit. *Nature* **529**, 221-225,
397 doi:10.1038/nature16161 (2016).
- 398 3 Gerbe, F. *et al.* Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth
399 parasites. *Nature* **529**, 226-230, doi:10.1038/nature16527 (2016).
- 400 4 Howitt, M. R. *et al.* Tuft cells, taste-chemosensory cells, orchestrate parasite type 2
401 immunity in the gut. *Science* **351**, 1329-1333, doi:10.1126/science.aaf1648 (2016).
- 402 5 Beumer, J. *et al.* A CRISPR/Cas9 genetically engineered organoid biobank reveals
403 essential host factors for coronaviruses. *Nat Commun* **12**, 5498, doi:10.1038/s41467-
404 021-25729-7 (2021).
- 405 6 Nadjombati, M. S. *et al.* Detection of Succinate by Intestinal Tuft Cells Triggers a Type
406 2 Innate Immune Circuit. *Immunity* **49**, 33-41 e37, doi:10.1016/j.immuni.2018.06.016
407 (2018).
- 408 7 Schneider, C. *et al.* A Metabolite-Triggered Tuft Cell-ILC2 Circuit Drives Small Intestinal
409 Remodeling. *Cell* **174**, 271-284 e214, doi:10.1016/j.cell.2018.05.014 (2018).
- 410 8 Xiong, Z. *et al.* Intestinal Tuft-2 cells exert antimicrobial immunity via sensing bacterial
411 metabolite N-undecanoylglycine. *Immunity* **55**, 686-700 e687,
412 doi:10.1016/j.immuni.2022.03.001 (2022).
- 413 9 McGinty, J. W. *et al.* Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-helminth
414 Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity. *Immunity*
415 **52**, 528-541 e527, doi:10.1016/j.immuni.2020.02.005 (2020).
- 416 10 Barker, N. *et al.* Identification of stem cells in small intestine and colon by marker gene
417 Lgr5. *Nature* **449**, 1003-1007, doi:10.1038/nature06196 (2007).
- 418 11 van Es, J. H. *et al.* DII1+ secretory progenitor cells revert to stem cells upon crypt
419 damage. *Nat Cell Biol* **14**, 1099-1104, doi:10.1038/ncb2581 (2012).
- 420 12 Buczacki, S. J. *et al.* Intestinal label-retaining cells are secretory precursors expressing
421 Lgr5. *Nature* **495**, 65-69, doi:10.1038/nature11965 (2013).
- 422 13 Yan, K. S. *et al.* Intestinal Enteroendocrine Lineage Cells Possess Homeostatic and
423 Injury-Inducible Stem Cell Activity. *Cell Stem Cell* **21**, 78-90 e76,
424 doi:10.1016/j.stem.2017.06.014 (2017).
- 425 14 Higa, T. *et al.* Spatiotemporal reprogramming of differentiated cells underlies
426 regeneration and neoplasia in the intestinal epithelium. *Nat Commun* **13**, 1500,
427 doi:10.1038/s41467-022-29165-z (2022).
- 428 15 Tetteh, P. W. *et al.* Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of
429 Their Enterocyte-Lineage Daughters. *Cell Stem Cell* **18**, 203-213,
430 doi:10.1016/j.stem.2016.01.001 (2016).
- 431 16 Barriga, F. M. *et al.* Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal
432 Stem Cells. *Cell Stem Cell* **20**, 801-816 e807, doi:10.1016/j.stem.2017.02.007 (2017).
- 433 17 Nusse, Y. M. *et al.* Parasitic helminths induce fetal-like reversion in the intestinal stem
434 cell niche. *Nature* **559**, 109-113, doi:10.1038/s41586-018-0257-1 (2018).
- 435 18 Yui, S. *et al.* YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM
436 Remodeling to Tissue Regeneration. *Cell Stem Cell* **22**, 35-49 e37,
437 doi:10.1016/j.stem.2017.11.001 (2018).

438 19 Elmentait, R. *et al.* Cells of the human intestinal tract mapped across space and time. *Nature* **597**, 250-255, doi:10.1038/s41586-021-03852-1 (2021).

439 20 Esmaeilniakoooshkghazi, A., George, S. P., Biswas, R. & Khurana, S. Mouse intestinal
440 tuft cells express advillin but not villin. *Sci Rep* **10**, 8877, doi:10.1038/s41598-020-
441 65469-0 (2020).

442 21 Ruppert, A. L. *et al.* Advillin is a tuft cell marker in the mouse alimentary tract. *J Mol
443 Histol* **51**, 421-435, doi:10.1007/s10735-020-09893-6 (2020).

444 22 Artegiani, B. *et al.* Fast and efficient generation of knock-in human organoids using
445 homology-independent CRISPR-Cas9 precision genome editing. *Nat Cell Biol* **22**, 321-
446 331, doi:10.1038/s41556-020-0472-5 (2020).

447 23 Hoover, B. *et al.* The intestinal tuft cell nanostructure in 3D. *Sci Rep* **7**, 1652,
448 doi:10.1038/s41598-017-01520-x (2017).

449 24 Smillie, C. S. *et al.* Intra- and Inter-cellular Rewiring of the Human Colon during
450 Ulcerative Colitis. *Cell* **178**, 714-730 e722, doi:10.1016/j.cell.2019.06.029 (2019).

451 25 Baran, Y. *et al.* MetaCell: analysis of single-cell RNA-seq data using K-nn graph
452 partitions. *Genome Biol* **20**, 206, doi:10.1186/s13059-019-1812-2 (2019).

453 26 Hickey, J. W. *et al.* Organization of the human intestine at single-cell resolution. *Nature*
454 **619**, 572-584, doi:10.1038/s41586-023-05915-x (2023).

455 27 Geurts, M. H. *et al.* CRISPR-Based Adenine Editors Correct Nonsense Mutations in a
456 Cystic Fibrosis Organoid Biobank. *Cell Stem Cell* **26**, 503-510 e507,
457 doi:10.1016/j.stem.2020.01.019 (2020).

458 28 de Lau, W. *et al.* Peyer's patch M cells derived from Lgr5(+) stem cells require SpiB
459 and are induced by RankL in cultured "miniguts". *Mol Cell Biol* **32**, 3639-3647,
460 doi:10.1128/MCB.00434-12 (2012).

461 29 Bjerknes, M. *et al.* Origin of the brush cell lineage in the mouse intestinal epithelium.
462 *Dev Biol* **362**, 194-218, doi:10.1016/j.ydbio.2011.12.009 (2012).

463 30 Beumer, J. *et al.* High-Resolution mRNA and Secretome Atlas of Human
464 Enterendoocrine Cells. *Cell* **181**, 1291-1306 e1219, doi:10.1016/j.cell.2020.04.036
465 (2020).

466 31 van der Flier, L. G. *et al.* Transcription factor achaete scute-like 2 controls intestinal
467 stem cell fate. *Cell* **136**, 903-912, doi:10.1016/j.cell.2009.01.031 (2009).

468 32 Bosurgi, L. *et al.* Macrophage function in tissue repair and remodeling requires IL-4 or
469 IL-13 with apoptotic cells. *Science* **356**, 1072-1076, doi:10.1126/science.aai8132
470 (2017).

471 33 Ayyaz, A. *et al.* Single-cell transcriptomes of the regenerating intestine reveal a revival
472 stem cell. *Nature* **569**, 121-125, doi:10.1038/s41586-019-1154-y (2019).

473 34 May, R. *et al.* Brief report: Dclk1 deletion in tuft cells results in impaired epithelial repair
474 after radiation injury. *Stem Cells* **32**, 822-827, doi:10.1002/stem.1566 (2014).

475 35 Nakanishi, Y. *et al.* Dclk1 distinguishes between tumor and normal stem cells in the
476 intestine. *Nat Genet* **45**, 98-103, doi:10.1038/ng.2481 (2013).

477 36 Westphalen, C. B. *et al.* Long-lived intestinal tuft cells serve as colon cancer-initiating
478 cells. *J Clin Invest* **124**, 1283-1295, doi:10.1172/JCI73434 (2014).

479 37 Billipp, T. E., Nadjsombati, M. S. & von Moltke, J. Tuning tuft cells: new ligands and
480 effector functions reveal tissue-specific function. *Curr Opin Immunol* **68**, 98-106,
481 doi:10.1016/j.co.2020.09.006 (2021).

482

483

484

485

486 **METHODS**

487 **Fetal and adult tissues**

488 Human fetal tissue was obtained from elective abortions at the Stichting Bloemenhove clinic
489 in Heemstede, the Netherlands, upon the receipt of informed consent. The use of human
490 abortion tissues was approved by the Medical Ethical Committee of the Academic Medical
491 Center, Amsterdam. Gestational age, determined by ultrasonic measurement of the diameter
492 of the skull or femur, ranged from 19 to 21 weeks. Uninflamed ileum, duodenum, and colon
493 were obtained from patients undergoing tumor-resection surgery; ileal, duodenal and colon
494 tissues were collected at an appropriate distance from the tumor. Resection specimen was
495 obtained as residual material after clinical procedures in accordance with the Declaration of
496 Helsinki, the ethical guidelines of the University Medical Centre Utrecht, Utrecht, the
497 Netherlands and Amsterdam UMC, Amsterdam, the Netherlands. This study is compliant with
498 all relevant ethical regulations regarding research involving human participants. Inflammation
499 status was macroscopically determined by the pathologist.

500

501 **Generation and Culturing human intestinal organoids**

502 Human intestinal cells were isolated, processed and cultured as previously described^{1,2}.
503 Human intestinal organoids were split once a week by mechanic dissociation. In this study,
504 basic culture medium includes advanced Dulbecco's modified Eagle's medium/F12 (Gibco)
505 supplemented with 100 U/ml penicillin/streptomycin (Gibco), 10 mM HEPES (Gibco), 1×
506 Glutamax (Gibco), 1× B-27 Supplement (Life Technologies), 1.25 mM N-acetylcysteine
507 (Sigma-Aldrich) and 1% (v/v) recombinant Noggin (U-Protein Express).

508 Organoids were expanded in human expansion medium as described before¹. For
509 differentiation toward tuft cells, organoids were washed 30 minutes in DMEM+++ at day 4 and
510 the medium is replaced for tuft cell differentiation medium (diff): 0.5 nM Wnt surrogate (U-
511 Protein Express), 20% (v/v) R-spondin1 (condition medium), 50 ng/ml recombinant human
512 EGF (Peprotech), 10 µM Notch inhibitor DAPT (Sigma-Aldrich) in basic culture medium. For
513 tuft cell differentiation with IL-4 and IL-13, EGF was withdrawn, 5 ng/ml human IL-4 (Peprotech)
514 and 5 ng/ml human IL-13 (Peprotech) were supplemented to tuft cell differentiation medium
515 (diff). BMP activation was achieved by withdrawing Noggin and addition of 50 ng/ml BMP-2
516 (Peprotech) and 50 ng/ml BMP-4 (Peprotech). Mature enterocytes and Paneth cell
517 differentiation in Figure 4j was achieved by using EGF, R-spondin1, BMP-2/4) (ERB medium)³
518 or adding 10 ng/ml human IL-22 (Peprotech) in WENRA⁴ (Wnt/ R-spondin1, EGF, Noggin,
519 ALK4,5,7 inhibitor (A83-01, Tocris) medium respectively. For specific experiments, 10 ng/ml
520 human IL-27 (Peprotech), 10 ng/ml human IL-25 (Peprotech), 10 ng/ml human SCF
521 (Peprotech), 50 ng/ml recombinant human Epiregulin (Peprotech), were used.

522 For organoids outgrowth experiment in Figure 4a-c, 100 single cells per 10 µl BME were
523 seeded, and replated at day 3, keeping similar seeding density between tuft cell and non-tuft
524 cell conditions.

525 For irradiation experiments, culture plates were sealed air-tight and irradiated with a single
526 fraction of 5-6 Gy using a linear accelerator (Elekta Precise Linear Accelerator 11F49, Elekta).
527 The plates were positioned on top of 2-cm polystyrene and submerged in a 37°C water bath
528 and radiated from below with the plate being positioned at exactly 100cm from the radiation
529 source. After radiation, medium was changed (tuft cell differentiation medium without EGF,
530 with or without IL-4/IL-13).

531 For irradiation of AVIL-lineage tracing organoids in Figure 5i, organoids were differentiated 4
532 days in tuft cell differentiation medium with IL-4 and IL-13, exposed to 1 µM Tamoxifen for 20
533 h, then the organoids were split, and irradiated at 9 Gy one day after splitting. After splitting
534 and irradiation, the organoids were grown in human intestinal expansion medium.

535

536 **Generation of stable genetically modified organoids**

537 Reporters: For generation reporter organoids using a CRISPR-HOT approach as described
538 in⁵, human duodenum, ileum and colon organoids were dissociated into small clumps, washed
539 twice with Opti-MEM (Thermo Fisher scientific) and resuspended in BTXpress solution (BTX).
540 Clumps were resuspended with a targeting plasmid containing a fluorescent protein (Clover,

541 mNeon or tdTomato) which can be linearized at a defined base position by a specific sgRNA
542 and Cas9 (provided from a second plasmid, frame selector plasmid which also encodes
543 mCherry)⁶. These two plasmids were co-electroporated with a plasmid encoding the sgRNA
544 for the gene locus (Supplementary Table 2, Addgene #47108, #66939, #66940, #138569,
545 #174092). Following blasticidin selection or cell sorting based on mCherry signal, clones were
546 picked and successful incorporation was confirmed by Sanger sequencing (Macrogen).

547 Knockouts: For generation knock out organoid lines using base-editing or conventional
548 CRISPR-Cas9, spacer sequences for sgRNAs were cloned as previously described in the
549 empty sgRNA backbone that was a kind gift from Keith Joung (BPK1520, Addgene #65777)⁷.
550 In short, plasmids were amplified using -inverse PCR (Q5, NEB), using primers with overhangs
551 containing spacer sequences. PCR amplicons were subsequently ligated using T4 ligase
552 (NEB) in a reaction with DpnI (NEB) to remove PCR template material. Ligations were
553 transformed into MACH1T1 cells (Thermofisher) and sgRNA identity was confirmed by Sanger
554 sequencing. For electroporation, 2.5 µg sgRNA plasmid (BPK1520, Addgene #65777), 7.5 µg
555 pCMV_AncBE4max_P2A_GFP plasmid (for base-editing, Addgene #112100) or pCAS9-
556 mCherry-Frame +1 plasmid (for conventional CRISPR-Cas9, Addgene #66940), together with
557 10 µg PiggyBac transposon system (5 µg transposase + 5 µg hygromycin resistance
558 containing transposon)⁸ were co-electroporated into human duodenum, ileum and colon
559 AVIL-Clover reporter organoids. ATOH1^{-/-} line was generated in human ileum wildtype
560 organoids. After hygromycin selection, subclones were genotyped. Knockout clones were
561 further expanded for the following experiments. The list of gRNAs and primers to genotype
562 can be found in Supplementary Table 2.

563
564 FUCCI and overexpression constructs: For generation FUCCI reporter (in wildtype human
565 ileum organoids), ATOH1 overexpression and H2B-iRFP in human ileum AVIL-Clover reporter
566 organoids using transposon system, the FUCCI construct, ATOH1-P2A-iRFP670
567 overexpression plasmid and H2B-iRFP670 construct were cloned into a p2T-based vector⁹
568 respectively using Gibson Assembly (NEBuilder HiFi DNA Assembly). The FUCCI sequence
569 comprising mCherry-Cdt1-T2A-Geminin-hmAzami-Green was PCR-amplified from a
570 construct provided as a kind gift by Geert Kops (Hubrecht institute, Utrecht). The ATOH1-P2A-
571 iRFP670 overexpression plasmid was cloned using a three-insert Gibson reaction. ATOH1
572 cDNA (IDT) was first cloned into a backbone vector with GSlinker-P2A-iRFP670, and the
573 complete fragment of ATOH1-GSlinker-P2A-iRFP670-SV40polyA was amplified. The DNA
574 fragment of tight TRE promoter with ATG start codon and 3XFLAG tag was amplified from
575 pCW-Cas9 (Addgene #50661). The DNA fragment of hPGK-PuroR-rTetR was amplified from
576 pCW-Cas9. All three DNA fragments were then cloned in the digested backbone. For
577 continuous expression H2B-iRFP670, the H2B-iRFP670 and IRES-Puromycin sequences
578 were PCR-amplified respectively, then were inserted into the p2T vector cut with NheI
579 (Promega) and SmaI (Promega). Organoid lines were generated by co-electroporation of 5 µg
580 of the respective FUCCI, ATOH1-P2A-iRFP670 or H2B- iRFP670 expression construct
581 together with 5 µg mT2TP transposase mediating the tol2-dependent random integration of
582 the expression constructs into the cell genome.

583
584 For generation POU2F3 overexpression in human duodenum, colon organoids using lentivirus
585 system, a gBlock for POU2F3 was ordered from IDT, which contained a 5'UTR sequence,
586 including an EcoRI site and a Kozak sequence, and 3' tag sequence instead of the STOP
587 codon, which includes a Gly linker, HA tag, P2A sequence and another EcoRI site. This gBlock
588 was cloned into a pJet vector and an EcoRI restriction enzyme cloning step was done to
589 introduce the POU2F3 sequence into pLX vector, which enable the doxycycline-induced
590 POU2F3-P2A-tdTomato expression¹⁰. Organoids were lentivirally transduced as described
591 before¹¹.

592
593 Lineage tracing: Human ileum organoids were targeted with a tdTomato and CreERT2
594 sequence fused with the gene encoding for Advillin using a CRISPR-HOT approach as
595 described in⁵ (tdTomato-T2A-CreERT2 to the AVIL locus separated by a P2A sequence to

596 obtain AVIL-P2A-tdTomato-T2A-CreERT2). In parallel, using mT2TP transposase-based
597 random integration, a CAG promoter-driven loxp-flanked puromycin resistance containing a
598 stop codon with a downstream H2B-iRFP670 was introduced (CAG-loxp-puromycin-stop-loxp-
599 H2B-iRFP670).

600

601 **Transmission electron microscopy**

602 Organoids were chemically fixed for 3 hours at room temperature with 1.5% glutaraldehyde in
603 0.067 M cacodylate buffered to pH 7.4 and 1 % sucrose. Samples were washed once with 0.1
604 M cacodylate (pH 7.4), 1 % sucrose and 3x with 0.1 M cacodylate (pH 7.4), followed by
605 incubation in 1% osmium tetroxide and 1.5% K4Fe(CN)6 in 0.1 M sodium cacodylate (pH 7.4)
606 for 1 hour at 4 °C. After rinsing with MQ, organoids were dehydrated at RT in a graded ethanol
607 series (70, 90, up to 100%) and embedded in Epon polymerized for 48h at 60 °C. Ultrathin
608 sections of 60 nm were cut using a diamond knife (Diatome) on a Leica UC7 ultramicrotome,
609 and transferred onto 50 Mesh copper grids covered with a Formvar and carbon film. Sections
610 were post-stained with uranyl acetate and lead citrate.

611 All TEM data were collected autonomously as virtual nanoscopy slide on Tecnai T12
612 microscopes (Thermo Fisher Scientific) at 120kV using an Eagle camera. Data were stitched,
613 uploaded, shared and annotated using Omero and PathViewer. The final pictures were directly
614 acquired at the microscope in a manual standard way. The final pictures were directly acquired
615 at the microscope in a manual standard way using the Eagle camera at 4kx4k.

616

617 **RNA isolation and quantitative PCR**

618 Organoid RNA was isolated using RNAeasy kit (QIAGEN), following the manufacturer's
619 protocol. Quantitative PCR (qPCR) analysis was performed biological and technical replicates
620 as described before¹². Primers were listed in Supplementary Table 3.

621

622 **Flow cytometry**

623 Organoids were dissociated into single cells using TrypLE (TrypLE Express, Life Technologies)
624 with 10 µM Rho kinase inhibitor (Abmole) in 37°C and mechanical disruption by pipetting every
625 5 minutes. Cells were stained 30 mins with antibody, then were analyzed using a BD LSR
626 Fortessa X20 4 laser (BD Biosciences) based on fluorescence levels. For single cell RNA
627 sequencing, single cells were sorted on FACSFusion (BD Biosciences) and collected in 384-
628 well plates with ERCC spike-ins (Agilent), reverse transcription primers and dNTPs (both
629 Promega). Single cell sequencing was performed according to the Sort-seq method¹³.
630 For organoids staining, PE anti-human CD117 antibody (KIT; Biolegend, 313204), or Biotin
631 anti-human CD117 (Biolegend, 313208) and Brilliant Violet 421™ Streptavidin (Biolegend,
632 405226) were used in some experiments. For sort from fresh human fetal/colon intestine
633 tissue, Alexa Fluor 488 anti-human CD326 (Epcam; Biolegend, 324210), APC/Cy7 anti-
634 human CD45 (Biolegend, 304014), PE anti-human CD117 antibody (KIT; Biolegend,
635 313204) were used. For cell multiplexing oligo labeling, organoids were digested into single
636 cells using TrypLE (Thermo Fisher), washed three times with ice-cold PBS + 10% FBS and
637 incubated 15 mins at RT with 100 µl Cell Multiplexing Oligo. After wash, 8000 live cells
638 (DAPI⁻ cell) per condition were sorted into collection tube, were subjected to droplet-based
639 scRNA-seq using the 10x Genomics platform.

640

641 **Histology and immunostainings**

642 For immunostainings, sections of formalin-fixed, paraffin embedded human colon and ileum
643 tissue were obtained from resections performed at the University Medical Center Utrecht, the
644 Netherlands. Anonymized archival pathology material was used according to the guidelines of
645 the UMC Utrecht's Research Ethics Committee¹⁴. The human intestine tissues were fixed 2 h
646 at room temperature in 4% formalin, embedded in paraffin and stained as described
647 previously¹⁵. Rabbit anti-Advillin (1:500, Sigma-Aldrich, HPA058864), mouse anti-KI67
648 (1:4000, monosan, MONX10283) followed by goat-anti-rabbit or goat-anti-mouse conjugated
649 to horseradish peroxidase (1:2000, Dako, P0448) and then visualized (VS200 slide scanner,
650 Olympus-lifescience).

651 Whole mount staining of organoids was performed as described before¹⁶. In brief, organoids
652 were removed from the BME, then were fixed 2 h at room temperature in formalin. Next, the
653 organoids were permeabilized using 0.1% Tween 20 (Sigma-Aldrich) in PBS for at least 15
654 min and blocked at least 1 h in 0.1% Triton X-100 (Sigma-Aldrich), 1 g/l BSA (Sigma-Aldrich)
655 in PBS. Primary antibodies used were rabbit anti-AVIL (1:600, Sigma-Aldrich, HPA058864),
656 goat anti-GFP (1:600, Abcam, ab6673), mouse anti-KI67(1:600, Abcam, ab16667), rabbit anti-
657 chromogranin A (1:600, labned.com, LN1401487)), rabbit anti-mucin 2 (1:200, santa cruz
658 biotechnology, sc-15334), rabbit anti-APOB (1:100, Novus biologicals, NBP2-38608), rabbit
659 anti-Lysozyme antibody (1:100, GeneTex, GTX72913), rabbit anti-Vimentin (1:100, Cell
660 Signaling technology, 5741S), mouse anti-TM4SF4 antibody (1:100, Sigma-Aldrich, sc-
661 293348), APC Mouse anti-human CD274 (BD Pharmingen, 563741). Organoids were
662 incubated with Phalloidin–Atto 647N (Sigma-Aldrich, 65906) or the corresponding secondary
663 antibodies Alexa488-, 568- and 647-conjugated anti-goat, anti-rabbit and anti-mouse (1:1000,
664 Molecular Probes) in blocking buffer containing 4',6-diamidino-2-phenylindole (DAPI, 1:1000,
665 Invitrogen). Sections were embedded in fructose–glycerol clearing solution Image analysis
666 was performed using ImageJ and Imaris software.

667 Some images were obtained using a Zeiss LSM880 confocal microscope with Airyscan (Carl
668 Zeiss) and a LCI Plan-Neofluar 63x/N.A. 1.3 water immersion objective (Carl Zeiss) at a voxel
669 resolution of 0.04 μ m (x/y) to 0.19 μ m (z). Images were deconvoluted using the Zen Black
670 (Carl Zeiss)-inbuild Airyscan post-processing module. Images were processed (Gauss filtering)
671 using Fiji and rendered in Imaris (Andor Technology).

672 STED super resolution microscopy was performed using a Leica STELLARIS 8 STED
673 microscope using a HC PL APO CS2 100x/N.A. 1.40 oil objective. Organoids expressing AVIL-
674 Clover were fixed, stained with DAPI and phalloidin-atto647N and mounted on 0.16–0.19 mm
675 thick cover glasses (Glaswarenfabrik Karl Hecht GmbH & Co KG) in ProLong Gold Antifade
676 Mountant (Thermo Fisher Scientific). The tuft cell reporter and DAPI signal was recorded with
677 confocal resolution and tuft cells identified. The actin cytoskeleton was visualized with super
678 resolution microscopy with a pixel resolution of 10 x 10 nm. To do so, phalloidin-atto647N was
679 illuminated with 647 nm excitation and 775 depletion lasers. The signal was recorded with a
680 line averaging of 16, a dwell time of 0.69 μ s.

681 For clustering analysis, the surface of organoids in 3D image stacks was projected into 2D
682 using the *LocalZProjector* Fiji plugin based on DAPI-stained nuclei and tuft cells were
683 segmented using the ITK-SNAP software. For the clustering analysis, a custom-made Matlab
684 script was used. Inter-tuft cell distance was measured based on the Euclidean distance of their
685 centroid position and expressed as a multiple of the average cell distance. A density map was
686 computed, and a contour plot was generated using the *imcontour* function. Clusters were
687 identified within an 8-cell-distance and analyzed using the Matlab package “Distance-based
688 clustering of a set of XY coordinates” (Yann Marcon (2023), made available through Matlab
689 Central File Exchange).

690

691 **Live-cell imaging of human intestinal organoids**

692 Live imaging experiments were performed on a Leica SP8 confocal laser scanning microscope
693 equipped with Argon laser and White Light Laser at 37°C and 5% CO₂ using a Leica 20x/NA0.7
694 Air objective. Images were acquired in a line-sequential mode separating the fluorophore
695 recordings with minimal spectral overlap with a final pixel resolution of 1.65 pixels/ μ m, an axial
696 resolution of 1.4 μ m and a time interval of 9 min.

697 Long-term live imaging was performed using a LS1 Live light sheet microscope (Viventis
698 Microscopy) using a Nikon 25X NA 1.1 water immersion objective at a magnification of 18x.
699 Organoids were mounted on a single-chamber sample holder one day before the start of
700 imaging. A position-specific alignment of the light sheets with a thickness of 2.2 μ m was done.
701 The samples were imaged with a 488 nm and 561 nm illumination to visualize Clover- and
702 tdTomato-based reporters with a time interval of 10 min at 37°C and 5% CO₂.

703 The Post-acquisitional analysis was done with custom-made Fiji-script.

704

705 **Single cell RNA sequencing analysis**

706 Single cell RNA-seq libraries of organoid derived material, and KIT⁺ enriched cells from fetal
707 and adult intestines were sequenced on an Illumina NextSeq platform, at a median sequencing
708 depth of 49,861 reads per cell. Reads were mapped to a human genome (hg38) integrated
709 with the Clover transcript using STAR (version 2.7.8a), reads with multiple mapping positions
710 were excluded. Reads were associated with genes if they were mapped to an exon. Reads
711 were demultiplexed and collapsed into UMI tables using *umi_tools* (version 1.1.1) allowing up
712 to one hamming distance of the cell barcode. Cells with less than 500 UMI, or with more than
713 40% mitochondrial genes were excluded from analysis.

714 All analysis was performed in R. We used the MetaCell package¹⁷ to analyze all scRNA-seq
715 data collected in this study. Default parameters were used unless otherwise stated. We
716 derived a metacell cover of DAPI⁺/AVIL-Clover⁺ and DAPI⁻ epithelial cells from human ileal
717 organoids. Mitochondrial genes and the highly variable immunoglobulin genes (IGH, IGK and
718 IGL prefixes) were removed from the UMI tables. Gene features for metacell covers were
719 selected using the parameter $T_{vm}=0.1$, total umi > 10, and more than 3 UMI in at least 3 cells.
720 We filtered the list of gene features used for metacell analysis from genes associated with cell
721 cycle, immediate stress response and gene modules inducing strong patient-specific biases.
722 To this end, we first identified all genes with a correlation coefficient of at least 0.13 for one of
723 the anchor genes TOP2A, NKI67, PCNA, MCM4, UBE2C, STMN1, FOS, EGR1, IER3, FOSB,
724 HSPA1B, HSPA1A, HSP90AA1, and DNAJB1. We then hierarchically clustered the
725 correlation matrix between these genes (filtering genes with low coverage and computing
726 correlation using a down-sampled UMI matrix) and selected the gene clusters that contained
727 the above anchor genes. We thus retained 94 genes as features. We used metacell to build a
728 kNN graph, perform boot-strapped co-clustering (500 iterations; resampling 70% of the cells
729 in each iteration), and derive a cover of the co-clustering kNN graph (K=30). Outlier cells
730 featuring gene expression higher than 4-fold than the geometric mean in the metacells in at
731 least one gene were discarded. Detailed annotation of the different tuft and epithelial cell
732 subsets was performed using hierarchical clustering of the metacell confusion matrix.
733 ClusterProfiler¹⁸ (version 3.14.0) and ChIPpeakAnno (version 3.20.0) were applied to perform
734 gene functional annotation of differentially expressed genes.

735 scRNA-seq of passage 1 KIT⁻ and KIT⁺ derived organoids was performed using the Chromium
736 Next GEM Single Cell 3' v 3.1 platform, and sequenced on an Illumina NovaSeq6000 platform.
737 Reads were mapped to the human genome (hg38) and demultiplexed using cellranger
738 (version 7.1.0). Recovered cellplex barcodes were used to assign single cells to experimental
739 batches. Single cells with less than 64 UMI of a specific cellplex barcodes were discarded
740 from down-stream analysis. Single cells with less than 8-fold UMI count ratio between highest
741 and second highest cellplex barcodes were marked as doublets and discarded from down-
742 stream analysis. Single cells with less than 1,000 genomic UMIs or more than 20%
743 mitochondrial content failed to pass QC and were discarded from further analysis, resulting in
744 10,311 QC-positive cells.

745 Clustering of passage 1 KIT⁻ and KIT⁺ derived organoids was performed as stated above.
746 Gene features for the metacell covers were selected using the parameter $T_{vm}=0.1$, total umi >
747 15, and more than 3 UMI in at least 3 cells, resulting in 228 features.

748 We reanalyzed scRNA-seq data from human primary intestinal tissue¹⁹. We selected 15,184
749 single cells from healthy adult small intestine, with >1,000 and <20,000 total UMI for further
750 analysis. Cells were analyzed with the metacell package as previously described to derive a
751 2D representation of the data for Extended Data Figures 2i and 5a. Otherwise, we used
752 predefined annotations to epithelial cell types. In Fig. 2h and 3m we sampled 500 cells from
753 each cell types out of the total 77,364 healthy adult single cells in that database.

754

755 Quantification and statistics

756 All experiments were performed in multiple distinct replicates, as indicated in the text and
757 figure legends. All statistical tests were two-tailed, except in fig 1f, 2c and supp fig. 1b, where
758 different growth conditions were assessed for increased tuft cell numbers. We used Student's
759 t-test for continuous data and Mann-Whitney test for discrete data, and used FDR adjustment
760 to correct for multiple hypotheses.

761

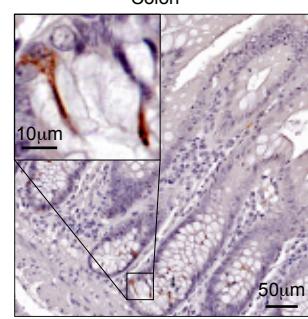
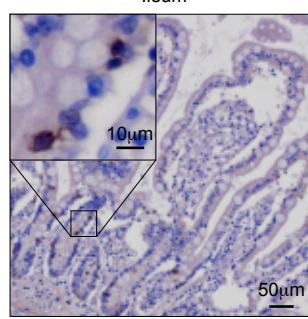
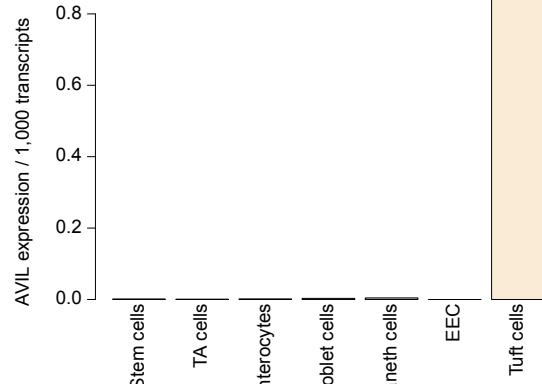
762 Data availability

763 Organoid and primary tissue single-cell RNA-seq that support the findings of this study, were
764 deposited in the Gene Expression Omnibus (GEO) under accession code GSE233451, and
765 will be made publicly available upon publication.

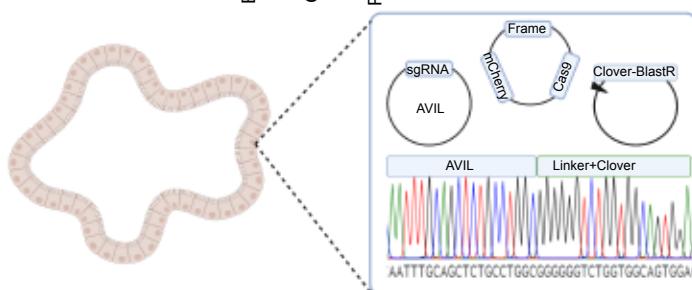
766

767 Code availability

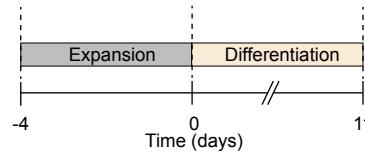
768 All the custom code and scripts used to analyze the data and produce the figures will be made
769 available in the github repository of A.G.

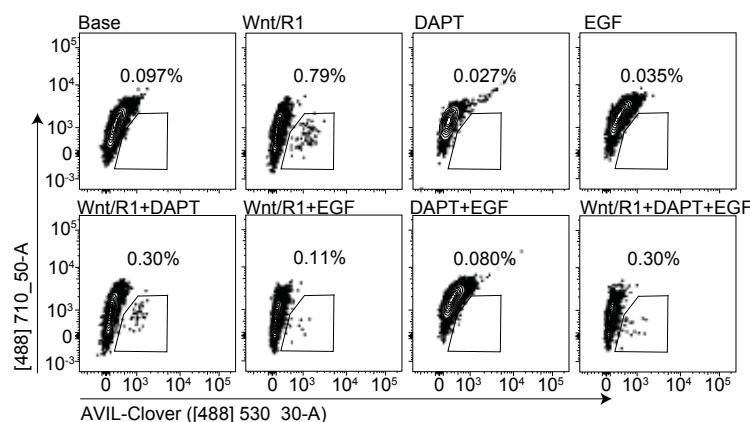



770

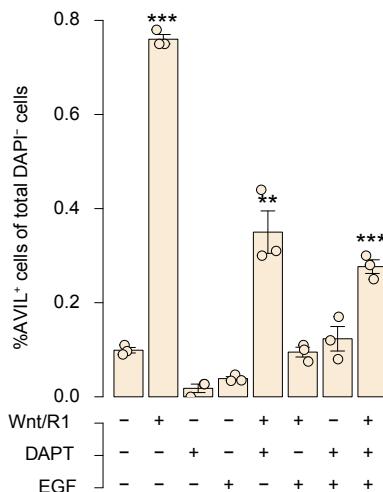
771

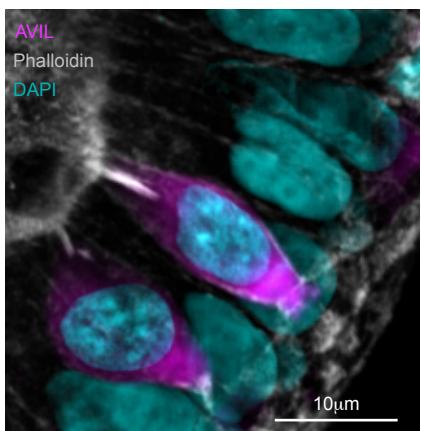

- 772 1 Pleguezuelos-Manzano, C. *et al.* Establishment and Culture of Human Intestinal
773 Organoids Derived from Adult Stem Cells. *Curr Protoc Immunol* **130**, e106,
774 doi:10.1002/cpim.106 (2020).
- 775 2 Sato, T. *et al.* Long-term expansion of epithelial organoids from human colon, adenoma,
776 adenocarcinoma, and Barrett's epithelium. *Gastroenterology* **141**, 1762-1772,
777 doi:10.1053/j.gastro.2011.07.050 (2011).
- 778 3 Beumer, J. *et al.* BMP gradient along the intestinal villus axis controls zoned
779 enterocyte and goblet cell states. *Cell Rep* **38**, 110438,
780 doi:10.1016/j.celrep.2022.110438 (2022).
- 781 4 He, G. W. *et al.* Optimized human intestinal organoid model reveals interleukin-22-
782 dependency of paneth cell formation. *Cell Stem Cell* **29**, 1333-1345 e1336,
783 doi:10.1016/j.stem.2022.08.002 (2022).
- 784 5 Artegiani, B. *et al.* Fast and efficient generation of knock-in human organoids using
785 homology-independent CRISPR-Cas9 precision genome editing. *Nat Cell Biol* **22**, 321-
786 331, doi:10.1038/s41556-020-0472-5 (2020).
- 787 6 Schmid-Burgk, J. L., Honing, K., Ebert, T. S. & Hornung, V. CRISPaint allows modular
788 base-specific gene tagging using a ligase-4-dependent mechanism. *Nat Commun* **7**,
789 12338, doi:10.1038/ncomms12338 (2016).
- 790 7 Geurts, M. H. *et al.* CRISPR-Based Adenine Editors Correct Nonsense Mutations in a
791 Cystic Fibrosis Organoid Biobank. *Cell Stem Cell* **26**, 503-510 e507,
792 doi:10.1016/j.stem.2020.01.019 (2020).
- 793 8 Andersson-Rolf, A. *et al.* One-step generation of conditional and reversible gene
794 knockouts. *Nat Methods* **14**, 287-289, doi:10.1038/nmeth.4156 (2017).
- 795 9 Lin, L. *et al.* Comprehensive Mapping of Key Regulatory Networks that Drive
796 Oncogene Expression. *Cell Rep* **33**, 108426, doi:10.1016/j.celrep.2020.108426 (2020).
- 797 10 Beumer, J. *et al.* High-Resolution mRNA and Secretome Atlas of Human
798 Enteroendocrine Cells. *Cell* **181**, 1291-1306 e1219, doi:10.1016/j.cell.2020.04.036
799 (2020).
- 800 11 Koo, B. K. *et al.* Controlled gene expression in primary Lgr5 organoid cultures. *Nat
801 Methods* **9**, 81-83, doi:10.1038/nmeth.1802 (2011).
- 802 12 Munoz, J. *et al.* The Lgr5 intestinal stem cell signature: robust expression of proposed
803 quiescent '+4' cell markers. *EMBO J* **31**, 3079-3091, doi:10.1038/emboj.2012.166
804 (2012).
- 805 13 Muraro, M. J. *et al.* A Single-Cell Transcriptome Atlas of the Human Pancreas. *Cell
806 Syst* **3**, 385-394 e383, doi:10.1016/j.cels.2016.09.002 (2016).
- 807 14 Coebergh, J. W., van Veen, E. B., Vandenbroucke, J. P., van Diest, P. & Oosterhuis,
808 W. One-time general consent for research on biological samples: opt out system for
809 patients is optimal and endorsed in many countries. *BMJ* **332**, 665,
810 doi:10.1136/bmj.332.7542.665 (2006).
- 811 15 Farin, H. F. *et al.* Visualization of a short-range Wnt gradient in the intestinal stem-cell
812 niche. *Nature* **530**, 340-343, doi:10.1038/nature16937 (2016).
- 813 16 Dekkers, J. F. *et al.* High-resolution 3D imaging of fixed and cleared organoids. *Nat
814 Protoc* **14**, 1756-1771, doi:10.1038/s41596-019-0160-8 (2019).

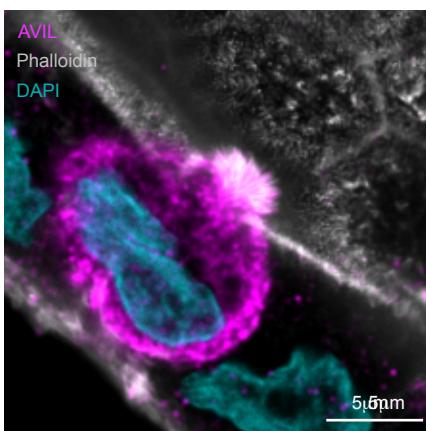
815 17 Baran, Y. *et al.* MetaCell: analysis of single-cell RNA-seq data using K-nn graph
816 partitions. *Genome Biol* **20**, 206, doi:10.1186/s13059-019-1812-2 (2019).
817 18 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for comparing
818 biological themes among gene clusters. *OMICS* **16**, 284-287,
819 doi:10.1089/omi.2011.0118 (2012).
820 19 Elmentaite, R. *et al.* Cells of the human intestinal tract mapped across space and time.
821 *Nature* **597**, 250-255, doi:10.1038/s41586-021-03852-1 (2021).
822
823
824
825
826

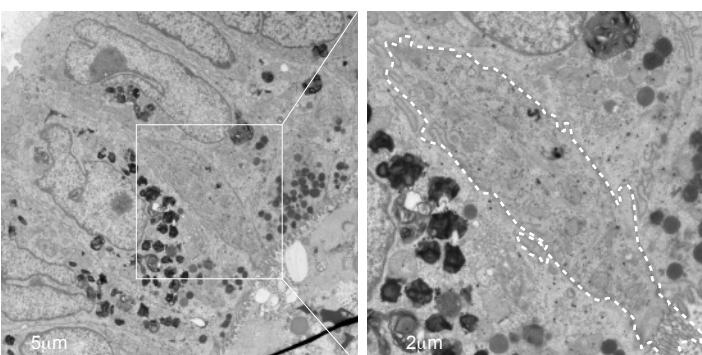

a


c


d


e


f


g

h

i

j

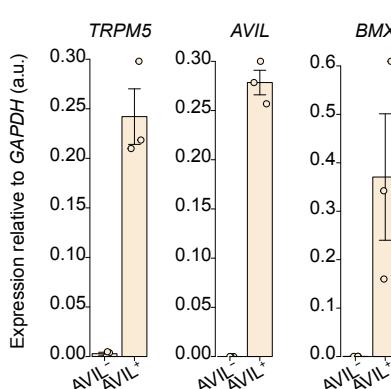


Figure 1

Fig. 1 - Wnt signaling drives human intestinal tuft cell development.

a, Mean expression of *AVIL* in a single cell RNA sequencing dataset of human adult small intestinal tissue¹⁸. n=15,184 single epithelial cells. **b**, Expression of *AVIL* in histological sections from human adult intestinal tissue. Images are representative of 3 donors with similar results. **c**, Schematics of generating human intestinal organoids with an *AVIL*-Clover reporter. Organoids were transfected with NHEJ plasmids, single transfected cells were picked and outgrowing clonal organoids were genotyped. n= 4 (donor 1 is shown, see Supplementary Information Fig. 1 for donors 2-4). **d**, Schematics of the experimental set-up for **(e)-(f)**. Organoids were cultured in standard human intestinal expansion medium for 4 days, then exposed to various differentiation regimens, in addition to base medium: NAC, B27, and Noggin. **e-f**, Flow cytometric analysis **(e)** and quantification **(f)** of the percentage of *AVIL*-Clover⁺ cell out of total 4',6-diamidino-2-phenylindole negative (DAPI⁻) cells cultured in differentiation regimens. Each dot is one well, results are representative of 3 independent experiments on donor 1 (Supplementary Information Fig. 1). Error bars indicate SE. FDR-adjusted one-sided Student's t-test against the base medium. **g-h**, Fluorescence images of differentiated *AVIL*-Clover organoids (magenta) counterstained with Phalloidin (F-actin, gray), and DAPI (cyan). n= 2 donors, donor 1 **(h)** and donor 2 **(g)**. **i**, Transmission electron microscopy (TEM) of tuft cells in differentiated human small intestinal organoids. Donor 2 is shown, also see Supplementary Information Fig. 1. **j**, qPCR quantification of known tuft cell genes in sorted *AVIL*⁺ and *AVIL*⁻ cells from *AVIL*-Clover reporter organoids differentiated for 11 days in human intestinal tuft cell medium (Wnt surrogate, R-spondin1 (CM), Noggin, EGF and DAPT). Each dot is one donor, n= 3 donors (donor 1-2, 4). Error bars indicate SE. TA cells: Transit-Amplifying Cells; EEC: Enteroendocrine cells; R1: R-spondin1 condition medium; SE: standard error. ** P < 0.01, *** P < 0.001.

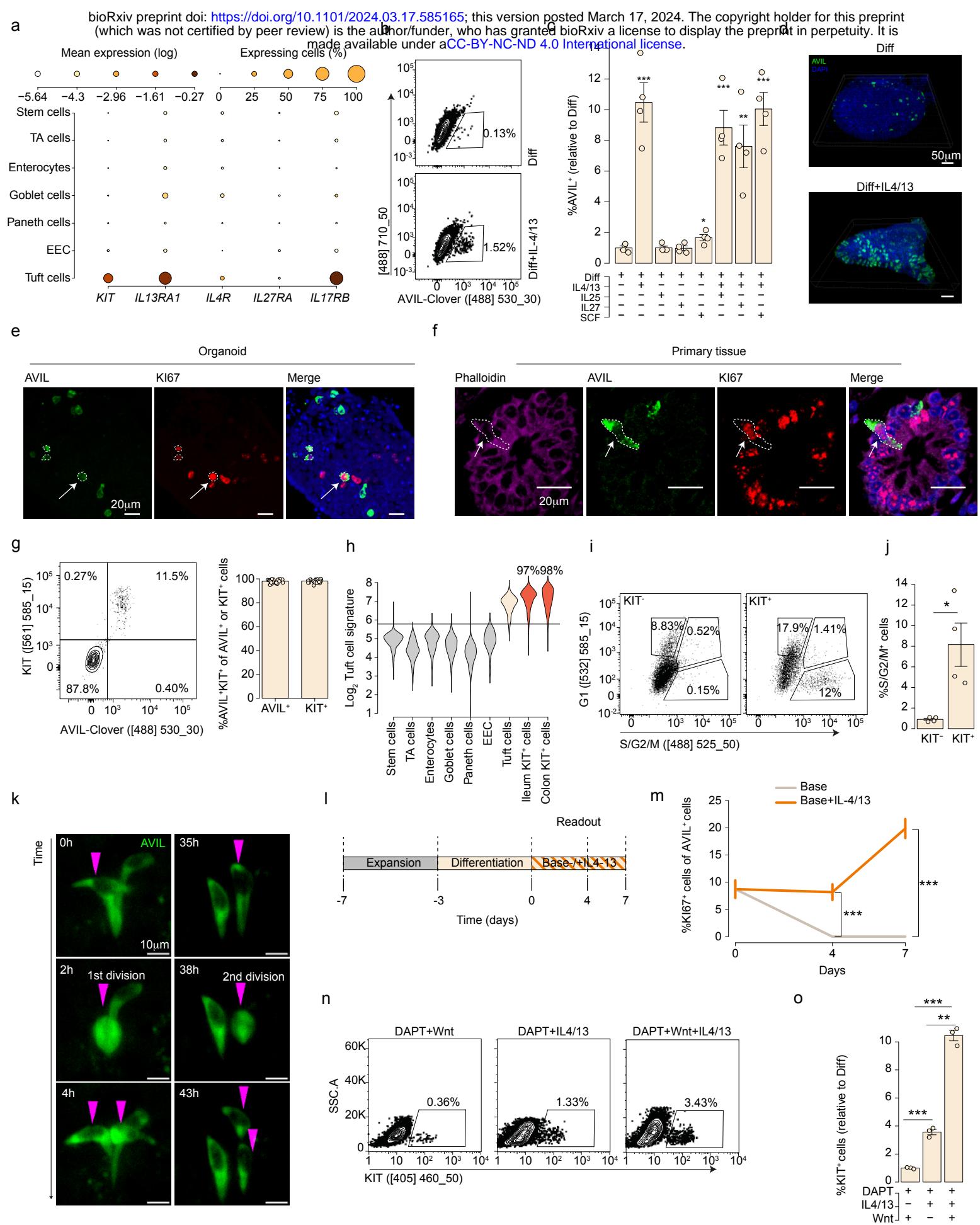


Figure 2

Fig. 2 - IL-4 signaling drives mitotic tuft cells.

a, Expression of selected cytokine receptors across the scRNA-seq dataset as in (1a). Dot color relates to size-normalized mean expression values and dot size to fraction of expressing cells. **b-c**, Representative flow cytometric analysis (b) and quantification (c) of AVIL⁺ cell frequency in AVIL-Clover reporter organoids, differentiated for 4 days in tuft cell differentiation medium supplemented with the indicated recombinant proteins. Each dot represents one well. Experiment was performed on 4 donors (donor 1 is shown; for donors 2-4, see Supplementary Information Fig. 2). Error bars indicate SE. FDR-adjusted one-sided Student's t-test against the Diff medium. **d**, Fluorescence images of AVIL-Clover organoid (green) co-stained with DAPI (blue) differentiated in tuft cell differentiation medium with or without IL-4 and IL-13. n= 3 independent experiments on donor 1. **e**, Fluorescence image of an AVIL-Clover organoid (green) co-stained with Ki67 (red) and DAPI (blue). Organoids were differentiated for 4 days in tuft cell medium with IL-4 and IL-13. n= 3 organoid lines derived from 2 donors (one line of donor 1 is shown; for donor 2 see Supplementary Information Fig. 2, for second line of donor 1 see Supplementary Video 1). **f**, Fluorescence image of histological sections of human ileum tissue co-stained for Phalloidin (F-actin, magenta), AVIL (green), Ki67 (red) and DAPI (blue). n= 3 donors (Extended Data Fig. 2e). **e-f**, Arrows and dashed lines indicate cells showing AVIL and Ki67 overlap. **g**, Representative flow cytometric analysis (left) and quantification (right) of KIT (phycoerythrin, PE) labeled AVIL-Clover organoids cultured in tuft cell differentiation medium supplemented with IL-4 and IL-13. Experiments were performed on 3 donors. Left: donor 1 is shown; for donor 2, 4, see Supplementary Information Fig. 2; right: each dot is one well, results are pooled from 3 donors (donor 1-2, 4). Error bars indicate SE. **h**, Distribution of tuft cell gene expression signature across different epithelial populations from human adult intestine tissue¹⁸, as well as within sorted populations of KIT⁺ cells from primary ileum and colon. Horizontal line indicates an optimal separation based on the unenriched intestine dataset. Percentage of classified tuft cells in KIT⁺ populations is indicated. The tuft cell signature is based on 222 core tuft cell genes shown in Fig. 3d, f. n=311 ileal KIT⁺ cells, and 271 colon KIT⁺ cells. **i-j**, Representative flow cytometric analysis (i) and quantification (j) of S/G2/M fraction in KIT⁺ or KIT⁻ cells in ileum FUCCI reporter organoid line. Organoids were differentiated for 3 days in tuft cell differentiation medium with IL-4/IL-13. Each dot is one well. Results are pooled from 3 independent experiments. Error bars indicate SE. Two-sided Student's t-test. **k**, Snapshots of continuous divisions of AVIL⁺ cells by live-cell imaging. AVIL-Clover reporter organoids were differentiated in tuft cell differentiation medium with IL-4/IL-13 (Supplementary Video 4). n= 2 donors (donor 1 is shown; for donor 2, see Extended Data Fig. 3c, Supplementary Video 5). **l**, Schematics of the experimental set-up for (m). Organoids were differentiated for 3 days in tuft cell differentiation medium, then medium was switched to either with or without IL-4/13 in base medium (NAC, B27, Noggin), frequency of Ki67⁺AVIL⁺ co-stained cells was determined by staining. **m**, Percentage of Ki67⁺ cell of AVIL⁺ cells on day 0, 4 and 7. Results are pooled from 3 independent experiments on two organoid lines, > 600 AVIL⁺ cells per time point were quantified (donor 1, see Supplementary Information Fig. 2). Error bars indicate SE. Two-sided Student's t-test. **n-o**, Representative flow cytometric analysis (n) and relative quantification (o) of the percentage of KIT⁺ cells differentiated for 3 days in DAPT, with or without addition of Wnt and IL-4/IL-13. Each dot is one well. Results are pooled from two experiments on FUCCI lines (donor 1). Experiment was repeated on AVIL-Clover lines from donors 1,3, see Supplementary Information Fig. 2. Error bars indicate SE. Two-sided Student's t-test. Diff: human tuft cell differentiation medium; TA: Transit-Amplifying Cells; EEC: Enteroendocrine cells; SE: standard error. * P < 0.05, ** P < 0.01, *** P < 0.001.

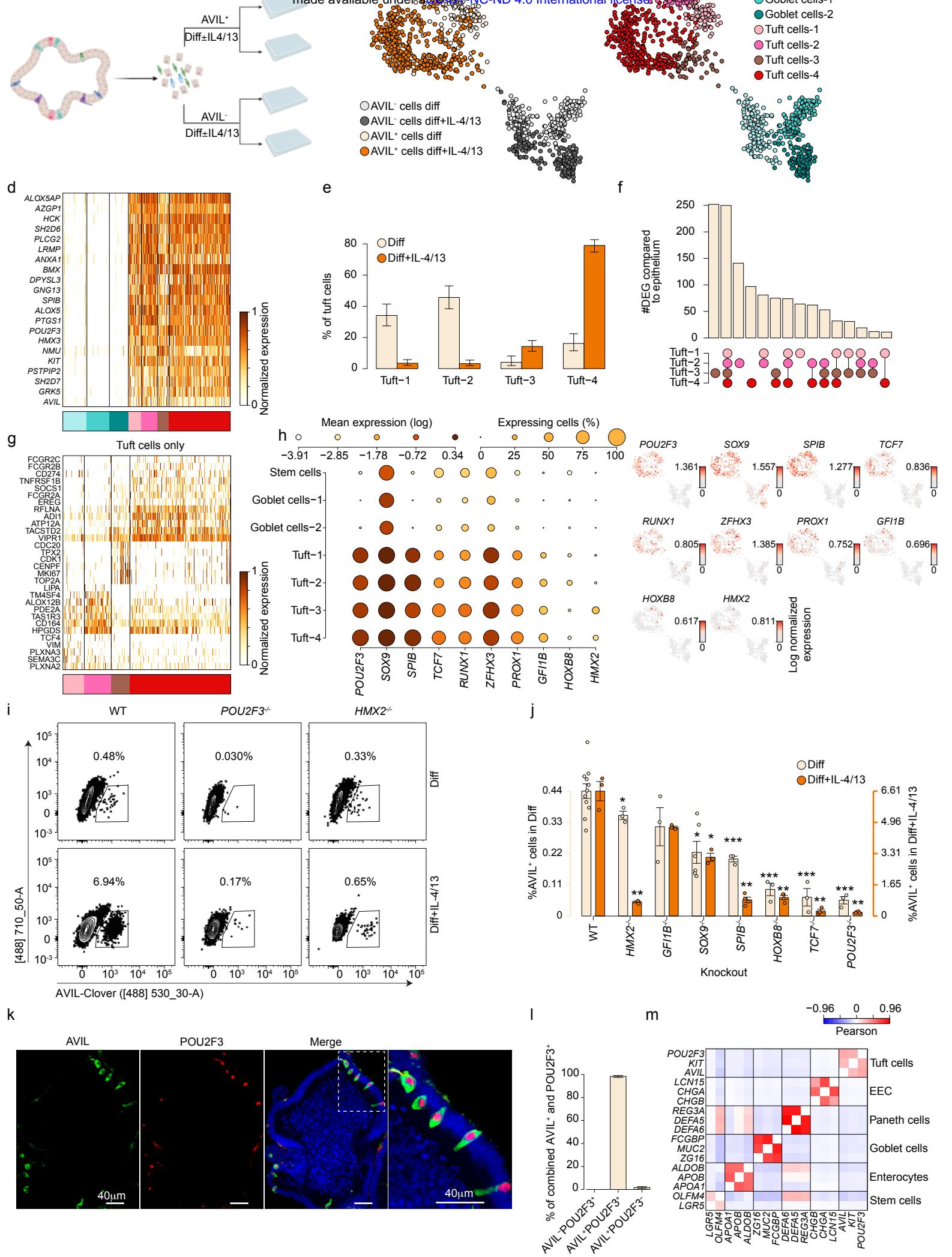


Figure 3

Fig. 3 - IL-4 signaling shifts the balance in tuft cell states.

a, Schematic overview of the single cell RNA-seq experiment. Single cells derived from human ileum AVIL-Clover reporter organoids were differentiated in tuft cells medium, with or without IL-4/IL-13 treatment, and sorted based on AVIL expression. **b-c**, Metacell 2D-projection of 953 ileum organoid-derived single cells. Cells are colored by their gating and medium condition (**b**) or by annotation to cell subsets (**c**). **d**, Gene expression profiles of tuft-cell specific core genes shared by all tuft cell clusters across epithelial subsets. **e**, Distribution of the four distinct tuft cell states in ileum-derived organoids with or without IL-4/IL-13 stimulation. Error bars indicate 95% confidence in binomial estimation of the mean. **f**, Summary of number of up-regulated differentially expressed genes across the tuft-1-4 states, when compared to non-tuft epithelium. **g**, Gene expression profiles of tuft cell state-specific genes. **h**, Expression of selected genes encoding for transcription factors across ileum organoid-derived epithelial subsets. Left: Dot color relates to mean expression values and dot size to fraction of expressing cells; right: dot color indicates log normalized expression. **b-d, h**, n=953 single cell; **e, g**, 573 single tuft cells. **i-j**, Representative flow cytometric analysis (**i**) and quantification (**j**) of AVIL⁺ cell frequency in organoid mutant lines of selected transcription factors (homozygous knock out). Organoids were differentiated in tuft cell differentiation medium for 11 days or 6 days with IL-4/13 addition. Each dot is one well. Results are representative of 3 independent experiments on donor 1 (Supplementary Information Fig. 3). Error bars indicate SE. FDR-adjusted two-sided Student's t-test against the WT levels. **k-l**, Representative fluorescence image (**k**) and quantification (**l**) of an AVIL-Clover organoid (green), co-stained for POU2F3 (red) and DAPI (blue). n= 3 donors (donor 1-2, 4). **k**, donor 2 is shown, for donors 1,2 see Extended Data Fig. 5d; **l**, pooled from 3 donors, 993 positive cells from 17 organoids were quantified (≥ 5 organoids per donor). Error bars indicate SE. **m**, Gene-pairwise Pearson correlation between markers of the main epithelial types across cells from primary intestinal tissue¹⁸. Diff: human tuft cell differentiation medium; WT: wildtype; EEC: Enteroendocrine cells; SE: standard error. * P < 0.05, ** P < 0.01, *** P < 0.001.

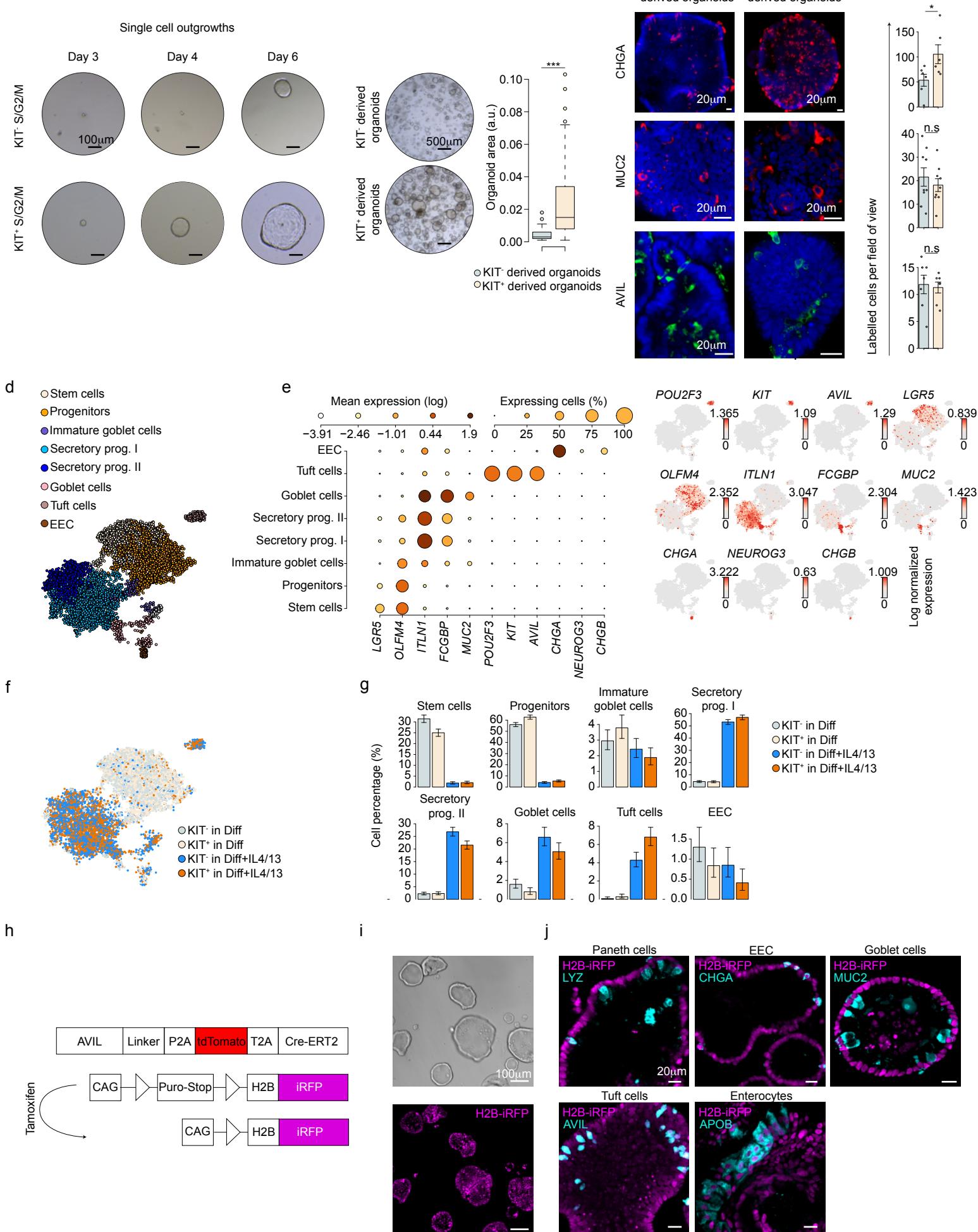


Figure 4

Fig. 4 - Single tuft cells give rise to organoids that contain all epithelial lineages.

a, Organoid outgrowth of single S/G2/M phase KIT⁺ and KIT⁻ cells sorted from ileum FUCCI reporter organoids. Sorted single cells were cultured in standard human intestinal expansion medium. **b**, Representative images (left) and area quantification (right) of first passage organoids derived from **(a)**. 47 individual organoids per condition were quantified, shown one of three independent experiments on donor 1 (see Supplementary Information Fig. 4). Box plots present the third quartile (top of the box), median (center lines) and first quartile (bottom of the box) of measurements. The whiskers represent 1.5 times the interquartile range from the top or bottom of the box. Two-tailed Student's t-test. **c**, Representative images of depicted markers (left) and cell number quantification (right) representing different intestinal epithelial cell types in AVIL⁻ and AVIL⁺ cell-derived organoids at passage 1. Each dot is an individual organoid. Three independent experiments were performed on 2 donors (donor 1 is shown; for donor 2, see Supplementary Information Fig. 4). Error bars indicate SE. Two-tailed Student's t-test. **d**, Metacell 2D-projection of 10,311 single cells isolated from passage 1 KIT⁻ or KIT⁺ cells-derived organoids, differentiated with or without IL-4/13 supplementation for 7 days. Cells are colored by annotation to cell subsets. **e**, Expression of selected lineage markers across annotated cell types as in **(d)**. Left: Dot color relates to mean expression values and dot size to fraction of expressing cells; right: dot color indicates log normalized expression. **f**, Same as **(d)**, cells are colored by medium condition and by identity of organoid founder cells (KIT⁻ or KIT⁺ cells). **g**, Distribution of the different annotated cell types across medium condition and founder cell. Error bars indicate 95% confidence in binomial estimation of the mean. **h**, Schematics of AVIL lineage tracing approach in human ileum organoids **(i-j)**. **i**, Images of AVIL-lineage tracing organoids, derived from sorted AVIL-tdT⁺iRFP⁺ cells (as in Extended Data Fig. 7d-e, day0); **j**, Representative images of markers of intestinal epithelial lineages in traced organoids differentiated for 5 days in differentiation media. **i-j**, n= 3 independent experiments on donor 1. Diff: human tuft cell differentiation medium; tdT: tdTomato; EEC: Enteroendocrine cells; SE: standard error. * P < 0.05, *** P < 0.001.

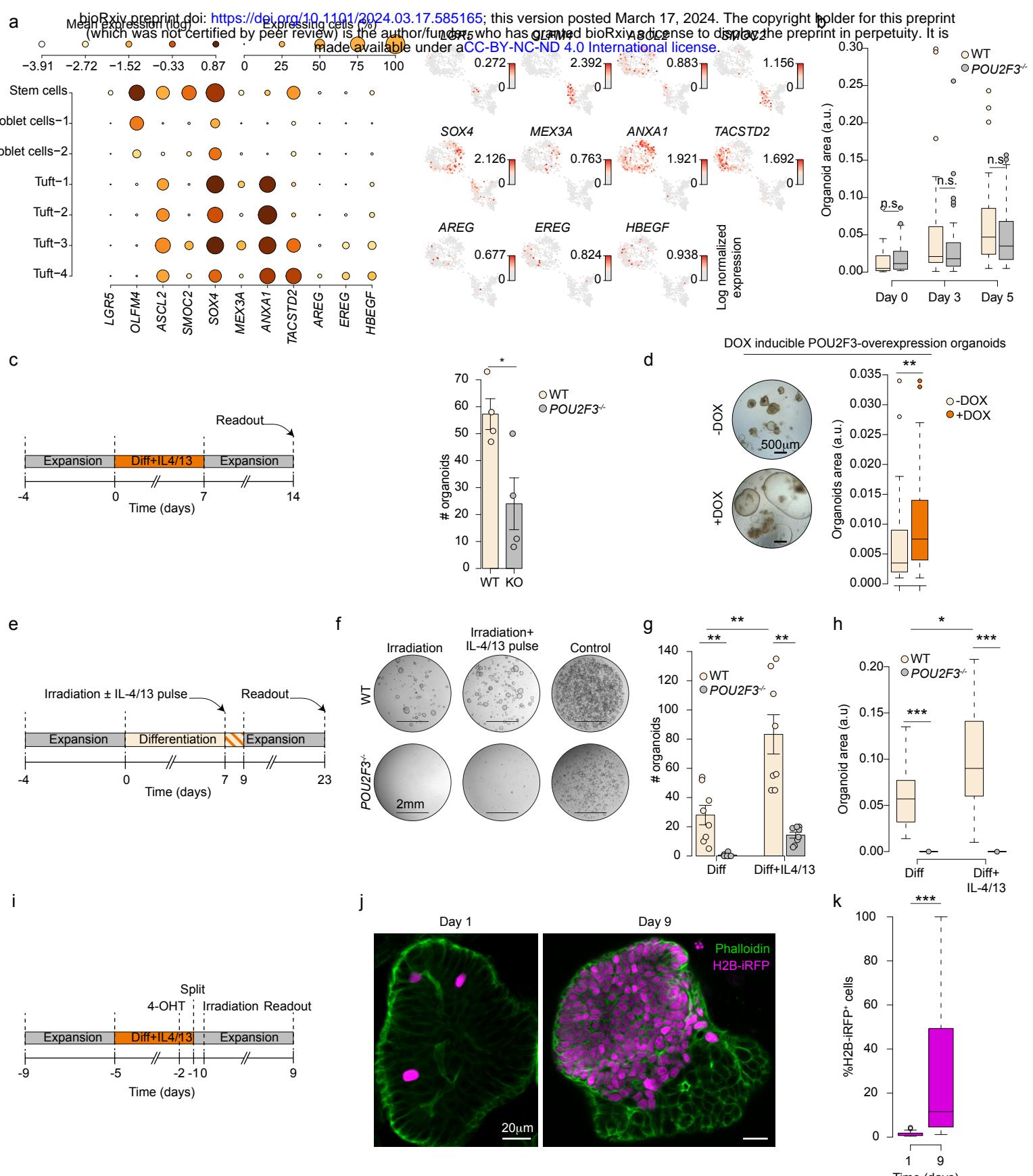
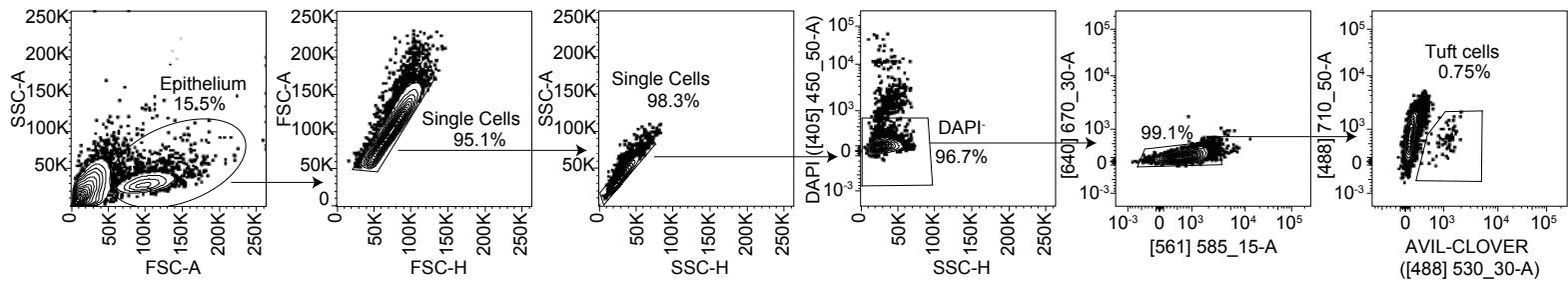
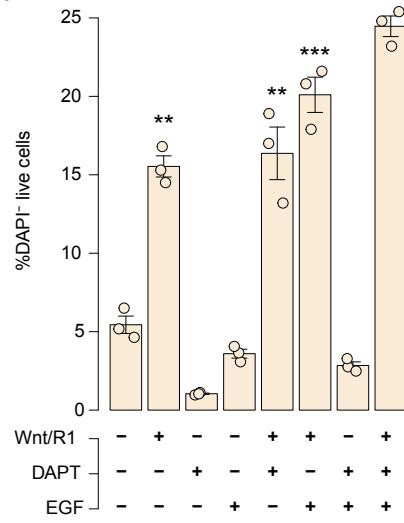
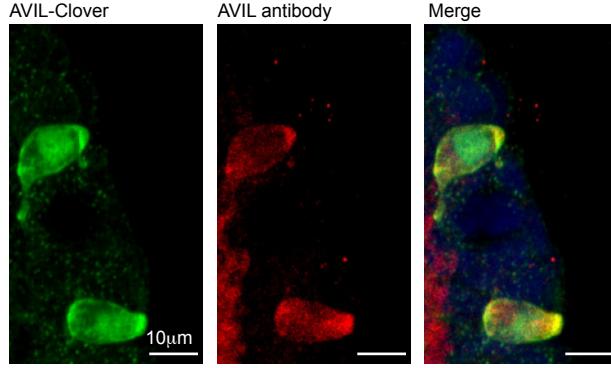
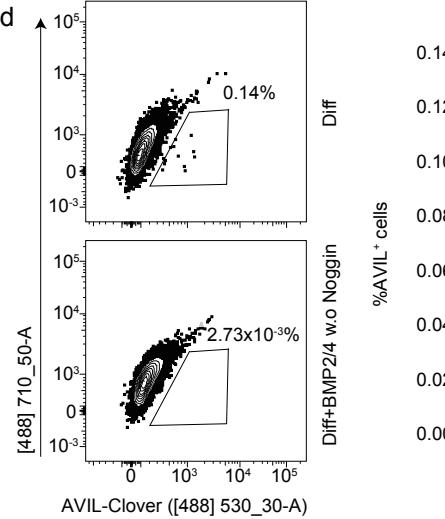



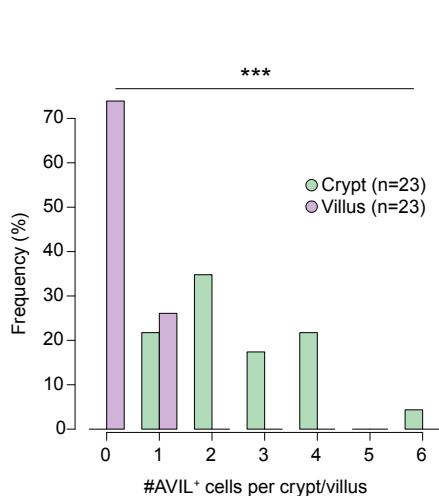
Figure 5


Fig. 5 – IL-4 signaling enhances the regenerative response in tuft cells.

a, Gene expression profiles of selected genes associated with adult and repair-induced stem cells from scRNA-seq dataset as in Fig. 3b. Left: Dot color relates to mean expression values and dot size relates to fraction of expressing cells; right: dot color indicates log normalized expression. **b**, Area of organoids cultured in human intestinal expansion medium following passaging at different time points (days). Shown is one of 3 independent experiments on donor 1, 35-51 individual organoids per condition were quantified. Two-tailed Student's t-test. **c**, Schematics (left) of experimental set-up and quantification (right) of WT and *POU2F3*^{-/-} organoid numbers. Organoids were differentiated for 7 days in tuft cell medium supplemented with IL-4/IL-13, passaged, and cultured for 7 days in human intestinal expansion medium. Each dot is one well. 3 independent experiments were performed on 2 donors (donor 1 is shown; for donor 5, see Supplementary Information Fig. 5). Error bars indicate SE. Two-tailed Mann-Whitney test. **d**, Images (left) and quantification of organoid area (right) from DOX⁻ and DOX⁺ organoids, containing a doxycycline-inducible POU2F3 overexpression construct. Each dot is an individual organoid, n = 46-50 organoids per condition (right). Experiments were performed on 2 donors (donor 2 is shown, for donor 5 see Supplementary Information Fig. 5). Two-tailed Student's t-test. **e**, Schematics of experimental set-up for **(f-h)**. Following 7 days differentiation in tuft cell medium, organoids were irradiated (5/6 Gy) or not (control), and cultured in tuft cell differentiation medium, with or without a 2 days IL-4/IL-13 pulse. Then, they were passaged and cultured in human intestinal expansion medium for 14 days. **f-h**, Representative images **(f)**, and quantification of organoid numbers **(g)**, and organoid areas **(h)** from organoids as in **(e)**. Experiments were performed on 3 donors (donor 1-2, 4). **f**, donor 2 is shown, for donors 1, 4 see Supplementary Information Fig. 5. **g**, Each dot is one well, pooled from donor 2, 4. Error bars indicate SE. Two-tailed Mann-Whitney test. **h**, 17 individual organoids per condition were quantified. Two-tailed Student's t-test. **i**, Schematics of experimental set-up for **(j)-(k)**. AVIL lineage tracing organoids were differentiated in tuft cell medium with IL-4 IL-13 for 4 days, exposed to 1 μ M 4-OHT for 20 hours, split, and irradiated at 9 Gy. **j-k**, Representative images **(j)** and quantification **(k)** of traced cells in organoids at day 1 and day 9 after irradiation. Results are pooled from 3 independent experiments on donor 1, 68 (day 1) or 76 (day 9) organoids were quantified. Two-tailed Student's t-test. **b, d, h, k**, Box plots present the third quartile (top of the box), median (center lines) and first quartile (bottom of the box) of measurements. The whiskers represent 1.5 times the interquartile range from the top or bottom of the box. Diff: human tuft cell differentiation medium; WT: wildtype; SE: standard error. * P < 0.05, ** P < 0.01, *** P < 0.001.

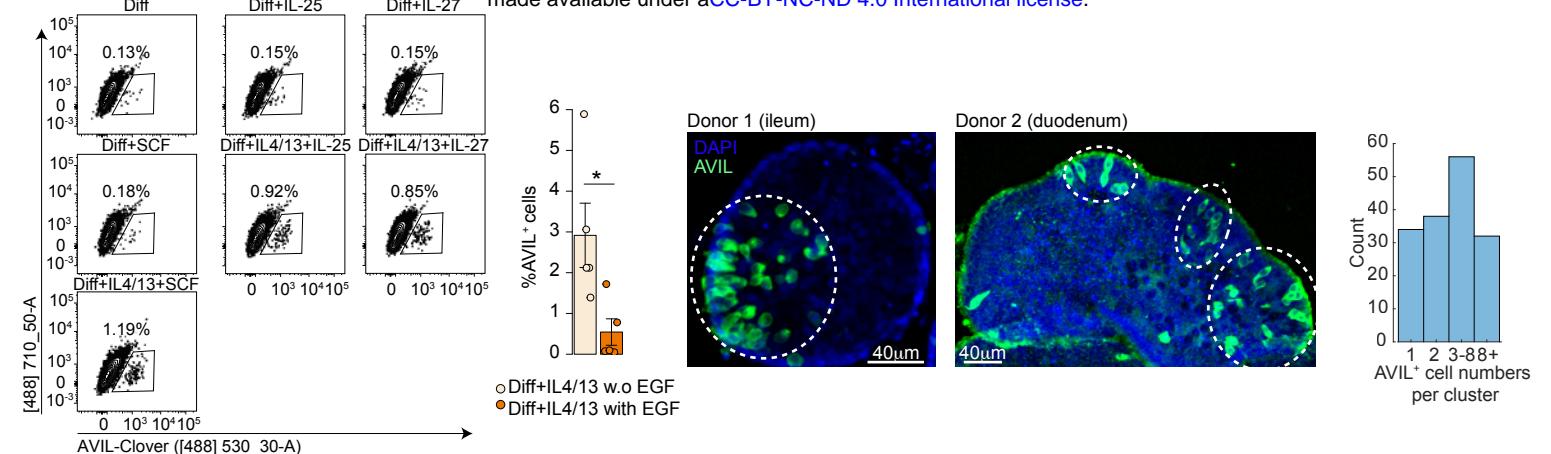

a


b

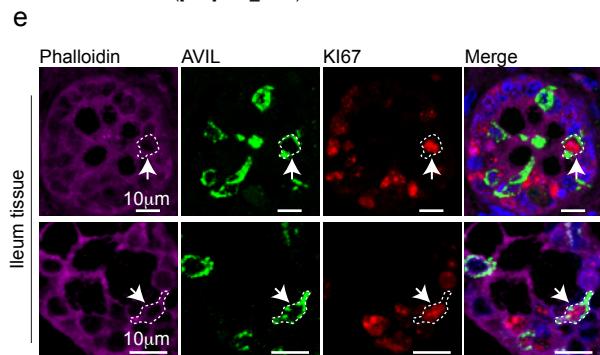

c

d

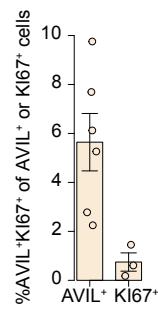
e

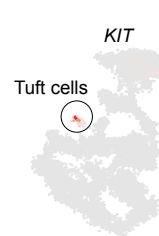


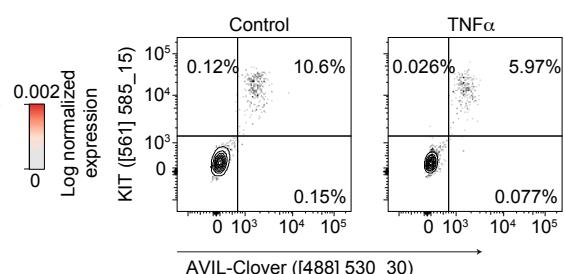
Extended Data Figure 1

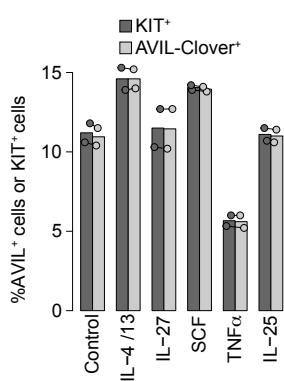

Extended Data Fig. 1 – Flow cytometry gating strategies and quantifications of AVIL⁺ cells.

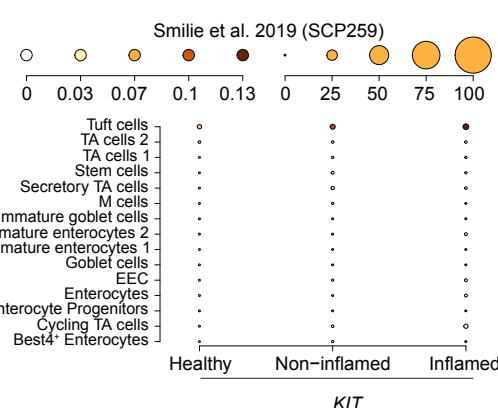
A, Gating strategy for flow cytometric analysis of AVIL-Clover reporter organoids. **b**, Quantification of DAPI⁺ live cells in ileum organoids differentiated in different regimens. Each dot is a well. One of 3 independent experiments on donor 1 is shown (Supplementary Information Fig. 1). Error bars indicate SE. FDR-adjusted one-sided Student's t-test against base medium. **c**, Fluorescence images of AVIL-Clover reporter activity (left), AVIL antibody staining (middle), and merged (right). n= 4 donors (donor 1 is shown). **d**, Flow cytometric analysis (left) and quantification (right) of the percentage of AVIL⁺ cells in human ileum AVIL-Clover reporter organoids differentiated for 4 days in tuft cell medium without Noggin, with or without addition of BMP2/BMP4. Each dot is one well. 3 independent experiments were performed on 2 donors (donor 1 is shown; for donor 3, see Supplementary Information Fig. 1). Error bars indicate SE. Two-sided Student's t-test. **e**, Histogram of AVIL⁺ cell numbers on the crypt/villus axis in human ileum tissue. n = 23 crypt-villus axes from one donor; for 3 additional donors, see Supplementary Information Fig. 1. Error bars indicate SE. χ^2 test. Diff: human tuft cell differentiation medium; SE: standard error. **P< 0.01, ***P< 0.001.

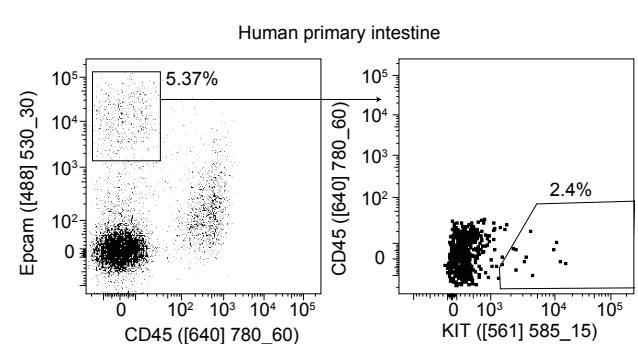

a


e

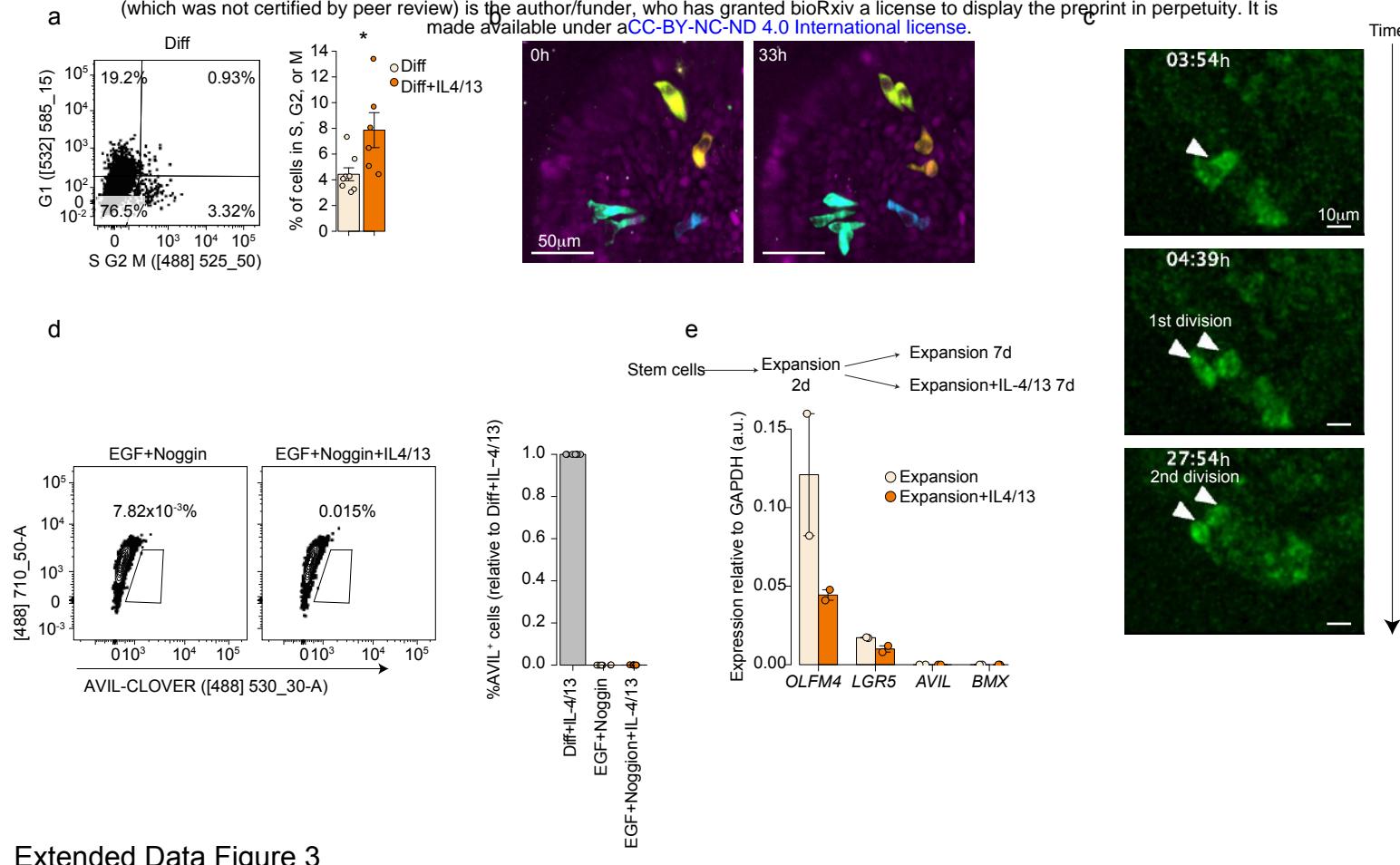

f


g


h


i

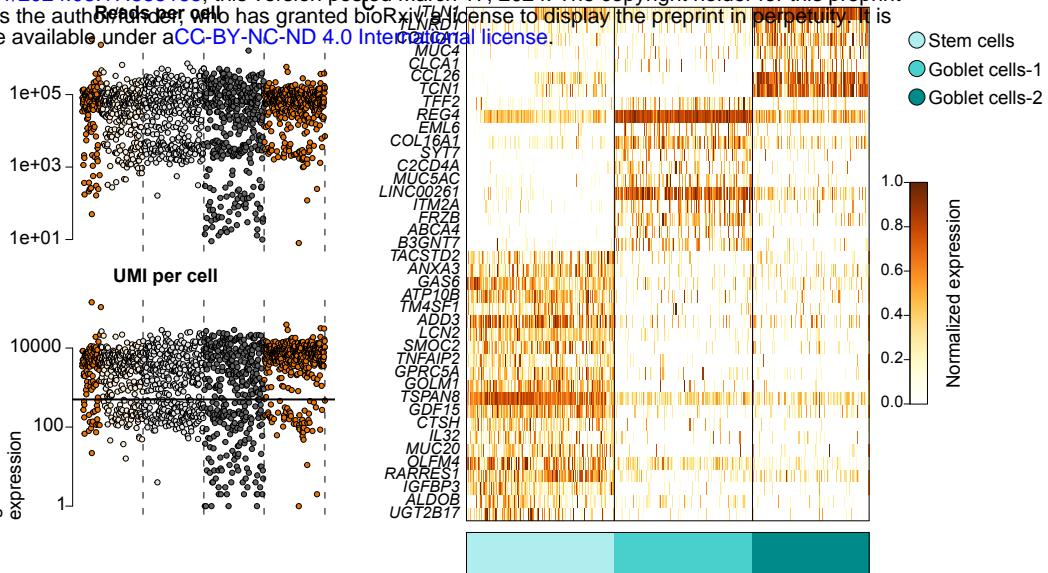
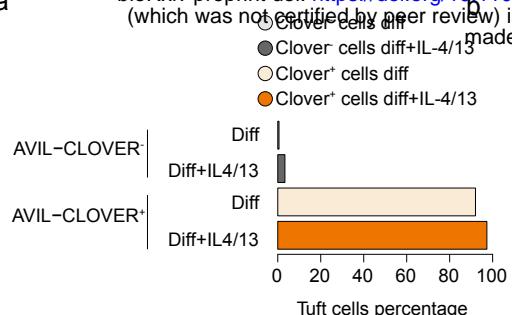
j


k

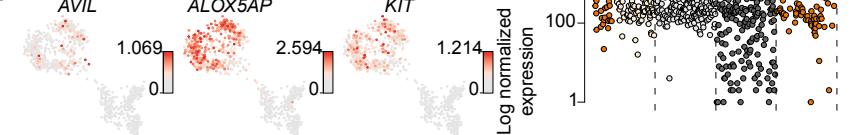
Extended Data Figure 2

Extended Data Fig. 2 - Tuft cell expansion in different conditions.

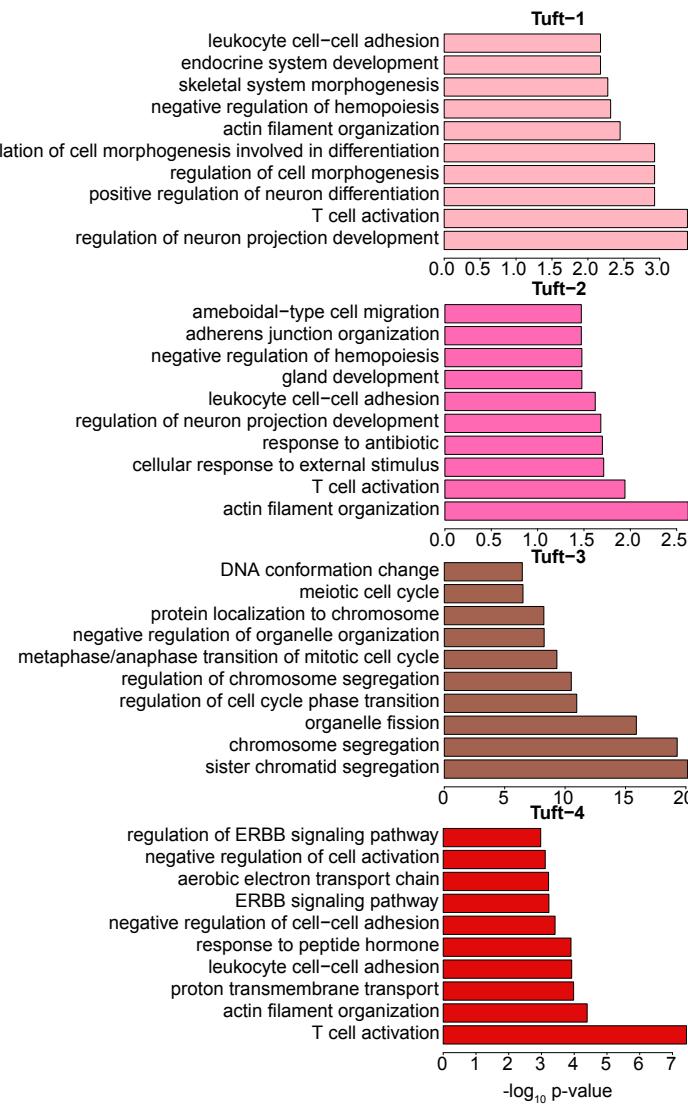
a, Representative flow cytometric analysis of AVIL-Clover reporter organoids differentiated for 4 days in tuft cell medium supplemented with indicated recombinant proteins. **b**, Quantification of AVIL⁺ cell frequency in human small intestinal AVIL-Clover organoids differentiated for 4 days in tuft cell medium with IL-4 and IL-13, with or without EGF. Each dot is one well, results are pooled from 3 donors (donor 1-3). Error bars indicate SE. Two-tailed Student's t-test. **c-d**, Representative images (**c**) and quantification (**d**) of AVIL⁺ cell clusters in IL-4 and IL-13 treated human intestine organoids. **c**, Dashed ellipses indicate clusters of AVIL⁺ cells, (Supplementary Information Fig. 2). **d**, Using an 8-cell distance-based clustering model, each AVIL⁺ cell was assigned to a cluster or remains isolated, and the number of AVIL⁺ cells per cluster were quantified; n= 988 AVIL⁺ cells (30 organoids) pooled from 2 donors (donor 1-2). **e**, Fluorescence images of histological sections of human ileum tissues co-stained for Phalloidin (F-actin, magenta), AVIL (green), KI67 (red) and DAPI (blue). Arrows and dashed lines indicate cells with AVIL and KI67 overlap. n=2 donors. **f**, Quantification of AVIL⁺KI67⁺ cells in histological sections of human ileum tissue. Values indicate AVIL⁺KI67⁺ cell percentage out of the AVIL⁺ or KI67⁺ cells. Each dot is a pool of at least 10 crypts, 1,908 cells in 323 crypts from 3 donors were quantified. Error bars indicate SE. **g**, Log-normalized expression of *KIT*, projected on a Metacell 2D representation of scRNA-seq data of primary human adult small intestine¹⁸. **h-i**, Representative flow cytometry analysis (**h**) and quantification (**i**) of the KIT⁺ and AVIL⁺ cells in KIT labeled AVIL-Clover organoids triggered with the depicted cytokines for 48 hours, followed by 6 days culturing in tuft cell differentiation medium with IL-4 and IL-13. Each dot is a well. Experiments were performed on 2 donors (donor 1 is shown; for donor 4, see Supplementary Information Fig. 2). **j**, *KIT* expression across epithelial cell types in healthy, IBD non-inflamed, and IBD inflamed human colon tissue²³. Dot color relates to mean expression values and dot size to fraction of expressing cells. n= 4,428 cells. **k**, Gating strategy of sorting KIT⁺ cells from human adult ileum and colon tissue. n= 2 donors (colon is shown). Diff: human tuft cell differentiation medium; TA: Transit-Amplifying Cells; EEC: Enteroendocrine cells; IBD: Inflammatory Bowel Disease; SE: standard error. *P< 0.05.

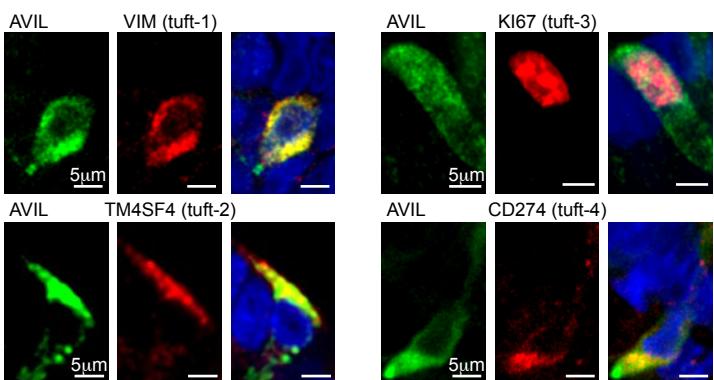



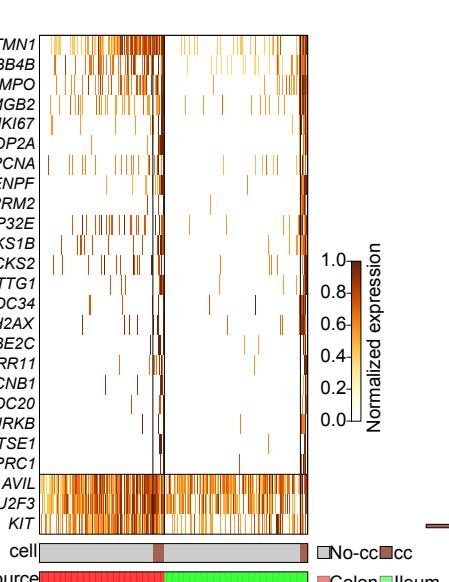
Extended Data Figure 3

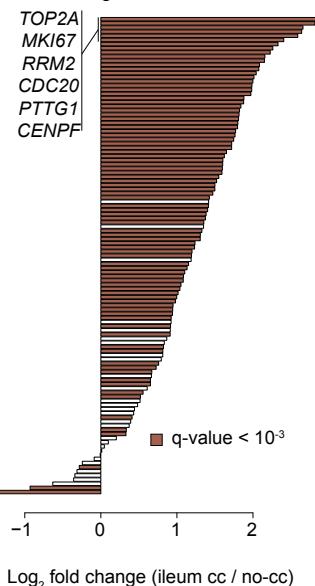

Extended Data Fig. 3 – Proliferation dynamics of tuft cells.

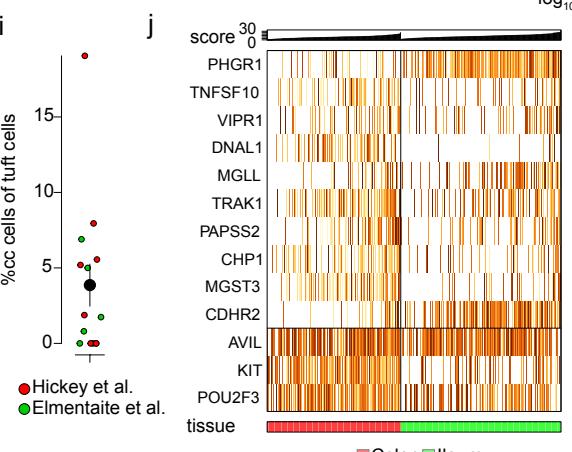
a, Representative flow cytometric analysis (left) and quantification (right) of the S/G2/M phase in KIT⁺ cells in FUCCI reporter organoids differentiated for 3 days in tuft cell medium with or without IL-4/13 treatment. Each dot is one well. Results are pooled from 6 (Diff) or 4 (Diff+IL-4/13) independent experiments. Error bars indicate SE. Two-tailed Student's t-test. **b-c**, Snapshots of dividing AVIL⁺ cells by live-cell imaging using AVIL-Clover reporter organoids differentiated in tuft cell medium with IL-4/IL-13 for 3 to 5 days (**b**), or 5 to 8 days (**c**). **b**, Each dividing AVIL⁺ cell and its progeny are colored differently; **c**, Shown is one tuft cell dividing twice within 24h. **b**, donor 1; **c**, donor 2 (Supplementary Video 3, 5). **d**, Representative flow cytometric analysis (left) and quantification (right) of AVIL⁺ cell frequency in organoids differentiated for 2 days in EGF Noggin medium (tuft cell medium without Wnt, Rospond1 and DAPT), followed by 4 days incubation with or without IL-4/IL-13. Right: each dot is a well, results are pooled from 3 independent experiments from two lines of donor 1. Error bars indicate SE. **e**, qPCR quantification of tuft cell and stem cell genes in single cells sorted from organoids cultured in human expansion medium. Single cells were seeded in expansion medium for 2 days, then cultured for 7 days with or without IL-4/IL-13 treatment. Each dot is a technical duplicate. Experiment was performed on 2 donors (donor 1 is shown; for donor 4, see Supplementary Information Fig. 2). Error bars indicate SE. Diff: human tuft cell differentiation medium; SE: standard error. *P< 0.05.

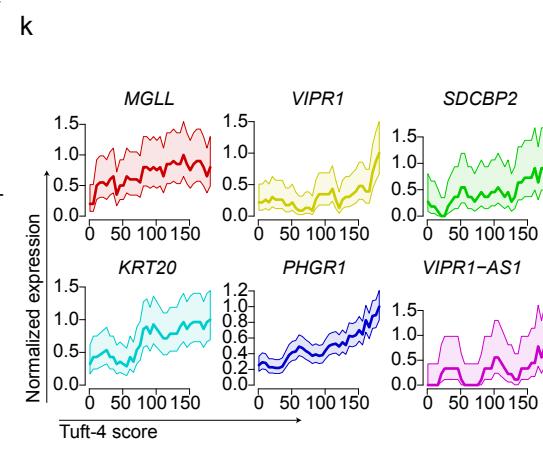

a

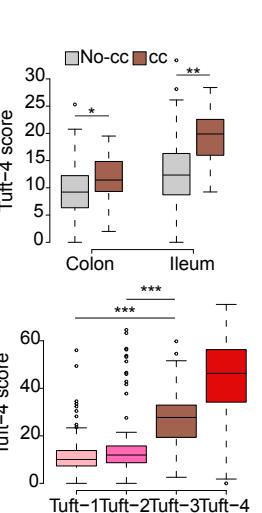

d

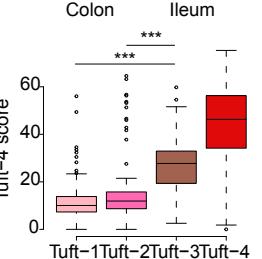

e


f

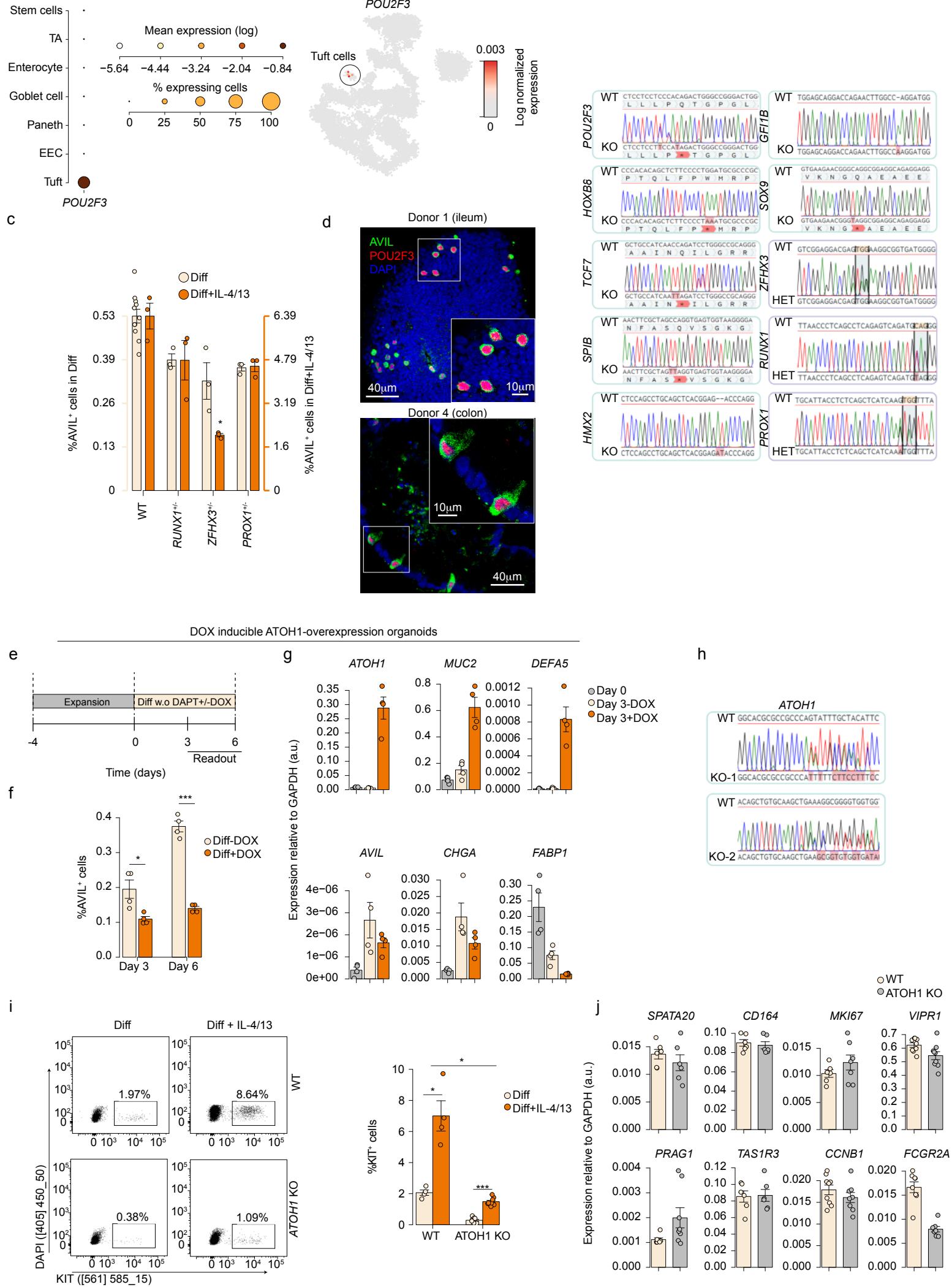

g


h Tuft-3 genes


i


k

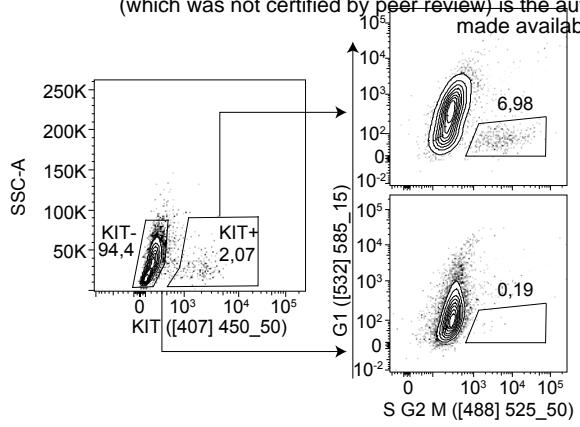
l



m

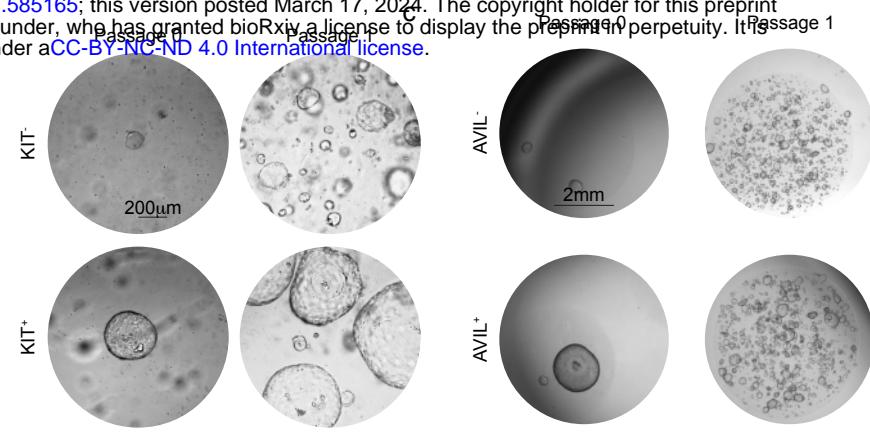
Extended Data Fig. 4 – Analysis of single cell RNA sequence used in this study.

a, Tuft cell frequency in different medium combinations, as determined by scRNA-seq analysis. **b**, scRNA-seq statistics, depicting number of reads per cells (top) and number of unique molecular identifiers (UMI) per cell (bottom). Each dot is a cell, colored by its gating and medium conditions. Quality threshold of 500 UMI per cell is indicated by a horizontal line. **c**, Gene expression profiles of stem cell and goblet cells. n=373 single non-tuft cells. **d**, Expression of tuft cell marker genes projected on the metacell 2D layout as in Fig. 3b-c. Dot color indicate log normalized expression. n=953 single cells. **e**, Top 10 Gene ontology (GO) terms enriched in DEG of tuft-1-4, when compared to the non-tuft cells (Fig. 3f). **f**, Representative fluorescence images of tuft-1-4 specific markers (red, as indicated) in human ileum AVIL-reporter organoids cultured in tuft cell differentiation medium (tuft 1-2) or supplemented with IL-4/IL-13 (tuft 3-4). n = 2 independent experiments on donor 1. **g**, Gene expression profiles of primary KIT⁺ tuft cells from human ileum and colon tissue. Shown are tuft-3 genes, as well as *KIT*, *POU2F3* and *AVIL*. Cells are colored by their tissue origin, and by classification into cycling cells (cc) or non-cycling cells (no-cc). n= 271 single colon and 311 single ileum KIT⁺ cells. **h**, Differential expression of all tuft-3 genes between primary ileal cycling and non-cycling KIT⁺ cells as in **g**. Genes with significant differential expression (χ^2 test; FDR-adjusted p-value $< 10^{-3}$) are colored. **i**, Estimation of the fraction of proliferating tuft cells across 14 human primary intestine tissues from two published scRNA-seq datasets^{18,25}. **j**, Gene expression profiles of primary KIT⁺ non-cycling tuft cells as in **g**. Shown are tuft-4 genes, as well as *KIT*, *POU2F3* and *AVIL*. Cells are ordered by their expression of the aggregated tuft-4 program, and colored by their tissue origin. **k**, Expression patterns of six genes along the tuft-4 activation gradient in KIT⁺ non-cycling ileal cells. Shadings indicate 95% confidence in binomial estimation of the mean. **l**, Aggregate expression of the tuft-4 program in cycling and non-cycling cells in colon and ileum. **m**, Aggregate expression of the tuft-4 program across tuft cell substates in organoids as in Fig. 3g. n=573 single tuft cells from organoids. **l-m**, Two sided Mann-Whitney test; box plots present the third quartile (top of the box), median (center lines) and first quartile (bottom of the box) of measurements. The whiskers represent 1.5 times the interquartile range from the top or bottom of the box. Diff: human tuft cell differentiation medium; cc: cell cycle. * P < 0.05, ** P < 0.01, *** P < 0.001.

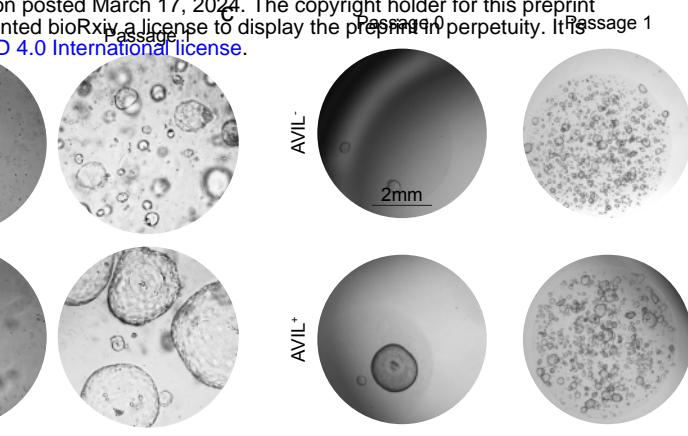


Extended Data Figure 5

Extended Data Fig. 5 - Transcription factor knock outs and overexpression in human ileum organoids.


a, Expression of *POU2F3* across human healthy adult intestine tissue scRNA-seq dataset as in 1a. Left: Dot color relates to mean expression values and dot size to fraction of expressing cells. Right: dot color indicates log normalized expression. **b**, Genotypes of clonal transcriptional factor knock outs generated from human ileum AVIL-Clover reporter organoids. Homozygous knock outs of *POU2F3*, *HOXB8*, *TCF7*, *SPIB*, *SOX9* and heterozygous knock outs of *ZFHX3*, *RUNX1*, *PROX1* are generated using base editing (C to T) technology to induce stop codon (TAG, TAA) within exons. *HMX2*^{-/-} and *GFI1B*^{-/-} lines are generated by using conventional CRISPR-Cas9 method to induce frameshift. **c**, Quantification of AVIL⁺ cell frequency in heterozygous knock out organoid lines by flow cytometry. Each dot is one well. One of 3 independent experiments is shown, see Supplementary Information Fig. 3. WT measurements are pooled from 4 experiments. Error bars indicate SE. FDR-adjusted two-sided Student's t-test against the WT levels. **d**, Fluorescence images of differentiated AVIL-Clover organoids, depicting AVIL (green), *POU2F3* (red) and DAPI (blue) from 2 donors (donors 1, 4). **e**, Schematics of the experimental set-up for **(f-g)**. ATOH1-inducible human ileum organoids were expanded for 4 days, then differentiated in tuft cell medium without DAPT, with or without a doxycycline pulse. **f**, Quantification of AVIL⁺ cell frequency in ATOH1-inducible organoids (as in **e**) by flow cytometry. Each dot is a well. One of 3 independent experiments on donor 1 was shown, see Supplementary Information Fig. 3. Error bars indicate SE. Two-sided Student's t-test. **g**, qPCR quantification of *ATOH1* expression and intestinal epithelial lineage markers. Each dot is a well. One of 2 independent experiments was shown, Supplementary Information Fig. 3. **h**, Genotype of clonal *ATOH1* knock outs generated from human ileum organoids. **i**, Representative flow cytometric analysis (left) and quantification (right) of KIT⁺ cell frequency in *ATOH1* knock out organoids. Organoids were differentiated for 7 days in depicted media. Each dot is a well. Results are pooled from two *ATOH1* knockout clonal lines from donor 1 (for 3 additional experiments, see Supplementary Information Fig. 3). Error bars indicate SE. Two-sided Student's t-test. **j**, qPCR quantification of tuft-1-4 characteristic genes in KIT⁺ cells sorted from WT and *ATOH1*-knockout organoids. Organoids were differentiated for 7 days in tuft cell differentiation medium with IL-4/IL-13-removal of DAPT. Each dot is a technical replicate. n= 3 wells pooled from two *ATOH1* knockout lines. Error bars indicate SE. Diff: human tuft cell differentiation medium; TA: Transit-Amplifying Cells; EEC: Enteroendocrine cells; WT: wildtype; SE: standard error. *P < 0.05; **P < 0.01; ***P < 0.001.

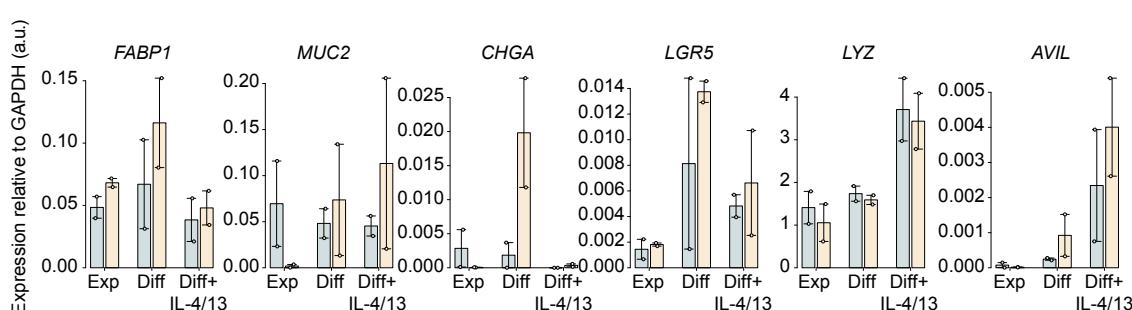
a


b

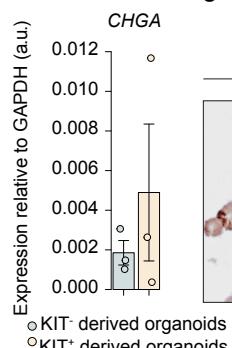
Passage 1


c

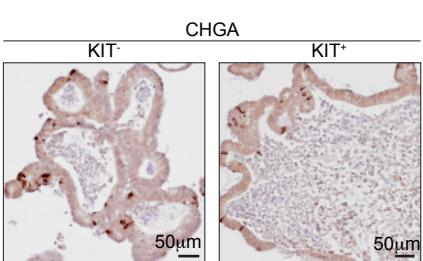
Passage 10


d

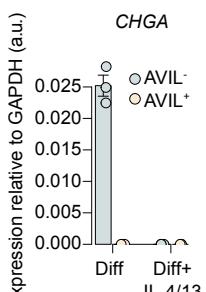
- AVIL- derived organoids
- AVIL+ derived organoids

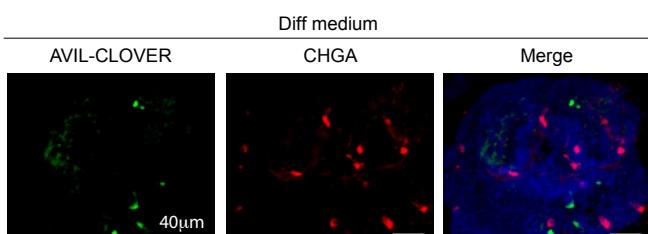

e

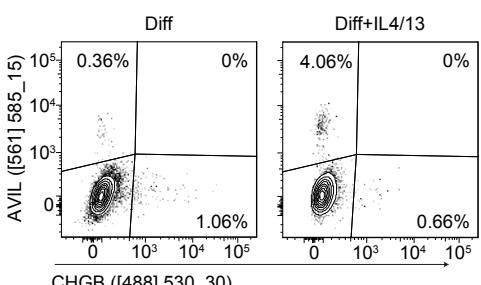
- AVIL/KIT- derived organoids
- AVIL/KIT+ derived organoids

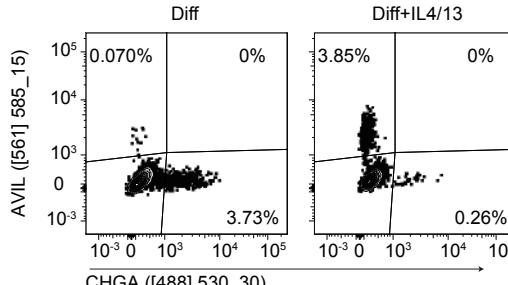


Organoids at passage 4 in diff

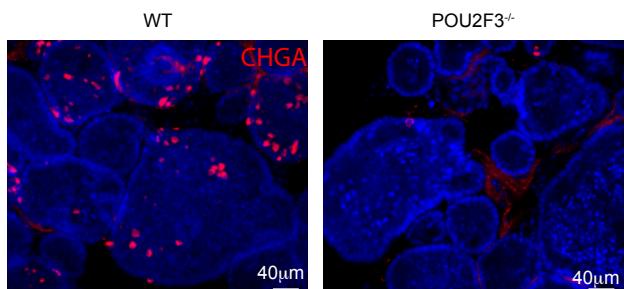

f


g

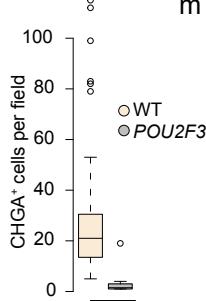

h

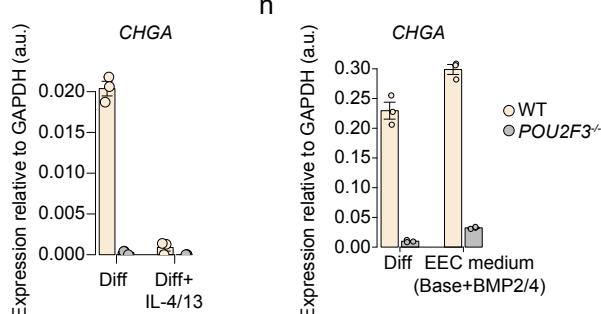

i

j

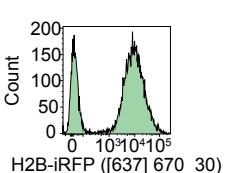
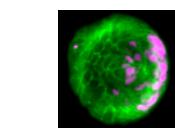
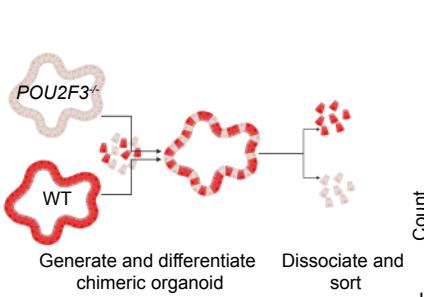


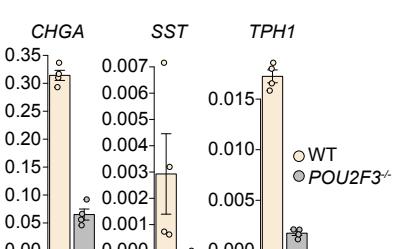
k



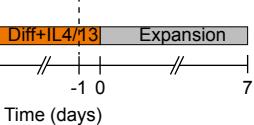

l

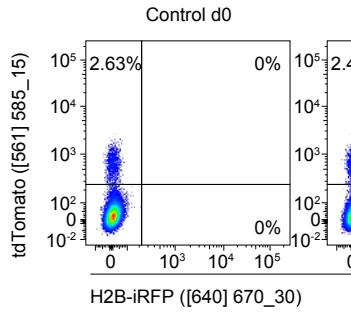
m

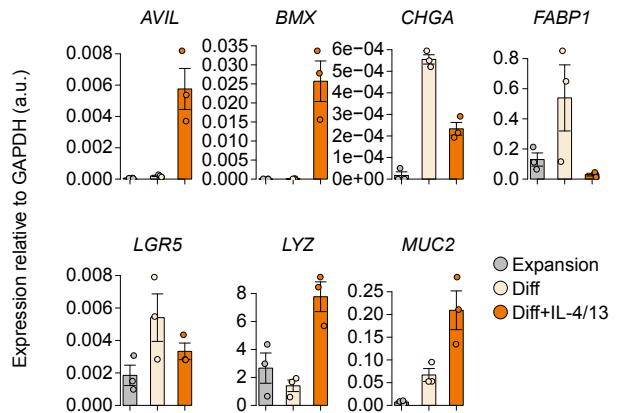



n


Extended Data Fig. 6 – Human intestinal tuft cell derived organoids.

a, Gating strategy for organoid outgrowth from single S/G2/M phase tuft cell (KIT⁺) and non-tuft cell (KIT⁻) in FUCCI reporter organoids. Prior to sorting, organoids were differentiated for 3 days in tuft cell medium with IL-4 and IL-13. **b-c**, Representative images of organoid outgrowth from single KIT⁺ and KIT⁻ cells in human adult duodenum tissue (**b**), and from AVIL⁺ and AVIL⁻ cells in AVIL-Clover reporter organoids (**c**). (**b**) n= 3 donors, Supplementary Information Fig. 4. (**c**) n= 2 donors; donor 1 is shown, donor 2 see Supplementary Information Fig. 4. **d**, qPCR quantification of *LGR5* and *AVIL* expression in sorted AVIL⁺ and AVIL⁻ cells at depicted time points following seeding. Sorted cells were cultured in human expansion medium. Each dot is one donor (donors 1-2). Error bars indicate SE. **e**, qPCR quantification of lineage markers representing different intestinal epithelial cell types in organoids after first passage. Each dot is one donor (donors 1-2). Error bars indicate SE. **f-g**, qPCR quantification (**f**) and visualization (**g**) of CHGA expression in organoids of passage 4 derived from KIT⁺ and KIT⁻ cells as in (a). Each dot is a well. 3 independent experiments were performed on two donors (donor 1 is shown; for donor 2, see Supplementary Information Fig. 4). Error bars indicate SE. **h**, qPCR quantification of CHGA expression in AVIL⁺ and AVIL⁻ cells sorted from AVIL-Clover reporter organoids. Each dot is a well. Results are pooled from 3 independent experiments on donor 1. Error bars indicate SE. **i**, Representative fluorescence image of an AVIL-Clover (green) differentiated organoid co-stained with CHGA (red), and DAPI (blue). n= 3 independent experiments on donor 1. **j-k**, Representative flow cytometric analysis of AVIL and CHGB (**j**) or CHGA (**i**) in human ileum AVIL-P2A-tdtomato/CHGB-mNeon (**j**) and AVIL-P2A-tdtomato/CHGA-Clover (**k**) double reporter organoid lines. Organoids were differentiated in tuft cell medium with or without IL-4/IL-13 for 4 days (**j**) or 9 days (**k**). n= 3 independent experiments on donor 1. **l**, Representative fluorescence images (left) and quantification (right) of CHGA⁺ cells in WT and *POU2F3*^{-/-} organoids differentiated for 7 days in tuft cell differentiation medium. Results are pooled from 2 independent experiments on donor 1, n = 76 (WT) and 46 (*POU2F3*^{-/-}) individual organoids. Two-sided Student's t-test. The box plot presents the third quartile (top of the box), median (center lines) and first quartile (bottom of the box) of measurements. The whiskers represent 1.5 times the interquartile range from the top or bottom of the box. **m**, qPCR quantification of CHGA expression in WT and *POU2F3*^{-/-} organoids differentiated in tuft cell differentiation medium with or without IL-4 and IL-13. Each dot is a well. Experiments were performed on two donors (donor 1 is shown; for donor 4, see Supplementary Information Fig. 4). Error bars indicate SE. **n**, Same as (**m**), organoids were differentiated in either tuft cell or EEC differentiation medium. Each dot is a well. Results are pooled from 3 independent experiments on donor 1. Error bars indicate SE. WT: wildtype; Diff: human tuft cell differentiation medium; SE: Standard error. ***P< 0.001.

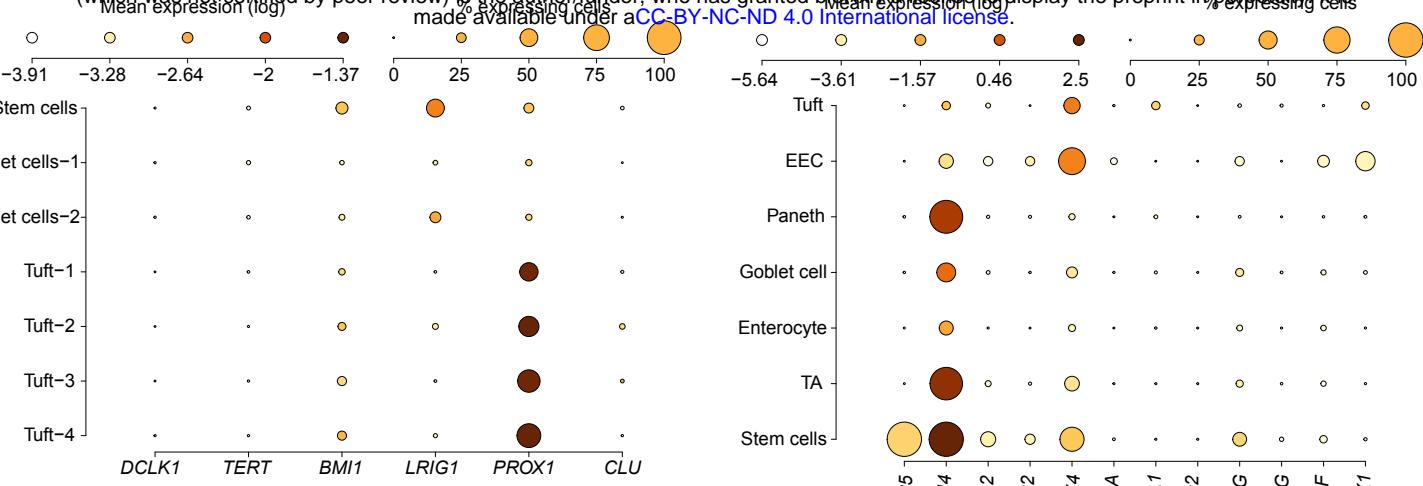

a


Expression relative to GAPDH (a.u.)

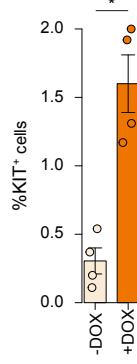

±4-OHT

e

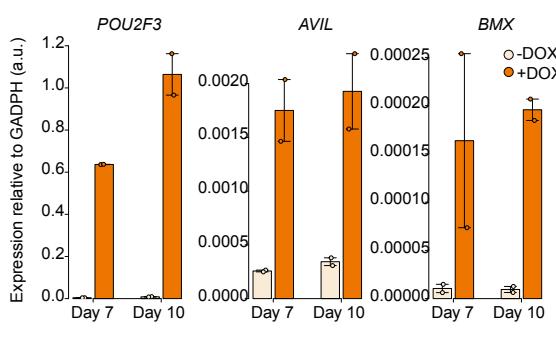
f

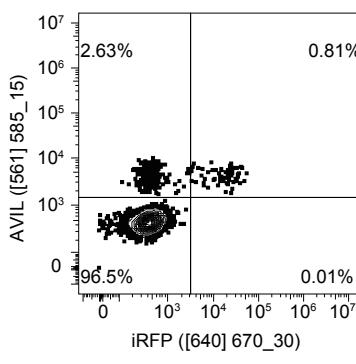


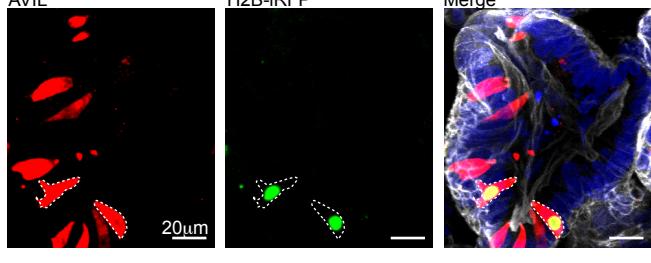
Extended Data Figure 7

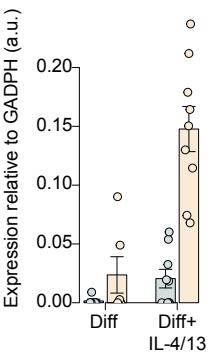

Extended Data Fig. 7 –Lineage tracing of human AVIL⁺ tuft cells.

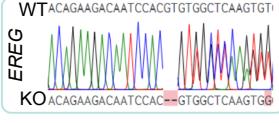
a, Schematics of experimental set-up for **(b-c)**. Mosaic organoids, derived from *POU2F3*^{-/-} and H2B-iRFP wildtype organoid lines, were differentiated for 7 days in tuft cell differentiation medium before sorting. **b**, Representative fluorescence image (top) and flow cytometric analysis (bottom) of mosaic organoids as in **(a)**. **c**, qPCR analysis (right) showing expression of enteroendocrine cell markers (*CHGA*, *SST*, *TPH1*) from sorted H2B-iRFP⁺ and iRFP⁻ (i.e., *POU2F3*^{-/-}) cells. Each dot is a well. Results are pooled from 2 independent experiments on donor 1. Error bars indicate SE. **d**, **e**, Schematics of experimental set-up **(d)** and representative flow cytometric analysis **(e)** of AVIL lineage tracing organoids. Organoids were differentiated for 4 days in tuft cell medium with IL-4/IL-13, with or without exposure to 1 μ M 4-Hydroxytamoxifen for 20 hours, then medium was changed to human intestinal expansion medium. n = 3 independent experiments. **f**, qPCR quantification of intestinal epithelial lineage markers in traced organoids derived from single AVIL⁺iRFP⁺ cells sorted at day 0 as in **(d)**. Each dot is a well. Results are pooled from 3 independent experiments on donor 1. Error bars indicate SE. Diff: human tuft cell differentiation medium; WT: wildtype; SE: standard error.

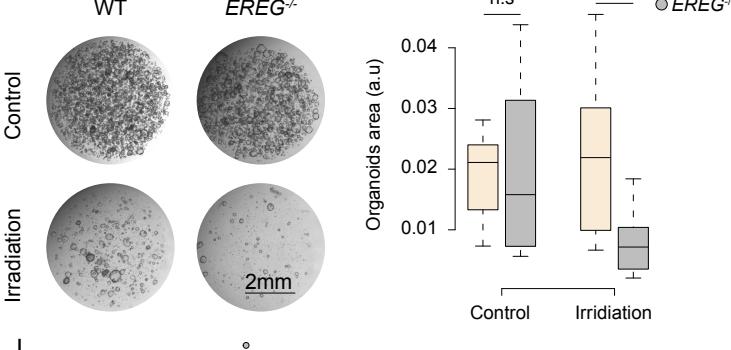

a

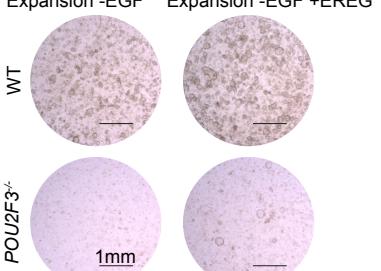

c

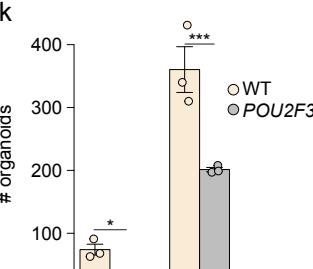

d

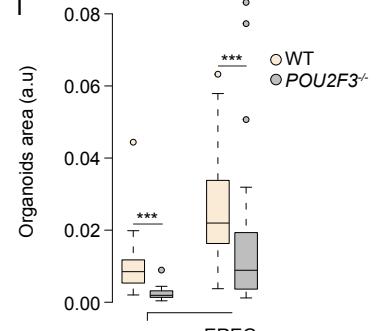

e


f

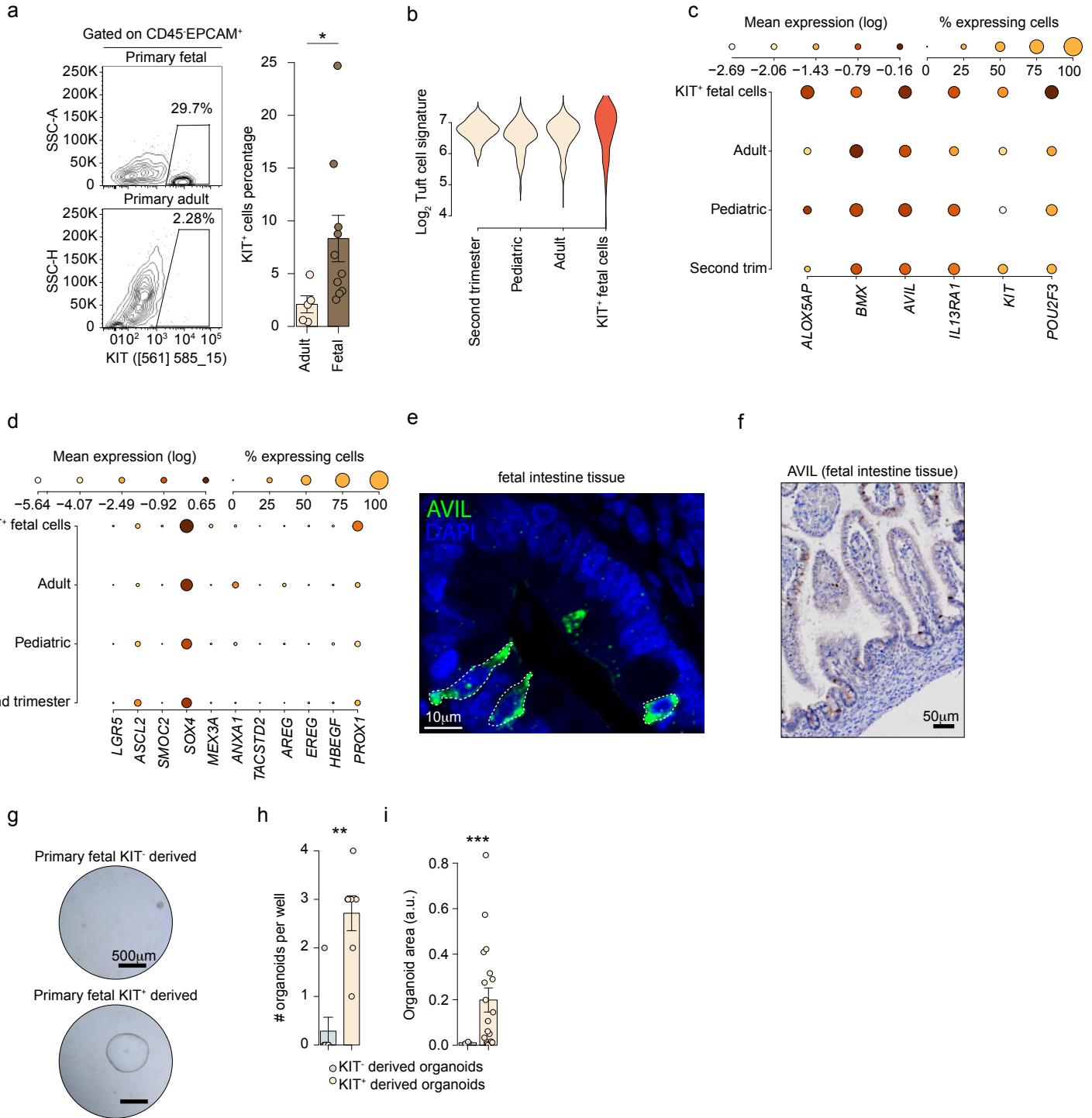

g


h


i


j

k



l

Extended Data Fig. 8 – Regeneration potential of tuft cells following damage.

a–b, Expression of selected genes associated with regenerative stem cells across ileum organoid-derived subsets (**a**), and across primary epithelial cells as in 1a (**b**). Dot color relates to mean expression values and dot size to fraction of expressing cells. n=953 (**a**) and 15,184 (**b**) single cells. **c–d**, Quantification of KIT⁺ cell frequency (**c**) and qPCR quantification of tuft cell genes (**d**) in DOX-triggered POU2F3 overexpression organoids. Organoids were differentiated in tuft cell medium. One of 2 (**d**) or 3 (**c**) independent experiments on donor 2 is shown (Supplementary Information Fig. 5). Error bars indicate SE. Two-sided Student's t-test. **e–f**, Representative flow cytometric analysis (**e**) and fluorescence image (**f**) of AVIL-lineage tracing organoids after irradiation. n= 3 independent experiments on donor 1. **g**, qPCR quantification of *EREG* expression in sorted AVIL⁺ and AVIL⁻ cells from human ileum organoids. Organoids were differentiated in tuft cell differentiation medium with and without IL-4 and IL-13 for 7 days. Each dot represents a technical replicate, results is pooled from 2 or 3 wells of donor 1, also see Supplementary Information Fig. 5. Error bars indicate SE. **h**, Genotype of human ileum *EREG* knock out organoids. **i**, Representative images (left) and quantification of organoid area (right) from WT and *EREG*^{-/-} organoids exposed to IL-4 and IL-13 after irradiation (as Fig 5e). Results are pooled from 2 independent experiments on donor 1, n= 600-900 individual organoids. Two-sided Student's t-test. **j–l**, Wildtype and *POU2F3*^{-/-} organoids were differentiated for 7 days in tuft cell differentiation medium with IL-4 and IL-13, passaged, then cultured for 7 days in human intestinal expansion medium by removal of EGF, with or without recombinant EREG (rEREG). Shown are representative images (**j**), quantification of organoid numbers (**k**), and organoid areas (**l**). Three independent experiments were performed on 2 donors. (donor 1 is shown; for donor 5, see Supplementary Information Fig. 5). **k**, Each dot is a well. Error bars indicate SE. Two-tailed Mann-Whitney test. **l**, Each dot is an individual organoid, n = 20-40 organoids per condition. Two-sided Student's t-test. **i,l**, box plots present the third quartile (top of the box), median (center lines) and first quartile (bottom of the box) of measurements. The whiskers represent 1.5 times the interquartile range from the top or bottom of the box. Diff: human tuft cell differentiation medium; WT: wildtype; TA: Transit-Amplifying Cells; EEC: Enteroendocrine cells; SE: standard error; n.s: not significant. *P < 0.05, ***P < 0.001.

Extended Data Figure 9

Extended Data Fig. 9 - Analysis of human fetal intestinal tuft cells.

a, Representative flow cytometric analysis (left) and quantification (right) of KIT⁺ cells frequency of human fetal and adult intestinal tissue. Single cells are pre-gated on DAPI⁻ CD45⁻ EPCAM⁺. Each dot is a donor. Error bars indicate SE. Two-sided Student's t-test. **b**, Distribution of a tuft cell signature across human tuft cells from different development stages¹⁸, as well as within a sorted population of fetal KIT⁺ cells. The tuft cell signature is as in fig. 2h. **c-d**, Expression of core tuft cells genes (**c**) and genes associated with regenerative stem cells (**d**) across human tuft cells from different development stages, as well as in a sorted population of fetal KIT⁺ cells. Dot color relates to mean expression values and dot size to fraction of expressing cells. **b-d**, n=699 tuft cells, and 89 KIT⁺ fetal cells. **e-f**, Representative images of AVIL expression in histological sections of human fetal intestine. n= 3 donors. **g-i**, Representative images (**g**) and quantifications of organoid numbers (**i**) and area (**j**) of organoids derived from single primary fetal (week 19-21) KIT⁺ and KIT⁻ cells. One of three donors is shown, see Supplementary Information Fig. 5. Error bars indicate SE. **h**, Each dot is a well; two-tailed Mann-Whitney test. **i**, Each dot is an individual organoid; two-sided Student's t-test. SE: Standard error. *P < 0.05, **P<0.01, ***P< 0.001.