

1 **Defining focal neuroendocrine differentiation as a transcriptionally distinct form of
2 prostate cancer pathology characterized by the expression of androgen receptors**

3
4 Rosalia Quezada Urban^{1,2,3}, Shivakumar Keerthikumar^{1,2,3}, Ashlee Clark³, Hong Wang³, Belinda
5 Phipson^{4,9}, Andrew Bakshi^{1,2,3}, Andrew Ryan⁵, Heather Thorne^{1,2}, Renea A Taylor^{1,2,6,7,8}, Mitchell G
6 Lawrence^{1,2,3,7,8}, Gail Risbridger^{1,2,3,7,8}, Roxanne Toivanen^{1,2,3}, David L Goode^{1,2}

7
8 **Affiliations:**

9 1. Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000
10 Australia

11 2. Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville,
12 VIC 3010 Australia

13 3. Department of Anatomy and Developmental Biology, Monash Biomedicine
14 Discovery Institute, Monash University, Clayton, VIC 3800 Australia

15 4. Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research,
16 Parkville, VIC 3010 Australia

17 5. TissuPath Pathology Ltd, Mount Waverley, VIC 3149 Australia

18 6. Department of Physiology, Biomedicine Discovery Institute Cancer Program,
19 Monash University, Clayton, VIC 3800 Australia.

20 7. Cabrini Institute, Cabrini Health, Malvern VIC, 3144 Australia

21 8. Melbourne Urological Research Alliance, Monash University, Clayton VIC, 3800
22 Australia

23 9. Department of Medical Biology, University of Melbourne, Parkville, VIC 3010
24 Australia

25

26 **Background**

27 Men with neuroendocrine prostate cancer (NEPC) have a poor prognosis. NEPC is commonly
28 diagnosed by immunohistochemical markers (CHGA, SYP and NCAM1) and genomic features
29 (mutations in *RB1*, *PTEN*, *TP53*). But by pathology, NEPC tumours are variable, leading to a
30 classification of NE subtypes such as small cell and large cell neuroendocrine carcinomas, focal
31 neuroendocrine differentiation (Focal NED), and Amphicrine. We postulated the diversity observed in
32 NEPC pathologies might arise from differences in transcriptional profiles and the aim of this study is
33 to utilize single-cell RNA sequencing to define the transcriptional differences between NEPC subtype
34 pathologies.

35 **Methods**

36 Gene expression profiles were obtained for 18,632 individual tumour cells from 9 patient-derived
37 xenograft (PDX) models representing five distinct neuroendocrine pathologies of prostate cancer.

38 Integration and clustering of cell-level data demarcated transcriptionally distinct sub-populations of
39 cells. Differential gene expression, gene set enrichment and transcriptional factor regulon analysis
40 identified expression signatures unique to specific neuroendocrine pathologies. Copy-number
41 estimated from expression data revealed the clonal structure of PDXs with mixed adenocarcinoma and
42 neuroendocrine pathologies.

43 **Results**

44 Significant differences were observed in the transcriptional profiles of NEPC pathology subtypes.
45 Focal NED cells maintain AR signaling, similar to the amphicrine subtype but different from small
46 and large cell carcinomas. Cellular sub-populations enriched for expression of KRAS, IL2-STAT5
47 and TNF-signaling genes were found in focal NED and amphicrine pathologies, but not in small or
48 large cell carcinomas. In contrast, sub-populations enriched for the YAP, Myc and E2F pathways
49 were detected in small cell, large cell and amphicrine tumours, but not in focal NED cells. Each
50 pathology showed unique patterns of master regulator activity as well, further implicating focal NED
51 as a transcriptionally distinct entity. Based on copy number alterations within PDXs of mixed
52 pathology, focal NED cells showed little clonal divergence from neighboring adenocarcinoma cells,
53 whereas cells with small cell neuroendocrine pathology were clonally distinct.

54 **Conclusions**

55 Neuroendocrine prostate cancer subtypes can be identified by pathology and our study shows that
56 transcriptional features identified by single-cell RNA-sequencing also distinguish neuroendocrine
57 subtypes pathologies from each other. In particular, our data redefine focal neuroendocrine
58 differentiation as a pathology expressing androgen receptors (AR), exhibiting its distinctive
59 composition of transcriptionally unique sub-populations. These findings advocate for differences in
60 the treatment of NEPC tumors, particularly those displaying focal NED.

61

62 **Introduction**

63 Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer diagnosed on the
64 basis of immunohistochemistry (IHC) of canonical neuroendocrine cell surface markers such as
65 chromogranin A (CHGA), synaptophysin (SYP), and CD56 (NCAM1) (Kannan et al., 2022). NEPC
66 can arise via lineage plasticity under prolonged androgen deprivation (Beltran et al., 2016, Aggarwal
67 et al., 2018), but it can also appear *de novo* at diagnosis (Epstein et al., 2014; Fine, 2018). No
68 effective long-term treatments exist for NEPC and overall patient survival rates are very poor
69 (Aggarwal et al., 2014; Aggarwal et al., 2018). NEPC is often associated with suppression of
70 androgen receptor (AR) activity. Small cell and large cell neuroendocrine carcinomas are two prostate

71 cancer pathologies that typically lack detectable AR signalling and are most often associated with
72 NEPC (Epstein et al., 2014; Fine, 2018).

73 Additional neuroendocrine pathologies have been observed in prostate cancer (Aggarwal et al., 2014;
74 Bellur et al., 2019; Epstein et al., 2014), defined by histology and morphology (Beltran et al., 2016).
75 In contrast to small and large cell carcinoma, the amphicrine pathology is defined by strong co-
76 expression of both AR activated and neuroendocrine genes (Epstein et al., 2014; Fine, 2018). Prostate
77 adenocarcinoma with focal neuroendocrine differentiation (NED) displays small, scattered pockets of
78 cells expressing neuroendocrine markers. Focal NED does not fully adhere to accepted definitions of
79 NEPC (Epstein 2014; Fine 2018), and its influence on clinical outcomes remains uncertain (Kardoust
80 Parizi et al., 2019). Mixed tumours containing both adenocarcinoma and small cell pathologies occur
81 as well (Epstein 2014; Fine 2018).

82 To date, small and large cell pathologies have been much better represented in genomic and
83 transcriptomic studies than other pathologies with neuroendocrine features. The molecular
84 foundations and therapeutic implications of diversity among neuroendocrine pathologies in prostate
85 cancer thus remain elusive, contributing to suboptimal patient outcomes (Beltran et al., 2011).
86 Mutations to *RBI*, *PTEN*, *TP53*, as well as upregulation of N-MYC, SOX2, BRN2, and ONECUT2
87 are recurrent in NEPC (Beltran et al., 2011; Davies et al., 2020; Labrecque et al., 2019) but none are
88 exclusive to any neuroendocrine pathology.

89 Single-cell RNA-sequencing enables discovery and expression profiling of transcriptionally distinct
90 cell populations within tumours, offering a way to directly characterize rare, dispersed pathologies
91 such as focal NED. Single-cell RNA-sequencing studies of NEPC remain limited in scope but have
92 uncovered substantial intra-tumoural heterogeneity at the transcriptional level. Key insights include
93 evidence NEPC arises from luminal-like cells (Dong et al., 2020), elucidation of the roles of RB1, N-
94 Myc and E2F in neuroendocrine trans-differentiation (Brady et al., 2021) and the resolution of
95 hierarchies of transcription factors networks (Wang et al., 2022).

96 To explore how transcriptional intra-tumoural heterogeneity contributes to diversity of
97 neuroendocrine pathologies in prostate cancer, we performed single-cell RNA-sequencing on nine
98 patient-derived xenograft (PDX) models covering five distinct pathologies of NEPC. Variation in both
99 the type and frequencies of transcriptionally distinct cellular sub-populations was seen between PDXs
100 of different pathologies. Focal NED cells displayed unexpected co-expression of AR signalling and
101 NE markers as well as differential patterns on oncogenic pathway expression, marking focal NED as a
102 distinct molecular entity within the landscape of NEPC.

103 **Methods**

104 *Patient Derived Xenografts*

105 Patient derived xenografts (PDXs) were acquired from the Melbourne URological Research Allience
106 (MURAL). The PDXs lines are maintained in compliance with Monash University animal ethics
107 approval (MARP 2014/085). The maintenance of the serially transplantable PDXs have been
108 described previously (Risbridger et al., 2021). Briefly, PDXs are maintained by sub-renal or sub-
109 cutaneous grafting into 6-8-week-old immunocompromised male NSG mice. The NSG mice are
110 supplemented with 5mm testosterone implants for mixed or amphicrine pathologies, or surgically
111 castrated mice for pure NE/AR null pathologies.

112 *Dissociation of Patient Derived Xenografts*

113 PDXs were harvested from host mice and cut into 2 X 2 mm pieces using a scalpel. Tumour pieces
114 were digested in 15mL RPMI, pencilling/streptomycin containing 13 U LiberaseTM (Sigma) and 3mg
115 DNase (Roche), for 1 hour at 37C. Samples were disrupted with a pipette every 30 minutes during
116 incubation to ensure suspension of cells. After cells were spun at 5 minutes at 1000rpm, red blood
117 cells were lysed using Red cell Lysis buffer (Sigma) for 1 minutes. Red cell lysis was stopped with
118 RPMI with 10% FBS. Cells were then resuspended in PBS, 1mM CaCl₂, with 2% FBS and
119 underwent negative selection for viable cells using the Easy Sep Dead Cell Removal kit (Miltenyi),
120 according to the manufacturer's protocol. After selection, cells passed through a 30uM cell strainer
121 (Miltenyi). Cell viability was assessed using Trypan Blue. Samples with cell viability >80% were
122 resuspended in PBS containing 2% BSA and proceeded to single cell analysis.

123 *Single cell RNA-Sequencing library preparation*

124 scRNA-Seq was done on dissociated PDXs using the 10X Genomics Chromium Single Cell 3'
125 Library & Gel bead Kit V3.0, per the manufacturer's instructions (CG000183 Rev C). Briefly, 5000
126 PDX cells were utilised per sample as input. By encapsulating cells in microfluidic droplets, around
127 4000 single-cell transcriptomes were recovered per sample. After reverse transcription, barcoded
128 cDNA was purified with SILANE Dynabeads and amplified through 11 cycles of PCR. On an Agilent
129 Bioanalyzer High Sensitivity chip, SPRIselect purification was performed to quantify the fragment
130 size and concentration of the amplified cDNA. Libraries were sequenced on an Illumina
131 NovaSeq6000 using paired-end reads of 151 base pairs.

132 **Expression quantification for individual cells**

133 Paired FASTQ files were aligned to the indexed GRCh38 human and mm10 mouse reference genome
134 using XenoCell v1.0 (Cheloni et al., 2021). Further, the human specific cells were extracted using a
135 maximum 10% threshold of mouse specific reads in XenoCell. The filtered human specific paired
136 reads were quantified using Alevin (Salmon Software v1.2.1) tool (Srivastava et al., 2019) by aligning
137 against the GRCh38 transcriptome. The quantified matrix file was further imported into Seurat v3.2.0
138 (Hao et al., 2023) in R V4.2.0 (R Core Team, 2023) for all the downstream analysis.

139 **Identification and profiling of transcriptional sub-populations [within each PDX]**

140 Quality control, implemented using Seurat (v 3.2.0), aimed to exclude outlier cells with low-quality
141 features. Standardized filtering criteria were then applied to all samples, involving the exclusion of
142 cells expressing fewer than 50 genes, those with fewer than 1000 genes, and sample-specific
143 variations, including a high mitochondrial transcript fraction (range 25-30%) and a high transcript
144 count (range 40,000 – 100,000) (see Supplementary Table 1).

145 **Cell Cycle Phase Identification**

146 To ascertain the cell cycle phase of individual cells, the "CellCycleScoring" function was employed.
147 Canonical cell cycle markers (Kowalczyk et al., 2015), were incorporated into Seurat, with a specific
148 focus on features associated with the G2/M phase and markers indicative of the S phase. These
149 elements were utilized as essential input parameters for the "CellCycleScoring" function, which
150 effectively scored and classified each cell into distinct phases, namely "S," "G2/M," and "G1."

151 **Normalization, Scaling, and Feature Identification**

152 For the normalization, scaling, and identification of high variable features, the SCTransform function
153 was utilized. This normalization method relies on Pearson residuals derived from "regularized
154 negative binomial regression," (Hafemeister et al., 2019) employing cellular sequencing depth as a
155 covariate within a generalized linear model (GLM). Default parameters were applied. Subsequently,
156 Principal Component Analysis (PCA) was executed using the top 3000 most highly variable features.
157 The determination of the appropriate dimension was facilitated by an Elbow plot in subsequent steps.

158 **Clustering and Visualization**

159 To initiate the clustering process, the "FindNeighbours" function in Seurat facilitated the construction
160 of a Nearest-neighbour graph, utilizing default settings. Dimensions were then selected based on
161 individual object (sample) characteristics. The "FindClusters" function employed the shared nearest
162 neighbour (SNN) approach to identify distinct clusters of cells, with default parameters utilized, and
163 the resolution determined per sample. Visualization of clustered cells was achieved through the
164 Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique using the
165 "RunUMAP" function, employing default settings and the previously selected dimensions.

166 **Optimal Cluster Determination**

167 To ascertain the optimal number of clusters, the clustree function from the R package ClusterTree
168 (Zappia et al., 2018) as employed. This function elucidates the division of clusters as resolution
169 increases, providing valuable insights. The number of clusters was determined through the
170 construction of a clustering tree spanning resolutions from zero to 1 in increments of 0.1. Optimal
171 resolutions for each sample were carefully chosen. Subsequently, a set of resolutions was selected and

172 subjected to testing. Resolution testing involved a comprehensive analysis of differentially expressed
173 markers per cluster at each resolution. Resolutions with marker overlap in multiple clusters were
174 systematically discarded to refine the determination of the optimal number of clusters. This
175 meticulous approach ensured the robustness of the clustering outcomes.

176 **Differential Gene Expression Analysis**

177 Identification of marker genes per cluster was conducted using the FindAllMarkers function within
178 Seurat, employing a negative binomial test. Parameters included a log fold change threshold of 0.25
179 and a minimum fraction of 0.25 for genes detected in either of the two populations. Expression
180 profiles of selected genes were visualized on a logarithmic scale, facilitating a comprehensive
181 assessment. The difference in expression fraction between the two groups was calculated to discern
182 distinctive patterns. The top five differentially expressed genes were chosen based on the highest
183 difference and the highest average log fold change, thereby ensuring robust selection criteria. Manual
184 curation was applied to select unique markers with pronounced expression patterns.

185 For gene set enrichment analysis, the log fold change threshold was adjusted to 0, and the minimum
186 fraction of genes detected in either of the two populations was set to 0. This modification was crucial
187 for enhancing sensitivity and specificity in identifying enriched gene sets associated with the
188 differential expression patterns observed.

189 **Cancer Signature Analysis**

190 To examine the expression of cancer signatures, the CancerSEA database (Yuan et al. 2019) was
191 obtained. All gene sets from the database were downloaded and subsequently utilized to compute
192 scores per cell using the "AddModuleScore" function within Seurat. Visualization of the proportion
193 and expression patterns of the top five differentially expressed markers and signatures per cluster was
194 accomplished using the "Dotplot" function. This approach provided a comprehensive and visual
195 representation of the distinctive features and signatures associated with cancer expression patterns
196 within individual clusters.

197 **Gene Set Enrichment Analysis**

198 To elucidate enriched pathways across clusters, a comprehensive gene set enrichment analysis
199 (GSEA) was executed. The "msigdbr" package, providing Molecular Signatures Database (MSigDB)
200 (Liberzon et al., 2015) gene sets commonly utilized in GSEA, was employed alongside the "fgsea" R
201 package for the analysis (Korotkevich et al., 2021). All genes differentially expressed in each cluster
202 were pre-ranked based on the highest difference. The "fgseaMultilevel" function from the "fgsea" R
203 package was deployed to conduct the enrichment analysis, with default settings employed, except for
204 "nPermSimple," which was set to 10000 to enhance the accuracy of P-value estimation. The utilized

205 gene sets encompassed Hallmarks (H), Oncogenic (C6), and KEGG (CP), offering a comprehensive
206 exploration of the pathways enriched within the distinct clusters.

207 **Integration: Cluster Similarity Spectrum (CSS) in Simspec**

208 Integration of single-cell data using the Cluster Similarity Spectrum (CSS) algorithm in the Simspec
209 package requires a Seurat object (He et al., 2020). Prior to integration, the data underwent
210 preprocessing in Seurat, involving normalization, identification of variable features, data scaling,
211 PCA, and dimensional reduction using UMAP. The "cluster_sim_spectrum" function was employed
212 for data integration, utilizing the Pearson correlation method and "corr_kernel" as the spectrum type.
213 Cluster resolution was set at 0.3, and the label tag was defined as the sample name. Following
214 integration, UMAP and PCA were run for dimensional reduction, using "css" and "css_pca" as the
215 reduction types, respectively, with ten dimensions selected for each step. Subsequently, the
216 "FindNeighbors" and "FindClusters" functions were applied to calculate clusters after integration,
217 with a resolution set at 0.3 and 10 dimensions utilized.

218 **Quality Control After Integration**

219 To evaluate the success of integration and discern technical and biological sources of variation,
220 multiple factors were considered. Cell cycle phase, transcript counts, and mitochondrial and ribosomal
221 percentages were visualized for technical sources using the feature plot function from Seurat.
222 Mitochondrial and ribosomal percentages were computed using the "PercentageFeatureSet" function
223 from Seurat. Biological variation was assessed through a differential gene expression (DGE) analysis
224 using the "FindAllMarkers" function from Seurat. This comprehensive quality control step ensured a
225 thorough examination of the integrated data, distinguishing between technical and biological factors
226 contributing to variation.

227 **Downstream analysis for integrated dataset**

228 Following integration, downstream analyses including differential gene expression (DGE) and gene
229 set enrichment analysis were executed. DGE analysis was performed same as described above,
230 utilizing the "FindAllMarkers" function from the Seurat package. For gene set enrichment analysis
231 (GSEA), MSigDB datasets were employed. Similar to the previous GSEA analysis on individual
232 samples, the "fgseaMultilevel" function was utilized for the enrichment analysis, employing default
233 parameters.

234 **Co-Expression Analysis**

235 Co-expression analysis was conducted using the "Featureplot" visualization function within Seurat,
236 with the "blend" argument set to TRUE. This setting enabled the simultaneous visualization of two
237 markers' expression on each cell in the UMAP. The co-expression scale, ranging from 0 to 10, was

238 established, where 0 represents the lowest and 10 the highest expression. A maximum cut-off value of
239 q25 (quantile) was set to capture the minimum expression of markers. The "blend" threshold was set
240 to 0.1, initiating the blending of selected colours from the weakest signal. The percentage of cells co-
241 expressing selected markers was determined by fetching normalized counts for each marker and
242 calculating the co-expression percentage across cells.

243 **Scoring activity of transcription factor regulons with SCENIC**

244 The integrated R object file containing raw counts matrix file was loaded into R and gene regulatory
245 networks was inferred using PySCENIC package (v0.11.2) (Aibar et al., 2017). Regulons for which
246 >20 target genes were identified was used further and its activity was depicted in heatmap s.

247 **Identification of clonal sub-populations**

248 Clonal sub-populations were defined by chromosomal arm level copy-number differences using
249 Gaussian mixture models to identify regions of the genome where contiguous genes show consistent
250 increased/decreased expression within subsets of cells in a single-cell RNA-sequencing data set, in a
251 reference-free manner (Kinker et al., 2020). Code for our analysis was adapted from the
252 module5_cna_subclones.R script available at https://github.com/gabrielakinker/CCLE_heterogeneity.

253 Libraries for whole-genome sequencing (WGS) were prepared using the TruSeq DNA Nano High
254 Throughput kit (Illumina) and sequenced as 150bp paired-end reads on a NovaSeq 6000 (Illumina).
255 Reads from PDXs were aligned to hg19 (Ensembl Homo_sapiens.GRCh37.73.dna) and mm10
256 (Ensembl Mus_musculus.GRCm38.73.dna) using BWA MEM (v0.7.17), with duplicates marked by
257 Picard (v2.17.3). Xenomapper (v1.0.1) (Wakefield, 2016) was used to identify reads mapping to hg19
258 only. The patient germline (blood) sample was aligned and processed in the same fashion but to the
259 hg19 reference only.

260 PDX and germline BAM files were sorted with samtools (v1.9) and provided as input for clonality
261 assessment based on copy-number alterations using the HATCHet algorithm (v0.1) (Zaccaria et al.,
262 2020) with Gurobi Optimizer (v9.1.1, Linux 64-bit). Parameters were set as follows: mapQ=11,
263 baseQ=11, snpQ=11, minCov=10, maxCov=300, binSize=100kb, with the sensitivity parameter (-l)
264 set to 0.4.

265

266 **Results**

267 ***Establishing patient-derived models of neuroendocrine pathologies in prostate cancer***

268 To better represent the heterogeneity of prostate cancer in the clinic, the Melbourne Urological
269 Research Alliance (MURAL) established a collection of patient-derived xenografts (PDXs) spanning
270 treatment-naïve primary prostate cancer to castration-resistant metastases (Risbridger et al., 2021).

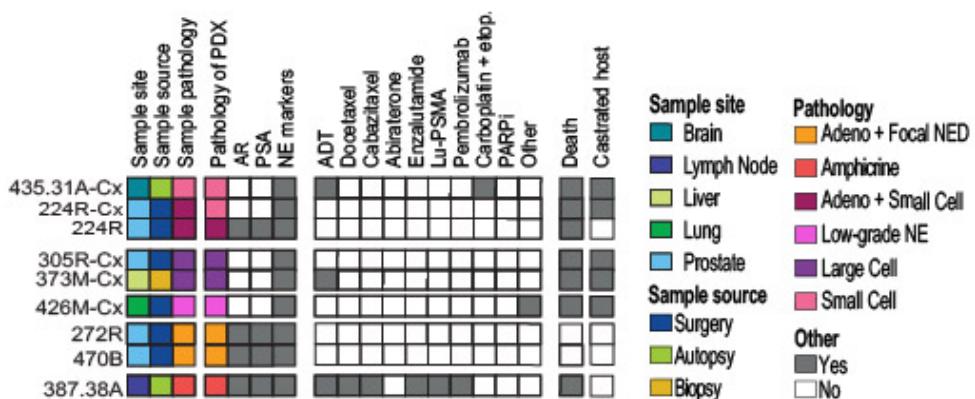
271 This study focuses on nine MURAL PDXs with neuroendocrine features, including 8 published
272 models (Risbridger et al., 2021) and a newly described PDX (470B). Each has undergone thorough
273 histological assessment, along with genomic and transcriptomic profiling, to accurately annotate its
274 pathology and confirm fidelity with the neuroendocrine phenotypes of the original donor patient
275 (Risbridger et al. 2021).

276 The selected PDXs represent a variety of histopathologies, including adenocarcinoma with
277 neuroendocrine differentiation (Focal NED; n=2), amphicrine carcinoma (n=1), mixed
278 adenocarcinoma-small cell (n=1), small cell (n=2), large cell prostate cancer (n=2) and low-grade
279 neuroendocrine carcinoma (n=1) (Figure 1). In each case, the histopathology of the PDX reflects the
280 features of the original patient tumour.

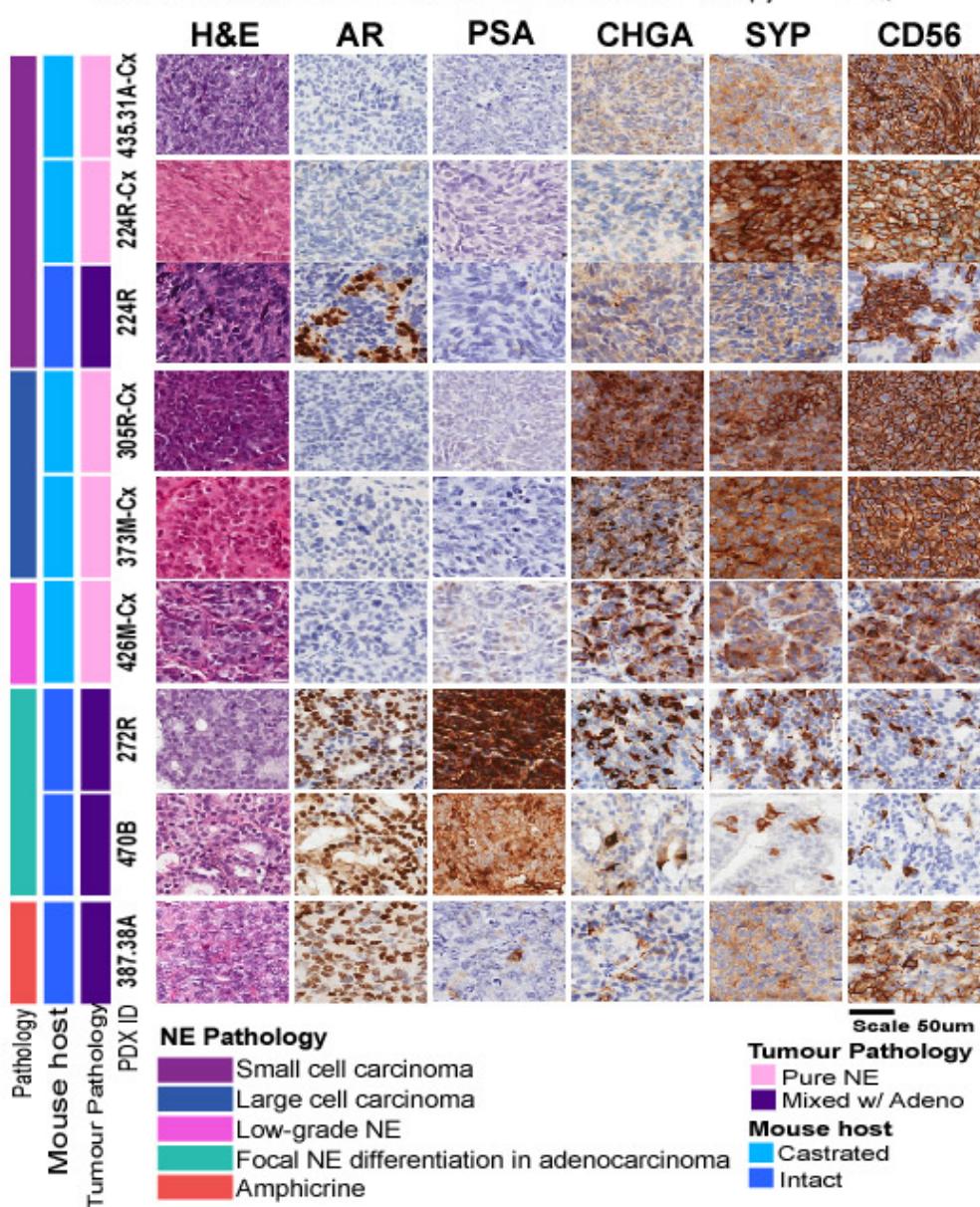
281 Four PDXs originate from primary tumour samples donated at the time of radical prostatectomy from
282 patients who had not received any systemic therapies (224R, 305R-Cx, 272R, 470B). The other four
283 PDXs originate from metastases via biopsy, metastasectomy or from a rapid autopsy from patients
284 with prior treatment, including ADT, androgen receptor signalling inhibitors, taxane chemotherapy,
285 platinum chemotherapy, and Lu-PSMA (435.31A-Cx, 373M-Cx, 426M-Cx, 387.38A) (Figure 1A).
286 Notably, patient 426M-Cx was diagnosed with de novo neuroendocrine prostate cancer at a very
287 young age (before 30), while patient 470B had a germline *BRCA2* mutation.

288 All patient samples were initially grafted into immunocompromised mice with testosterone implants
289 (Risbridger et al., 2021). Several PDXs continue to be grown under these conditions (224R, 272R,
290 387.38A, 470B). Other PDXs were subsequently regrafted in castrated host mice to simulate patients
291 undergoing ADT (305R-Cx, 373M-Cx, 426M-Cx, 435.31A-Cx and 224R-Cx) [Table S1]. The tumour
292 from patient 224 was maintained under both conditions, providing two PDX sublines. The PDX from
293 testosterone-supplemented mice (224R) has mixed adenocarcinoma-small cell pathology, while the
294 PDX from castrated mice has pure small cell (224R-Cx) pathology. Targeted exome sequencing
295 revealed an abundance of alterations to *TP53*, *RBI* and *PTEN* in these PDXs, which is common in
296 NEPC [Supp Fig S1]. Overall, these PDXs represent diverse forms of prostate cancer with
297 neuroendocrine features.

A



B



298
299

300 **Figure 1: Diverse clinical and pathological landscape of MURAL PDXs with neuroendocrine**
301 **features.** (A) Clinical characteristics of the donor tumours used to establish of PDX models included
302 in this study, the heatmap summarises the features of the patient samples, pathology of the PDXs, the

303 patients' treatment histories, collection method, follow-up, and whether the PDXs are maintained
304 intact mice with testosterone implants or castrated mice. (B) Histopathology of PDX tumours,
305 showing tissue morphology and staining for protein markers of adenocarcinoma (AR, PSA) and
306 neuroendocrine (CHGA, SYP, CD56) Sidebar indicate assigned PDX tumour pathology and mouse
307 host type.

308

309 ***Prostate cancer cells with neuroendocrine pathology include a diverse array of***
310 ***transcriptional states***

311 To analyse the heterogeneity of tumours with neuroendocrine features at single cell resolution, we
312 obtained the transcriptional profiles of the nine PDXs using the 10X Genomics Chromium Single Cell
313 3' sequencing chemistry (Methods). After removing mouse cells using Xenocell and iterative filtering
314 of low-quality cells via Seurat (Methods) 1,202 – 7,796 cells were detected per PDX (mean: 2,659)
315 [Supp Table S1]. The average number of genes detected per cell per PDX ranged from 2,829 – 8,037
316 (mean: 4,869.6). This demonstrates the robustness of our protocols for isolation and sequencing
317 individual cells from prostate cancer PDXs.

318 Cells were clustered into subpopulations based on transcriptional differences and visualized on
319 Uniform Manifold Approximation and Projection (UMAP) plots, with the optimal number of clusters
320 per samples determined using Clustree (Methods). Each tumour contained 3-8 transcriptionally
321 distinct subpopulations of cells, with an average of 5 subpopulations per tumour [Sup Fig S2].
322 Functional enrichment analysis using the MSigDB Hallmarks and CancerSEA signatures (Yuan et al.,
323 2019) revealed transcriptional subpopulations enriched for similar gene sets across all tumours, with
324 proliferation and stemness signatures seen in at least one cluster in every tumour and EMT, hypoxia
325 and invasion signatures represented as well [Sup Fig S2]. These enrichments may represent common
326 biological processes active across all neuroendocrine pathologies in prostate cancer. In contrast, the
327 degree of transcriptional heterogeneity varied with tumour pathology. While most PDXs had 2-3
328 distinct neuroendocrine clusters, all small cell NE PDXs had 5-6 subpopulations no matter whether
329 they were derived from primary (224R and 224R-Cx) or metastatic (435.31A-Cx) tissues.

330 Pathology also determined the clustering of focal NED and mixed adeno-small cell tumours, with
331 cells with adenocarcinoma markers forming distinct clusters from cells expressing neuroendocrine
332 markers. In the focal NED PDXs 272R and 470B, neuroendocrine clusters were located on the
333 UMAPs in close proximity to adenocarcinoma clusters, but in the mixed adeno-small cell PDX 224R,
334 these two populations were clearly distant from one another [Sup Fig S2]. Such differences in
335 clustering patterns with individual PDXs suggest each neuroendocrine pathology may harbour its own
336 set of transcriptionally distinct sub-populations.

337

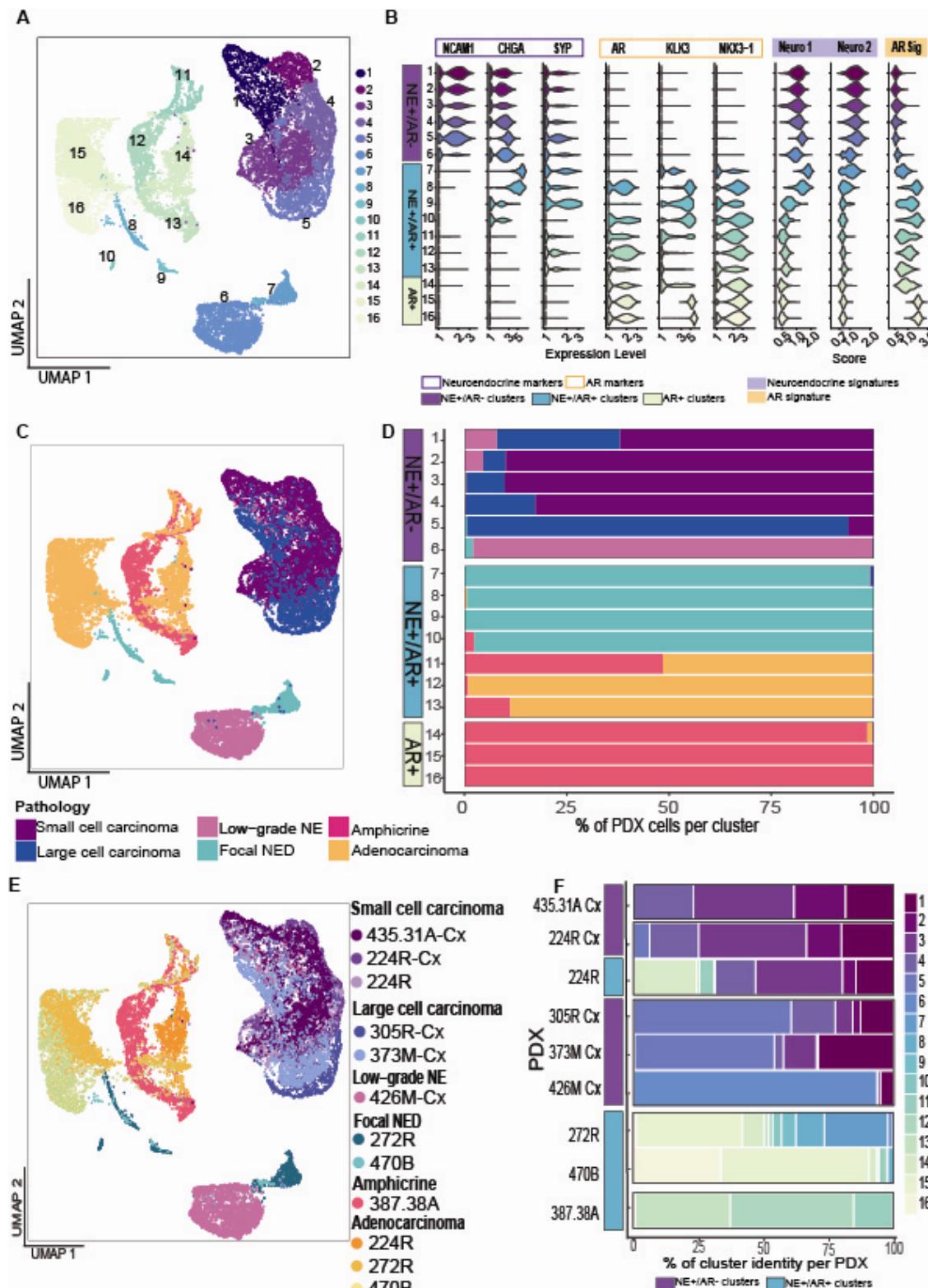
338 ***Distinctive transcriptional subpopulations distinguish different neuroendocrine***
339 ***pathologies from each other***

340 To identify transcriptional sub-populations shared between or unique to NE pathologies, we adopted a
341 data integration strategy based on the CSS Simspec method, which showed optimal ability to match
342 cells based on pathology in our benchmarking studies using the 224R and 224R-Cx samples
343 [Methods; Supplementary Note 1]. Integrating expression counts from 18,632 cells from all 9 PDXs
344 using CSS Simspec yielded 16 clusters. The positions of these clusters on the UMAP reflected
345 differences in tumour pathology (Fig 2A), which had greater influence on clustering than cell cycle
346 state, prior treatment status or site of tissue collection [Sup Fig S3].

347 Clusters 1-6 displayed robust expression of the neuroendocrine markers NCAM1, CHGA and SYP
348 and virtually no expression of AR signalling markers (Fig 2B): thus, they were labelled NE+/AR-
349 clusters. Cells in Clusters 1-6 were predominantly from tumours with large or small cell NE
350 pathologies (Figs 2C & 2D). Clusters 1-4 were shared across PDXs with small cell pathology (224R,
351 224R-Cx and 435.31A-Cx) and large cell pathology (305R-Cx and 373M-Cx) (Figs 2E & 2F),
352 revealing an overlap in the composition of some transcriptional sub-populations between these types
353 of NEPC. In contrast, cluster 5 predominantly contained cells from large-cell NEPC tumours (305R-
354 Cx and 373M-Cx). Nearly all the cells in cluster 6 were from PDX 426M-Cx, which has low-grade
355 NE pathology. This cluster was situated far from the other NE+/AR- populations, likely reflecting the
356 unique clinical characteristics of the patient. Clusters 1-5 contained a high proportion of cells in S and
357 G2M phase, reflecting the highly proliferative nature of fully differentiated NEPC. [Sup Fig S3A].

358 Clusters 7 – 13 co-expressed neuroendocrine and AR signalling markers (NE+/AR+; Fig 2B). Each of
359 these clusters displayed variable expression of CHGA and/or SYP, but little to no NCAM1. Similarly,
360 expression of AR and KLK3 varied across these clusters. Most cells in NE+/AR+ clusters came from
361 PDXs with the intermediate focal NED and amphicrine pathologies (Figs 2C & 2D), revealing focal
362 NED to also be an AR-expressing neuroendocrine pathology. Clusters 8-10 were specific to tumours
363 with focal NED pathology (PDX 272 and 470B) while clusters 11-13 were from the amphicrine
364 tumour (Fig 2E & 2F) indicating that although they share AR expression, focal NED and amphicrine
365 pathologies diverge at the transcriptional level from each other.

366 Finally, Clusters 14-16 had robust expression of AR-related genes with virtually no NE gene
367 expression (AR+; Fig 2B). They were comprised of cells from the adenocarcinoma component of the
368 focal NED tumours and the mixed adeno-small cell PDX 224R.



369

370 **Figure 2. Inter-tumoural heterogeneity can be observed between the different pathologies and**
 371 **patients. A) UMAP depicting the multiple sub-clusters detected in the integrated dataset. 16 clusters**
 372 **were detected. B) Violin plot showing the range of expression of the neuroendocrine-specific genes**
 373 **(SYP, CHGA, NCAM1) and androgen-regulated genes (AR, KLK3, NKX3.1) per cluster. Clusters 1-**

374 6 are labelled as NE+/AR-, clusters 7-13 are labelled as NE+/AR+ and clusters 14-16 are AR+/NE-.
375 C) UMAP shows the location of each sample. Clusters 1-6 comprise small and large cell pathologies.
376 Clusters 7-13 include mixed pathologies (NED and amphicrine). Clusters 14-16 consists in
377 adenocarcinoma cells. D) Stacked bar plot representing the contribution of each tumour to the
378 individual clusters. E) UMAP coloured by PDX sample. F) Stacked bar plot describing the proportion
379 of clusters per PDX sample.
380

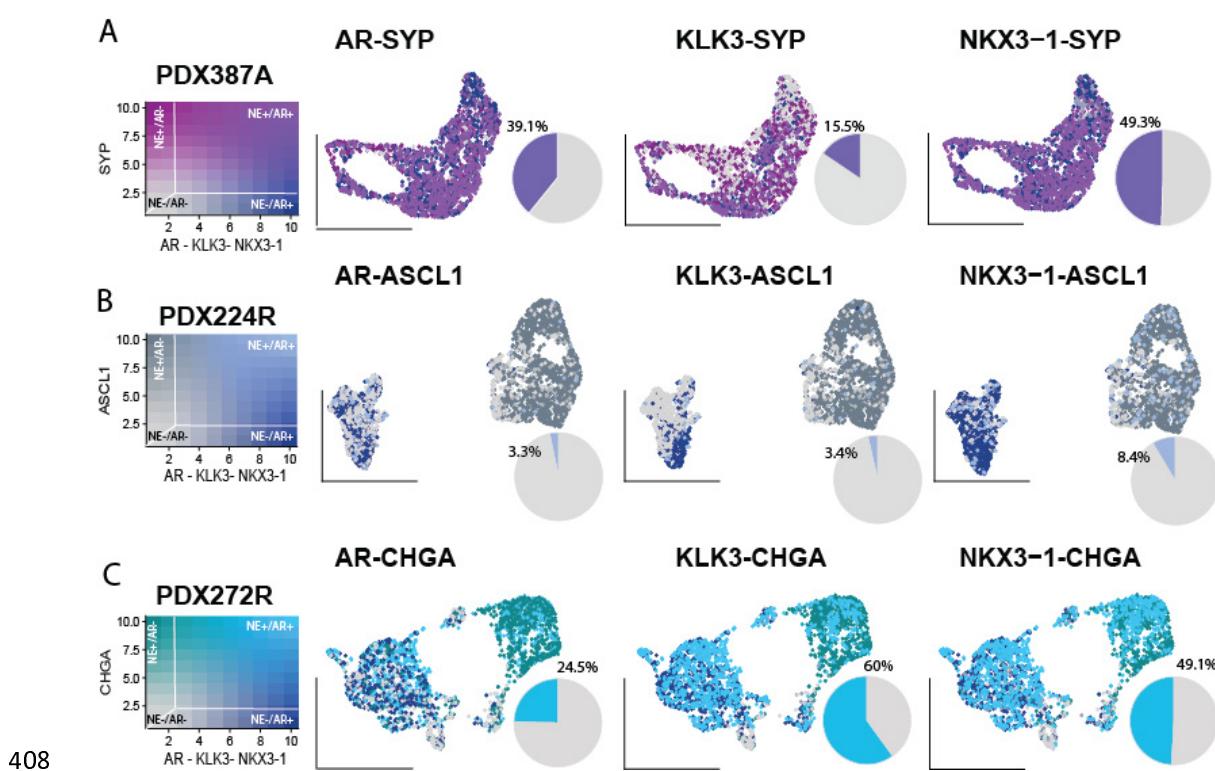
381 ***Cells with focal NED pathology co-express neuroendocrine and adenocarcinoma markers***

382 Detection of both AR signalling and neuroendocrine genes in clusters 8-10 could be linked to
383 presence of cells with concurrent expression of both sets of genes, but could also occur if those
384 clusters contained a mix of neuroendocrine and adenocarcinoma cells. To investigate, we performed
385 cell-level co-expression analysis using the “Featureplot” function of Seurat to enumerate and visualize
386 the fraction of cells in a sample with detectable expressed of both markers AR signalling genes and
387 canonical NE markers within individual neuroendocrine cells. PDX 272R, which has focal NED
388 pathology, was analysed along with the amphicrine PDX 387.38A and the mixed adeno-small cell
389 PDX 224R as positive and negative controls for co-expression of AR signalling and NE genes,
390 respectively.

391 As expected of an amphicrine tumour, PDX387.38A displayed strong co-expression of *SYP* with
392 multiple adenocarcinoma markers (Figure 3A). Transcript counts for each pair of markers was
393 generally robust in the cells where co-expression was detected. In contrast, PDX 224R with the mixed
394 of small cell and adenocarcinoma pathology displayed very limited co-expression of its most
395 abundant NE marker gene, *ASCL1*, and AR signalling genes (Fig 3B), in line with separation of its
396 adenocarcinoma and neuroendocrine components on a UMAP plot [Supp Fig S2]

397 PDX 272R displayed robust expression of multiple neuroendocrine as well as adenocarcinoma
398 markers [Sup Fig S4], with *CHGA* being the neuroendocrine gene with highest average level of
399 expression. *AR* and *CHGA* were concurrently expressed by 24.5% of cells in PDX 272R, while
400 *KLK3-CHGA* co-expression was found in 60% of cells and *NKX3.1-CHGA* co-expression in 49.1% of
401 cells (Fig 3C). Rates of co-expression of *CHGA* with AR markers in 272R exceeded those of the
402 amphicrine PDX 387.38A, demonstrating that the focal NED component of 272R expressed the AR.

403 Interestingly, co-expression of *CHGA* and *AR* regulated genes was also observed in the
404 adenocarcinoma component of PDX 272R. However, cells from PDX 287R, a pure adenocarcinoma
405 from the MURAL collection profiled in a recent study (Porter et al, 2023), displayed virtually no
406 detectable expression of NE genes [Supp Fig S5]. Co-expression of both markers in prostate
407 adenocarcinoma may therefore only occur in the context of focal neurodifferentiation.



409 **Figure 3. Co-expression analysis of neuroendocrine and adenocarcinoma markers.** Colour
410 blending represents the co-expression level; data has been scaled from 0-10. Zero represents cells
411 without any expression of the markers, while 10 represents cells with the highest expression level.
412 The percentage represents only the cells that co-express such markers. **A)** UMAPs representing the
413 cells that co-express AR-SYP, KLK3-SYP, and NKX3.1-SYP in sample PDX387.38A. Pink
414 represents cells expressing SYP, and dark blue represents cells expressing AR, KLK3 or NKX3.1. A
415 purple shade represents cells that highly co-express such markers. Grey shades represent cells that
416 don't express any marker. **B)** UMAPs representing the cells that co-express AR-CHGA, KLK3-
417 CHGA, and NKX3.1-CHGA in sample PDX272R. Green colour represents cells that uniquely express
418 CHGA, and dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A blue shade
419 represents cells that highly co-express such markers. Grey shades represent cells that don't express
420 any marker. **C)** UMAPs representing the cells that co-express AR-ASCL1, KLK3-ASCL1, and
421 NKX3.1-ASCL1 in sample PDX224R. Dark grey represents cells that uniquely express ASCL1, and
422 dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A light blue shade
423 represents cells that highly co-express such markers. Grey shades represent cells that don't express
424 any marker.

425

426 **Unique expression signatures distinguish types of neuroendocrine pathologies in prostate
427 cancer**

428 To compare transcriptional differences between neuroendocrine pathologies, we applied differential
429 gene expression and gene set enrichment (GSE) analysis to all 16 clusters in the integrated data set.
430 There was high overlap in the top 5 differentially expressed genes (DEGs) within the NE+/AR-
431 clusters, which represent the small and large-cell NE pathologies that lack AR expression (Fig 4A).
432 Very few DEGs were shared with the NE+/AR+ clusters, which contain the AR-expressing focal
433 NED and amphicrine populations. The exceptions were cell cycle genes such as *MKI67*, which

434 overlapped between Clusters 1, 2 and 11 due their proliferative nature. Comparison of DEGs
435 suggested AR-expressing neuroendocrine pathologies have distinct transcriptional signatures from
436 those that lack AR expression.

437 To search for differences in cancer-related pathways and processes between neuroendocrine
438 pathologies, cluster-level enrichment was assessed for the Hallmarks 50, oncogenic and Kyoto
439 Encyclopedia of Genes and Genomes (KEGG) gene sets from MSigDB (Liberzon et al., 2015). Cells
440 from AR+/NE- small and large cell neuroendocrine pathologies have distinct enrichment profiles
441 from AR+/NE+ amphicrine and focal NED cells (Fig 4B). Certain gene sets showed mutually
442 exclusive patterns of enrichments in focal NED as compared to small and large-cell pathologies, while
443 clusters from the amphicrine PDX shared gene set signatures with both focal NED and small and
444 large-cell PDXs.

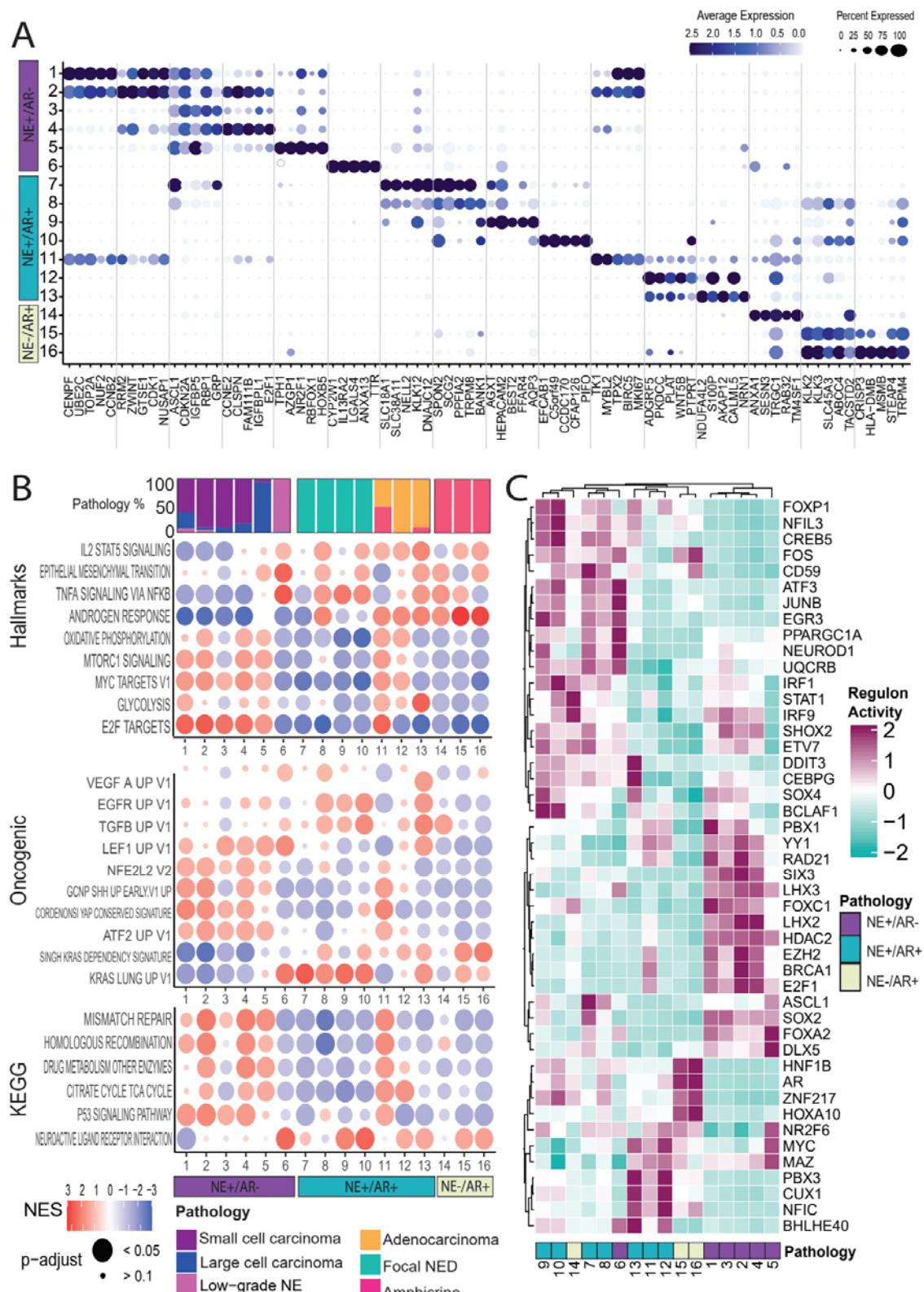
445 The common set of enriched gene sets was observed in the NE+/AR- Clusters 1-5 included E2F
446 targets and oxidative phosphorylation, consistent with the highly proliferative nature of small and
447 large cell NEPC. Noteworthy oncogenic signalling enrichments included MYC, MTORC1, LEF1, a
448 key regulator of epithelial-mesenchymal transition (EMT), and YAP signalling, which was recently
449 linked to emergence of stemness phenotypes in castration-resistant prostate cancer (Tang et al, 2022).

450 In contrast, the NE+/AR+ Clusters 7-10 that are dominated by the focal NED pathology displayed
451 markedly different enrichment from Clusters 1-5. Top enrichments included the TNFA signalling via
452 NFKB and KRAS signalling, both of which were also enriched in the adenocarcinoma Clusters 14-16
453 but downregulated in the small/large cell clusters (Fig 3B). In contrast to adenocarcinoma, there was
454 high expression of genes upregulated by EGFR and TGF β . Enrichment of EMT was seen as well,
455 though in focal NED activation of EMT may occur through KRAS instead (Kim et al., 2015). Indeed,
456 each pathology shows divergent expression of EMT genes [Supp Fig S6]. Androgen response genes
457 were most strongly upregulated in Cluster 8, indicating AR signalling expression may vary across
458 focal NED cells.

459 Interestingly, Clusters 11-13 primarily represent cells from the amphicrine PDX 387.38A showed
460 enrichment signatures in common with both Clusters 1-5, which include the NE+/AR- small and large
461 cell NE pathologies, and Clusters 7-10, which were mainly NE+/AR+ focal NED (Fig 4B). Cluster
462 11 shared a GSE profile with Clusters 1-5, Cluster 12 matched all the other neuroendocrine
463 pathologies, while Cluster 13 was most similar to focal NED as well as adenocarcinoma cells
464 (Clusters 14-16). Thus, the amphicrine PDX 387.38A contains a mix of transcriptional states covering
465 both AR-expressing pathologies as well as neuroendocrine pathologies where AR expression is
466 suppressed.

467 Cluster 6, comprised nearly entirely of cells from the low-grade NE PDX 426M-Cx, was an outlier in
468 the GSE analysis. Its GSE profile was more similar to Clusters 7-10 than to Clusters 1-5, including

469 enrichments for TNFA signalling via NFKB, EMT, KRAS signalling and KEGG neuroactive ligand-
470 receptor interactions. Despite little to no AR expression, PDX 426M-Cx appears to share some
471 characteristics with AR-expressing pathologies.



472

473 **Figure 4. Characterizing gene expression features that distinguish neuroendocrine sub-**
 474 **populations within the integrated data set. A)** Genes that are differentially expressed per cluster
 475 are shown. The size of the circle represents the percentage of cells expressing the gene. The intensity

476 of the colour represents the gene's expression level; dark blue signifies a higher level, while light blue
477 to white shows a low or null expression of the gene. **B)** Enrichment of selected Hallmark, Oncogenic
478 targets and KEGG gene sets from MSigDB are shown. The size of the circle represents adjusted p-
479 value, small circles represent p-values over 0.1, and larger circles represent p-values less than 0.05.
480 The enrichment score is represented by colour; red is a positive enrichment score, and blue is a
481 negative enrichment score. **C)** Transcription factor analysis heatmap. Regulon activity is scored from
482 2 to -2, where 2 represents a positive regulon activity, and -2 symbolises a negative regulon activity.
483 Here 46 manually curated TFs out of the 87 significantly enriched TFs reported by SCENIC are
484 displayed.

485

486 Transdifferentiation to neuroendocrine prostate cancer is driven by key master regulator
487 transcriptional factors (TFs) (Mu et al., 2017; Adams et al. 2019; Guo et al., 2019). To infer how
488 changes to gene regulatory networks contribute to differences in gene expression states observed
489 between the 16 cell clusters in our data, we scored activity of transcription factor regulons in each
490 cluster using the SCENIC algorithm. Concordant with prior results, the small/large cell clusters (1-5)
491 and focal NED clusters (7-10) showed clear divergence in inferred TF regulon activity (Fig 4C).
492 Clusters 1-5 were predicted to have high activity of several TFs that regulate proliferation, chromatin
493 state and DNA replication/repair, including E2F1, EZH2, HDAC2 and BRCA1. Regulons for known
494 neuroendocrine lineage regulators ASCL1, SOX2 and FOXA2 were active in all small cell, large cell
495 and focal NED clusters, but scored markedly higher in the small/large cell clusters. There were
496 numerous TFs with high activity in focal NED Clusters 7-10 but weak to no activity in the small/large
497 cell clusters (Fig 4C). Among the TFs specific to focal NED clusters were the stemness factors FOS
498 and JUNB, along with NEUROD1, a TF shown to contribute to global transcriptional differences
499 between NEPC tumours (Labreque et al., 2010). The focal NED clusters also showed overlap in TF
500 activity with the adenocarcinoma clusters (14-16), aligning with the observation of retained AR
501 signalling in those cells. As expected, AR was one of the shared TFs but there were also others,
502 including FOS and the lineage factor HOXA10. As in the GSE analysis, the amphicrine clusters 11-
503 13 showed overlap in TF activity with both small/large cell and focal NED clusters. ASCL1 was not
504 active in amphicrine clusters, however. SCENIC found 6 TFs (DDIT3, CEBPG, PBX3, CUX1, NFIC
505 and BHLHE40) with elevated activity in amphicrine clusters.

506 In summary in addition to AR signalling, several other biologically meaningful differences expression
507 were seen between the AR-expressing focal NED and amphicrine pathologies and small and large cell
508 neuroendocrine cells, which lack AR activity. These included numerous pathways and processes
509 involved in oncogenic signalling, inflammation, and metastasis. Differences in TF activity between
510 pathologies were predicted by SCENIC, with the focal NED and amphicrine pathologies showing
511 overlap in TF regulon expression with adenocarcinoma cells.

512

513 ***Single-cell copy-number profiling indicates focal NED and small cell neuroendocrine***
514 ***carcinoma arise by different means in tumours of mixed pathology***

515 Transcriptional profiling of single-cell clusters supports the small cell neuroendocrine pathology as
516 being further diverged from adenocarcinoma than the focal NED pathology. This is reflected in the
517 single-sample UMAPs from PDXs 224R and 272R [Supp Figs S3 and S4]. As noted, the
518 adenocarcinoma and neuroendocrine subpopulations occupy separate and distant regions of the
519 UMAP plot for 224R, indicative of divergent cell states. However, in the UMAP 272R the
520 adenocarcinoma and focal NED cells cluster close together in a nearly contiguous mass consistent
521 with a continuum of cell states. This view is further supported by pseudotime analysis [Supp Fig S7]
522 as well as the observed co-expression of AR and NE markers in cells of 272R but not 224R [Fig 3].

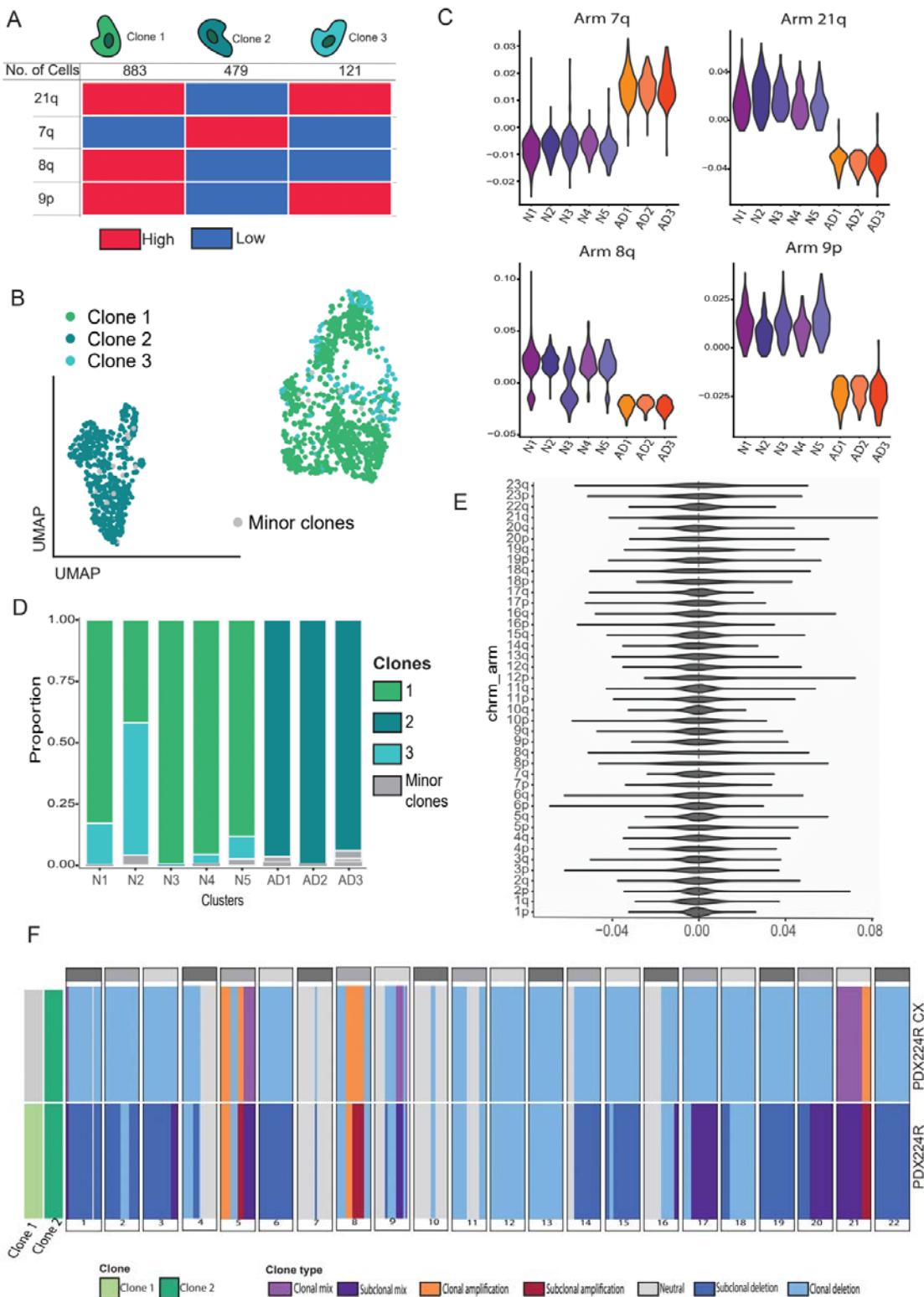
523 To determine whether genetic divergence existed between the adenocarcinoma and neuroendocrine
524 subpopulations in PDXs 224R and 272R, we inferred copy-number status at the chromosome arm
525 level from the transcriptomes of individual cells. Following the methods of Kinker et al we searched
526 for genetically distinct clonal subpopulations within each PDX tumour. Briefly, combined expression
527 of genes on the same chromosome arm is measured in each cell to detect heterogeneity in expression
528 level chromosome arms indicative of copy-number gains and losses in a sample. Clustering cells by
529 arm-level expression detects clonal subpopulations with genetic differences at the copy-number level
530 [Methods].

531 Three distinct clonal sub-populations could be detected in PDX 224R on the basis of inferred copy-
532 number states on four chromosome arms: 21q, 8q and 9p and 7q [Fig 5A]. Clones 1 and 3 mapped
533 exclusively to the neuroendocrine cell clusters of 224R, while Clone 2 was found only in the
534 adenocarcinoma clusters [Fig 5B and 5D]. Expression of genes on 21q, 8q, 7q and 9p showed
535 consistent differences across all neuroendocrine and adenocarcinoma clusters [Fig 5C], indicating the
536 neuroendocrine and adenocarcinoma cells in PDX 224R come from genetically distinct clones.

537 In contrast, cells from PDX 224-Cx, which was derived from 224R via growth in castrate host mice,
538 showed no consistent or substantial differences in gene expression at the chromosome arm-level [Fig
539 5E], suggestive of selection and emergence of a single clone from the neuroendocrine population
540 post-castration. To validate these findings, whole-genome sequencing (WGS) to 80-90X coverage
541 [Methods] of 224R, 224R-Cx and a germline sample from patient 224 was performed and analysed
542 using the HATCHet algorithm, which infers clonal subpopulations from WGS based on frequencies
543 of copy-number alterations across matched samples from the same patient (Zaccaria and Raphael,
544 2020). HATCHet predicted the presence of two distinct clonal sub-populations in 224R differing in
545 copy-number profile across 17 of the 22 autosomes, including copy-number changes on 7q, 8q, 9p
546 and 21p [Fig 5F]. In contrast, only a single clone was detected in PDX 224R-Cx. The patterns of

547 amplification and deletion on 7q, 8q, 9p and 21p were concordant with those inferred from single-cell
548 RNA-sequencing data.

549 In contrast, no differences in expression at the chromosome arm level were detected from the 272R
550 single-cell RNA-sequencing data, indicating this PDX is homogeneous at copy-number level,
551 harbouring only a single dominant clone [Fig 5E] Therefore, the adenocarcinoma and focal NED
552 populations in 272R come from the same clone. The presence of a cluster with low expression of
553 both AR and NE markers between the adenocarcinoma and focal NED clusters marks 272R as
554 actively undergoing a process of transdifferentiation [Supp Fig S3]. PDX 470B also has focal NED
555 pathology and likewise showed no evidence for copy-number differences amongst adenocarcinoma
556 and focal NED cells [Supp Fig S8]. On the other hand, the genetic differences between the
557 adenocarcinoma and small cell neuroendocrine subpopulations in PDX 224R are more consistent with
558 divergence of two populations in the prostate prior to diagnosis. These contrasting patterns of sub-
559 clonality align with the concept of focal NED and small cell neuroendocrine pathologies as being
560 distinct entities within a spectrum of neuroendocrine states, with focal NED being less diverged from
561 adenocarcinoma.



563 **Figure 5: The small cell neuroendocrine and adenocarcinoma components of the mixed**
564 **pathology in PDX224R comprise genetically distinct clonal sub-populations.** (A) Copy-number
565 profiling of cells based on combined expression levels of genes per chromosome arm from single-cell
566 RNA-sequencing identifies three genetically distinct clonal sub-populations distinguished by
567 differences on four chromosomal arms. (B) UMAP coloured by clone. Adenocarcinoma clusters are
568 represented mainly by clone 2, while neuroendocrine clusters are represented by clone 1 and 3. (C-D)
569 The neuroendocrine and adenocarcinoma components of PDX224R differ in expression level of genes
570 on all four of the chromosome arms that define clones. Clones 1 and 3 are found exclusively in the
571 neuroendocrine sub-populations while Clone 2 exclusively belongs to the adenocarcinoma sub-
572 populations. (E) No evidence could be found for existence of distinct genetic clones within the focal
573 NED PDX272. (F) Whole-genome sequencing of PDX224R and PDX224R-Cx reveals loss of clonal
574 diversity after castration and retention of a clone matching the profile of the genetic clone overlapping
575 the neuroendocrine population within PDX224R single-cell RNA-sequencing data.

576

577 **Discussion**

578 Integrative analysis of the transcriptional profiles of 18,632 individual cells from nine PDXs of NEPC
579 demonstrated transcriptional features of neuroendocrine cells are strongly associated with pathology.
580 Strikingly, focal NED cells retain expression of AR signalling genes at levels comparable to
581 amphicrine and adenocarcinoma cells, while maintaining robust expression of neuroendocrine
582 markers (Figure 2). Co-expression of the neuroendocrine marker CHGA along with one or more of
583 AR, KLK3 and NKX3.1 was widespread in focal NED cells (Figure 3). Thus, like amphicrine, focal
584 NED is another neuroendocrine pathology with capacity for AR signalling.

585 Neuroendocrine pathologies that retain AR signalling have distinct patterns of intra-tumoural
586 transcriptional heterogeneity from those do not, involving multiple oncogenic processes. The AR-null
587 small and large cell NE pathologies displayed marked upregulation of growth-associated processes
588 such as Myc and YAP signalling, DNA repair and oxidative phosphorylation relative to other
589 pathologies (Figure 4B), consistent with their more proliferative nature. In contrast, these signatures
590 were depleted in focal NED, amphicrine and the low-grade NE sub-populations, which instead were
591 enriched for a non-overlapping set of pathways, including KRAS, TNF-alpha, EGFR and IL2-STAT5
592 signalling. Similarly, each pathology showed a unique profile of activity of master regulator
593 transcription factors (Figure 4C).

594 Transcriptional sub-populations expressing EMT genes were observed in every PDX regardless of
595 pathology [Figure 4, Supp Figs S2 and S6]. The well-established roles of EMT in plasticity and
596 metastasis may underlie the aggressiveness of NEPC. Notably, the activation of EMT exhibits
597 pathology-specific patterns. Focal NED cells were enriched for KRAS signaling, recognized as an
598 EMT driver (Brabertz et al., 2018; Thiery et al., 2009), while large and small cell pathologies
599 prominently express LEF1, another acknowledged EMT activator (Liang et al., 2015).

600 Whether focal NED can transition to small or large cell pathology remains unresolved. The focal
601 NED PDXs 272R and 470B contained intermediate transcriptional sub-populations between
602 adenocarcinoma and focal NED. In contrast, within the mixed small cell-adenocarcinoma PDX 224R
603 the neuroendocrine and adenocarcinoma sub-populations were both transcriptionally and genetically
604 distinct (Figure 5), indicating complete trans-differentiation and long-standing divergence. Further
605 longitudinal studies of PDXs and patients may shed light on whether focal NED is a transitional or
606 terminally differentiated state.

607 Current standard of care chemotherapies for prostate cancer patients with neuroendocrine pathologies
608 do not confer lasting benefit. Our results suggest new therapeutic options based on pathology. Focal
609 NED may retain sensitivity to androgen-targeting agents and could respond to disruption of KRAS
610 and EGFR signalling. In contrast, YAP and Wnt targeting agents may work better against small and
611 large-cell NEPC tumours. Drugs targeting each of these pathways have shown effectiveness in solid
612 tumours (Gibault et al. 2017; Liu et al., 2017; Mustachio et al., 2021; Tang et al. 2022; Zhang et al,
613 2020) but have not yet been deeply explored as therapeutic options for prostate cancer.

614 The MURAL PDX collection afforded an opportunity to isolate cells of rare NE pathologies and study
615 them comprehensively at the transcriptional level. Our PDX models faithfully recapitulate the
616 molecular profiles of the original donor tumours (Risbridger et al. 2021) and features of
617 transcriptional ITH observed here are consistent with single-cell studies of CRPC (Bolis et al., 2021;
618 Brady et al., 2021; Conteduca et al., 2021; Dong et al., 2020; Horning et al., 2018; Wang et al., 2022)
619 and small-cell lung cancer (Stewart et al. 2020).

620 **Conclusions**

621 Single-cell RNA-sequencing of a diverse spectrum of PDX models of NEPC reveals focal NED as
622 being transcriptionally distinct from small and large cell NEPC, requiring its own treatment and
623 management strategies. Our work redefines the molecular landscape in NEPC, revealing previously
624 hidden layers of transcriptional heterogeneity that provide a basis to further develop new therapeutic
625 opportunities for this low-survival subtype of prostate cancer.

626 **Declarations**

627 **Ethics Statement**

628 Patient-derived xenografts were established by the Melbourne Urological Research Alliance
629 (MURAL) with informed written consent according to human ethics approvals from Monash Health
630 (RES-20-0000-107C), the Peter MacCallum Cancer Centre (18/76; 11/102; 27/97), Eastern Health
631 (E55/1213) and Monash University (12287). All animal handling and procedures were approved by
632 the Monash University Standing Committee of Ethics in Animal Experimentation (MARP 2012/158,
633 MARP/2014/085, MARP/2018/087 and 28911)

634 **Consent for publication**

635 Not applicable.

636 **Availability of data and materials**

637 R and Python code used to analyse data and generate figures included in this manuscript is available
638 at https://github.com/dlgoode/QuezadaUrban_scRNaseq. The datasets generated and/or analysed
639 during the current study are not yet publicly available due establishment of a controlled-access
640 repository still being in progress, but transcript counts and processed data are available from the
641 corresponding author on reasonable request.

642

643 **Competing interests**

644 The authors declare that they have no competing interests

645 **Funding**

646 This work was supported by the CASS Foundation (Melbourne, Australia Science and Medicine
647 Grant #8669); Department of Health and Human Services acting through the Victorian Cancer
648 Agency (MCRF15023, MCRF18017, MCRF17005); the Peter MacCallum Cancer Foundation; The
649 University of Melbourne International Research Scholarship program; Consejo Nacional de Ciencia y
650 Tecnología Mexico; National Health and Medical Research Council, Australia (1138242; 1185616);
651 the Grants-in-Aid Scheme administered by Cancer Council Victoria; the EJ Whitten Foundation;
652 Movember Foundation (Global Action Plan 1); the Peter and Lyndy White Foundation; the Rotary
653 Club of Manningham; and TissuPath Pathology.

654 **Authors' contributions**

655 RQU designed the work, performed analysis, interpreted data, prepared figures and wrote and revised
656 the manuscript. SK performed analysis and prepared figures. AC generated data and tissue samples
657 from xenografts and prepared figures. HW generated data and tissue samples from xenografts. BP
658 advised on methodology. AB performed analysis. AR reviewed and assigned tumour pathology. HT
659 contributed tissues for xenografts. RAT interpreted data, supervised the work and revised the
660 manuscript. MGL interpreted data, supervised the work and revised the manuscript. GR interpreted
661 data, supervised the work and revised the manuscript. RT conceived the study, designed and
662 supervised the work, generated and interpreted data, prepared figures and revised the manuscript.
663 DLG conceived the study, designed and supervised the work, interpreted data, performed analysis and
664 wrote and revised the manuscript. All authors read and approved the final manuscript.

665 **Acknowledgements**

666 We acknowledge the members of the Prostate Cancer Research program, the patients, families, and
667 consumers who support our research. We acknowledge the patient representatives, clinical co-
668 ordinators, scientists, and clinicians, who contribute to the Melbourne Urological Research Alliance
669 (MURAL) and its collection of patient-derived models; the CASCADE program; and Kathleen
670 Cunningham Foundation Consortium (kConFab) including kConFab research nurses and staff, the
671 heads and staff of the Family Cancer Clinics, and the Clinical Follow-Up Study (which has received
672 funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the
673 National Institute of Health (USA)) for their contributions to this resource, and the many families who
674 contribute to kConFab. Patient derived xenograft models were established and maintained through the
675 Melbourne Urological Research Alliance (MURAL). Library preparation and sequencing were

676 provided by the Single Cell Innovation Laboratory, Centre for Cancer Research, University of
677 Melbourne and the Molecular Genomics Core Facility, Peter MacCallum Cancer Centre. This
678 research was supported by the Monash University Histology Platform, Monash University Animal
679 Research Laboratories, the Research Computing Facility at the Peter MacCallum Cancer Centre and
680 the NeCTAR Research Cloud.

681

682 **References**

683 Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, et al.
684 SCENIC: single-cell regulatory network inference and clustering. *Nat Methods*. 2017
685 Nov;14(11):1083–6. <https://doi.org/10.1038/nmeth.4463>

686 Aggarwal, R., Zhang, T., Small, E. J., & Armstrong, A. J. (2014). Neuroendocrine Prostate Cancer:
687 Subtypes, Biology, and Clinical Outcomes. *Journal of the National Comprehensive Cancer
688 Network*, 12(5), 719–726. <https://doi.org/10.6004/jnccn.2014.0073>

689 Bellur, S., Van der Kwast, T., & Mete, O. (2019). Evolving concepts in prostatic neuroendocrine
690 manifestations: From focal divergent differentiation to amphicrine carcinoma. *Human
691 Pathology*, 85, 313–327. <https://doi.org/10.1016/j.humpath.2018.11.016>

692 Beltran, H., Prandi, D., Mosquera, J. M., Benelli, M., Puca, L., Cyrta, J., Marotz, C., Giannopoulou,
693 E., Chakravarthi, B. V. S. K., Varambally, S., Tomlins, S. A., Nanus, D. M., Tagawa, S. T.,
694 Van Allen, E. M., Elemento, O., Sboner, A., Garraway, L. A., Rubin, M. A., & Demichelis, F.
695 (2016). Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer.
696 *Nature Medicine*, 22(3), 298–305. <https://doi.org/10.1038/nm.4045>

697 Beltran, H., Rickman, D. S., Park, K., Chae, S. S., Sboner, A., MacDonald, T. Y., Wang, Y., Sheikh,
698 K. L., Terry, S., Tagawa, S. T., Dhir, R., Nelson, J. B., de la Taille, A., Allory, Y., Gerstein,
699 M. B., Perner, S., Pienta, K. J., Chinnaiyan, A. M., Wang, Y., ... Rubin, M. A. (2011).
700 Molecular Characterization of Neuroendocrine Prostate Cancer and Identification of New
701 Drug Targets. *Cancer Discovery*, 1(6), 487–495. [https://doi.org/10.1158/2159-8290.CD-11-0130](https://doi.org/10.1158/2159-8290.CD-11-
702 0130)

703 Bolis, M., Bossi, D., Vallerga, A., Ceserani, V., Cavalli, M., Impellizzieri, D., Di Rito, L., Zoni, E.,
704 Mosole, S., Elia, A. R., Rinaldi, A., Pereira Mestre, R., D'Antonio, E., Ferrari, M., Stoffel, F.,
705 Jermini, F., Gillessen, S., Bubendorf, L., Schraml, P., ... Theurillat, J.-P. P. (2021). Dynamic

706 prostate cancer transcriptome analysis delineates the trajectory to disease progression. *Nature*
707 *Communications*, 12(1), Article 1. <https://doi.org/10.1038/s41467-021-26840-5>

708 Brabletz, T., Kalluri, R., Nieto, M. A., & Weinberg, R. A. (2018). EMT in cancer. *Nature Reviews.*
709 *Cancer*, 18(2), 128–134. <https://doi.org/10.1038/nrc.2017.118>

710 Brady, N. J., Bagadion, A. M., Singh, R., Conteduca, V., Van Emmenis, L., Arceci, E., Pakula, H.,
711 Carelli, R., Khani, F., Bakht, M., Sigouros, M., Bareja, R., Sboner, A., Elemento, O., Tagawa,
712 S., Nanus, D. M., Loda, M., Beltran, H., Robinson, B., & Rickman, D. S. (2021). Temporal
713 evolution of cellular heterogeneity during the progression to advanced AR-negative prostate
714 cancer. *Nature Communications*, 12(1), 3372. <https://doi.org/10.1038/s41467-021-23780-y>

715 Cheloni S, Hillje R, Luzi L, Pelicci PG, Gatti E. XenoCell: classification of cellular barcodes in single
716 cell experiments from xenograft samples. *BMC Med Genomics*. 2021 Jan 29;14(1):34.
717 <https://doi.org/10.1186/s12920-021-00872-8>

718 Conteduca, V., Ku, S.-Y., Fernandez, L., Dago-Rodriquez, A., Lee, J., Jendrisak, A., Slade, M.,
719 Gilbertson, C., Manohar, J., Sigouros, M., Wang, Y., Dittamore, R., Wenstrup, R., Mosquera,
720 J. M., Schonhoft, J. D., & Beltran, H. (2021). Circulating tumor cell heterogeneity in
721 neuroendocrine prostate cancer by single cell copy number analysis. *NPJ Precision Oncology*,
722 5(1), 76. <https://doi.org/10.1038/s41698-021-00211-1>

723 Davies, A., Zoubeidi, A., & Selth, L. A. (2020). The epigenetic and transcriptional landscape of
724 neuroendocrine prostate cancer. *Endocrine-Related Cancer*, 27(2), R35–R50.
725 <https://doi.org/10.1530/ERC-19-0420>

726 Dong, B., Miao, J., Wang, Y., Luo, W., Ji, Z., Lai, H., Zhang, M., Cheng, X., Wang, J., Fang, Y., Zhu,
727 H. H., Chua, C. W., Fan, L., Zhu, Y., Pan, J., Wang, J., Xue, W., & Gao, W.-Q. (2020).
728 Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate
729 cancer. *Communications Biology*, 3, 778. <https://doi.org/10.1038/s42003-020-01476-1>

730 Epstein, J. I., Amin, M. B., Beltran, H., Lotan, T. L., Mosquera, J.-M., Reuter, V. E., Robinson, B. D.,
731 Troncoso, P., & Rubin, M. A. (2014). Proposed Morphologic Classification of Prostate

732 Cancer With Neuroendocrine Differentiation. *The American Journal of Surgical Pathology*,
733 38(6), 756–767. <https://doi.org/10.1097/PAS.0000000000000208>

734 Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using
735 regularized negative binomial regression. *Genome Biol*. 2019 Dec 23;20(1):296.
736 <https://doi.org/10.1186/s13059-019-1874-1>

737 Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P, Hartman A, Srivastava A, Molla G, Madad
738 S, Fernandez-Granda C, Satija R (2023). “Dictionary learning for integrative, multimodal and
739 scalable single-cell analysis.” *Nature Biotechnology*. doi:10.1038/s41587-023-01767-y

740 He Z, Brazovskaja A, Ebert S, Camp JG, Treutlein B. CSS: cluster similarity spectrum integration of
741 single-cell genomics data. *Genome Biol*. 2020 Sep 1;21:224. <https://doi.org/10.1186/s13059-020-02147-4>

743 Horning, A. M., Wang, Y., Lin, C.-K., Louie, A. D., Jadhav, R. R., Hung, C.-N., Wang, C.-M., Lin,
744 C.-L., Kirma, N. B., Liss, M. A., Kumar, A. P., Sun, L., Liu, Z., Chao, W.-T., Wang, Q., Jin,
745 V. X., Chen, C.-L., & Huang, T. H.-M. (2018). Single-cell RNA-seq reveals a subpopulation
746 of prostate cancer cells with enhanced cell cycle-related transcription and attenuated androgen
747 response. *Cancer Research*, 78(4), 853–864. <https://doi.org/10.1158/0008-5472.CAN-17-1924>

748 Kinker GS, Greenwald AC, Tal R, Orlova Z, Cuoco MS, McFarland JM, et al. Pan-cancer single cell
749 RNA-seq uncovers recurring programs of cellular heterogeneity. *Nat Genet*. 2020
750 Nov;52(11):1208–18. <https://doi.org/10.1038/s41588-020-00726-6>

751 Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN, Sergushichev A. Fast gene set
752 enrichment analysis [Internet]. bioRxiv; 2021 [cited 2024 Feb 28]. p. 060012. Available from:
753 <https://www.biorxiv.org/content/10.1101/060012v3>

754 Kowalczyk MS, Tirosh I, Heckl D, Rao TN, Dixit A, Haas BJ, et al. Single-cell RNA-seq reveals
755 changes in cell cycle and differentiation programs upon aging of hematopoietic stem cells.
756 *Genome Res*. 2015 Dec;25(12):1860–72 <https://doi.org/10.1101/gr.192237.115>

757 Labrecque, M. P., Coleman, I. M., Brown, L. G., True, L. D., Kollath, L., Lakely, B., Nguyen, H. M.,
758 Yang, Y. C., da Costa, R. M. G., Kaipainen, A., Coleman, R., Higano, C. S., Yu, E. Y.,

759 Cheng, H. H., Mostaghel, E. A., Montgomery, B., Schweizer, M. T., Hsieh, A. C., Lin, D. W.,
760 ... Morrissey, C. (2019). Molecular profiling stratifies diverse phenotypes of treatment-
761 refractory metastatic castration-resistant prostate cancer. *The Journal of Clinical Investigation*,
762 129(10), 4492–4505. <https://doi.org/10.1172/JCI128212>

763 Liang, J., Li, Y., Daniels, G., Sfanos, K., De Marzo, A., Wei, J., Li, X., Chen, W., Wang, J., Zhong,
764 X., Melamed, J., Zhao, J., & Lee, P. (2015). LEF1 Targeting EMT in Prostate Cancer
765 Invasion Is Regulated by miR-34a. *Molecular Cancer Research: MCR*, 13(4), 681–688.
766 <https://doi.org/10.1158/1541-7786.MCR-14-0503>

767 Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., & Tamayo, P. (2015). The
768 Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Systems*, 1(6),
769 417–425. <https://doi.org/10.1016/j.cels.2015.12.004>

770 R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria;
771 2023. (R Foundation for Statistical Computing). Available from: <https://www.R-project.org/>

772 Risbridger, G. P., Clark, A. K., Porter, L. H., Toivanen, R., Bakshi, A., Lister, N. L., Pook, D.,
773 Pezaro, C. J., Sandhu, S., Keerthikumar, S., Quezada Urban, R., Papargiris, M., Kraska, J.,
774 Madsen, H. B., Wang, H., Richards, M. G., Niranjan, B., O'Dea, S., Teng, L., ... Taylor, R.
775 A. (2021). The MURAL collection of prostate cancer patient-derived xenografts enables
776 discovery through preclinical models of uro-oncology. *Nature Communications*, 12(1),
777 Article 1. <https://doi.org/10.1038/s41467-021-25175-5>

778 Srivastava A, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently estimates accurate gene
779 abundances from dscRNA-seq data. *Genome Biol*. 2019 Mar 27;20(1):65.
780 <https://doi.org/10.1186/s13059-019-1670-y>

781 Thiery, J. P., Acloque, H., Huang, R. Y. J., & Nieto, M. A. (2009). Epithelial-mesenchymal
782 transitions in development and disease. *Cell*, 139(5), 871–890.
783 <https://doi.org/10.1016/j.cell.2009.11.007>

784 Wakefield M. (2016). Xenomapper: Mapping reads in a mixed species context. *Journal of Open
785 Source Software*, 1(1), 18, <https://doi.org/10.21105/joss.000181>

786 Wang, Z., Wang, T., Hong, D., Dong, B., Wang, Y., Huang, H., Zhang, W., Lian, B., Ji, B., Shi, H.,

787 Qu, M., Gao, X., Li, D., Collins, C., Wei, G., Xu, C., Lee, H. J., Huang, J., & Li, J. (2022).
788 Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer.
789 iScience, 25(7), 104576. <https://doi.org/10.1016/j.isci.2022.104576>

790 Yuan, H., Yan, M., Zhang, G., Liu, W., Deng, C., Liao, G., Xu, L., Luo, T., Yan, H., Long, Z., Shi,
791 A., Zhao, T., Xiao, Y., & Li, X. (2019). CancerSEA: A cancer single-cell state atlas. Nucleic
792 Acids Research, 47(D1), D900–D908. <https://doi.org/10.1093/nar/gky939>

793 Zaccaria S, Raphael BJ. Accurate quantification of copy-number aberrations and whole-genome
794 duplications in multi-sample tumor sequencing data. Nat Commun. 2020 Sep 2;11(1):4301

795 Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple
796 resolutions. GigaScience. 2018 Jul 1;7(7). <https://doi.org/10.1093/gigascience/giy083>

797