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 25 

Background 26 

Men with neuroendocrine prostate cancer (NEPC) have a poor prognosis. NEPC is commonly 27 

diagnosed by immunohistochemical markers (CHGA, SYP and NCAM1) and genomic features 28 

(mutations in RB1, PTEN, TP53). But by pathology, NEPC tumours are variable, leading to a 29 

classification of NE subtypes such as small cell and large cell neuroendocrine carcinomas, focal 30 

neuroendocrine differentiation (Focal NED), and Amphicrine. We postulated the diversity observed in 31 

NEPC pathologies might arise from differences in transcriptional profiles and the aim of this study is 32 

to utilize single-cell RNA sequencing to define the transcriptional differences between NEPC subtype 33 

pathologies.  34 

Methods 35 

Gene expression profiles were obtained for 18,632 individual tumour cells from 9 patient-derived 36 

xenograft (PDX) models representing five distinct neuroendocrine pathologies of prostate cancer. 37 
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Integration and clustering of cell-level data demarked transcriptionally distinct sub-populations of 38 

cells. Differential gene expression, gene set enrichment and transcriptional factor regulon analysis 39 

identified expression signatures unique to specific neuroendocrine pathologies. Copy-number 40 

estimated from expression data revealed the clonal structure of PDXs with mixed adenocarcinoma and 41 

neuroendocrine pathologies. 42 

Results 43 

Significant differences were observed in the transcriptional profiles of NEPC pathology subtypes.   44 

Focal NED cells maintain AR signaling, similar to the amphicrine subtype but different from small 45 

and large cell carcinomas. Cellular sub-populations enriched for expression of KRAS, IL2-STAT5 46 

and TNF-signaling genes were found in focal NED and amphicrine pathologies, but not in small or 47 

large cell carcinomas. In contrast, sub-populations enriched for the YAP, Myc and E2F pathways 48 

were detected in small cell, large cell and amphicrine tumours, but not in focal NED cells. Each 49 

pathology showed unique patterns of master regulator activity as well, further implicating focal NED 50 

as a transcriptionally distinct entity. Based on copy number alterations within PDXs of mixed 51 

pathology, focal NED cells showed little clonal divergence from neighboring adenocarcinoma cells, 52 

whereas cells with small cell neuroendocrine pathology were clonally distinct. 53 

Conclusions 54 

Neuroendocrine prostate cancer subtypes can be identified by pathology and our study shows that 55 

transcriptional features identified by single-cell RNA-sequencing also distinguish neuroendocrine 56 

subtypes pathologies from each other. In particular, our data redefine focal neuroendocrine 57 

differentiation as a pathology expressing androgen receptors (AR), exhibiting its distinctive 58 

composition of transcriptionally unique sub-populations. These findings advocate for differences in 59 

the treatment of NEPC tumors, particularly those displaying focal NED.  60 

 61 

Introduction 62 

Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer diagnosed on the 63 

basis of immunohistochemistry (IHC) of canonical neuroendocrine cell surface markers such as 64 

chromogranin A (CHGA), synaptophysin (SYP), and CD56 (NCAM1) (Kannan et al, 2022). NEPC 65 

can arise via lineage plasticity under prolonged androgen deprivation (Beltran et al., 2016, Aggarwal 66 

et al., 2018), but it can also appear de novo at diagnosis (Epstein et al., 2014; Fine, 2018). No 67 

effective long-term treatments exist for NEPC and overall patient survival rates are very poor 68 

(Aggarwal et al., 2014; Aggarwal et al., 2018). NEPC is often associated with suppression of 69 

androgen receptor (AR) activity. Small cell and large cell neuroendocrine carcinomas are two prostate 70 
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cancer pathologies that typically lack detectable AR signalling and are most often associated with 71 

NEPC (Epstein et al., 2014; Fine, 2018).  72 

Additional neuroendocrine pathologies have been observed in prostate cancer (Aggarwal et al., 2014; 73 

Bellur et al., 2019; Epstein et al., 2014), defined by histology and morphology (Beltran et al., 2016).  74 

In contrast to small and large cell carcinoma, the amphicrine pathology is defined by strong co-75 

expression of both AR activated and neuroendocrine genes (Epstein et al., 2014; Fine, 2018). Prostate 76 

adenocarcinoma with focal neuroendocrine differentiation (NED) displays small, scattered pockets of 77 

cells expressing neuroendocrine markers. Focal NED does not fully adhere to accepted definitions of 78 

NEPC (Epstein 2014; Fine 2018), and its influence on clinical outcomes remains uncertain (Kardoust 79 

Parizi et al., 2019).  Mixed tumours containing both adenocarcinoma and small cell pathologies occur 80 

as well (Epstein 2014; Fine 2018). 81 

To date, small and large cell pathologies have been much better represented in genomic and 82 

transcriptomic studies than other pathologies with neuroendocrine features. The molecular 83 

foundations and therapeutic implications of diversity among neuroendocrine pathologies in prostate 84 

cancer thus remain elusive, contributing to suboptimal patient outcomes (Beltran et al., 2011). 85 

Mutations to RB1, PTEN, TP53, as well as upregulation of N-MYC, SOX2, BRN2, and ONECUT2 86 

are recurrent in NEPC (Beltran et al., 2011; Davies et al., 2020; Labrecque et al., 2019) but none are 87 

exclusive to any neuroendocrine pathology. 88 

Single-cell RNA-sequencing enables discovery and expression profiling of transcriptionally distinct 89 

cell populations within tumours, offering a way to directly characterize rare, dispersed pathologies 90 

such as focal NED. Single-cell RNA-sequencing studies of NEPC remain limited in scope but have 91 

uncovered substantial intra-tumoural heterogeneity at the transcriptional level. Key insights include 92 

evidence NEPC arises from luminal-like cells (Dong et al., 2020), elucidation of the roles of RB1, N-93 

Myc and E2F in neuroendocrine trans-differentiation (Brady et al., 2021) and the resolution of 94 

hierarchies of transcription factors networks (Wang et al., 2022).  95 

To explore how transcriptional intra-tumoural heterogeneity contributes to diversity of 96 

neuroendocrine pathologies in prostate cancer, we performed single-cell RNA-sequencing on nine 97 

patient-derived xenograft (PDX) models covering five distinct pathologies of NEPC. Variation in both 98 

the type and frequencies of transcriptionally distinct cellular sub-populations was seen between PDXs 99 

of different pathologies. Focal NED cells displayed unexpected co-expression of AR signalling and 100 

NE markers as well as differential patterns on oncogenic pathway expression, marking focal NED as a 101 

distinct molecular entity within the landscape of NEPC.  102 

Methods 103 

Patient Derived Xenografts 104 
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Patient derived xenografts (PDXs) were acquired from the Melbourne URological Research ALliance 105 

(MURAL). The PDXs lines are maintained in compliance with Monash University animal ethics 106 

approval (MARP 2014/085). The maintenance of the serially transplantable PDXs have been 107 

described previously (Risbridger et al., 2021). Briefly, PDXs are maintained by sub-renal or sub-108 

cutaneous grafting into 6-8-week-old immunocompromised male NSG mice. The NSG mice are 109 

supplemented with 5mm testosterone implants for mixed or amphicrine pathologies, or surgically 110 

castrated mice for pure NE/AR null pathologies. 111 

Dissociation of Patient Derived Xenografts 112 

PDXs were harvested from host mice and cut into 2 X 2 mm pieces using a scalpel. Tumour pieces 113 

were digested in 15mL RPMI, pencilling/streptomycin containing 13 U LiberaseTM (Sigma) and 3mg 114 

DNase (Roche), for 1 hour at 37C. Samples were disrupted with a pipette every 30 minutes during 115 

incubation to ensure suspension of cells. After cells were spun at 5 minutes at 1000rpm, red blood 116 

cells were lysed using Red cell Lysis buffer (Sigma) for 1 minutes. Red cell lysis was stopped with 117 

RPMI with 10% FBS. Cells were then resuspended in PBS, 1mM CaCl2, with 2% FBS and 118 

underwent negative selection for viable cells using the Easy Sep Dead Cell Removal kit (Miltenyi), 119 

according to the manufacturer’s protocol. After selection, cells passed through a 30uM cell strainer 120 

(Miltenyi). Cell viability was assessed using Trypan Blue. Samples with cell viability >80% were 121 

resuspended in PBS containing 2% BSA and proceeded to single cell analysis.  122 

Single cell RNA-Sequencing library preparation  123 

scRNA-Seq was done on dissociated PDXs using the 10X Genomics Chromium Single Cell 3′ 124 

Library & Gel bead Kit V3.0, per the manufacturer's instructions (CG000183 Rev C). Briefly, 5000 125 

PDX cells were utilised per sample as input. By encapsulating cells in microfluidic droplets, around 126 

4000 single-cell transcriptomes were recovered per sample. After reverse transcription, barcoded 127 

cDNA was purified with SILANE Dynabeads and amplified through 11 cycles of PCR. On an Agilent 128 

Bioanalyzer High Sensitivity chip, SPRIselect purification was performed to quantify the fragment 129 

size and concentration of the amplified cDNA. Libraries were sequenced on an Illumina 130 

NovaSeq6000 using paired-end reads of 151 base pairs. 131 

Expression quantification for individual cells 132 

Paired FASTQ files were aligned to the indexed GRCh38 human and mm10 mouse reference genome 133 

using XenoCell v1.0 (Cheloni et al., 2021). Further, the human specific cells were extracted using a 134 

maximum 10% threshold of mouse specific reads in XenoCell. The filtered human specific paired 135 

reads were quantified using Alevin (Salmon Software v1.2.1) tool (Srivastava et al., 2019) by aligning 136 

against the GRCh38 transcriptome. The quantified matrix file was further imported into Seurat v3.2.0 137 

(Hao et al., 2023) in R V4.2.0 (R Core Team, 2023) for all the downstream analysis.  138 
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Identification and profiling of transcriptional sub-populations [within each PDX] 139 

Quality control, implemented using Seurat (v 3.2.0), aimed to exclude outlier cells with low-quality 140 

features. Standardized filtering criteria were then applied to all samples, involving the exclusion of 141 

cells expressing fewer than 50 genes, those with fewer than 1000 genes, and sample-specific 142 

variations, including a high mitochondrial transcript fraction (range 25-30%) and a high transcript 143 

count (range 40,000 – 100,000) (see Supplementary Table 1). 144 

Cell Cycle Phase Identification 145 

To ascertain the cell cycle phase of individual cells, the "CellCycleScoring" function was employed. 146 

Canonical cell cycle markers (Kowalczyk et al., 2015), were incorporated into Seurat, with a specific 147 

focus on features associated with the G2/M phase and markers indicative of the S phase. These 148 

elements were utilized as essential input parameters for the "CellCycleScoring" function, which 149 

effectively scored and classified each cell into distinct phases, namely "S," "G2/M," and "G1." 150 

Normalization, Scaling, and Feature Identification 151 

For the normalization, scaling, and identification of high variable features, the SCTransform function 152 

was utilized. This normalization method relies on Pearson residuals derived from "regularized 153 

negative binomial regression," (Hafemeister et al., 2019) employing cellular sequencing depth as a 154 

covariate within a generalized linear model (GLM). Default parameters were applied. Subsequently, 155 

Principal Component Analysis (PCA) was executed using the top 3000 most highly variable features. 156 

The determination of the appropriate dimension was facilitated by an Elbow plot in subsequent steps. 157 

Clustering and Visualization 158 

To initiate the clustering process, the "FindNeighbours" function in Seurat facilitated the construction 159 

of a Nearest-neighbour graph, utilizing default settings. Dimensions were then selected based on 160 

individual object (sample) characteristics. The "FindClusters" function employed the shared nearest 161 

neighbour (SNN) approach to identify distinct clusters of cells, with default parameters utilized, and 162 

the resolution determined per sample. Visualization of clustered cells was achieved through the 163 

Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique using the 164 

"RunUMAP" function, employing default settings and the previously selected dimensions. 165 

Optimal Cluster Determination 166 

To ascertain the optimal number of clusters, the clustree function from the R package ClusterTree 167 

(Zappia et al., 2018) as employed. This function elucidates the division of clusters as resolution 168 

increases, providing valuable insights. The number of clusters was determined through the 169 

construction of a clustering tree spanning resolutions from zero to 1 in increments of 0.1. Optimal 170 

resolutions for each sample were carefully chosen. Subsequently, a set of resolutions was selected and 171 
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subjected to testing. Resolution testing involved a comprehensive analysis of differentially expressed 172 

markers per cluster at each resolution. Resolutions with marker overlap in multiple clusters were 173 

systematically discarded to refine the determination of the optimal number of clusters. This 174 

meticulous approach ensured the robustness of the clustering outcomes. 175 

Differential Gene Expression Analysis 176 

Identification of marker genes per cluster was conducted using the FindAllMarkers function within 177 

Seurat, employing a negative binomial test. Parameters included a log fold change threshold of 0.25 178 

and a minimum fraction of 0.25 for genes detected in either of the two populations. Expression 179 

profiles of selected genes were visualized on a logarithmic scale, facilitating a comprehensive 180 

assessment. The difference in expression fraction between the two groups was calculated to discern 181 

distinctive patterns. The top five differentially expressed genes were chosen based on the highest 182 

difference and the highest average log fold change, thereby ensuring robust selection criteria. Manual 183 

curation was applied to select unique markers with pronounced expression patterns. 184 

For gene set enrichment analysis, the log fold change threshold was adjusted to 0, and the minimum 185 

fraction of genes detected in either of the two populations was set to 0. This modification was crucial 186 

for enhancing sensitivity and specificity in identifying enriched gene sets associated with the 187 

differential expression patterns observed. 188 

Cancer Signature Analysis 189 

To examine the expression of cancer signatures, the CancerSEA database (Yuan et al. 2019) was 190 

obtained. All gene sets from the database were downloaded and subsequently utilized to compute 191 

scores per cell using the "AddModuleScore" function within Seurat. Visualization of the proportion 192 

and expression patterns of the top five differentially expressed markers and signatures per cluster was 193 

accomplished using the "Dotplot" function. This approach provided a comprehensive and visual 194 

representation of the distinctive features and signatures associated with cancer expression patterns 195 

within individual clusters. 196 

Gene Set Enrichment Analysis 197 

To elucidate enriched pathways across clusters, a comprehensive gene set enrichment analysis 198 

(GSEA) was executed. The "msigdbr" package, providing Molecular Signatures Database (MSigDB) 199 

(LIberzon et al., 2015) gene sets commonly utilized in GSEA, was employed alongside the "fgsea" R 200 

package for the analysis (Korotkevich  et al., 2021). All genes differentially expressed in each cluster 201 

were pre-ranked based on the highest difference. The "fgseaMultilevel" function from the "fgsea" R 202 

package was deployed to conduct the enrichment analysis, with default settings employed, except for 203 

"nPermSimple," which was set to 10000 to enhance the accuracy of P-value estimation. The utilized 204 
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gene sets encompassed Hallmarks (H), Oncogenic (C6), and KEGG (CP), offering a comprehensive 205 

exploration of the pathways enriched within the distinct clusters. 206 

Integration: Cluster Similarity Spectrum (CSS) in Simspec 207 

Integration of single-cell data using the Cluster Similarity Spectrum (CSS) algorithm in the Simspec 208 

package requires a Seurat object (He et al., 2020). Prior to integration, the data underwent 209 

preprocessing in Seurat, involving normalization, identification of variable features, data scaling, 210 

PCA, and dimensional reduction using UMAP. The "cluster_sim_spectrum" function was employed 211 

for data integration, utilizing the Pearson correlation method and "corr_kernel" as the spectrum type. 212 

Cluster resolution was set at 0.3, and the label tag was defined as the sample name. Following 213 

integration, UMAP and PCA were run for dimensional reduction, using "css" and "css_pca" as the 214 

reduction types, respectively, with ten dimensions selected for each step. Subsequently, the 215 

"FindNeighbors" and "FindClusters" functions were applied to calculate clusters after integration, 216 

with a resolution set at 0.3 and 10 dimensions utilized. 217 

Quality Control After Integration 218 

To evaluate the success of integration and discern technical and biological sources of variation, 219 

multiple factors were considered. Cell cycle phase, transcript counts, and mitochondrial and ribosomal 220 

percentages were visualized for technical sources using the feature plot function from Seurat. 221 

Mitochondrial and ribosomal percentages were computed using the "PercentageFeatureSet" function 222 

from Seurat. Biological variation was assessed through a differential gene expression (DGE) analysis 223 

using the "FindAllMarkers" function from Seurat. This comprehensive quality control step ensured a 224 

thorough examination of the integrated data, distinguishing between technical and biological factors 225 

contributing to variation. 226 

Downstream analysis for integrated dataset 227 

Following integration, downstream analyses including differential gene expression (DGE) and gene 228 

set enrichment analysis were executed. DGE analysis was performed same as described above, 229 

utilizing the "FindAllMarkers" function from the Seurat package. For gene set enrichment analysis 230 

(GSEA), MSigDB datasets were employed. Similar to the previous GSEA analysis on individual 231 

samples, the "fgseaMultilevel" function was utilized for the enrichment analysis, employing default 232 

parameters. 233 

Co-Expression Analysis 234 

Co-expression analysis was conducted using the "Featureplot" visualization function within Seurat, 235 

with the "blend" argument set to TRUE. This setting enabled the simultaneous visualization of two 236 

markers' expression on each cell in the UMAP. The co-expression scale, ranging from 0 to 10, was 237 
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established, where 0 represents the lowest and 10 the highest expression. A maximum cut-off value of 238 

q25 (quantile) was set to capture the minimum expression of markers. The "blend" threshold was set 239 

to 0.1, initiating the blending of selected colours from the weakest signal. The percentage of cells co-240 

expressing selected markers was determined by fetching normalized counts for each marker and 241 

calculating the co-expression percentage across cells. 242 

Scoring activity of transcription factor regulons with SCENIC  243 

The integrated R object file containing raw counts matrix file was loaded into R and gene regulatory 244 

networks was inferred using PySCENIC package (v0.11.2) (Aibar et al., 2017). Regulons for which 245 

>20 target genes were identified was used further and its activity was depicted in heatmap s. 246 

Identification of clonal sub-populations 247 

Clonal sub-populations were defined by chromosomal arm level copy-number differences using 248 

Gaussian mixture models to identify regions of the genome where contiguous genes show consistent 249 

increased/decreased expression within subsets of cells in a single-cell RNA-sequencing data set, in a 250 

reference-free manner (Kinker et al., 2020). Code for our analysis was adapted from the 251 

module5_cna_subclones.R script available at https://github.com/gabrielakinker/CCLE_heterogeneity. 252 

Libraries for whole-genome sequencing (WGS) were prepared using the TruSeq DNA Nano High 253 

Throughput kit (Illumina) and sequenced as 150bp paired-end reads on a NovaSeq 6000 (Illumina). 254 

Reads from PDXs were aligned to hg19 (Ensembl Homo_sapiens.GRCh37.73.dna) and mm10 255 

(Ensembl Mus_musculus.GRCm38.73.dna) using BWA MEM (v0.7.17), with duplicates marked by 256 

Picard (v2.17.3). Xenomapper (v1.0.1) (Wakefield, 2016) was used to identify reads mapping to hg19 257 

only. The patient germline (blood) sample was aligned and processed in the same fashion but to the 258 

hg19 reference only.  259 

PDX and germline BAM files were sorted with samtools (v1.9) and provided as input for clonality 260 

assessment based on copy-number alterations using the HATCHet algorithm (v0.1) (Zaccaria et al., 261 

2020) with Gurobi Optimizer (v9.1.1, Linux 64-bit). Parameters were set as follows: mapQ=11, 262 

baseQ=11, snpQ=11, minCov=10, maxCov=300, binSize=100kb, with the sensitivity parameter (-l) 263 

set to 0.4. 264 

 265 

Results 266 

Establishing patient-derived models of neuroendocrine pathologies in prostate cancer  267 

To better represent the heterogeneity of prostate cancer in the clinic, the Melbourne Urological 268 

Research Alliance (MURAL) established a collection of patient-derived xenografts (PDXs) spanning 269 

treatment-naïve primary prostate cancer to castration-resistant metastases (Risbridger et al., 2021). 270 
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This study focuses on nine MURAL PDXs with neuroendocrine features, including 8 published 271 

models (Risbridger et al., 2021) and a newly described PDX (470B). Each has undergone thorough 272 

histological assessment, along with genomic and transcriptomic profiling, to accurately annotate its 273 

pathology and confirm fidelity with the neuroendocrine phenotypes of the original donor patient 274 

(Risbridger et al. 2021). 275 

The selected PDXs represent a variety of histopathologies, including adenocarcinoma with 276 

neuroendocrine differentiation (Focal NED; n=2), amphicrine carcinoma (n=1), mixed 277 

adenocarcinoma-small cell (n=1), small cell (n=2), large cell prostate cancer (n=2) and low-grade 278 

neuroendocrine carcinoma (n=1) (Figure 1). In each case, the histopathology of the PDX reflects the 279 

features of the original patient tumour.  280 

Four PDXs originate from primary tumour samples donated at the time of radical prostatectomy from 281 

patients who had not received any systemic therapies (224R, 305R-Cx, 272R, 470B). The other four 282 

PDXs originate from metastases via biopsy, metastasectomy or from a rapid autopsy from patients 283 

with prior treatment, including ADT, androgen receptor signalling inhibitors, taxane chemotherapy, 284 

platinum chemotherapy, and Lu-PSMA (435.31A-Cx, 373M-Cx, 426M-Cx, 387.38A) (Figure 1A). 285 

Notably, patient 426M-Cx was diagnosed with de novo neuroendocrine prostate cancer at a very 286 

young age (before 30), while patient 470B had a germline BRCA2 mutation.  287 

All patient samples were initially grafted into immunocompromised mice with testosterone implants 288 

(Risbridger et al., 2021). Several PDXs continue to be grown under these conditions (224R, 272R, 289 

387.38A, 470B). Other PDXs were subsequently regrafted in castrated host mice to simulate patients 290 

undergoing ADT (305R-Cx, 373M-Cx, 426M-Cx, 435.31A-Cx and 224R-Cx) [Table S1]. The tumour 291 

from patient 224 was maintained under both conditions, providing two PDX sublines. The PDX from 292 

testosterone-supplemented mice (224R) has mixed adenocarcinoma-small cell pathology, while the 293 

PDX from castrated mice has pure small cell (224R-Cx) pathology. Targeted exome sequencing 294 

revealed an abundance of alterations to TP53, RB1 and PTEN in these PDXs, which is common in 295 

NEPC [Supp Fig S1]. Overall, these PDXs represent diverse forms of prostate cancer with 296 

neuroendocrine features. 297 
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298 

 299 

Figure 1: Diverse clinical and pathological landscape of MURAL PDXs with neuroendocrine 300 

features. (A) Clinical characteristics of the donor tumours used to establish of PDX models included 301 

in this study, the heatmap summarises the features of the patient samples, pathology of the PDXs, the 302 
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patients’ treatment histories, collection method, follow-up, and whether the PDXs are maintained 303 

intact mice with testosterone implants or castrated mice.  (B) Histopathology of PDX tumours, 304 

showing tissue morphology and staining for protein markers of adenocarcinoma (AR, PSA) and 305 

neuroendocrine (CHGA, SYP, CD56) Sidebar indicate assigned PDX tumour pathology and mouse 306 

host type. 307 

 308 

Prostate cancer cells with neuroendocrine pathology include a diverse array of 309 

transcriptional states 310 

To analyse the heterogeneity of tumours with neuroendocrine features at single cell resolution, we 311 

obtained the transcriptional profiles of the nine PDXs using the 10X Genomics Chromium Single Cell 312 

3′ sequencing chemistry (Methods). After removing mouse cells using Xenocell and iterative filtering 313 

of low-quality cells via Seurat (Methods) 1,202 – 7,796 cells were detected per PDX (mean: 2,659) 314 

[Supp Table S1]. The average number of genes detected per cell per PDX ranged from 2,829 – 8,037 315 

(mean: 4,869.6). This demonstrates the robustness of our protocols for isolation and sequencing 316 

individual cells from prostate cancer PDXs.  317 

Cells were clustered into subpopulations based on transcriptional differences and visualized on 318 

Uniform Manifold Approximation and Projection (UMAP) plots, with the optimal number of clusters 319 

per samples determined using Clustree (Methods). Each tumour contained 3-8 transcriptionally 320 

distinct subpopulations of cells, with an average of 5 subpopulations per tumour [Sup Fig S2]. 321 

Functional enrichment analysis using the MSigDB Hallmarks and CancerSEA signatures (Yuan et al., 322 

2019) revealed transcriptional subpopulations enriched for similar gene sets across all tumours, with 323 

proliferation and stemness signatures seen in at least one cluster in every tumour and EMT, hypoxia 324 

and invasion signatures represented as well [Sup Fig S2]. These enrichments may represent common 325 

biological processes active across all neuroendocrine pathologies in prostate cancer. In contrast, the 326 

degree of transcriptional heterogeneity varied with tumour pathology. While most PDXs had 2-3 327 

distinct neuroendocrine clusters, all small cell NE PDXs had 5-6 subpopulations no matter whether 328 

they were derived from primary (224R and 224R-Cx) or metastatic (435.31A-Cx) tissues.  329 

Pathology also determined the clustering of focal NED and mixed adeno-small cell tumours, with 330 

cells with adenocarcinoma markers forming distinct clusters from cells expressing neuroendocrine 331 

markers. In the focal NED PDXs 272R and 470B, neuroendocrine clusters were located on the 332 

UMAPs in close proximity to adenocarcinoma clusters, but in the mixed adeno-small cell PDX 224R, 333 

these two populations were clearly distant from one another [Sup Fig S2]. Such differences in 334 

clustering patterns with individual PDXs suggest each neuroendocrine pathology may harbour its own 335 

set of transcriptionally distinct sub-populations. 336 

 337 
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Distinctive transcriptional subpopulations distinguish different neuroendocrine 338 

pathologies from each other 339 

To identify transcriptional sub-populations shared between or unique to NE pathologies, we adopted a 340 

data integration strategy based on the CSS Simspec method, which showed optimal ability to match 341 

cells based on pathology in our benchmarking studies using the 224R and 224R-Cx samples 342 

[Methods; Supplementary Note 1].  Integrating expression counts from 18,632 cells from all 9 PDXs 343 

using CSS Simspec yielded 16 clusters. The positions of these clusters on the UMAP reflected 344 

differences in tumour pathology (Fig 2A), which had greater influence on clustering than cell cycle 345 

state, prior treatment status or site of tissue collection [Sup Fig S3]. 346 

Clusters 1-6 displayed robust expression of the neuroendocrine markers NCAM1, CHGA and SYP 347 

and virtually no expression of AR signalling markers (Fig 2B): thus, they were labelled NE+/AR- 348 

clusters. Cells in Clusters 1-6 were predominantly from tumours with large or small cell NE 349 

pathologies (Figs 2C & 2D). Clusters 1-4 were shared across PDXs with small cell pathology (224R, 350 

224R-Cx and 435.31A-Cx) and large cell pathology (305R-Cx and 373M-Cx) (Figs 2E & 2F), 351 

revealing an overlap in the composition of some transcriptional sub-populations between these types 352 

of NEPC. In contrast, cluster 5 predominantly contained cells from large-cell NEPC tumours (305R-353 

Cx and 373M-Cx). Nearly all the cells in cluster 6 were from PDX 426M-Cx, which has low-grade 354 

NE pathology. This cluster was situated far from the other NE+/AR- populations, likely reflecting the 355 

unique clinical characteristics of the patient. Clusters 1-5 contained a high proportion of cells in S and 356 

G2M phase, reflecting the highly proliferative nature of fully differentiated NEPC. [Sup Fig S3A]. 357 

Clusters 7 – 13 co-expressed neuroendocrine and AR signalling markers (NE+/AR+; Fig 2B). Each of 358 

these clusters displayed variable expression of CHGA and/or SYP, but little to no NCAM1. Similarly, 359 

expression of AR and KLK3 varied across these clusters. Most cells in NE+/AR+ clusters came from 360 

PDXs with the intermediate focal NED and amphicrine pathologies (Figs 2C & 2D), revealing focal 361 

NED to also be an AR-expressing neuroendocrine pathology. Clusters 8-10 were specific to tumours 362 

with focal NED pathology (PDX 272 and 470B) while clusters 11-13 were from the amphicrine 363 

tumour (Fig 2E & 2F) indicating that although they share AR expression, focal NED and amphicrine 364 

pathologies diverge at the transcriptional level from each other.  365 

Finally, Clusters 14-16 had robust expression of AR-related genes with virtually no NE gene 366 

expression (AR+; Fig 2B). They were comprised of cells from the adenocarcinoma component of the 367 

focal NED tumours and the mixed adeno-small cell PDX 224R.  368 
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 369 

Figure 2. Inter-tumoural heterogeneity can be observed between the different pathologies and 370 

patients. A) UMAP depicting the multiple sub-clusters detected in the integrated dataset. 16 clusters 371 

were detected. B) Violin plot showing the range of expression of the neuroendocrine-specific genes 372 

(SYP, CHGA, NCAM1) and androgen-regulated genes (AR, KLK3, NKX3.1) per cluster. Clusters 1-373 
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6 are labelled as NE+/AR-, clusters 7-13 are labelled as NE+/AR+ and clusters 14-16 are AR+/NE-. 374 

C) UMAP shows the location of each sample. Clusters 1-6 comprise small and large cell pathologies. 375 

Clusters 7-13 include mixed pathologies (NED and amphicrine). Clusters 14-16 consists in 376 

adenocarcinoma cells. D) Stacked bar plot representing the contribution of each tumour to the 377 

individual clusters. E) UMAP coloured by PDX sample. F) Stacked bar plot describing the proportion 378 

of clusters per PDX sample. 379 

 380 

Cells with focal NED pathology co-express neuroendocrine and adenocarcinoma markers  381 

Detection of both AR signalling and neuroendocrine genes in clusters 8-10 could be linked to 382 

presence of cells with concurrent expression of both sets of genes, but could also occur if those 383 

clusters contained a mix of neuroendocrine and adenocarcinoma cells. To investigate, we performed 384 

cell-level co-expression analysis using the “Featureplot” function of Seurat to enumerate and visualize 385 

the fraction of cells in a sample with detectable expressed of both markers AR signalling genes and 386 

canonical NE markers within individual neuroendocrine cells. PDX 272R, which has focal NED 387 

pathology, was analysed along with the amphicrine PDX 387.38A and the mixed adeno-small cell 388 

PDX 224R as positive and negative controls for co-expression of AR signalling and NE genes, 389 

respectively. 390 

As expected of an amphicrine tumour, PDX387.38A displayed strong co-expression of SYP with 391 

multiple adenocarcinoma markers (Figure 3A). Transcript counts for each pair of markers was 392 

generally robust in the cells where co-expression was detected. In contrast, PDX 224R with the mixed 393 

of small cell and adenocarcinoma pathology displayed very limited co-expression of its most 394 

abundant NE marker gene, ASCL1, and AR signalling genes (Fig 3B), in line with separation of its 395 

adenocarcinoma and neuroendocrine components on a UMAP plot [Supp Fig S2] 396 

PDX 272R displayed robust expression of multiple neuroendocrine as well as adenocarcinoma 397 

markers [Sup Fig S4], with CHGA being the neuroendocrine gene with highest average level of 398 

expression.  AR and CHGA were concurrently expressed by 24.5% of cells in PDX 272R, while 399 

KLK3-CHGA co-expression was found in 60% of cells and NKX3.1-CHGA co-expression in 49.1% of 400 

cells (Fig 3C). Rates of co-expression of CHGA with AR markers in 272R exceeded those of the 401 

amphicrine PDX 387.38A, demonstrating that the focal NED component of 272R expressed the AR.   402 

Interestingly, co-expression of CHGA and AR regulated genes was also observed in the 403 

adenocarcinoma component of PDX 272R. However, cells from PDX 287R, a pure adenocarcinoma 404 

from the MURAL collection profiled in a recent study (Porter et al, 2023), displayed virtually no 405 

detectable expression of NE genes [Supp Fig S5]. Co-expression of both markers in prostate 406 

adenocarcinoma may therefore only occur in the context of focal neurodifferentiation. 407 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.17.585125doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585125
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 408 

Figure 3. Co-expression analysis of neuroendocrine and adenocarcinoma markers. Colour 409 

blending represents the co-expression level; data has been scaled from 0-10. Zero represents cells 410 

without any expression of the markers, while 10 represents cells with the highest expression level. 411 

The percentage represents only the cells that co-express such markers. A) UMAPs representing the 412 

cells that co-express AR-SYP, KLK3-SYP, and NKX3.1-SYP in sample PDX387.38A. Pink 413 

represents cells expressing SYP, and dark blue represents cells expressing AR, KLK3 or NKX3.1. A 414 

purple shade represents cells that highly co-express such markers. Grey shades represent cells that 415 

don’t express any marker. B) UMAPs representing the cells that co-express AR-CHGA, KLK3-416 

CHGA, and NKX3.1-CHGA in sample PDX272R. Green colour represents cells that uniquely express 417 

CHGA, and dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A blue shade 418 

represents cells that highly co-express such markers. Grey shades represent cells that don’t express 419 

any marker. C) UMAPs representing the cells that co-express AR-ASCL1, KLK3-ASCL1, and 420 

NKX3.1-ASCL1 in sample PDX224R. Dark grey represents cells that uniquely express ASCL1, and 421 

dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A light blue shade 422 

represents cells that highly co-express such markers. Grey shades represent cells that don’t express 423 

any marker. 424 

 425 

Unique expression signatures distinguish types of neuroendocrine pathologies in prostate 426 

cancer  427 

To compare transcriptional differences between neuroendocrine pathologies, we applied differential 428 

gene expression and gene set enrichment (GSE) analysis to all 16 clusters in the integrated data set. 429 

There was high overlap in the top 5 differentially expressed genes (DEGs) within the NE+/AR- 430 

clusters, which represent the small and large-cell NE pathologies that lack AR expression (Fig 4A).  431 

Very few DEGs were shared with the NE+/AR+ clusters, which contain the AR-expressing focal 432 

NED and amphicrine populations. The exceptions were cell cycle genes such as MKI67, which 433 
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overlapped between Clusters 1, 2 and 11 due their proliferative nature. Comparison of DEGs 434 

suggested AR-expressing neuroendocrine pathologies have distinct transcriptional signatures from 435 

those that lack AR expression. 436 

To search for differences in cancer-related pathways and processes between neuroendocrine 437 

pathologies, cluster-level enrichment was assessed for the Hallmarks 50, oncogenic and Kyoto 438 

Encyclopedia of Genes and Genomes (KEGG) gene sets from MSigDB (Liberzon et al., 2015). Cells 439 

from AR+/NE- small and large cell neuroendocrine pathologies have distinct enrichment profiles 440 

from AR+/NE+ amphicrine and focal NED cells (Fig 4B). Certain gene sets showed mutually 441 

exclusive patterns of enrichments in focal NED as compared to small and large-cell pathologies, while 442 

clusters from the amphicrine PDX shared gene set signatures with both focal NED and small and 443 

large-cell PDXs.  444 

The common set of enriched gene sets was observed in the NE+/AR- Clusters 1-5 included E2F 445 

targets and oxidative phosphorylation, consistent with the highly proliferative nature of small and 446 

large cell NEPC. Noteworthy oncogenic signalling enrichments included MYC, MTORC1, LEF1, a 447 

key regulator of epithelial-mesenchymal transition (EMT), and YAP signalling, which was recently 448 

linked to emergence of stemness phenotypes in castration-resistant prostate cancer (Tang et al, 2022).   449 

In contrast, the NE+/AR+ Clusters 7-10 that are dominated by the focal NED pathology displayed 450 

markedly different enrichment from Clusters 1-5.  Top enrichments included the TNFA signalling via 451 

NFKB and KRAS signalling, both of which were also enriched in the adenocarcinoma Clusters 14-16 452 

but downregulated in the small/large cell clusters (Fig 3B). In contrast to adenocarcinoma, there was 453 

high expression of genes upregulated by EGFR and TGFβ. Enrichment of EMT was seen as well, 454 

though in focal NED activation of EMT may occur through KRAS instead (Kim et al., 2015). Indeed, 455 

each pathology shows divergent expression of EMT genes [Supp Fig S6].  Androgen response genes 456 

were most strongly upregulated in Cluster 8, indicating AR signalling expression may vary across 457 

focal NED cells.  458 

Interestingly, Clusters 11-13 primarily represent cells from the amphicrine PDX 387.38A showed 459 

enrichment signatures in common with both Clusters 1-5, which include the NE+/AR- small and large 460 

cell NE pathologies, and Clusters 7-10, which were mainly NE+/AR+ focal NED (Fig 4B).  Cluster 461 

11 shared a GSE profile with Clusters 1-5, Cluster 12 matched all the other neuroendocrine 462 

pathologies, while Cluster 13 was most similar to focal NED as well as adenocarcinoma cells 463 

(Clusters 14-16). Thus, the amphicrine PDX 387.38A contains a mix of transcriptional states covering 464 

both AR-expressing pathologies as well as neuroendocrine pathologies where AR expression is 465 

suppressed. 466 

Cluster 6, comprised nearly entirely of cells from the low-grade NE PDX 426M-Cx, was an outlier in 467 

the GSE analysis. Its GSE profile was more similar to Clusters 7-10 than to Clusters 1-5, including 468 
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enrichments for TNFA signalling via NFKB, EMT, KRAS signalling and KEGG neuroactive ligand-469 

receptor interactions.  Despite little to no AR expression, PDX 426M-Cx appears to share some 470 

characteristics with AR-expressing pathologies. 471 
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 472 

Figure 4.  Characterizing gene expression features that distinguish neuroendocrine sub-473 

populations within the integrated data set.   A) Genes that are differentially expressed per cluster 474 

are shown. The size of the circle represents the percentage of cells expressing the gene. The intensity 475 
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of the colour represents the gene’s expression level; dark blue signifies a higher level, while light blue 476 

to white shows a low or null expression of the gene. B) Enrichment of selected Hallmark, Oncogenic 477 

targets and KEGG gene sets from MSigDB are shown. The size of the circle represents adjusted p-478 

value, small circles represent p-values over 0.1, and larger circles represent p-values less than 0.05.  479 

The enrichment score is represented by colour; red is a positive enrichment score, and blue is a 480 

negative enrichment score. C) Transcription factor analysis heatmap. Regulon activity is scored from 481 

2 to -2, where 2 represents a positive regulon activity, and -2 symbolises a negative regulon activity. 482 

Here 46 manually curated TFs out of the 87 significantly enriched TFs reported by SCENIC are 483 

displayed.  484 

 485 

Transdifferentiation to neuroendocrine prostate cancer is driven by key master regulator 486 

transcriptional factors (TFs) (Mu et al., 2017; Adams et al. 2019; Guo et al., 2019). To infer how 487 

changes to gene regulatory networks contribute to differences in gene expression states observed 488 

between the 16 cell clusters in our data, we scored activity of transcription factor regulons in each 489 

cluster using the SCENIC algorithm. Concordant with prior results, the small/large cell clusters (1-5) 490 

and focal NED clusters (7-10) showed clear divergence in inferred TF regulon activity (Fig 4C).   491 

Clusters 1-5 were predicted to have high activity of several TFs that regulate proliferation, chromatin 492 

state and DNA replication/repair, including E2F1, EZH2, HDAC2 and BRCA1. Regulons for known 493 

neuroendocrine lineage regulators ASCL1, SOX2 and FOXA2 were active in all small cell, large cell 494 

and focal NED clusters, but scored markedly higher in the small/large cell clusters. There were 495 

numerous TFs with high activity in focal NED Clusters 7-10 but weak to no activity in the small/large 496 

cell clusters (Fig 4C).  Among the TFs specific to focal NED clusters were the stemness factors FOS 497 

and JUNB, along with NEUROD1, a TF shown to contribute to global transcriptional differences 498 

between NEPC tumours (Labreque et al., 2010). The focal NED clusters also showed overlap in TF 499 

activity with the adenocarcinoma clusters (14-16), aligning with the observation of retained AR 500 

signalling in those cells.  As expected, AR was one of the shared TFs but there were also others, 501 

including FOS and the lineage factor HOXA10.  As in the GSE analysis, the amphicrine clusters 11-502 

13 showed overlap in TF activity with both small/large cell and focal NED clusters. ASCL1 was not 503 

active in amphicrine clusters, however. SCENIC found 6 TFs (DDIT3, CEBPG, PBX3, CUX1, NFIC 504 

and BHLHE40) with elevated activity in amphicrine clusters.  505 

In summary in addition to AR signalling, several other biologically meaningful differences expression 506 

were seen between the AR-expressing focal NED and amphicrine pathologies and small and large cell 507 

neuroendocrine cells, which lack AR activity. These included numerous pathways and processes 508 

involved in oncogenic signalling, inflammation, and metastasis. Differences in TF activity between 509 

pathologies were predicted by SCENIC, with the focal NED and amphicrine pathologies showing 510 

overlap in TF regulon expression with adenocarcinoma cells. 511 

 512 
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Single-cell copy-number profiling indicates focal NED and small cell neuroendocrine 513 

carcinoma arise by different means in tumours of mixed pathology 514 

Transcriptional profiling of single-cell clusters supports the small cell neuroendocrine pathology as 515 

being further diverged from adenocarcinoma than the focal NED pathology. This is reflected in the 516 

single-sample UMAPs from PDXs 224R and 272R [Supp Figs S3 and S4]. As noted, the 517 

adenocarcinoma and neuroendocrine subpopulations occupy separate and distant regions of the 518 

UMAP plot for 224R, indicative of divergent cell states. However, in the UMAP 272R the 519 

adenocarcinoma and focal NED cells cluster close together in a nearly contiguous mass consistent 520 

with a continuum of cell states. This view is further supported by pseudotime analysis [Supp Fig S7] 521 

as well as the observed co-expression of AR and NE markers in cells of 272R but not 224R [Fig 3]. 522 

To determine whether genetic divergence existed between the adenocarcinoma and neuroendocrine 523 

subpopulations in PDXs 224R and 272R, we inferred copy-number status at the chromosome arm 524 

level from the transcriptomes of individual cells. Following the methods of Kinker et al we searched 525 

for genetically distinct clonal subpopulations within each PDX tumour. Briefly, combined expression 526 

of genes on the same chromosome arm is measured in each cell to detect heterogeneity in expression 527 

level chromosome arms indicative of copy-number gains and losses in a sample. Clustering cells by 528 

arm-level expression detects clonal subpopulations with genetic differences at the copy-number level 529 

[Methods]. 530 

Three distinct clonal sub-populations could be detected in PDX 224R on the basis of inferred copy-531 

number states on four chromosome arms: 21q, 8q and 9p and 7q [Fig 5A]. Clones 1 and 3 mapped 532 

exclusively to the neuroendocrine cell clusters of 224R, while Clone 2 was found only in the 533 

adenocarcinoma clusters [Fig 5B and 5D]. Expression of genes on 21q, 8q, 7q and 9p showed 534 

consistent differences across all neuroendocrine and adenocarcinoma clusters [Fig 5C], indicating the 535 

neuroendocrine and adenocarcinoma cells in PDX 224R come from genetically distinct clones.  536 

In contrast, cells from PDX 224-Cx, which was derived from 224R via growth in castrate host mice, 537 

showed no consistent or substantial differences in gene expression at the chromosome arm-level [Fig 538 

5E], suggestive of selection and emergence of a single clone from the neuroendocrine population 539 

post-castration. To validate these findings, whole-genome sequencing (WGS) to 80-90X coverage 540 

[Methods] of 224R, 224R-Cx and a germline sample from patient 224 was performed and analysed 541 

using the HATCHet algorithm, which infers clonal subpopulations from WGS based on frequencies 542 

of copy-number alterations across matched samples from the same patient (Zaccaria and Raphael, 543 

2020). HATCHet predicted the presence of two distinct clonal sub-populations in 224R differing in 544 

copy-number profile across 17 of the 22 autosomes, including copy-number changes on 7q, 8q, 9p 545 

and 21p [Fig 5F]. In contrast, only a single clone was detected in PDX 224R-Cx. The patterns of 546 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.17.585125doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.17.585125
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

amplification and deletion on 7q, 8q, 9p and 21p were concordant with those inferred from single-cell 547 

RNA-sequencing data.  548 

In contrast, no differences in expression at the chromosome arm level were detected from the 272R 549 

single-cell RNA-sequencing data, indicating this PDX is homogeneous at copy-number level, 550 

harbouring only a single dominant clone [Fig 5E] Therefore, the adenocarcinoma and focal NED 551 

populations in 272R come from the same clone.  The presence of a cluster with low expression of 552 

both AR and NE markers between the adenocarcinoma and focal NED clusters marks 272R as 553 

actively undergoing a process of transdifferentiation [Supp Fig S3]. PDX 470B also has focal NED 554 

pathology and likewise showed no evidence for copy-number differences amongst adenocarcinoma 555 

and focal NED cells [Supp Fig S8]. On the other hand, the genetic differences between the 556 

adenocarcinoma and small cell neuroendocrine subpopulations in PDX 224R are more consistent with 557 

divergence of two populations in the prostate prior to diagnosis. These contrasting patterns of sub-558 

clonality align with the concept of focal NED and small cell neuroendocrine pathologies as being 559 

distinct entities within a spectrum of neuroendocrine states, with focal NED being less diverged from 560 

adenocarcinoma. 561 
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Figure 5: The small cell neuroendocrine and adenocarcinoma components of the mixed 563 

pathology in PDX224R comprise genetically distinct clonal sub-populations. (A) Copy-number 564 

profiling of cells based on combined expression levels of genes per chromosome arm from single-cell 565 

RNA-sequencing identifies three genetically distinct clonal sub-populations distinguished by 566 

differences on four chromosomal arms. (B) UMAP coloured by clone. Adenocarcinoma clusters are 567 

represented mainly by clone 2, while neuroendocrine clusters are represented by clone 1 and 3. (C-D) 568 

The neuroendocrine and adenocarcinoma components of PDX224R differ in expression level of genes 569 

on all four of the chromosome arms that define clones.  Clones 1 and 3 are found exclusively in the 570 

neuroendocrine sub-populations while Clone 2 exclusively belongs to the adenocarcinoma sub-571 

populations. (E) No evidence could be found for existence of distinct genetic clones within the focal 572 

NED PDX272. (F) Whole-genome sequencing of PDX224R and PDX224R-Cx reveals loss of clonal 573 

diversity after castration and retention of a clone matching the profile of the genetic clone overlapping 574 

the neuroendocrine population within PDX224R single-cell RNA-sequencing data. 575 

 576 

Discussion 577 

Integrative analysis of the transcriptional profiles of 18,632 individual cells from nine PDXs of NEPC 578 

demonstrated transcriptional features of neuroendocrine cells are strongly associated with pathology.  579 

Strikingly, focal NED cells retain expression of AR signalling genes at levels comparable to 580 

amphicrine and adenocarcinoma cells, while maintaining robust expression of neuroendocrine 581 

markers (Figure 2).  Co-expression of the neuroendocrine marker CHGA along with one of more of 582 

AR, KLK3 and NKX3.1 was widespread in focal NED cells (Figure 3). Thus, like amphicrine, focal 583 

NED is another neuroendocrine pathology with capacity for AR signalling.  584 

Neuroendocrine pathologies that retain AR signalling have distinct patterns of intra-tumoural 585 

transcriptional heterogeneity from those do not, involving multiple oncogenic processes. The AR-null 586 

small and large cell NE pathologies displayed marked upregulation of growth-associated processes 587 

such as Myc and YAP signalling, DNA repair and oxidative phosphorylation relative to other 588 

pathologies (Figure 4B), consistent with their more proliferative nature. In contrast, these signatures 589 

were depleted in focal NED, amphicrine and the low-grade NE sub-populations, which instead were 590 

enriched for a non-overlapping set of pathways, including KRAS, TNF-alpha, EGFR and IL2-STAT5 591 

signalling. Similarly, each pathology showed a unique profile of activity of master regulator 592 

transcription factors (Figure 4C).  593 

Transcriptional sub-populations expressing EMT genes were observed in every PDX regardless of 594 

pathology [Figure 4, Supp Figs S2 and S6]. The well-established roles of EMT in plasticity and 595 

metastasis may underlie the aggressiveness of NEPC. Notably, the activation of EMT exhibits 596 

pathology-specific patterns. Focal NED cells were enriched for KRAS signaling, recognized as an 597 

EMT driver (Brabletz et al., 2018; Thiery et al., 2009), while large and small cell pathologies 598 

prominently express LEF1, another acknowledged EMT activator (Liang et al., 2015).  599 
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Whether focal NED can transition to small or large cell pathology remains unresolved. The focal 600 

NED PDXs 272R and 470B contained intermediate transcriptional sub-populations between 601 

adenocarcinoma and focal NED. In contrast, within the mixed small cell-adenocarcinoma PDX 224R 602 

the neuroendocrine and adenocarcinoma sub-populations were both transcriptionally and genetically 603 

distinct (Figure 5), indicating complete trans-differentiation and long-standing divergence. Further 604 

longitudinal studies of PDXs and patients may shed light on whether focal NED is a transitional or 605 

terminally differentiated state. 606 

Current standard of care chemotherapies for prostate cancer patients with neuroendocrine pathologies 607 

do not confer lasting benefit. Our results suggest new therapeutic options based on pathology. Focal 608 

NED may retain sensitivity to androgen-targeting agents and could respond to disruption of KRAS 609 

and EGFR signalling. In contrast, YAP and Wnt targeting agents may work better against small and 610 

large-cell NEPC tumours. Drugs targeting each of these pathways have shown effectiveness in solid 611 

tumours (Gibault et al. 2017; Liu et al., 2017; Mustachio et al., 2021; Tang et al. 2022; Zhang et al, 612 

2020) but have not yet been deeply explored as therapeutic options for prostate cancer.   613 

The MURAL PDX collection afforded an opportunity to isolate cells of rare NE pathologies and study 614 

them comprehensively at the transcriptional level.  Our PDX models faithfully recapitulate the 615 

molecular profiles of the original donor tumours (Risbridger et al. 2021) and features of 616 

transcriptional ITH observed here are consistent with single-cell studies of CRPC (Bolis et al., 2021; 617 

Brady et al., 2021; Conteduca et al., 2021; Dong et al., 2020; Horning et al., 2018; Wang et al., 2022) 618 

and small-cell lung cancer (Stewart et al. 2020). 619 

Conclusions 620 

Single-cell RNA-sequencing of a diverse spectrum of PDX models of NEPC reveals focal NED as 621 

being transcriptionally distinct from small and large cell NEPC, requiring its own treatment and 622 

management strategies. Our work redefines the molecular landscape in NEPC, revealing previously 623 

hidden layers of transcriptional heterogeneity that provide a basis to further develop new therapeutic 624 

opportunities for this low-survival subtype of prostate cancer. 625 
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