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26  Background

27  Men with neuroendocrine prostate cancer (NEPC) have a poor prognosis. NEPC is commonly
28  diagnosed by immunohistochemical markers (CHGA, SYP and NCAM1) and genomic features
29  (mutations in RB1, PTEN, TP53). But by pathology, NEPC tumours are variable, leading to a
30 classification of NE subtypes such as small cell and large cell neuroendocrine carcinomas, focal
31 neuroendocrine differentiation (Focal NED), and Amphicrine. We postulated the diversity observed in
32  NEPC pathologies might arise from differences in transcriptional profiles and the aim of this study is
33  toutilize single-cell RNA sequencing to define the transcriptional differences between NEPC subtype
34  pathologies.

35 Methods

36  Gene expression profiles were obtained for 18,632 individual tumour cells from 9 patient-derived

37  xenograft (PDX) models representing five distinct neuroendocrine pathologies of prostate cancer.
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38 Integration and clustering of cdl-level data demarked transcriptionally distinct sub-populations of
39 cells. Differential gene expression, gene set enrichment and transcriptional factor regulon analysis
40  identified expression signatures unique to specific neuroendocrine pathologies. Copy-number
41  estimated from expression data revealed the clonal structure of PDX s with mixed adenocarcinoma and

42  neuroendocrine pathologies.

43  Results

44  Significant differences were observed in the transcriptional profiles of NEPC pathology subtypes.
45  Focal NED cells maintain AR signaling, similar to the amphicrine subtype but different from small
46  and large cell carcinomas. Cellular sub-populations enriched for expression of KRAS, IL2-STAT5
47  and TNF-signaling genes were found in foca NED and amphicrine pathologies, but not in small or
48  large cell carcinomas. In contrast, sub-populations enriched for the YAP, Myc and E2F pathways
49  were detected in small cell, large cell and amphicrine tumours, but not in focal NED cells. Each
50 pathology showed unique patterns of master regulator activity as well, further implicating focal NED
51 as a transcriptionally distinct entity. Based on copy number alterations within PDXs of mixed
52  pathology, focal NED cells showed little clonal divergence from neighboring adenocarcinoma cells,

53  whereas cells with small cell neuroendocrine pathology were clonally distinct.

54  Conclusions

55  Neuroendocrine prostate cancer subtypes can be identified by pathology and our study shows that
56  transcriptional features identified by single-cell RNA-sequencing also distinguish neuroendocrine
57  subtypes pathologies from each other. In particular, our data redefine focal neuroendocrine
58 differentiation as a pathology expressing androgen receptors (AR), exhibiting its distinctive
59  composition of transcriptionally unique sub-populations. These findings advocate for differences in

60  thetreatment of NEPC tumors, particularly those displaying focal NED.

61
62 Introduction

63  Neuroendocrine prostate cancer (NEPC) is an aggressive subtype of prostate cancer diagnosed on the
64  basis of immunohistochemistry (IHC) of canonical neuroendocrine cell surface markers such as
65  chromogranin A (CHGA), synaptophysin (SYP), and CD56 (NCAM1) (Kannan et al, 2022). NEPC
66  can arise via lineage plasticity under prolonged androgen deprivation (Beltran et al., 2016, Aggarwal
67 et a., 2018), but it can also appear de novo at diagnosis (Epstein et a., 2014; Fine, 2018). No
68  effective long-term treatments exist for NEPC and overall patient survival rates are very poor
69 (Aggarwal et a., 2014; Aggarwal et a., 2018). NEPC is often associated with suppression of

70  androgen receptor (AR) activity. Small cell and large cell neuroendocrine carcinomas are two prostate
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71  cancer pathologies that typically lack detectable AR signalling and are most often associated with
72 NEPC (Epstein et al., 2014; Fine, 2018).

73 Additional neuroendocrine pathologies have been observed in prostate cancer (Aggarwal et al., 2014;
74  Bdlur et a., 2019; Epstein et al., 2014), defined by histology and morphology (Bdltran et al., 2016).
75 In contrast to small and large cell carcinoma, the amphicrine pathology is defined by strong co-
76  expression of both AR activated and neuroendocrine genes (Epstein et al., 2014; Fine, 2018). Prostate
77  adenocarcinoma with focal neuroendocrine differentiation (NED) displays small, scattered pockets of
78  cells expressing neuroendocrine markers. Focal NED does not fully adhere to accepted definitions of
79  NEPC (Epstein 2014; Fine 2018), and its influence on clinical outcomes remains uncertain (Kardoust
80 Parizi et al., 2019). Mixed tumours containing both adenocarcinoma and small cell pathologies occur
81  aswell (Epstein 2014; Fine 2018).

82 To date, small and large cell pathologies have been much better represented in genomic and
83  transcriptomic studies than other pathologies with neuroendocrine features. The molecular
84  foundations and therapeutic implications of diversity among neuroendocrine pathologies in prostate
85  cancer thus remain elusive, contributing to suboptimal patient outcomes (Beltran et al., 2011).
86  Mutations to RB1, PTEN, TP53, as well as upregulation of N-MYC, SOX2, BRN2, and ONECUT2
87  arerecurrent in NEPC (Beltran et al., 2011; Davies et al., 2020; Labrecque et al., 2019) but none are

88  exclusiveto any neuroendocrine pathology.

89  Single-cell RNA-sequencing enables discovery and expression profiling of transcriptionally distinct
90 cell populations within tumours, offering a way to directly characterize rare, dispersed pathologies
91  such asfocal NED. Single-cell RNA-sequencing studies of NEPC remain limited in scope but have
92  uncovered substantial intra-tumoural heterogeneity at the transcriptional level. Key insights include
93  evidence NEPC arises from luminal-like cells (Dong et al., 2020), elucidation of the roles of RB1, N-
94 Myc and E2F in neuroendocrine trans-differentiation (Brady et al., 2021) and the resolution of
95 hierarchies of transcription factors networks (Wang et al., 2022).

96 To explore how transcriptional intra-tumoural heterogeneity contributes to diversity of

97  neuroendocrine pathologies in prostate cancer, we performed single-cell RNA-sequencing on nine

98  patient-derived xenograft (PDX) models covering five distinct pathologies of NEPC. Variation in both

99 thetype and frequencies of transcriptionally distinct cellular sub-populations was seen between PDXs
100  of different pathologies. Focal NED cells displayed unexpected co-expression of AR signalling and
101  NE markersaswell asdifferential patterns on oncogenic pathway expression, marking focal NED asa
102  distinct molecular entity within the landscape of NEPC.

103 Methods

104  Patient Derived Xenografts
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105  Patient derived xenografts (PDXs) were acquired from the Melbourne URological Research ALliance
106 (MURAL). The PDXs lines are maintained in compliance with Monash University animal ethics
107  approval (MARP 2014/085). The maintenance of the serially transplantable PDXs have been
108  described previously (Risbridger et al., 2021). Briefly, PDXs are maintained by sub-renal or sub-
109  cutaneous grafting into 6-8-week-old immunocompromised male NSG mice. The NSG mice are
110  supplemented with 5mm testosterone implants for mixed or amphicrine pathologies, or surgically
111  castrated mice for pure NE/AR null pathologies.

112 Dissociation of Patient Derived Xenografts

113  PDXs were harvested from host mice and cut into 2 X 2 mm pieces using a scalpel. Tumour pieces
114  weredigested in 15mL RPMI, pencilling/streptomycin containing 13 U LiberaseTM (Sigma) and 3mg
115 DNase (Roche), for 1 hour a 37C. Samples were disrupted with a pipette every 30 minutes during
116  incubation to ensure sugpension of cells. After cells were spun a 5 minutes at 1000rpm, red blood
117  cells were lysed using Red cell Lysis buffer (Sigma) for 1 minutes. Red cell lysis was stopped with
118  RPMI with 10% FBS. Cells were then resuspended in PBS, 1mM CaCl2, with 2% FBS and
119  underwent negative selection for viable cells using the Easy Sep Dead Cell Removal kit (Miltenyi),
120  according to the manufacturer’s protocol. After selection, cells passed through a 30uM cell strainer
121 (Miltenyi). Cell viability was assessed using Trypan Blue. Samples with cell viability >80% were
122 resuspended in PBS containing 2% BSA and proceeded to single cell analysis.

123 Single cell RNA-Sequencing library preparation

124  scRNA-Seq was done on dissociated PDXs using the 10X Genomics Chromium Single Cell 3'
125  Library & Gel bead Kit V3.0, per the manufacturer's instructions (CG000183 Rev C). Briefly, 5000
126  PDX cells were utilised per sample as input. By encapsulating cells in microfluidic droplets, around
127 4000 single-cell transcriptomes were recovered per sample. After reverse transcription, barcoded
128  cDNA was purified with SILANE Dynabeads and amplified through 11 cycles of PCR. On an Agilent
129  Bioanalyzer High Sengitivity chip, SPRIselect purification was performed to quantify the fragment
130 size and concentration of the amplified cDNA. Libraries were sequenced on an Illumina
131  NovaSeq6000 using paired-end reads of 151 base pairs.

132 Expression quantification for individual cells

133 Paired FASTQ files were aligned to the indexed GRCh38 human and mm10 mouse reference genome
134  using XenoCell v1.0 (Cheloni et al., 2021). Further, the human specific cells were extracted using a
135  maximum 10% threshold of mouse specific reads in XenoCell. The filtered human specific paired
136  reads were quantified using Alevin (Salmon Software v1.2.1) tool (Srivastava et al., 2019) by aligning
137  against the GRCh38 transcriptome. The quantified matrix file was further imported into Seurat v3.2.0
138 (Haoetal., 2023) in RV4.2.0 (R Core Team, 2023) for all the downstream analysis.
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139  Identification and profiling of transcriptional sub-populations [within each PDX]

140  Quality control, implemented using Seurat (v 3.2.0), aimed to exclude outlier cells with low-quality
141  features. Standardized filtering criteria were then applied to all samples, involving the exclusion of
142  cells expressing fewer than 50 genes, those with fewer than 1000 genes, and sample-specific
143 variations, including a high mitochondrial transcript fraction (range 25-30%) and a high transcript
144  count (range 40,000 — 100,000) (see Supplementary Table 1).

145  Cell Cycle Phase Identification

146  To ascertain the cell cycle phase of individual cells, the "CellCycleScoring" function was employed.
147  Canonical cell cycle markers (Kowalczyk et al., 2015), were incorporated into Seurat, with a specific
148  focus on features associated with the G2/M phase and markers indicative of the S phase. These
149  elements were utilized as essential input parameters for the "CellCycleScoring” function, which
150  effectively scored and classified each cell into distinct phases, namely "S," "G2/M," and "G1."

151  Normalization, Scaling, and Feature Identification

152 For the normalization, scaling, and identification of high variable features, the SCTransform function
153  was utilized. This normalization method relies on Pearson residuals derived from "“regularized
154  negative binomial regression," (Hafemeister et al., 2019) employing cellular sequencing depth as a
155  covariate within a generalized linear model (GLM). Default parameters were applied. Subsequently,
156  Principal Component Analysis (PCA) was executed using the top 3000 most highly variable features.
157  Thedetermination of the appropriate dimension was facilitated by an Elbow plot in subsequent steps.

158  Clustering and Visualization

159  Toinitiate the clustering process, the "FindNeighbours' function in Seurat facilitated the construction
160 of a Nearest-neighbour graph, utilizing default settings. Dimensions were then selected based on
161  individual object (sample) characteristics. The "FindClusters' function employed the shared nearest
162  neighbour (SNN) approach to identify distinct clusters of cells, with default parameters utilized, and
163  the resolution determined per sample. Visualization of clustered cells was achieved through the
164  Uniform Manifold Approximation and Projection (UMAP) dimensional reduction technique using the
165 "RunUMAP" function, employing default settings and the previously selected dimensions.

166  Optimal Cluster Determination

167  To ascertain the optimal number of clusters, the clustree function from the R package ClusterTree
168  (Zappia et al., 2018) as employed. This function elucidates the division of clusters as resolution
169 increases, providing valuable insights. The number of clusters was determined through the
170  construction of a clustering tree spanning resolutions from zero to 1 in increments of 0.1. Optimal

171  resolutionsfor each sample were carefully chosen. Subsequently, a set of resolutions was selected and
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172 subjected to testing. Resolution testing involved a comprehensive analysis of differentially expressed
173  markers per cluster at each resolution. Resolutions with marker overlap in multiple clusters were
174  systematically discarded to refine the determination of the optimal number of clusters. This

175  meticulous approach ensured the robustness of the clustering outcomes.
176  Differential Gene Expression Analysis

177  Identification of marker genes per cluster was conducted using the FindAlIMarkers function within
178  Seurat, employing a negative binomial test. Parameters included a log fold change threshold of 0.25
179 and a minimum fraction of 0.25 for genes detected in either of the two populations. Expression
180  profiles of selected genes were visualized on a logarithmic scale, facilitating a comprehensive
181  assessment. The difference in expression fraction between the two groups was calculated to discern
182  distinctive patterns. The top five differentially expressed genes were chosen based on the highest
183  difference and the highest average log fold change, thereby ensuring robust selection criteria. Manual
184  curation was applied to select unique markers with pronounced expression patterns.

185  For gene set enrichment analysis, the log fold change threshold was adjusted to 0, and the minimum
186  fraction of genes detected in either of the two populations was set to 0. This modification was crucial
187 for enhancing sensitivity and specificity in identifying enriched gene sets associated with the

188  differential expression patterns observed.
189  Cancer Signature Analysis

190 To examine the expression of cancer signatures, the CancerSEA database (Yuan et al. 2019) was
191  obtained. All gene sets from the database were downloaded and subsequently utilized to compute
192  scores per cell using the "AddModuleScore” function within Seurat. Visualization of the proportion
193  and expression patterns of the top five differentially expressed markers and signatures per cluster was
194  accomplished using the "Dotplot" function. This approach provided a comprehensive and visual
195 representation of the distinctive features and signatures associated with cancer expression patterns
196  withinindividual clusters.

197  Gene Set Enrichment Analysis

198 To eucidate enriched pathways across clusters, a comprehensive gene set enrichment analysis
199 (GSEA) was executed. The "msigdbr" package, providing Molecular Signatures Database (M SigDB)
200  (Llberzon et al., 2015) gene sets commonly utilized in GSEA, was employed alongside the "fgsea' R
201  package for the analysis (Korotkevich et al., 2021). All genes differentially expressed in each cluster
202  were pre-ranked based on the highest difference. The "fgseaMultilevel” function from the "fgsea’ R
203  package was deployed to conduct the enrichment analysis, with default settings employed, except for
204  "nPermSimple," which was set to 10000 to enhance the accuracy of P-value estimation. The utilized
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205  gene sets encompassed Hallmarks (H), Oncogenic (C6), and KEGG (CP), offering a comprehensive
206  exploration of the pathways enriched within the distinct clusters.

207  Integration: Cluster Similarity Spectrum (CSS) in Simspec

208  Integration of single-cell data using the Cluster Similarity Spectrum (CSS) algorithm in the Simspec
209 package requires a Seurat object (He et al., 2020). Prior to integration, the data underwent
210  preprocessing in Seurat, involving normalization, identification of variable features, data scaling,
211  PCA, and dimensional reduction using UMAP. The "cluster sim_spectrum" function was employed
212 for dataintegration, utilizing the Pearson correlation method and "corr_kernel” as the spectrum type.
213 Cludgter resolution was set at 0.3, and the label tag was defined as the sample name. Following
214  integration, UMAP and PCA were run for dimensional reduction, using "css" and "css pca' as the
215  reduction types, respectively, with ten dimensions selected for each step. Subsequently, the
216  "FindNeighbors' and "FindClusters® functions were applied to calculate clusters after integration,
217  witharesolution set at 0.3 and 10 dimensions utilized.

218  Quality Control After Integration

219  To evauate the success of integration and discern technical and biological sources of variation,
220  multiple factors were considered. Cell cycle phase, transcript counts, and mitochondrial and ribosomal
221 percentages were visualized for technica sources using the feature plot function from Seurat.
222 Mitochondrial and ribosomal percentages were computed using the "PercentageFeatureSet" function
223 from Seurat. Biological variation was assessed through a differential gene expression (DGE) analysis
224  using the "FindAlIMarkers® function from Seurat. This comprehensive quality control step ensured a
225  thorough examination of the integrated data, distinguishing between technical and biological factors
226  contributing to variation.

227  Downstream analysisfor integrated dataset

228  Following integration, downstream analyses including differential gene expression (DGE) and gene
229 st enrichment analysis were executed. DGE analysis was performed same as described above,
230  utilizing the "FindAlIMarkers' function from the Seurat package. For gene set enrichment analysis
231 (GSEA), MSigDB datasets were employed. Similar to the previous GSEA analysis on individual
232 samples, the "fgseaMultilevel” function was utilized for the enrichment analysis, employing default

233 parameters.
234  Co-Expression Analyss

235  Co-expression analysis was conducted using the "Featureplot” visualization function within Seurat,
236  with the "blend" argument set to TRUE. This setting enabled the simultaneous visualization of two

237  markers expression on each cell in the UMAP. The co-expression scale, ranging from O to 10, was
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238  established, where O represents the lowest and 10 the highest expression. A maximum cut-off value of
239 25 (quantile) was set to capture the minimum expression of markers. The "blend" threshold was set
240  to 0.1, initiating the blending of selected colours from the weakest signal. The percentage of cells co-
241  expressing selected markers was determined by fetching normalized counts for each marker and

242  caculating the co-expression percentage across cells.
243 Scoring activity of transcription factor regulonswith SCENIC

244  The integrated R object file containing raw counts matrix file was loaded into R and gene regulatory
245  networks was inferred using PySCENIC package (v0.11.2) (Aibar et a., 2017). Regulons for which
246 >20 target genes were identified was used further and its activity was depicted in heatmap s.

247  ldentification of clonal sub-populations

248  Clona sub-populations were defined by chromosomal arm level copy-number differences using
249  Gaussian mixture models to identify regions of the genome where contiguous genes show consistent
250  increased/decreased expression within subsets of cellsin a single-cell RNA-sequencing data set, in a
251  reference-free manner (Kinker et al., 2020). Code for our analysis was adapted from the
252 module5_cna_subclones.R script available at https://github.com/gabrielakinker/ CCLE_heterogeneity.

253  Libraries for whole-genome sequencing (WGS) were prepared using the TruSeq DNA Nano High
254  Throughput kit (Illumina) and sequenced as 150bp paired-end reads on a NovaSeq 6000 (Illumina).
255 Reads from PDXs were aigned to hgl9 (Ensembl Homo_sapiens.GRCh37.73.dna) and mm10
256  (Ensembl Mus musculus.GRCm38.73.dna) using BWA MEM (v0.7.17), with duplicates marked by
257  Picard (v2.17.3). Xenomapper (v1.0.1) (Wakefield, 2016) was used to identify reads mapping to hgl9
258  only. The patient germline (blood) sample was aligned and processed in the same fashion but to the
259  hgl9 reference only.

260 PDX and germline BAM files were sorted with samtools (v1.9) and provided as input for clonality
261  assessment based on copy-number aterations using the HATCHet algorithm (v0.1) (Zaccaria et al.,
262  2020) with Gurobi Optimizer (v9.1.1, Linux 64-bit). Parameters were set as follows. mapQ=11,
263 baseQ=11, snpQ=11, minCov=10, maxCov=300, binSize=100kb, with the sensitivity parameter (-1)
264 set to 0.4.

265
266 Results

267  Establishing patient-derived models of neuroendocrine pathologies in prostate cancer

268  To better represent the heterogeneity of prostate cancer in the clinic, the Melbourne Urological
269  Research Alliance (MURAL) established a collection of patient-derived xenografts (PDXs) spanning
270  treatment-naive primary prostate cancer to cadtration-resistant metastases (Risbridger et a., 2021).
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271  This study focuses on nine MURAL PDXs with neuroendocrine features, including 8 published
272 models (Risbridger et al., 2021) and a newly described PDX (470B). Each has undergone thorough
273 histological assessment, along with genomic and transcriptomic profiling, to accurately annotate its
274  pathology and confirm fidelity with the neuroendocrine phenotypes of the original donor patient
275  (Risbridger et al. 2021).

276  The selected PDXs represent a variety of histopathologies, including adenocarcinoma with
277  neuroendocrine differentiation (Focal NED; n=2), amphicrine carcinoma (n=1), mixed
278  adenocarcinoma-small cell (n=1), small cell (n=2), large cell prostate cancer (n=2) and low-grade
279  neuroendocrine carcinoma (n=1) (Figure 1). In each case, the histopathology of the PDX reflects the

280  features of the original patient tumour.

281  Four PDXs originate from primary tumour samples donated at the time of radical prostatectomy from
282  patients who had not received any systemic therapies (224R, 305R-Cx, 272R, 470B). The other four
283  PDXs originate from metastases via biopsy, metastasectomy or from a rapid autopsy from patients
284  with prior treatment, including ADT, androgen receptor signalling inhibitors, taxane chemotherapy,
285  platinum chemotherapy, and Lu-PSMA (435.31A-Cx, 373M-Cx, 426M-Cx, 387.38A) (Figure 1A).
286  Notably, patient 426M-Cx was diagnosed with de novo neuroendocrine prostate cancer a a very
287  young age (before 30), while patient 470B had a germline BRCA2 mutation.

288  All patient samples were initially grafted into immunocompromised mice with testosterone implants
289  (Risbridger et a., 2021). Several PDXs continue to be grown under these conditions (224R, 272R,
290 387.38A, 470B). Other PDXs were subsequently regrafted in castrated host mice to simulate patients
291  undergoing ADT (305R-Cx, 373M-Cx, 426M-Cx, 435.31A-Cx and 224R-Cx) [Table S1]. The tumour
292  from patient 224 was maintained under both conditions, providing two PDX sublines. The PDX from
293  testosterone-supplemented mice (224R) has mixed adenocarcinoma-small cell pathology, while the
294  PDX from castrated mice has pure small cell (224R-Cx) pathology. Targeted exome sequencing
295  revealed an abundance of alterations to TP53, RB1 and PTEN in these PDXs, which is common in
296 NEPC [Supp Fig S1]. Overal, these PDXs represent diverse forms of prostate cancer with

297 neuroendocrine features.
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300 Figure 1: Diverse clinical and pathological landscape of MURAL PDXs with neuroendocrine
301 features. (A) Clinical characteristics of the donor tumours used to establish of PDX models included
302 inthis study, the heatmap summarises the features of the patient samples, pathology of the PDXs, the
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303  patients’ treatment higtories, collection method, follow-up, and whether the PDXs are maintained
304 intact mice with testosterone implants or castrated mice. (B) Histopathology of PDX tumours,
305 showing tissue morphology and staining for protein markers of adenocarcinoma (AR, PSA) and
306  neuroendocrine (CHGA, SYP, CD56) Sidebar indicate assigned PDX tumour pathology and mouse
307  host type.

308

309 Prostate cancer cellswith neuroendocrine pathology include a diverse array of
310 transcriptional states

311  To anadyse the heterogeneity of tumours with neuroendocrine features at single cell resolution, we
312  obtained the transcriptional profiles of the nine PDXs using the 10X Genomics Chromium Single Cell
313 3 sequencing chemistry (Methods). After removing mouse cells using Xenocell and iterative filtering
314  of low-quality cells via Seurat (Methods) 1,202 — 7,796 cells were detected per PDX (mean: 2,659)
315  [Supp Table S1]. The average number of genes detected per cell per PDX ranged from 2,829 — 8,037
316  (mean: 4,869.6). This demonstrates the robustness of our protocols for isolation and sequencing
317  individual cells from prostate cancer PDXs.

318  Cells were clustered into subpopulations based on transcriptional differences and visualized on
319  Uniform Manifold Approximation and Projection (UMAP) plots, with the optimal number of clusters
320  per samples determined using Clustree (Methods). Each tumour contained 3-8 transcriptionally
321  distinct subpopulations of cells, with an average of 5 subpopulations per tumour [Sup Fig S2].
322 Functional enrichment analysis using the MSigDB Hallmarks and CancerSEA signatures (Yuan et al.,
323  2019) revealed transcriptional subpopulations enriched for similar gene sets across all tumours, with
324  proliferation and stemness signatures seen in at least one cluster in every tumour and EMT, hypoxia
325  and invasion signatures represented as well [Sup Fig S2]. These enrichments may represent common
326  biological processes active across all neuroendocrine pathologies in prostate cancer. In contrast, the
327  degree of transcriptional heterogeneity varied with tumour pathology. While most PDXs had 2-3
328  distinct neuroendocrine clusters, all small cell NE PDXs had 5-6 subpopulations no matter whether
329  they were derived from primary (224R and 224R-Cx) or metastatic (435.31A-Cx) tissues.

330 Pathology aso determined the clustering of focal NED and mixed adeno-small cell tumours, with
331  cells with adenocarcinoma markers forming distinct clusters from cells expressing neuroendocrine
332 markers. In the foca NED PDXs 272R and 470B, neuroendocrine clusters were located on the
333  UMAPsin close proximity to adenocarcinoma clusters, but in the mixed adeno-small cell PDX 224R,
334  these two populations were clearly distant from one another [Sup Fig S2]. Such differences in
335  clustering patterns with individual PDXs suggest each neuroendocrine pathology may harbour its own
336  setof transcriptionally distinct sub-populations.

337
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338 Digtinctive transcriptional subpopulations distinguish different neuroendocrine

339  pathologiesfrom each other

340  Toidentify transcriptional sub-populations shared between or unique to NE pathologies, we adopted a
341  dataintegration strategy based on the CSS Simspec method, which showed optimal ability to match
342  cells based on pathology in our benchmarking studies using the 224R and 224R-Cx samples
343  [Methods; Supplementary Note 1]. Integrating expression counts from 18,632 cells from all 9 PDXs
344 using CSS Simspec yielded 16 clusters. The positions of these clusters on the UMAP reflected
345  differences in tumour pathology (Fig 2A), which had greater influence on clustering than cell cycle
346  state, prior treatment status or site of tissue collection [Sup Fig S3].

347  Cludgters 1-6 displayed robust expression of the neuroendocrine markers NCAM1, CHGA and SYP
348  and virtually no expression of AR signalling markers (Fig 2B): thus, they were labelled NE+/AR-
349 clugters. Cells in Clusters 1-6 were predominantly from tumours with large or small cell NE
350  pathologies (Figs 2C & 2D). Clusters 1-4 were shared across PDXs with small cell pathology (224R,
351 224R-Cx and 435.31A-Cx) and large cell pathology (305R-Cx and 373M-Cx) (Figs 2E & 2F),
352  revealing an overlap in the composition of some transcriptional sub-populations between these types
353  of NEPC. In contrast, cluster 5 predominantly contained cells from large-cell NEPC tumours (305R-
354  Cx and 373M-Cx). Nearly all the cells in cluster 6 were from PDX 426M-Cx, which has low-grade
355  NE pathology. This cluster was situated far from the other NE+/AR- populations, likely reflecting the
356  uniqueclinical characteristics of the patient. Clusters 1-5 contained a high proportion of cellsin S and
357  G2M phasg, reflecting the highly proliferative nature of fully differentiated NEPC. [Sup Fig S3A].

358  Clugters 7 — 13 co-expressed neuroendocrine and AR signalling markers (NE+/AR+; Fig 2B). Each of
359  these clusters displayed variable expression of CHGA and/or SYP, but littleto no NCAM1. Similarly,
360  expression of AR and KLK3 varied across these clusters. Most cells in NE+/AR+ clusters came from
361 PDXs with the intermediate focal NED and amphicrine pathologies (Figs 2C & 2D), revealing focal
362  NED to also be an AR-expressing neuroendocrine pathology. Clusters 8-10 were specific to tumours
363  with focal NED pathology (PDX 272 and 470B) while clusters 11-13 were from the amphicrine
364  tumour (Fig 2E & 2F) indicating that although they share AR expression, focal NED and amphicrine

365  pathologiesdiverge at the transcriptional level from each other.

366  Finally, Clusters 14-16 had robust expression of AR-related genes with virtually no NE gene
367 expression (AR+; Fig 2B). They were comprised of cells from the adenocarcinoma component of the
368  focal NED tumours and the mixed adeno-small cell PDX 224R.
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370  Figure 2. Inter-tumoural heterogeneity can be observed between the different pathologies and
371  patients. A) UMAP depicting the multiple sub-clusters detected in the integrated dataset. 16 clusters
372 were detected. B) Violin plot showing the range of expression of the neuroendocrine-specific genes
373  (SYP, CHGA, NCAM1) and androgen-regulated genes (AR, KLK3, NKX3.1) per cluster. Clusters 1-
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374 6 arelabelled as NE+/AR-, clugters 7-13 are labelled as NE+/AR+ and clusters 14-16 are AR+/NE-.
375 C) UMAP shows the location of each sample. Clusters 1-6 comprise small and large cell pathologies.
376  Clugers 7-13 include mixed pathologies (NED and amphicrine). Clusters 14-16 consigs in
377  adenocarcinoma cells. D) Stacked bar plot representing the contribution of each tumour to the
378 individual clugters. E) UMAP coloured by PDX sample. F) Stacked bar plot describing the proportion
379  of clusters per PDX sample.

380

381 Cellswith focal NED pathology co-express neur oendocrine and adenocarcinoma markers

382  Detection of both AR signalling and neuroendocrine genes in clusters 8-10 could be linked to
383  presence of cells with concurrent expression of both sets of genes, but could also occur if those
384  cludters contained a mix of neuroendocrine and adenocarcinoma cells. To investigate, we performed
385  cell-level co-expression analysis using the “ Featureplot” function of Seurat to enumerate and visualize
386  thefraction of cells in a sample with detectable expressed of both markers AR signalling genes and
387  canonical NE markers within individual neuroendocrine cells. PDX 272R, which has foca NED
388  pathology, was analysed along with the amphicrine PDX 387.38A and the mixed adeno-small cell
389 PDX 224R as positive and negative controls for co-expression of AR signalling and NE genes,

390  respectively.

391  As expected of an amphicrine tumour, PDX387.38A displayed strong co-expression of SYP with
392  multiple adenocarcinoma markers (Figure 3A). Transcript counts for each pair of markers was
393  generaly robugt in the cells where co-expression was detected. In contrast, PDX 224R with the mixed
394 of small cell and adenocarcinoma pathology displayed very limited co-expression of its most
395  abundant NE marker gene, ASCL1, and AR signalling genes (Fig 3B), in line with separation of its

396  adenocarcinomaand neuroendocrine components on aUMAP plot [Supp Fig S2]

397 PDX 272R displayed robust expression of multiple neuroendocrine as well as adenocarcinoma
398 markers [Sup Fig $4], with CHGA being the neuroendocrine gene with highest average level of
399  expression. AR and CHGA were concurrently expressed by 24.5% of cells in PDX 272R, while
400 KLK3-CHGA co-expression was found in 60% of cells and NKX3.1-CHGA co-expression in 49.1% of
401  cells (Fig 3C). Rates of co-expression of CHGA with AR markers in 272R exceeded those of the
402  amphicrine PDX 387.38A, demonstrating that the focal NED component of 272R expressed the AR.

403  Interegtingly, co-expression of CHGA and AR regulated genes was aso observed in the
404  adenocarcinoma component of PDX 272R. However, cells from PDX 287R, a pure adenocarcinoma
405  from the MURAL collection profiled in a recent study (Porter et a, 2023), displayed virtually no
406  detectable expression of NE genes [Supp Fig S5]. Co-expression of both markers in prostate

407  adenocarcinoma may therefore only occur in the context of focal neurodifferentiation.
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409 Figure 3. Co-expresson analysis of neuroendocrine and adenocarcinoma markers. Colour
410 blending represents the co-expression level; data has been scaled from 0-10. Zero represents cells
411  without any expression of the markers, while 10 represents cells with the highest expression level.
412  The percentage represents only the cells that co-express such markers. A) UMAPSs representing the
413  cells that co-express AR-SYP, KLK3-SYP, and NKX3.1-SYP in sample PDX387.38A. Pink
414  represents cells expressing SY P, and dark blue represents cells expressing AR, KLK3 or NKX3.1. A
415  purple shade represents cells that highly co-express such markers. Grey shades represent cells that
416 don't express any marker. B) UMAPs representing the cells that co-express AR-CHGA, KLKS3-
417 CHGA, and NKX3.1-CHGA in sample PDX272R. Green colour represents cells that uniquely express
418 CHGA, and dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A blue shade
419  represents cells that highly co-express such markers. Grey shades represent cells that don’t express
420 any marker. C) UMAPs representing the cells that co-express AR-ASCL1, KLK3-ASCL1, and
421  NKX3.1-ASCL1 in sample PDX224R. Dark grey represents cells that uniquely express ASCL1, and
422  dark blue represents cells that uniquely express AR or KLK3 or NKX3.1. A light blue shade
423 represents cells that highly co-express such markers. Grey shades represent cells that don’t express
424  any marker.

425

426  Unique expression signatures distinguish types of neuroendocrine pathologiesin prostate
427  cancer

428  To compare transcriptional differences between neuroendocrine pathologies, we applied differential
429  gene expression and gene set enrichment (GSE) analysis to all 16 clusters in the integrated data set.
430 There was high overlap in the top 5 differentially expressed genes (DEGs) within the NE+/AR-
431  cludgers, which represent the small and large-cell NE pathologies that lack AR expression (Fig 4A).
432  Very few DEGs were shared with the NE+/AR+ clusters, which contain the AR-expressing focal

433 NED and amphicrine populations. The exceptions were cell cycle genes such as MKI67, which
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434  overlapped between Clusters 1, 2 and 11 due their proliferative nature. Comparison of DEGs
435  suggested AR-expressing neuroendocrine pathologies have distinct transcriptional signatures from

436  thosethat lack AR expression.

437 To search for differences in cancer-related pathways and processes between neuroendocrine
438  pathologies, cluster-level enrichment was assessed for the Hallmarks 50, oncogenic and Kyoto
439  Encyclopedia of Genes and Genomes (KEGG) gene sets from MSigDB (Liberzon et a., 2015). Cells
440 from AR+/NE- small and large cell neuroendocrine pathologies have distinct enrichment profiles
441  from AR+/NE+ amphicrine and focal NED cells (Fig 4B). Certain gene sets showed mutually
442  exclusive patterns of enrichmentsinfocal NED as compared to small and large-cell pathologies, while
443  clugters from the amphicrine PDX shared gene set signatures with both focal NED and small and
444  large-cell PDXs.

445  The common set of enriched gene sets was observed in the NE+/AR- Clusters 1-5 included E2F
446  targets and oxidative phosphorylation, consistent with the highly proliferative nature of small and
447  large cell NEPC. Noteworthy oncogenic signalling enrichments included MYC, MTORC1, LEF1, a
448  key regulator of epithelial-mesenchymal transition (EMT), and YAP signalling, which was recently
449  linked to emergence of stemness phenotypes in castration-resistant prostate cancer (Tang et al, 2022).

450 In contrast, the NE+/AR+ Clusters 7-10 that are dominated by the focal NED pathology displayed
451  markedly different enrichment from Clusters 1-5. Top enrichments included the TNFA signalling via
452  NFKB and KRAS signalling, both of which were also enriched in the adenocarcinoma Clusters 14-16
453  but downregulated in the small/large cell clusters (Fig 3B). In contrast to adenocarcinoma, there was
454  high expression of genes upregulated by EGFR and TGFf. Enrichment of EMT was seen as well,
455  thoughinfocal NED activation of EMT may occur through KRAS instead (Kim et al., 2015). Indeed,
456  each pathology shows divergent expression of EMT genes [Supp Fig S6]. Androgen response genes
457  were mogt strongly upregulated in Cluster 8, indicating AR signalling expression may vary across
458  focal NED cells.

459  Interegtingly, Clusters 11-13 primarily represent cells from the amphicrine PDX 387.38A showed
460  enrichment signatures in common with both Clusters 1-5, which include the NE+/AR- small and large
461  cell NE pathologies, and Clusters 7-10, which were mainly NE+/AR+ focal NED (Fig 4B). Cluster
462 11 shared a GSE profile with Clusters 1-5, Cluster 12 matched all the other neuroendocrine
463  pathologies, while Cluster 13 was most similar to focal NED as well as adenocarcinoma cells
464  (Clusters 14-16). Thus, the amphicrine PDX 387.38A contains a mix of transcriptiona states covering
465  both AR-expressing pathologies as well as neuroendocrine pathologies where AR expression is
466  suppressed.

467  Cluster 6, comprised nearly entirely of cells from the low-grade NE PDX 426M-Cx, was an outlier in
468  the GSE analysis. Its GSE profile was more similar to Clusters 7-10 than to Clugters 1-5, including
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469  enrichments for TNFA signalling via NFKB, EMT, KRAS signalling and KEGG neuroactive ligand-
470  receptor interactions. Despite little to no AR expression, PDX 426M-Cx appears to share some

471  characterigtics with AR-expressing pathologies.
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Characterizing gene expression features that distinguish neuroendocrine sub-

populations within the integrated data set. A) Genes that are differentially expressed per cluster
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476  of the colour represents the gene's expression level; dark blue signifies a higher level, while light blue
477  to white shows a low or null expression of the gene. B) Enrichment of selected Hallmark, Oncogenic
478  targets and KEGG gene sets from MSigDB are shown. The size of the circle represents adjusted p-
479  value, small circles represent p-values over 0.1, and larger circles represent p-values less than 0.05.
480 The enrichment score is represented by colour; red is a positive enrichment score, and blue is a
481  negative enrichment score. C) Transcription factor analysis heatmap. Regulon activity is scored from
482  2to -2, where 2 represents a positive regulon activity, and -2 symbolises a negative regulon activity.
483  Here 46 manually curated TFs out of the 87 significantly enriched TFs reported by SCENIC are
484  displayed.

485

486  Tranddifferentiation to neuroendocrine prostate cancer is driven by key master regulator
487  transcriptiona factors (TFs) (Mu et al., 2017; Adams et a. 2019; Guo et a., 2019). To infer how
488  changes to gene regulatory networks contribute to differences in gene expression states observed
489  between the 16 cdl clusters in our data, we scored activity of transcription factor regulons in each
490  clugter using the SCENIC algorithm. Concordant with prior results, the small/large cell clugters (1-5)
491 and focal NED clusters (7-10) showed clear divergence in inferred TF regulon activity (Fig 4C).
492  Clugters 1-5 were predicted to have high activity of several TFsthat regulate proliferation, chromatin
493  state and DNA replication/repair, including E2F1, EZH2, HDAC2 and BRCAL. Regulons for known
494  neuroendocrine lineage regulators ASCL1, SOX2 and FOXAZ2 were active in all small cell, large cell
495 and focal NED clusters, but scored markedly higher in the small/large cell clusters. There were
496  numerous TFs with high activity in focal NED Clusters 7-10 but wesk to no activity in the small/large
497  cell clusters (Fig 4C). Among the TFs specific to focal NED clusters were the stemness factors FOS
498 and JUNB, along with NEUROD1, a TF shown to contribute to global transcriptional differences
499  between NEPC tumours (Labreque et al., 2010). The focal NED clusters also showed overlap in TF
500 activity with the adenocarcinoma clusters (14-16), aligning with the observation of retained AR
501 signaling in those cells. As expected, AR was one of the shared TFs but there were also others,
502 including FOS and the lineage factor HOXA10. Asin the GSE analysis, the amphicrine clusters 11-
503 13 showed overlap in TF activity with both small/large cell and focal NED clusters. ASCL1 was not
504  active in amphicrine clusters, however. SCENIC found 6 TFs (DDIT3, CEBPG, PBX3, CUX1, NFIC
505 and BHLHE40) with elevated activity in amphicrine clusters.

506  Insummary in addition to AR signalling, several other biologically meaningful differences expression
507  were seen between the AR-expressing focal NED and amphicrine pathologies and small and large cell
508  neuroendocrine cells, which lack AR activity. These included numerous pathways and processes
509 involved in oncogenic signalling, inflammation, and metastasis. Differences in TF activity between
510  pathologies were predicted by SCENIC, with the focal NED and amphicrine pathologies showing
511  overlapin TF regulon expression with adenocarcinomacells.

512
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513  Single-cell copy-number profiling indicates focal NED and small cell neuroendocrine

514  carcinoma arise by different means in tumours of mixed pathology

515  Transcriptional profiling of single-cell clusters supports the small cell neuroendocrine pathology as
516  being further diverged from adenocarcinoma than the focal NED pathology. This is reflected in the
517  singlesample UMAPs from PDXs 224R and 272R [Supp Figs S3 and $4]. As noted, the
518  adenocarcinoma and neuroendocrine subpopulations occupy separate and distant regions of the
519 UMAP plot for 224R, indicative of divergent cell states. However, in the UMAP 272R the
520  adenocarcinoma and focal NED cells cluster close together in a nearly contiguous mass consistent
521  with a continuum of cell states. This view is further supported by pseudotime analysis [Supp Fig S7]
522  aswell asthe observed co-expression of AR and NE markersin cells of 272R but not 224R [Fig 3].

523  To determine whether genetic divergence existed between the adenocarcinoma and neuroendocrine
524  subpopulations in PDXs 224R and 272R, we inferred copy-number status at the chromosome arm
525 level from the transcriptomes of individual cells. Following the methods of Kinker et a we searched
526  for genetically distinct clonal subpopulations within each PDX tumour. Briefly, combined expression
527  of genes on the same chromosome arm is measured in each cell to detect heterogeneity in expression
528 level chromosome arms indicative of copy-number gains and losses in a sample. Clustering cells by
529  arm-level expression detects clonal subpopulations with genetic differences at the copy-number level
530 [Methods].

531  Three distinct clonal sub-populations could be detected in PDX 224R on the basis of inferred copy-
532 number states on four chromosome arms: 21q, 8q and 9p and 7q [Fig 5A]. Clones 1 and 3 mapped
533  exclusively to the neuroendocrine cell clusters of 224R, while Clone 2 was found only in the
534  adenocarcinoma clugters [Fig 5B and 5D]. Expression of genes on 21q, 8qg, 7q and 9p showed
535  consistent differences across al neuroendocrine and adenocarcinoma clusters [Fig 5C], indicating the

536  neuroendocrine and adenocarcinomacellsin PDX 224R come from genetically distinct clones.

537  Incontrad, cells from PDX 224-Cx, which was derived from 224R via growth in castrate host mice,
538  showed no consistent or substantial differences in gene expression at the chromosome arm-level [Fig
539  5E], suggedtive of selection and emergence of a single clone from the neuroendocrine population
540 post-castration. To validate these findings, whole-genome sequencing (WGS) to 80-90X coverage
541 [Methods] of 224R, 224R-Cx and a germline sample from patient 224 was performed and analysed
542  using the HATCHet algorithm, which infers clonal subpopulations from WGS based on frequencies
543  of copy-number alterations across matched samples from the same patient (Zaccaria and Raphael,
544  2020). HATCHet predicted the presence of two distinct clonal sub-populations in 224R differing in
545  copy-number profile across 17 of the 22 autosomes, including copy-number changes on 7q, 8q, 9p
546  and 21p [Fig 5F]. In contrast, only a single clone was detected in PDX 224R-Cx. The patterns of
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547  amplification and deletion on 7q, 8q, 9p and 21p were concordant with those inferred from single-cell
548  RNA-sequencing data.

549  In contragt, no differences in expression at the chromosome arm level were detected from the 272R
550 single-cell RNA-sequencing data, indicating this PDX is homogeneous at copy-number level,
551  harbouring only a single dominant clone [Fig 5E] Therefore, the adenocarcinoma and focal NED
552  populations in 272R come from the same clone. The presence of a cluster with low expression of
553  both AR and NE markers between the adenocarcinoma and focal NED clusters marks 272R as
554  actively undergoing a process of transdifferentiation [Supp Fig S3]. PDX 470B aso has focal NED
555  pathology and likewise showed no evidence for copy-number differences amongst adenocarcinoma
556 and foca NED cells [Supp Fig S8]. On the other hand, the genetic differences between the
557  adenocarcinomaand small cell neuroendocrine subpopulations in PDX 224R are more consistent with
558  divergence of two populations in the prostate prior to diagnosis. These contrasting patterns of sub-
559  clonality align with the concept of focal NED and small cell neuroendocrine pathologies as being
560  distinct entities within a spectrum of neuroendocrine states, with focal NED being less diverged from

561 adenocarcinoma.
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563  Figure 5: The small cel neuroendocrine and adenocarcinoma components of the mixed
564  pathology in PDX224R comprise genetically distinct clonal sub-populations. (A) Copy-number
565  profiling of cells based on combined expression levels of genes per chromosome arm from single-cell
566  RNA-sequencing identifies three genetically distinct clonal sub-populations distinguished by
567  differences on four chromosomal arms. (B) UMAP coloured by clone. Adenocarcinoma clusters are
568  represented mainly by clone 2, while neuroendocrine clusters are represented by clone 1 and 3. (C-D)
569  The neuroendocrine and adenocarcinoma components of PDX224R differ in expression level of genes
570  on al four of the chromosome arms that define clones. Clones 1 and 3 are found exclusively in the
571  neuroendocrine sub-populations while Clone 2 exclusively belongs to the adenocarcinoma sub-
572 populations. (E) No evidence could be found for existence of distinct genetic clones within the focal
573  NED PDX272. (F) Whole-genome sequencing of PDX224R and PDX224R-Cx reveals loss of clonal
574  diversity after castration and retention of a clone matching the profile of the genetic clone overlapping
575  the neuroendocrine population within PDX224R single-cell RNA-sequencing data.

576
577 Discussion

578  Integrative analysis of the transcriptional profiles of 18,632 individual cells from nine PDXs of NEPC
579  demonstrated transcriptional features of neuroendocrine cells are strongly associated with pathology.
580  Strikingly, focal NED cells retain expression of AR signalling genes at levels comparable to
581  amphicrine and adenocarcinoma cells, while maintaining robust expression of neuroendocrine
582  markers (Figure 2). Co-expression of the neuroendocrine marker CHGA along with one of more of
583 AR, KLK3 and NKX3.1 was widespread in focal NED cells (Figure 3). Thus, like amphicrine, focal
584  NED isanother neuroendocrine pathology with capacity for AR signalling.

585  Neuroendocrine pathologies that retain AR signalling have distinct patterns of intra-tumoural
586  transcriptional heterogeneity from those do not, involving multiple oncogenic processes. The AR-null
587 small and large cell NE pathologies displayed marked upregulation of growth-associated processes
588 such as Myc and YAP signalling, DNA repair and oxidative phosphorylation relative to other
589  pathologies (Figure 4B), consistent with their more proliferative nature. In contrast, these signatures
590  were depleted in focal NED, amphicrine and the low-grade NE sub-populations, which instead were
591  enriched for anon-overlapping set of pathways, including KRAS, TNF-alpha, EGFR and IL2-STAT5
592  signaling. Similarly, each pathology showed a unique profile of activity of master regulator
593  transcription factors (Figure 4C).

594  Transcriptional sub-populations expressing EMT genes were observed in every PDX regardless of
595  pathology [Figure 4, Supp Figs S2 and S6]. The well-established roles of EMT in plasticity and
596 metastasis may underlie the aggressiveness of NEPC. Notably, the activation of EMT exhibits
597  pathology-specific patterns. Focal NED cells were enriched for KRAS signaling, recognized as an
598 EMT driver (Brabletz et al., 2018; Thiery et al., 2009), while large and small cell pathologies
599  prominently express LEF1, another acknowledged EMT activator (Liang et al., 2015).
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600  Whether focal NED can transition to small or large cell pathology remains unresolved. The focal
601 NED PDXs 272R and 470B contained intermediate transcriptional sub-populations between
602  adenocarcinoma and focal NED. In contrast, within the mixed small cell-adenocarcinoma PDX 224R
603  the neuroendocrine and adenocarcinoma sub-populations were both transcriptionally and genetically
604  distinct (Figure 5), indicating complete trans-differentiation and long-standing divergence. Further
605 longitudinal studies of PDXs and patients may shed light on whether focal NED is a transitional or
606  terminally differentiated state.

607  Current standard of care chemotherapies for prostate cancer patients with neuroendocrine pathologies
608  do not confer lasting benefit. Our results suggest new therapeutic options based on pathology. Focal
609 NED may retain sensitivity to androgen-targeting agents and could respond to disruption of KRAS
610 and EGFR signalling. In contrast, YAP and Wnt targeting agents may work better against small and
611 large-cell NEPC tumours. Drugs targeting each of these pathways have shown effectiveness in solid
612  tumours (Gibault et a. 2017; Liu et a., 2017; Mustachio et al., 2021; Tang et al. 2022; Zhang et a,
613  2020) but have not yet been deeply explored as therapeutic options for prostate cancer.

614 The MURAL PDX collection afforded an opportunity to isolate cells of rare NE pathologies and study
615 them comprehensively at the transcriptional level. Our PDX models faithfully recapitulate the
616  molecular profiles of the original donor tumours (Risbridger et a. 2021) and features of
617  transcriptional ITH observed here are consistent with single-cell studies of CRPC (Bolis et a., 2021;
618  Brady et al., 2021; Conteducaet al., 2021; Dong et al., 2020; Horning et al., 2018; Wang et a., 2022)
619  and small-cell lung cancer (Stewart et al. 2020).

620 Conclusions

621  Single-cell RNA-sequencing of a diverse spectrum of PDX models of NEPC reveals focal NED as
622  being transcriptionally digtinct from small and large cell NEPC, requiring its own treatment and
623  management strategies. Our work redefines the molecular landscape in NEPC, revealing previously
624  hidden layers of transcriptional heterogeneity that provide a basis to further develop new therapeutic
625  opportunities for thislow-survival subtype of prostate cancer.
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