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Panel: Research in context 

Evidence before this study 

Substantial individual heterogeneity in brain phenotypes in attention-deficit/hyperactivity 
disorder (ADHD) motivates the need to discover homogeneous biotypes. We searched PubMed 
for research articles on ADHD biotypes using brain MRI published before December 1, 2023, 
using the search terms ((attention deficit hyperactivity disorder [Title/Abstract]) OR (ADHD 
[Title/Abstract])) AND ((subtypes [Title/Abstract]) OR (subgroups [Title/Abstract]) OR 
(subtyping [Title/Abstract])) AND ((MRI [Title/Abstract]) OR (neuroimaging [Title/Abstract]) 
OR (brain [Title/Abstract])) without language restrictions. Of the eight included studies, two 
identified ADHD biotypes using structural morphology, four used functional activity, and two 
used multimodal features. However, none of these studies considered the developmental effect of 
the brain phenotypes, examined treatment response, or investigated the genetic correlates of the 
biotypes. 

Added value of this study 

This study is the first to use individualized brain measures extracted from normative models to 
investigate ADHD biotypes in a large sample of more than 1,000 children. We identified two 
reproducible ADHD biotypes, characterized by distinct symptomatic, cognitive, and gene 
expression profiles, as well as differential treatment responses. This study advances our 
understanding of the neurobiological basis underlying the clinical heterogeneity of ADHD and 
highlights the critical need to discover ADHD biotypes using an unbiased and individualized 
approach. 

Implications of all the available evidence 

This study revealed remarkable neuroanatomical heterogeneity in ADHD patients and identified 
anatomically distinct, clinically valuable, and biologically informed ADHD biotypes. Our 
findings have potential value for the investigation of data-driven biotypes to evaluate treatment 
efficacy and facilitate personalized treatment. We also highlight the need for future studies to 
move beyond the understanding of ADHD solely based on the “average patient” perspective. 
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Abstract  

Background 

Neuroimaging studies suggest substantial individual heterogeneity in brain phenotypes in 
attention-deficit/hyperactivity disorder (ADHD). However, how these individual-level brain 
phenotypes contribute to the identification of ADHD biotypes and whether these biotypes have 
different treatment outcomes and neurobiological underpinnings remain largely unknown.  

Methods 

We collected multisite, high-quality structural magnetic resonance imaging data from 1,006 
children aged 6-14 years, including 351 children with ADHD and 655 typically developing 
children. Normative growth models of cortical thickness were established for 219 regions in the 
typically developing children. Individual-level deviations from these normal references were 
quantified and clustered to identify ADHD biotypes. We validated the replicability and 
generalizability of the ADHD biotypes using two independent datasets and evaluated the 
associations of the biotypes with symptomatic, cognitive, and gene expression profiles, as well as 
follow-up treatment outcomes.  

Findings 

No more than 10% of children with ADHD had extreme deviations in cortical thickness in a 
single region, suggesting high heterogeneity among individuals with ADHD. On the basis of the 
brain deviation maps, we discovered two robust ADHD biotypes, an infra-normal subtype with 
cortical thinning associated with ADHD symptoms and a supranormal subtype with cortical 
thickening associated with cognition. Patients with the infra-normal subtype responded better to 
methylphenidate than to atomoxetine, although both subtypes showed treatment efficacy. Brain 
deviations in the infra-normal subtype were explained by the expression levels of genes enriched 
in presynaptic and axonal development and polygenic risk of ADHD. 

Interpretation 

We identified anatomically distinct, clinically valuable, and biologically informed ADHD 
subtypes, providing insight into the neurobiological basis of clinical heterogeneity and 
facilitating a personalized medication strategy for ADHD patients. 
 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.16.582202doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.582202
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

Introduction 

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and persistent 
neurodevelopmental disorder characterized by age-inappropriate levels of inattention, 
hyperactivity, and impulsivity (1). Numerous studies using clinical and psychological data have 
documented remarkable heterogeneity among individuals with ADHD (1, 2). Several pioneering 
studies have identified ADHD subtypes by dividing patients into distinct groups according to 
their cooccurring symptomatic, cognitive, and temperamental characteristics (3-6). However, the 
neurobiological substrate of this clinical heterogeneity remains elusive. The identification of 
ADHD biotypes could reveal their unique neurobiological mechanisms and has great potential to 
accelerate personalized diagnosis, prognosis, and therapeutics (7). 

Neuroimaging studies have reported case‒control differences in structure (8-11) and function 
(12, 13) between children with and without ADHD. However, most ADHD neuroimaging studies 
have small effect sizes and limited reproducibility. For example, two large-sample, multisite 
structural MRI studies reported significant (10) and nonsignificant (11) differences in cortical 
thickness between children with and without ADHD. These inconsistent findings reflect the 
heterogeneous nature of ADHD. Several recent studies have provided direct evidence for 
substantial heterogeneity in brain phenotypes, including cortical morphology (14) and functional 
connectivity (15), among ADHD individuals. These studies motivate the need to discover ADHD 
biotypes with homogeneous structural or functional signatures. To date, eight studies have 
identified ADHD biotypes using different neuroimaging measures, such as structural 
morphology (16, 17), functional connectivity (18-21), and combinations of both features (22, 
23). These results have already begun to provide insights into the neurophysiological 
heterogeneity of ADHD. 

Despite this substantial research effort, one limitation of existing ADHD biotype studies is their 
use of brain-derived phenotypes that ignore developmental effects in children with ADHD. 
Neuroimaging studies have suggested delayed maturation of cortical thickness (24) and 
functional connectivity (25) in the frontal, temporal and parietal regions in children with ADHD. 
Without considering development, these subtyping approaches may result in biased biotypes 
driven by age rather than brain characteristics per se. Furthermore, the replicability and 
generalizability of the ADHD biotypes across independent datasets have not been well 
established. Another limitation is that previous studies have not examined whether ADHD 
biotypes are associated with distinct treatment outcomes or unique molecular mechanisms, such 
as gene expression signatures. Establishing replicable and clinically and biologically valuable 
ADHD subtypes remains a challenge. 

To address this challenge, we collected multisite, high-quality structural MRI data from a large 
sample of 1,006 children aged 6-14 years. An overview of the study workflow is shown in Figure 
1. We first established normative growth models of cortical thickness in 219 brain regions to 
characterize the neuroanatomical heterogeneity of ADHD. The cortical thickness signature was 
used for normative modeling since it reflects the neural cytoarchitecture and is sensitive to 
cortical development (26). Normative modeling (15, 27) is a valuable statistical approach that 
relates demographic characteristics (e.g., age and sex) to brain phenotypes in a normal 
population and quantifies individual-level deviations from the normal reference. We then 
estimated individual deviations in cortical thickness in ADHD patients and applied spectral 
clustering analysis to identify homogeneous subtypes. We validated the replicability and 
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generalizability of the ADHD biotypes using two independent datasets and evaluated the 
associations of the biotypes with cognitive and symptomatic measures via multivariate partial 
least squares (PLS) regression. Finally, we examined whether and how ADHD biotypes are 
related to different treatment responses and gene expression profiles.  

Methods 

Participants 

The present study included three independent neuroimaging datasets from China: the Children 
Brain Development Project (BNU cohort), the Peking University Sixth Hospital (PKU6 cohort), 
and the publicly available ADHD200 Study (ADHD200 cohort) (28). After application of 
rigorous quality control (Supplementary Methods), our final sample included a total of 1,006 
participants, with 655 typically developing children (TDCs) (age: 6.0-14.0 years; 369 boys; 
BNU, PKU6, and ADHD200) and 351 children with ADHD (age: 6.2-14.0 years; 288 boys; 
PKU6 and ADHD200) (Figure 1A, Table 1). This study was approved by the Ethics Committee 
of Beijing Normal University (BNU cohort) and Peking University Sixth Hospital (PKU6 and 
ADHD200 cohorts), and written informed consent was obtained from all participants and their 
parents. 

Image acquisition and calculation of cortical thickness 

High-resolution T1-weighted structural MRI data were obtained for each dataset using 3.0 T 
MRI scanners. For each individual, the pial surface and gray matter/white matter boundary 
surfaces were reconstructed using FreeSurfer (v 6.0). Cortical thickness was measured as the 
distance between linked vertices in the pial and gray matter/white matter surfaces. Using a priori 
Desikan–Killiany atlas (29, 30), the mean cortical thickness was calculated for 219 regions. For 
details, see Supplementary Methods. 

Constructing normative growth models of cortical morphology  

Using cortical thickness data from TDCs (n = 655, age range: 6.0-14.0 years), we created 
normative growth models of 219 cortical regions using the PCNtoolkit (31). Using hierarchical 
Bayesian regression (HBR), we modeled cortical thickness as a function of age, sex, and site and 
estimated the normative variance in thickness and the uncertainty of prediction. HBR allows for 
both linear and nonlinear modeling and shows superiority in addressing site effects in model 
estimation (32, 33). Model generalization was assessed by 10-fold cross-validation, with the 
model fit for each region measured using standardized mean squared error, mean standardized 
log-loss, and explained variance (Supplementary Methods). 

Identifying ADHD biotypes using spectral clustering  

For each individual in the ADHD group (n = 351), the cortical thickness map was positioned 
onto the normative model to estimate individual deviations. For a given child with ADHD, i, the 
deviation score Z of the region, j, was calculated as follows: 

 	𝑍!" =	
#!"$#%!"
&!"
# $&$"

#  

where 𝑦!"  is the true cortical thickness,	 𝑦#!" 	 is the predicted cortical thickness, 𝛿!"#  is the 
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prediction uncertainty, and 𝛿$"#  is the normative variance. Extreme positive or negative 
deviations were defined as |𝑍| > 2 (34, 35). Thus, we acquired 219 brain deviations for each 
child with ADHD. 

To identify ADHD biotypes, we performed spectral clustering analysis on 351 ADHD deviation 
maps using the SNFtool (36). Briefly, the interparticipant similarity matrix (351Í351) was 
estimated by calculating the Euclidean distance between the brain deviation profiles of every pair 
of participants. Spectral clustering was subsequently applied to the similarity matrix to cluster 
the participants into subgroups. The optimal number of clusters was determined according to 
eigengaps and rotation costs. Bootstrapping (1,000 iterations, 80% of 351 samples) was 
employed to validate the robustness of the subtyping. To evaluate the reproducibility of the 
ADHD biotypes, we repeated the above analyses within each site and assessed the similarity of 
the results between sites (Supplementary Methods). 

We also compared cortical thickness differences between ADHD biotypes and TDCs using 
analysis of covariance (ANCOVA) with age, sex, and medication as covariates. The ComBat 
approach (37) was used to correct for site effects. Multiple comparisons were corrected using the 
false discovery rate (FDR) at q < 0.05. 

Relationships between cortical deviation signatures and demographic characteristics, 
symptoms, and cognition in ADHD biotypes 

To examine whether the ADHD biotypes exhibited differences in demographic characteristics 
(sex and age), symptoms (inattention, hyperactivity-impulsivity, and total score), and cognitive 
function (delay aversion, sustained attention, response inhibition, spatial working memory, 
spatial planning, attention flexibility), we performed both univariate and multivariate analyses. 
The chi-square test was used to evaluate biotype differences in sex. General linear models were 
applied for assessing subtype differences in symptoms and cognitive function, with age, sex, site, 
and medication as covariates. We then used multivariate PLS regression for each biotype to 
explore the relationship between brain deviations (predictor variables) and symptoms/cognition 
(response variables). The statistical significance of the PLS components was evaluated using 
permutation tests (n = 5,000). For the significant PLS components, we calculated Pearson 
correlations between the brain score and symptom/cognition score, and the significance of the 
correlations was determined by permutation tests (n = 5,000). To assess the loading stability, we 
applied bootstrapping resampling (n = 5,000) to calculate the Z score. For details, see 
Supplementary Methods. 

ADHD biotype differences in treatment response  

We further investigated whether the identified ADHD subtypes responded differently to 
treatment. In the PKU6 cohort, 102 children with ADHD underwent 12 weeks of medication 
treatment with either methylphenidate or atomoxetine, and their symptoms were assessed both 
before and after treatment. We examined ADHD biotype differences in treatment response using 
a three-way (drug type, treatment, and subtype) repeated-measures analysis of variance 
(ANOVA), with each symptom score as the dependent variable. If there was a three-way 
interaction, post hoc tests were performed within each subtype to examine the drug type by 
treatment interaction and the main effects of drug type and treatment.   
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Transcriptomic profiling of biotype-specific changes in cortical thickness 

PLS analysis was used to evaluate the associations between biotype-specific changes in cortical 
thickness (T-map) and gene expression profiles. Human brain microarray samples were sourced 
from the Allen Human Brain Atlas (AHBA) (n = 6 donors) (38). After preprocessing using the 
abagen toolbox (39), the expression profiles of 8,564 genes across 111 cortical regions were 
obtained. The statistical significance of the PLS components was tested using spin-based spatial 
permutation tests (40, 41) (n = 5,000). For significant PLS components, the Pearson correlation 
coefficient between the gene score and brain score was calculated, and the statistical significance 
was tested using spin tests (n = 5,000). We transformed the gene weight into a Z score by 
dividing by the standard error estimated from bootstrapping (n = 5,000) (42). Using univariate 
one-sample Z tests, significant genes (FDR-corrected, q < 0.05) were identified and ranked 
separately as positive or negative weighted genes. For details, see Supplementary Methods. 

To determine the biological implications of the identified genes, we performed Gene Ontology 
(GO) enrichment analysis using Metascape (43) (https://metascape.org). We selected three 
ontology categories, namely, biological process, molecular function, and cellular component. The 
significantly ranked positive and negative genes were subjected to separate analyses. To alleviate 
redundancy in GO terms, Metascape hierarchically clustered all the significant terms into 
clusters of similar terms based on similarity with the kappa test score. A threshold kappa score of 
0.3 was applied to split the tree into separate clusters. The most significant terms (lowest p value) 
within each cluster were used to represent the cluster. Finally, we investigated whether the PLS 
gene lists shared enrichment with risk genes for ADHD that were derived from recent GWAS 
studies (44-48). We performed a multigene list meta-analysis (43) between the PLS-positive 
(PLS+) and PLS-negative (PLS-) gene lists and the ADHD GWAS gene list, respectively, to 
determine whether there were shared enrichment terms or enrichment terms selectively attributed 
to specific gene lists. The significance threshold for enrichment was set at FDR q < 0.05.  

Results 

Normative growth models of cortical thickness reveal remarkable neuroanatomical 
heterogeneity in ADHD 

We constructed normative growth models of cortical thickness for 219 brain regions (for model 
performance, see Figure S1). Both boys and girls showed cortical thinning with age in most 
regions. On the basis of these growth models, we found that no more than 10% of the children 
with ADHD displayed extreme deviations in a single brain region (Figure 2A), and more than 
80% of the children with ADHD had at least one brain region with extreme positive or negative 
deviation (|𝑍| > 2) (Figure 2A). These results suggest substantial heterogeneity in cortical 
thickness signatures among children with ADHD. 

Two robust ADHD biotypes characterized by distinct brain deviation profiles 

Using spectral clustering analysis, we identified two ADHD biotypes with unique patterns of 
cortical thickness deviations (Figure 2B, Figure S2). Specifically, subtype 1, termed the infra-
normal subtype, exhibited widespread negative deviations, primarily in the superior and middle 
frontal, precentral, and superior parietal cortices (N = 171; boys = 139; Figure 2C, Figure S3A), 
whereas subtype 2, termed the supra-normal subtype, exhibited widespread positive deviations, 
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primarily in the superior parietal, precuneus, medial and lateral prefrontal, and lateral temporal 
cortices (N = 180; boys = 149; Figure 2C, Figure S3B). 

According to our case‒control comparison (Figure S4), infra-normal subtype exhibited cortical 
thinning across widespread regions compared to TDCs (|Cohen’s d|: 0.17‒0.49, pFDR < 0.05; 
Figure 2D). Conversely, supra-normal subtype exhibited cortical thickening in extensive regions 
(|Cohen’s d|: 0.17-0.62, pFDR < 0.05; Figure 2D). Importantly, no significant difference in cortical 
thickness was observed between all ADHD patients and controls. 

We also identified two ADHD biotypes within each site. In the PKU6 cohort, the subject ID of 
each subtype had 100% overlap with that of the original subtype (Figure 2E). In the ADHD200 
cohort, the subject ID of infra-normal subtype had 98% overlap with that of the original infra-
normal subtype, and the subject ID of supra-normal subtype had 91% overlap with that of the 
supra-normal subtype (Figure 2E). Subtype-specific alterations in cortical thickness also showed 
similar patterns between two sites (Figure 2F, Figure S5). These results suggest the high 
replicability and generalizability of ADHD biotypes across independent datasets. 

Subtype-related brain deviations relating to symptoms and cognition  

According to univariate analysis, the two ADHD biotypes did not differ in age, sex, symptoms, 
or cognitive functions (Table S1). However, PLS regression revealed that the two subtypes had 
distinct associations between brain deviations and symptomatic and cognitive profiles. 

In the infra-normal biotype, the first component of the PLS model explained 35.7% of the 
variance in ADHD symptoms (ppermutation = 0.038; Figure 3A), with a significant correlation 
between brain scores and symptom scores (r = 0.68, ppermutation < 0.001; Figure 3B). All three 
symptomatic variables contributed to this association (Figure 3C, Figure S6A). The brain 
deviations showed positive loadings in the medial occipital, inferior frontal, insula, and dorsal 
anterior cingulate cortices (dACC), and negative loadings in the dorsal medial and lateral 
prefrontal and lateral temporal cortices (Figure 3D, Figure S6B). However, no associations 
between brain deviations and symptoms were observed in the supra-normal subtype. 

In the supra-normal biotype, the first PLS component explained 13.4% of the variance in cognition 
in ADHD patients (ppermutation = 0.006; Figure 3E), and there was a significant correlation between 
brain scores and cognitive scores (r = 0.83, ppermutation < 0.001; Figure 3F). The cognitive 
contribution loadings showed the highest positive values for attention flexibility, spatial planning, 
and sustaining attention and negative values for delay aversion (Figure 3G, Figure S6C). Positive 
loadings of thickness deviation were primarily located in the sensorimotor cortices, while negative 
loadings were found in the superior frontal, lateral orbitofrontal, and temporal cortices (Figure 3H, 
Figure S6D). No associations between brain deviations and cognition were observed in the infra-
normal subtype. 

Differential treatment responses between ADHD subtypes 

Pre- and post-treatment symptom scores for each biotype were presented in Table S2. A 
significant subtype × drug type × treatment interaction was detected for the total symptom 
score (F = 4.33, p = 0.04; Table S3) and hyperactivity-impulsivity score (F = 3.99, p = 0.048; 
Table S4) but not for the inattention score (F = 1.93, p = 0.17; Table S5). Post hoc analysis 
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revealed a significant drug type × treatment interaction for the total symptom score (F = 5.25, p = 
0.03, Table S6) and hyperactivity-impulsivity score (F = 10.91, p = 0.002, Table S7) in the infra-
normal subtype (Figure 3I) but not in the supra-normal subtype (Figure 3J). Specifically, the 
infra-normal subtype responded better to methylphenidate than to atomoxetine as assessed by the 
total symptom score and hyperactivity-impulsivity score (Figure 3I). For the supra-normal 
subtype, we observed a main effect of only treatment (F > 24.56, p < 0.001, Figure 3J).  

Subtype-related brain deviations relating to transcriptomic profiles 

For the infra-normal subtype, the first PLS component explained 30% of the variance in cortical 
thickness differences (pspin < 0.001; Figure 4A). There was a positive correlation between the 
PLS gene score and the spatial pattern of cortical thickness differences (r = 0.55, pspin < 0.001; 
Figure 4B). The PLS component revealed a transcriptional profile with low gene expression 
mainly in the dorsal medial and lateral frontal cortices and high expression in the medial 
occipital cortex, dACC, insula, and lateral temporal cortex (Figure 4C). Furthermore, we 
performed GO enrichment analysis for the top-ranked PLS+ (1,459 genes) and PLS- genes 
(1,414 genes), respectively. The PLS+ genes were enriched in “cytosolic ribosomes”, “regulation 
of cell activation”, “transcription coregulator activity”, and “embryonic morphogenesis” (pFDR < 
0.05; Figure 4D, Figure S7A), and the top-ranked PLS- genes were enriched in “axons”, 
“presynapses”, “postsynapses”, “modulation of chemical synaptic transmission”, and “regulation 
of transmembrane transport” (pFDR < 0.05; Figure 4E, Figure S7B). We did not find any brain-
gene correlations for the supra-normal subtype. 

To further evaluate whether the PLS+ or PLS- genes were enriched in similar terms as the 
polygenic risk genes for ADHD, a meta-analysis of multiple gene lists was performed. The PLS+ 
and GWAS genes had common GO terms, including “transcription coregulator activity”, 
“embryonic morphogenesis”, “regulation of cell activation”, and “transcription regulator 
complex” (Figure 4F, Figure S8A). The PLS- and GWAS genes shared GO terms, including 
“axon”, “presynapse”, “modulation of chemical synaptic transmission”, and “regulation of 
transmembrane transport” (Figure 4G, Figure S8B). 

Discussion 

Using normative models of cortical morphology, we identified the neuroanatomical 
heterogeneity of ADHD and defined two biotypes: an infra-normal subtype with cortical thinning 
and a supranormal subtype with cortical thickening. The two ADHD biotypes were highly 
reproducible across independent sites and were characterized by distinct symptomatic, cognitive, 
and gene expression profiles, as well as treatment responses. These findings advance our 
understanding of the neurobiological basis underlying the clinical heterogeneity of ADHD and 
suggest the potential value of data-driven biotyping for personalized treatment. 

Previous studies of ADHD have reported small effect sizes for case‒control differences in 
cortical thickness. For instance, a previous ENIGMA study (10) revealed that cortical thinning 
was restricted to four regions (temporal pole, precentral, fusiform, and parahippocampal gyrus) 
in children with ADHD, with effect sizes ranging from -0.18 to -0.15. The largest structural MRI 
study of ADHD based on the Adolescent Brain Cognitive Development (ABCD) data (11) 
reported no significant case‒control differences in cortical thickness. Consistent with the 
previous study, we found no significant case‒control differences in cortical thickness when the 
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data from all children with ADHD were pooled. In contrast to these case‒control analyses, we 
observed individual-level deviations in cortical thickness from the normal references in 
widespread regions. Moreover, the location of these deviations varied considerably, suggesting 
remarkable neuroanatomical heterogeneity in ADHD patients. Based on these deviated 
signatures, we identified two reproducible and clinically meaningful subtypes, highlighting the 
critical need to discover ADHD biotypes. 

The two ADHD biotypes showed opposite deviations in cortical thickness, with negative 
deviations occurring primarily in the infra-normal biotype and positive deviations occurring 
primarily in the supra-normal biotype. Several previous studies have reported both cortical 
thinning in the frontal and lateral occipitotemporal lobes (10) and cortical thickening in the 
occipital lobe (49, 50), which partly support our findings. Interestingly, the two ADHD biotypes 
were associated with different symptomatic and cognitive profiles. These finding highlights how 
different brain structural features shape specific phenotypes. Consistent with the “modernized 
concept of ADHD” (51), our findings highlight the need to move beyond an understanding of 
ADHD based solely on “average patient”. It is worth noting that the whole-brain deviation 
pattern, rather than abnormalities in a single region, was associated with the core symptoms or 
cognition of each biotype. This finding suggests the potential role of inter-regional structural 
covariance in the clinical and cognitive phenotypes of ADHD. 

One clinical benefit of identifying ADHD biotypes is the advancement of personalized treatment, 
as medications may have different effects on patients with distinct brain characteristics. This idea 
is supported by our findings that only patients with the infra-normal subtype had a better 
treatment response to methylphenidate than to atomoxetine. Several previous studies have 
suggested that stimulants (i.e., methylphenidate) are more effective than nonstimulants (i.e., 
atomoxetine) for some children with ADHD (52-54). An intriguing question raised by these 
results is why this differential effect of methylphenidate and atomoxetine is observed specifically 
in the infra-normal subtype, which is characterized by overall cortical thinning. One possible 
explanation lies in the differences in neurobiological mechanisms between the two drugs. Both 
methylphenidate and atomoxetine increase extracellular synaptic levels of dopamine and 
norepinephrine in the prefrontal cortex by blocking dopamine and norepinephrine transporters 
(55). However, methylphenidate also increases catecholamine transmission in the striatum and 
caudate, whereas the effects of atomoxetine are specific to the prefrontal cortex (56). The 
reduced cortical thickness observed in the infra-normal subtype suggests disruptions in the top-
down regulations between numerous cortices and basal ganglia (57). Consequently, the increase 
in dopamine and norepinephrine levels in the prefrontal cortex and mesolimbic circuit induced 
by methylphenidate could lead to superior improvements in the core ADHD symptoms in the 
infra-normal subtype.   

The identified ADHD biotypes revealed specific molecular mechanisms that underlie alterations 
in brain morphology. We observed associations between brain morphology and gene expression 
only in the infra-normal subtype, with genes enriched in GO cellular components and biological 
processes involved in neurodevelopment, including pre- and postsynapses, modulation of 
chemical synaptic transmission, and axon development. Evidence suggests that disruption of 
synapses is the most common effect of ADHD-related genetic variants (CDH13, DRD4, and 
SLC6A3) (58-60). Reduced neuronal and synaptic density may lead to cortical thinning in the 
infra-normal subtype. The pharmacological effects of stimulants also suggest that 
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neurotransmitter dysregulation contributes to this disorder. Furthermore, observations of 
abnormalities in cell morphogenesis and axon growth (FOXP2, MEF2C, and SLC6A4) (61) are 
consistent with the immaturation observed in ADHD. Finally, enrichment analysis of the risk 
genes reported in ADHD GWASs revealed several shared GO terms, particularly those related to 
neurodevelopmental processes. These results validate and reinforce the reliability of our 
findings. 

This study has several limitations. First, our ADHD sample was drawn from China. Normative 
models of cortical morphology were established based on the Chinese TDC population. Given 
the anatomical differences between Chinese and Caucasian populations (62), future research 
needs to replicate these findings in samples of diverse geographical origins. Second, we 
demonstrated subtype-specific medication effects on symptoms. However, how different 
medications influence brain phenotypes in these two subtypes warrants further investigation. 
Third, we used the AHBA transcriptomic dataset to establish associations between normally 
expressed genes and ADHD-related brain phenotypes. The AHBA donors were all adults, 
whereas our ADHD subjects were children. Future studies should include genes from 
postmortem brain tissue of individuals with ADHD, allowing for a more direct exploration of the 
links between MRI-based brain phenotypes and histologically measured dysregulated genes. 
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Figure 1 Study demographics and schematic diagram of methodology. (A) Box and violin 
plots represent the age and sex distribution of each cohort. (B) Regional cortical thickness was 
calculated for each participant. (C) Sex-specific normative models were estimated for each 
cortical parcellation. For a given individual with ADHD, the cortical thickness value of each 
region was compared with the corresponding normative models. (D) The brain maps show the 
cortical thickness deviation profile of each ADHD individual, representing individual differences 
across the whole brain. (E) All ADHD individuals were grouped into different brain-based 
subtypes using a clustering analysis based on individual cortical thickness deviations. (F) 
Subtype differences in symptom/cognition, treatment, transcriptome, and subtype reproducibility 
were evaluated. 
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Figure 2 Normative models of cortical thickness revealed heterogeneity in ADHD and two 
ADHD subtypes were identified. (A) Spatial distribution map shows the percentage of ADHD 
children with extreme deviation (|Z| < 2) in each region. Bar plot depicts the distribution of the 
number of extreme positive (red) and negative (blue) deviated regions per ADHD child. (B) 
Determination of the best number of ADHD subtypes (left) and the similarity of the cortical 
thickness deviation patterns between participants (right). (C) Average cortical thickness 
deviation in the infra-normal subtype (left) and the supra-normal subtype (right). (D) Cortical 
thickness differences between each ADHD biotype and controls (left: infra-normal subtype vs. 
controls, right: supra-normal subtype vs. controls), which were identified by ANCOVA analysis. 
(E) Venn diagram depicting the degree of overlap between the subject IDs of the single-site 
clustering and those of the original biotypes. (F) Case-control differences in cortical thickness 
were obtained for each biotype (left: infra-normal subtype vs. controls, right: supra-normal 
subtype vs. controls) at each site. The conjunction maps shown here indicate a high 
reproducibility of results between two independent sites. Dark colors denote overlapping regions 
between two sites and light colors denote site-specific regions.  
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Figure 3 ADHD biotype differences in brain-symptom/cognition relationship and treatment 
response. (A-D) Brain-symptom association in the infra-normal biotype. (A) Explained variance 
for PLS components. The significant PLS component is marked with an asterisk. (B) Pearson 
correlation between brain scores and symptom scores. Shaded areas correspond to 95% CIs. (C) 
Loading values for each symptom variable. (D) Loading values for each of the 219 brain regions. 
(E-H) Brain-cognition association in the supra-normal biotype. (E) Explained variance for PLS 
components. The significant PLS component is marked with an asterisk. (F) Pearson correlation 
between brain scores and cognitive scores. Shaded areas correspond to 95% CIs. (G) Loading 
values for each cognitive variable. (H) Loading values for each of the 219 brain regions. (I, J) 
Differential treatment response between two ADHD biotypes. (I) Significant drug type × 
treatment interaction in the infra-normal subtype as assessed by total score (left) and HI score 
(right). (J) No drug type × treatment interaction in the supra-normal subtype as assessed by total 
score (left) and HI score (right). PLS: partial least squares; HI: hyperactivity-impulsivity; AF: 
attentional flexibility; SP: spatial planning; SA: sustained attention; RI: response inhibition; 
SWM: spatial working memory; DA: delay aversion; MPH: methylphenidate; ATX: 
atomoxetine. 
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Figure 4 Association between brain alterations of the infra-normal biotype and gene 
transcriptomic profiles. (A) Explained variance for the first 10 components obtained from the 
PLS analysis. The significant PLS component is marked with an asterisk. (B) Pearson correlation 
between gene scores and T-map of the infra-normal biotype. Shaded areas correspond to 95% 
CIs. (C) Spatial patterns of gene PLS scores across 111 brain regions in the left hemisphere. (D, 
E) Functional enrichment for top ranked PLS+ genes (D) and PLS- genes (E). Significant GO 
terms are shown with the node size denoting fold enrichment. (F, G) Results of multi-gene-list 
meta-analysis using PLS genes and polygenic risk for ADHD (F: PLS+ genes, G: PLS- genes). 
The heatmap shows shared and specific enrichment. Cell color denotes significant p-value and 
gray color denotes non-significant enrichment. 
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Table 1. Demographics for participants 
 

 TDC ADHD Total 
 BNU1 BNU2 PKU6 ADHD200 PKU6 ADHD200 ADHD TDC 

Sample size  326 118 78 133 267 84 351 655 
Demographics         
Age range 6.0-13.9 6.0-13.9 6.8-13.7  8.1-14.0 6.2-14.0  8.3-14.0 6.2-14.0 6.0-14.0 
Age, mean ± SD 9.16 (1.70) 9.22 (1.67) 10.06 (1.95) 11.19 (1.70) 9.53 (1.91) 11.55 (1.73) 10.02 (2.05) 9.67 (1.90) 
Sex, n Males 173 (53%) 68 (58%) 50 (64%) 78 (59%) 215 (81%) 73 (87%) 288 (82%) 369 (56%) 
IQ, mean ± SD .. .. 113.41 (14.66) 118.14 (13.07) 105.50 (16.63) 107.07 (13.21) 105.95 (15.72) 116.56 (13.76) 
Symptoms         
Inattention .. .. .. .. 26.01 (4.05) 27.85 (4.12) 26.48 (4.17) .. 
Hyperactivity-Impulsivity .. .. .. .. 19.98 (5.84) 22.50 (6.44) 20.60 (6.21) .. 
Total  .. .. .. .. 46.00 (8.19) 50.21 (8.00) 47.05 (8.51) .. 
Comorbidities         
ODD .. .. .. .. 7 (3%) 25 (30%) 32 (9%) .. 
CD .. .. .. .. 1 (0.4%) 2 (2%) 3 (0.9%) .. 
LD .. .. .. .. 0 (0%) 10 (12%) 10 (3%) .. 
Tics .. .. .. .. 3 (1%) 7 (8%) 10 (3%) .. 
Others* .. .. .. .. 0 (0%) 3 (4%) 3 (0.9%) .. 
Medication history .. .. .. .. 0 (0%) 26 (31%) 26 (7) .. 
Data are mean (SD) or n (%). ADHD200 cohort only included PKU site. TDC, typically developing controls; ADHD, attention-deficit/hyperactivity 
disorder; ODD: oppositional defiance disorder; CD: conduct disorder; LD: learning disability. *Others: social anxiety disorder, depression, social 
phobia. 
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