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Panel: Research in context
Evidence before this study

Substantial individual heterogeneity in brain phenotypes in attention-deficit/hyperactivity
disorder (ADHD) motivates the need to discover homogeneous biotypes. We searched PubMed
for research articles on ADHD biotypes using brain MRI published before December 1, 2023,
using the search terms ((attention deficit hyperactivity disorder [Title/Abstract]) OR (ADHD
[Title/Abstract])) AND ((subtypes [Title/Abstract]) OR (subgroups [Title/Abstract]) OR
(subtyping [Title/Abstract])) AND ((MRI [Title/Abstract]) OR (neuroimaging [Title/Abstract])
OR (brain [Title/Abstract])) without language restrictions. Of the eight included studies, two
identified ADHD biotypes using structural morphology, four used functional activity, and two
used multimodal features. However, none of these studies considered the developmental effect of
the brain phenotypes, examined treatment response, or investigated the genetic correlates of the
biotypes.

Added value of this study

This study is the first to use individualized brain measures extracted from normative models to
investigate ADHD biotypes in a large sample of more than 1,000 children. We identified two
reproducible ADHD biotypes, characterized by distinct symptomatic, cognitive, and gene
expression profiles, as well as differential treatment responses. This study advances our
understanding of the neurobiological basis underlying the clinical heterogeneity of ADHD and
highlights the critical need to discover ADHD biotypes using an unbiased and individualized
approach.

Implications of all the available evidence

This study revealed remarkable neuroanatomical heterogeneity in ADHD patients and identified
anatomically distinct, clinically valuable, and biologically informed ADHD biotypes. Our
findings have potential value for the investigation of data-driven biotypes to evaluate treatment
efficacy and facilitate personalized treatment. We also highlight the need for future studies to
move beyond the understanding of ADHD solely based on the “average patient” perspective.
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Abstract
Background

Neuroimaging studies suggest substantial individual heterogeneity in brain phenotypes in
attention-deficit/hyperactivity disorder (ADHD). However, how these individual-level brain
phenotypes contribute to the identification of ADHD biotypes and whether these biotypes have
different treatment outcomes and neurobiological underpinnings remain largely unknown.

Methods

We collected multisite, high-quality structural magnetic resonance imaging data from 1,006
children aged 6-14 years, including 351 children with ADHD and 655 typically developing
children. Normative growth models of cortical thickness were established for 219 regions in the
typically developing children. Individual-level deviations from these normal references were
quantified and clustered to identify ADHD biotypes. We validated the replicability and
generalizability of the ADHD biotypes using two independent datasets and evaluated the
associations of the biotypes with symptomatic, cognitive, and gene expression profiles, as well as
follow-up treatment outcomes.

Findings

No more than 10% of children with ADHD had extreme deviations in cortical thickness in a
single region, suggesting high heterogeneity among individuals with ADHD. On the basis of the
brain deviation maps, we discovered two robust ADHD biotypes, an infra-normal subtype with
cortical thinning associated with ADHD symptoms and a supranormal subtype with cortical
thickening associated with cognition. Patients with the infra-normal subtype responded better to
methylphenidate than to atomoxetine, although both subtypes showed treatment efficacy. Brain
deviations in the infra-normal subtype were explained by the expression levels of genes enriched
in presynaptic and axonal development and polygenic risk of ADHD.

Interpretation

We identified anatomically distinct, clinically valuable, and biologically informed ADHD
subtypes, providing insight into the neurobiological basis of clinical heterogeneity and
facilitating a personalized medication strategy for ADHD patients.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and persistent
neurodevelopmental disorder characterized by age-inappropriate levels of inattention,
hyperactivity, and impulsivity (1). Numerous studies using clinical and psychological data have
documented remarkable heterogeneity among individuals with ADHD (1, 2). Several pioneering
studies have identified ADHD subtypes by dividing patients into distinct groups according to
their cooccurring symptomatic, cognitive, and temperamental characteristics (3-6). However, the
neurobiological substrate of this clinical heterogeneity remains elusive. The identification of
ADHD biotypes could reveal their unique neurobiological mechanisms and has great potential to
accelerate personalized diagnosis, prognosis, and therapeutics (7).

Neuroimaging studies have reported case—control differences in structure (8-11) and function
(12, 13) between children with and without ADHD. However, most ADHD neuroimaging studies
have small effect sizes and limited reproducibility. For example, two large-sample, multisite
structural MRI studies reported significant (10) and nonsignificant (11) differences in cortical
thickness between children with and without ADHD. These inconsistent findings reflect the
heterogeneous nature of ADHD. Several recent studies have provided direct evidence for
substantial heterogeneity in brain phenotypes, including cortical morphology (14) and functional
connectivity (15), among ADHD individuals. These studies motivate the need to discover ADHD
biotypes with homogeneous structural or functional signatures. To date, eight studies have
identified ADHD biotypes using different neuroimaging measures, such as structural
morphology (16, 17), functional connectivity (18-21), and combinations of both features (22,
23). These results have already begun to provide insights into the neurophysiological
heterogeneity of ADHD.

Despite this substantial research effort, one limitation of existing ADHD biotype studies is their
use of brain-derived phenotypes that ignore developmental effects in children with ADHD.
Neuroimaging studies have suggested delayed maturation of cortical thickness (24) and
functional connectivity (25) in the frontal, temporal and parietal regions in children with ADHD.
Without considering development, these subtyping approaches may result in biased biotypes
driven by age rather than brain characteristics per se. Furthermore, the replicability and
generalizability of the ADHD biotypes across independent datasets have not been well
established. Another limitation is that previous studies have not examined whether ADHD
biotypes are associated with distinct treatment outcomes or unique molecular mechanisms, such
as gene expression signatures. Establishing replicable and clinically and biologically valuable
ADHD subtypes remains a challenge.

To address this challenge, we collected multisite, high-quality structural MRI data from a large
sample of 1,006 children aged 6-14 years. An overview of the study workflow is shown in Figure
1. We first established normative growth models of cortical thickness in 219 brain regions to
characterize the neuroanatomical heterogeneity of ADHD. The cortical thickness signature was
used for normative modeling since it reflects the neural cytoarchitecture and is sensitive to
cortical development (26). Normative modeling (15, 27) is a valuable statistical approach that
relates demographic characteristics (e.g., age and sex) to brain phenotypes in a normal
population and quantifies individual-level deviations from the normal reference. We then
estimated individual deviations in cortical thickness in ADHD patients and applied spectral

clustering analysis to identify homogeneous subtypes. We validated the replicability and
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generalizability of the ADHD biotypes using two independent datasets and evaluated the
associations of the biotypes with cognitive and symptomatic measures via multivariate partial
least squares (PLS) regression. Finally, we examined whether and how ADHD biotypes are
related to different treatment responses and gene expression profiles.

Methods
Participants

The present study included three independent neuroimaging datasets from China: the Children
Brain Development Project (BNU cohort), the Peking University Sixth Hospital (PKU6 cohort),
and the publicly available ADHD200 Study (ADHD200 cohort) (28). After application of
rigorous quality control (Supplementary Methods), our final sample included a total of 1,006
participants, with 655 typically developing children (TDCs) (age: 6.0-14.0 years; 369 boys;
BNU, PKU6, and ADHD200) and 351 children with ADHD (age: 6.2-14.0 years; 288 boys;
PKUG6 and ADHD200) (Figure 1A, Table 1). This study was approved by the Ethics Committee
of Beijing Normal University (BNU cohort) and Peking University Sixth Hospital (PKU6 and
ADHD200 cohorts), and written informed consent was obtained from all participants and their
parents.

Image acquisition and calculation of cortical thickness

High-resolution T1-weighted structural MRI data were obtained for each dataset using 3.0 T
MRI scanners. For each individual, the pial surface and gray matter/white matter boundary
surfaces were reconstructed using FreeSurfer (v 6.0). Cortical thickness was measured as the
distance between linked vertices in the pial and gray matter/white matter surfaces. Using a priori
Desikan—Killiany atlas (29, 30), the mean cortical thickness was calculated for 219 regions. For
details, see Supplementary Methods.

Constructing normative growth models of cortical morphology

Using cortical thickness data from TDCs (n = 655, age range: 6.0-14.0 years), we created
normative growth models of 219 cortical regions using the PCNtoolkit (31). Using hierarchical
Bayesian regression (HBR), we modeled cortical thickness as a function of age, sex, and site and
estimated the normative variance in thickness and the uncertainty of prediction. HBR allows for
both linear and nonlinear modeling and shows superiority in addressing site effects in model
estimation (32, 33). Model generalization was assessed by 10-fold cross-validation, with the
model fit for each region measured using standardized mean squared error, mean standardized
log-loss, and explained variance (Supplementary Methods).

Identifying ADHD biotypes using spectral clustering

For each individual in the ADHD group (n = 351), the cortical thickness map was positioned
onto the normative model to estimate individual deviations. For a given child with ADHD, i, the
deviation score Z of the region, j, was calculated as follows:

C_ Yij— i

Jo e

where y;; is the true cortical thickness, J;; is the predicted cortical thickness, 6i2j is the
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prediction uncertainty, and 52 ; is the normative variance. Extreme positive or negative

deviations were defined as |Z| > 2 (34, 35). Thus, we acquired 219 brain deviations for each
child with ADHD.

To identify ADHD biotypes, we performed spectral clustering analysis on 351 ADHD deviation
maps using the SNFtool (36). Briefly, the interparticipant similarity matrix (351 X351) was
estimated by calculating the Euclidean distance between the brain deviation profiles of every pair
of participants. Spectral clustering was subsequently applied to the similarity matrix to cluster
the participants into subgroups. The optimal number of clusters was determined according to
eigengaps and rotation costs. Bootstrapping (1,000 iterations, 80% of 351 samples) was
employed to validate the robustness of the subtyping. To evaluate the reproducibility of the
ADHD biotypes, we repeated the above analyses within each site and assessed the similarity of
the results between sites (Supplementary Methods).

We also compared cortical thickness differences between ADHD biotypes and TDCs using
analysis of covariance (ANCOVA) with age, sex, and medication as covariates. The ComBat
approach (37) was used to correct for site effects. Multiple comparisons were corrected using the
false discovery rate (FDR) at g < 0.05.

Relationships between cortical deviation signatures and demographic characteristics,
symptoms, and cognition in ADHD biotypes

To examine whether the ADHD biotypes exhibited differences in demographic characteristics
(sex and age), symptoms (inattention, hyperactivity-impulsivity, and total score), and cognitive
function (delay aversion, sustained attention, response inhibition, spatial working memory,
spatial planning, attention flexibility), we performed both univariate and multivariate analyses.
The chi-square test was used to evaluate biotype differences in sex. General linear models were
applied for assessing subtype differences in symptoms and cognitive function, with age, sex, site,
and medication as covariates. We then used multivariate PLS regression for each biotype to
explore the relationship between brain deviations (predictor variables) and symptoms/cognition
(response variables). The statistical significance of the PLS components was evaluated using
permutation tests (n = 5,000). For the significant PLS components, we calculated Pearson
correlations between the brain score and symptom/cognition score, and the significance of the
correlations was determined by permutation tests (n = 5,000). To assess the loading stability, we
applied bootstrapping resampling (n = 5,000) to calculate the Z score. For details, see
Supplementary Methods.

ADHD biotype differences in treatment response

We further investigated whether the identified ADHD subtypes responded differently to
treatment. In the PKU6 cohort, 102 children with ADHD underwent 12 weeks of medication
treatment with either methylphenidate or atomoxetine, and their symptoms were assessed both
before and after treatment. We examined ADHD biotype differences in treatment response using
a three-way (drug type, treatment, and subtype) repeated-measures analysis of variance
(ANOVA), with each symptom score as the dependent variable. If there was a three-way
interaction, post hoc tests were performed within each subtype to examine the drug type by
treatment interaction and the main effects of drug type and treatment.
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Transcriptomic profiling of biotype-specific changes in cortical thickness

PLS analysis was used to evaluate the associations between biotype-specific changes in cortical
thickness (7-map) and gene expression profiles. Human brain microarray samples were sourced
from the Allen Human Brain Atlas (AHBA) (n = 6 donors) (38). After preprocessing using the
abagen toolbox (39), the expression profiles of 8,564 genes across 111 cortical regions were
obtained. The statistical significance of the PLS components was tested using spin-based spatial
permutation tests (40, 41) (n = 5,000). For significant PLS components, the Pearson correlation
coefficient between the gene score and brain score was calculated, and the statistical significance
was tested using spin tests (n = 5,000). We transformed the gene weight into a Z score by
dividing by the standard error estimated from bootstrapping (n = 5,000) (42). Using univariate
one-sample Z tests, significant genes (FDR-corrected, q < 0.05) were identified and ranked
separately as positive or negative weighted genes. For details, see Supplementary Methods.

To determine the biological implications of the identified genes, we performed Gene Ontology
(GO) enrichment analysis using Metascape (43) (https://metascape.org). We selected three
ontology categories, namely, biological process, molecular function, and cellular component. The
significantly ranked positive and negative genes were subjected to separate analyses. To alleviate
redundancy in GO terms, Metascape hierarchically clustered all the significant terms into
clusters of similar terms based on similarity with the kappa test score. A threshold kappa score of
0.3 was applied to split the tree into separate clusters. The most significant terms (lowest p value)
within each cluster were used to represent the cluster. Finally, we investigated whether the PLS
gene lists shared enrichment with risk genes for ADHD that were derived from recent GWAS
studies (44-48). We performed a multigene list meta-analysis (43) between the PLS-positive
(PLS+) and PLS-negative (PLS-) gene lists and the ADHD GWAS gene list, respectively, to
determine whether there were shared enrichment terms or enrichment terms selectively attributed
to specific gene lists. The significance threshold for enrichment was set at FDR g < 0.05.

Results

Normative growth models of cortical thickness reveal remarkable neuroanatomical
heterogeneity in ADHD

We constructed normative growth models of cortical thickness for 219 brain regions (for model
performance, see Figure S1). Both boys and girls showed cortical thinning with age in most
regions. On the basis of these growth models, we found that no more than 10% of the children
with ADHD displayed extreme deviations in a single brain region (Figure 2A), and more than
80% of the children with ADHD had at least one brain region with extreme positive or negative
deviation (|Z| > 2) (Figure 2A). These results suggest substantial heterogeneity in cortical
thickness signatures among children with ADHD.

Two robust ADHD biotypes characterized by distinct brain deviation profiles

Using spectral clustering analysis, we identified two ADHD biotypes with unique patterns of
cortical thickness deviations (Figure 2B, Figure S2). Specifically, subtype 1, termed the infra-
normal subtype, exhibited widespread negative deviations, primarily in the superior and middle
frontal, precentral, and superior parietal cortices (N = 171; boys = 139; Figure 2C, Figure S3A),
whereas subtype 2, termed the supra-normal subtype, exhibited widespread positive deviations,
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primarily in the superior parietal, precuneus, medial and lateral prefrontal, and lateral temporal
cortices (N = 180; boys = 149; Figure 2C, Figure S3B).

According to our case—control comparison (Figure S4), infra-normal subtype exhibited cortical
thinning across widespread regions compared to TDCs (|Cohen’s d|: 0.17-0.49, prpr < 0.05;
Figure 2D). Conversely, supra-normal subtype exhibited cortical thickening in extensive regions
(|ICohen’s d|: 0.17-0.62, prpr < 0.05; Figure 2D). Importantly, no significant difference in cortical
thickness was observed between all ADHD patients and controls.

We also identified two ADHD biotypes within each site. In the PKU6 cohort, the subject ID of
each subtype had 100% overlap with that of the original subtype (Figure 2E). In the ADHD200
cohort, the subject ID of infra-normal subtype had 98% overlap with that of the original infra-
normal subtype, and the subject ID of supra-normal subtype had 91% overlap with that of the
supra-normal subtype (Figure 2E). Subtype-specific alterations in cortical thickness also showed
similar patterns between two sites (Figure 2F, Figure S5). These results suggest the high
replicability and generalizability of ADHD biotypes across independent datasets.

Subtype-related brain deviations relating to symptoms and cognition

According to univariate analysis, the two ADHD biotypes did not differ in age, sex, symptoms,
or cognitive functions (Table S1). However, PLS regression revealed that the two subtypes had
distinct associations between brain deviations and symptomatic and cognitive profiles.

In the infra-normal biotype, the first component of the PLS model explained 35.7% of the
variance in ADHD symptoms (ppermutation = 0.038; Figure 3A), with a significant correlation
between brain scores and symptom scores (r = 0.68, ppermutation < 0.001; Figure 3B). All three
symptomatic variables contributed to this association (Figure 3C, Figure S6A). The brain
deviations showed positive loadings in the medial occipital, inferior frontal, insula, and dorsal
anterior cingulate cortices (dACC), and negative loadings in the dorsal medial and lateral
prefrontal and lateral temporal cortices (Figure 3D, Figure S6B). However, no associations
between brain deviations and symptoms were observed in the supra-normal subtype.

In the supra-normal biotype, the first PLS component explained 13.4% of the variance in cognition
in ADHD patients (ppermutation = 0.006; Figure 3E), and there was a significant correlation between
brain scores and cognitive scores (r = 0.83, ppermutation < 0.001; Figure 3F). The cognitive
contribution loadings showed the highest positive values for attention flexibility, spatial planning,
and sustaining attention and negative values for delay aversion (Figure 3G, Figure S6C). Positive
loadings of thickness deviation were primarily located in the sensorimotor cortices, while negative
loadings were found in the superior frontal, lateral orbitofrontal, and temporal cortices (Figure 3H,
Figure S6D). No associations between brain deviations and cognition were observed in the infra-
normal subtype.

Differential treatment responses between ADHD subtypes

Pre- and post-treatment symptom scores for each biotype were presented in Table S2. A
significant subtype % drug type x treatment interaction was detected for the total symptom
score (F =4.33, p = 0.04; Table S3) and hyperactivity-impulsivity score (F = 3.99, p = 0.048;
Table S4) but not for the inattention score (F = 1.93, p = 0.17; Table S5). Post hoc analysis
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revealed a significant drug type X treatment interaction for the total symptom score (F =5.25,p =
0.03, Table S6) and hyperactivity-impulsivity score (F = 10.91, p = 0.002, Table S7) in the infra-
normal subtype (Figure 31) but not in the supra-normal subtype (Figure 3J). Specifically, the
infra-normal subtype responded better to methylphenidate than to atomoxetine as assessed by the
total symptom score and hyperactivity-impulsivity score (Figure 3I). For the supra-normal
subtype, we observed a main effect of only treatment (F > 24.56, p < 0.001, Figure 3J).

Subtype-related brain deviations relating to transcriptomic profiles

For the infra-normal subtype, the first PLS component explained 30% of the variance in cortical
thickness differences (pspin < 0.001; Figure 4A). There was a positive correlation between the
PLS gene score and the spatial pattern of cortical thickness differences (r = 0.55, pspin < 0.001;
Figure 4B). The PLS component revealed a transcriptional profile with low gene expression
mainly in the dorsal medial and lateral frontal cortices and high expression in the medial
occipital cortex, dACC, insula, and lateral temporal cortex (Figure 4C). Furthermore, we
performed GO enrichment analysis for the top-ranked PLS+ (1,459 genes) and PLS- genes

9 <

(1,414 genes), respectively. The PLS+ genes were enriched in “cytosolic ribosomes”, “regulation
of cell activation”, “transcription coregulator activity”, and “embryonic morphogenesis” (prpr <
0.05; Figure 4D, Figure S7A), and the top-ranked PLS- genes were enriched in “axons”,
“presynapses”, “postsynapses”, “modulation of chemical synaptic transmission”, and “regulation
of transmembrane transport” (prpr < 0.05; Figure 4E, Figure S7B). We did not find any brain-

gene correlations for the supra-normal subtype.

To further evaluate whether the PLS+ or PLS- genes were enriched in similar terms as the
polygenic risk genes for ADHD, a meta-analysis of multiple gene lists was performed. The PLS+
and GWAS genes had common GO terms, including “transcription coregulator activity”,
“embryonic morphogenesis”, “regulation of cell activation”, and “transcription regulator
complex” (Figure 4F, Figure S8A). The PLS- and GWAS genes shared GO terms, including
“axon”, “presynapse”, “modulation of chemical synaptic transmission”, and “regulation of

transmembrane transport” (Figure 4G, Figure S§B).
Discussion

Using normative models of cortical morphology, we identified the neuroanatomical
heterogeneity of ADHD and defined two biotypes: an infra-normal subtype with cortical thinning
and a supranormal subtype with cortical thickening. The two ADHD biotypes were highly
reproducible across independent sites and were characterized by distinct symptomatic, cognitive,
and gene expression profiles, as well as treatment responses. These findings advance our
understanding of the neurobiological basis underlying the clinical heterogeneity of ADHD and
suggest the potential value of data-driven biotyping for personalized treatment.

Previous studies of ADHD have reported small effect sizes for case—control differences in
cortical thickness. For instance, a previous ENIGMA study (10) revealed that cortical thinning
was restricted to four regions (temporal pole, precentral, fusiform, and parahippocampal gyrus)
in children with ADHD, with effect sizes ranging from -0.18 to -0.15. The largest structural MRI
study of ADHD based on the Adolescent Brain Cognitive Development (ABCD) data (11)
reported no significant case—control differences in cortical thickness. Consistent with the
previous study, we found no significant case—control differences in cortical thickness when the
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data from all children with ADHD were pooled. In contrast to these case—control analyses, we
observed individual-level deviations in cortical thickness from the normal references in
widespread regions. Moreover, the location of these deviations varied considerably, suggesting
remarkable neuroanatomical heterogeneity in ADHD patients. Based on these deviated
signatures, we identified two reproducible and clinically meaningful subtypes, highlighting the
critical need to discover ADHD biotypes.

The two ADHD biotypes showed opposite deviations in cortical thickness, with negative
deviations occurring primarily in the infra-normal biotype and positive deviations occurring
primarily in the supra-normal biotype. Several previous studies have reported both cortical
thinning in the frontal and lateral occipitotemporal lobes (10) and cortical thickening in the
occipital lobe (49, 50), which partly support our findings. Interestingly, the two ADHD biotypes
were associated with different symptomatic and cognitive profiles. These finding highlights how
different brain structural features shape specific phenotypes. Consistent with the “modernized
concept of ADHD” (51), our findings highlight the need to move beyond an understanding of
ADHD based solely on “average patient”. It is worth noting that the whole-brain deviation
pattern, rather than abnormalities in a single region, was associated with the core symptoms or
cognition of each biotype. This finding suggests the potential role of inter-regional structural
covariance in the clinical and cognitive phenotypes of ADHD.

One clinical benefit of identifying ADHD biotypes is the advancement of personalized treatment,
as medications may have different effects on patients with distinct brain characteristics. This idea
is supported by our findings that only patients with the infra-normal subtype had a better
treatment response to methylphenidate than to atomoxetine. Several previous studies have
suggested that stimulants (i.e., methylphenidate) are more effective than nonstimulants (i.e.,
atomoxetine) for some children with ADHD (52-54). An intriguing question raised by these
results is why this differential effect of methylphenidate and atomoxetine is observed specifically
in the infra-normal subtype, which is characterized by overall cortical thinning. One possible
explanation lies in the differences in neurobiological mechanisms between the two drugs. Both
methylphenidate and atomoxetine increase extracellular synaptic levels of dopamine and
norepinephrine in the prefrontal cortex by blocking dopamine and norepinephrine transporters
(55). However, methylphenidate also increases catecholamine transmission in the striatum and
caudate, whereas the effects of atomoxetine are specific to the prefrontal cortex (56). The
reduced cortical thickness observed in the infra-normal subtype suggests disruptions in the top-
down regulations between numerous cortices and basal ganglia (57). Consequently, the increase
in dopamine and norepinephrine levels in the prefrontal cortex and mesolimbic circuit induced
by methylphenidate could lead to superior improvements in the core ADHD symptoms in the
infra-normal subtype.

The identified ADHD biotypes revealed specific molecular mechanisms that underlie alterations
in brain morphology. We observed associations between brain morphology and gene expression
only in the infra-normal subtype, with genes enriched in GO cellular components and biological
processes involved in neurodevelopment, including pre- and postsynapses, modulation of
chemical synaptic transmission, and axon development. Evidence suggests that disruption of
synapses is the most common effect of ADHD-related genetic variants (CDH13, DRD4, and
SLC6A3) (58-60). Reduced neuronal and synaptic density may lead to cortical thinning in the
infra-normal subtype. The pharmacological effects of stimulants also suggest that
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neurotransmitter dysregulation contributes to this disorder. Furthermore, observations of
abnormalities in cell morphogenesis and axon growth (FOXP2, MEF2C, and SLC6A4) (61) are
consistent with the immaturation observed in ADHD. Finally, enrichment analysis of the risk
genes reported in ADHD GWASSs revealed several shared GO terms, particularly those related to
neurodevelopmental processes. These results validate and reinforce the reliability of our
findings.

This study has several limitations. First, our ADHD sample was drawn from China. Normative
models of cortical morphology were established based on the Chinese TDC population. Given
the anatomical differences between Chinese and Caucasian populations (62), future research
needs to replicate these findings in samples of diverse geographical origins. Second, we
demonstrated subtype-specific medication effects on symptoms. However, how different
medications influence brain phenotypes in these two subtypes warrants further investigation.
Third, we used the AHBA transcriptomic dataset to establish associations between normally
expressed genes and ADHD-related brain phenotypes. The AHBA donors were all adults,
whereas our ADHD subjects were children. Future studies should include genes from
postmortem brain tissue of individuals with ADHD, allowing for a more direct exploration of the
links between MRI-based brain phenotypes and histologically measured dysregulated genes.
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Figure 1 Study demographics and schematic diagram of methodology. (A) Box and violin
plots represent the age and sex distribution of each cohort. (B) Regional cortical thickness was
calculated for each participant. (C) Sex-specific normative models were estimated for each
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Figure 2 Normative models of cortical thickness revealed heterogeneity in ADHD and two
ADHD subtypes were identified. (A) Spatial distribution map shows the percentage of ADHD
children with extreme deviation (|Z| < 2) in each region. Bar plot depicts the distribution of the
number of extreme positive (red) and negative (blue) deviated regions per ADHD child. (B)
Determination of the best number of ADHD subtypes (left) and the similarity of the cortical
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controls, right: supra-normal subtype vs. controls), which were identified by ANCOVA analysis.
(E) Venn diagram depicting the degree of overlap between the subject IDs of the single-site
clustering and those of the original biotypes. (F) Case-control differences in cortical thickness
were obtained for each biotype (left: infra-normal subtype vs. controls, right: supra-normal
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reproducibility of results between two independent sites. Dark colors denote overlapping regions
between two sites and light colors denote site-specific regions.

PKUB

18


https://doi.org/10.1101/2024.03.16.582202
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.16.582202; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Infra-normal subtype Supra-normal subtype
A B E
Symptoms Cognition F
0.5 501 r=0.68 0.20
@ o Q
o <0.001 o
5 g asf" So015] * 8
= £ Y @
fos = g . @
b1 e O 5 0.10f--------mo- &g [
@ 2 @ c
£02 s < S
a [ 2.0.05 c
Nl e e . £~ o 0. )
Zo & & S
0.0 -50 0.00
1235345678910 62 00 02 i 2 3 4 5 =62 00 02
PLS Component Brain PLS score PLS Component Brain PLS score
C D G . H
8.0 P
’/ ? - Loasdmg 5.0 4 Loading
8’6 © .'( - B ( i = ® “' .
£ 2
S 40 5 \a 2 £ 25 P » ~ » :
o 0 g [ ] D
- - -2 = 00 & ~
2.0 -
é N5 i
s -25
0.0 _ - 2 ! 75
PO N ~~ - B R oh A ob
R S
| . _ J
Interaction: p = 0.03 Interaction: p = 0.002 Interaction: p = 0.61 Interaction: p = 0.75
* %% 30 — *kk *kk 30 —
— *kk *kk === === Sk Sk
o o
3 3
2 & MPH ° & MPH
o ATX ) ATX
o e
0
X X X 2
e oo e o G ) G ) AN N X
F@ o @ O FC o @ o 909 @ Qo‘b o 909

Figure 3 ADHD biotype differences in brain-symptom/cognition relationship and treatment
response. (A-D) Brain-symptom association in the infra-normal biotype. (A) Explained variance
for PLS components. The significant PLS component is marked with an asterisk. (B) Pearson
correlation between brain scores and symptom scores. Shaded areas correspond to 95% Cls. (C)
Loading values for each symptom variable. (D) Loading values for each of the 219 brain regions.
(E-H) Brain-cognition association in the supra-normal biotype. (E) Explained variance for PLS
components. The significant PLS component is marked with an asterisk. (F) Pearson correlation
between brain scores and cognitive scores. Shaded areas correspond to 95% Cls. (G) Loading
values for each cognitive variable. (H) Loading values for each of the 219 brain regions. (I, J)
Differential treatment response between two ADHD biotypes. (I) Significant drug type x
treatment interaction in the infra-normal subtype as assessed by total score (left) and HI score
(right). (J) No drug type x treatment interaction in the supra-normal subtype as assessed by total
score (left) and HI score (right). PLS: partial least squares; HI: hyperactivity-impulsivity; AF:
attentional flexibility; SP: spatial planning; SA: sustained attention; RI: response inhibition;
SWM: spatial working memory; DA: delay aversion; MPH: methylphenidate; ATX:
atomoxetine.
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Figure 4 Association between brain alterations of the infra-normal biotype and gene
transcriptomic profiles. (A) Explained variance for the first 10 components obtained from the
PLS analysis. The significant PLS component is marked with an asterisk. (B) Pearson correlation
between gene scores and 7-map of the infra-normal biotype. Shaded areas correspond to 95%
CIs. (C) Spatial patterns of gene PLS scores across 111 brain regions in the left hemisphere. (D,
E) Functional enrichment for top ranked PLS+ genes (D) and PLS- genes (E). Significant GO
terms are shown with the node size denoting fold enrichment. (F, G) Results of multi-gene-list
meta-analysis using PLS genes and polygenic risk for ADHD (F: PLS+ genes, G: PLS- genes).
The heatmap shows shared and specific enrichment. Cell color denotes significant p-value and
gray color denotes non-significant enrichment.
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Table 1. Demographics for participants

TDC ADHD Total
BNU1 BNU2 PKU6 ADHD200 PKU6 ADHD200 ADHD TDC
Sample size 326 118 78 133 267 84 351 655
Demographics
Age range 6.0-13.9  6.0-13.9  6.8-13.7 8.1-14.0 6.2-14.0 8.3-14.0 6.2-14.0 6.0-14.0
Age, mean = SD 9.16 (1.70) 9.22 (1.67) 10.06 (1.95) 11.19 (1.70) 9.53 (1.91) 11.55 (1.73) 10.02 (2.05) 9.67 (1.90)
Sex, n Males 173 (53%) 68 (58%) 50 (64%) 78 (59%) 215 (81%) 73 (87%) 288 (82%) 369 (56%)

1Q, mean + SD 113.41 (14.66) 118.14 (13.07) [105.50 (16.63) 107.07 (13.21) [105.95 (15.72) 116.56 (13.76)
Symptoms

Inattention 26.01 (4.05) 27.85(4.12) 26.48 (4.17)
Hyperactivity-Impulsivity 19.98 (5.84) 22.50 (6.44) 20.60 (6.21)
Total 46.00 (8.19) 50.21 (8.00) 47.05 (8.51)
Comorbidities

ODD 7 (3%) 25 (30%) 32 (9%)

CD 1 (0.4%) 2 (2%) 3 (0.9%)
LD 0 (0%) 10 (12%) 10 (3%)
Tics 3 (1%) 7 (8%) 10 (3%)
Others* 0 (0%) 3 (4%) 3 (0.9%)
Medication history 0 (0%) 26 (31%) 26 (7)

Data are mean (SD) or n (%). ADHD2OO cohort only 1ncluded PKU site. TDC, typically developing controls; ADHD, attention-deficit/hyperactivity
disorder; ODD: oppositional defiance disorder; CD: conduct disorder; LD: learning disability. *Others: social anxiety disorder, depression, social

phobia.
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