

Interpretable and predictive models based on high-dimensional data in ecology and evolution

Joshua P. Jahner^{a,1}, C. Alex Buerkle^a, Dustin G. Gannon^a, Eliza M. Grames^{b,c}, S. Eryn McFarlane^{a,d}, Andrew Siefert^a, Katherine L. Bell^b, Victoria L. DeLeo^a, Matthew L. Forister^b, Joshua G. Harrison^a, Daniel C. Laughlin^a, Amy C. Patterson^a, Breanna F. Powers^{a,e}, Chhaya M. Werner^{a,f}, Isabella A. Oleksy^{g,h}

^aDepartment of Botany, University of Wyoming, Laramie, WY 82071, USA

^bDepartment of Biology, University of Nevada, Reno, NV, 89557 USA

^cDepartment of Biological Sciences, Binghamton University, Binghamton, NY 13902 USA

^dDepartment of Biology, York University, Toronto, ON M3J 1P3, Canada

^eSchool of Forestry, Northern Arizona University, Flagstaff, AZ 86011, USA

^fDepartment of Environmental Science, Policy & Sustainability, Southern Oregon University, Ashland, OR 97520, USA

^gDepartment of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA

^hInstitute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80303, USA

¹To whom correspondence may be addressed. Email: jpjahner@gmail.com

1 Abstract

2 The proliferation of high-dimensional data in ecology and evolutionary biology raise the promise
3 of statistical and machine learning models that are highly predictive and interpretable. However,
4 high-dimensional data are commonly burdened with an inherent trade-off: in-sample prediction of
5 outcomes will improve as additional predictors are included in the model, but this may come at the
6 cost of poor predictive accuracy and limited generalizability for future or unsampled observations
7 (out-of-sample prediction). To confront this problem of overfitting, sparse models can focus on key
8 predictors by correctly placing low weight on unimportant variables. We compared nine methods to
9 quantify their performance in variable selection and prediction using simulated data with different
10 sample sizes, numbers of predictors, and strengths of effects. Overfitting was typical for many
11 methods and simulation scenarios. Despite this, in-sample and out-of-sample prediction converged
12 on the true predictive target for simulations with more observations, larger causal effects, and fewer
13 predictors. Accurate variable selection to support process-based understanding will be unattainable
14 for many realistic sampling schemes in ecology and evolution. We use our analyses to characterize
15 data attributes for which statistical learning is possible, and illustrate how some sparse methods
16 can achieve predictive accuracy while mitigating and learning the extent of overfitting.

17 **Keywords:** prediction, reducible error, simulation, sparse modeling, statistical learning, variable
18 selection.

19 Introduction

20 Research in ecology and evolution has seen dramatic growth in data due to technological advances
21 for automation and high-throughput sampling (e.g., water or air sampling, [Porter et al. 2009](#); satel-
22 lite imagery, [Ustin & Middleton 2021](#), [Cavender-Bares et al. 2022](#); DNA sequencing, [Halldorsson](#)
23 [et al. 2022](#), [Rubinacci et al. 2023](#); and GPS telemetry, [Wilmers et al. 2015](#), [Gigliotti et al. 2022](#)).
24 While large data sets have the potential to greatly improve our understanding of complex systems,
25 they also pose considerable challenges for data analysis and incorporation into formal process mod-
26 els. For example, a cross-cutting objective in ecology and evolutionary biology involves learning the
27 causes of species abundances and distributions, including making predictions about the responses
28 of wild and cultivated organisms to climate change ([Faske et al. 2023](#), [Forister et al. 2023](#), [Grames](#)
29 & [Forister 2024](#), [Halsch et al. 2024](#), [Laughlin & McGill 2024](#), [Li et al. 2024](#)). These predictions are
30 commonly based on contemporary observations of organisms and many dimensions of abiotic and
31 biotic environments, and intrinsic attributes (e.g., the genome) that could be causally associated
32 with their distributions (e.g., [Faske et al. 2023](#), [Grames & Forister 2024](#), [Li et al. 2024](#)). Despite
33 remarkably large sampling effort, many studies have more measures of covariates (of climate or the
34 genome) to make their predictions than they do samples, posing a challenge for predicting organ-
35 ismal responses to climate beyond the settings in which they were studied. Limited generalizability is
36 common in parameter-rich models and results from overfitting, or the tendency for flexible models
37 to fit too closely to the observed data such that idiosyncratic variation in the observed data is
38 taken as pattern rather than noise ([Hastie et al. 2015](#)). Thus, the availability of big data with
39 potentially many more covariates (P ; i.e., high-dimensional) than observations (N) may counter-
40 intuitively lead to models with poor predictive performance outside the scope of the sample (“the
41 curse of dimensionality”, [Altman & Krzywinski 2018](#)). More broadly, we face the problem of how
42 to realistically and intelligently constrain the flexibility of our models to capture potential general
43 patterns while learning about genuine context-dependent effects ([Weiss 2008](#)).

44 We have made great strides in ecology and evolution in constructing highly predictive models
45 based on computational modeling and machine learning to address the proliferation of large data
46 sets. Machine learning complements standard methods for statistical modeling that make *a priori*
47 choices of which predictor variables to include based on conceptual, process-based understanding.
48 More generally, advances in machine learning have prompted a reevaluation of how we value models
49 and what it means for a model to ‘understand’ something about the world (Mitchell & Krakauer
50 2023). Statistical models can be used to learn which predictors are associated with a response (i.e.,
51 variable or feature selection), to generate accurate predictions about the sampled population (i.e.,
52 in-sample prediction), and to make generalizations about populations, localities, or time-points for
53 which we have no prior information (i.e., out-of-sample prediction). We value models that can reveal
54 predictors that are associated with the generative processes leading to variation in the response,
55 while also avoiding shortcut learning that can garner accurate predictions from tangentially related
56 variables (shortcut learning can be problematic for both inference and out-of-sample prediction;
57 Geirhos *et al.* 2020).

58 Ecologists and evolutionary biologists would benefit from a direct comparison and evaluation
59 of the prospects of different statistical learning methods (Porwal & Raftery 2022), and from a
60 greater clarity about critical issues in model evaluation, including overfitting, the extent to which
61 process variance is recovered in model predictions, and the explanatory value of important predictor
62 variables. Computational methods for sparse modeling might be particularly valuable approaches:
63 these methods assume that most predictors have no causal relationship with the response and
64 therefore only generate estimates for a subset of variables (Hastie *et al.* 2015). The hope is that
65 selected predictors correspond to the key process variables that are causally linked to variation in
66 the response, which should limit overfitting and improve predictive performance when generalizing
67 to unsampled or future observations. It is an open question to what extent sparse models can
68 maximize predictive performance and yield interpretable model outputs, particularly for high-
69 dimensional data where the number of covariates (P) is much greater than the number of samples
70 (N).

71 We compared the relative performance of several modeling methods by applying them to the
72 same data sets with known, simulated causal relationships, of the type commonly encountered in
73 ecology and evolutionary biology. Our 36 core simulation scenarios (100 simulated replicates each)
74 differed in the number of observations ($N = 50, 150, \text{ or } 500$), the number of covariates ($P = 100,$
75 $1,000, 10,000, \text{ or } 100,000$; of which 10 were causal and directly influenced the response variable),
76 and the effect size of causal predictors ($\beta_{\text{causal}} = 0.1, 0.3, \text{ or } 0.8$; Table S1). Our statistical
77 learning methods included penalized regression methods based on maximum likelihood (Ridge,
78 Elastic Net, and LASSO) and Bayesian estimation (Bayesian LASSO [BLASSO], Horseshoe, Spike-
79 and-slab, Sum of Single Effects [SuSiE], and Bayesian Sparse Linear Mixed Model [BSLMM]), and
80 one commonly used machine learning method (Random Forest). When evaluating the strengths
81 and weaknesses of different methods, we considered prediction (the accuracy of prediction of the
82 response variable given the covariates, both for in-sample, training data and out-of-sample, test
83 data) and inference (i.e., learning which variables are causally associated with variation in the
84 response). While prediction and inference should be treated as complementary goals in statistical
85 analyses (Breiman 2001b), it is worth noting they are not always associated, even if there is an
86 expectation that strong inference would follow from accurate predictions (Wang *et al.* 2020b).

87 Results

88 A perfect model would: 1) identify only the ten truly causal predictors and accurately estimate
89 their effect sizes; 2) accurately attribute the variation in the response that arises directly from
90 the causal predictors (i.e., reducible error); and 3) disregard variation in the response arising from
91 other unmeasured or stochastic processes (i.e., irreducible error; James *et al.* 2021). Across all
92 simulations, the magnitude of reducible error was overwhelmingly associated with the effect size of
93 causal predictors (R^2 between the known, additive effects of simulated causal predictors and the
94 simulated response variable was $\approx 0.10, 0.47$, and 0.86 with $\beta_{\text{causal}} = 0.1, 0.3$, and 0.8 , respectively;
95 Fig. S1). Reducible error was more variable among replicates when N or P were low.

96 The different methods varied greatly in their performance for variable selection and prediction.
97 For one example data set ($N = 150$, $P = 10,000$, $\beta_{\text{causal}} = 0.8$; see Fig. 1), LASSO `monomvn` had
98 the greatest success at delineating between causal and non-causal predictors (true positive rate
99 [TPR] = 0.9; true negative rate [TNR] = 0.998). While Random Forest also correctly identified
100 nine of the ten causal predictors (TPR = 0.9), it implicated a large proportion of non-causal
101 variants as being associated with the response (TNR = 0.123). In contrast, BSLMM was relatively
102 successful at excluding non-causal predictors (TNR = 0.958), but could only identify half of the
103 causal predictors (TPR = 0.5). For prediction, the true reducible error for the example data set was
104 $R^2 = 0.832$, which served as the target for both in-sample and out-of-sample prediction (based on
105 500 observations not used to train the model). For LASSO `monomvn`, in-sample prediction was very
106 close to the reducible error ($R^2 = 0.819$), which translated to the highest success for out-of-sample
107 prediction ($R^2 = 0.749$). In-sample prediction exceeded the reducible error for BSLMM ($R^2 =$
108 0.961), and this overfitting led to reduced out-of-sample prediction ($R^2 = 0.622$) relative to LASSO
109 `monomvn`. Random Forest suffered from poor predictive yield, with both in-sample ($R^2 = 0.084$) and
110 out-of-sample ($R^2 = 0.341$) comparisons, falling far short of the reducible error. Overall, LASSO
111 `monomvn` provided the best balance between variable selection and prediction for the example data
112 set.

113 Overfitting was rampant across all scenarios, as evidenced by large in-sample R^2 and low out-
114 of-sample R^2 (Fig. 2A and B). It was also common for models to recover only a fraction of the
115 reducible error in out-of-sample prediction, particularly for simulations with larger P (Fig. 2B).
116 The accuracy of in-sample and out-of-sample prediction converged towards the reducible error tar-
117 get for simulations with larger β_{causal} and N and smaller P (Fig. 3). Out-of-sample predictive
118 performance was not necessarily associated with more accurate variable selection, as out-of-sample
119 R^2 matched the reducible error even with low F_1 for some scenarios (Fig. S2). Variable selection
120 was first assessed for methods that return truly sparse parameter estimates (i.e., $\beta = 0$; BSLMM,
121 Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest), and was generally
122 poor except from when β_{causal} and N were high and P was low; Fig. 2C). When β_{causal} was low,
123 a negative relationship between TPR and TNR emerged across methods, suggesting a trade-off
124 between identifying causal predictors and excluding non-causal predictors (Fig. 4). Variable selec-
125 tion was also assessed based on posterior inclusion probabilities (PIPs) for four Bayesian methods
126 (BLASSO, BSLMM, Horseshoe, SuSiE) using the example data set from Fig. 1. The use of a
127 small PIP threshold of 0.05 (i.e., only predictors with $\text{PIP} \geq 0.05$ are scored as positives) improved
128 variable selection for BSLMM and SuSiE, whereas larger thresholds were needed to recover more
129 limited gains for BLASSO and Horseshoe (Fig. S3). Parameter estimation was remarkably con-
130 sistent across different analyses, and was instead most strongly influenced by data dimensionality:
131 estimation was worse with greater β_{causal} and lower N and P (Fig. 2D). This pattern arose because
132 most methods are worse at estimating predictors with $\beta \neq 0$ than those with $\beta = 0$, resulting

133 in larger root mean square error (RMSE) when the proportion of causal to non-causal predictors
134 was relatively large (i.e., when P was small) or when the effect size of causal predictors was very
135 different from zero (i.e., when β_{causal} was large). Analysis of the 3,600 data sets completed in
136 2.49 CPU-years, with BLASSO and Horseshoe contributing 46.6% and 46.7% of the total run-time,
137 respectively (Fig. 2E).

138 Discussion

139 High-throughput and automated data acquisition promises to yield valuable information about
140 processes that generate variation. This promise is diminished in the common situation in ecology
141 and evolutionary biology when sampling is of few individuals (N) and many potential covariates
142 (P ; e.g., genomic polymorphisms at 10^6 sites, months of micrometeorological sensor measurements
143 at 10Hz). Our simulations highlight that the most consistent way to obtain highly predictive and
144 explanatory models is to maximize the number of independent observations. While sparse modeling
145 techniques allow the fitting of models in settings with more covariates than observations ($P > N$),
146 they cannot rescue analyses based on small sample sizes, especially when P is large or when effect
147 sizes are small relative to background levels of stochastic variation (Fig. 2). This means that
148 for many typical analyses in ecology and evolutionary biology, variable selection will suffer from
149 low precision and sensitivity, and prediction models will be overfit and have poor generalizability.
150 In cases where sparse methods struggle with a low signal-to-noise ratio, other methods will also
151 struggle (“the bet-on-sparsity principle”; [Hastie et al. 2009](#)), meaning such signals will only ever
152 be detectable with more data, better sampling design, or both. Indeed, when we extended our
153 simulations to have sample sizes of 1,000 or 10,000 observations, in-sample and out-of-sample R^2
154 converged to the maximum reducible error, and variable selection improved for most analyses (Fig.
155 5).

156 It is perhaps naïve to use statistical learning for prediction without large training sets, particu-
157 larly when causal effect sizes are small relative to variance from extraneous sources. The temptation
158 to do so might stem from working with big data ($N \times P$), but not appreciating that all statistical
159 approaches are expected to yield relatively poor out-of-sample prediction when N is small (e.g.,
160 < 500) and effect sizes are modest. Some of the most remarkable models in society, such as those
161 for large language modeling ([Zhao et al. 2023](#)), natural voice recognition ([Xiong et al. 2016](#)), image
162 segmentation ([Kirillov et al. 2023](#)), and board game algorithms ([Silver et al. 2018](#)), are typically
163 trained on enormous sample sizes. For example, [Tabak et al. \(2019\)](#) trained a convolutional neural
164 network with more than 3 million images to achieve more than 80% out-of-sample accuracy when
165 detecting ungulates from camera trap imagery. We do believe there is a place for sparse meth-
166 ods in the life sciences when many observations (N) can be obtained (Fig. 5). Our simulations
167 provide context for evaluating different dimensions of model quality and the comparison of model
168 approaches suggests which methods will be most useful and when.

169 For most predictive contexts, the primary objective is to account for the reducible error in the
170 data, as this is the variation in the response associated with generative processes ([James et al. 2021](#)).
171 We were able to directly quantify the reducible error in our simulated data sets and easily identify
172 cases of overfitting in which in-sample $R^2 >$ reducible error R^2 (Figs. 2A & 3). With empirical data,
173 the true reducible error and prediction errors arising from model variance and bias will be unknown
174 ([James et al. 2021](#)), but overfitting may be evident when in-sample R^2 exceeds out-of-sample R^2 .
175 It is worth emphasizing that in our simulations and analyses, we minimized the potential for model
176 bias and underfitting by simulating data from simple additive generative processes that are mirrored

177 in the statistical learning methods we used. In other words, we simulated the best case scenarios
178 for explaining reducible error, and we still typically fell short.

179 To minimize errors in prediction, we can strive for large sample sizes of representative data for
180 model training (i.e., homogeneous with the out-of-sample, test data). Additionally, on average,
181 in-sample prediction accuracy cannot be less than out-of-sample prediction accuracy, and both
182 will converge on the true reducible error with increasing β_{causal} and N and decreasing P (Fig.
183 3). Recovery of similar in-sample and out-of-sample R^2 is consistent with minimal overfitting, but
184 could arise from model bias. Similar out-of-sample R^2 from multiple, genuinely different analysis
185 methods would be consistent with having minimized prediction error given the information in
186 the available data, but could still derive from underfit, biased models that account for only a
187 fraction of the true reducible error (see results from Random Forest in the example data set; Fig.
188 1). It is worth noting that Random Forest always yielded in-sample R^2 roughly equal to out-of-
189 sample R^2 (Figs. 2A,B & 3), as this is the only method that uses cross-validation as a default. The
190 distinction between prediction errors that arise in-sample and out-of-sample (Fig. 3), and the strong
191 potential for overfitting, call into question model choice decisions that are very commonly made
192 based on in-sample data alone without any cross-validation procedure (i.e., potentially choosing the
193 most overfit model with little deference for out-of-sample prediction; see Fig. 3; [Tredennick et al. 2021](#)). Importantly, while cross-validation is critical for safeguarding against misleading model
194 results, reduced R^2 values from cross-validated models could result in studies being less likely to
195 be published or going into a lower profile journal, suggesting the need for a shift in how researchers
196 evaluate prediction results in the context of cross-validation.

198 The conditions that allow for strong prediction, namely when β_{causal} and N are large and P
199 is small, are the same in which variable selection is possible (Figs. 2C & 3), though reliable out-
200 of-sample prediction did not necessarily depend on perfect variable selection (i.e., including all
201 causal and excluding all non-causal predictors; Fig. S2). A variable selection trade-off emerged for
202 the data sets in which variable selection was most difficult (e.g., $\beta_{\text{causal}} = 0.1$), as evidenced by a
203 negative relationship between true positive and true negative rates (Fig. 4). This result has broad
204 implications because effect sizes are expected to be small and diffuse for many biological systems
205 (e.g., in genetics, [Boyle et al. 2017](#)). Moreover, the consequences of different variable selection errors
206 will have disparate repercussions in exploratory versus diagnostic settings, so researchers will need
207 to weigh the costs and benefits of either identifying all causal predictors at the expense of including
208 some false positives (e.g., when developing candidate variables for further study) or missing some
209 causal predictors to ensure the absence of any false positives (e.g., when identifying biomarkers
210 for disease detection). For the Bayesian methods that generate posterior inclusion probabilities
211 (PIPs), the threshold for deciding whether or not to include a variable may vary across disciplines
212 and fields. In evolutionary genetics, researchers may choose to only consider genetic loci that have
213 a PIP > 0.1 ([Lucas et al. 2018](#), [McFarlane & Pemberton 2021](#)), and this simple choice would have
214 substantially improved variable selection for BSLMM and SuSiE, but not BLASSO or Horseshoe,
215 for one example scenario (Fig. S3). Overall, accurate variable selection requires large numbers of
216 observations (Fig. 5), perhaps even more so than prediction, as has been found previously in trait
217 mapping and phenotypic prediction ([Wray et al. 2013](#), [Gompert et al. 2017](#)).

218 One striking feature of our results was the absence of a single method that excelled at all
219 modeling purposes, consistent with the “no free lunch theorem” for supervised learning ([Wolpert
220 1996](#), [Wolpert & Macready 1997](#)). Trade-offs in model building have long been recognized ([Levins
221 1966](#), [James et al. 2021](#), [Tredennick et al. 2021](#)) and serve as an important reminder for researchers
222 to wield methods that align with their research objectives. Consequently, it can be useful to
223 simulate data and measure the correlation (and other measures of the relationship) of the response

224 variable with process parameters (β_{causal}) under relevant sample sizes, so as to gauge information
225 about the expected reducible error. It may be the case that researchers will need to employ
226 multiple, complementary statistical learning methods for questions involving both prediction and
227 variable selection. A combined approach to model building could be particularly valuable, for
228 example using a sparse method to identify a subset of candidate variables and following up with
229 a more flexible method such as Random Forest for prediction. We emphasize that while the use
230 of sparse methods cannot resolve logistical challenges surrounding data collection in ecology and
231 evolutionary biology (there will always be data sets where P is much greater than N), the uptake of
232 these methods is a path forward that can contribute to high-quality inference, explanatory models
233 that capture key elements of data generating processes, and prediction with minimal error. Finally,
234 we acknowledge that many of our key findings recapitulate concepts that are already well known by
235 many statisticians (James *et al.* 2021). Our simulations and analyses illustrate a number of points
236 that are not widely appreciated in applied statistics, including in ecology and evolutionary biology,
237 and we hope this exercise will elevate awareness of the promise and limitations of these tools for
238 statistical learning.

239 Methods

240 Description of simulated data

241 The simulations included 36 scenarios that considered three main factors in a fully crossed design:
242 the number of observed samples ($N = 50, 150, \text{ or } 500$), the number of predictors or features
243 ($P = 100, 1,000, 10,000, \text{ or } 100,000$), and the effect size of the ten causal predictors ($\beta_{\text{causal}} =$
244 0.1, 0.3, or 0.8; Table S1). To evaluate the potential benefits of even larger N , we simulated two
245 additional scenarios in which N was 1,000 or 10,000, P was 1,000, and β_{causal} was 0.3. To thoroughly
246 incorporate and evaluate variable outcomes among simulations, we obtained 100 replicate data sets
247 for all scenarios. Each replicate data set consisted of N observations for training (i.e., variable
248 selection and in-sample prediction) and an additional 500 observations for testing out-of-sample
249 prediction.

250 For each replicate, we first created an observation \times predictor $(N+500) \times P$ matrix \mathbf{X} consisting
251 of $P/50$ clusters of correlated predictors (50 per cluster). Each cluster of predictors was generated
252 by taking $N + 500$ draws from a multivariate normal distribution with mean vector $\mu = 0$ and
253 covariance matrix Σ . We generated covariance matrices using a spherical parameterization (Pin-
254 heiro & Bates 1996), which transforms a $P(P+1)/2$ -dimension vector of unconstrained parameters
255 θ into a positive semi-definite covariance matrix Σ . The goal of this approach was to create clusters
256 of predictors with a range of correlation strengths, from strongly negatively to strongly positively
257 correlated, a situation that is common in biological relationships and that presents a challenge for
258 many modeling approaches. We found that drawing values of θ from a uniform distribution be-
259 tween -1 and 1 produced sets of predictors with a range of correlation strengths. After generating
260 clusters of predictors, we concatenated them to create the predictor matrix \mathbf{X} and centered and
261 scaled (mean = 0; sd = 1) the columns of predictors.

262 Next, we sampled a P -dimension vector of coefficients β representing the causal effects of the
263 predictors on response variable \mathbf{y} . We randomly selected 10 predictors out of P to have a non-zero
264 coefficient of β_{causal} . The remaining values of β were set to zero. The response variable \mathbf{y} was a
265 linear, additive function of the product of the β coefficients and the P predictors, plus error or
266 intercept term of ϵ , drawn from a standard normal distribution for each individual: $\mathbf{y} = \mathbf{X}\beta + \epsilon$.

267 For each data set, the reducible error was calculated as the proportion of variance in the response
268 explained by a linear model using only the 10 causal predictors.

269 We made several decisions in simulating data that could influence our results and interpretation.
270 For example, causal parameters in the simulated data sets were specified as simple linear effects,
271 as opposed to non-linear or threshold effects that could be more or less difficult to identify for
272 some methods. However, while linear approximations of non-linear processes introduce bias, they
273 can often outperform more flexible non-linear or non-parametric approaches that introduce more
274 variance, particularly for high-dimensional data (i.e., “the bias-variance trade-off”; [James et al.](#)
275 [2021](#)). Furthermore, we intentionally avoided the complexities of causal inference in the presence of
276 confounding variables and interactions. Instead, for the purpose of learning, we studied a simplified
277 system in which sparse effects could estimate causal effects. Finally, we have explored a fairly simple
278 range of data attributes that might be encountered in the life sciences, and acknowledge that the
279 consideration of other axes of variation will undoubtedly lead to new insights about how we can
280 use modeling approaches to better understand the world.

281 Analyses

282 Each simulated data set was modeled using nine different methods. Eight of these are penalized
283 regression methods using standard likelihood (LASSO, [Tibshirani 1996](#); Ridge, [Hoerl & Kennard](#)
284 [1970](#); Elastic Net, [Zou & Hastie 2005](#)) or Bayesian estimation (Bayesian LASSO [BLASSO], [Park](#)
285 & [Casella 2008](#); Horseshoe, [Carvalho et al. 2010](#); Spike-and-slab, [Ishwaran & Rao 2005](#); Bayesian
286 sparse linear mixed model [BSLMM], [Zhou et al. 2013](#); sum of single effects [SuSiE], [Wang et al.](#)
287 [2020a](#)). The final method, Random Forest ([Breiman 2001a](#)), served as a benchmark to compare
288 other methods to and is a commonly used, highly flexible machine learning approach based on an
289 ensemble of decision trees. All analyses were conducted in R v4.2.2 ([R Core Team 2023](#)). Each
290 data set was provided to the methods using the [Nextflow v22.10.4.5836](#) workflow description
291 language ([Di Tommaso et al. 2017](#)) to distribute the work and aggregate the output in a computing
292 cluster using SLURM ([Yoo et al. 2003](#)). We used implementations of Elastic Net, LASSO, and Ridge
293 in the [glmnet v4.1-6](#) package ([Friedman et al. 2010](#)), of BLASSO, Horseshoe, and alternatives
294 of LASSO and Ridge in the [monomvn v1.9-17](#) package ([Gramacy 2023](#)), of Spike-and-slab in the
295 [spikeslab v1.1.6](#) package ([Ishwaran et al. 2010](#)), of SuSiE in the [susieR v0.12.27](#) package
296 ([Wang et al. 2020a](#)), of Random Forest in the [randomForest v4.7-1.1](#) package ([Liaw & Wiener](#)
297 [2002](#)), and of BSLMM in the software [gemma v0.98.6](#) ([Zhou et al. 2013](#)). We used ‘off-the-shelf’,
298 default settings for all analyses (as in [Porwal & Raftery 2022](#)). BLASSO and Horseshoe were not
299 performed for the large N scenarios ($N = 1,000$ or $10,000$) due to extremely long run times.

300 To evaluate each model’s potential utility for parameter estimation, variable selection, and
301 prediction, we calculated several complementary summary statistics that were largely applicable
302 across all of the methods. Metrics for BLASSO and Horseshoe were calculated two ways: model-
303 averaged (ma) estimates are based on all samples from the reversible jump MCMC, whereas non-
304 zero (nz) estimates use only samples in which the predictor and associated coefficient were included
305 in the model. Parameter estimation was evaluated based on the root mean square error (RMSE)
306 between estimated and actual parameter values (β) for all analyses except Random Forest, which
307 reports importance measures instead of estimates. Variable selection was first assessed for methods
308 that can return true zeros for parameter estimates (BSLMM, Elastic Net, LASSO, Spike-and-slab)
309 or importance measures (Random Forest). Predictors were assigned as positives ($\neq 0$) or negatives
310 ($= 0$), and these classifications were used to calculate true positive rates (TPR; i.e., sensitivity),
311 true negative rates (TNR; i.e., specificity), and F_1 , which is the harmonic mean of precision (i.e.,

312 the fraction of selected predictors that are truly causal) and sensitivity: $\frac{2 \times \text{Sensitivity} \times \text{Precision}}{\text{Sensitivity} + \text{Precision}}$. It is
313 important to note that small values of F_1 (i.e., poor variable selection) can occur due to low TPR,
314 low TNR, or both. Variable selection was also assessed based on posterior inclusion probabilities
315 (PIPs) for four Bayesian methods (BLASSO, BSLMM, Horseshoe, SuSiE) using one example data
316 set (scenario 24, replicate 1). A series of minimum PIP thresholds (i.e., predictors with $\text{PIP} \geq$
317 threshold are scored as positives) were evaluated to characterize potential effects on resulting F_1
318 values. In-sample and out-of-sample prediction was quantified using R^2 between the actual and
319 predicted values of the response variable. In-sample prediction was based on the N observations
320 used to train the model, whereas out-of-sample prediction was based on a separate set of 500
321 observations. Finally, we recorded the runtime required to fit each model to each data set.

322 Acknowledgments

323 All authors were supported by the Modelscape Consortium with funding from the National Science
324 Foundation (OIA-2019528). We thank: members of the Modelscape Consortium for input during
325 early discussions of this project; Chris Moore for fun conversations about the philosophy of model
326 building; Dan Gibson and Loren Rieseberg for thoughtful feedback on earlier drafts. Analyses were
327 performed using University of Wyoming’s Advanced Research Computing Center and its Beartooth
328 Computing Environment, Intel x86_64 cluster (<https://doi.org/10.15786/M2FY47>).

329 Author contributions

330 Joshua P. Jahner, C. Alex Buerkle, S. Eryn McFarlane, Andrew Siefert, Matthew L. Forister,
331 Daniel C. Laughlin, Breanna F. Powers, and Isabella A. Oleksy designed research; Andrew Siefert
332 created simulations; Joshua P. Jahner, C. Alex Buerkle, Dustin G. Gannon, Eliza M. Grames,
333 S. Eryn McFarlane, Andrew Siefert, Joshua G. Harrison, Chhaya M. Werner, and Isabella A.
334 Oleksy performed analyses; C. Alex Buerkle, Matthew L. Forister, and Daniel C. Laughlin acquired
335 funding; all authors contributed to writing and revision.

References

Altman N, Krzywinski M (2018) The curse(s) of dimensionality. *Nature Methods*, **15**, 399–400.

Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. *Cell*, **169**, 1177–1186.

Breiman L (2001a) Random forests. *Machine Learning*, **45**, 5–32.

Breiman L (2001b) Statistical modeling: The two cultures (with comments and a rejoinder by the author). *Statistical Science*, **16**, 199–231.

Carvalho BS, Louis TA, Irizarry RA (2010) Quantifying uncertainty in genotype calls. *Bioinformatics*, **26**, 242–249.

Cavender-Bares J, Schneider FD, Santos MJ, *et al.* (2022) Integrating remote sensing with ecology and evolution to advance biodiversity conservation. *Nature Ecology & Evolution*, **6**, 506–519.

Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C (2017) Nextflow enables reproducible computational workflows. *Nature Biotechnology*, **35**, 316–319.

Faske TM, Agneray AC, Jahner JP, *et al.* (2023) Environment predicts the maintenance of reproductive isolation in a mosaic hybrid zone of rubber rabbitbrush. *Evolution*, **78**, 300–314.

Forister ML, Grames EM, Halsch CA, *et al.* (2023) Assessing risk for butterflies in the context of climate change, demographic uncertainty, and heterogeneous data sources. *Ecological Monographs*, **93**, e1584.

Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software*, **33**, 1.

Geirhos R, Jacobsen JH, Michaelis C, *et al.* (2020) Shortcut learning in deep neural networks. *Nature Machine Intelligence*, **2**, 665–673.

Gigliotti LC, Xu W, Zuckerman GR, *et al.* (2022) Wildlife migrations highlight importance of both private lands and protected areas in the Greater Yellowstone Ecosystem. *Biological Conservation*, **275**, 109752.

Gompert Z, Egan SP, Barrett RD, Feder JL, Nosil P (2017) Multilocus approaches for the measurement of selection on correlated genetic loci. *Molecular ecology*, **26**, 365–382.

Gramacy RB (2023) *monomvn: Estimation for MVN and Student-t Data with Monotone Missingness*. R package version 1.9-17.

Grames EM, Forister ML (2024) Sparse modeling for climate variable selection across trophic levels. *Ecology*, **105**, e4231.

Halldorsson BV, Eggertsson HP, Moore KHS, *et al.* (2022) The sequences of 150,119 genomes in the UK Biobank. *Nature*, **607**, 732–740.

Halsch CA, Shapiro AM, Thorne JH, *et al.* (2024) Thirty-six years of butterfly monitoring, snow cover, and plant productivity reveal negative impacts of warmer winters and increased productivity on montane species. *Global Change Biology*, **30**, e17044, e17044 GCB-23-2302.R1.

Hastie T, Tibshirani R, Friedman JH, Friedman JH (2009) *The elements of statistical learning: data mining, inference, and prediction*, vol. 2. Springer.

Hastie T, Tibshirani R, Wainwright M (2015) *Statistical learning with sparsity*. Chapman & Hall.

Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. *Technometrics*, **12**, 55–67.

Ishwaran H, Kogalur UB, Rao JS (2010) spikeslab: Prediction and variable selection using spike and slab regression. *R Journal*, **2**, 68–73.

Ishwaran H, Rao JS (2005) Spike and slab variable selection: Frequentist and Bayesian strategies. *The Annals of Statistics*, **33**, 730–773.

James G, Witten D, Hastie T, Tibshirani R (2021) *An introduction to statistical learning with applications in R*. 2nd edn., Springer.

Kirillov A, Mintun E, Ravi N, *et al.* (2023) Segment anything. *arXiv preprint arXiv:2304.02643*.

Laughlin DC, McGill BJ (2024) Trees have overlapping potential niches that extend beyond their realized niches. *Science*, **385**, 75–80.

Levins R (1966) The strategy of model building in population biology. *American Scientist*, **54**, 421–431.

Li F, Gates DJ, Buckler ES, *et al.* (2024) The utility of environmental data from traditional varieties for climate-adaptive maize breeding. *bioRxiv*.

Liaw A, Wiener M (2002) Classification and regression by randomForest. *R news*, **2**, 18–22.

Lucas LK, Nice CC, Gompert Z (2018) Genetic constraints on wing pattern variation in *Lycaeides* butterflies: A case study on mapping complex, multifaceted traits in structured populations. *Molecular Ecology Resources*, **18**, 892–907.

McFarlane SE, Pemberton JM (2021) Admixture mapping reveals loci for carcass mass in red deer x sika hybrids in Kintyre, Scotland. *G3*, **11**, jkab274.

Mitchell M, Krakauer DC (2023) The debate over understanding in AI's large language models. *Proceedings of the National Academy of Sciences*, **120**, e2215907120.

Park T, Casella G (2008) The Bayesian Lasso. *Journal of the American Statistical Association*, **103**, 681–686.

Pinheiro J, Bates DM (1996) Unconstrained parameterizations for variance-covariance matrices. *Statistics and Computing*, **6**, 289–296.

Porter JH, Nagy E, Kratz TK, Hanson P, Collins SL, Arzberger P (2009) New eyes on the world: advanced sensors for ecology. *BioScience*, **59**, 385–397.

Porwal A, Raftery AE (2022) Comparing methods for statistical inference with model uncertainty. *Proceedings of the National Academy of Sciences*, **119**, e2120737119.

R Core Team (2023) *R: a language and environment for statistical computing..* R Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>.

Rubinacci S, Hofmeister RJ, Sousa da Mota B, Delaneau O (2023) Imputation of low-coverage sequencing data from 150,119 UK Biobank genomes. *Nature Genetics*, **55**, 1088–1090.

Silver D, Hubert T, Schrittwieser J, *et al.* (2018) A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. *Science*, **362**, 1140–1144.

Tabak MA, Norouzzadeh MS, Wolfson DW, *et al.* (2019) Machine learning to classify animal species in camera trap images: Applications in ecology. *Methods in Ecology and Evolution*, **10**, 585–590.

Tibshirani R (1996) Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society: Series B (Methodological)*, **58**, 267–288.

Tredennick AT, Hooker G, Ellner SP, Adler PB (2021) A practical guide to selecting models for exploration, inference, and prediction in ecology. *Ecology*, **102**, e03336.

Ustin SL, Middleton EM (2021) Current and near-term advances in earth observation for ecological applications. *Ecological Processes*, **10**, 1.

Wang G, Sarkar A, Carbonetto P, Stephens M (2020a) A simple new approach to variable selection in regression, with application to genetic fine mapping. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **82**, 1273–1300.

Wang S, McCormick TH, Leek JT (2020b) Methods for correcting inference based on outcomes predicted by machine learning. *Proceedings of the National Academy of Sciences*, **117**, 30266–30275.

Weiss KM (2008) Tilting at quixotic trait loci (QTL): an evolutionary perspective on genetic causation. *Genetics*, **179**, 1741–1756.

Wilmers CC, Nickel B, Bryce CM, Smith JA, Wehat RE, Yovovich V (2015) The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. *Ecology*, **96**, 1741–1753.

Wolpert D, Macready W (1997) No free lunch theorems for optimization. *IEEE Transactions on Evolutionary Computation*, **1**, 67–82.

Wolpert DH (1996) The Lack of A Priori Distinctions Between Learning Algorithms. *Neural Computation*, **8**, 1341–1390.

Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM (2013) Pitfalls of predicting complex traits from SNPs. *Nature Reviews Genetics*, **14**, 507–515.

Xiong W, Droppo J, Huang X, *et al.* (2016) Achieving human parity in conversational speech recognition. *arXiv preprint arXiv:1610.05256*.

Yoo AB, Jette MA, Grondona M (2003) SLURM: Simple Linux Utility for Resource Management. In: *Job Scheduling Strategies for Parallel Processing* (eds. Feitelson D, Rudolph L, Schwiegelshohn U), pp. 44–60, Springer Berlin Heidelberg, Berlin, Heidelberg.

Zhao WX, Zhou K, Li J, *et al.* (2023) A survey of large language models. *arXiv preprint arXiv:2303.18223*.

Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with Bayesian sparse linear mixed models. *PLoS Genetics*, **9**, e1003264.

Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **67**, 301–320.

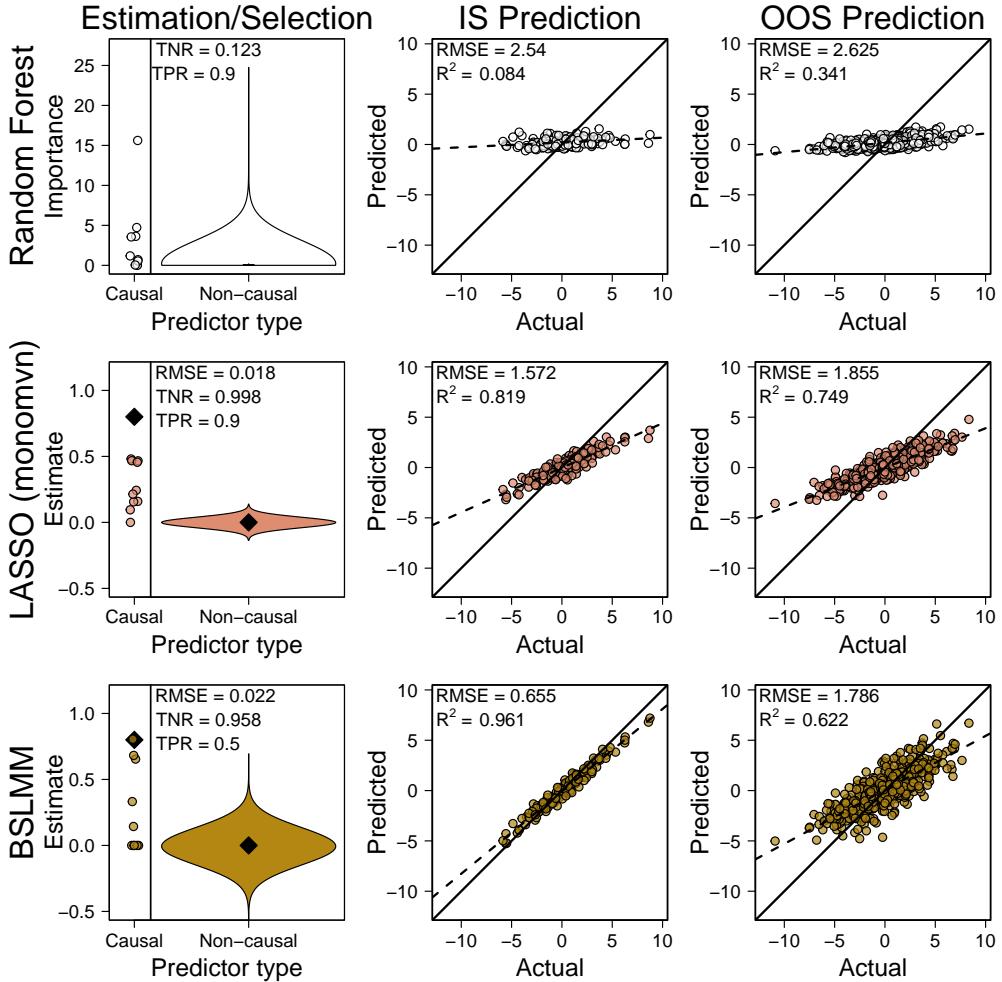


Figure 1: Performance varies greatly across three methods for parameter estimation, variable selection, in-sample (IS) prediction, and out-of-sample (OOS) prediction. Results are shown for the first replicate of scenario 24, which had 10 causal predictors ($\beta = 0.8$) and 9,990 non-causal predictors ($\beta = 0$). The distributions of causal and non-causal importance values are shown for Random Forest, whereas the distributions of causal and non-causal parameter estimates are shown for LASSO monomvn and BSLMM (black diamonds signify the true effect sizes). In-sample prediction was based on 150 observations used to train the model, and out-of-sample prediction was based on a separate 500 observations (the maximum reducible error for this scenario was $R^2 = 0.832$). RMSE: root mean square error; TNR: true negative rate (i.e., specificity); TPR: true positive rate (i.e., sensitivity)

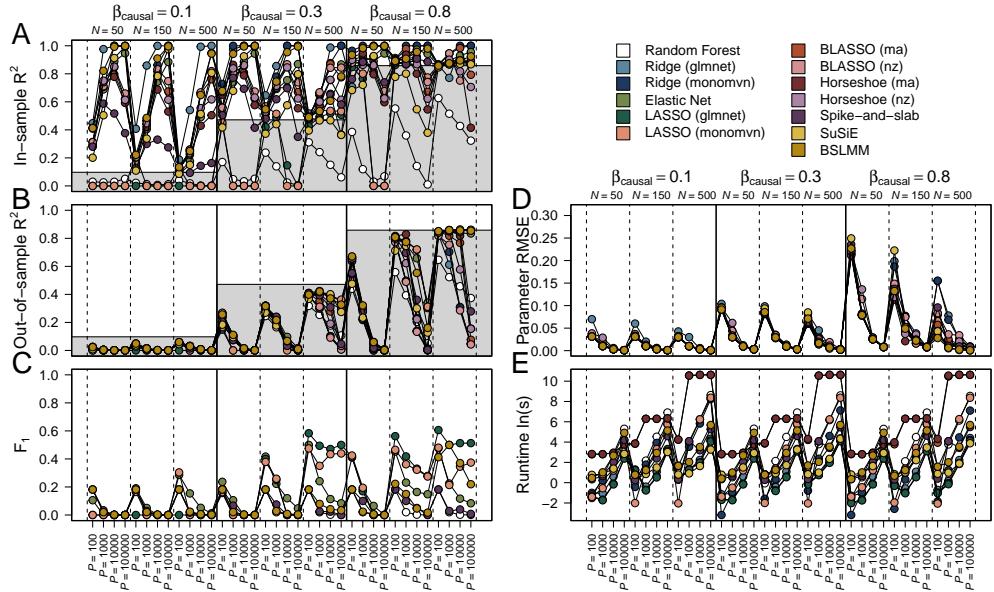


Figure 2: An overview of model performance for the 36 core scenarios. Nine methods were considered, as well as two different implementations of Ridge and LASSO in the `glmnet` and `monomvn` packages in R. Metrics for BLASSO and Horseshoe were calculated two ways: model-averaged (ma) estimates are based on all samples from the reversible jump MCMC, whereas non-zero (nz) estimates use only samples in which the predictor and associated coefficient were included in the model. (A) In-sample and (B) out-of-sample prediction were evaluated with R^2 between the actual and predicted values of the response. In these panels, the grey and white regions represent the mean reducible and irreducible error, respectively, across all scenarios within a β_{causal} level. While reducible error represents the expected maximum value for out-of-sample prediction, in-sample prediction can exceed the reducible error when too flexible models are employed (i.e., overfitting). This means that the target for prediction is to recover a model with in-sample and out-of-sample R^2 equal to the maximum reducible error. (C) Variable selection was evaluated using F_1 , which is the harmonic mean of precision (i.e., the fraction of selected predictors that are truly causal) and sensitivity (i.e., true positive rate): $\frac{2 \times \text{Precision} \times \text{Sensitivity}}{\text{Precision} + \text{Sensitivity}}$. F_1 was only calculated for analyses that can return truly sparse parameter estimates (i.e., $\beta = 0$; BSLMM, Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest). (D) Parameter estimation was evaluated for all methods except Random Forest using the root mean square error (RMSE) between estimated and actual parameter values. (E) Model speed was evaluated based on the natural log of runtime in seconds. Each circle represents the median value from 100 replicate simulations.

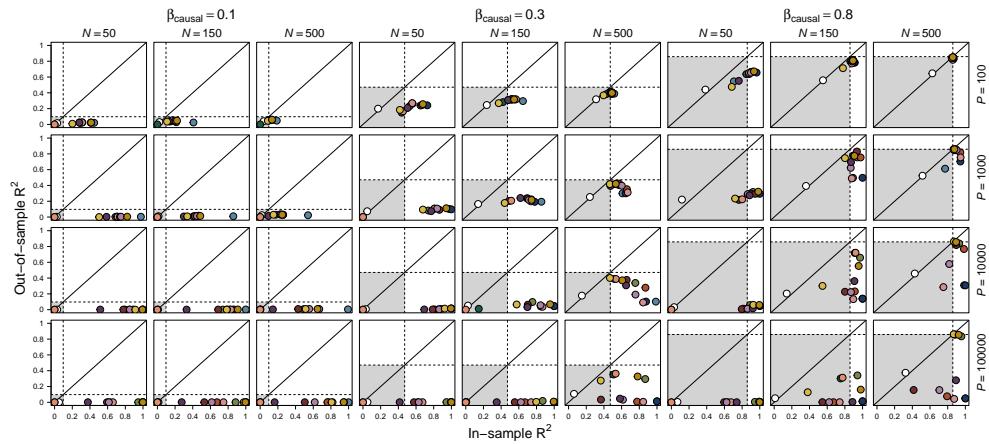


Figure 3: The extent of overfitting and the fraction of reducible error recovered differs dramatically among methods and data attributes. The grey and white regions represent the mean reducible and irreducible error, respectively, across all scenarios within a β_{causal} level. While reducible error represents the expected maximum value for out-of-sample prediction, in-sample prediction R^2 can exceed the reducible error when too sensitive models are employed (i.e., overfitting). This means that the target for prediction is to recover a model with in-sample and out-of-sample R^2 equal to the maximum reducible error, as was the case for many of the methods in the upper right hand panel ($\beta_{\text{causal}} = 0.8$; $N = 500$; $P = 100$). Each circle represents the median value from 100 replicate simulations. See Fig. 2 for color legend.

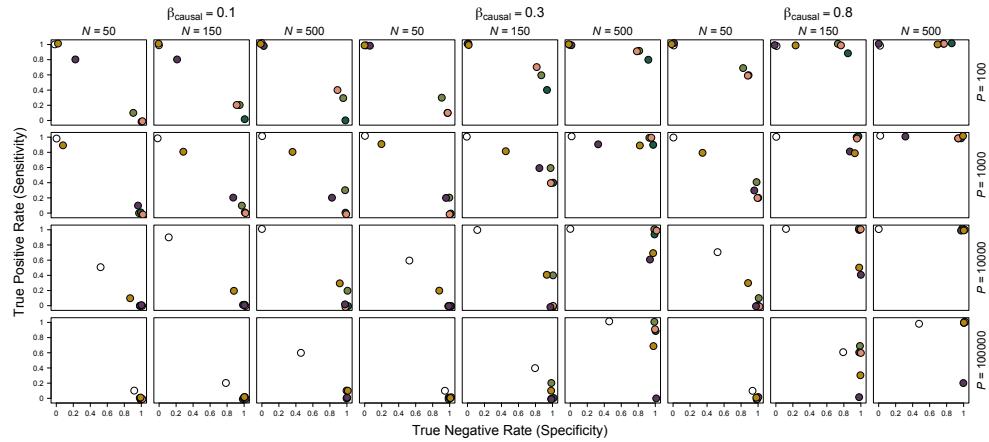


Figure 4: Variable selection performance varied greatly across scenarios, and was only possible for some methods when there were many observations (N), few predictors (P), and effect sizes (β_{causal}) were large. A negative correlation between true positive rate and true negative rate emerged for many simulations, especially when β_{causal} was small, indicative of a trade-off between identifying causal predictors (sensitivity) and excluding non-causal predictors (specificity). This trade-off disappears when conditions are more favorable for variable selection: when β_{causal} and N are large and when P is small. Variable selection was only evaluated for analyses that can return truly sparse parameter estimates (i.e., $\beta = 0$; BSLMM, Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest). Each circle represents the jittered median value from 100 replicate simulations. See Fig. 2 for color legend.

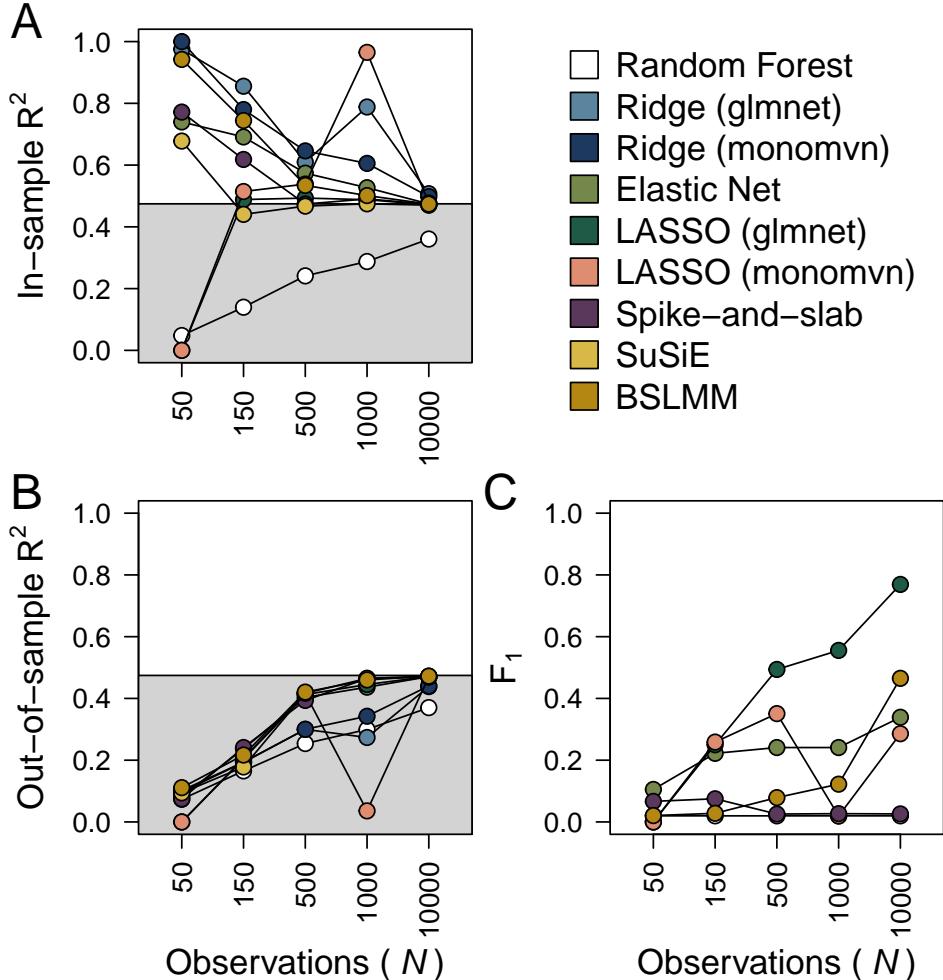


Figure 5: Model performance for (A) in-sample prediction, (B) out-of-sample prediction, and (C) variable selection improves with increasing observations (N) for most models (BLASSO and Horseshoe were not considered because of long runtimes). The five scenarios shown here all had $P = 1,000$ and $\beta = 0.3$. In-sample and out-of-sample prediction were evaluated with R^2 between the actual and predicted values of the response. In panels A and B, the grey and white regions represent the mean reducible and irreducible error, respectively, across all five scenarios. While reducible error represents the expected maximum value for out-of-sample prediction, in-sample prediction can exceed the reducible error when too flexible models are employed (i.e., overfitting). This means that the target for prediction is to recover a model with in-sample and out-of-sample R^2 equal to the maximum reducible error. Variable selection was evaluated using F_1 , which is the harmonic mean of precision (i.e., the fraction of selected predictors that are truly causal) and sensitivity (i.e., true positive rate): $\frac{2 \times \text{Precision} \times \text{Sensitivity}}{\text{Precision} + \text{Sensitivity}}$. F_1 was only calculated for analyses that can return truly sparse parameter estimates (i.e., $\beta = 0$; BSLMM, Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest). Each circle represents the median value from 100 replicate simulations.