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Abstract1

The proliferation of high-dimensional data in ecology and evolutionary biology raise the promise2

of statistical and machine learning models that are highly predictive and interpretable. However,3

high-dimensional data are commonly burdened with an inherent trade-off: in-sample prediction of4

outcomes will improve as additional predictors are included in the model, but this may come at the5

cost of poor predictive accuracy and limited generalizability for future or unsampled observations6

(out-of-sample prediction). To confront this problem of overfitting, sparse models can focus on key7

predictors by correctly placing low weight on unimportant variables. We competed nine methods to8

quantify their performance in variable selection and prediction using simulated data with different9

sample sizes, numbers of predictors, and strengths of effects. Overfitting was typical for many10

methods and simulation scenarios. Despite this, in-sample and out-of-sample prediction converged11

on the true predictive target for simulations with more observations, larger causal effects, and fewer12

predictors. Accurate variable selection to support process-based understanding will be unattainable13

for many realistic sampling schemes in ecology and evolution. We use our analyses to characterize14

data attributes for which statistical learning is possible, and illustrate how some sparse methods15

can achieve predictive accuracy while mitigating and learning the extent of overfitting.16

Keywords: prediction, reducible error, simulation, sparse modeling, statistical learning, variable17

selection.18

Introduction19

Research in ecology and evolution has seen dramatic growth in data due to technological advances20

for automation and high-throughput sampling (e.g., water or air sampling, Porter et al. 2009; satel-21

lite imagery, Ustin & Middleton 2021, Cavender-Bares et al. 2022; DNA sequencing, Halldorsson22

et al. 2022, Rubinacci et al. 2023; and GPS telemetry, Wilmers et al. 2015, Gigliotti et al. 2022).23

While large data sets have the potential to greatly improve our understanding of complex systems,24

they also pose considerable challenges for data analysis and incorporation into formal process mod-25

els. For example, a cross-cutting objective in ecology and evolutionary biology involves learning the26

causes of species abundances and distributions, including making predictions about the responses27

of wild and cultivated organisms to climate change (Faske et al. 2023, Forister et al. 2023, Grames28

& Forister 2024, Halsch et al. 2024, Laughlin & McGill 2024, Li et al. 2024). These predictions are29

commonly based on contemporary observations of organisms and many dimensions of abiotic and30

biotic environments, and intrinsic attributes (e.g., the genome) that could be causally associated31

with their distributions (e.g., Faske et al. 2023, Grames & Forister 2024, Li et al. 2024). Despite32

remarkably large sampling effort, many studies have more measures of covariates (of climate or the33

genome) to make their predictions than they do samples, posing a challenge for predicting organis-34

mal responses to climate beyond the settings in which they were studied. Limited generalizability is35

common in parameter-rich models and results from overfitting, or the tendency for flexible models36

to fit too closely to the observed data such that idiosyncratic variation in the observed data is37

taken as pattern rather than noise (Hastie et al. 2015). Thus, the availability of big data with38

potentially many more covariates (P ; i.e., high-dimensional) than observations (N ) may counter-39

intuitively lead to models with poor predictive performance outside the scope of the sample (“the40

curse of dimensionality”, Altman & Krzywinski 2018). More broadly, we face the problem of how41

to realistically and intelligently constrain the flexibility of our models to capture potential general42

patterns while learning about genuine context-dependent effects (Weiss 2008).43
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We have made great strides in ecology and evolution in constructing highly predictive models44

based on computational modeling and machine learning to address the proliferation of large data45

sets. Machine learning complements standard methods for statistical modeling that make a priori46

choices of which predictor variables to include based on conceptual, process-based understanding.47

More generally, advances in machine learning have prompted a reevaluation of how we value models48

and what it means for a model to ‘understand’ something about the world (Mitchell & Krakauer49

2023). Statistical models can be used to learn which predictors are associated with a response (i.e.,50

variable or feature selection), to generate accurate predictions about the sampled population (i.e.,51

in-sample prediction), and to make generalizations about populations, localities, or time-points for52

which we have no prior information (i.e., out-of-sample prediction). We value models that can reveal53

predictors that are associated with the generative processes leading to variation in the response,54

while also avoiding shortcut learning that can garner accurate predictions from tangentially related55

variables (shortcut learning can be problematic for both inference and out-of-sample prediction;56

Geirhos et al. 2020).57

Ecologists and evolutionary biologists would benefit from a direct comparison and evaluation58

of the prospects of different statistical learning methods (Porwal & Raftery 2022), and from a59

greater clarity about critical issues in model evaluation, including overfitting, the extent to which60

process variance is recovered in model predictions, and the explanatory value of important predictor61

variables. Computational methods for sparse modeling might be particularly valuable approaches:62

these methods assume that most predictors have no causal relationship with the response and63

therefore only generate estimates for a subset of variables (Hastie et al. 2015). The hope is that64

selected predictors correspond to the key process variables that are causally linked to variation in65

the response, which should limit overfitting and improve predictive performance when generalizing66

to unsampled or future observations. It is an open question to what extent sparse models can67

maximize predictive performance and yield interpretable model outputs, particularly for high-68

dimensional data where the number of covariates (P) is much greater than the number of samples69

(N ).70

We compared the relative performance of several modeling methods by applying them to the71

same data sets with known, simulated causal relationships, of the type commonly encountered in72

ecology and evolutionary biology. Our 36 core simulation scenarios (100 simulated replicates each)73

differed in the number of observations (N = 50, 150, or 500), the number of covariates (P = 100,74

1,000, 10,000, or 100,000; of which 10 were causal and directly influenced the response variable),75

and the effect size of causal predictors (βcausal = 0.1, 0.3, or 0.8; Table S1). Our statistical76

learning methods included penalized regression methods based on maximum likelihood (Ridge,77

Elastic Net, and LASSO) and Bayesian estimation (Bayesian LASSO [BLASSO], Horseshoe, Spike-78

and-slab, Sum of Single Effects [SuSiE], and Bayesian Sparse Linear Mixed Model [BSLMM]), and79

one commonly used machine learning method (Random Forest). When evaluating the strengths80

and weaknesses of different methods, we considered prediction (the accuracy of prediction of the81

response variable given the covariates, both for in-sample, training data and out-of-sample, test82

data) and inference (i.e., learning which variables are causally associated with variation in the83

response). While prediction and inference should be treated as complementary goals in statistical84

analyses (Breiman 2001b), it is worth noting they are not always associated, even if there is an85

expectation that strong inference would follow from accurate predictions (Wang et al. 2020b).86
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Results87

A perfect model would: 1) identify only the ten truly causal predictors and accurately estimate88

their effect sizes; 2) accurately attribute the variation in the response that arises directly from89

the causal predictors (i.e., reducible error); and 3) disregard variation in the response arising from90

other unmeasured or stochastic processes (i.e., irreducible error; James et al. 2021). Across all91

simulations, the magnitude of reducible error was overwhelmingly associated with the effect size of92

causal predictors (R2 between the known, additive effects of simulated causal predictors and the93

simulated response variable was ≈ 0.10, 0.47, and 0.86 with βcausal = 0.1, 0.3, and 0.8, respectively;94

Fig. S1). Reducible error was more variable among replicates when N or P were low.95

The different methods varied greatly in their performance for variable selection and prediction.96

For one example data set (N = 150, P = 10,000, βcausal = 0.8; see Fig. 1), LASSO monomvn had97

the greatest success at delineating between causal and non-causal predictors (true positive rate98

[TPR] = 0.9; true negative rate [TNR] = 0.998). While Random Forest also correctly identified99

nine of the ten causal predictors (TPR = 0.9), it implicated a large proportion of non-causal100

variants as being associated with the response (TNR = 0.123). In contrast, BSLMM was relatively101

successful at excluding non-causal predictors (TNR = 0.958), but could only identify half of the102

causal predictors (TPR = 0.5). For prediction, the true reducible error for the example data set was103

R2 = 0.832, which served as the target for both in-sample and out-of-sample prediction (based on104

500 observations not used to train the model). For LASSO monomvn, in-sample prediction was very105

close to the reducible error (R2 = 0.819), which translated to the highest success for out-of-sample106

prediction (R2 = 0.749). In-sample prediction exceeded the reducible error for BSLMM (R2 =107

0.961), and this overfitting led to reduced out-of-sample prediction (R2 = 0.622) relative to LASSO108

monomvn. Random Forest suffered from poor predictive yield, with both in-sample (R2 = 0.084) and109

out-of-sample (R2 = 0.341) comparisons, falling far short of the reducible error. Overall, LASSO110

monomvn provided the best balance between variable selection and prediction for the example data111

set.112

Overfitting was rampant across all scenarios, as evidenced by large in-sample R2 and low out-113

of-sample R2 (Fig. 2A and B). It was also common for models to recover only a fraction of the114

reducible error in out-of-sample prediction, particularly for simulations with larger P (Fig. 2B).115

The accuracy of in-sample and out-of-sample prediction converged towards the reducible error tar-116

get for simulations with larger βcausal and N and smaller P (Fig. 3). Out-of-sample predictive117

performance was not necessarily associated with more accurate variable selection, as out-of-sample118

R2 matched the reducible error even with low F1 for some scenarios (Fig. S2). Variable selection119

was first assessed for methods that return truly sparse parameter estimates (i.e., β = 0; BSLMM,120

Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest), and was generally121

poor except from when βcausal and N were high and P was low; Fig. 2C). When βcausal was low,122

a negative relationship between TPR and TNR emerged across methods, suggesting a trade-off123

between identifying causal predictors and excluding non-causal predictors (Fig. 4). Variable selec-124

tion was also assessed based on posterior inclusion probabilities (PIPs) for four Bayesian methods125

(BLASSO, BSLMM, Horseshoe, SuSiE) using the example data set from Fig. 1. The use of a126

small PIP threshold of 0.05 (i.e., only predictors with PIP ≥ 0.05 are scored as positives) improved127

variable selection for BSLMM and SuSiE, whereas larger thresholds were needed to recover more128

limited gains for BLASSO and Horseshoe (Fig. S3). Parameter estimation was remarkably con-129

sistent across different analyses, and was instead most strongly influenced by data dimensionality:130

estimation was worse with greater βcausal and lower N and P (Fig. 2D). This pattern arose because131

most methods are worse at estimating predictors with β 6= 0 than those with β = 0, resulting132
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in larger root mean square error (RMSE) when the proportion of causal to non-causal predictors133

was relatively large (i.e., when P was small) or when the effect size of causal predictors was very134

different from zero (i.e., when βcausal was large). Analysis of the 3,600 data sets completed in135

2.49 CPU-years, with BLASSO and Horseshoe contributing 46.6% and 46.7% of the total run-time,136

respectively (Fig. 2E).137

Discussion138

High-throughput and automated data acquisition promises to yield valuable information about139

processes that generate variation. This promise is diminished in the common situation in ecology140

and evolutionary biology when sampling is of few individuals (N) and many potential covariates141

(P ; e.g., genomic polymorphisms at 106 sites, months of micrometeorological sensor measurements142

at 10Hz). Our simulations highlight that the most consistent way to obtain highly predictive and143

explanatory models is to maximize the number of independent observations. While sparse modeling144

techniques allow the fitting of models in settings with more covariates than observations (P > N),145

they cannot rescue analyses based on small sample sizes, especially when P is large or when effect146

sizes are small relative to background levels of stochastic variation (Fig. 2). This means that147

for many typical analyses in ecology and evoluttionary biology, variable selection will suffer from148

low precision and sensitivity, and prediction models will be overfit and have poor generalizability.149

In cases where sparse methods struggle with a low signal-to-noise ratio, other methods will also150

struggle (“the bet-on-sparsity principle”; Hastie et al. 2009), meaning such signals will only ever151

be detectable with more data, better sampling design, or both. Indeed, when we extended our152

simulations to have sample sizes of 1,000 or 10,000 observations, in-sample and out-of-sample R2
153

converged to the maximum reducible error, and variable selection improved for most analyses (Fig.154

5).155

It is perhaps näive to use statistical learning for prediction without large training sets, particu-156

larly when causal effect sizes are small relative to variance from extraneous sources. The temptation157

to do so might stem from working with big data (N × P ), but not appreciating that all statistical158

approaches are expected to yield relatively poor out-of-sample prediction when N is small (e.g.,159

< 500) and effect sizes are modest. Some of the most remarkable models in society, such as those160

for large language modeling (Zhao et al. 2023), natural voice recognition (Xiong et al. 2016), image161

segmentation (Kirillov et al. 2023), and board game algorithms (Silver et al. 2018), are typically162

trained on enormous sample sizes. For example, Tabak et al. (2019) trained a convolutional neural163

network with more than 3 million images to achieve more than 80% out-of-sample accuracy when164

detecting ungulates from camera trap imagery. We do believe there is a place for sparse meth-165

ods in the life sciences when many observations (N ) can be obtained (Fig. 5). Our simulations166

provide context for evaluating different dimensions of model quality and the comparison of model167

approaches suggests which methods will be most useful and when.168

For most predictive contexts, the primary objective is to account for the reducible error in the169

data, as this is the variation in the response associated with generative processes (James et al. 2021).170

We were able to directly quantify the reducible error in our simulated data sets and easily identify171

cases of overfitting in which in-sample R2 > reducible error R2 (Figs. 2A & 3). With empirical data,172

the true reducible error and prediction errors arising from model variance and bias will be unknown173

(James et al. 2021), but overfitting may be evident when in-sample R2 exceeds out-of-sample R2.174

It is worth emphasizing that in our simulations and analyses, we minimized the potential for model175

bias and underfitting by simulating data from simple additive generative processes that are mirrored176
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in the statistical learning methods we used. In other words, we simulated the best case scenarios177

for explaining reducible error, and we still typically fell short.178

To minimize errors in prediction, we can strive for large sample sizes of representative data for179

model training (i.e., homogeneous with the out-of-sample, test data). Additionally, on average,180

in-sample prediction accuracy cannot be less than out-of-sample prediction accuracy, and both181

will converge on the true reducible error with increasing βcausal and N and decreasing P (Fig.182

3). Recovery of similar in-sample and out-of-sample R2 is consistent with minimal overfitting, but183

could arise from model bias. Similar out-of-sample R2 from multiple, genuinely different analysis184

methods would be consistent with having minimized prediction error given the information in185

the available data, but could still derive from underfit, biased models that account for only a186

fraction of the true reducible error (see results from Random Forest in the example data set; Fig.187

1). It is worth noting that Random Forest always yielded in-sample R2 roughly equal to out-of-188

sample R2 (Figs. 2A,B & 3), as this is the only method that uses cross-validation as a default. The189

distinction between prediction errors that arise in-sample and out-of-sample (Fig. 3), and the strong190

potential for overfitting, call into question model choice decisions that are very commonly made191

based on in-sample data alone without any cross-validation procedure (i.e., potentially choosing the192

most overfit model with little deference for out-of-sample prediction; see Fig. 3; Tredennick et al.193

2021). Importantly, while cross-validation is critical for safeguarding against misleading model194

results, reduced R2 values from cross-validated models could result in studies being less likely to195

be published or going into a lower profile journal, suggesting the need for a shift in how researchers196

evaluate prediction results in the context of cross-validation.197

The conditions that allow for strong prediction, namely when βcausal and N are large and P198

is small, are the same in which variable selection is possible (Figs. 2C & 3), though reliable out-199

of-sample prediction did not necessarily depend on perfect variable selection (i.e., including all200

causal and excluding all non-causal predictors; Fig. S2). A variable selection trade-off emerged for201

the data sets in which variable selection was most difficult (e.g., βcausal = 0.1), as evidenced by a202

negative relationship between true positive and true negative rates (Fig. 4). This result has broad203

implications because effect sizes are expected to be small and diffuse for many biological systems204

(e.g., in genetics, Boyle et al. 2017). Moreover, the consequences of different variable selection errors205

will have disparate repercussions in exploratory versus diagnostic settings, so researchers will need206

to weigh the costs and benefits of either identifying all causal predictors at the expense of including207

some false positives (e.g., when developing candidate variables for further study) or missing some208

causal predictors to ensure the absence of any false positives (e.g., when identifying biomarkers209

for disease detection). For the Bayesian methods that generate posterior inclusion probabilities210

(PIPs), the threshold for deciding whether or not to include a variable may vary across disciplines211

and fields. In evolutionary genetics, researchers may choose to only consider genetic loci that have212

a PIP > 0.1 (Lucas et al. 2018, McFarlane & Pemberton 2021), and this simple choice would have213

substantially improved variable selection for BSLMM and SuSiE, but not BLASSO or Horseshoe,214

for one example scenario (Fig. S3). Overall, accurate variable selection requires large numbers of215

observations (Fig. 5), perhaps even more so than prediction, as has been found previously in trait216

mapping and phenotypic prediction (Wray et al. 2013, Gompert et al. 2017).217

One striking feature of our results was the absence of a single method that excelled at all218

modeling purposes, consistent with the “no free lunch theorem” for supervised learning (Wolpert219

1996, Wolpert & Macready 1997). Trade-offs in model building have long been recognized (Levins220

1966, James et al. 2021, Tredennick et al. 2021) and serve as an important reminder for researchers221

to wield methods that align with their research objectives. Consequently, it can be useful to222

simulate data and measure the correlation (and other measures of the relationship) of the response223
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variable with process parameters (βcausal) under relevant sample sizes, so as to gauge information224

about the expected reducible error. It may be the case that researchers will need to employ225

multiple, complementary statistical learning methods for questions involving both prediction and226

variable selection. A combined approach to model building could be particularly valuable, for227

example using a sparse method to identify a subset of candidate variables and following up with228

a more flexible method such as Random Forest for prediction. We emphasize that while the use229

of sparse methods cannot resolve logistical challenges surrounding data collection in ecology and230

evolutionary biology (there will always be data sets where P is much greater than N), the uptake of231

these methods is a path forward that can contribute to high-quality inference, explanatory models232

that capture key elements of data generating processes, and prediction with minimal error. Finally,233

we acknowledge that many of our key findings recapitulate concepts that are already well known by234

many statisticians (James et al. 2021). Our simulations and analyses illustrate a number of points235

that are not widely appreciated in applied statistics, including in ecology and evolutionary biology,236

and we hope this exercise will elevate awareness of the promise and limitations of these tools for237

statistical learning.238

Methods239

Description of simulated data240

The simulations included 36 scenarios that considered three main factors in a fully crossed design:241

the number of observed samples (N = 50, 150, or 500), the number of predictors or features242

(P = 100, 1,000, 10,000, or 100,000), and the effect size of the ten causal predictors (βcausal =243

0.1, 0.3, or 0.8; Table S1). To evaluate the potential benefits of even larger N, we simulated two244

additional scenarios in which N was 1,000 or 10,000, P was 1,000, and βcausal was 0.3. To thoroughly245

incorporate and evaluate variable outcomes among simulations, we obtained 100 replicate data sets246

for all scenarios. Each replicate data set consisted of N observations for training (i.e., variable247

selection and in-sample prediction) and an additional 500 observations for testing out-of-sample248

prediction.249

For each replicate, we first created an observation × predictor (N+500)×P matrixX consisting250

of P/50 clusters of correlated predictors (50 per cluster). Each cluster of predictors was generated251

by taking N + 500 draws from a multivariate normal distribution with mean vector µ = 0 and252

covariance matrix Σ. We generated covariance matrices using a spherical parameterization (Pin-253

heiro & Bates 1996), which transforms a P(P+1)/2-dimension vector of unconstrained parameters254

θ into a positive semi-definite covariance matrix Σ. The goal of this approach was to create clusters255

of predictors with a range of correlation strengths, from strongly negatively to strongly positively256

correlated, a situation that is common in biological relationships and that presents a challenge for257

many modeling approaches. We found that drawing values of θ from a uniform distribution be-258

tween -1 and 1 produced sets of predictors with a range of correlation strengths. After generating259

clusters of predictors, we concatenated them to create the predictor matrix X and centered and260

scaled (mean = 0; sd = 1) the columns of predictors.261

Next, we sampled a P -dimension vector of coefficients β representing the causal effects of the262

predictors on response variable y. We randomly selected 10 predictors out of P to have a non-zero263

coefficient of βcausal. The remaining values of β were set to zero. The response variable y was a264

linear, additive function of the product of the β coefficients and the P predictors, plus error or265

intercept term of ε, drawn from a standard normal distribution for each individual: y = Xβ + ε.266
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For each data set, the reducible error was calculated as the proportion of variance in the response267

explained by a linear model using only the 10 causal predictors.268

We made several decisions in simulating data that could influence our results and interpretation.269

For example, causal parameters in the simulated data sets were specified as simple linear effects,270

as opposed to non-linear or threshold effects that could be more or less difficult to identify for271

some methods. However, while linear approximations of non-linear processes introduce bias, they272

can often outperform more flexible non-linear or non-parametric approaches that introduce more273

variance, particularly for high-dimensional data (i.e., “the bias-variance trade-off”; James et al.274

2021). Furthermore, we intentionally avoided the complexities of causal inference in the presence of275

confounding variables and interactions. Instead, for the purpose of learning, we studied a simplified276

system in which sparse effects could estimate causal effects. Finally, we have explored a fairly simple277

range of data attributes that might be encountered in the life sciences, and acknowledge that the278

consideration of other axes of variation will undoubtedly lead to new insights about how we can279

use modeling approaches to better understand the world.280

Analyses281

Each simulated data set was modeled using nine different methods. Eight of these are penalized282

regression methods using standard likelihood (LASSO, Tibshirani 1996; Ridge, Hoerl & Kennard283

1970; Elastic Net, Zou & Hastie 2005) or Bayesian estimation (Bayesian LASSO [BLASSO], Park284

& Casella 2008; Horseshoe, Carvalho et al. 2010; Spike-and-slab, Ishwaran & Rao 2005; Bayesian285

sparse linear mixed model [BSLMM], Zhou et al. 2013; sum of single effects [SuSiE], Wang et al.286

2020a). The final method, Random Forest (Breiman 2001a), served as a benchmark to compare287

other methods to and is a commonly used, highly flexible machine learning approach based on an288

ensemble of decision trees. All analyses were conducted in R v4.2.2 (R Core Team 2023). Each289

data set was provided to the methods using the Nextflow v22.10.4.5836 workflow description290

language (Di Tommaso et al. 2017) to distribute the work and aggregate the output in a computing291

cluster using SLURM (Yoo et al. 2003). We used implementations of Elastic Net, LASSO, and Ridge292

in the glmnet v4.1-6 package (Friedman et al. 2010), of BLASSO, Horseshoe, and alternatives293

of LASSO and Ridge in the monomvn v1.9-17 package (Gramacy 2023), of Spike-and-slab in the294

spikeslab v1.1.6 package (Ishwaran et al. 2010), of SuSiE in the susieR v0.12.27 package295

(Wang et al. 2020a), of Random Forest in the randomForest v4.7-1.1 package (Liaw & Wiener296

2002), and of BSLMM in the software gemma v0.98.6 (Zhou et al. 2013). We used ‘off-the-shelf’,297

default settings for all analyses (as in Porwal & Raftery 2022). BLASSO and Horseshoe were not298

performed for the large N scenarios (N = 1,000 or 10,000) due to extremely long run times.299

To evaluate each model’s potential utility for parameter estimation, variable selection, and300

prediction, we calculated several complementary summary statistics that were largely applicable301

across all of the methods. Metrics for BLASSO and Horseshoe were calculated two ways: model-302

averaged (ma) estimates are based on all samples from the reversible jump MCMC, whereas non-303

zero (nz) estimates use only samples in which the predictor and associated coefficient were included304

in the model. Parameter estimation was evaluated based on the root mean square error (RMSE)305

between estimated and actual parameter values (β) for all analyses except Random Forest, which306

reports importance measures instead of estimates. Variable selection was first assessed for methods307

that can return true zeros for parameter estimates (BSLMM, Elastic Net, LASSO, Spike-and-slab)308

or importance measures (Random Forest). Predictors were assigned as positives ( 6= 0) or negatives309

(= 0), and these classifications were used to calculate true positive rates (TPR; i.e., sensitivity),310

true negative rates (TNR; i.e., specificity), and F1, which is the harmonic mean of precision (i.e.,311
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the fraction of selected predictors that are truly causal) and sensitivity: 2×Sensitivity×Precision
Sensitivity+Precision . It is312

important to note that small values of F1 (i.e., poor variable selection) can occur due to low TPR,313

low TNR, or both. Variable selection was also assessed based on posterior inclusion probabilities314

(PIPs) for four Bayesian methods (BLASSO, BSLMM, Horseshoe, SuSiE) using one example data315

set (scenario 24, replicate 1). A series of minimum PIP thresholds (i.e., predictors with PIP ≥316

threshold are scored as positives) were evaluated to characterize potential effects on resulting F1317

values. In-sample and out-of-sample prediction was quantified using R2 between the actual and318

predicted values of the response variable. In-sample prediction was based on the N observations319

used to train the model, whereas out-of-sample prediction was based on a separate set of 500320

observations. Finally, we recorded the runtime required to fit each model to each data set.321
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Figure 1: Performance varies greatly across three methods for parameter estimation, variable selec-
tion, in-sample (IS) prediction, and out-of-sample (OOS) prediction. Results are shown for the first
replicate of scenario 24, which had 10 causal predictors (β = 0.8) and 9,990 non-causal predictors
(β = 0). The distributions of causal and non-causal importance values are shown for Random For-
est, whereas the distributions of causal and non-causal parameter estimates are shown for LASSO
monomvn and BSLMM (black diamonds signify the true effect sizes). In-sample prediction was
based on 150 observations used to train the model, and out-of-sample prediction was based on a
separate 500 observations (the maximum reducible error for this scenario was R2 = 0.832). RMSE:
root mean square error; TNR: true negative rate (i.e., specificity); TPR: true positive rate (i.e.,
sensitivity)
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Figure 2: An overview of model performance for the 36 core scenarios. Nine methods were con-
sidered, as well as two different implementations of Ridge and LASSO in the glmnet and monomvn

packages in R. Metrics for BLASSO and Horseshoe were calculated two ways: model-averaged (ma)
estimates are based on all samples from the reversible jump MCMC, whereas non-zero (nz) es-
timates use only samples in which the predictor and associated coefficient were included in the
model. (A) In-sample and (B) out-of-sample prediction were evaluated with R2 between the actual
and predicted values of the response. In these panels, the grey and white regions represent the
mean reducible and irreducible error, respectively, across all scenarios within a βcausal level. While
reducible error represents the expected maximum value for out-of-sample prediction, in-sample
prediction can exceed the reducible error when too flexible models are employed (i.e., overfitting).
This means that the target for prediction is to recover a model with in-sample and out-of-sample
R2 equal to the maximum reducible error. (C) Variable selection was evaluated using F1, which
is the harmonic mean of precision (i.e., the fraction of selected predictors that are truly causal)
and sensitivity (i.e., true positive rate): 2×Precision×Sensitivity

Precision+Sensitivity . F1 was only calculated for analyses
that can return truly sparse parameter estimates (i.e., β = 0; BSLMM, Elastic Net, LASSO, Spike-
and-slab) or importance values (Random Forest). (D) Parameter estimation was evaluated for all
methods except Random Forest using the root mean square error (RMSE) between estimated and
actual parameter values. (E) Model speed was evaluated based on the natural log of runtime in
seconds. Each circle represents the median value from 100 replicate simulations.
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Figure 3: The extent of overfitting and the fraction of reducible error recovered differs dramatically
among methods and data attributes. The grey and white regions represent the mean reducible
and irreducible error, respectively, across all scenarios within a βcausal level. While reducible error
represents the expected maximum value for out-of-sample prediction, in-sample prediction R2 can
exceed the reducible error when too sensitive models are employed (i.e., overfitting). This means
that the target for prediction is to recover a model with in-sample and out-of-sample R2 equal to
the maximum reducible error, as was the case for many of the methods in the upper right hand
panel (βcausal = 0.8; N = 500; P = 100). Each circle represents the median value from 100 replicate
simulations. See Fig. 2 for color legend.
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Figure 4: Variable selection performance varied greatly across scenarios, and was only possible
for some methods when there were many observations (N ), few predictors (P), and effect sizes
(βcausal) were large. A negative correlation between true positive rate and true negative rate
emerged for many simulations, especially when βcausal was small, indicative of a trade-off between
identifying causal predictors (sensitivity) and excluding non-causal predictors (specificity). This
trade-off disappears when conditions are more favorable for variable selection: when βcausal and N
are large and when P is small. Variable selection was only evaluated for analyses that can return
truly sparse parameter estimates (i.e., β = 0; BSLMM, Elastic Net, LASSO, Spike-and-slab) or
importance values (Random Forest). Each circle represents the jittered median value from 100
replicate simulations. See Fig. 2 for color legend.
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Figure 5: Model performance for (A) in-sample prediction, (B) out-of-sample prediction, and (C)
variable selection improves with increasing observations (N ) for most models (BLASSO and Horse-
shoe were not considered because of long runtimes). The five scenarios shown here all had P =
1,000 and β = 0.3. In-sample and out-of-sample prediction were evaluated with R2 between the ac-
tual and predicted values of the response. In panels A and B, the grey and white regions represent
the mean reducible and irreducible error, respectively, across all five scenarios. While reducible
error represents the expected maximum value for out-of-sample prediction, in-sample prediction
can exceed the reducible error when too flexible models are employed (i.e., overfitting). This means
that the target for prediction is to recover a model with in-sample and out-of-sample R2 equal to
the maximum reducible error. Variable selection was evaluated using F1, which is the harmonic
mean of precision (i.e., the fraction of selected predictors that are truly causal) and sensitivity
(i.e., true positive rate): 2×Precision×Sensitivity

Precision+Sensitivity . F1 was only calculated for analyses that can return
truly sparse parameter estimates (i.e., β = 0; BSLMM, Elastic Net, LASSO, Spike-and-slab) or
importance values (Random Forest). Each circle represents the median value from 100 replicate
simulations.
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