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. Abstract

> The proliferation of high-dimensional data in ecology and evolutionary biology raise the promise
3 of statistical and machine learning models that are highly predictive and interpretable. However,
4 high-dimensional data are commonly burdened with an inherent trade-off: in-sample prediction of
5 outcomes will improve as additional predictors are included in the model, but this may come at the
6 cost of poor predictive accuracy and limited generalizability for future or unsampled observations
7 (out-of-sample prediction). To confront this problem of overfitting, sparse models can focus on key
s predictors by correctly placing low weight on unimportant variables. We competed nine methods to
o quantify their performance in variable selection and prediction using simulated data with different
10 sample sizes, numbers of predictors, and strengths of effects. Overfitting was typical for many
11 methods and simulation scenarios. Despite this, in-sample and out-of-sample prediction converged
12 on the true predictive target for simulations with more observations, larger causal effects, and fewer
13 predictors. Accurate variable selection to support process-based understanding will be unattainable
12 for many realistic sampling schemes in ecology and evolution. We use our analyses to characterize
15 data attributes for which statistical learning is possible, and illustrate how some sparse methods
16 can achieve predictive accuracy while mitigating and learning the extent of overfitting.

17 Keywords: prediction, reducible error, simulation, sparse modeling, statistical learning, variable
18 selection.

v Introduction

20 Research in ecology and evolution has seen dramatic growth in data due to technological advances
21 for automation and high-throughput sampling (e.g., water or air sampling, Porter et al. 2009; satel-
2 lite imagery, Ustin & Middleton 2021, Cavender-Bares et al. 2022; DNA sequencing, Halldorsson
23 et al. 2022, Rubinacci et al. 2023; and GPS telemetry, Wilmers et al. 2015, Gigliotti et al. 2022).
2 While large data sets have the potential to greatly improve our understanding of complex systems,
2 they also pose considerable challenges for data analysis and incorporation into formal process mod-
% els. For example, a cross-cutting objective in ecology and evolutionary biology involves learning the
27 causes of species abundances and distributions, including making predictions about the responses
23 of wild and cultivated organisms to climate change (Faske et al. 2023, Forister et al. 2023, Grames
20 & Forister 2024, Halsch et al. 2024, Laughlin & McGill 2024, Li et al. 2024). These predictions are
30 commonly based on contemporary observations of organisms and many dimensions of abiotic and
st biotic environments, and intrinsic attributes (e.g., the genome) that could be causally associated
32 with their distributions (e.g., Faske et al. 2023, Grames & Forister 2024, Li et al. 2024). Despite
33 remarkably large sampling effort, many studies have more measures of covariates (of climate or the
s genome) to make their predictions than they do samples, posing a challenge for predicting organis-
35 mal responses to climate beyond the settings in which they were studied. Limited generalizability is
3 common in parameter-rich models and results from overfitting, or the tendency for flexible models
37 to fit too closely to the observed data such that idiosyncratic variation in the observed data is
3¢ taken as pattern rather than noise (Hastie et al. 2015). Thus, the availability of big data with
3 potentially many more covariates (P; i.e., high-dimensional) than observations (N) may counter-
s intuitively lead to models with poor predictive performance outside the scope of the sample (“the
s curse of dimensionality”, Altman & Krzywinski 2018). More broadly, we face the problem of how
22 to realistically and intelligently constrain the flexibility of our models to capture potential general
53 patterns while learning about genuine context-dependent effects (Weiss 2008).


https://doi.org/10.1101/2024.03.15.585297
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585297; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

a We have made great strides in ecology and evolution in constructing highly predictive models
s based on computational modeling and machine learning to address the proliferation of large data
46 sets. Machine learning complements standard methods for statistical modeling that make a priori
a7 choices of which predictor variables to include based on conceptual, process-based understanding.
s More generally, advances in machine learning have prompted a reevaluation of how we value models
s and what it means for a model to ‘understand’ something about the world (Mitchell & Krakauer
so 2023). Statistical models can be used to learn which predictors are associated with a response (i.e.,
s1 variable or feature selection), to generate accurate predictions about the sampled population (i.e.,
s2 in-sample prediction), and to make generalizations about populations, localities, or time-points for
53 which we have no prior information (i.e., out-of-sample prediction). We value models that can reveal
s« predictors that are associated with the generative processes leading to variation in the response,
55 while also avoiding shortcut learning that can garner accurate predictions from tangentially related
ss variables (shortcut learning can be problematic for both inference and out-of-sample prediction;
s Geirhos et al. 2020).

58 Ecologists and evolutionary biologists would benefit from a direct comparison and evaluation
so of the prospects of different statistical learning methods (Porwal & Raftery 2022), and from a
60 greater clarity about critical issues in model evaluation, including overfitting, the extent to which
61 process variance is recovered in model predictions, and the explanatory value of important predictor
62 variables. Computational methods for sparse modeling might be particularly valuable approaches:
63 these methods assume that most predictors have no causal relationship with the response and
s« therefore only generate estimates for a subset of variables (Hastie et al. 2015). The hope is that
65 selected predictors correspond to the key process variables that are causally linked to variation in
66 the response, which should limit overfitting and improve predictive performance when generalizing
67 to unsampled or future observations. It is an open question to what extent sparse models can
68 maximize predictive performance and yield interpretable model outputs, particularly for high-
o dimensional data where the number of covariates (P) is much greater than the number of samples
0 (N).

7 We compared the relative performance of several modeling methods by applying them to the
72 same data sets with known, simulated causal relationships, of the type commonly encountered in
73 ecology and evolutionary biology. Our 36 core simulation scenarios (100 simulated replicates each)
72 differed in the number of observations (N = 50, 150, or 500), the number of covariates (P = 100,
751,000, 10,000, or 100,000; of which 10 were causal and directly influenced the response variable),
7 and the effect size of causal predictors (Beausal = 0.1, 0.3, or 0.8; Table S1). Our statistical
77 learning methods included penalized regression methods based on maximum likelihood (Ridge,
7z Elastic Net, and LASSO) and Bayesian estimation (Bayesian LASSO [BLASSO], Horseshoe, Spike-
79 and-slab, Sum of Single Effects [SuSiE], and Bayesian Sparse Linear Mixed Model [BSLMM]), and
so one commonly used machine learning method (Random Forest). When evaluating the strengths
s1 and weaknesses of different methods, we considered prediction (the accuracy of prediction of the
82 response variable given the covariates, both for in-sample, training data and out-of-sample, test
ss data) and inference (i.e., learning which variables are causally associated with variation in the
sa response). While prediction and inference should be treated as complementary goals in statistical
s analyses (Breiman 2001b), it is worth noting they are not always associated, even if there is an
s expectation that strong inference would follow from accurate predictions (Wang et al. 2020b).
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# Results

ss A perfect model would: 1) identify only the ten truly causal predictors and accurately estimate
g0 their effect sizes; 2) accurately attribute the variation in the response that arises directly from
o the causal predictors (i.e., reducible error); and 3) disregard variation in the response arising from
o1 other unmeasured or stochastic processes (i.e., irreducible error; James et al. 2021). Across all
92 simulations, the magnitude of reducible error was overwhelmingly associated with the effect size of
o3 causal predictors (R? between the known, additive effects of simulated causal predictors and the
94 simulated response variable was = 0.10, 0.47, and 0.86 with Bcausa1 = 0.1, 0.3, and 0.8, respectively;
os  Fig. S1). Reducible error was more variable among replicates when N or P were low.

9 The different methods varied greatly in their performance for variable selection and prediction.
o7 For one example data set (N = 150, P = 10,000, Beausal = 0.8; see Fig. 1), LASSO monomvn had
¢ the greatest success at delineating between causal and non-causal predictors (true positive rate
o [TPR] = 0.9; true negative rate [TNR] = 0.998). While Random Forest also correctly identified
100 nine of the ten causal predictors (TPR = 0.9), it implicated a large proportion of non-causal
11 variants as being associated with the response (TNR = 0.123). In contrast, BSLMM was relatively
102 successful at excluding non-causal predictors (TNR = 0.958), but could only identify half of the
103 causal predictors (TPR = 0.5). For prediction, the true reducible error for the example data set was
10s R? = 0.832, which served as the target for both in-sample and out-of-sample prediction (based on
105 500 observations not used to train the model). For LASSO monomvn, in-sample prediction was very
106 close to the reducible error (R? = 0.819), which translated to the highest success for out-of-sample
107 prediction (R? = 0.749). In-sample prediction exceeded the reducible error for BSLMM (R? =
108 0.961), and this overfitting led to reduced out-of-sample prediction (R? = 0.622) relative to LASSO
100 monomvn. Random Forest suffered from poor predictive yield, with both in-sample (R? = 0.084) and
10 out-of-sample (R? = 0.341) comparisons, falling far short of the reducible error. Overall, LASSO
1 monomvn provided the best balance between variable selection and prediction for the example data
112 set.

113 Overfitting was rampant across all scenarios, as evidenced by large in-sample R? and low out-
s of-sample R? (Fig. 2A and B). It was also common for models to recover only a fraction of the
us reducible error in out-of-sample prediction, particularly for simulations with larger P (Fig. 2B).
16 The accuracy of in-sample and out-of-sample prediction converged towards the reducible error tar-
u7  get for simulations with larger Bcausal and N and smaller P (Fig. 3). Out-of-sample predictive
us  performance was not necessarily associated with more accurate variable selection, as out-of-sample
1o R? matched the reducible error even with low F; for some scenarios (Fig. S2). Variable selection
120 was first assessed for methods that return truly sparse parameter estimates (i.e., 3 = 0; BSLMM,
121 Elastic Net, LASSO, Spike-and-slab) or importance values (Random Forest), and was generally
122 poor except from when Bcausal and N were high and P was low; Fig. 2C). When Bcausal Was low,
123 a negative relationship between TPR and TNR emerged across methods, suggesting a trade-off
124 between identifying causal predictors and excluding non-causal predictors (Fig. 4). Variable selec-
125 tion was also assessed based on posterior inclusion probabilities (PIPs) for four Bayesian methods
s (BLASSO, BSLMM, Horseshoe, SuSiE) using the example data set from Fig. 1. The use of a
127 small PIP threshold of 0.05 (i.e., only predictors with PIP > 0.05 are scored as positives) improved
18 variable selection for BSLMM and SuSiE, whereas larger thresholds were needed to recover more
129 limited gains for BLASSO and Horseshoe (Fig. S3). Parameter estimation was remarkably con-
130 sistent across different analyses, and was instead most strongly influenced by data dimensionality:
131 estimation was worse with greater Beausal and lower N and P (Fig. 2D). This pattern arose because
132 most methods are worse at estimating predictors with 8 # 0 than those with 8 = 0, resulting
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133 in larger root mean square error (RMSE) when the proportion of causal to non-causal predictors
134 was relatively large (i.e., when P was small) or when the effect size of causal predictors was very
135 different from zero (i.e., when Bcausal Was large). Analysis of the 3,600 data sets completed in
s 2.49 CPU-years, with BLASSO and Horseshoe contributing 46.6% and 46.7% of the total run-time,
137 respectively (Fig. 2E).

s Discussion

139 High-throughput and automated data acquisition promises to yield valuable information about
140 processes that generate variation. This promise is diminished in the common situation in ecology
11 and evolutionary biology when sampling is of few individuals (V) and many potential covariates
12 (P; e.g., genomic polymorphisms at 10° sites, months of micrometeorological sensor measurements
13 at 10Hz). Our simulations highlight that the most consistent way to obtain highly predictive and
e explanatory models is to maximize the number of independent observations. While sparse modeling
us  techniques allow the fitting of models in settings with more covariates than observations (P > N),
us they cannot rescue analyses based on small sample sizes, especially when P is large or when effect
17 sizes are small relative to background levels of stochastic variation (Fig. 2). This means that
ug  for many typical analyses in ecology and evoluttionary biology, variable selection will suffer from
140 low precision and sensitivity, and prediction models will be overfit and have poor generalizability.
150 In cases where sparse methods struggle with a low signal-to-noise ratio, other methods will also
151 struggle (“the bet-on-sparsity principle”; Hastie et al. 2009), meaning such signals will only ever
152 be detectable with more data, better sampling design, or both. Indeed, when we extended our
153 simulations to have sample sizes of 1,000 or 10,000 observations, in-sample and out-of-sample R?
154 converged to the maximum reducible error, and variable selection improved for most analyses (Fig.
155 D).

156 It is perhaps néive to use statistical learning for prediction without large training sets, particu-
157 larly when causal effect sizes are small relative to variance from extraneous sources. The temptation
155 to do so might stem from working with big data (IV x P), but not appreciating that all statistical
159 approaches are expected to yield relatively poor out-of-sample prediction when N is small (e.g.,
10 < 500) and effect sizes are modest. Some of the most remarkable models in society, such as those
11 for large language modeling (Zhao et al. 2023), natural voice recognition (Xiong et al. 2016), image
12 segmentation (Kirillov et al. 2023), and board game algorithms (Silver et al. 2018), are typically
163 trained on enormous sample sizes. For example, Tabak et al. (2019) trained a convolutional neural
16« network with more than 3 million images to achieve more than 80% out-of-sample accuracy when
165 detecting ungulates from camera trap imagery. We do believe there is a place for sparse meth-
166 ods in the life sciences when many observations (N) can be obtained (Fig. 5). Our simulations
167 provide context for evaluating different dimensions of model quality and the comparison of model
168 approaches suggests which methods will be most useful and when.

169 For most predictive contexts, the primary objective is to account for the reducible error in the
170 data, as this is the variation in the response associated with generative processes (James et al. 2021).
i1 We were able to directly quantify the reducible error in our simulated data sets and easily identify
172 cases of overfitting in which in-sample R? > reducible error R? (Figs. 2A & 3). With empirical data,
173 the true reducible error and prediction errors arising from model variance and bias will be unknown
17 (James et al. 2021), but overfitting may be evident when in-sample R? exceeds out-of-sample R2.
175 It is worth emphasizing that in our simulations and analyses, we minimized the potential for model
176 bias and underfitting by simulating data from simple additive generative processes that are mirrored
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177 in the statistical learning methods we used. In other words, we simulated the best case scenarios
178 for explaining reducible error, and we still typically fell short.

179 To minimize errors in prediction, we can strive for large sample sizes of representative data for
180 model training (i.e., homogeneous with the out-of-sample, test data). Additionally, on average,
181 in-sample prediction accuracy cannot be less than out-of-sample prediction accuracy, and both
1.2 will converge on the true reducible error with increasing Bcausal and N and decreasing P (Fig.
183 3). Recovery of similar in-sample and out-of-sample R? is consistent with minimal overfitting, but
18 could arise from model bias. Similar out-of-sample R? from multiple, genuinely different analysis
185 methods would be consistent with having minimized prediction error given the information in
186 the available data, but could still derive from underfit, biased models that account for only a
17 fraction of the true reducible error (see results from Random Forest in the example data set; Fig.
188 1). It is worth noting that Random Forest always yielded in-sample R? roughly equal to out-of-
180 sample R? (Figs. 2A,B & 3), as this is the only method that uses cross-validation as a default. The
10 distinction between prediction errors that arise in-sample and out-of-sample (Fig. 3), and the strong
11 potential for overfitting, call into question model choice decisions that are very commonly made
192 based on in-sample data alone without any cross-validation procedure (i.e., potentially choosing the
103 most overfit model with little deference for out-of-sample prediction; see Fig. 3; Tredennick et al.
104 2021). Importantly, while cross-validation is critical for safeguarding against misleading model
105 results, reduced R? values from cross-validated models could result in studies being less likely to
196 be published or going into a lower profile journal, suggesting the need for a shift in how researchers
197 evaluate prediction results in the context of cross-validation.

198 The conditions that allow for strong prediction, namely when Bcausal and N are large and P
199 is small, are the same in which variable selection is possible (Figs. 2C & 3), though reliable out-
200 of-sample prediction did not necessarily depend on perfect variable selection (i.e., including all
201 causal and excluding all non-causal predictors; Fig. S2). A variable selection trade-off emerged for
22 the data sets in which variable selection was most difficult (e.g., Beausal = 0.1), as evidenced by a
203 negative relationship between true positive and true negative rates (Fig. 4). This result has broad
204 implications because effect sizes are expected to be small and diffuse for many biological systems
205 (e.g., in genetics, Boyle et al. 2017). Moreover, the consequences of different variable selection errors
206 will have disparate repercussions in exploratory versus diagnostic settings, so researchers will need
207 to weigh the costs and benefits of either identifying all causal predictors at the expense of including
28 some false positives (e.g., when developing candidate variables for further study) or missing some
200 causal predictors to ensure the absence of any false positives (e.g., when identifying biomarkers
210 for disease detection). For the Bayesian methods that generate posterior inclusion probabilities
an (PIPs), the threshold for deciding whether or not to include a variable may vary across disciplines
212 and fields. In evolutionary genetics, researchers may choose to only consider genetic loci that have
213 a PIP > 0.1 (Lucas et al. 2018, McFarlane & Pemberton 2021), and this simple choice would have
214 substantially improved variable selection for BSLMM and SuSiE, but not BLASSO or Horseshoe,
215 for one example scenario (Fig. S3). Overall, accurate variable selection requires large numbers of
216 observations (Fig. 5), perhaps even more so than prediction, as has been found previously in trait
217 mapping and phenotypic prediction (Wray et al. 2013, Gompert et al. 2017).

218 One striking feature of our results was the absence of a single method that excelled at all
210 modeling purposes, consistent with the “no free lunch theorem” for supervised learning (Wolpert
20 1996, Wolpert & Macready 1997). Trade-offs in model building have long been recognized (Levins
221 1966, James et al. 2021, Tredennick et al. 2021) and serve as an important reminder for researchers
22 to wield methods that align with their research objectives. Consequently, it can be useful to
223 simulate data and measure the correlation (and other measures of the relationship) of the response
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24 variable with process parameters (Bcausal) Under relevant sample sizes, so as to gauge information
25 about the expected reducible error. It may be the case that researchers will need to employ
26 multiple, complementary statistical learning methods for questions involving both prediction and
27 variable selection. A combined approach to model building could be particularly valuable, for
28 example using a sparse method to identify a subset of candidate variables and following up with
20 a more flexible method such as Random Forest for prediction. We emphasize that while the use
230 of sparse methods cannot resolve logistical challenges surrounding data collection in ecology and
231 evolutionary biology (there will always be data sets where P is much greater than V), the uptake of
232 these methods is a path forward that can contribute to high-quality inference, explanatory models
233 that capture key elements of data generating processes, and prediction with minimal error. Finally,
24  we acknowledge that many of our key findings recapitulate concepts that are already well known by
235 many statisticians (James et al. 2021). Our simulations and analyses illustrate a number of points
26 that are not widely appreciated in applied statistics, including in ecology and evolutionary biology,
237 and we hope this exercise will elevate awareness of the promise and limitations of these tools for
238 statistical learning.

20 Methods

20 Description of simulated data

21 The simulations included 36 scenarios that considered three main factors in a fully crossed design:
222 the number of observed samples (N = 50, 150, or 500), the number of predictors or features
23 (P = 100, 1,000, 10,000, or 100,000), and the effect size of the ten causal predictors (Bcausal =
20 0.1, 0.3, or 0.8; Table S1). To evaluate the potential benefits of even larger N, we simulated two
25 additional scenarios in which N was 1,000 or 10,000, P was 1,000, and B¢ausal was 0.3. To thoroughly
26 incorporate and evaluate variable outcomes among simulations, we obtained 100 replicate data sets
27 for all scenarios. Each replicate data set consisted of N observations for training (i.e., variable
28 selection and in-sample prediction) and an additional 500 observations for testing out-of-sample
29 prediction.

250 For each replicate, we first created an observation x predictor (N +500) x P matrix X consisting
21 of P/50 clusters of correlated predictors (50 per cluster). Each cluster of predictors was generated
22 by taking N + 500 draws from a multivariate normal distribution with mean vector p = 0 and
253 covariance matrix 3. We generated covariance matrices using a spherical parameterization (Pin-
2sa heiro & Bates 1996), which transforms a P(P+1)/2-dimension vector of unconstrained parameters
255 0 into a positive semi-definite covariance matrix 3. The goal of this approach was to create clusters
26 of predictors with a range of correlation strengths, from strongly negatively to strongly positively
27 correlated, a situation that is common in biological relationships and that presents a challenge for
28 many modeling approaches. We found that drawing values of @ from a uniform distribution be-
250 tween -1 and 1 produced sets of predictors with a range of correlation strengths. After generating
260 clusters of predictors, we concatenated them to create the predictor matrix X and centered and
261 scaled (mean = 0; sd = 1) the columns of predictors.

262 Next, we sampled a P-dimension vector of coefficients 3 representing the causal effects of the
263 predictors on response variable y. We randomly selected 10 predictors out of P to have a non-zero
264 coefficient of Beausal- The remaining values of B were set to zero. The response variable y was a
265 linear, additive function of the product of the 3 coefficients and the P predictors, plus error or
266 intercept term of €, drawn from a standard normal distribution for each individual: y = X3 + €.
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267 For each data set, the reducible error was calculated as the proportion of variance in the response
268 explained by a linear model using only the 10 causal predictors.

260 We made several decisions in simulating data that could influence our results and interpretation.
a0 For example, causal parameters in the simulated data sets were specified as simple linear effects,
o1 as opposed to non-linear or threshold effects that could be more or less difficult to identify for
272 some methods. However, while linear approximations of non-linear processes introduce bias, they
o713 can often outperform more flexible non-linear or non-parametric approaches that introduce more
27+ variance, particularly for high-dimensional data (i.e., “the bias-variance trade-off”; James et al.
275 2021). Furthermore, we intentionally avoided the complexities of causal inference in the presence of
276 confounding variables and interactions. Instead, for the purpose of learning, we studied a simplified
a7 system in which sparse effects could estimate causal effects. Finally, we have explored a fairly simple
a7 range of data attributes that might be encountered in the life sciences, and acknowledge that the
279 consideration of other axes of variation will undoubtedly lead to new insights about how we can
280 use modeling approaches to better understand the world.

21 Analyses

22 Each simulated data set was modeled using nine different methods. Eight of these are penalized
283 regression methods using standard likelihood (LASSO, Tibshirani 1996; Ridge, Hoerl & Kennard
284 1970; Elastic Net, Zou & Hastie 2005) or Bayesian estimation (Bayesian LASSO [BLASSO], Park
g5 & Casella 2008; Horseshoe, Carvalho et al. 2010; Spike-and-slab, Ishwaran & Rao 2005; Bayesian
286 sparse linear mixed model [BSLMM], Zhou et al. 2013; sum of single effects [SuSiE], Wang et al.
257 2020a). The final method, Random Forest (Breiman 2001a), served as a benchmark to compare
288 other methods to and is a commonly used, highly flexible machine learning approach based on an
29 ensemble of decision trees. All analyses were conducted in R v4.2.2 (R Core Team 2023). Each
200 data set was provided to the methods using the Nextflow v22.10.4.5836 workflow description
201 language (Di Tommaso et al. 2017) to distribute the work and aggregate the output in a computing
202 cluster using SLURM (Yoo et al. 2003). We used implementations of Elastic Net, LASSO, and Ridge
203 in the glmnet v4.1-6 package (Friedman et al. 2010), of BLASSO, Horseshoe, and alternatives
200 of LASSO and Ridge in the monomvn v1.9-17 package (Gramacy 2023), of Spike-and-slab in the
205 spikeslab v1.1.6 package (Ishwaran et al. 2010), of SuSiE in the susieR v0.12.27 package
206 (Wang et al. 2020a), of Random Forest in the randomForest v4.7-1.1 package (Liaw & Wiener
207 2002), and of BSLMM in the software gemma v0.98.6 (Zhou et al. 2013). We used ‘off-the-shelf’,
20 default settings for all analyses (as in Porwal & Raftery 2022). BLASSO and Horseshoe were not
200 performed for the large N scenarios (N = 1,000 or 10,000) due to extremely long run times.

300 To evaluate each model’s potential utility for parameter estimation, variable selection, and
so0  prediction, we calculated several complementary summary statistics that were largely applicable
302 across all of the methods. Metrics for BLASSO and Horseshoe were calculated two ways: model-
33 averaged (ma) estimates are based on all samples from the reversible jump MCMC, whereas non-
s zero (nz) estimates use only samples in which the predictor and associated coefficient were included
s0s in the model. Parameter estimation was evaluated based on the root mean square error (RMSE)
306 between estimated and actual parameter values (3) for all analyses except Random Forest, which
s07  reports importance measures instead of estimates. Variable selection was first assessed for methods
58 that can return true zeros for parameter estimates (BSLMM, Elastic Net, LASSO, Spike-and-slab)
309 or importance measures (Random Forest). Predictors were assigned as positives (# 0) or negatives
s (= 0), and these classifications were used to calculate true positive rates (TPR; i.e., sensitivity),
suu true negative rates (TNR; i.e., specificity), and Fi, which is the harmonic mean of precision (i.e.,
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sz the fraction of selected predictors that are truly causal) and sensitivity: 2?52;@%25}’35 TSR Tt is

313 important to note that small values of F; (i.e., poor variable selection) can occur due to low TPR,
siu low TNR, or both. Variable selection was also assessed based on posterior inclusion probabilities
sis  (PIPs) for four Bayesian methods (BLASSO, BSLMM, Horseshoe, SuSiE) using one example data
si6 set (scenario 24, replicate 1). A series of minimum PIP thresholds (i.e., predictors with PIP >
s1i7 threshold are scored as positives) were evaluated to characterize potential effects on resulting F
a5 values. In-sample and out-of-sample prediction was quantified using R? between the actual and
s19  predicted values of the response variable. In-sample prediction was based on the N observations
320 used to train the model, whereas out-of-sample prediction was based on a separate set of 500
s observations. Finally, we recorded the runtime required to fit each model to each data set.
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Figure 1: Performance varies greatly across three methods for parameter estimation, variable selec-
tion, in-sample (IS) prediction, and out-of-sample (OOS) prediction. Results are shown for the first
replicate of scenario 24, which had 10 causal predictors (3 = 0.8) and 9,990 non-causal predictors
(B = 0). The distributions of causal and non-causal importance values are shown for Random For-
est, whereas the distributions of causal and non-causal parameter estimates are shown for LASSO
monomvn and BSLMM (black diamonds signify the true effect sizes). In-sample prediction was
based on 150 observations used to train the model, and out-of-sample prediction was based on a
separate 500 observations (the maximum reducible error for this scenario was R? = 0.832). RMSE:
root mean square error; TNR: true negative rate (i.e., specificity); TPR: true positive rate (i.e.,
sensitivity)
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Figure 2: An overview of model performance for the 36 core scenarios. Nine methods were con-
sidered, as well as two different implementations of Ridge and LASSO in the glmnet and monomvn
packages in R. Metrics for BLASSO and Horseshoe were calculated two ways: model-averaged (ma)
estimates are based on all samples from the reversible jump MCMC, whereas non-zero (nz) es-
timates use only samples in which the predictor and associated coefficient were included in the
model. (A) In-sample and (B) out-of-sample prediction were evaluated with R? between the actual
and predicted values of the response. In these panels, the grey and white regions represent the
mean reducible and irreducible error, respectively, across all scenarios within a Bcausal level. While
reducible error represents the expected maximum value for out-of-sample prediction, in-sample
prediction can exceed the reducible error when too flexible models are employed (i.e., overfitting).
This means that the target for prediction is to recover a model with in-sample and out-of-sample
R? equal to the maximum reducible error. (C) Variable selection was evaluated using F1, which
is the harmonic mean of precision (i.e., the fraction of selected predictors that are truly causal)
and sensitivity (i.e., true positive rate): 2?}: g;iifﬁigfi?;ﬁ;gy F1 was only calculated for analyses
that can return truly sparse parameter estimates (i.e., 3 = 0; BSLMM, Elastic Net, LASSO, Spike-
and-slab) or importance values (Random Forest). (D) Parameter estimation was evaluated for all
methods except Random Forest using the root mean square error (RMSE) between estimated and
actual parameter values. (E) Model speed was evaluated based on the natural log of runtime in
seconds. Each circle represents the median value from 100 replicate simulations.
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Figure 3: The extent of overfitting and the fraction of reducible error recovered differs dramatically
among methods and data attributes. The grey and white regions represent the mean reducible
and irreducible error, respectively, across all scenarios within a Bcausal level. While reducible error
represents the expected maximum value for out-of-sample prediction, in-sample prediction R? can
exceed the reducible error when too sensitive models are employed (i.e., overfitting). This means
that the target for prediction is to recover a model with in-sample and out-of-sample R? equal to
the maximum reducible error, as was the case for many of the methods in the upper right hand
panel (Bcausal = 0.8; N = 500; P = 100). Each circle represents the median value from 100 replicate
simulations. See Fig. 2 for color legend.
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Figure 4: Variable selection performance varied greatly across scenarios, and was only possible
for some methods when there were many observations (N), few predictors (P), and effect sizes
(Beausal) were large. A negative correlation between true positive rate and true negative rate
emerged for many simulations, especially when B¢ausal Wwas small, indicative of a trade-off between
identifying causal predictors (sensitivity) and excluding non-causal predictors (specificity). This
trade-off disappears when conditions are more favorable for variable selection: when Bcausal and N
are large and when P is small. Variable selection was only evaluated for analyses that can return
truly sparse parameter estimates (i.e., 8 = 0; BSLMM, Elastic Net, LASSO, Spike-and-slab) or
importance values (Random Forest). Each circle represents the jittered median value from 100
replicate simulations. See Fig. 2 for color legend.

15


https://doi.org/10.1101/2024.03.15.585297
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585297; this version posted October 8, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

>

1.0
[] Random Forest
o 087 [ Ridge (glmnet)
2 46 B Ridge (monomvn)
g [ Elastic Net
® 04 - B LASSO (gimnet)
< 09 [ LASSO (monomvn)
B Spike-and-slab
co—& @ [ SuSiE
2 2 8 8 8 [ BSLMM
— n o o
— o
—
NB 1.0 C 1.0
o
© 0.8 - 0.8 -
a
% 0.6 _ 0.6 -
wn L
JL 047 0.4 -
7
= 0.2 0.2 -
@)
0.0 - 0.0 -
I I I I I I I I I I
o o o o o o o o o o
Te] L0 o o o Lo L0 o o o
i Lo o o i Lo o o
Observations (N) Observations (N )

Figure 5: Model performance for (A) in-sample prediction, (B) out-of-sample prediction, and (C)
variable selection improves with increasing observations (N) for most models (BLASSO and Horse-
shoe were not considered because of long runtimes). The five scenarios shown here all had P =
1,000 and B = 0.3. In-sample and out-of-sample prediction were evaluated with R? between the ac-
tual and predicted values of the response. In panels A and B, the grey and white regions represent
the mean reducible and irreducible error, respectively, across all five scenarios. While reducible
error represents the expected maximum value for out-of-sample prediction, in-sample prediction
can exceed the reducible error when too flexible models are employed (i.e., overfitting). This means
that the target for prediction is to recover a model with in-sample and out-of-sample R? equal to
the maximum reducible error. Variable selection was evaluated using Fp, which is the harmonic
mean of precision (i.e., the fraction of selected predictors that are truly causal) and sensitivity
(i.e., true positive rate): 2?}: g;?ﬁgigfi;ﬁ?ﬁgy F1 was only calculated for analyses that can return
truly sparse parameter estimates (i.e., 8 = 0; BSLMM, Elastic Net, LASSO, Spike-and-slab) or
importance values (Random Forest). Each circle represents the median value from 100 replicate
simulations.
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