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Abstract 1 
 2 
Intrinsically disordered regions (IDRs) represent at least one-third of the human proteome and defy the 3 

established structure-function paradigm. Because IDRs often have limited positional sequence 4 

conservation, the functional classification of IDRs using standard bioinformatics is generally not possible. 5 

Here, we show that evolutionarily conserved molecular features of the intrinsically disordered human 6 

proteome (IDR-ome), termed evolutionary signatures, enable classification and prediction of IDR functions. 7 

Hierarchical clustering of the human IDR-ome based on evolutionary signatures reveals strong enrichments 8 

for frequently studied functions of IDRs in transcription and RNA processing, as well as diverse, rarely 9 

studied functions, ranging from sub-cellular localization and biomolecular condensates to cellular signaling, 10 

transmembrane transport, and the constitution of the cytoskeleton. We exploit the information that is 11 

encoded within evolutionary conservation of molecular features to propose functional annotations for every 12 

IDR in the human proteome, inspect the conserved molecular features that correlate with different functions, 13 

and discover frequently co-occurring IDR functions on the proteome scale. Further, we identify patterns of 14 

evolutionary conserved molecular features of IDRs within proteins of unknown function and disease-risk 15 

genes for conditions such as cancer and developmental disorders. Our map of the human IDR-ome should 16 

be a valuable resource that aids in the discovery of new IDR biology. 17 

 18 

  19 
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Introduction 20 

The sequence-structure-function paradigm in molecular biology posits that the amino-acid sequence of a 21 

protein encodes its three-dimensional structure, which determines the function of the protein. The close 22 

relationships between sequence, structure, and function are routinely exploited to infer function from 23 

sequence or structural data (Ashburner et al. 2000; Lee et al. 2007; Radivojac et al. 2013; Sanderson et al. 24 

2023; Yu et al. 2023b), trace the evolutionary history of protein-protein interactions (Steube et al. 2023), 25 

design de novo proteins with desired folds or functions (Huang et al. 2016; Kuhlman & Bradley 2019; Yeh 26 

et al. 2023), and predict the pathogenicity of sequence variants in the human genome (Adzhubei et al. 27 

2010; Frazer et al. 2021; Hopf et al. 2017; Luppino et al. 2023). Indeed, structural information recovered 28 

from amino-acid sequence alignments is central to state-of-the-art protein structure prediction methods 29 

(Baek et al. 2021; Jumper et al. 2021). However, the sequence-structure-function paradigm does not apply 30 

to the approximately one-third of residues in the human proteome that map to intrinsically disordered 31 

regions (IDRs), which lack stable secondary and tertiary structure and exhibit poor positional sequence 32 

conservation (Forman-Kay & Mittag 2013; Van Der Lee et al. 2014; Wright & Dyson 2015). Despite their 33 

lack of ordered structural elements, IDRs function in key cellular processes (Holehouse & Kragelund 2023) 34 

and frequently act as hubs in protein-protein interaction networks (Tompa et al. 2014), often via transient, 35 

multivalent interactions that promote phase separation and involvement in biomolecular condensates 36 

(Borcherds et al. 2021). 37 

While the presence of IDRs in proteins can generally be predicted with high accuracy from their 38 

amino-acid sequences (Emenecker et al. 2021; Necci et al. 2021), identifying the relationship between the 39 

sequences and functions of IDRs remains a difficult task (Basu et al. 2023; Chow et al. 2023; Hu et al. 40 

2021; Lu et al. 2022; Pang & Liu 2022; Pritišanac et al. 2019; Zarin et al. 2019, 2021; Zhao et al. 2021). 41 

Focusing on the segments of IDR sequences that show strong similarity in sequence alignments (which we 42 

refer to as “positional conservation”) has provided rich insights into the functions of so-called short-linear 43 

motifs (SLiMs) and Molecular Recognition Features (MoRFs) (Davey et al. 2023; Kumar et al. 2022; Malhis 44 

& Gsponer 2015; Mohan et al. 2006; Tompa et al. 2014). However, positionally conserved elements 45 

typically constitute only a minor fraction of an IDR sequence, and many of the experimentally characterized 46 

SLiMs are not positionally conserved (Davey et al. 2012; Kumar et al. 2022; Nguyen Ba et al. 2012; Van 47 
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Roey et al. 2014). Although we and others showed that approximately 15% of human IDRs contain 48 

significant positional alignment due to the acquisition of a conditional fold in particular functional contexts 49 

(Alderson et al. 2023; Piovesan et al. 2022), it is appreciated that the majority of positions in the sequences 50 

of IDRs appear to evolve more rapidly relative to ordered regions in the same proteins (Brown et al. 2002; 51 

Davey et al. 2012). Rapid evolution in IDRs reflects the absence of stable folded structure, since positional 52 

conservation is directly linked to evolutionary pressure to maintain a three-dimensional fold (Pritišanac et 53 

al. 2019). Thus, because IDRs exhibit limited positional conservation in multiple sequence alignments, 54 

standard bioinformatic approaches that rely on these alignments can only provide limited insight into the 55 

functional classification of IDRs (Pritišanac et al. 2019; Zarin et al. 2019, 2021). For intrinsically disordered 56 

proteins (IDPs), which are fully disordered and make up ~5% of the human proteome (ca. 1000 proteins) 57 

(Tsang et al. 2020), predictions of function are even more limited due to the lack of any folded domains 58 

(Basu et al. 2023). 59 

The functional importance of IDRs and IDPs is increasingly appreciated, especially in the context 60 

of phase separation (Alberti & Dormann 2019; Basu et al. 2020; Mensah et al. 2023; Molliex et al. 2015; 61 

Nakamura et al. 2023; Patel et al. 2015). Furthermore, IDRs are often dysregulated in diseases such as 62 

cancer, amyotrophic lateral sclerosis, and other neurological disorders (Alberti & Dormann 2019; Tsang et 63 

al. 2020; Uversky et al. 2008) , with increasing reports of disease-associated sequence variants that map 64 

to IDRs (Alderson et al. 2021; Mensah et al. 2023; Vacic et al. 2012).  The interpretation of effects of 65 

mutations in IDRs on protein function is limited, as most utilized variant effect predictors compute effects 66 

on fold stability and other structural features, e.g., changes to enzyme active sites or interfaces (Backwell 67 

& Marsh 2022). Thus, an understanding of how the sequences of human IDRs relate to biological function 68 

is urgently needed.  69 

The overall importance of IDRs in health and disease has stimulated efforts to predict their 70 

biological function without relying on multiple sequence alignments (Cohan et al. 2022; Lancaster et al. 71 

2014; Langstein-Skora et al. 2022; Pang et al. 2024; Shinn et al. 2022; Staller et al. 2018, 2022; Vernon et 72 

al. 2018; Zarin et al. 2017, 2019, 2021). IDRs generally show strong evolutionary conservation of sequence-73 

derived molecular features that are not positionally constrained (Alston et al. 2023; Beh et al. 2012; 74 

González-Foutel et al. 2022; Staller et al. 2022; Zarin et al. 2017, 2019, 2021). In a series of recent studies, 75 
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we showed how evolutionary properties of bulk molecular features that are computable from IDR sequences 76 

can be used to cluster and classify yeast IDRs into an unexpectedly large number of functional groups 77 

(Zarin et al. 2019, 2021).  78 

 Here, we show that human IDRs are amenable to systematic functional classification based on a 79 

broad set of bulk molecular features that are readily computable from IDR sequences. We provide, to our 80 

knowledge, the first comprehensive functional map of IDRs within the human proteome (IDR-ome). We 81 

obtain estimates for the proportion of human IDRs associated with various functions, and train classifiers 82 

to predict functions for unannotated IDPs and IDRs from sequence alone. Since the functional map of 83 

human IDRs is based on evolutionary conservation of simple molecular features, we can determine which 84 

features are associated with different groups of IDRs, such as those involved in the formation of 85 

biomolecular condensates or those associated with disease-risk genes.  We expect that the patterns of 86 

conservation of molecular features, together with the functional map of IDRs, will represent a critical 87 

resource for generating testable hypotheses for experimental research for biochemists and cell biologists. 88 

  89 
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Results  90 

 91 

Intrinsic disorder is abundant in human proteins 92 

To build a global functional map of the human IDRs, we first identified the boundaries of IDRs in the human 93 

proteome using a state-of-the-art bioinformatics tool, SPOT-Disorder (SPOTD) (Hanson et al. 2017) 94 

(Methods). SPOTD predicts that ca. 32.8% of the residues in the human proteome are disordered, similar 95 

to other reports (Necci et al. 2021). We then filtered the predictions to keep only regions of 30 or more 96 

consecutive disordered residues (Methods), henceforth referred to as intrinsically disordered regions or 97 

IDRs and comprising a total of 21,252 sequences (Tsang et al. 2020). Nearly 60% of proteins in the human 98 

proteome contain at least one IDR (Figure 1A). Predominantly disordered proteins, or those that contain 99 

more than 50% disordered residues, amount to nearly 20% of the proteome, whereas entirely disordered 100 

proteins (i.e., IDPs) account for 5% (Figure 1A). The IDR lengths follow a power-law distribution with a 101 

median IDR length of 74 residues (Figure 1B). Approximately 90% of the human IDRs fall between 30 and 102 

200 residues in length. However, the human proteome also contains some very long IDRs, with 280 IDRs 103 

or IDPs having more than 1000 consecutively disordered residues (Figure 1B).  104 

We also checked if IDRs are more likely to be located on the N- or C-terminal regions of a protein 105 

(termini) or between folded domains (linkers). Approximately equal percentages of terminal and linker IDRs 106 

were identified (Figure 1C). Thus, most IDRs in the human proteome are of medium length (30-200 107 

residues) and exist alongside proteins that also harbor folded domains. We also confirmed that, as 108 

expected, the predicted IDRs show generally lower levels of positional sequence-similarity in alignments of 109 

homologs from the Ensembl database (Howe et al. 2021) as compared to folded protein domains (Figure 110 

1D). Further, most human IDRs are not easily assigned to protein families using sequence alignments, and 111 

only 21% of human IDRs show significant sequence similarity (BLAST E-value < 1e-6) to any another IDR 112 

in the human proteome (Supplementary Figure 1). Of the IDRs that do show sequence similarity, over 113 

80% (50%) of these IDRs have five or fewer (one) BLAST hits (Supplementary Figure 1), suggesting that 114 

the sequence homology of any IDR is restricted to a small number of related IDRs, usually members of a 115 

small gene family. Interestingly, we observe that 44% of fully disordered proteins (IDPs) have BLAST hits 116 
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to any other IDR in the proteome (Supplementary Figure 1), which suggests that IDPs are more likely to 117 

fall into small gene families compared to IDRs. 118 

 119 

A global map of the human IDR-ome based on evolutionary conservation of molecular features  120 

Following previous work (Zarin et al. 2019) we next sought to summarize IDRs using conservation of bulk 121 

molecular features (Methods, Supplementary Table 1). We first compiled a comprehensive list of 147 122 

bulk molecular features that have been shown to be important for function of IDRs in different studies, 123 

including known short linear interaction motifs (SLiMs), physicochemical properties (e.g. hydrophobicity, 124 

polarity, charge, charge patterning), residue composition, and (homo-)repeats (Chavali et al. 2017, 2020; 125 

Gemayel et al. 2015; Kumar et al. 2022; Mao et al. 2010; Ravarani et al. 2018; Schlessinger et al. 2011; 126 

Strickfaden et al. 2007; Warren & Shechter 2017). 127 

We next developed a computational protocol, conceptually based on (Zarin et al. 2019), to estimate 128 

evolutionary conservation of molecular features in the human IDR-ome without relying on conventional 129 

multiple sequence alignments (Supplementary Figure 2). Briefly, we assessed the evolutionary 130 

conservation of molecular features in the human IDR-ome by comparing observed sets of homologs to 131 

simulations of evolution of IDRs (Zarin et al. 2019). We made technical changes to a previously applied 132 

approach (Zarin et al. 2019) Zarin et al. 2019, 2021) to increase the computational efficiency so that we 133 

could apply it to the larger and more complex human IDR-ome (see Methods, Supplementary Figure 3, 134 

Supplementary Figure 4). We use standard Z-scores to compare the observed distributions of molecular 135 

features in homologous IDR sequences to those expected from simulations of IDR sequences under a null 136 

hypothesis, which assumes no evolutionary conservation of molecular features (Figure 2, Supplementary 137 

Figure 2). We refer to a set of Z-scores for all molecular features as an evolutionary signature of an IDR, 138 

which represents the pattern of conserved molecular features. Positive Z-scores indicate a feature value 139 

greater than expected from the null hypothesis (the simulations), while negative Z-scores indicate a feature 140 

value smaller than expected (Supplementary Figure 2). Negative Z-scores can suggest either depletion 141 

of a feature (e.g., selection against hydrophobic residues) or a strongly negative value (e.g., selection for a 142 

net charge far below the expectation).  143 
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 We computed evolutionary signatures for 19,032 human IDRs (see Methods) and clustered the 144 

IDR-ome (see Methods) to identify groups of IDRs that share patterns of conservation (Figure 3A, 145 

Supplementary Figure 5). In this global map of the IDR-ome (Figure 3A), IDRs that have similar 146 

evolutionary signatures are placed closer to one another. We hypothesize that similarity in the evolutionary 147 

patterns of molecular features is analogous to sequence similarity detected in alignments for folded protein 148 

regions (e.g., by using PSI-BLAST (Altschul et al. 1997)). Our map reveals a large number of clusters of 149 

IDRs, which are defined by distinct patterns of conserved molecular features, i.e., evolutionary signatures 150 

(Figure 3, Supplementary Figure 5).   151 

 152 

Assigning biological functions to clusters of IDRs  153 

Our global map of the IDR-ome is based on evolutionary conserved molecular features that could be 154 

important for specific functions of IDRs. To test if the patterns of conservation of molecular features are 155 

associated with specific functions, we performed overrepresentation analysis for the Gene Ontology (GO) 156 

annotations of the proteins in which IDRs were found (Methods). We manually selected 93 clusters from 157 

the map, focusing on patterns of Z-score signals. Among these clusters, 53 (i.e., 57% of the clusters) 158 

exhibited overrepresentation of at least one GO term. These 53 clusters amounted to 9,294 IDRs (i.e., 49% 159 

of the human IDR-ome), representing extensive overrepresentation of GO terms across clusters of IDRs 160 

(Supplementary Table 2, Supplementary Figure 5, Supplementary Figure 6). Although patterns of 161 

conservation of bulk molecular features in IDRs were previously observed to be associated with function in 162 

yeast (Zarin et al. 2019), we sought to confirm that the widespread overrepresentation of GO terms were 163 

not due to bias in manual selection of clusters. To do so, we repeated the analysis using automatically 164 

defined clusters and found qualitatively similar overrepresentations to those identified in the manually 165 

identified clusters (see Methods, Supplementary Table 2, Supplementary Table 3, Supplementary 166 

Figure 7). These results indicate a proteome-wide association between the patterns of evolutionary 167 

conserved molecular features of IDRs and their biological functions. 168 

To obtain a first global picture of the types of biological functions involving human IDRs, we 169 

discerned around functional 20 categories, with some overlap, covering the majority of overrepresented 170 

GO terms linked to various IDR clusters (Supplementary Figure 6, Supplementary Table 2). We defined 171 
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those categories by grouping related overrepresented GO terms, as detailed in the Methods. Some of the 172 

most populated clusters are associated with DNA binding (23%), Chromatin/Chromatin binding (33%), RNA 173 

metabolism (22%), Cytoskeleton (12%), Signaling (11%), Transmembrane transport (7%), and 174 

Reproduction (7%) (Supplementary Figure 6), including biological functions that are frequently attributed 175 

to IDRs (e.g., DNA binding, RNA metabolism, signaling). We also take note of some less widespread, but 176 

significantly overrepresented terms in the IDR-ome map, such as those associated with ‘histone 177 

modifications’ (4%), ‘cell morphogenesis’ (2%), ‘innate immune response’ (2%), ‘nuclear pore complex’ 178 

(1%) and ‘clathrin binding’ (1%) (Supplementary Figure 6). Focusing on overrepresented molecular 179 

features in the GO-term enriched clusters (Supplementary Table 2), we find that the RNA-associated IDRs 180 

are enriched in conserved Arg-Gly/Arg-Gly-Gly (RG/RGG) motifs, Lys (K) content and K homorepeats, Arg 181 

(R) and Arg+Tyr (R+Y) content, as well as homorepeats of acidic residues (Asp (D), Glu (E)), all of which 182 

is in line with features of IDRs typically associated with phase separation, as many RNA-associated IDRs 183 

bind to RNA in the context of biomolecular condensates (Alberti & Dormann 2019; Chong et al. 2018; Youn 184 

et al. 2018, 2019) . For the IDRs associated with transmembrane transport protein GO terms, we note that 185 

many of these IDRs belong to G protein-coupled receptors (GPCRs) (Supplementary Table 2).  Many of 186 

our select clusters show enrichments in biological functions less appreciated to be associated with IDRs 187 

(e.g., development, cell morphogenesis, extracellular space, lipase activity) (Supplementary Figure 6), 188 

suggesting that the diversity of functions in which IDRs are involved is even greater than currently 189 

appreciated.  190 

Having established that human IDRs can be clustered based on their evolutionary signatures 191 

(Figure 3, Supplementary Figure 5), and that many of these clusters exhibit enrichments in specific 192 

biological functions (Supplementary Table 2), we selected a few representative clusters to illustrate this 193 

finding. First, as means of validation, we searched for clusters of IDRs with molecular features that have 194 

been experimentally confirmed to be critical for specific biological functions. For example, a cluster of 69 195 

IDRs exhibits strong overrepresentation of the GO terms 'structural constituent of the nuclear pore' (77-fold, 196 

p < 1e-9) and 'signal sequence binding' (33-fold, p < 1e-4) (Figure 3B, Supplementary Table 3 – Tab E). 197 

The nuclear pore complex contains many IDRs and provides binding sites for signal sequence-bearing 198 

proteins (e.g., nuclear localization or export sequences) (Mosalaganti et al. 2022; Schmidt & Görlich 2016). 199 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585291
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

The molecular features of the IDRs in this cluster are enriched in specific amino-acid content (Ala, Phe, 200 

Gly, Thr), repeats (Gly-Gly (GG), Phe-Gly (FG), Ser-Gly (SG), Pro-Thr-Ser (PTS)), and FG-rich motifs 201 

(Figure 3B). The specific enrichment in Gly and Phe content and FG repeats is consistent with expectations 202 

from the literature, as the IDRs associated with the nuclear pore complex are known as FG-nucleoporins 203 

and are rich in Gly, Phe, and FG repeats. For instance, in the essential component of NPCs, FG-NUP98 204 

(Yu et al. 2023a), the amino acids Ala, Phe, Gly, and Thr comprise nearly 40% of its IDRs, where IDRs 205 

map to residues 1 to 728, and 888 to 1133. These results confirm that the well-known unusual amino acid 206 

distribution and FG-repeats in nucleoporins are conserved during evolution, and that this pattern of 207 

conserved bulk molecular features is found in only a small number of IDRs in the human proteome. 208 

A second validation comes from a cluster of 299 IDRs that contains GO-term overrepresentations 209 

for ‘mRNA splicing via the spliceosome' (23-fold, p < 0.0001), 'regulation of mRNA processing' (19-fold, p 210 

<0.0001), and 'positive regulation of mRNA metabolism' (15-fold, p < 0.001) (Figure 3B, Supplementary 211 

Figure 8, Supplementary Table 3 – Tab F). These IDRs are not significantly depleted in any feature but 212 

have strong enrichments in Gly content, Gly homo-repeats, Arg-Gly (RG) and Arg-Gly-Gly (RGG) repeats, 213 

FG repeats, Ser-Gly repeats (SG), and Phe-Gly-Arg (FGR) repeats (Supplementary Figure 8, 214 

Supplementary Table 2 – Tab D). RG and RGG motifs are known to be enriched in IDRs that bind to RNA 215 

(Chong et al. 2018) and are implicated in RNA recognition during spliceosome assembly (De Vries et al. 216 

2022). Indeed, biophysical experiments in some RG/RGG-containing proteins have shown that mutation or 217 

disruption of RG/RGG motifs can disrupt phase separation and the affinity for RNA (Chong et al. 2018; 218 

Ozdilek et al. 2017). These and numerous additional examples (Supplementary Table 2) suggest that our 219 

clustering of the human IDR-ome based on conservation of molecular features retrieves findings consistent 220 

with those reported in the literature. 221 

Next, we examined a cluster of 136 IDRs that is significantly overrepresented in the GO terms 222 

'histone binding' (7.7-fold, p = 1e-3) and 'chromatin binding' (5.2-fold, p = 1e-2) (Figure 3B, Supplementary 223 

Figure 8, Supplementary Table 3 – Tab A). Histones contain positively charged intrinsically disordered 224 

tails that are exposed to solvent (Kim et al. 2023), and these IDRs facilitate interactions, which are often 225 

PTM-dependent, with many different histone-binding proteins. Histone-binding domains, such as 226 
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chromodomains and plant homeodomain (PHD) fingers, often rely on hydrophobic pockets and aromatic 227 

residues to bind to methylated lysine residues in histone tails (Li et al. 2006; Nielsen et al. 2002). 228 

Interestingly, however, we do not find aromatic residues within the enriched molecular features in our cluster 229 

of histone- and chromatin-binding IDRs; instead, we observe strong enrichments in acidic content and 230 

repeats of Asp (D), Glu (E), and Lys (K) (Figure 3B, Supplementary Data). Remarkably, a recent study 231 

identified that an acidic TFIIS N-terminal domain (TND)-interacting motif (TIM) in IDRs can mediate binding 232 

to histone chaperones and histone readers, including LEDGF and HRP2 (Cermakova et al. 2021, 2023). 233 

The TIM motif is characterized by a short α-helix followed by an acidic region, which often contains D or E 234 

repeats (Cermakova et al. 2021, 2023). Furthermore, we found numerous clusters with strong 235 

overrepresentation for histone demethylase or histone deacetylase activity, which feature conservation of 236 

D repeats, Asn (N) residues and N homo-repeats, suggesting how a specific molecular grammar of 237 

negatively charged and Asn resides could support DNA binding more generally (Supplementary Table 2). 238 

We detail functional and feature overrepresentations across clusters in Supplementary Table 2. 239 

We then looked for novel functional insights in clusters showing seemingly unrelated enrichments. 240 

In the cluster of IDRs associated with the nuclear pore complex (NPC), described above (Figure 3B), a 241 

significant GO-term overrepresentation was also observed for 'clathrin binding' (26-fold, p < 1e-5), and the 242 

IDRs in the cluster were enriched for SLiMs associated with clathrin-mediated endocytosis (NPF motif) and 243 

endosomal sorting complexes required for transport (ESCRT) (Supplementary Figure 9, Supplementary 244 

Table 3 – Tab E). The early stages of clathrin-mediated endocytosis involve many IDRs, including those in 245 

NUMB and Epsin-1 that contain the NPF SLiM (Lomoriello et al. 2022). Consistent with this, IDRs from 246 

Epsin-1/2/3 (along with PICALM and SCYL2) which are in this cluster, show strong signals for the NPF 247 

motif in ELM (EH_1), while most of the FG-NUPs in the cluster do not (Supplementary Figure 9). As 248 

expected, the IDRs from clathrin-associated proteins do not show conservation of the FG-repeats found in 249 

the nuclear pore IDRs (Supplementary Figure 9).  Given that NPCs are located in the nuclear envelope 250 

and clathrin-mediated endocytosis occurs at the cell membrane, the observation of GO-term enrichments 251 

in both processes seems unrelated. Functionally, however, the NPC and clathrin-coated vesicles both 252 

oligomerize on membrane surfaces and induce membrane curvature (Beck et al. 2018). FG-NUP IDRs and 253 

clathrin-associated IDRs cluster together because they all show conserved signals of unusually high 254 
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hydropathy and a paucity of charged residues (Supplementary Figure 9). We speculate that these 255 

molecular properties are important for their oligomerization on membrane surfaces. Moreover, key scaffold 256 

components of the NPC and clathrin-coated vesicles share similar structural folds and are speculated to 257 

have evolved from a common ancestor (Beck et al. 2018; Devos et al. 2004). Recent work has even directly 258 

linked NPCs and clathrin-mediated endocytosis: disruption of NPC assembly triggers activation of an 259 

ESCRT-dependent chaperone system (Thaller et al. 2019), and clathrin regulates the recruitment of ESCRT 260 

proteins (Wenzel et al. 2018). Our observation of similar evolutionary signatures for IDRs that are 261 

associated with NPCs and clathrin-mediated endocytosis suggests that evolutionary selection for high 262 

hydrophobicity and lack of charged residues may result from similar functionality of these processes.  263 

 264 

“Unexplored” clusters with fully disordered proteins and proteins of unknown functions 265 

The highlighted examples showcase how our IDR-ome map allows the association between biological 266 

functions, evolutionary signatures, and specific IDR clusters (Figure 3, Supplementary Table 2, 267 

Supplementary Table 3, Supplementary Figure 8), thereby establishing a relationship between IDR 268 

sequence and function. However, in both automatic and exploratory analysis of clusters, it was evident that 269 

several clusters defined by strong patterns of evolutionary signatures did not exhibit any known functional 270 

enrichments. For instance, about 43% of the clusters selected in our exploratory analysis do not have any 271 

significantly overrepresented GO terms (Supplementary Table 2). Some of these clusters may reflect the 272 

difficulties and biases in protein annotation (Kustatscher et al. 2022), and we speculate that some of the 273 

clusters have no overrepresented GO terms due to missing knowledge of the biological functions of many 274 

IDRs and IDPs. For example, the IDR-containing proteins of unknown function ANKRD20A1, FAM131A, 275 

and C8orf48 map to “unexplored” clusters that have no GO-term overrepresentation (Supplementary 276 

Figure 5, Supplementary Data). Given the similar evolutionary signatures of the IDRs in the respective 277 

“unexplored” clusters, this resource represents an opportunity to discover new biological functions of these 278 

IDR-containing proteins. The conserved molecular features of IDRs in clusters without overrepresented GO 279 

terms point to properties of these IDRs that are evolutionary conserved, and therefore presumably important 280 

for the biological functions of these IDRs.  At least four of our selected clusters, based on strong patterns 281 
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of evolutionary signatures and totaling over 1000 IDRs, show no appreciable overrepresentations of any 282 

GO terms. 283 

Next, we investigated where completely disordered proteins, or IDPs, cluster in our map of the IDR-284 

ome, as IDPs are typically challenging to predict biological functions from sequence alone. As compared 285 

to IDRs, we found that a higher proportion of IDPs, roughly 31% (226 of 718), are not clustered at all 286 

(Supplementary Table 4), indicating that these proteins did not pass one of our filtering criteria (see 287 

Methods). For the remaining 69% of IDPs (492 of 718) that are clustered, approximately 60% of them (298 288 

of 492) map to clusters with significantly overrepresented GO terms (Supplementary Table 4), which is 289 

slightly higher than for IDRs in general (49%). Our results provide a valuable resource to further interrogate 290 

IDP biology. The IDP-containing clusters that did not yield any overrepresented GO terms, amounting to 291 

nearly 40% of the clustered IDPs, thus correspond to “unexplored” clusters.  292 

Some of the IDP-containing “unexplored” clusters contain an abundance of fully disordered proteins 293 

(Supplementary Figure 10), such as a cluster of 17 IDRs of which 15 are IDPs (88%) from the family of 294 

late cornified envelope (LCE) proteins (Supplementary Table 3 – Tab D). At first glance, the clustering of 295 

different LCE IDPs would appear to be caused by simple positional sequence conservation, as the proteins 296 

are all from the same gene family. However, the sequences of these LCE IDPs have highly diverged and 297 

traditional bioinformatic approaches reveal no homology between most members (Supplementary Figure 298 

10). By contrast, the evolutionary signatures of these 15 different LCE IDPs are all related to one another 299 

and show clearly that these IDPs are similar (Supplementary Figure 10). Although this cluster does not 300 

have any overrepresented GO terms, there are evolutionary signatures from many different molecular 301 

features, including strong enrichments in Gly- and Arg-rich motifs (RG, FG, Ser-Gly (SG), Ser-Arg (SR)), 302 

dipeptide repeats (Gln-Gln (QQ), Ser-Ser (SS), Gly-Gly (GG)), amino-acid content (Gly, Cys), and SH3-303 

domain binding motif (LIG_SH3_2) (Supplementary Data). Another “unexplored” cluster of 21 IDRs with 304 

13 IDPs (62%) shows evidence of conservation for amino-acid content with enrichment in Glu and depletion 305 

in Ser residues (Supplementary Table 3 – Tab B, Supplementary Data). These IDPs are members of 306 

the G-, P-, and X-antigen (GAGE, PAGE, XAGE) families, and like the IDP-rich cluster discussed above, 307 

show some sequence homology but exhibit far enhanced relatedness when viewed through the lens of 308 
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evolutionary signatures (Supplementary Figure 10). Finally, a cluster of 76 IDRs that contains 42 IDPs 309 

(55%) yields strong depletions in amino-acid content (Asn, Asp, His, Leu, Phe) and aliphatic residues, with 310 

enrichments in dipeptide repeats (SS, GG), Gly-rich motifs (SG, FG), and Cys content (Supplementary 311 

Table 3 – Tab C, Supplementary Data). These IDPs correspond to 35 different keratin-related (KR) 312 

proteins and seven different small glycine and cysteine repeat (SGCR) proteins. Outside of a small group 313 

of related sequences, very limited homology is detected by sequence alignments (Supplementary Figure 314 

10). By contrast, our evolutionary signature approach shows clear similarities between the 42 IDPs 315 

(Supplementary Figure 10). Thus, the “unexplored” clusters in our map of the IDR-ome that do not have 316 

significantly overrepresented GO terms can provide a unique view of under-characterized IDRs and even 317 

fully disordered proteins or IDPs that have similar evolutionary signatures. Furthermore, our analysis of 318 

different IDP sequences confirms that our clustering is not caused by positional conservation but is instead 319 

due to similar evolutionary signatures. 320 

Finally, we wondered whether human proteins of unknown function that have remained 321 

uncharacterized (Duek et al. 2018; Zahn-Zabal et al. 2020)  are clustered in our map of the IDR-ome. To 322 

this end, we downloaded 1,521 proteins of unknown function from the neXtProt Database (Zahn-Zabal et 323 

al. 2020), and we filtered this list to retain only IDR-containing proteins. We found that 58% of the 324 

uncharacterized proteins contain IDRs (878 of 1,521 proteins, totaling 2,463 IDRs, Supplementary Table 325 

5), which is slightly less than the background proteome (63%). However, over 10% of these uncharacterized 326 

proteins are IDPs, which is nearly two-fold higher than the whole proteome. Moreover, although the median 327 

IDR length of the uncharacterized proteins was unchanged from the IDR-ome (75 vs. 74 residues, 328 

respectively), the median disorder content was significantly increased from 30% in the proteome overall to 329 

53% in uncharacterized proteins (Mann-Whitney test, p value < 1e-6) (Supplementary Figure 11). Thus, 330 

human proteins of unknown function have a higher overall content of disordered residues than the average 331 

IDR-containing protein in the proteome (Supplementary Figure 11). In our map of the human IDR-ome, 332 

over 90% of the 878 IDR-containing proteins of unknown function are clustered (93%; 818 of 878 proteins, 333 

Supplementary Table 5). This indicates that conserved molecular features within the IDRs of 334 

uncharacterized proteins exhibit similarities to other IDR-containing proteins in the proteome and that the 335 

sequences of these IDRs pass our quality control criteria (Methods). Remarkably, nearly half of the 336 
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uncharacterized IDR-containing proteins (48%, 396 of 818 proteins) are clustered with significant GO-term 337 

enrichments (Supplementary Table 5). As an example, we consider the protein of unknown function CDR2 338 

that is predicted to be 92% disordered by SPOTD. The long IDR in CDR2 (residues 1-417) is clustered with 339 

576 other IDRs that are enriched in the Glu-Asp (ED) ratio, Gln content, and helical calmodulin binding 340 

motifs (LIG_CAM_IQ_9) (Supplementary Table 2 – Tab D). These IDRs are notably depleted in repeats 341 

involving Pro, Arg, Ser, Thr, and Gly residues (SS, PR, SG, PTS). The GO terms overrepresented in this 342 

cluster are associated with aspects of the cytoskeleton (microtubule motor activity, p = 7e-3; tubulin binding, 343 

p = 1e-4; cytoskeleton organization, p = 2e-4) as well as the organization of the cilium (p = 1e-2) 344 

(Supplementary Table 2 – Tab D). Interestingly, a recent affinity-purification proteomics study identified 345 

CDR2 as one of the core components in the ciliary interactome (Boldt et al. 2016), with 30 different binding 346 

partners identified, including the cytoskeletal proteins tubulin beta chain (TUBB), tubulin beta-4B chain 347 

(TUBB4B), and kinectin (KTN1). This example illustrates the potential of our map to link sequence features 348 

and biological functions to previously uncharacterized proteins. 349 

Our functional map of the human IDR-ome stratifies human IDRs into clusters that frequently exhibit 350 

significant GO enrichments, which helps to reveal the relationship between IDR sequence and function. 351 

Our methodology is applicable to fully disordered proteins and proteins of unknown function that are 352 

otherwise challenging for conventional bioinformatic approaches. The map is a resource that supports 353 

exploration for novel insights by, e.g., comparing clusters with different conserved features of IDR 354 

sequences but similar functional enrichments, or identifying groups of IDRs that share conserved features 355 

but have no annotated functions yet (see Code and data availability). Our analyses above suggest that 356 

potential functions can be proposed for a cluster of unknown function once a few of its members have been 357 

characterized in depth.  358 

 359 

Specific biological functions can be assigned to human IDRs based on evolutionary signatures 360 

Next, we tested whether a systematic prediction of the biological functions and locations of individual IDRs 361 

in the human proteome could be achieved based on evolutionary conserved molecular features. To this 362 

end, we applied a machine-learning approach termed FAIDR (Zarin et al 2021) (Figure 4A). FAIDR enables 363 
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the assignment of specific IDRs to specific functions or locations and simultaneously identifies a sparse set 364 

of molecular features that are most predictive of (i.e., most associated with) each. The training of FAIDR is 365 

based on GO molecular function, biological process and cellular localization annotations, which are 366 

available on a per-protein level. If the protein contains multiple IDRs, FAIDR can be used to single out which 367 

IDR is most likely involved. The top-scoring predictions for human IDRs, such as 'nucleolus,' 'spliceosomal 368 

complex,' and 'GPCR activity,' consistently yield reasonably strong classification performance (AUC values 369 

of 0.8 or higher, with corresponding PPV values at 0.4 or above) (Figure 4A, Figure 4B). Using these 370 

AUC(PPV) cutoffs (see Methods), we found that we can annotate 148 GO terms to human IDRs (Figure 371 

4A, Supplementary Table 6). Many other GO terms we could not reliably predict based on evolutionary 372 

signatures, so we do not consider them further here (Supplementary Table 6). We found that one of the 373 

most strongly predicted GO terms was 'histone binding' (AUC = 0.83) (Figure 4B). As expected, the 374 

positively predictive molecular features of the model align with those overrepresented in the clusters 375 

enriched for this term, but these molecular features are distributed across multiple clusters, with alanine 376 

content overrepresented in one 'histone binding' cluster and di-lysine repeats, along with aspartate- and 377 

glutamate-homorepeats, dominating signals in other cluster(s). This underscores the complementary 378 

insights that can be derived from an unbiased, unsupervised clustering analysis (Figure 3) and the 379 

supervised FAIDR approach (Figure 4). 380 

Other well-predicted GO terms include “extracellular matrix” (AUC=0.82), “mRNA processing” 381 

(0.78), “GTPase regulator activity” (0.77), “centrosome” (0.75), “actin binding” (0.75), “endopeptidase 382 

activity” (0.73), and “mitotic cell cycle” (0.70) (Figure 4A, Figure 4B), once again highlighting the diversity 383 

of IDR function in the human proteome (Figure 4C). We find that we can ascribe new functions to many 384 

more IDRs than were previously annotated (Figure 4C, Figure 4D), opening venues for hypothesis-driven 385 

and validation studies in the future. To provide an overview of FAIDR-based functional annotation 386 

proteome-wide, we systematized GO terms into 19 broader, mostly non-overlapping categories, which we 387 

refer to as “functional classes” (see Methods, Figure 4C, Figure 4D, Supplementary Table 6). For 388 

instance, as observed in our map of the IDR-ome clustered by evolutionary signatures, we could ascribe 389 

GO terms for biological functions that are often associated with IDRs, including “Transcription” (5%), 390 

“Chromatin/histone binding” (5%), and “DNA metabolism, repair” (6%), “RNA processes” (11%), “RNP 391 
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complex” (4%) and “Signaling” (11%) (Figure 4C). However, once again, many IDRs are assigned to GO 392 

terms that are not frequently associated with IDRs, including “Cytoskeleton” (8%), “Transport, channel” 393 

(5%), and “Cell junction/surface/adhesion” (6%) (Figure 4C). Overall, there is a correspondence between 394 

the overrepresentations of GO-terms observed in our map of the IDR-ome clustered by evolutionary 395 

signatures (Figure 3), and those GO-terms we assigned using FAIDR (Figure 4). 396 

Through our classification of FAIDR predictions into broader categories, it appears that the majority 397 

of human IDRs tend to be associated with more than one functional class (Figure 4E). This observation 398 

may suggest a certain degree of overlap in our definition of functional classes, but it is also in line with the 399 

concept of IDR 'functional promiscuity' (Cumberworth et al. 2013). In support of the former, we find the 400 

expected overlap in annotations of a broad category “metabolism” (Figure 4F, #14) with “DNA metabolism” 401 

(Figure 4F, #3) and “RNA metabolism, splicing & binding” (Figure 4F, #5). However, strong overlaps are 402 

also found annotations for “RNA processes (metabolism, splicing & binding)” (#5) and “DNA metabolism” 403 

(#3), “DNA binding & transcription” (#4), “signaling (GPCRs, transmembrane)” (#8), and “cytoskeleton” 404 

(#11) (Figure 4F). Furthermore, predictions for involvement in “signaling (GPCRs, transmembrane)” (#8) 405 

are frequently shared with that of “cytoskeleton” (#11). In addition to the discussed overlap with “RNA 406 

processes” (#5), we further note signals of shared predictions of “DNA metabolism and repair” (#3) with 407 

“signaling” (#8) and of “cytoskeleton” (#11) with “nucleus” and its substructures (“lumen”, “nuclear pore 408 

complex”, “nucleolus” and “nucleoplasm”) (#7). Such overlaps in annotations for individual IDRs may point 409 

to ‘moonlighting’ (Tompa et al. 2005) or coupling of these biological functions within an IDR sequence, 410 

particularly in the case of linking function and localization. Our annotations of functional categories at the 411 

IDR level offer a valuable resource for validation studies seeking to unravel sequence-function relationships 412 

in greater detail. 413 

To better understand the combinations of molecular features that drive IDR functions, we clustered 414 

the FAIDR t-statistic to examine the predictive molecular features for various functions and those that are 415 

shared between the most commonly co-occurring functions (Figure 5). For instance, among several 416 

molecular features that are positively correlated with and predictive of GO terms associated with 417 

transcription, we note a high positive Z-score for Pin1 WW domain-binding motifs (DOC_WW_Pin1_4) and 418 

for specific SUMOylation motifs, such as KEPE and SUMO-1 (Figure 5, cluster 7). The role of Pin1 in 419 
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isomerizing phosphorylated Ser/Thr-Pro bonds in various substrate proteins, including transcription factors 420 

and their regulators, has been well established (Hu & Chen 2020; Zhou & Lu 2016). For example, Pin1 421 

binding and isomerization of IDRs can directly regulate the transcriptional activity of key transcription 422 

factors, such as STAT3 (Lufei et al. 2007), c-Jun (Wulf et al. 2001), and NF-κB (Ryo et al. 2003).  Moreover, 423 

among the many proteins that are SUMOylated, transcription factors constitute a large group (Hendriks et 424 

al. 2014; Vertegaal 2022), and our data show that evolutionary conserved SUMOylation sites in IDRs are 425 

positively predictive of transcription-related GO terms. At the molecular level, SUMOylation of IDRs within 426 

transcription factors can regulate activity in various ways, for example by stabilizing a transcriptionally active 427 

conformation, such as for SUMOylated HSF1 (Kmiecik et al. 2021), or by controlling subcellular localization, 428 

as is the case for NFATC1 where C-terminal SUMOylation induces association with PML bodies (Nayak et 429 

al. 2009).  430 

Further, our model identifies phosphorylation-related features, including 14-3-3 binding pT/pS 431 

motifs and phosphorylation sites for PKA and CDK2, as positively predictive for GO terms that are related 432 

to RNA binding and splicing (Figure 5, cluster 3). The 14-3-3 binding motifs, common in IDRs, are also 433 

linked to phase separation of proteins in various signaling pathways (Segal et al. 2023), including those 434 

related to RNA processes (Huang et al. 2022). PKA and CDK2 phosphorylation sites have been previously 435 

linked to RNA binding and splicing (Ginsberg et al. 2003; Gu et al. 2011; Loyer et al. 2005). Additionally, 436 

FAIDR distinguishes the conservation of the PABP-interacting motif PAM2 as positively predictive of RNA 437 

binding and splicing (Figure 5, cluster 3), which confirms the known function of the PAM2 motif in mediating 438 

interactions with poly(A)-binding proteins (PABP) and the subsequent recruitment of translation factors and 439 

proteins involved in mRNA stability (Kozlov et al. 2010; Xie et al. 2014). Interestingly, we observed that WF 440 

complexity is positively predictive for GO terms related to transcription and DNA binding but negatively 441 

predictive for terms related to RNA splicing and metabolism (Figure 5, cluster 4), suggesting that greater 442 

sequence complexity in IDRs linked with transcription may hold a specific functional significance. For 443 

instance, it is interesting to note that high sequence complexity IDRs linked to transcription or DNA binding 444 

often conditionally fold (Wright & Dyson 2015); by contrast, low-complexity IDRs involved in RNA splicing 445 

and metabolism are strongly associated with biomolecular condensates (Alberti & Dormann 2019).  446 
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We found that phosphorylation-related features, including the PABP-interacting motif PAM2, to be 447 

also positively predictive of GTPase activity (Figure 5, cluster 3). Experimental evidence confirms the 448 

association of 14-3-3 proteins with GTPase activity, either by inhibiting it or facilitating the recruitment of 449 

proteins in signal transduction pathways (Brandwein & Wang 2017). There are also reports of the 450 

involvement of CDK2 and PKA in the signaling pathways of various GTPase families (Ellerbroek et al. 2003; 451 

Riou et al. 2013). 452 

Our model also reveals IDR sites that are ligands for PDZ domains and N-glycosylation to be 453 

common positively predictive features for GO terms associated with signaling, G protein-coupled receptors 454 

(GPCRs), transmembrane transport, and ion channels (Figure 5, cluster 5). This finding aligns with the 455 

recognized roles of PDZ domain-containing proteins as molecular adapters that assemble membrane-456 

associated proteins and signaling molecules (Dunn & Ferguson 2015; Møller et al. 2013; Romero et al. 457 

2011). Additionally, N-glycosylation, prevalent in GPCRs, transmembrane receptors, and voltage-gated ion 458 

channels, directly affects signaling via protein-protein interactions, receptor activation, and signal 459 

transduction (Goth et al. 2020; Montpetit et al. 2009). 460 

We next compared the FAIDR t-statistic on predicted GO term association for yeast IDRs (Zarin et 461 

al 2021) with those of human IDRs. Similar to the Cdc28 targets in yeast, the term 'cell cycle' in human 462 

IDRs is linked to the presence of CDK consensus and KEN box in the sequence. Both in yeast and human 463 

IDRs, the DNA damage response is positively associated not only to the CDK consensus, but also to PIPbox 464 

motifs and PIKK (Mec1) motifs. Finally, as we previously noted for yeast IDRs, mitochondrion has a positive 465 

association with isoelectric point and aliphatic residues (Zarin et al 2021). These results indicate that the 466 

molecular features associated with some biological functions have been preserved over very long 467 

evolutionary times. 468 

 469 

The global IDR-ome map reveals positions of disease-associated genes 470 

In addition to the above-described functional insights, the map of the human IDR-ome also reveals positions 471 

of genes that are associated with different pathologies. Previously, we reported the enrichment of intrinsic 472 

disorder in genes related to complex disease, such as autism-spectrum disorder (ASD) and cancer (Tsang 473 

et al. 2020). Here, we asked if our map of the human IDR-ome contains areas where genes associated 474 
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with these diseases are overrepresented, and if so, what types of conserved sequence features these IDRs 475 

contain? We found several clusters of different sizes that contain significant overrepresentation of ASD-risk 476 

and cancer genes (Supplementary Table 7). At least eight of the clusters contain 10-fold or higher 477 

overrepresentation in ASD-risk or cancer-associated genes (p values < 0.05, Supplementary Table 7), 478 

and most of these clusters are not associated with any overrepresented GO terms. 479 

Increased conservation of Q and H residues is evident for several disease gene-containing clusters, 480 

with some known to be involved in transcriptional regulation. Interestingly, conservation of the same 481 

features was found to be predictive of autism-risk genes by FAIDR (see below). We also note a link between 482 

clusters showing enrichment in cancer census genes and stress-granules (Supplementary Table 7), 483 

indicating a possible association between dysregulated stress granule formation and cancer. Moreover, we 484 

also note that some of the IDRs from genes related to ASD cluster together or close to the clusters enriched 485 

for cancer genes, which is likely related to shared processes of these IDR-containing proteins, such as 486 

transcriptional regulation (Tsang et al. 2020). It is important to note that several clusters enriched for 487 

disease-risk genes (both cancer and autism) feature no overrepresentation in any known GO terms 488 

(Supplementary Table 7). Our results suggest that evolutionary signatures could help understanding of 489 

disease genes that encode for proteins with substantial intrinsic disorder. 490 

 491 

Evolutionary signatures enable prediction of localization to specific biomolecular condensates 492 

In cells, many different proteins partition into distinct biomolecular condensates (Banani et al. 2017; 493 

Forman-Kay et al. 2022; Lyon et al. 2021). Although the phase-separation propensity of many proteins can 494 

be predicted from amino-acid sequences (Cai et al. 2022; Chu et al. 2022; Hadarovich et al. 2023; 495 

Vendruscolo & Fuxreiter 2023; Vernon & Forman-Kay 2019), the molecular properties that drive the 496 

specificity and composition of different condensates are less well understood.  497 

To evaluate FAIDR's effectiveness in predicting proteins associated with biomolecular 498 

condensates, we utilized two distinct datasets for each condensate category. The training datasets 499 

comprised 229, 165, and 519 proteins that were experimentally validated to localize to stress granules, 500 

nuclear speckles, and the nucleolus, respectively (Youn et al. 2019, Lu et al. 2019). The test datasets 501 

consisted of 32 (cytoplasmic stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234 502 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585291
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

(nucleolus, GO:0005730) unique proteins annotated for localization to the respective condensates in Gene 503 

Ontology Browser (https://www.ebi.ac.uk/QuickGO/). Proteins present in both training and test sets were 504 

excluded from the latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of 505 

2,917 proteins for stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we 506 

assessed the performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and 507 

12,578 for stress granule, nuclear speckles and the nucleolus, respectively. 508 

We asked whether we could identify the molecular features of human IDRs that lead to their 509 

predominant association with a specific condensate. We trained FAIDR on a benchmark of 913 IDR-510 

containing proteins that are known to associate with stress granules (n = 229), nuclear speckles (n = 165), 511 

or nucleoli (n = 519) based on experimentally derived datasets (Methods). Examining performance across 512 

distinct datasets, utilizing Gene Ontology annotations, for 571 IDRs from 553 proteins (Methods), revealed 513 

that evolutionary signatures of IDRs predict compartmentalization with moderate power (Figure 6A), 514 

yielding AUC values of 0.69, 0.66, and 0.73 for stress granules, nuclear speckles, and nucleoli, respectively. 515 

This performance is comparable to the state of the art, in which AUC values of up to 0.76 were obtained 516 

for nuclear punctae proteins (Hadarovich et al. 2023). The top 10% of IDR-containing proteins that we 517 

predict to associate with stress granules, nucleoli, and nuclear speckles are provided in Supplementary 518 

Table 7 (Tab E). 519 

 We next explored the underlying molecular properties of IDRs that encode the specificity for these 520 

different condensates (Figure 6B). As an example, consider the IDRs that localize to two different 521 

condensates within the nucleus: nuclear speckles and nucleoli. What molecular features of IDRs are 522 

responsible for the distinct partitioning into nucleoli versus nuclear speckles? As expected, our model 523 

identifies that nuclear localization signals (NLS) are important for IDRs that localize to both the nucleolus 524 

and nuclear speckle (Figure 6B), as well as an increased presence of SUMOylation sites and a decreased 525 

overall hydropathy. For nuclear speckles, we find an enrichment in molecular features that include pY 526 

ligands of the SH2 domain NCK-1, Ser/Arg repeats, CDK and PKB phosphorylation sites, DYRK kinase 527 

ligands, and homo-repeats of Gly, Gln, and Pro (Figure 6B). Indeed, nuclear speckle proteins are highly 528 

phosphorylated and enriched in Ser/Arg repeats, which have been shown to direct localization to nuclear 529 

speckles (Krämer 1996; Li & Bingham 1991). Remarkably, our model correctly identifies Ser/Arg repeats 530 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585291
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

 

and multiple phosphorylation motifs as distinguishing factors in IDRs that specifically drive localization to 531 

the nuclear speckle (Figure 6B).  532 

 For IDRs that localize to stress granules, the overall pattern of conserved molecular features differs 533 

from those of the nuclear condensates (Figure 6B). Our model identifies strong enrichments in RGG motifs, 534 

FG-rich motifs, PDZ domain ligands, and KEAP1-binding degrons (Figure 6B). Multiple sets of 535 

experimental evidence confirm that these motifs are abundant in stress granule-containing IDRs (Millar et 536 

al. 2023; Youn et al. 2018), such as PRRC2A with several RG and FG, motifs. KEAP1 is an adaptor protein 537 

that associates with the E3 ubiquitin ligase CUL3, and the positive predictive value of KEAP1-binding 538 

degrons is particularly interesting in the context of recent works reporting on roles of ubiquitylation on stress 539 

granule dynamics (Gwon et al. 2021; Maxwell et al. 2021). Other enrichments in bulk properties include 540 

isoelectric point; sequence charge decoration; content of Trp, Asn, Ala, and Gln; di-peptide repeats NN and 541 

DD; and homo-repeats of Gln, Gly, and Thr (Figure 6B). A strong negative signal for the property omega 542 

(Martin et al. 2016) suggests selection for well-mixed patterning of charged and Pro residues relative to all 543 

other residues (as opposed to blocky patterning) in stress granule-associating IDRs (Figure 6B). 544 

Interestingly, while a significant depletion in classical NLS is detected for stress granule IDRs, a strong 545 

enrichment is found for Pro-Tyr NLS (PY-NLS) (Figure 6B), which at first glance appears counter-intuitive 546 

with the cytoplasmic localization of stress granules. However, recent work has shown that the stress 547 

granule-associated proteins FUS, EWS, and TAF-15, which all harbor PY-NLS motifs that are adjacent to 548 

RGG motifs, shuttle between the nucleus and cytoplasm in an Arg methylation-dependent manner 549 

(Dormann et al. 2012). Other IDR-rich proteins with PY-NLS signals also undergo nucleocytoplasmic 550 

shuttling, including hnRNPA1 and hnRNPA2 that harbor RGG motifs near the PY-NLS (Guo et al. 2018). 551 

Thus, evolutionary conserved molecular features within IDRs appear to be sufficiently informative for 552 

machine learning protocols to learn aspects of protein specificity for different condensates. 553 

 554 

Leveraging evolutionary signatures to discover condensate- and disease-associated proteins 555 

 We next sought to leverage the predictive power of our model to discover new condensate-associated 556 

proteins. We filtered our predictions of IDRs associated with the nuclear speckle, nucleolus, and stress 557 

granule (Figure 6C), and focused on IDRs that were not involved in training. We correctly identify 14 (PPV 558 
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70%), 18 (PPV 90%), and 12 (PPV 60%) of the top-20 scoring IDRs associated with the nucleolus, stress 559 

granule, and nuclear speckle, respectively. This performance aligns with the recent reports from Hadarovich 560 

et al. 2023, where 87.5% of the predictions generated by the PICNIC model were experimentally validated. 561 

Experimental evidence in The Human Protein Atlas or elsewhere in the literature provides independent 562 

validation of our predicted condensate localization (Figure 6C). For example, among the top scoring IDRs 563 

in the nuclear speckle are THRAP3, GPATCH8, SREK1, LUC7L and SCAF11, all of which are annotated 564 

with nuclear speckle localization by The Human Protein Atlas (Figure 6C). For the nucleolus, the IDR-565 

containing proteins NOLC1, MKI67, NOP56, PUM3 and TOP1 are all predicted as nucleolar and validated 566 

by literature reports (Ahmad et al. 2012; Chang et al. 2011; Pai et al. 1995; Rallabhandi et al. 2002; Singh 567 

et al. 2021). Finally, for the stress granule, FAIDR gives high predictive scores to the proteins PRRC2A, 568 

DDX3Y, TNRC6B, TAF15, and KHDRBS1 (Figure 6C), all of which are listed as “gold standard” category 569 

(tier 1) components of stress granules in the RNA Granule Database (Youn et al. 2019). 570 

 We visualized the evolutionary signatures for the top-scoring IDRs predicted to localize to the 571 

nucleolus or stress granule (Figure 6C, Supplementary Table 7 – Tab E). In this representation, we 572 

compare the molecular features for individual IDRs that are predicted to localize to the same condensate. 573 

For instance, [FR]G motifs in stress granule IDRs are strongly enriched overall (Figure 6B) and in four of 574 

the five examples in Figure 6C. Even though TNRC6B exhibits no evolutionary selection on [FR]G motifs, 575 

the remaining molecular features are highly similar to other stress granule-localizing IDRs (Figure 6C). 576 

Presumably, the absence of evolutionary selection for [FR]G motifs in TNRC6B does not preclude its stress 577 

granule localization; instead, it is likely that other molecular properties function in a compensatory manner, 578 

e.g., the observed enrichments in G repeats or RGG motifs. Similar trends are seen for the nucleolus-579 

localizing IDRs, where the overall pattern of molecular features in each IDR is similar, even if slight 580 

differences exist (e.g., no enrichment in Gln content for NOLC1, Figure 6C). As an example, the nucleolar 581 

protein GTF2F1 contains a strong enrichment in RGG motifs, which are selected for in stress granule-582 

localizing IDRs (Figure 6B) and could hint toward an alternative localization for GTF2F1. Indeed, recent 583 

experimental evidence confirms that an interacting partner of GTF2F1, GTF2B, shuttles between the 584 

nucleus and stress granules (Qin et al. 2023). Thus, examination of the molecular signatures for individual 585 
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IDRs can provide additional insight into the molecular properties and localization of these IDR-containing 586 

proteins.  587 

Finally, the significant overrepresentation of genes encoding long IDRs in ASD risk, as documented 588 

by (Tsang et al. 2020), along with the observed enrichment of ASD-risk genes in various regions of the 589 

IDR-ome map, implies that conserved characteristics of IDRs may offer valuable insights into this complex 590 

disease. We wondered if using FAIDR solely with evolutionary signatures of IDRs could adequately predict 591 

ASD-risk genes. To this end, we trained FAIDR using a curated set of IDRs from ASD-risk genes identified 592 

by (Satterstrom et al. 2020), and applied the model to estimate ASD-risk proteome-wide (Methods). 593 

Through leave-one-out validation, we achieved a retrieval rate of 34% for known ASD-risk genes, with an 594 

accuracy of 0.6 and precision of 0.4. Notably, among the top 10% of predicted risk genes across the 595 

proteome, we identified several genes newly added to the Simons Foundation Autism Research Initiative 596 

(SFARI) database in 2023 (Abrahams et al. 2013) (Supplementary Table 7). These and other novel 597 

predictions indicate that a straightforward model based on IDR features could offer predictive power for 598 

identifying new ASD genes. 599 

 600 

 601 

Discussion 602 

We measured evolutionary conservation of nearly 150 bulk molecular features (Zarin et al. 2019) 603 

(Supplementary Table 1), including motif and repeat content and diverse physicochemical properties, in 604 

nearly 20,000 IDRs within the human proteome. We show, through both clustering (Figure 3, 605 

Supplementary Figure 5) and classification (Figure 4, Figure 5, Figure 6) analysis, that combinations of 606 

these molecular features are associated with diverse biological functions and localizations. Hence, by 607 

recasting the sequences of IDRs into evolutionary conserved molecular features, we found a way to connect 608 

human IDR sequences to function without relying on multiple sequence alignments, which are not usually 609 

observable for IDRs. Our results lend further support to the idea that selection for or against specific features 610 

suggests a link between biological function and IDR sequence, as previously established for budding yeast 611 

and Drosophila IDRs (Singleton & Eisen 2023; Zarin et al. 2019). Indeed, our feature-based concept has 612 

been increasingly recognized and used to gain further insight into function and localization of IDR-613 
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containing proteins (Cohan et al. 2022; Duffy et al. 2022; King et al. 2024; Loureiro et al. 2021; Millar et al. 614 

2023). 615 

Using the patterns of conservation in IDRs, we established a “map” of the human IDR-ome, in 616 

which we can explore groups of IDRs with similar function or location. The map of the human IDR-ome 617 

introduced here represents a resource for discovery of functional elements for vast parts of the human 618 

proteome, which have thus far eluded standard bioinformatic approaches. We find that the map of the 619 

human IDR-ome recapitulates some known biological functions or processes mediated by IDR-containing 620 

proteins, such as overrepresentation of GO terms related to DNA- and RNA-binding, but also sheds light 621 

on new or under-appreciated functions of IDRs, including their involvement in development and 622 

transmembrane transport. For around 40% of the clusters, there are no known GO term annotations, which 623 

likely reflects some of the biases and difficulties associated with functional annotation (Kustatscher et al. 624 

2022), particularly for proteins having a large fraction of disordered residues. Importantly, the “unexplored” 625 

clusters of IDRs with similar conserved molecular features but no known function are prime candidates for 626 

discovering new biology. For instance, a limited set of IDR-containing proteins would need to be examined 627 

in order to assign plausible functions to other IDRs in the cluster. Together, our work provides, to our 628 

knowledge, the first comprehensive functional map of the human IDR-ome based on evolutionary 629 

signatures. The map reveals known and novel combinations of specific molecular features that drive the 630 

rich complexity and promiscuous nature of IDR functions.  631 

Our initial functional map of the human IDRs stands to be improved in several ways. First, it is 632 

based on a curated list of molecular features that is limited. The list of relevant molecular features will likely 633 

increase in the future, and efforts have already been taken to discover functionally relevant features in a 634 

systematic and unbiased way using self-supervised deep learning approaches (Lu et al. 2022). Second, 635 

we used a combination of unsupervised (clustering) and supervised (classification using FAIDR) analyses 636 

to make predictions about IDR function. In part, we rely on this two-stage approach because the numbers 637 

of IDRs with some known function (such as those found in the nuclear pore, Figure 3) is too small (n = 64) 638 

to train a standard supervised classifier in a space of nearly 150 features. Future approaches such as semi-639 

supervised, transfer-learning or data augmentation (Lee et al. 2023; Lindorff-Larsen & Kragelund 2021; Lu 640 

et al. 2022; Pang & Liu 2023) approaches will likely address these challenges.  641 
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Understanding the impact of disease mutations in IDRs is a key area of research. Outside of IDRs 642 

with strong positional alignments, which often conditionally fold (Alderson et al. 2023; Piovesan et al. 2022), 643 

it is challenging to interpret disease-associated mutations that map to IDRs, which have no stable tertiary 644 

structure and, by corollary, limited positional sequence conservation. Here we looked at overrepresentation 645 

of genes involved in two diseases in which IDRs feature prominently, autism spectrum disorder (ASD) and 646 

cancer (Tsang et al. 2020).  The map of the human IDR-ome reveals specific clusters that show significant 647 

enrichments in ASD-risk and cancer census genes. Based on these results, we hypothesize that mutations 648 

that disrupt conserved features of IDRs in those clusters are more likely to have a pathological impact, a 649 

focus of our future research. Functional prediction within IDRs at the residue level is a rapidly growing 650 

research area (Barik et al. 2020; Hu et al. 2021). However, these efforts focused on relatively few broad 651 

functions, such as protein binding, DNA binding, RNA binding, and linker or ‘entropic chain’, ‘assembler’, 652 

‘scavenger’, ‘effector’, ‘display site’, ‘chaperone’ (Pang & Liu 2022),  Residue-level prediction approaches 653 

that can more closely approach the diversity of IDR function we observed in the proteome will likely improve 654 

the resolution of the initial map presented here, leading to insight into the functional impact of disease 655 

mutations. 656 

Although certain IDRs cluster together and are associated with equivalent biological functions, the 657 

clusters alone do not precisely inform on specific aspects of IDR function. Which of the evolutionary 658 

conserved molecular features are responsible for function? In full-length proteins with multiple IDRs, do one 659 

or more of the IDR participate in the biological function? To answer these questions, we used FAIDR to 660 

predict association with 148 different GO terms, stratified into 19 functional categories, across the human 661 

IDR-ome (Figure 4, Supplementary Table 6). Our predictions reflect the rich complexity of IDR-driven 662 

functions, suggesting that over 60% of IDRs could be assigned to more than one functional category. Here, 663 

however, we caution that even a modest rate of false positives would impact the number of the predicted 664 

functions. We therefore prefer to consider these predictions in a qualitative way and use them to discover 665 

and contrast features strongly associated with different IDR functional categories (Figure 5).  666 

 An active area of IDR research focuses on the role of particular IDRs in phase separation and 667 

formation of biomolecular condensates (Borcherds et al. 2021; Rostam et al. 2023). Although methods exist 668 

to predict the phase-separation propensity of an IDR from its amino-acid sequence (Cai et al. 2022; Chu et 669 
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al. 2022; Hadarovich et al. 2023; Vendruscolo & Fuxreiter 2023; Vernon & Forman-Kay 2019), it remains 670 

challenging to understand how condensates achieve specificity and why certain IDRs localize to certain 671 

condensates. We showed that FAIDR can not only reliably predict which IDRs will localize to the nucleolus, 672 

nuclear speckle, or stress granule (AUC values of ca. 0.7 on independent test sets), but can also reveal 673 

which conserved molecular features are responsible for specificity. Our performance, with AUC values from 674 

0.66 to 0.73, is near the state-of-the-art (AUC range 0.52-0.76) reported from four different algorithms when 675 

tested on a larger set of proteins that localize to nuclear punctae (Hadarovich et al. 2023). A particularly 676 

striking example of our feature-based approach is provided by the protein GTF2F1, which is predicted to 677 

localize to the nucleolus and whose molecular features therefore resemble other nucleolar-predicted IDRs. 678 

However, GTF2F1 contains a significant enrichment in conservation of the molecular feature ‘RGG motifs’, 679 

which is otherwise associated with stress granule-localizing IDRs. The RNA Granule Database lists 680 

GTF2F1 as a low-confidence potential stress granule protein (tier 4), which could suggest that GTF2F1 681 

shuttles between nucleoli and stress granules depending on specific cellular conditions. While localization 682 

by binding of folded domains to specific targets likely contributes, considering the evolutionary conserved 683 

molecular features of IDRs can provide key insights into the complex interactions that underlie the specificity 684 

of biomolecular condensates, as well as possible modes of regulation. 685 

Finally, we note that widespread association of bulk molecular properties in IDRs with diverse 686 

biological functions suggests that the evolutionary characterization of IDRs could be expanded in scope 687 

with additional biophysical properties. For example, recent efforts to characterize the structural ensembles 688 

of the human IDR-ome using coarse-grained molecular dynamics simulations found some association 689 

between chain compaction and biological function (Lotthammer et al. 2023; Tesei et al. 2023). Here, by 690 

considering the evolutionary conservation of sequence-based molecular features, we find strong and wide-691 

ranging functional association for nearly 50% of human IDRs. Based on our results, we anticipate that 692 

placing IDRs within a higher-dimensional evolutionary and biophysical space will be a key step toward an 693 

improved understanding of the molecular basis for cellular function of intrinsically disordered protein regions 694 

(Holehouse & Kragelund 2023).  695 

  696 
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Methods 697 

Prediction of intrinsic disorder and boundaries definition 698 

The reference human proteome assembly was downloaded from UniProt (Proteome: UP000005640) in 699 

August 2019. We note that “miniprotein” products of short open reading frames, many of which are likely to 700 

contain IDRs, are increasingly recognized as functionally important constituents of the human proteome 701 

(Duffy et al. 2022). However, such “miniproteins” are not yet included in the reference proteome and were 702 

thus not considered here. SPOT-Disorder predictor v1.0 (Hanson et al. 2017) was used to predict the per-703 

residue probability of intrinsic disorder for every protein sequence in the human proteome. We used SPOT-704 

Disorder v1.0 because it provided the closest agreement with NMR-determined disordered content (Dass 705 

et al. 2020; Nielsen & Mulder 2019) and is among the most accurate predictors overall (Necci et al. 2021). 706 

A disorder probability above 0.5 was used to define disordered residues. Only protein regions with 30 or 707 

more consecutive residues that were predicted to be intrinsically disordered were considered as IDRs in all 708 

subsequent analyses. 709 

 710 

Computation of IDR fractions and length distribution 711 

To compute the distribution of IDRs in the human proteome, we used the SPOT-Disorder predictions as 712 

described above to identify IDRs of 30 or more consecutive residues. Any protein without an IDR was 713 

classified as a folded protein. Fully disordered proteins were defined as containing 95% or more disordered 714 

residues. Mixed proteins, which contain both IDRs and folded domains, were filtered to test if IDRs are 715 

more likely to appear as terminal regions or as linkers that are interspersed between folded domains. We 716 

mapped folded domains to each protein via the PFAM database (Mistry et al. 2021) and then determined 717 

the relative location of the IDR(s). The histogram of IDR lengths was fit to a power-law distribution (y = Axb 718 

+ c) using the scipy package in Python. The fitted parameters and the associated errors derived from the 719 

covariance matrix are: A = 7.87  0.28 x 105, b = -1.55  0.01, c = -9.38  1.91.  720 

 721 
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Computation of positional sequence conservation in IDRs 722 

Positional sequence conservation was computed on alignments of human IDRs to IDR sequences from 723 

orthologous species (see Retrieval of orthologous protein sequences). We computed positional 724 

conservation across MSA columns using a modified metric of Shannon’s entropy, the so-called property 725 

entropy as previously introduced by Capra and Singh (Capra & Singh 2007). Gaps were ignored in the 726 

computation of positional conservation. As the gap content of IDRs is relatively high compared to folded 727 

domains, and the metric considers only the alignable columns, it grossly overestimates the positional 728 

conservation of IDRs.  729 

 730 

Computation of sequence similarity between IDRs in the IDRome  731 

We ran BLASTP (Altschul et al. 1990) to determine to which extent human IDR sequences have positional 732 

similarities with one another. BLASTP was run with E-value cut-off values of 0.0001. Any hit within the 733 

threshold (other than to query) was considered homologous. For the IDP sequence analysis 734 

(Supplementary Figure 10), for each IDP cluster we constructed a BLASTP sequence library with the 735 

corresponding IDP sequences. We then subjected each IDP in the cluster to a BLASTP search. For any hit 736 

with an alignment coverage of at least 50% of the query sequence length with at least 30% sequence 737 

identity, we computed the product of these two values (alignment coverage * sequence identity) as a proxy 738 

metric to reflect the degree of positional sequence similarity. We ignored any alignment gaps. As a 739 

numerical example, an alignment of two sequences with 100% (50%) coverage of the query sequence 740 

length and 80% (30%) sequence identity would yield a value of 0.80 (0.15). For any IDP sequence whose 741 

alignment to another IDP did not meet the above two criteria, or was not reported in the BLASTP output 742 

file, we assigned a value of zero. We then plotted these data as a heat map, and we imposed symmetry on 743 

the heat map by taking the larger value between (i,j) and (j,i) and setting this as the value for both 744 

coordinates in the final plot. The range of values is between 0 and 1, and thus reflects the similarity of IDP 745 

sequences in the respective cluster as measured by a conventional sequence alignment approach 746 

(Supplementary Figure 10). For the corresponding plot based on evolutionary signatures of these IDPs, 747 

we computed the cosine similarity metric, defined as the dot product of the two vectors divided by the 748 
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product of the norms, between each IDP sequence in the cluster and all other IDP sequences in the same 749 

cluster. The input vectors were the 144-dimensional evolutionary signatures. In this representation, IDP 750 

sequences with similar (different) evolutionary signatures have values closer to 1 (0) (Supplementary 751 

Figure 10). For both the alignment and evolutionary signature representations, the matrices are sorted 752 

alphabetically by UniProt ID on the x and y axes. 753 

 754 

Molecular features definition and computation 755 

The majority of the molecular features used in this study were previously defined and summarized in 756 

Supplementary Table S4 of the work by (Zarin et al. 2019). Definitions and details of computation of the 757 

additional features introduced in this study are listed in Supplementary Table 1, which also documents the 758 

features that have been modified or adapted for calculation speed purposes.  For example, we updated the 759 

list of SLiMs (Kumar et al. 2022), made it compatible with the human proteome, and added additional 760 

features that have been reported as important for human IDRs in the recent literature (Supplementary 761 

Table 1) (Banani et al. 2017; Bremer et al. 2022; Chavali et al. 2017, 2020; Kuechler et al. 2020; Lyon et 762 

al. 2021; Martin et al. 2020).  763 

We introduced several methodological changes to work with IDRs in the human proteome. First, 764 

the human proteome is roughly five times larger than the yeast proteome and significantly more complex, 765 

which is reflected in imperfect annotations of orthologous and paralogous genes to human genes in other 766 

species. Second, it is difficult and time-consuming to obtain reliable inferences of phylogenetic trees of 767 

metazoan species. Hence, the elaborate protocol for null hypothesis computation based on inference of 768 

evolutionary distances from a phylogenetic tree outlined by (Zarin et al. 2019) constitutes a bottleneck for 769 

a fast and efficient computation of human IDR evolutionary signatures. Therefore, we resorted to a 770 

substantially simplified protocol, as described in the sections below. The modified protocol provided similar 771 

results as the original method (Supplementary Figure 3, Supplementary Figure 4).  772 

 773 

Retrieval of orthologous protein sequences 774 
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The ‘Retrieve/ID mapping tool’ from UniProt was used to obtain Ensembl gene identifiers for every UniProt 775 

identifier that is associated with each canonical protein sequence of the human proteome. The Ensembl 776 

gene identifier was used in a call to the Ensembl API (Method: GET homology/id/:id) to dynamically access 777 

all orthologous protein sequences that map to the given Ensembl gene identifier. The retrieved sequences 778 

were subsequently filtered to keep only those that were annotated as orthologous to the human Ensemble 779 

protein identifier and had the amino-acid sequence that matched to the UniProt query sequence. The check 780 

for the exact match to the canonical UniProt protein sequence was necessary, as one Ensembl gene 781 

identifier matches to several different Ensembl protein identifiers, and annotations based on identifiers 782 

alone (UniProt ID to Ensembl protein ID) may not always be accurate. Beyond this check, we relied on the 783 

Ensembl annotation of orthology to the canonical human protein sequence. 784 

 785 

Defining orthologous IDRs and computing evolutionary distance 786 

Following the retrieval of orthologous protein sequences, sequence alignments were computed using 787 

MAFFT (Katoh & Standley 2013), with the human protein sequence used as a reference. The IDR regions 788 

from orthologous sequences were extracted based on the sequence alignments and using the IDR 789 

boundaries as defined for the human sequence, as performed previously for yeast proteins (Zarin et al. 790 

2019). For each orthologous IDR sequence, an estimate of a pairwise evolutionary distance to the human 791 

IDR sequence was inferred. To this end, we used the Felsenstein 1981 model (F81) (Felsenstein 1981) 792 

model applied to proteins (Lemey et al. 2009). Under this model, we can compute the probability, p, that 793 

any two sites are different at scaled evolutionary distance, d, in substitutions per site:  794 

𝑝 = 1 − ∑
𝑖=1

𝑛

𝜋𝑖𝑃𝑖𝑖 ቌ
−𝑑

∑
𝑖=1

𝑛
𝜋𝑖𝑄𝑖𝑖

ቍ    (eq 1) 795 

where πi are the amino-acid probabilities in the extant human IDR sequences, i indexes the alphabet of 796 

20 amino acids, and the 20 x 20 substitution rate matrix P is defined as in the F81 model (Felsenstein 797 

1981) applied to proteins: 798 
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𝑃𝑖𝑗(𝑣) = ቊ
𝑒−𝛽𝑣 + 𝜋𝑗൫1 − 𝑒−𝛽𝑣൯   if  𝑖 = 𝑗

𝜋𝑗൫1 − 𝑒−𝛽𝑣൯  if   𝑖 ≠ 𝑗
ቋ  (eq 2) 799 

𝛽 =
1

1−∑𝑖=1
𝑛 𝜋𝑖

2      (eq 3) 800 

where v represents the expected number of amino-acid changes per site.   can then computed as given 801 

in eq 3. To estimate p, the probability that two sites are different, we simply divide the total number of 802 

different positions between the human IDR and an orthologous IDR by the total number of aligned positions, 803 

so that gapped positions (i.e., indels) were ignored in the enumeration of p.  804 

   𝑝 =
𝑁(𝑑𝑖𝑓𝑓.𝐴𝐴)

𝑁(𝑖𝑑.𝐴𝐴+𝑑𝑖𝑓𝑓.𝐴𝐴)
     (eq 4) 805 

Given the fraction of positions that differ between the reference human IDR and the query orthologous 806 

IDR (our estimate of p), and β as defined above, the estimate of the evolutionary distance d is obtained 807 

by substituting and rearranging eq. 1 as:  808 

   𝑑 =
−𝑙𝑛(1−𝑝𝛽)

𝛽
      (eq 5) 809 

Note that this evolutionary distance (d) is a method of moments estimator (Lemey et al. 2009). We highlight 810 

that this simplified method does not require inference of a phylogenetic tree, or any other information from 811 

the alignment other than the proportion of sites with different amino-acid identities between the reference 812 

(human) and the query orthologous sequence. 813 

 814 

Orthologous sequence selection 815 

To select a set of orthologous sequences that give a wide distribution of approximate evolutionary distances 816 

(see above) to the corresponding human IDR sequence, we employed an iterative heuristic. The human 817 

IDR sequence was used as a reference in all comparisons. In the first steps, any orthologous sequences 818 

that were ‘length_factor’-fold too short or too long relative to the reference were discarded. A length_factor 819 

of 3 was used in all comparisons. On the remaining sequences, we first calculated a pairwise distance from 820 
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the reference using the approach described above. The distance d was computed as given in eq 5, with β 821 

computed from amino acid frequencies in the human IDR-ome as given in eq 3. Distances were capped at 822 

a value of 10 in instances where no amino-acid matches were found between the two compared sequences, 823 

and when all amino-acid positions were equivalent the distances were set to 0. Any sequences with too 824 

large (10) or too small (0) a distance from the human sequence were automatically discarded. To obtain a 825 

sufficiently diverse set of orthologous sequences, we next employed a heuristic that selects for orthologous 826 

sequences that are sufficiently distant from the reference human sequence and from one another. Two 827 

parameters control the heuristic: 1.) d_ratio, the ratio of distance from the closest neighbor in approximate 828 

evolutionary distance space relative to the reference, and 2.) d_total, the total sum of approximate 829 

evolutionary distances of orthologous IDR sequences from the reference. To select for sufficient divergence 830 

and spread, only the sequences that are at least d_ratio further away from the reference than from the 831 

closest distance neighbour were kept. Furthermore, the sequences were collected until the maximum of 832 

the total sum of distances (d_total) from the reference was reached. Setting d_ratio to a smaller value 833 

imposes a strict restraint on the spread of orthologous sequences from one another in approximate 834 

evolutionary distance space. On the other hand, setting d_total to a smaller value imposes a stricter restraint 835 

on the tolerated divergence of the sequences from the reference. We used d_ratio of 5 and d_total of 30 in 836 

all comparisons. Approximately 2,000 human IDRs were removed from our analysis due to a lack of 837 

orthologous sequences or too high or too low sequence similarity among orthologs, amounting to a total of 838 

19,032 human IDRs on which our protocol could be applied. 839 

 840 

Simulated null expectation 841 

We substantially changed simulations of null expectation relative to the approach originally applied to yeast 842 

(Zarin et al. 2019), as detailed below. In addition, Zarin et al. preserved positionally conserved short linear 843 

motifs (SLiMs) in simulations of null expectations, which led to an underestimate of the evolutionary 844 

conservation of SLiMs. Here, we removed any such conservation requirements for SLiMs. Our simulation 845 

of the null expectation was based on the estimated pairwise evolutionary distances between the human 846 

IDR sequence and each orthologous IDR sequence that met the specified quality criteria (see Orthologous 847 
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sequence selection). Substitutions and insertions and deletions were simulated independently and 848 

combined at the end.  849 

 First, given an estimated distance of an orthologous IDR sequence from the reference human 850 

sequence d, and πi and β (defined by amino-acid frequencies in the extant human IDR sequences, eq 3), 851 

a substitution matrix P was computed based on the F81 model (Felsenstein 1981) as described in eq 2. 852 

For each orthologous IDR sequence, a set of 1000 simulated sequences were computed from the reference 853 

human IDR by amino-acid substitution at each position. The rate of amino-acid substitutions (i->j) were 854 

given by the probabilities as defined by P (eq 2). The simulated sequences initially all had lengths that were 855 

equal to the reference human IDR.  856 

 In the next step, insertions and deletions (henceforth indels) were added to each sequence 857 

following a Poisson process. Given d, the indel rate (Rindel) was defined as: 858 

 859 

    𝑅𝑖𝑛𝑑𝑒𝑙 =
1

20
𝑑       (eq 6) 860 

 861 

A Poisson process was used to get the positions in the sequence at which an indel occurs given λ=Rindel* 862 

length_seq. At every indel position in the sequence, the indel type was assigned at random to either 863 

‘insertion’ or ‘deletion’ with equal probability. The size (k) of an indel at position was assigned from an 864 

empirically derived distribution: 865 

 866 

    𝑃(𝑘|𝑧) =
𝑘−𝑧

∑ 𝑛−𝑧∞
𝑛=1

      (eq 7) 867 

where z = 1.5, as previously established  (Cartwright 2006; Nguyen Ba et al. 2012). Residues within the 868 

inserted segments were drawn according to the amino acid probabilities found in human disordered 869 

regions (πi). 870 

 871 

Computation of evolutionary Z-scores 872 

The molecular features were computed for every human IDR sequence, as well as each of the selected 873 

orthologous IDR sequences. In total, 144 different features were computed for each sequence (see above, 874 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.15.585291doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585291
http://creativecommons.org/licenses/by-nc-nd/4.0/


35 

 

Molecular features definition and computation). The features were also computed for each sequence of the 875 

sets of 1000 simulated IDR sequences. The mean Z-score of a feature was obtained by taking the difference 876 

between the observed mean of the feature for the selected orthologous IDRs (x) and the mean of the 877 

simulated means, i.e., the mean of 1000 means from the simulated distributions of the feature, (), 878 

normalized by the standard deviation of the simulated means (), as introduced previously by Zarin (Zarin 879 

et al. 2019). 880 

 881 

𝑍 =
𝑥−𝜇

𝜎
        (eq 8) 882 

 883 

Z-scores post-processing and clustering  884 

The computed Z-scores measure evolutionary conservation of the molecular features. Prior to any 885 

clustering, we removed any molecular features that yielded no Z-scores for any of human IDRs. The inability 886 

to compute a Z-score arises when a feature is absent in IDRs of the selected extant species, or due to 887 

numeric issues when computing a standard deviation under the null hypothesis for features that are rare 888 

and difficult to generate with a simulated null model (e.g., typically SLiMs with long regular expressions and 889 

some rare homorepeats, e.g., Trp homorepeat).  890 

 Next, to hierarchically cluster evolutionary Z-scores for all human IDRs we used Cluster3.0 (de Hoon 891 

et al. 2004). We used the Cluster3.0 interface to first filter the data to remove any entries, that is IDRs, 892 

which did not have any significant Z-scores, i.e., Z-scores with absolute value of 3 or more. We then 893 

proceeded with default settings for “Hierarchical” clustering using uncentered correlation distance as a 894 

similarity metric and average linkage as a clustering method. We calculated weights and clustered IDRs 895 

(“Genes” in Cluster3.0 interface). The clustering output was visualized using JavaTreeview (Saldanha 896 

2004), which allows for interactive exploration and export of clusters of interest.  897 

 To select the clusters for further analyses, we relied on both manual selection from the displayed 898 

hierarchical tree calculated by Cluster3.0 (e.g., Figure 3), as well as on an automated selection of clusters 899 

given a fixed distance. The distance refers to the uncentered correlation distance between the vectors 900 

representing evolutionary Z-score of human IDRs, which is the same distance used in the hierarchical 901 
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clustering by Cluster3.0. The automated selection was performed on a range of clustering thresholds from 902 

d = 0.1 to d = 0.9 in increment steps of 0.1 (Supplementary Table 3). The automatic approach enables a 903 

more rapid analysis of data following the initial clustering step and any subsequent re-clustering using a 904 

clustering method of choice. 905 

 Details of the GO analyses on the clusters and definitions of "broader functional categories” are given 906 

below (see Gene ontology overrepresentation, Definition of functional categories). To confirm that the 907 

functional overrepresentations that we identified were not the result of our potential bias in the selection of 908 

clusters, we also tested proteins extracted from automatic clusters for GO overrepresentation 909 

(Supplementary Table 2). Because it can be performed at a range of distance thresholds, the automatic 910 

analysis often reveals functional and feature enrichments that might elude the limited exploratory manual 911 

analysis of the IDR-ome map (Supplementary Table 2). Regardless of the distance threshold used to 912 

define and extract the automatic clusters, a minimum of 30% of the clusters show significantly 913 

overrepresented GO terms for molecular function, cellular component, or biological process 914 

(Supplementary Table 2). This suggests that evolutionary conserved molecular features can be used to 915 

effectively cluster the human IDR-ome and reveal functionally related IDRs. A comprehensive analysis of 916 

selected clusters using both exploratory analysis and automatic clustering, GO term overrepresentation, 917 

and enrichment in positive or negative Z-scores of molecular features relative to the background of the 918 

entire IDR-ome is given in Supplementary Table 2.  919 

  920 

FAIDR 921 

The FAIDR model was used as published in its original version (Zarin et al. 2021), with adaptations to 922 

support training models iteratively on sets of different functional categories and testing each model on 923 

independent test sets. FAIDR was applied to our set of 19,032 IDRs from 11,640 unique full-length proteins, 924 

of which 8,353 had annotated GO terms. The GO annotations on the protein (i.e., gene) level and the 925 

associated evolutionary signatures of the IDRs were used as training data for FAIDR. The GO terms were 926 

obtained from the PANTHER database (Mi et al. 2010) (release PANTHER18.0, downloaded in October 927 

2022).  We built separate FAIDR models for each of the 601 GO terms listed in Supplementary Table 6.  928 

To comprehensively test the performance of the FAIDR models, for each model we took bootstrap test 929 
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samples from the available data and performed model training on the remainder of the data. This allowed 930 

us to assess the performance on the entire dataset, whilst ensuring that the performance was tested on 931 

examples that had not been seen in training (Supplementary Table 6, Methods). We defined a threshold 932 

for a reliable FAIDR prediction as a model that on the test set had an AUC (area under the receiver 933 

operating characteristic curve) value above or equal to 0.7 and PPV (positive predictive value) above or 934 

equal to 0.4 (Figure 6A). 935 

 936 

Cross-validation of FAIDR models and functional annotations on the proteome level 937 

Having established that we can successfully identify which IDRs and which molecular features are 938 

associated with different gene ontology (GO) terms, we next employed FAIDR to make functional 939 

annotations for all IDRs in the human IDR-ome (Figure 6C). To this end, we performed cross-validation of 940 

601 FAIDR models trained on 600 GO terms, obtained from PANTHER as mentioned above. For training 941 

of FAIDR models, GO term annotations on gene (i.e., protein level) were used. These were assigned as 942 

given in the PANTHER database. Upon training, FAIDR models were used to compute the probability of 943 

association of each IDR in the proteome with each of the GO terms (Zarin et al. 2021). Only the models 944 

trained on a minimum of 100 distinct instances were considered. 945 

 For each GO term (i.e., each FAIDR model), the full dataset consisted of 19,032 IDRs. These IDRs 946 

were divided into training and test sets six times using sampling with replacement. In each of the six 947 

iterations we held out approximately 15% of the IDRs from the positive class (class 1), which had not yet 948 

been included in any of the previous test sets. The negative class in each iteration varied as it was set to 949 

be three times bigger than the current positive set.  This ensured that the positive class of test sets in each 950 

iteration were distinct and representative of different portions of the full dataset. After evaluating FAIDR's 951 

performance on the current test set using ROC analysis, we reintegrated it back into the dataset. 952 

Consequently, in the next iteration, a different 15% of the positive class of the full dataset was chosen as 953 

the test set, which allowed for comprehensive cross-validation of FAIDR across the entire proteome. This 954 

approach ensured a robust evaluation of the model's effectiveness and minimized potential biases. 955 

Cumulative ROC statistic of all six iterations was used to establish a threshold for performance of each 956 
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FAIDR model. For functional annotations of human IDRs across the proteome, only the models for GO 957 

terms that achieved an AUC of 0.7 or higher and a PPV of 0.4 or higher were used, which amounted to 148 958 

GO terms.  959 

 To assign human IDRs to each of 148 GO functional terms, we relied on likelihoods computed by our 960 

regression model for each IDR (Zarin et al. 2021). Based on the receiver-operating-characteristic (ROC) 961 

analysis from testing of each model on held-out data, we defined the threshold value of likelihood that 962 

minimized false positives while maximizing true positives (Supplementary Table 6). To further minimize 963 

the chance of false positive annotations, we only accepted an annotation of a function for a protein if the 964 

computed probability for the protein was larger than or equal to twice the optimal threshold likelihood. In 965 

addition, we only annotated IDRs to GO functional terms if computed probability exceeded 0.6 in case of 966 

one or two IDRs in a protein and 0.5 in case of more than two IDRs in a protein. The final sets of functional 967 

annotations were pruned to remove redundancies stemming from similar performances of FAIDR models 968 

on closely related GO terms. Finally, the annotated GO terms were aggregated to a set of 19 broader 969 

functional categories, as summarized in Supplementary Table 6. An annotation of an IDR to a category 970 

was considered as “known” if the protein from which the IDR originates has been previously associated 971 

with the category. If the category was assigned de novo to a protein and an IDR in the protein was given 972 

high probability for the function (see above), the annotation was considered “new”. The 19 broader 973 

functional categories (Figure 6) were defined as detailed below. In instances of multiple annotations, 974 

pseudo counts were added to the total number of IDRs to compute the displayed percentages. 975 

 976 

Gene ontology overrepresentation 977 

As mentioned in the FAIDR section, the GO term annotations were extracted from the PANTHER database 978 

(Mi et al. 2010). To compute GO term overrepresentations for IDRs in select clusters, we used GO 979 

annotations available on the protein (gene) level. We considered a set of proteins (genes) in a cluster, i.e., 980 

we did not count any duplicates of proteins that might have more than one IDR in the same cluster. To 981 

compute overrepresentation, the set of proteins from a cluster was compared against a background of the 982 

human standard proteome set, filtered to include only the proteins that contain long IDRs (defined as greater 983 
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than or equal to 30 consecutive amino acids). The human proteome assembly was downloaded from 984 

UniProt (Proteome: UP000005640) in August 2019. Overrepresentation statistics were computed using the 985 

standard Fisher’s test with Bonferonni correction for multiple testing. The correction was applied in two 986 

steps to take into the account testing of multiple GO terms and testing of multiple clusters. The 987 

overrepresentation statistics and corrected p-values are available in Supplementary Table 2. In Figure 3 988 

and Supplementary Figure 5, the clusters are labelled with overrepresented GO term descriptions, which 989 

have been abbreviated and represented in a shorter form where applicable. 990 

 991 

Definition of functional categories and grouping of GO terms 992 

To systematize the GO terms into broader categories, we consulted GO hierarchy (ancestor charts), GO 993 

subsets, and GO co-occurring terms. For GO overrepresented terms from the clustering analysis, we 994 

defined 23 broader functional categories (Supplementary Table 2).  We applied the same strategy to group 995 

GO terms predicted to individual IDRs by FAIDR (see Cross validation of FAIDR and functional annotations 996 

on the proteome level). From 148 GO terms, we converged on 19 broader categories that we defined and 997 

enumerated as given in Supplementary Table 6 and Figure 4C. For instance, we grouped subcomponents 998 

of a cellular location (e.g., nuclear lumen, nuclear pore complex, nucleolus, nucleoplasm) into a higher 999 

order category “Nucleus, #7”.  While such decisions were relatively straightforward for cellular locations, 1000 

some functions and processes were more challenging to neatly subscribe to only one broad category. For 1001 

instance, we grouped “GTPase regulator activity” term with other cellular signaling related terms into 1002 

category “Signaling, #8”, based on its frequent co-occurrence with the signaling related terms. However, 1003 

when looking at the ancestor chart for the term, it is apparent that it could be alternatively joint with terms 1004 

related to “enzyme activity” or “catalysis” into a different broader category. This example illustrates that our 1005 

categorization features an inevitable degree of subjectivity and will be subject to future updates and 1006 

improvements. 1007 

 1008 

Validation of FAIDR performance on independent datasets of disease-associated genes 1009 
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To validate the performance of FAIDR on autism-spectrum disorder (ASD) associated genes, we utilized a 1010 

leave-one-out approach. We iteratively trained the model on IDRs from 101 out of 102 ASD risk genes 1011 

defined by (Satterstrom et al. 2020) (hereafter ‘ASD risk dataset’). We under sampled the negative data set 1012 

to include IDRs from 400 randomly selected proteins from the human proteome. Based on the ROC from 1013 

testing on held-out data, we defined the threshold value of likelihood that was used to assess predictions 1014 

of ASD-risk proteome-wide (Supplementary Table 7). The top 10% of predictions were cross-validated 1015 

against the SFARI (Simons Foundation Autism Research Initiative) dataset (Abrahams et al. 2013). This 1016 

allowed us to evaluate the predictive power of FAIDR on an independent dataset specifically focused on 1017 

ASD-associated genes. 1018 

 Additionally, to assess the performance of FAIDR on genes associated with cancer, we also used 1019 

two separate datasets from the COSMIC database: Cancer census and Cancer classic (Sondka et al. 1020 

2018). Firstly, we curated the positive class of Cancer census dataset by eliminating any redundant 1021 

instances of IDRs that were also present in the positive class of the Cancer classic dataset. Subsequently, 1022 

we utilized the Cancer classic dataset with 409 IDRs in the positive dataset to train FAIDR and the Cancer 1023 

census dataset with 723 IDRs for testing. 1024 

 1025 

Prediction of condensate localization and feature specificity  1026 

To evaluate FAIDR's effectiveness in predicting proteins associated with biomolecular condensates, we 1027 

utilized two distinct datasets for each condensate category. The training datasets comprised 229, 165, and 1028 

519 proteins that were experimentally validated to localize to stress granules, nuclear speckles, and the 1029 

nucleolus, respectively (Youn et al. 2019, Lu et al. 2019). The test datasets consisted of 32 (cytoplasmic 1030 

stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234 (nucleolus, GO:0005730) unique 1031 

proteins annotated for localization to the respective condensates in Gene Ontology Browser 1032 

(https://www.ebi.ac.uk/QuickGO/). Proteins present in both training and test sets were excluded from the 1033 

latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of 2,917 proteins for 1034 

stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we assessed the 1035 
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performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and 12,578 for 1036 

stress granule, nuclear speckles and the nucleolus, respectively. 1037 

 1038 

Code and data availability 1039 

This study made use of UniProt, ENSEMBL, PANTHER, SFARI, RNA Granule Database and Human 1040 

Protein Atlas databases, as specifically referenced throughout. Code and example files to compute all the 1041 

steps described in the methods are available on GitHub (https://github.com/IPritisanac/IDR_ES/). The 1042 

hierarchically clustered evolutionary Z-scores of human IDRs (i.e., the functional map), tutorial on the 1043 

exploratory and automatic analysis of the map, IDR clusters, IDR-ome sequence and alignment files, FAIDR 1044 

t-statistic and target files for top predicted GO terms are available at Zenodo 1045 

(https://zenodo.org/records/10812875).  1046 
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 1451 
 1452 
Figure 1. Extent and distribution of intrinsic disorder in the human proteome. (A) Break-up of the 1453 
human proteome by the protein intrinsic disorder content based on the SPOT-Disorder predictor (Hanson 1454 
J et al. 2017 & 2018). A minimum of 30 consecutive disordered residues was used as a criterion to define 1455 
an IDR. The pie chart is stratified to emphasize the extent of intrinsically disordered regions as a percentage 1456 
of the total protein sequence, i.e., 50-95% means that between 50% and 95% of the entire protein sequence 1457 
is intrinsically disordered. It is evident that the majority of proteins in the human proteome have IDRs, with 1458 
a sizeable fraction (15%) containing more than half of the sequence in disordered regions. (B) Distribution 1459 
of lengths of human IDRs. The IDR lengths follow a power-law distribution (Axb + c), with A, b, and c as 1460 
given on the plot. (C) Distribution of intrinsic disorder in the human proteome. Fully disordered and folded 1461 
proteins are shown in green and pink, respectively. Mixed proteins that contain both IDRs and folded 1462 
domains are separated into terminal IDRs (yellow) that are located at the N- or C-termini of a protein, and 1463 
linker IDRs (blue) that are between folded domains. (D) Comparison of sequence similarity in alignments 1464 
as measured by the average Jensen-Shannon divergence over alignment columns with the background 1465 
distribution given as observed in extant human IDR sequences. The average positional conservation when 1466 
aligned to ENSEMBL orthologs is shown in a box plot for IDRs, the entire human proteome, and PFAM 1467 
domains (Mistry J, et al. 2021). Note that gaps, which are more frequent in IDRs when compared to PFAM 1468 
domains (Khan T, et al. 2015, Chow CFW, et al. 2023), were ignored in the computation of positional 1469 
conservation and thus the conservation for IDRs as shown is an overestimate. The boxes extend to the 1470 
upper and lower quartiles, and the lines within the boxes corresponds to the median value. 1471 
  1472 
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 1473 
 1474 
Figure 2. Computing evolutionary signatures in human IDRs. (A) A sequence-based disorder predictor 1475 
is used to define boundaries of IDRs more than 30 consecutive residues in length. The AlphaFold2 1476 
structural model of p53 is shown here to illustrate the IDRs (orange, grey) and folded domains (blue). (B) 1477 
Over 140 molecular features are computed for each human IDR sequence and for IDR sequences from 1478 
other species in the set of orthologues. In the illustrated example, the content of acidic residues is the 1479 
molecular feature that is computed. (C) A Z-score is computed between the evolutionary mean of feature 1480 
in extant species (x) and the average evolutionary mean of the feature in simulations of the null-hypothesis 1481 
(), normalized by the standard deviation of the evolutionary mean in simulations of the null-hypothesis (). 1482 
(D) Cluster vectors of Z-scores of all molecular features (evolutionary signatures) for all human IDRs. The 1483 
resultant evolutionary signatures summarize conservation across the IDRome. When IDRs are 1484 
hierarchically clustered based on these Z-scores, patterns emerge that define a global map of the IDRome 1485 
in which IDRs with similar evolutionary signatures appear in close proximity.  1486 
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 1487 
 1488 
Figure 3. A global map of human IDRs obtained through clustering of evolutionary signatures. (A) 1489 
Hierarchical clustering of 19,032 human IDRs (y-axis) based on the evolutionary conservation of 144 1490 
different molecular features (x-axis). The molecular features are grouped into six different categories 1491 
(physicochemical, repeats, SLiMs, homorepeats, condensates, or compositional biases). This global map 1492 
of the human IDR-ome shows conservation Z-scores, with some of the dominant molecular features 1493 
annotated with white circles and numbers, described in the legend (right). A positive or negative Z-score, 1494 
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respectively, is defined by a higher or lower value of a mean of a molecular feature over orthologous IDRs 1495 
than expected based on a simulation of an absence of evolutionary conservation. White rectangles indicate 1496 
areas of selected clusters featured in panel B. (B) Clusters that are defined by strong patterns of Z-scores 1497 
often contain a statistically significant overrepresentation of GO-term molecular functions, biological 1498 
processes and/or sub cellular localizations, as listed here for select examples in areas (i), (ii), (iii) and (iv) 1499 
from the panel A. A detailed view of statistically overrepresented terms and features for the rest of the map 1500 
are available in Supplementary Figure S5. Complete information on statistics of functional 1501 
overrepresentation associated with each cluster selected manually or extracted using an automatic protocol 1502 
are available in Supplementary Table 2. 1503 
  1504 
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 1505 
 1506 
Figure 4. Predicting functions and locations of human IDRs. (A) Each point represents held-out data 1507 
performance of a classifier for one of 600 GO terms covering a broad range of molecular functions, 1508 
biological processes, and cellular localizations (Supplementary Table 4). The X-axis represents positive 1509 
predictive value (PPV) and the y-axis represents area under the receiver operating curve (AUC) on the 1510 
held-out data. The models corresponding to data points in orange (PPV > 0.4 and AUC > 0.7) were deemed 1511 
sufficiently reliable for functional annotations of IDRs proteome-wide (as summarized in C and D). (B) 1512 
Receiver operating characteristic (ROC) curve for classification of human IDRs to a representative set of 1513 
GO terms. The performance is shown on held-out data. The terms were selected to display a variation in 1514 
the FAIDR performance on the binary classification tasks. In addition to the protein level classification, the 1515 
FAIDR classifier provides probabilities of GO term association for individual IDRs in the protein. These IDR 1516 
probabilities were used in C and D to annotate human IDRs to a broad set of enumerated and color-coded 1517 
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functional and location categories. (C) A break-up of annotations for all human IDRs to broad functional 1518 
and location categories as summarized in Supplementary Table 4 (Tab D). Note that many IDRs get 1519 
assigned to more than one category (see E). In (D) the fraction of “known” annotations is given in white 1520 
boxes. An annotation of an IDR to a function or location was considered as “known” if the protein from 1521 
which the IDR originates has been previously associated with the category. If the functional or location 1522 
category was predicted for a protein not previously annotated with that category, and an IDR in the protein 1523 
was given high probability for the association (see Methods), the annotation was considered “new”. See 1524 
also Supplementary Figure S12. (E) Each section of the chart represents that fraction of IDRs with a given 1525 
number of predicted annotations. Only 28% of human IDRs get assigned to a unique functional or location 1526 
category. (F) Correlation between the categories expressed as a fraction of IDRs shared between any given 1527 
two categories. The diagonal is set to 0. Some of the most frequently shared functional annotations are 1528 
those associated with various aspects of RNA (5) and DNA metabolism (3 & 4).  1529 
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 1530 

Figure 5. Identifying the molecular features that are predictive of IDR functions and locations. Left 1531 
heat map represents t-statistics summarizing the predictive importance of different molecular features (y-1532 
axis) across GO terms (x-axis). Rows and columns have been organized by clustering. Selected regions, 1533 
indicated with white rectangles and numbers, are expanded on the right side. Comparisons of the t-statistics 1534 
within and between different clusters unveils how different combinations of molecular features can drive 1535 
different biological functions and localization.  1536 
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 1537 

Figure 6. Predictions of association with different bimolecular condensates (A) Receiver operating 1538 
characteristic (ROC) curve for classification of human IDRs to different cellular bimolecular condensates:  1539 
stress granules (blue), the nucleolus (red), or nuclear speckles (orange). The performance was tested on 1540 
independent and non-overlapping datasets with condensate annotations (see Methods). Area under the 1541 
curve (AUC) values are shown in the lower right. (B) Hierarchical clustering of the t-statistics as in Figure 1542 
5. A negative or positive association of a conserved molecular feature with a particular biomolecular 1543 
condensate is given in blue or yellow scaling, respectively. The condensate type is shown at the top with 1544 
the colors the same as panel A. (C) Select examples from the top predictions of association to stress 1545 
granules, the nucleolus, or nuclear speckles. The examples include proteins that were not used in training 1546 
and for which an association with the indicated condensate was not previously reported. For the nucleolar 1547 
and stress granule-associating proteins, the evolutionary signatures for selected molecular features are 1548 
shown with the colors scheme of Figure 3.   1549 
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