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Abstract

Intrinsically disordered regions (IDRs) represent at least one-third of the human proteome and defy the
established structure-function paradigm. Because IDRs often have limited positional sequence
conservation, the functional classification of IDRs using standard bioinformatics is generally not possible.
Here, we show that evolutionarily conserved molecular features of the intrinsically disordered human
proteome (IDR-ome), termed evolutionary signatures, enable classification and prediction of IDR functions.
Hierarchical clustering of the human IDR-ome based on evolutionary signatures reveals strong enrichments
for frequently studied functions of IDRs in transcription and RNA processing, as well as diverse, rarely
studied functions, ranging from sub-cellular localization and biomolecular condensates to cellular signaling,
transmembrane transport, and the constitution of the cytoskeleton. We exploit the information that is
encoded within evolutionary conservation of molecular features to propose functional annotations for every
IDR in the human proteome, inspect the conserved molecular features that correlate with different functions,
and discover frequently co-occurring IDR functions on the proteome scale. Further, we identify patterns of
evolutionary conserved molecular features of IDRs within proteins of unknown function and disease-risk
genes for conditions such as cancer and developmental disorders. Our map of the human IDR-ome should

be a valuable resource that aids in the discovery of new IDR biology.
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Introduction

The sequence-structure-function paradigm in molecular biology posits that the amino-acid sequence of a
protein encodes its three-dimensional structure, which determines the function of the protein. The close
relationships between sequence, structure, and function are routinely exploited to infer function from
sequence or structural data (Ashburner et al. 2000; Lee et al. 2007; Radivojac et al. 2013; Sanderson et al.
2023; Yu et al. 2023Db), trace the evolutionary history of protein-protein interactions (Steube et al. 2023),
design de novo proteins with desired folds or functions (Huang et al. 2016; Kuhiman & Bradley 2019; Yeh
et al. 2023), and predict the pathogenicity of sequence variants in the human genome (Adzhubei et al.
2010; Frazer et al. 2021; Hopf et al. 2017; Luppino et al. 2023). Indeed, structural information recovered
from amino-acid sequence alignments is central to state-of-the-art protein structure prediction methods
(Baek et al. 2021; Jumper et al. 2021). However, the sequence-structure-function paradigm does not apply
to the approximately one-third of residues in the human proteome that map to intrinsically disordered
regions (IDRs), which lack stable secondary and tertiary structure and exhibit poor positional sequence
conservation (Forman-Kay & Mittag 2013; Van Der Lee et al. 2014; Wright & Dyson 2015). Despite their
lack of ordered structural elements, IDRs function in key cellular processes (Holehouse & Kragelund 2023)
and frequently act as hubs in protein-protein interaction networks (Tompa et al. 2014), often via transient,
multivalent interactions that promote phase separation and involvement in biomolecular condensates
(Borcherds et al. 2021).

While the presence of IDRs in proteins can generally be predicted with high accuracy from their
amino-acid sequences (Emenecker et al. 2021; Necci et al. 2021), identifying the relationship between the
sequences and functions of IDRs remains a difficult task (Basu et al. 2023; Chow et al. 2023; Hu et al.
2021; Lu et al. 2022; Pang & Liu 2022; PritiSanac et al. 2019; Zarin et al. 2019, 2021; Zhao et al. 2021).
Focusing on the segments of IDR sequences that show strong similarity in sequence alignments (which we
refer to as “positional conservation”) has provided rich insights into the functions of so-called short-linear
motifs (SLiMs) and Molecular Recognition Features (MoRFs) (Davey et al. 2023; Kumar et al. 2022; Malhis
& Gsponer 2015; Mohan et al. 2006; Tompa et al. 2014). However, positionally conserved elements
typically constitute only a minor fraction of an IDR sequence, and many of the experimentally characterized

SLiMs are not positionally conserved (Davey et al. 2012; Kumar et al. 2022; Nguyen Ba et al. 2012; Van


https://doi.org/10.1101/2024.03.15.585291
http://creativecommons.org/licenses/by-nc-nd/4.0/

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585291; this version posted March 17, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Roey et al. 2014). Although we and others showed that approximately 15% of human IDRs contain
significant positional alignment due to the acquisition of a conditional fold in particular functional contexts
(Alderson et al. 2023; Piovesan et al. 2022), it is appreciated that the majority of positions in the sequences
of IDRs appear to evolve more rapidly relative to ordered regions in the same proteins (Brown et al. 2002;
Davey et al. 2012). Rapid evolution in IDRs reflects the absence of stable folded structure, since positional
conservation is directly linked to evolutionary pressure to maintain a three-dimensional fold (PritiSanac et
al. 2019). Thus, because IDRs exhibit limited positional conservation in multiple sequence alignments,
standard bioinformatic approaches that rely on these alignments can only provide limited insight into the
functional classification of IDRs (PritiSanac et al. 2019; Zarin et al. 2019, 2021). For intrinsically disordered
proteins (IDPs), which are fully disordered and make up ~5% of the human proteome (ca. 1000 proteins)
(Tsang et al. 2020), predictions of function are even more limited due to the lack of any folded domains
(Basu et al. 2023).

The functional importance of IDRs and IDPs is increasingly appreciated, especially in the context
of phase separation (Alberti & Dormann 2019; Basu et al. 2020; Mensah et al. 2023; Molliex et al. 2015;
Nakamura et al. 2023; Patel et al. 2015). Furthermore, IDRs are often dysregulated in diseases such as
cancer, amyotrophic lateral sclerosis, and other neurological disorders (Alberti & Dormann 2019; Tsang et
al. 2020; Uversky et al. 2008) , with increasing reports of disease-associated sequence variants that map
to IDRs (Alderson et al. 2021; Mensah et al. 2023; Vacic et al. 2012). The interpretation of effects of
mutations in IDRs on protein function is limited, as most utilized variant effect predictors compute effects
on fold stability and other structural features, e.g., changes to enzyme active sites or interfaces (Backwell
& Marsh 2022). Thus, an understanding of how the sequences of human IDRs relate to biological function
is urgently needed.

The overall importance of IDRs in health and disease has stimulated efforts to predict their
biological function without relying on multiple sequence alignments (Cohan et al. 2022; Lancaster et al.
2014; Langstein-Skora et al. 2022; Pang et al. 2024; Shinn et al. 2022; Staller et al. 2018, 2022; Vernon et
al. 2018; Zarin et al. 2017, 2019, 2021). IDRs generally show strong evolutionary conservation of sequence-
derived molecular features that are not positionally constrained (Alston et al. 2023; Beh et al. 2012;

Gonzalez-Foutel et al. 2022; Staller et al. 2022; Zarin et al. 2017, 2019, 2021). In a series of recent studies,
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we showed how evolutionary properties of bulk molecular features that are computable from IDR sequences
can be used to cluster and classify yeast IDRs into an unexpectedly large number of functional groups
(Zarin et al. 2019, 2021).

Here, we show that human IDRs are amenable to systematic functional classification based on a
broad set of bulk molecular features that are readily computable from IDR sequences. We provide, to our
knowledge, the first comprehensive functional map of IDRs within the human proteome (IDR-ome). We
obtain estimates for the proportion of human IDRs associated with various functions, and train classifiers
to predict functions for unannotated IDPs and IDRs from sequence alone. Since the functional map of
human IDRs is based on evolutionary conservation of simple molecular features, we can determine which
features are associated with different groups of IDRs, such as those involved in the formation of
biomolecular condensates or those associated with disease-risk genes. We expect that the patterns of
conservation of molecular features, together with the functional map of IDRs, will represent a critical

resource for generating testable hypotheses for experimental research for biochemists and cell biologists.
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90 Results

91

92 Intrinsic disorder is abundant in human proteins

93  To build a global functional map of the human IDRs, we first identified the boundaries of IDRs in the human

94  proteome using a state-of-the-art bioinformatics tool, SPOT-Disorder (SPOTD) (Hanson et al. 2017)

95 (Methods). SPOTD predicts that ca. 32.8% of the residues in the human proteome are disordered, similar

96  to other reports (Necci et al. 2021). We then filtered the predictions to keep only regions of 30 or more

97  consecutive disordered residues (Methods), henceforth referred to as intrinsically disordered regions or

98 IDRs and comprising a total of 21,252 sequences (Tsang et al. 2020). Nearly 60% of proteins in the human

99 proteome contain at least one IDR (Figure 1A). Predominantly disordered proteins, or those that contain
100 more than 50% disordered residues, amount to nearly 20% of the proteome, whereas entirely disordered
101 proteins (i.e., IDPs) account for 5% (Figure 1A). The IDR lengths follow a power-law distribution with a
102 median IDR length of 74 residues (Figure 1B). Approximately 90% of the human IDRs fall between 30 and
103 200 residues in length. However, the human proteome also contains some very long IDRs, with 280 IDRs
104  or IDPs having more than 1000 consecutively disordered residues (Figure 1B).
105 We also checked if IDRs are more likely to be located on the N- or C-terminal regions of a protein
106 (termini) or between folded domains (linkers). Approximately equal percentages of terminal and linker IDRs
107  were identified (Figure 1C). Thus, most IDRs in the human proteome are of medium length (30-200
108 residues) and exist alongside proteins that also harbor folded domains. We also confirmed that, as
109 expected, the predicted IDRs show generally lower levels of positional sequence-similarity in alignments of
110 homologs from the Ensembl database (Howe et al. 2021) as compared to folded protein domains (Figure
111  1D). Further, most human IDRs are not easily assigned to protein families using sequence alignments, and
112 only 21% of human IDRs show significant sequence similarity (BLAST E-value < 1e-6) to any another IDR
113  in the human proteome (Supplementary Figure 1). Of the IDRs that do show sequence similarity, over
114 80% (50%) of these IDRs have five or fewer (one) BLAST hits (Supplementary Figure 1), suggesting that
115  the sequence homology of any IDR is restricted to a small number of related IDRs, usually members of a

116  small gene family. Interestingly, we observe that 44% of fully disordered proteins (IDPs) have BLAST hits
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117  to any other IDR in the proteome (Supplementary Figure 1), which suggests that IDPs are more likely to
118 fall into small gene families compared to IDRs.

119

120 A global map of the human IDR-ome based on evolutionary conservation of molecular features
121  Following previous work (Zarin et al. 2019) we next sought to summarize IDRs using conservation of bulk
122 molecular features (Methods, Supplementary Table 1). We first compiled a comprehensive list of 147
123 bulk molecular features that have been shown to be important for function of IDRs in different studies,
124 including known short linear interaction motifs (SLiMs), physicochemical properties (e.g. hydrophobicity,
125 polarity, charge, charge patterning), residue composition, and (homo-)repeats (Chavali et al. 2017, 2020;
126 Gemayel et al. 2015; Kumar et al. 2022; Mao et al. 2010; Ravarani et al. 2018; Schlessinger et al. 2011,
127  Strickfaden et al. 2007; Warren & Shechter 2017).

128 We next developed a computational protocol, conceptually based on (Zarin et al. 2019), to estimate
129 evolutionary conservation of molecular features in the human IDR-ome without relying on conventional
130 multiple sequence alignments (Supplementary Figure 2). Briefly, we assessed the evolutionary
131 conservation of molecular features in the human IDR-ome by comparing observed sets of homologs to
132  simulations of evolution of IDRs (Zarin et al. 2019). We made technical changes to a previously applied
133 approach (Zarin et al. 2019) Zarin et al. 2019, 2021) to increase the computational efficiency so that we
134  could apply it to the larger and more complex human IDR-ome (see Methods, Supplementary Figure 3,
135 Supplementary Figure 4). We use standard Z-scores to compare the observed distributions of molecular
136 features in homologous IDR sequences to those expected from simulations of IDR sequences under a null
137 hypothesis, which assumes no evolutionary conservation of molecular features (Figure 2, Supplementary
138  Figure 2). We refer to a set of Z-scores for all molecular features as an evolutionary signature of an IDR,
139  which represents the pattern of conserved molecular features. Positive Z-scores indicate a feature value
140  greater than expected from the null hypothesis (the simulations), while negative Z-scores indicate a feature
141 value smaller than expected (Supplementary Figure 2). Negative Z-scores can suggest either depletion
142 of afeature (e.g., selection against hydrophobic residues) or a strongly negative value (e.g., selection for a

143  net charge far below the expectation).
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144 We computed evolutionary signatures for 19,032 human IDRs (see Methods) and clustered the
145 IDR-ome (see Methods) to identify groups of IDRs that share patterns of conservation (Figure 3A,
146 Supplementary Figure 5). In this global map of the IDR-ome (Figure 3A), IDRs that have similar
147 evolutionary signatures are placed closer to one another. We hypothesize that similarity in the evolutionary
148 patterns of molecular features is analogous to sequence similarity detected in alignments for folded protein
149  regions (e.g., by using PSI-BLAST (Altschul et al. 1997)). Our map reveals a large number of clusters of
150 IDRs, which are defined by distinct patterns of conserved molecular features, i.e., evolutionary signatures
151  (Figure 3, Supplementary Figure 5).

152

153  Assigning biological functions to clusters of IDRs

154 Our global map of the IDR-ome is based on evolutionary conserved molecular features that could be
155  important for specific functions of IDRs. To test if the patterns of conservation of molecular features are
156 associated with specific functions, we performed overrepresentation analysis for the Gene Ontology (GO)
157 annotations of the proteins in which IDRs were found (Methods). We manually selected 93 clusters from
158 the map, focusing on patterns of Z-score signals. Among these clusters, 53 (i.e., 57% of the clusters)
159 exhibited overrepresentation of at least one GO term. These 53 clusters amounted to 9,294 IDRs (i.e., 49%
160 of the human IDR-ome), representing extensive overrepresentation of GO terms across clusters of IDRs
161 (Supplementary Table 2, Supplementary Figure 5, Supplementary Figure 6). Although patterns of
162 conservation of bulk molecular features in IDRs were previously observed to be associated with function in
163  vyeast (Zarin et al. 2019), we sought to confirm that the widespread overrepresentation of GO terms were
164 not due to bias in manual selection of clusters. To do so, we repeated the analysis using automatically
165 defined clusters and found qualitatively similar overrepresentations to those identified in the manually
166 identified clusters (see Methods, Supplementary Table 2, Supplementary Table 3, Supplementary
167 Figure 7). These results indicate a proteome-wide association between the patterns of evolutionary
168  conserved molecular features of IDRs and their biological functions.

169 To obtain a first global picture of the types of biological functions involving human IDRs, we
170  discerned around functional 20 categories, with some overlap, covering the majority of overrepresented

171 GO terms linked to various IDR clusters (Supplementary Figure 6, Supplementary Table 2). We defined
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172  those categories by grouping related overrepresented GO terms, as detailed in the Methods. Some of the
173  most populated clusters are associated with DNA binding (23%), Chromatin/Chromatin binding (33%), RNA
174  metabolism (22%), Cytoskeleton (12%), Signaling (11%), Transmembrane transport (7%), and
175 Reproduction (7%) (Supplementary Figure 6), including biological functions that are frequently attributed
176  to IDRs (e.g., DNA binding, RNA metabolism, signaling). We also take note of some less widespread, but
177  significantly overrepresented terms in the IDR-ome map, such as those associated with ‘histone
178 modifications’ (4%), ‘cell morphogenesis’ (2%), ‘innate immune response’ (2%), ‘nuclear pore complex’
179 (1%) and ‘clathrin binding’ (1%) (Supplementary Figure 6). Focusing on overrepresented molecular
180 features in the GO-term enriched clusters (Supplementary Table 2), we find that the RNA-associated IDRs
181 are enriched in conserved Arg-Gly/Arg-Gly-Gly (RG/RGG) matifs, Lys (K) content and K homorepeats, Arg
182 (R) and Arg+Tyr (R+Y) content, as well as homorepeats of acidic residues (Asp (D), Glu (E)), all of which
183 is in line with features of IDRs typically associated with phase separation, as many RNA-associated IDRs
184  bind to RNA in the context of biomolecular condensates (Alberti & Dormann 2019; Chong et al. 2018; Youn
185 et al. 2018, 2019) . For the IDRs associated with transmembrane transport protein GO terms, we note that
186 many of these IDRs belong to G protein-coupled receptors (GPCRSs) (Supplementary Table 2). Many of
187 our select clusters show enrichments in biological functions less appreciated to be associated with IDRs
188 (e.g., development, cell morphogenesis, extracellular space, lipase activity) (Supplementary Figure 6),
189 suggesting that the diversity of functions in which IDRs are involved is even greater than currently

190  appreciated.

191 Having established that human IDRs can be clustered based on their evolutionary signatures
192 (Figure 3, Supplementary Figure 5), and that many of these clusters exhibit enrichments in specific
193  biological functions (Supplementary Table 2), we selected a few representative clusters to illustrate this
194  finding. First, as means of validation, we searched for clusters of IDRs with molecular features that have
195  been experimentally confirmed to be critical for specific biological functions. For example, a cluster of 69
196 IDRs exhibits strong overrepresentation of the GO terms 'structural constituent of the nuclear pore' (77-fold,
197  p < 1e-9) and 'signal sequence binding' (33-fold, p < 1e-4) (Figure 3B, Supplementary Table 3 - Tab E).
198  The nuclear pore complex contains many IDRs and provides binding sites for signal sequence-bearing

199  proteins (e.g., nuclear localization or export sequences) (Mosalaganti et al. 2022; Schmidt & Gaérlich 2016).
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200  The molecular features of the IDRs in this cluster are enriched in specific amino-acid content (Ala, Phe,
201  Gly, Thr), repeats (Gly-Gly (GG), Phe-Gly (FG), Ser-Gly (SG), Pro-Thr-Ser (PTS)), and FG-rich motifs
202  (Figure 3B). The specific enrichment in Gly and Phe content and FG repeats is consistent with expectations
203  from the literature, as the IDRs associated with the nuclear pore complex are known as FG-nucleoporins
204  and are rich in Gly, Phe, and FG repeats. For instance, in the essential component of NPCs, FG-NUP98
205 (Yu et al. 2023a), the amino acids Ala, Phe, Gly, and Thr comprise nearly 40% of its IDRs, where IDRs
206 map to residues 1 to 728, and 888 to 1133. These results confirm that the well-known unusual amino acid
207 distribution and FG-repeats in nucleoporins are conserved during evolution, and that this pattern of

208  conserved bulk molecular features is found in only a small number of IDRs in the human proteome.

209 A second validation comes from a cluster of 299 IDRs that contains GO-term overrepresentations
210  for ‘mRNA splicing via the spliceosome' (23-fold, p < 0.0001), 'regulation of mRNA processing' (19-fold, p
211 <0.0001), and 'positive regulation of mMRNA metabolism' (15-fold, p < 0.001) (Figure 3B, Supplementary
212 Figure 8, Supplementary Table 3 — Tab F). These IDRs are not significantly depleted in any feature but
213 have strong enrichments in Gly content, Gly homo-repeats, Arg-Gly (RG) and Arg-Gly-Gly (RGG) repeats,
214 FG repeats, Ser-Gly repeats (SG), and Phe-Gly-Arg (FGR) repeats (Supplementary Figure 8,
215  Supplementary Table 2 — Tab D). RG and RGG motifs are known to be enriched in IDRs that bind to RNA
216 (Chong et al. 2018) and are implicated in RNA recognition during spliceosome assembly (De Vries et al.
217 2022). Indeed, biophysical experiments in some RG/RGG-containing proteins have shown that mutation or
218 disruption of RG/RGG motifs can disrupt phase separation and the affinity for RNA (Chong et al. 2018;
219 Ozdilek et al. 2017). These and numerous additional examples (Supplementary Table 2) suggest that our
220 clustering of the human IDR-ome based on conservation of molecular features retrieves findings consistent

221  with those reported in the literature.

222 Next, we examined a cluster of 136 IDRs that is significantly overrepresented in the GO terms
223  ‘histone binding' (7.7-fold, p = 1e-3) and ‘chromatin binding' (5.2-fold, p = 1e-2) (Figure 3B, Supplementary
224  Figure 8, Supplementary Table 3 — Tab A). Histones contain positively charged intrinsically disordered
225  tails that are exposed to solvent (Kim et al. 2023), and these IDRs facilitate interactions, which are often

226 PTM-dependent, with many different histone-binding proteins. Histone-binding domains, such as

10
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227 chromodomains and plant homeodomain (PHD) fingers, often rely on hydrophobic pockets and aromatic
228  residues to bind to methylated lysine residues in histone tails (Li et al. 2006; Nielsen et al. 2002).
229 Interestingly, however, we do not find aromatic residues within the enriched molecular features in our cluster
230  of histone- and chromatin-binding IDRs; instead, we observe strong enrichments in acidic content and
231 repeats of Asp (D), Glu (E), and Lys (K) (Figure 3B, Supplementary Data). Remarkably, a recent study
232 identified that an acidic TFIIS N-terminal domain (TND)-interacting motif (TIM) in IDRs can mediate binding
233  to histone chaperones and histone readers, including LEDGF and HRP2 (Cermakova et al. 2021, 2023).
234 The TIM motif is characterized by a short a-helix followed by an acidic region, which often contains D or E
235 repeats (Cermakova et al. 2021, 2023). Furthermore, we found numerous clusters with strong
236 overrepresentation for histone demethylase or histone deacetylase activity, which feature conservation of
237 D repeats, Asn (N) residues and N homo-repeats, suggesting how a specific molecular grammar of
238 negatively charged and Asn resides could support DNA binding more generally (Supplementary Table 2).

239  We detail functional and feature overrepresentations across clusters in Supplementary Table 2.

240 We then looked for novel functional insights in clusters showing seemingly unrelated enrichments.
241 In the cluster of IDRs associated with the nuclear pore complex (NPC), described above (Figure 3B), a
242 significant GO-term overrepresentation was also observed for ‘clathrin binding' (26-fold, p < 1e-5), and the
243 IDRs in the cluster were enriched for SLiMs associated with clathrin-mediated endocytosis (NPF motif) and
244 endosomal sorting complexes required for transport (ESCRT) (Supplementary Figure 9, Supplementary
245  Table 3 -Tab E). The early stages of clathrin-mediated endocytosis involve many IDRs, including those in
246  NUMB and Epsin-1 that contain the NPF SLiM (Lomoriello et al. 2022). Consistent with this, IDRs from
247 Epsin-1/2/3 (along with PICALM and SCYL2) which are in this cluster, show strong signals for the NPF
248  motif in ELM (EH_1), while most of the FG-NUPs in the cluster do not (Supplementary Figure 9). As
249  expected, the IDRs from clathrin-associated proteins do not show conservation of the FG-repeats found in
250  the nuclear pore IDRs (Supplementary Figure 9). Given that NPCs are located in the nuclear envelope
251  and clathrin-mediated endocytosis occurs at the cell membrane, the observation of GO-term enrichments
252  in both processes seems unrelated. Functionally, however, the NPC and clathrin-coated vesicles both
253  oligomerize on membrane surfaces and induce membrane curvature (Beck et al. 2018). FG-NUP IDRs and

254  clathrin-associated IDRs cluster together because they all show conserved signals of unusually high
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255 hydropathy and a paucity of charged residues (Supplementary Figure 9). We speculate that these
256  molecular properties are important for their oligomerization on membrane surfaces. Moreover, key scaffold
257  components of the NPC and clathrin-coated vesicles share similar structural folds and are speculated to
258 have evolved from a common ancestor (Beck et al. 2018; Devos et al. 2004). Recent work has even directly
259 linked NPCs and clathrin-mediated endocytosis: disruption of NPC assembly triggers activation of an
260 ESCRT-dependent chaperone system (Thaller et al. 2019), and clathrin regulates the recruitment of ESCRT
261  proteins (Wenzel et al. 2018). Our observation of similar evolutionary signatures for IDRs that are
262 associated with NPCs and clathrin-mediated endocytosis suggests that evolutionary selection for high

263  hydrophobicity and lack of charged residues may result from similar functionality of these processes.

264

265 “Unexplored” clusters with fully disordered proteins and proteins of unknown functions

266  The highlighted examples showcase how our IDR-ome map allows the association between biological
267  functions, evolutionary signatures, and specific IDR clusters (Figure 3, Supplementary Table 2,
268 Supplementary Table 3, Supplementary Figure 8), thereby establishing a relationship between IDR
269 sequence and function. However, in both automatic and exploratory analysis of clusters, it was evident that
270 several clusters defined by strong patterns of evolutionary signatures did not exhibit any known functional
271 enrichments. For instance, about 43% of the clusters selected in our exploratory analysis do not have any
272 significantly overrepresented GO terms (Supplementary Table 2). Some of these clusters may reflect the
273 difficulties and biases in protein annotation (Kustatscher et al. 2022), and we speculate that some of the
274  clusters have no overrepresented GO terms due to missing knowledge of the biological functions of many
275 IDRs and IDPs. For example, the IDR-containing proteins of unknown function ANKRD20A1, FAM131A,
276  and C8orf48 map to “unexplored” clusters that have no GO-term overrepresentation (Supplementary
277 Figure 5, Supplementary Data). Given the similar evolutionary signatures of the IDRs in the respective
278  “unexplored” clusters, this resource represents an opportunity to discover new biological functions of these
279 IDR-containing proteins. The conserved molecular features of IDRs in clusters without overrepresented GO
280  terms point to properties of these IDRs that are evolutionary conserved, and therefore presumably important

281  for the biological functions of these IDRs. At least four of our selected clusters, based on strong patterns
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282  of evolutionary signatures and totaling over 1000 IDRs, show no appreciable overrepresentations of any

283 GO terms.

284 Next, we investigated where completely disordered proteins, or IDPs, cluster in our map of the IDR-
285 ome, as IDPs are typically challenging to predict biological functions from sequence alone. As compared
286 to IDRs, we found that a higher proportion of IDPs, roughly 31% (226 of 718), are not clustered at all
287 (Supplementary Table 4), indicating that these proteins did not pass one of our filtering criteria (see
288 Methods). For the remaining 69% of IDPs (492 of 718) that are clustered, approximately 60% of them (298
289 of 492) map to clusters with significantly overrepresented GO terms (Supplementary Table 4), which is
290  slightly higher than for IDRs in general (49%). Our results provide a valuable resource to further interrogate
291 IDP biology. The IDP-containing clusters that did not yield any overrepresented GO terms, amounting to

292 nearly 40% of the clustered IDPs, thus correspond to “unexplored” clusters.

293 Some of the IDP-containing “unexplored” clusters contain an abundance of fully disordered proteins
294 (Supplementary Figure 10), such as a cluster of 17 IDRs of which 15 are IDPs (88%) from the family of
295 late cornified envelope (LCE) proteins (Supplementary Table 3 — Tab D). At first glance, the clustering of
296 different LCE IDPs would appear to be caused by simple positional sequence conservation, as the proteins
297 are all from the same gene family. However, the sequences of these LCE IDPs have highly diverged and
298 traditional bioinformatic approaches reveal no homology between most members (Supplementary Figure
299 10). By contrast, the evolutionary signatures of these 15 different LCE IDPs are all related to one another
300 and show clearly that these IDPs are similar (Supplementary Figure 10). Although this cluster does not
301 have any overrepresented GO terms, there are evolutionary signatures from many different molecular
302 features, including strong enrichments in Gly- and Arg-rich motifs (RG, FG, Ser-Gly (SG), Ser-Arg (SR)),
303  dipeptide repeats (GIn-GIn (QQ), Ser-Ser (SS), Gly-Gly (GG)), amino-acid content (Gly, Cys), and SH3-
304  domain binding motif (LIG_SH3 2) (Supplementary Data). Another “unexplored” cluster of 21 IDRs with
305 13 1IDPs (62%) shows evidence of conservation for amino-acid content with enrichment in Glu and depletion
306 in Ser residues (Supplementary Table 3 — Tab B, Supplementary Data). These IDPs are members of
307  the G-, P-, and X-antigen (GAGE, PAGE, XAGE) families, and like the IDP-rich cluster discussed above,

308  show some sequence homology but exhibit far enhanced relatedness when viewed through the lens of
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309  evolutionary signatures (Supplementary Figure 10). Finally, a cluster of 76 IDRs that contains 42 IDPs
310  (55%) yields strong depletions in amino-acid content (Asn, Asp, His, Leu, Phe) and aliphatic residues, with
311 enrichments in dipeptide repeats (SS, GG), Gly-rich motifs (SG, FG), and Cys content (Supplementary
312 Table 3 — Tab C, Supplementary Data). These IDPs correspond to 35 different keratin-related (KR)
313 proteins and seven different small glycine and cysteine repeat (SGCR) proteins. Outside of a small group
314  of related sequences, very limited homology is detected by sequence alignments (Supplementary Figure
315 10). By contrast, our evolutionary signature approach shows clear similarities between the 42 IDPs
316  (Supplementary Figure 10). Thus, the “unexplored” clusters in our map of the IDR-ome that do not have
317  significantly overrepresented GO terms can provide a unique view of under-characterized IDRs and even
318  fully disordered proteins or IDPs that have similar evolutionary signatures. Furthermore, our analysis of
319 different IDP sequences confirms that our clustering is not caused by positional conservation but is instead

320  due to similar evolutionary signatures.

321 Finally, we wondered whether human proteins of unknown function that have remained
322 uncharacterized (Duek et al. 2018; Zahn-Zabal et al. 2020) are clustered in our map of the IDR-ome. To
323  this end, we downloaded 1,521 proteins of unknown function from the neXtProt Database (Zahn-Zabal et
324  al. 2020), and we filtered this list to retain only IDR-containing proteins. We found that 58% of the
325 uncharacterized proteins contain IDRs (878 of 1,521 proteins, totaling 2,463 IDRs, Supplementary Table
326 5), which is slightly less than the background proteome (63%). However, over 10% of these uncharacterized
327 proteins are IDPs, which is nearly two-fold higher than the whole proteome. Moreover, although the median
328 IDR length of the uncharacterized proteins was unchanged from the IDR-ome (75 vs. 74 residues,
329 respectively), the median disorder content was significantly increased from 30% in the proteome overall to
330  53% in uncharacterized proteins (Mann-Whitney test, p value < le-6) (Supplementary Figure 11). Thus,
331  human proteins of unknown function have a higher overall content of disordered residues than the average
332 IDR-containing protein in the proteome (Supplementary Figure 11). In our map of the human IDR-ome,
333  over 90% of the 878 IDR-containing proteins of unknown function are clustered (93%; 818 of 878 proteins,
334  Supplementary Table 5). This indicates that conserved molecular features within the IDRs of
335  uncharacterized proteins exhibit similarities to other IDR-containing proteins in the proteome and that the

336  sequences of these IDRs pass our quality control criteria (Methods). Remarkably, nearly half of the
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337 uncharacterized IDR-containing proteins (48%, 396 of 818 proteins) are clustered with significant GO-term
338  enrichments (Supplementary Table 5). As an example, we consider the protein of unknown function CDR2
339 that is predicted to be 92% disordered by SPOTD. The long IDR in CDR2 (residues 1-417) is clustered with
340 576 other IDRs that are enriched in the Glu-Asp (ED) ratio, GIn content, and helical calmodulin binding
341 motifs (LIG_CAM_IQ 9) (Supplementary Table 2 — Tab D). These IDRs are notably depleted in repeats
342  involving Pro, Arg, Ser, Thr, and Gly residues (SS, PR, SG, PTS). The GO terms overrepresented in this
343  cluster are associated with aspects of the cytoskeleton (microtubule motor activity, p = 7e-3; tubulin binding,
344 p = le-4; cytoskeleton organization, p = 2e-4) as well as the organization of the cilium (p= 1e-2)
345 (Supplementary Table 2 — Tab D). Interestingly, a recent affinity-purification proteomics study identified
346 CDR?2 as one of the core components in the ciliary interactome (Boldt et al. 2016), with 30 different binding
347 partners identified, including the cytoskeletal proteins tubulin beta chain (TUBB), tubulin beta-4B chain
348 (TUBB4B), and kinectin (KTN1). This example illustrates the potential of our map to link sequence features

349 and biological functions to previously uncharacterized proteins.

350 Our functional map of the human IDR-ome stratifies human IDRs into clusters that frequently exhibit
351 significant GO enrichments, which helps to reveal the relationship between IDR sequence and function.
352 Our methodology is applicable to fully disordered proteins and proteins of unknown function that are
353 otherwise challenging for conventional bioinformatic approaches. The map is a resource that supports
354  exploration for novel insights by, e.g., comparing clusters with different conserved features of IDR
355 sequences but similar functional enrichments, or identifying groups of IDRs that share conserved features
356 but have no annotated functions yet (see Code and data availability). Our analyses above suggest that
357 potential functions can be proposed for a cluster of unknown function once a few of its members have been

358  characterized in depth.

359

360  Specific biological functions can be assigned to human IDRs based on evolutionary signatures
361 Next, we tested whether a systematic prediction of the biological functions and locations of individual IDRs
362  in the human proteome could be achieved based on evolutionary conserved molecular features. To this

363  end, we applied a machine-learning approach termed FAIDR (Zarin et al 2021) (Figure 4A). FAIDR enables
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364  the assignment of specific IDRs to specific functions or locations and simultaneously identifies a sparse set
365  of molecular features that are most predictive of (i.e., most associated with) each. The training of FAIDR is
366 based on GO molecular function, biological process and cellular localization annotations, which are
367 available on a per-protein level. If the protein contains multiple IDRs, FAIDR can be used to single out which
368 IDR is most likely involved. The top-scoring predictions for human IDRs, such as 'nucleolus,’ 'spliceosomal
369 complex,' and 'GPCR activity,' consistently yield reasonably strong classification performance (AUC values
370 of 0.8 or higher, with corresponding PPV values at 0.4 or above) (Figure 4A, Figure 4B). Using these
371  AUC(PPV) cutoffs (see Methods), we found that we can annotate 148 GO terms to human IDRs (Figure
372  4A, Supplementary Table 6). Many other GO terms we could not reliably predict based on evolutionary
373  signatures, so we do not consider them further here (Supplementary Table 6). We found that one of the
374 most strongly predicted GO terms was 'histone binding' (AUC = 0.83) (Figure 4B). As expected, the
375 positively predictive molecular features of the model align with those overrepresented in the clusters
376 enriched for this term, but these molecular features are distributed across multiple clusters, with alanine
377 content overrepresented in one ‘histone binding' cluster and di-lysine repeats, along with aspartate- and
378 glutamate-homorepeats, dominating signals in other cluster(s). This underscores the complementary
379 insights that can be derived from an unbiased, unsupervised clustering analysis (Figure 3) and the
380  supervised FAIDR approach (Figure 4).

381 Other well-predicted GO terms include “extracellular matrix” (AUC=0.82), “mRNA processing”
382  (0.78), “GTPase regulator activity” (0.77), “centrosome” (0.75), “actin binding” (0.75), “endopeptidase
383 activity” (0.73), and “mitotic cell cycle” (0.70) (Figure 4A, Figure 4B), once again highlighting the diversity
384  of IDR function in the human proteome (Figure 4C). We find that we can ascribe new functions to many
385  more IDRs than were previously annotated (Figure 4C, Figure 4D), opening venues for hypothesis-driven
386 and validation studies in the future. To provide an overview of FAIDR-based functional annotation
387  proteome-wide, we systematized GO terms into 19 broader, mostly non-overlapping categories, which we
388 refer to as “functional classes” (see Methods, Figure 4C, Figure 4D, Supplementary Table 6). For
389 instance, as observed in our map of the IDR-ome clustered by evolutionary signatures, we could ascribe
390 GO terms for biological functions that are often associated with IDRs, including “Transcription” (5%),

391  “Chromatin/histone binding” (5%), and “DNA metabolism, repair” (6%), “RNA processes” (11%), “RNP
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392  complex” (4%) and “Signaling” (11%) (Figure 4C). However, once again, many IDRs are assigned to GO
393  terms that are not frequently associated with IDRs, including “Cytoskeleton” (8%), “Transport, channel”
394 (5%), and “Cell junction/surface/adhesion” (6%) (Figure 4C). Overall, there is a correspondence between
395  the overrepresentations of GO-terms observed in our map of the IDR-ome clustered by evolutionary
396  signatures (Figure 3), and those GO-terms we assigned using FAIDR (Figure 4).

397 Through our classification of FAIDR predictions into broader categories, it appears that the majority
398  of human IDRs tend to be associated with more than one functional class (Figure 4E). This observation
399 may suggest a certain degree of overlap in our definition of functional classes, but it is also in line with the
400  concept of IDR ‘functional promiscuity' (Cumberworth et al. 2013). In support of the former, we find the
401 expected overlap in annotations of a broad category “metabolism” (Figure 4F, #14) with “DNA metabolism”
402 (Figure 4F, #3) and “RNA metabolism, splicing & binding” (Figure 4F, #5). However, strong overlaps are
403  also found annotations for “RNA processes (metabolism, splicing & binding)” (#5) and “DNA metabolism”
404 (#3), “DNA binding & transcription” (#4), “signaling (GPCRs, transmembrane)” (#8), and “cytoskeleton”
405 (#11) (Figure 4F). Furthermore, predictions for involvement in “signaling (GPCRs, transmembrane)” (#8)
406 are frequently shared with that of “cytoskeleton” (#11). In addition to the discussed overlap with “RNA
407 processes” (#5), we further note signals of shared predictions of “DNA metabolism and repair” (#3) with

” oo«

408 “signaling” (#8) and of “cytoskeleton” (#11) with “nucleus” and its substructures (“lumen”, “nuclear pore
409 complex”, “nucleolus” and “nucleoplasm”) (#7). Such overlaps in annotations for individual IDRs may point
410  to ‘moonlighting’ (Tompa et al. 2005) or coupling of these biological functions within an IDR sequence,
411 particularly in the case of linking function and localization. Our annotations of functional categories at the

412 IDR level offer a valuable resource for validation studies seeking to unravel sequence-function relationships

413  in greater detail.

414 To better understand the combinations of molecular features that drive IDR functions, we clustered
415  the FAIDR t-statistic to examine the predictive molecular features for various functions and those that are
416  shared between the most commonly co-occurring functions (Figure 5). For instance, among several
417  molecular features that are positively correlated with and predictive of GO terms associated with
418 transcription, we note a high positive Z-score for Pin1 WW domain-binding motifs (DOC_WW_Pin1_4) and

419  for specific SUMOylation motifs, such as KEPE and SUMO-1 (Figure 5, cluster 7). The role of Pinl in
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420 isomerizing phosphorylated Ser/Thr-Pro bonds in various substrate proteins, including transcription factors
421 and their regulators, has been well established (Hu & Chen 2020; Zhou & Lu 2016). For example, Pinl
422 binding and isomerization of IDRs can directly regulate the transcriptional activity of key transcription
423  factors, such as STAT3 (Lufei et al. 2007), c-Jun (Wulf et al. 2001), and NF-kB (Ryo et al. 2003). Moreover,
424 among the many proteins that are SUMOylated, transcription factors constitute a large group (Hendriks et
425  al. 2014; Vertegaal 2022), and our data show that evolutionary conserved SUMOylation sites in IDRs are
426 positively predictive of transcription-related GO terms. At the molecular level, SUMOylation of IDRs within
427  transcription factors can regulate activity in various ways, for example by stabilizing a transcriptionally active
428 conformation, such as for SUMOylated HSF1 (Kmiecik et al. 2021), or by controlling subcellular localization,
429  asis the case for NFATC1 where C-terminal SUMOylation induces association with PML bodies (Nayak et
430  al. 2009).

431 Further, our model identifies phosphorylation-related features, including 14-3-3 binding pT/pS
432 motifs and phosphorylation sites for PKA and CDK2, as positively predictive for GO terms that are related
433  to RNA binding and splicing (Figure 5, cluster 3). The 14-3-3 binding motifs, common in IDRs, are also
434 linked to phase separation of proteins in various signaling pathways (Segal et al. 2023), including those
435 related to RNA processes (Huang et al. 2022). PKA and CDK2 phosphorylation sites have been previously
436  linked to RNA binding and splicing (Ginsberg et al. 2003; Gu et al. 2011; Loyer et al. 2005). Additionally,
437 FAIDR distinguishes the conservation of the PABP-interacting motif PAM2 as positively predictive of RNA
438 binding and splicing (Figure 5, cluster 3), which confirms the known function of the PAM2 motif in mediating
439 interactions with poly(A)-binding proteins (PABP) and the subsequent recruitment of translation factors and
440 proteins involved in mRNA stability (Kozlov et al. 2010; Xie et al. 2014). Interestingly, we observed that WF
441 complexity is positively predictive for GO terms related to transcription and DNA binding but negatively
442  predictive for terms related to RNA splicing and metabolism (Figure 5, cluster 4), suggesting that greater
443  sequence complexity in IDRs linked with transcription may hold a specific functional significance. For
444 instance, it is interesting to note that high sequence complexity IDRs linked to transcription or DNA binding
445  often conditionally fold (Wright & Dyson 2015); by contrast, low-complexity IDRs involved in RNA splicing

446  and metabolism are strongly associated with biomolecular condensates (Alberti & Dormann 2019).
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447 We found that phosphorylation-related features, including the PABP-interacting motif PAM2, to be
448 also positively predictive of GTPase activity (Figure 5, cluster 3). Experimental evidence confirms the
449 association of 14-3-3 proteins with GTPase activity, either by inhibiting it or facilitating the recruitment of
450 proteins in signal transduction pathways (Brandwein & Wang 2017). There are also reports of the
451 involvement of CDK2 and PKA in the signaling pathways of various GTPase families (Ellerbroek et al. 2003;
452  Riou et al. 2013).

453 Our model also reveals IDR sites that are ligands for PDZ domains and N-glycosylation to be
454  common positively predictive features for GO terms associated with signaling, G protein-coupled receptors
455  (GPCRs), transmembrane transport, and ion channels (Figure 5, cluster 5). This finding aligns with the
456 recognized roles of PDZ domain-containing proteins as molecular adapters that assemble membrane-
457  associated proteins and signaling molecules (Dunn & Ferguson 2015; Mgller et al. 2013; Romero et al.
458 2011). Additionally, N-glycosylation, prevalent in GPCRs, transmembrane receptors, and voltage-gated ion
459 channels, directly affects signaling via protein-protein interactions, receptor activation, and signal
460 transduction (Goth et al. 2020; Montpetit et al. 2009).

461 We next compared the FAIDR t-statistic on predicted GO term association for yeast IDRs (Zarin et
462 al 2021) with those of human IDRs. Similar to the Cdc28 targets in yeast, the term 'cell cycle' in human
463 IDRs is linked to the presence of CDK consensus and KEN box in the sequence. Both in yeast and human
464 IDRs, the DNA damage response is positively associated not only to the CDK consensus, but also to PIPbox
465 motifs and PIKK (Mec1) moatifs. Finally, as we previously noted for yeast IDRs, mitochondrion has a positive
466 association with isoelectric point and aliphatic residues (Zarin et al 2021). These results indicate that the
467 molecular features associated with some biological functions have been preserved over very long
468  evolutionary times.

469

470  The global IDR-ome map reveals positions of disease-associated genes

471 In addition to the above-described functional insights, the map of the human IDR-ome also reveals positions
472  of genes that are associated with different pathologies. Previously, we reported the enrichment of intrinsic
473  disorder in genes related to complex disease, such as autism-spectrum disorder (ASD) and cancer (Tsang

474 et al. 2020). Here, we asked if our map of the human IDR-ome contains areas where genes associated
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475  with these diseases are overrepresented, and if so, what types of conserved sequence features these IDRs
476 contain? We found several clusters of different sizes that contain significant overrepresentation of ASD-risk
477 and cancer genes (Supplementary Table 7). At least eight of the clusters contain 10-fold or higher
478 overrepresentation in ASD-risk or cancer-associated genes (p values < 0.05, Supplementary Table 7),
479 and most of these clusters are not associated with any overrepresented GO terms.

480 Increased conservation of Q and H residues is evident for several disease gene-containing clusters,
481  with some known to be involved in transcriptional regulation. Interestingly, conservation of the same
482 features was found to be predictive of autism-risk genes by FAIDR (see below). We also note a link between
483  clusters showing enrichment in cancer census genes and stress-granules (Supplementary Table 7),
484 indicating a possible association between dysregulated stress granule formation and cancer. Moreover, we
485 also note that some of the IDRs from genes related to ASD cluster together or close to the clusters enriched
486  for cancer genes, which is likely related to shared processes of these IDR-containing proteins, such as
487  transcriptional regulation (Tsang et al. 2020). It is important to note that several clusters enriched for
488 disease-risk genes (both cancer and autism) feature no overrepresentation in any known GO terms
489 (Supplementary Table 7). Our results suggest that evolutionary signatures could help understanding of
490 disease genes that encode for proteins with substantial intrinsic disorder.

491

492 Evolutionary signatures enable prediction of localization to specific biomolecular condensates
493 In cells, many different proteins partition into distinct biomolecular condensates (Banani et al. 2017;
494 Forman-Kay et al. 2022; Lyon et al. 2021). Although the phase-separation propensity of many proteins can
495  be predicted from amino-acid sequences (Cai et al. 2022; Chu et al. 2022; Hadarovich et al. 2023;
496  Vendruscolo & Fuxreiter 2023; Vernon & Forman-Kay 2019), the molecular properties that drive the
497  specificity and composition of different condensates are less well understood.

498 To evaluate FAIDR's effectiveness in predicting proteins associated with biomolecular
499  condensates, we utilized two distinct datasets for each condensate category. The training datasets
500 comprised 229, 165, and 519 proteins that were experimentally validated to localize to stress granules,
501  nuclear speckles, and the nucleolus, respectively (Youn et al. 2019, Lu et al. 2019). The test datasets

502  consisted of 32 (cytoplasmic stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234
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503 (nucleolus, GO:0005730) unique proteins annotated for localization to the respective condensates in Gene
504 Ontology Browser (https://www.ebi.ac.uk/QuickGO/). Proteins present in both training and test sets were
505 excluded from the latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of
506 2,917 proteins for stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we
507 assessed the performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and
508 12,578 for stress granule, nuclear speckles and the nucleolus, respectively.

509 We asked whether we could identify the molecular features of human IDRs that lead to their
510 predominant association with a specific condensate. We trained FAIDR on a benchmark of 913 IDR-
511 containing proteins that are known to associate with stress granules (n = 229), nuclear speckles (n = 165),
512 or nucleoli (n = 519) based on experimentally derived datasets (Methods). Examining performance across
513 distinct datasets, utilizing Gene Ontology annotations, for 571 IDRs from 553 proteins (Methods), revealed
514  that evolutionary signatures of IDRs predict compartmentalization with moderate power (Figure 6A),
515 vyielding AUC values of 0.69, 0.66, and 0.73 for stress granules, nuclear speckles, and nucleoli, respectively.
516  This performance is comparable to the state of the art, in which AUC values of up to 0.76 were obtained
517  for nuclear punctae proteins (Hadarovich et al. 2023). The top 10% of IDR-containing proteins that we
518 predict to associate with stress granules, nucleoli, and nuclear speckles are provided in Supplementary
519 Table 7 (Tab E).

520 We next explored the underlying molecular properties of IDRs that encode the specificity for these
521 different condensates (Figure 6B). As an example, consider the IDRs that localize to two different
522 condensates within the nucleus: nuclear speckles and nucleoli. What molecular features of IDRs are
523 responsible for the distinct partitioning into nucleoli versus nuclear speckles? As expected, our model
524  identifies that nuclear localization signals (NLS) are important for IDRs that localize to both the nucleolus
525  and nuclear speckle (Figure 6B), as well as an increased presence of SUMOylation sites and a decreased
526  overall hydropathy. For nuclear speckles, we find an enrichment in molecular features that include pY
527 ligands of the SH2 domain NCK-1, Ser/Arg repeats, CDK and PKB phosphorylation sites, DYRK kinase
528 ligands, and homo-repeats of Gly, GIn, and Pro (Figure 6B). Indeed, nuclear speckle proteins are highly
529  phosphorylated and enriched in Ser/Arg repeats, which have been shown to direct localization to nuclear

530  speckles (Kramer 1996; Li & Bingham 1991). Remarkably, our model correctly identifies Ser/Arg repeats
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531 and multiple phosphorylation motifs as distinguishing factors in IDRs that specifically drive localization to
532  the nuclear speckle (Figure 6B).

533 For IDRs that localize to stress granules, the overall pattern of conserved molecular features differs
534  from those of the nuclear condensates (Figure 6B). Our model identifies strong enrichments in RGG motifs,
535 FG-rich motifs, PDZ domain ligands, and KEAP1-binding degrons (Figure 6B). Multiple sets of
536  experimental evidence confirm that these motifs are abundant in stress granule-containing IDRs (Millar et
537  al. 2023; Youn et al. 2018), such as PRRC2A with several RG and FG, motifs. KEAP1 is an adaptor protein
538 that associates with the E3 ubiquitin ligase CUL3, and the positive predictive value of KEAP1-binding
539 degrons is particularly interesting in the context of recent works reporting on roles of ubiquitylation on stress
540 granule dynamics (Gwon et al. 2021; Maxwell et al. 2021). Other enrichments in bulk properties include
541 isoelectric point; sequence charge decoration; content of Trp, Asn, Ala, and GIn; di-peptide repeats NN and
542 DD; and homo-repeats of GIn, Gly, and Thr (Figure 6B). A strong negative signal for the property omega
543 (Martin et al. 2016) suggests selection for well-mixed patterning of charged and Pro residues relative to all
544  other residues (as opposed to blocky patterning) in stress granule-associating IDRs (Figure 6B).
545 Interestingly, while a significant depletion in classical NLS is detected for stress granule IDRs, a strong
546 enrichment is found for Pro-Tyr NLS (PY-NLS) (Figure 6B), which at first glance appears counter-intuitive
547  with the cytoplasmic localization of stress granules. However, recent work has shown that the stress
548 granule-associated proteins FUS, EWS, and TAF-15, which all harbor PY-NLS motifs that are adjacent to
549 RGG motifs, shuttle between the nucleus and cytoplasm in an Arg methylation-dependent manner
550 (Dormann et al. 2012). Other IDR-rich proteins with PY-NLS signals also undergo nucleocytoplasmic
551  shuttling, including hnRNPA1 and hnRNPAZ2 that harbor RGG motifs near the PY-NLS (Guo et al. 2018).
552  Thus, evolutionary conserved molecular features within IDRs appear to be sufficiently informative for
553  machine learning protocols to learn aspects of protein specificity for different condensates.

554

555 Leveraging evolutionary signatures to discover condensate- and disease-associated proteins

556 We next sought to leverage the predictive power of our model to discover new condensate-associated
557  proteins. We filtered our predictions of IDRs associated with the nuclear speckle, nucleolus, and stress

558  granule (Figure 6C), and focused on IDRs that were not involved in training. We correctly identify 14 (PPV
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559  70%), 18 (PPV 90%), and 12 (PPV 60%) of the top-20 scoring IDRs associated with the nucleolus, stress
560 granule, and nuclear speckle, respectively. This performance aligns with the recent reports from Hadarovich
561 et al. 2023, where 87.5% of the predictions generated by the PICNIC model were experimentally validated.
562 Experimental evidence in The Human Protein Atlas or elsewhere in the literature provides independent
563  validation of our predicted condensate localization (Figure 6C). For example, among the top scoring IDRs
564 in the nuclear speckle are THRAP3, GPATCHS, SREK1, LUC7L and SCAF11, all of which are annotated
565  with nuclear speckle localization by The Human Protein Atlas (Figure 6C). For the nucleolus, the IDR-
566 containing proteins NOLC1, MKI67, NOP56, PUM3 and TOP1 are all predicted as nucleolar and validated
567 by literature reports (Ahmad et al. 2012; Chang et al. 2011; Pai et al. 1995; Rallabhandi et al. 2002; Singh
568 et al. 2021). Finally, for the stress granule, FAIDR gives high predictive scores to the proteins PRRC2A,
569 DDX3Y, TNRC6B, TAF15, and KHDRBSL1 (Figure 6C), all of which are listed as “gold standard” category

570 (tier 1) components of stress granules in the RNA Granule Database (Youn et al. 2019).

571 We visualized the evolutionary signatures for the top-scoring IDRs predicted to localize to the
572 nucleolus or stress granule (Figure 6C, Supplementary Table 7 — Tab E). In this representation, we
573 compare the molecular features for individual IDRs that are predicted to localize to the same condensate.
574 For instance, [FR]G motifs in stress granule IDRs are strongly enriched overall (Figure 6B) and in four of
575 the five examples in Figure 6C. Even though TNRC6B exhibits no evolutionary selection on [FR]G motifs,
576  the remaining molecular features are highly similar to other stress granule-localizing IDRs (Figure 6C).
577 Presumably, the absence of evolutionary selection for [FR]G motifs in TNRC6B does not preclude its stress
578 granule localization; instead, it is likely that other molecular properties function in a compensatory manner,
579 e.g., the observed enrichments in G repeats or RGG motifs. Similar trends are seen for the nucleolus-
580 localizing IDRs, where the overall pattern of molecular features in each IDR is similar, even if slight
581 differences exist (e.g., no enrichment in GIn content for NOLC1, Figure 6C). As an example, the nucleolar
582  protein GTF2F1 contains a strong enrichment in RGG motifs, which are selected for in stress granule-
583  localizing IDRs (Figure 6B) and could hint toward an alternative localization for GTF2F1. Indeed, recent
584  experimental evidence confirms that an interacting partner of GTF2F1, GTF2B, shuttles between the

585  nucleus and stress granules (Qin et al. 2023). Thus, examination of the molecular signatures for individual
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586 IDRs can provide additional insight into the molecular properties and localization of these IDR-containing
587  proteins.

588 Finally, the significant overrepresentation of genes encoding long IDRs in ASD risk, as documented
589 by (Tsang et al. 2020), along with the observed enrichment of ASD-risk genes in various regions of the
590 IDR-ome map, implies that conserved characteristics of IDRs may offer valuable insights into this complex
591 disease. We wondered if using FAIDR solely with evolutionary signatures of IDRs could adequately predict
592  ASD-risk genes. To this end, we trained FAIDR using a curated set of IDRs from ASD-risk genes identified
593 by (Satterstrom et al. 2020), and applied the model to estimate ASD-risk proteome-wide (Methods).
594  Through leave-one-out validation, we achieved a retrieval rate of 34% for known ASD-risk genes, with an
595 accuracy of 0.6 and precision of 0.4. Notably, among the top 10% of predicted risk genes across the
596 proteome, we identified several genes newly added to the Simons Foundation Autism Research Initiative
597 (SFARI) database in 2023 (Abrahams et al. 2013) (Supplementary Table 7). These and other novel
598 predictions indicate that a straightforward model based on IDR features could offer predictive power for

599 identifying new ASD genes.

600
601

602 Discussion

603 We measured evolutionary conservation of nearly 150 bulk molecular features (Zarin et al. 2019)
604 (Supplementary Table 1), including motif and repeat content and diverse physicochemical properties, in
605 nearly 20,000 IDRs within the human proteome. We show, through both clustering (Figure 3,
606 Supplementary Figure 5) and classification (Figure 4, Figure 5, Figure 6) analysis, that combinations of
607  these molecular features are associated with diverse biological functions and localizations. Hence, by
608 recasting the sequences of IDRs into evolutionary conserved molecular features, we found a way to connect
609  human IDR sequences to function without relying on multiple sequence alignments, which are not usually
610  observable for IDRs. Our results lend further support to the idea that selection for or against specific features
611  suggests a link between biological function and IDR sequence, as previously established for budding yeast
612  and Drosophila IDRs (Singleton & Eisen 2023; Zarin et al. 2019). Indeed, our feature-based concept has

613  been increasingly recognized and used to gain further insight into function and localization of IDR-
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614  containing proteins (Cohan et al. 2022; Duffy et al. 2022; King et al. 2024; Loureiro et al. 2021; Millar et al.
615  2023).

616 Using the patterns of conservation in IDRs, we established a “map” of the human IDR-ome, in
617  which we can explore groups of IDRs with similar function or location. The map of the human IDR-ome
618 introduced here represents a resource for discovery of functional elements for vast parts of the human
619 proteome, which have thus far eluded standard bioinformatic approaches. We find that the map of the
620 human IDR-ome recapitulates some known biological functions or processes mediated by IDR-containing
621  proteins, such as overrepresentation of GO terms related to DNA- and RNA-binding, but also sheds light
622 on new or under-appreciated functions of IDRs, including their involvement in development and
623  transmembrane transport. For around 40% of the clusters, there are no known GO term annotations, which
624 likely reflects some of the biases and difficulties associated with functional annotation (Kustatscher et al.
625 2022), particularly for proteins having a large fraction of disordered residues. Importantly, the “unexplored”
626 clusters of IDRs with similar conserved molecular features but no known function are prime candidates for
627 discovering new biology. For instance, a limited set of IDR-containing proteins would need to be examined
628 in order to assign plausible functions to other IDRs in the cluster. Together, our work provides, to our
629 knowledge, the first comprehensive functional map of the human IDR-ome based on evolutionary
630 signatures. The map reveals known and novel combinations of specific molecular features that drive the
631  rich complexity and promiscuous nature of IDR functions.

632 Our initial functional map of the human IDRs stands to be improved in several ways. First, it is
633 based on a curated list of molecular features that is limited. The list of relevant molecular features will likely
634 increase in the future, and efforts have already been taken to discover functionally relevant features in a
635  systematic and unbiased way using self-supervised deep learning approaches (Lu et al. 2022). Second,
636  we used a combination of unsupervised (clustering) and supervised (classification using FAIDR) analyses
637  to make predictions about IDR function. In part, we rely on this two-stage approach because the numbers
638  of IDRs with some known function (such as those found in the nuclear pore, Figure 3) is too small (n = 64)
639 totrain a standard supervised classifier in a space of nearly 150 features. Future approaches such as semi-
640  supervised, transfer-learning or data augmentation (Lee et al. 2023; Lindorff-Larsen & Kragelund 2021; Lu

641  etal 2022; Pang & Liu 2023) approaches will likely address these challenges.
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642 Understanding the impact of disease mutations in IDRs is a key area of research. Outside of IDRs
643  with strong positional alignments, which often conditionally fold (Alderson et al. 2023; Piovesan et al. 2022),
644 it is challenging to interpret disease-associated mutations that map to IDRs, which have no stable tertiary
645  structure and, by corollary, limited positional sequence conservation. Here we looked at overrepresentation
646  of genes involved in two diseases in which IDRs feature prominently, autism spectrum disorder (ASD) and
647 cancer (Tsang et al. 2020). The map of the human IDR-ome reveals specific clusters that show significant
648 enrichments in ASD-risk and cancer census genes. Based on these results, we hypothesize that mutations
649 that disrupt conserved features of IDRs in those clusters are more likely to have a pathological impact, a
650 focus of our future research. Functional prediction within IDRs at the residue level is a rapidly growing
651 research area (Barik et al. 2020; Hu et al. 2021). However, these efforts focused on relatively few broad
652 functions, such as protein binding, DNA binding, RNA binding, and linker or ‘entropic chain’, ‘assembler’,
653 ‘scavenger’, ‘effector’, ‘display site’, ‘chaperone’ (Pang & Liu 2022), Residue-level prediction approaches
654  that can more closely approach the diversity of IDR function we observed in the proteome will likely improve
655  the resolution of the initial map presented here, leading to insight into the functional impact of disease
656  mutations.

657 Although certain IDRs cluster together and are associated with equivalent biological functions, the
658 clusters alone do not precisely inform on specific aspects of IDR function. Which of the evolutionary
659 conserved molecular features are responsible for function? In full-length proteins with multiple IDRs, do one
660 or more of the IDR participate in the biological function? To answer these questions, we used FAIDR to
661 predict association with 148 different GO terms, stratified into 19 functional categories, across the human
662 IDR-ome (Figure 4, Supplementary Table 6). Our predictions reflect the rich complexity of IDR-driven
663 functions, suggesting that over 60% of IDRs could be assigned to more than one functional category. Here,
664  however, we caution that even a modest rate of false positives would impact the number of the predicted
665  functions. We therefore prefer to consider these predictions in a qualitative way and use them to discover

666  and contrast features strongly associated with different IDR functional categories (Figure 5).

667 An active area of IDR research focuses on the role of particular IDRs in phase separation and
668  formation of biomolecular condensates (Borcherds et al. 2021; Rostam et al. 2023). Although methods exist

669  to predict the phase-separation propensity of an IDR from its amino-acid sequence (Cai et al. 2022; Chu et
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670 al. 2022; Hadarovich et al. 2023; Vendruscolo & Fuxreiter 2023; Vernon & Forman-Kay 2019), it remains
671 challenging to understand how condensates achieve specificity and why certain IDRs localize to certain
672 condensates. We showed that FAIDR can not only reliably predict which IDRs will localize to the nucleolus,
673 nuclear speckle, or stress granule (AUC values of ca. 0.7 on independent test sets), but can also reveal
674  which conserved molecular features are responsible for specificity. Our performance, with AUC values from
675  0.66t00.73, is near the state-of-the-art (AUC range 0.52-0.76) reported from four different algorithms when
676 tested on a larger set of proteins that localize to nuclear punctae (Hadarovich et al. 2023). A particularly
677  striking example of our feature-based approach is provided by the protein GTF2F1, which is predicted to
678 localize to the nucleolus and whose molecular features therefore resemble other nucleolar-predicted IDRs.
679 However, GTF2F1 contains a significant enrichment in conservation of the molecular feature ‘RGG motifs’,
680  which is otherwise associated with stress granule-localizing IDRs. The RNA Granule Database lists
681 GTF2F1 as a low-confidence potential stress granule protein (tier 4), which could suggest that GTF2F1
682  shuttles between nucleoli and stress granules depending on specific cellular conditions. While localization
683 by binding of folded domains to specific targets likely contributes, considering the evolutionary conserved
684 molecular features of IDRs can provide key insights into the complex interactions that underlie the specificity
685 of biomolecular condensates, as well as possible modes of regulation.

686 Finally, we note that widespread association of bulk molecular properties in IDRs with diverse
687 biological functions suggests that the evolutionary characterization of IDRs could be expanded in scope
688  with additional biophysical properties. For example, recent efforts to characterize the structural ensembles
689 of the human IDR-ome using coarse-grained molecular dynamics simulations found some association
690 between chain compaction and biological function (Lotthammer et al. 2023; Tesei et al. 2023). Here, by
691  considering the evolutionary conservation of sequence-based molecular features, we find strong and wide-
692  ranging functional association for nearly 50% of human IDRs. Based on our results, we anticipate that
693  placing IDRs within a higher-dimensional evolutionary and biophysical space will be a key step toward an
694  improved understanding of the molecular basis for cellular function of intrinsically disordered protein regions

695  (Holehouse & Kragelund 2023).

696
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697 Methods

698  Prediction of intrinsic disorder and boundaries definition

699  The reference human proteome assembly was downloaded from UniProt (Proteome: UP000005640) in
700  August 2019. We note that “miniprotein” products of short open reading frames, many of which are likely to
701 contain IDRs, are increasingly recognized as functionally important constituents of the human proteome
702  (Duffy et al. 2022). However, such “miniproteins” are not yet included in the reference proteome and were
703  thus not considered here. SPOT-Disorder predictor v1.0 (Hanson et al. 2017) was used to predict the per-
704 residue probability of intrinsic disorder for every protein sequence in the human proteome. We used SPOT-
705 Disorder v1.0 because it provided the closest agreement with NMR-determined disordered content (Dass
706 et al. 2020; Nielsen & Mulder 2019) and is among the most accurate predictors overall (Necci et al. 2021).
707 A disorder probability above 0.5 was used to define disordered residues. Only protein regions with 30 or
708 more consecutive residues that were predicted to be intrinsically disordered were considered as IDRs in alll

709  subsequent analyses.
710
711  Computation of IDR fractions and length distribution

712  To compute the distribution of IDRs in the human proteome, we used the SPOT-Disorder predictions as
713 described above to identify IDRs of 30 or more consecutive residues. Any protein without an IDR was
714  classified as a folded protein. Fully disordered proteins were defined as containing 95% or more disordered
715 residues. Mixed proteins, which contain both IDRs and folded domains, were filtered to test if IDRs are
716  more likely to appear as terminal regions or as linkers that are interspersed between folded domains. We
717  mapped folded domains to each protein via the PFAM database (Mistry et al. 2021) and then determined
718 the relative location of the IDR(s). The histogram of IDR lengths was fit to a power-law distribution (y = Ax®
719  + c) using the scipy package in Python. The fitted parameters and the associated errors derived from the

720  covariance matrix are: A= 7.87 £ 0.28 x 10°, b=-1.55+0.01, ¢ = -9.38 + 1.91.

721
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722 Computation of positional sequence conservation in IDRs

723 Positional sequence conservation was computed on alignments of human IDRs to IDR sequences from
724  orthologous species (see Retrieval of orthologous protein sequences). We computed positional
725 conservation across MSA columns using a modified metric of Shannon’s entropy, the so-called property
726 entropy as previously introduced by Capra and Singh (Capra & Singh 2007). Gaps were ignored in the
727 computation of positional conservation. As the gap content of IDRs is relatively high compared to folded
728 domains, and the metric considers only the alignable columns, it grossly overestimates the positional

729  conservation of IDRs.
730

731  Computation of sequence similarity between IDRs in the IDRome

732  We ran BLASTP (Altschul et al. 1990) to determine to which extent human IDR sequences have positional
733  similarities with one another. BLASTP was run with E-value cut-off values of 0.0001. Any hit within the
734  threshold (other than to query) was considered homologous. For the IDP sequence analysis
735 (Supplementary Figure 10), for each IDP cluster we constructed a BLASTP sequence library with the
736 corresponding IDP sequences. We then subjected each IDP in the cluster to a BLASTP search. For any hit
737  with an alignment coverage of at least 50% of the query sequence length with at least 30% sequence
738 identity, we computed the product of these two values (alignment coverage * sequence identity) as a proxy
739 metric to reflect the degree of positional sequence similarity. We ignored any alignment gaps. As a
740 numerical example, an alignment of two sequences with 100% (50%) coverage of the query sequence
741 length and 80% (30%) sequence identity would yield a value of 0.80 (0.15). For any IDP sequence whose
742  alignment to another IDP did not meet the above two criteria, or was not reported in the BLASTP output
743  file, we assigned a value of zero. We then plotted these data as a heat map, and we imposed symmetry on
744  the heat map by taking the larger value between (i,j) and (j,i) and setting this as the value for both
745  coordinates in the final plot. The range of values is between 0 and 1, and thus reflects the similarity of IDP
746  sequences in the respective cluster as measured by a conventional sequence alignment approach
747  (Supplementary Figure 10). For the corresponding plot based on evolutionary signatures of these IDPs,
748  we computed the cosine similarity metric, defined as the dot product of the two vectors divided by the
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749 product of the norms, between each IDP sequence in the cluster and all other IDP sequences in the same
750 cluster. The input vectors were the 144-dimensional evolutionary signatures. In this representation, IDP
751  sequences with similar (different) evolutionary signatures have values closer to 1 (0) (Supplementary
752  Figure 10). For both the alignment and evolutionary signature representations, the matrices are sorted

753  alphabetically by UniProt ID on the x and y axes.

754
755  Molecular features definition and computation

756  The majority of the molecular features used in this study were previously defined and summarized in
757  Supplementary Table S4 of the work by (Zarin et al. 2019). Definitions and details of computation of the
758 additional features introduced in this study are listed in Supplementary Table 1, which also documents the
759 features that have been modified or adapted for calculation speed purposes. For example, we updated the
760 list of SLiMs (Kumar et al. 2022), made it compatible with the human proteome, and added additional
761 features that have been reported as important for human IDRs in the recent literature (Supplementary
762  Table 1) (Banani et al. 2017; Bremer et al. 2022; Chavali et al. 2017, 2020; Kuechler et al. 2020; Lyon et

763  al. 2021; Martin et al. 2020).

764 We introduced several methodological changes to work with IDRs in the human proteome. First,
765  the human proteome is roughly five times larger than the yeast proteome and significantly more complex,
766  which is reflected in imperfect annotations of orthologous and paralogous genes to human genes in other
767 species. Second, it is difficult and time-consuming to obtain reliable inferences of phylogenetic trees of
768  metazoan species. Hence, the elaborate protocol for null hypothesis computation based on inference of
769  evolutionary distances from a phylogenetic tree outlined by (Zarin et al. 2019) constitutes a bottleneck for
770 a fast and efficient computation of human IDR evolutionary signatures. Therefore, we resorted to a
771  substantially simplified protocol, as described in the sections below. The modified protocol provided similar

772  results as the original method (Supplementary Figure 3, Supplementary Figure 4).
773
774  Retrieval of orthologous protein sequences
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775 The ‘Retrieve/ID mapping tool’ from UniProt was used to obtain Ensembl gene identifiers for every UniProt
776 identifier that is associated with each canonical protein sequence of the human proteome. The Ensembl
777  gene identifier was used in a call to the Ensembl API (Method: GET homology/id/:id) to dynamically access
778 all orthologous protein sequences that map to the given Ensembl gene identifier. The retrieved sequences
779  were subsequently filtered to keep only those that were annotated as orthologous to the human Ensemble
780 protein identifier and had the amino-acid sequence that matched to the UniProt query sequence. The check
781  for the exact match to the canonical UniProt protein sequence was necessary, as one Ensembl gene
782 identifier matches to several different Ensembl protein identifiers, and annotations based on identifiers
783 alone (UniProt ID to Ensembl protein ID) may not always be accurate. Beyond this check, we relied on the
784  Ensembl annotation of orthology to the canonical human protein sequence.

785

786 Defining orthologous IDRs and computing evolutionary distance

787 Following the retrieval of orthologous protein sequences, sequence alignments were computed using
788 MAFFT (Katoh & Standley 2013), with the human protein sequence used as a reference. The IDR regions
789  from orthologous sequences were extracted based on the sequence alignments and using the IDR
790 boundaries as defined for the human sequence, as performed previously for yeast proteins (Zarin et al.
791 2019). For each orthologous IDR sequence, an estimate of a pairwise evolutionary distance to the human
792 IDR sequence was inferred. To this end, we used the Felsenstein 1981 model (F81) (Felsenstein 1981)
793 model applied to proteins (Lemey et al. 2009). Under this model, we can compute the probability, p, that

794  any two sites are different at scaled evolutionary distance, d, in substitutions per site:

796  where m are the amino-acid probabilities in the extant human IDR sequences, i indexes the alphabet of
797 20 amino acids, and the 20 x 20 substitution rate matrix P is defined as in the F81 model (Felsenstein

798  1981) applied to proteins:
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e P +mi(1—ePv) ifi=j
i ) } 2

799 Pl-~v=
i) { mi(1—e ) if i#j

1

= n 2
1=z 7

800 p (eq 3)

801  where v represents the expected number of amino-acid changes per site. S can then computed as given
802 in eq 3. To estimate p, the probability that two sites are different, we simply divide the total number of
803 different positions between the human IDR and an orthologous IDR by the total number of aligned positions,
804  so that gapped positions (i.e., indels) were ignored in the enumeration of p.

_ N(diff.AA)
"~ N(id.AA+dif f.AA)

805

(eq 4)

806 Given the fraction of positions that differ between the reference human IDR and the query orthologous
807 IDR (our estimate of p), and B as defined above, the estimate of the evolutionary distance d is obtained
808 by substituting and rearranging eg. 1 as:

809 d= w (eq 5)

810 Note that this evolutionary distance (d) is a method of moments estimator (Lemey et al. 2009). We highlight
811 that this simplified method does not require inference of a phylogenetic tree, or any other information from
812 the alignment other than the proportion of sites with different amino-acid identities between the reference

813  (human) and the query orthologous sequence.
814

815  Orthologous sequence selection

816  To select a set of orthologous sequences that give a wide distribution of approximate evolutionary distances
817  (see above) to the corresponding human IDR sequence, we employed an iterative heuristic. The human
818 IDR sequence was used as a reference in all comparisons. In the first steps, any orthologous sequences
819 that were length_factor “fold too short or too long relative to the reference were discarded. A length_factor

820  of 3 was used in all comparisons. On the remaining sequences, we first calculated a pairwise distance from
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821 the reference using the approach described above. The distance d was computed as given in eq 5, with 8
822  computed from amino acid frequencies in the human IDR-ome as given in eq 3. Distances were capped at
823 avalue of 10 in instances where no amino-acid matches were found between the two compared sequences,
824  and when all amino-acid positions were equivalent the distances were set to 0. Any sequences with too
825 large (10) or too small (0) a distance from the human sequence were automatically discarded. To obtain a
826  sufficiently diverse set of orthologous sequences, we next employed a heuristic that selects for orthologous
827  sequences that are sufficiently distant from the reference human sequence and from one another. Two
828 parameters control the heuristic: 1.) d_ratio, the ratio of distance from the closest neighbor in approximate
829 evolutionary distance space relative to the reference, and 2.) d_total, the total sum of approximate
830 evolutionary distances of orthologous IDR sequences from the reference. To select for sufficient divergence
831 and spread, only the sequences that are at least d_ratio further away from the reference than from the
832 closest distance neighbour were kept. Furthermore, the sequences were collected until the maximum of
833  the total sum of distances (d_total) from the reference was reached. Setting d_ratio to a smaller value
834 imposes a strict restraint on the spread of orthologous sequences from one another in approximate
835 evolutionary distance space. On the other hand, setting d_total to a smaller value imposes a stricter restraint
836 on the tolerated divergence of the sequences from the reference. We used d_ratio of 5 and d_total of 30 in
837 all comparisons. Approximately 2,000 human IDRs were removed from our analysis due to a lack of
838 orthologous sequences or too high or too low sequence similarity among orthologs, amounting to a total of

839 19,032 human IDRs on which our protocol could be applied.

840

841  Simulated null expectation

842  We substantially changed simulations of null expectation relative to the approach originally applied to yeast
843  (zarin et al. 2019), as detailed below. In addition, Zarin et al. preserved positionally conserved short linear
844  motifs (SLiMs) in simulations of null expectations, which led to an underestimate of the evolutionary
845  conservation of SLiMs. Here, we removed any such conservation requirements for SLiMs. Our simulation
846  of the null expectation was based on the estimated pairwise evolutionary distances between the human

847 IDR sequence and each orthologous IDR sequence that met the specified quality criteria (see Orthologous
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sequence selection). Substitutions and insertions and deletions were simulated independently and
combined at the end.

First, given an estimated distance of an orthologous IDR sequence from the reference human
sequence d, and i and B (defined by amino-acid frequencies in the extant human IDR sequences, eq 3),
a substitution matrix P was computed based on the F81 model (Felsenstein 1981) as described in eq 2.
For each orthologous IDR sequence, a set of 1000 simulated sequences were computed from the reference
human IDR by amino-acid substitution at each position. The rate of amino-acid substitutions (i->j) were
given by the probabilities as defined by P (eq 2). The simulated sequences initially all had lengths that were
equal to the reference human IDR.

In the next step, insertions and deletions (henceforth indels) were added to each sequence

following a Poisson process. Given d, the indel rate (Rinder) Was defined as:

1
Ringer = 20 d (eq 6)

A Poisson process was used to get the positions in the sequence at which an indel occurs given A=Ringel*
length_seq. At every indel position in the sequence, the indel type was assigned at random to either
‘insertion’ or ‘deletion’ with equal probability. The size (k) of an indel at position was assigned from an

empirically derived distribution:

k—Z

Z%o=1 n—z

P(k|z) = (eq 7)

where z = 1.5, as previously established (Cartwright 2006; Nguyen Ba et al. 2012). Residues within the
inserted segments were drawn according to the amino acid probabilities found in human disordered

regions (1T).

Computation of evolutionary Z-scores
The molecular features were computed for every human IDR sequence, as well as each of the selected

orthologous IDR sequences. In total, 144 different features were computed for each sequence (see above,
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875 Molecular features definition and computation). The features were also computed for each sequence of the
876  sets of 1000 simulated IDR sequences. The mean Z-score of a feature was obtained by taking the difference
877  between the observed mean of the feature for the selected orthologous IDRs (x) and the mean of the
878  simulated means, i.e., the mean of 1000 means from the simulated distributions of the feature, (1),
879  normalized by the standard deviation of the simulated means (o), as introduced previously by Zarin (Zarin
880 etal 2019).

881
882 7=t (eq 8)

883

884  Z-scores post-processing and clustering

885  The computed Z-scores measure evolutionary conservation of the molecular features. Prior to any
886 clustering, we removed any molecular features that yielded no Z-scores for any of human IDRs. The inability
887  to compute a Z-score arises when a feature is absent in IDRs of the selected extant species, or due to
888 numeric issues when computing a standard deviation under the null hypothesis for features that are rare
889 and difficult to generate with a simulated null model (e.g., typically SLiMs with long regular expressions and
890  some rare homorepeats, e.g., Trp homorepeat).

891 Next, to hierarchically cluster evolutionary Z-scores for all human IDRs we used Cluster3.0 (de Hoon

892 et al. 2004). We used the Cluster3.0 interface to first filter the data to remove any entries, that is IDRs,

893  which did not have any significant Z-scores, i.e., Z-scores with absolute value of 3 or more. We then
894 proceeded with default settings for “Hierarchical” clustering using uncentered correlation distance as a
895 similarity metric and average linkage as a clustering method. We calculated weights and clustered IDRs
896  (“Genes” in Cluster3.0 interface). The clustering output was visualized using JavaTreeview (Saldanha
897  2004), which allows for interactive exploration and export of clusters of interest.

898 To select the clusters for further analyses, we relied on both manual selection from the displayed
899 hierarchical tree calculated by Cluster3.0 (e.g., Figure 3), as well as on an automated selection of clusters
900 given a fixed distance. The distance refers to the uncentered correlation distance between the vectors

901 representing evolutionary Z-score of human IDRs, which is the same distance used in the hierarchical
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902 clustering by Cluster3.0. The automated selection was performed on a range of clustering thresholds from
903 d=0.1tod =0.9in increment steps of 0.1 (Supplementary Table 3). The automatic approach enables a
904 more rapid analysis of data following the initial clustering step and any subsequent re-clustering using a

905  clustering method of choice.

906 Details of the GO analyses on the clusters and definitions of "broader functional categories” are given
907 below (see Gene ontology overrepresentation, Definition of functional categories). To confirm that the
908 functional overrepresentations that we identified were not the result of our potential bias in the selection of
909 clusters, we also tested proteins extracted from automatic clusters for GO overrepresentation
910 (Supplementary Table 2). Because it can be performed at a range of distance thresholds, the automatic
911 analysis often reveals functional and feature enrichments that might elude the limited exploratory manual
912 analysis of the IDR-ome map (Supplementary Table 2). Regardless of the distance threshold used to
913 define and extract the automatic clusters, a minimum of 30% of the clusters show significantly
914  overrepresented GO terms for molecular function, cellular component, or biological process
915 (Supplementary Table 2). This suggests that evolutionary conserved molecular features can be used to
916 effectively cluster the human IDR-ome and reveal functionally related IDRs. A comprehensive analysis of
917 selected clusters using both exploratory analysis and automatic clustering, GO term overrepresentation,
918 and enrichment in positive or negative Z-scores of molecular features relative to the background of the
919  entire IDR-ome is given in Supplementary Table 2.

920

921 FAIDR

922  The FAIDR model was used as published in its original version (Zarin et al. 2021), with adaptations to
923  support training models iteratively on sets of different functional categories and testing each model on
924  independent test sets. FAIDR was applied to our set of 19,032 IDRs from 11,640 unique full-length proteins,
925  of which 8,353 had annotated GO terms. The GO annotations on the protein (i.e., gene) level and the
926  associated evolutionary signatures of the IDRs were used as training data for FAIDR. The GO terms were
927  obtained from the PANTHER database (Mi et al. 2010) (release PANTHER18.0, downloaded in October
928  2022). We built separate FAIDR models for each of the 601 GO terms listed in Supplementary Table 6.

929  To comprehensively test the performance of the FAIDR models, for each model we took bootstrap test
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930 samples from the available data and performed model training on the remainder of the data. This allowed
931  us to assess the performance on the entire dataset, whilst ensuring that the performance was tested on
932 examples that had not been seen in training (Supplementary Table 6, Methods). We defined a threshold
933 for a reliable FAIDR prediction as a model that on the test set had an AUC (area under the receiver
934  operating characteristic curve) value above or equal to 0.7 and PPV (positive predictive value) above or

935  equal to 0.4 (Figure 6A).
936
937  Cross-validation of FAIDR models and functional annotations on the proteome level

938 Having established that we can successfully identify which IDRs and which molecular features are
939  associated with different gene ontology (GO) terms, we next employed FAIDR to make functional
940  annotations for all IDRs in the human IDR-ome (Figure 6C). To this end, we performed cross-validation of
941 601 FAIDR models trained on 600 GO terms, obtained from PANTHER as mentioned above. For training
942 of FAIDR models, GO term annotations on gene (i.e., protein level) were used. These were assigned as
943 given in the PANTHER database. Upon training, FAIDR models were used to compute the probability of
944  association of each IDR in the proteome with each of the GO terms (Zarin et al. 2021). Only the models

945  trained on a minimum of 100 distinct instances were considered.

946 For each GO term (i.e., each FAIDR model), the full dataset consisted of 19,032 IDRs. These IDRs
947  were divided into training and test sets six times using sampling with replacement. In each of the six
948 iterations we held out approximately 15% of the IDRs from the positive class (class 1), which had not yet
949 been included in any of the previous test sets. The negative class in each iteration varied as it was set to
950 be three times bigger than the current positive set. This ensured that the positive class of test sets in each
951 iteration were distinct and representative of different portions of the full dataset. After evaluating FAIDR's
952  performance on the current test set using ROC analysis, we reintegrated it back into the dataset.
953  Consequently, in the next iteration, a different 15% of the positive class of the full dataset was chosen as
954  the test set, which allowed for comprehensive cross-validation of FAIDR across the entire proteome. This
955  approach ensured a robust evaluation of the model's effectiveness and minimized potential biases.

956 Cumulative ROC statistic of all six iterations was used to establish a threshold for performance of each
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957 FAIDR model. For functional annotations of human IDRs across the proteome, only the models for GO
958 terms that achieved an AUC of 0.7 or higher and a PPV of 0.4 or higher were used, which amounted to 148

959 GO terms.

960 To assign human IDRs to each of 148 GO functional terms, we relied on likelihoods computed by our
961 regression model for each IDR (Zarin et al. 2021). Based on the receiver-operating-characteristic (ROC)
962  analysis from testing of each model on held-out data, we defined the threshold value of likelihood that
963 minimized false positives while maximizing true positives (Supplementary Table 6). To further minimize
964 the chance of false positive annotations, we only accepted an annotation of a function for a protein if the
965 computed probability for the protein was larger than or equal to twice the optimal threshold likelihood. In
966 addition, we only annotated IDRs to GO functional terms if computed probability exceeded 0.6 in case of
967  one or two IDRs in a protein and 0.5 in case of more than two IDRs in a protein. The final sets of functional
968 annotations were pruned to remove redundancies stemming from similar performances of FAIDR models
969 on closely related GO terms. Finally, the annotated GO terms were aggregated to a set of 19 broader
970 functional categories, as summarized in Supplementary Table 6. An annotation of an IDR to a category
971  was considered as “known” if the protein from which the IDR originates has been previously associated
972  with the category. If the category was assigned de novo to a protein and an IDR in the protein was given
973 high probability for the function (see above), the annotation was considered “new”. The 19 broader
974  functional categories (Figure 6) were defined as detailed below. In instances of multiple annotations,

975 pseudo counts were added to the total number of IDRs to compute the displayed percentages.
976

977  Gene ontology overrepresentation

978  As mentioned in the FAIDR section, the GO term annotations were extracted from the PANTHER database
979  (Mi et al. 2010). To compute GO term overrepresentations for IDRs in select clusters, we used GO
980  annotations available on the protein (gene) level. We considered a set of proteins (genes) in a cluster, i.e.,
981  we did not count any duplicates of proteins that might have more than one IDR in the same cluster. To
982  compute overrepresentation, the set of proteins from a cluster was compared against a background of the

983  human standard proteome set, filtered to include only the proteins that contain long IDRs (defined as greater
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984  than or equal to 30 consecutive amino acids). The human proteome assembly was downloaded from
985 UniProt (Proteome: UP000005640) in August 2019. Overrepresentation statistics were computed using the
986  standard Fisher's test with Bonferonni correction for multiple testing. The correction was applied in two
987  steps to take into the account testing of multiple GO terms and testing of multiple clusters. The
988 overrepresentation statistics and corrected p-values are available in Supplementary Table 2. In Figure 3
989 and Supplementary Figure 5, the clusters are labelled with overrepresented GO term descriptions, which
990 have been abbreviated and represented in a shorter form where applicable.
991
992  Definition of functional categories and grouping of GO terms
993  To systematize the GO terms into broader categories, we consulted GO hierarchy (ancestor charts), GO
994  subsets, and GO co-occurring terms. For GO overrepresented terms from the clustering analysis, we
995 defined 23 broader functional categories (Supplementary Table 2). We applied the same strategy to group
996 GO terms predicted to individual IDRs by FAIDR (see Cross validation of FAIDR and functional annotations
997 on the proteome level). From 148 GO terms, we converged on 19 broader categories that we defined and
998 enumerated as given in Supplementary Table 6 and Figure 4C. For instance, we grouped subcomponents
999 of a cellular location (e.g., nuclear lumen, nuclear pore complex, nucleolus, nucleoplasm) into a higher
1000 order category “Nucleus, #7”. While such decisions were relatively straightforward for cellular locations,
1001 some functions and processes were more challenging to neatly subscribe to only one broad category. For
1002 instance, we grouped “GTPase regulator activity” term with other cellular signaling related terms into
1003 category “Signaling, #8”, based on its frequent co-occurrence with the signaling related terms. However,
1004  when looking at the ancestor chart for the term, it is apparent that it could be alternatively joint with terms
1005 related to “enzyme activity” or “catalysis” into a different broader category. This example illustrates that our
1006 categorization features an inevitable degree of subjectivity and will be subject to future updates and

1007  improvements.
1008

1009 validation of FAIDR performance on independent datasets of disease-associated genes
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1010  To validate the performance of FAIDR on autism-spectrum disorder (ASD) associated genes, we utilized a
1011 leave-one-out approach. We iteratively trained the model on IDRs from 101 out of 102 ASD risk genes
1012  defined by (Satterstrom et al. 2020) (hereafter ‘ASD risk dataset’). We under sampled the negative data set
1013  to include IDRs from 400 randomly selected proteins from the human proteome. Based on the ROC from
1014  testing on held-out data, we defined the threshold value of likelihood that was used to assess predictions
1015 of ASD-risk proteome-wide (Supplementary Table 7). The top 10% of predictions were cross-validated
1016  against the SFARI (Simons Foundation Autism Research Initiative) dataset (Abrahams et al. 2013). This
1017 allowed us to evaluate the predictive power of FAIDR on an independent dataset specifically focused on

1018  ASD-associated genes.

1019 Additionally, to assess the performance of FAIDR on genes associated with cancer, we also used
1020  two separate datasets from the COSMIC database: Cancer census and Cancer classic (Sondka et al.
1021 2018). Firstly, we curated the positive class of Cancer census dataset by eliminating any redundant
1022 instances of IDRs that were also present in the positive class of the Cancer classic dataset. Subsequently,
1023  we utilized the Cancer classic dataset with 409 IDRs in the positive dataset to train FAIDR and the Cancer

1024  census dataset with 723 IDRs for testing.

1025
1026  Prediction of condensate localization and feature specificity

1027  To evaluate FAIDR's effectiveness in predicting proteins associated with biomolecular condensates, we
1028 utilized two distinct datasets for each condensate category. The training datasets comprised 229, 165, and
1029 519 proteins that were experimentally validated to localize to stress granules, nuclear speckles, and the
1030  nucleolus, respectively (Youn et al. 2019, Lu et al. 2019). The test datasets consisted of 32 (cytoplasmic
1031  stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234 (nucleolus, GO:0005730) unique
1032  proteins annotated for localization to the respective condensates in Gene Ontology Browser
1033  (https://www.ebi.ac.uk/QuickGO/). Proteins present in both training and test sets were excluded from the
1034  latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of 2,917 proteins for

1035  stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we assessed the
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1036  performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and 12,578 for
1037  stress granule, nuclear speckles and the nucleolus, respectively.

1038

1039 Code and data availability

1040  This study made use of UniProt, ENSEMBL, PANTHER, SFARI, RNA Granule Database and Human
1041 Protein Atlas databases, as specifically referenced throughout. Code and example files to compute all the

1042  steps described in the methods are available on GitHub (https:/github.com/IPritisanac/IDR_ES/). The

1043 hierarchically clustered evolutionary Z-scores of human IDRs (i.e., the functional map), tutorial on the
1044  exploratory and automatic analysis of the map, IDR clusters, IDR-ome sequence and alignment files, FAIDR
1045  t-statistic and target files for top predicted GO terms are available at Zenodo
1046  (nhttps://zenodo.org/records/10812875).
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Figure 1. Extent and distribution of intrinsic disorder in the human proteome. (A) Break-up of the
human proteome by the protein intrinsic disorder content based on the SPOT-Disorder predictor (Hanson
Jetal 2017 & 2018). A minimum of 30 consecutive disordered residues was used as a criterion to define
an IDR. The pie chart is stratified to emphasize the extent of intrinsically disordered regions as a percentage
of the total protein sequence, i.e., 50-95% means that between 50% and 95% of the entire protein sequence
is intrinsically disordered. It is evident that the majority of proteins in the human proteome have IDRs, with
a sizeable fraction (15%) containing more than half of the sequence in disordered regions. (B) Distribution
of lengths of human IDRs. The IDR lengths follow a power-law distribution (Ax° + c), with A, b, and ¢ as
given on the plot. (C) Distribution of intrinsic disorder in the human proteome. Fully disordered and folded
proteins are shown in green and pink, respectively. Mixed proteins that contain both IDRs and folded
domains are separated into terminal IDRs (yellow) that are located at the N- or C-termini of a protein, and
linker IDRs (blue) that are between folded domains. (D) Comparison of sequence similarity in alignments
as measured by the average Jensen-Shannon divergence over alignment columns with the background
distribution given as observed in extant human IDR sequences. The average positional conservation when
aligned to ENSEMBL orthologs is shown in a box plot for IDRs, the entire human proteome, and PFAM
domains (Mistry J, et al. 2021). Note that gaps, which are more frequent in IDRs when compared to PFAM
domains (Khan T, et al. 2015, Chow CFW, et al. 2023), were ignored in the computation of positional
conservation and thus the conservation for IDRs as shown is an overestimate. The boxes extend to the
upper and lower quartiles, and the lines within the boxes corresponds to the median value.
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Figure 3. A global map of human IDRs obtained through clustering of evolutionary signatures. (A)
Hierarchical clustering of 19,032 human IDRs (y-axis) based on the evolutionary conservation of 144
different molecular features (x-axis). The molecular features are grouped into six different categories
(physicochemical, repeats, SLiMs, homorepeats, condensates, or compositional biases). This global map
of the human IDR-ome shows conservation Z-scores, with some of the dominant molecular features
annotated with white circles and numbers, described in the legend (right). A positive or negative Z-score,
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respectively, is defined by a higher or lower value of a mean of a molecular feature over orthologous IDRs
than expected based on a simulation of an absence of evolutionary conservation. White rectangles indicate
areas of selected clusters featured in panel B. (B) Clusters that are defined by strong patterns of Z-scores
often contain a statistically significant overrepresentation of GO-term molecular functions, biological
processes and/or sub cellular localizations, as listed here for select examples in areas (i), (ii), (iii) and (iv)
from the panel A. A detailed view of statistically overrepresented terms and features for the rest of the map
are available in Supplementary Figure S5. Complete information on statistics of functional
overrepresentation associated with each cluster selected manually or extracted using an automatic protocol
are available in Supplementary Table 2.
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Figure 4. Predicting functions and locations of human IDRs. (A) Each point represents held-out data
performance of a classifier for one of 600 GO terms covering a broad range of molecular functions,
biological processes, and cellular localizations (Supplementary Table 4). The X-axis represents positive
predictive value (PPV) and the y-axis represents area under the receiver operating curve (AUC) on the
held-out data. The models corresponding to data points in orange (PPV > 0.4 and AUC > 0.7) were deemed
sufficiently reliable for functional annotations of IDRs proteome-wide (as summarized in C and D). (B)
Receiver operating characteristic (ROC) curve for classification of human IDRs to a representative set of
GO terms. The performance is shown on held-out data. The terms were selected to display a variation in
the FAIDR performance on the binary classification tasks. In addition to the protein level classification, the
FAIDR classifier provides probabilities of GO term association for individual IDRs in the protein. These IDR
probabilities were used in C and D to annotate human IDRs to a broad set of enumerated and color-coded
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1518 functional and location categories. (C) A break-up of annotations for all human IDRs to broad functional
1519  and location categories as summarized in Supplementary Table 4 (Tab D). Note that many IDRs get
1520  assigned to more than one category (see E). In (D) the fraction of “known” annotations is given in white
1521  boxes. An annotation of an IDR to a function or location was considered as “known” if the protein from
1522  which the IDR originates has been previously associated with the category. If the functional or location
1523 category was predicted for a protein not previously annotated with that category, and an IDR in the protein
1524  was given high probability for the association (see Methods), the annotation was considered “new”. See
1525 also Supplementary Figure S12. (E) Each section of the chart represents that fraction of IDRs with a given
1526 number of predicted annotations. Only 28% of human IDRs get assigned to a unique functional or location
1527 category. (F) Correlation between the categories expressed as a fraction of IDRs shared between any given
1528 two categories. The diagonal is set to 0. Some of the most frequently shared functional annotations are
1529 those associated with various aspects of RNA (5) and DNA metabolism (3 & 4).
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1531  Figure 5. Identifying the molecular features that are predictive of IDR functions and locations. Left
1532 heat map represents t-statistics summarizing the predictive importance of different molecular features (y-
1533 axis) across GO terms (x-axis). Rows and columns have been organized by clustering. Selected regions,
1534 indicated with white rectangles and numbers, are expanded on the right side. Comparisons of the t-statistics
1535  within and between different clusters unveils how different combinations of molecular features can drive
1536 different biological functions and localization.
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1538 Figure 6. Predictions of association with different bimolecular condensates (A) Receiver operating
1539  characteristic (ROC) curve for classification of human IDRs to different cellular bimolecular condensates:
1540  stress granules (blue), the nucleolus (red), or nuclear speckles (orange). The performance was tested on
1541 independent and non-overlapping datasets with condensate annotations (see Methods). Area under the
1542  curve (AUC) values are shown in the lower right. (B) Hierarchical clustering of the t-statistics as in Figure
1543 5. A negative or positive association of a conserved molecular feature with a particular biomolecular
1544  condensate is given in blue or yellow scaling, respectively. The condensate type is shown at the top with
1545  the colors the same as panel A. (C) Select examples from the top predictions of association to stress
1546  granules, the nucleolus, or nuclear speckles. The examples include proteins that were not used in training
1547  and for which an association with the indicated condensate was not previously reported. For the nucleolar
1548 and stress granule-associating proteins, the evolutionary signatures for selected molecular features are
1549  shown with the colors scheme of Figure 3.
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