

A Functional Map of the Human Intrinsically Disordered Proteome

Iva Pritišanac^{1,2,3*}, T. Reid Alderson^{4,5,6#}, Đesika Kolaric^{3,5,6#}, Taraneh Zarin^{1‡}, Shuting Xie¹, Alex Lu^{1,7§}, Aqsa Alam¹, Abdullah Maqsood², Ji-Young Youn^{2,8}, Julie D. Forman-Kay^{2,4*}, and Alan M. Moses^{1,7*}

1. Department of Cell and Systems Biology, University of Toronto, ON M5S 3G5, Canada
2. Program in Molecular Medicine, The Hospital for Sick Children, ON M5G 0A4, Canada
3. Department of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, 8043 Graz, Austria
4. Department of Biochemistry, The University of Toronto, ON M5S 1A8, Canada
5. Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, 85764 Neuherberg, Germany
6. Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, 85747 Garching, Germany
7. Department of Computer Science, University of Toronto, ON M5S 2E4, Canada
8. Department of Molecular Genetics, University of Toronto, ON M5S 1A8, Canada

** equal contribution*

‡ current address: Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain

§ current address: Microsoft Research New England, Cambridge, MA 02139, USA

** Correspondence to* iva.pritisanac@medunigraz.at, forman@sickkids.ca and alan.moses@utoronto.ca

Keywords: intrinsically disordered proteins, intrinsically disordered regions, molecular features, evolution, protein functional prediction, biomolecular condensates, phase separation, disease risk

1 **Abstract**
2

3 Intrinsically disordered regions (IDRs) represent at least one-third of the human proteome and defy the
4 established structure-function paradigm. Because IDRs often have limited positional sequence
5 conservation, the functional classification of IDRs using standard bioinformatics is generally not possible.
6 Here, we show that evolutionarily conserved molecular features of the intrinsically disordered human
7 proteome (IDR-ome), termed evolutionary signatures, enable classification and prediction of IDR functions.
8 Hierarchical clustering of the human IDR-ome based on evolutionary signatures reveals strong enrichments
9 for frequently studied functions of IDRs in transcription and RNA processing, as well as diverse, rarely
10 studied functions, ranging from sub-cellular localization and biomolecular condensates to cellular signaling,
11 transmembrane transport, and the constitution of the cytoskeleton. We exploit the information that is
12 encoded within evolutionary conservation of molecular features to propose functional annotations for every
13 IDR in the human proteome, inspect the conserved molecular features that correlate with different functions,
14 and discover frequently co-occurring IDR functions on the proteome scale. Further, we identify patterns of
15 evolutionary conserved molecular features of IDRs within proteins of unknown function and disease-risk
16 genes for conditions such as cancer and developmental disorders. Our map of the human IDR-ome should
17 be a valuable resource that aids in the discovery of new IDR biology.

18

19

20 **Introduction**

21 The sequence-structure-function paradigm in molecular biology posits that the amino-acid sequence of a
22 protein encodes its three-dimensional structure, which determines the function of the protein. The close
23 relationships between sequence, structure, and function are routinely exploited to infer function from
24 sequence or structural data (Ashburner et al. 2000; Lee et al. 2007; Radivojac et al. 2013; Sanderson et al.
25 2023; Yu et al. 2023b), trace the evolutionary history of protein-protein interactions (Steube et al. 2023),
26 design *de novo* proteins with desired folds or functions (Huang et al. 2016; Kuhlman & Bradley 2019; Yeh
27 et al. 2023), and predict the pathogenicity of sequence variants in the human genome (Adzhubei et al.
28 2010; Frazer et al. 2021; Hopf et al. 2017; Luppino et al. 2023). Indeed, structural information recovered
29 from amino-acid sequence alignments is central to state-of-the-art protein structure prediction methods
30 (Baek et al. 2021; Jumper et al. 2021). However, the sequence-structure-function paradigm does not apply
31 to the approximately one-third of residues in the human proteome that map to intrinsically disordered
32 regions (IDRs), which lack stable secondary and tertiary structure and exhibit poor positional sequence
33 conservation (Forman-Kay & Mittag 2013; Van Der Lee et al. 2014; Wright & Dyson 2015). Despite their
34 lack of ordered structural elements, IDRs function in key cellular processes (Holehouse & Kragelund 2023)
35 and frequently act as hubs in protein-protein interaction networks (Tompa et al. 2014), often via transient,
36 multivalent interactions that promote phase separation and involvement in biomolecular condensates
37 (Borchers et al. 2021).

38 While the presence of IDRs in proteins can generally be predicted with high accuracy from their
39 amino-acid sequences (Emenecker et al. 2021; Necci et al. 2021), identifying the relationship between the
40 sequences and functions of IDRs remains a difficult task (Basu et al. 2023; Chow et al. 2023; Hu et al.
41 2021; Lu et al. 2022; Pang & Liu 2022; Pritišanac et al. 2019; Zarin et al. 2019, 2021; Zhao et al. 2021).
42 Focusing on the segments of IDR sequences that show strong similarity in sequence alignments (which we
43 refer to as “positional conservation”) has provided rich insights into the functions of so-called short-linear
44 motifs (SLiMs) and Molecular Recognition Features (MoRFs) (Davey et al. 2023; Kumar et al. 2022; Malhis
45 & Gsponer 2015; Mohan et al. 2006; Tompa et al. 2014). However, positionally conserved elements
46 typically constitute only a minor fraction of an IDR sequence, and many of the experimentally characterized
47 SLiMs are not positionally conserved (Davey et al. 2012; Kumar et al. 2022; Nguyen Ba et al. 2012; Van

48 Roey et al. 2014). Although we and others showed that approximately 15% of human IDRs contain
49 significant positional alignment due to the acquisition of a conditional fold in particular functional contexts
50 (Alderson et al. 2023; Piovesan et al. 2022), it is appreciated that the majority of positions in the sequences
51 of IDRs appear to evolve more rapidly relative to ordered regions in the same proteins (Brown et al. 2002;
52 Davey et al. 2012). Rapid evolution in IDRs reflects the absence of stable folded structure, since positional
53 conservation is directly linked to evolutionary pressure to maintain a three-dimensional fold (Pritišanac et
54 al. 2019). Thus, because IDRs exhibit limited positional conservation in multiple sequence alignments,
55 standard bioinformatic approaches that rely on these alignments can only provide limited insight into the
56 functional classification of IDRs (Pritišanac et al. 2019; Zarin et al. 2019, 2021). For intrinsically disordered
57 proteins (IDPs), which are fully disordered and make up ~5% of the human proteome (ca. 1000 proteins)
58 (Tsang et al. 2020), predictions of function are even more limited due to the lack of any folded domains
59 (Basu et al. 2023).

60 The functional importance of IDRs and IDPs is increasingly appreciated, especially in the context
61 of phase separation (Alberti & Dormann 2019; Basu et al. 2020; Mensah et al. 2023; Molliex et al. 2015;
62 Nakamura et al. 2023; Patel et al. 2015). Furthermore, IDRs are often dysregulated in diseases such as
63 cancer, amyotrophic lateral sclerosis, and other neurological disorders (Alberti & Dormann 2019; Tsang et
64 al. 2020; Uversky et al. 2008), with increasing reports of disease-associated sequence variants that map
65 to IDRs (Alderson et al. 2021; Mensah et al. 2023; Vacic et al. 2012). The interpretation of effects of
66 mutations in IDRs on protein function is limited, as most utilized variant effect predictors compute effects
67 on fold stability and other structural features, e.g., changes to enzyme active sites or interfaces (Backwell
68 & Marsh 2022). Thus, an understanding of how the sequences of human IDRs relate to biological function
69 is urgently needed.

70 The overall importance of IDRs in health and disease has stimulated efforts to predict their
71 biological function without relying on multiple sequence alignments (Cohan et al. 2022; Lancaster et al.
72 2014; Langstein-Skora et al. 2022; Pang et al. 2024; Shinn et al. 2022; Staller et al. 2018, 2022; Vernon et
73 al. 2018; Zarin et al. 2017, 2019, 2021). IDRs generally show strong evolutionary conservation of sequence-
74 derived molecular features that are not positionally constrained (Alston et al. 2023; Beh et al. 2012;
75 González-Foutel et al. 2022; Staller et al. 2022; Zarin et al. 2017, 2019, 2021). In a series of recent studies,

76 we showed how evolutionary properties of bulk molecular features that are computable from IDR sequences
77 can be used to cluster and classify yeast IDRs into an unexpectedly large number of functional groups
78 (Zarin et al. 2019, 2021).

79 Here, we show that human IDRs are amenable to systematic functional classification based on a
80 broad set of bulk molecular features that are readily computable from IDR sequences. We provide, to our
81 knowledge, the first comprehensive functional map of IDRs within the human proteome (IDR-ome). We
82 obtain estimates for the proportion of human IDRs associated with various functions, and train classifiers
83 to predict functions for unannotated IDPs and IDRs from sequence alone. Since the functional map of
84 human IDRs is based on evolutionary conservation of simple molecular features, we can determine which
85 features are associated with different groups of IDRs, such as those involved in the formation of
86 biomolecular condensates or those associated with disease-risk genes. We expect that the patterns of
87 conservation of molecular features, together with the functional map of IDRs, will represent a critical
88 resource for generating testable hypotheses for experimental research for biochemists and cell biologists.

89

90 **Results**

91

92 ***Intrinsic disorder is abundant in human proteins***

93 To build a global functional map of the human IDRs, we first identified the boundaries of IDRs in the human
94 proteome using a state-of-the-art bioinformatics tool, SPOT-Disorder (SPOTD) (Hanson et al. 2017)
95 (**Methods**). SPOTD predicts that ca. 32.8% of the residues in the human proteome are disordered, similar
96 to other reports (Necci et al. 2021). We then filtered the predictions to keep only regions of 30 or more
97 consecutive disordered residues (**Methods**), henceforth referred to as intrinsically disordered regions or
98 IDRs and comprising a total of 21,252 sequences (Tsang et al. 2020). Nearly 60% of proteins in the human
99 proteome contain at least one IDR (**Figure 1A**). Predominantly disordered proteins, or those that contain
100 more than 50% disordered residues, amount to nearly 20% of the proteome, whereas entirely disordered
101 proteins (*i.e.*, IDPs) account for 5% (**Figure 1A**). The IDR lengths follow a power-law distribution with a
102 median IDR length of 74 residues (**Figure 1B**). Approximately 90% of the human IDRs fall between 30 and
103 200 residues in length. However, the human proteome also contains some very long IDRs, with 280 IDRs
104 or IDPs having more than 1000 consecutively disordered residues (**Figure 1B**).

105 We also checked if IDRs are more likely to be located on the N- or C-terminal regions of a protein
106 (termini) or between folded domains (linkers). Approximately equal percentages of terminal and linker IDRs
107 were identified (**Figure 1C**). Thus, most IDRs in the human proteome are of medium length (30-200
108 residues) and exist alongside proteins that also harbor folded domains. We also confirmed that, as
109 expected, the predicted IDRs show generally lower levels of positional sequence-similarity in alignments of
110 homologs from the Ensembl database (Howe et al. 2021) as compared to folded protein domains (**Figure**
111 **1D**). Further, most human IDRs are not easily assigned to protein families using sequence alignments, and
112 only 21% of human IDRs show significant sequence similarity (BLAST E-value < 1e-6) to any other IDR
113 in the human proteome (**Supplementary Figure 1**). Of the IDRs that do show sequence similarity, over
114 80% (50%) of these IDRs have five or fewer (one) BLAST hits (**Supplementary Figure 1**), suggesting that
115 the sequence homology of any IDR is restricted to a small number of related IDRs, usually members of a
116 small gene family. Interestingly, we observe that 44% of fully disordered proteins (IDPs) have BLAST hits

117 to any other IDR in the proteome (**Supplementary Figure 1**), which suggests that IDPs are more likely to
118 fall into small gene families compared to IDRs.

119

120 ***A global map of the human IDR-ome based on evolutionary conservation of molecular features***

121 Following previous work ([Zarin et al. 2019](#)) we next sought to summarize IDRs using conservation of bulk
122 molecular features (**Methods, Supplementary Table 1**). We first compiled a comprehensive list of 147
123 bulk molecular features that have been shown to be important for function of IDRs in different studies,
124 including known short linear interaction motifs (SLiMs), physicochemical properties (e.g. hydrophobicity,
125 polarity, charge, charge patterning), residue composition, and (homo-)repeats ([Chavali et al. 2017, 2020](#);
126 [Gemayel et al. 2015](#); [Kumar et al. 2022](#); [Mao et al. 2010](#); [Ravarani et al. 2018](#); [Schlessinger et al. 2011](#);
127 [Strickfaden et al. 2007](#); [Warren & Shechter 2017](#)).

128 We next developed a computational protocol, conceptually based on ([Zarin et al. 2019](#)), to estimate
129 evolutionary conservation of molecular features in the human IDR-ome without relying on conventional
130 multiple sequence alignments (**Supplementary Figure 2**). Briefly, we assessed the evolutionary
131 conservation of molecular features in the human IDR-ome by comparing observed sets of homologs to
132 simulations of evolution of IDRs ([Zarin et al. 2019](#)). We made technical changes to a previously applied
133 approach ([Zarin et al. 2019](#) [Zarin et al. 2019, 2021](#)) to increase the computational efficiency so that we
134 could apply it to the larger and more complex human IDR-ome (see **Methods, Supplementary Figure 3**,
135 **Supplementary Figure 4**). We use standard Z-scores to compare the observed distributions of molecular
136 features in homologous IDR sequences to those expected from simulations of IDR sequences under a null
137 hypothesis, which assumes no evolutionary conservation of molecular features (**Figure 2, Supplementary**
138 **Figure 2**). We refer to a set of Z-scores for all molecular features as an evolutionary signature of an IDR,
139 which represents the pattern of conserved molecular features. Positive Z-scores indicate a feature value
140 greater than expected from the null hypothesis (the simulations), while negative Z-scores indicate a feature
141 value smaller than expected (**Supplementary Figure 2**). Negative Z-scores can suggest either depletion
142 of a feature (e.g., selection against hydrophobic residues) or a strongly negative value (e.g., selection for a
143 net charge far below the expectation).

144 We computed evolutionary signatures for 19,032 human IDRs (see Methods) and clustered the
145 IDR-ome (see **Methods**) to identify groups of IDRs that share patterns of conservation (**Figure 3A**,
146 **Supplementary Figure 5**). In this global map of the IDR-ome (**Figure 3A**), IDRs that have similar
147 evolutionary signatures are placed closer to one another. We hypothesize that similarity in the evolutionary
148 patterns of molecular features is analogous to sequence similarity detected in alignments for folded protein
149 regions (e.g., by using PSI-BLAST ([Altschul et al. 1997](#))). Our map reveals a large number of clusters of
150 IDRs, which are defined by distinct patterns of conserved molecular features, i.e., evolutionary signatures
151 (**Figure 3, Supplementary Figure 5**).

152

153 **Assigning biological functions to clusters of IDRs**

154 Our global map of the IDR-ome is based on evolutionary conserved molecular features that could be
155 important for specific functions of IDRs. To test if the patterns of conservation of molecular features are
156 associated with specific functions, we performed overrepresentation analysis for the Gene Ontology (GO)
157 annotations of the proteins in which IDRs were found (**Methods**). We manually selected 93 clusters from
158 the map, focusing on patterns of Z-score signals. Among these clusters, 53 (i.e., 57% of the clusters)
159 exhibited overrepresentation of at least one GO term. These 53 clusters amounted to 9,294 IDRs (i.e., 49%
160 of the human IDR-ome), representing extensive overrepresentation of GO terms across clusters of IDRs
161 (**Supplementary Table 2, Supplementary Figure 5, Supplementary Figure 6**). Although patterns of
162 conservation of bulk molecular features in IDRs were previously observed to be associated with function in
163 yeast ([Zarin et al. 2019](#)), we sought to confirm that the widespread overrepresentation of GO terms were
164 not due to bias in manual selection of clusters. To do so, we repeated the analysis using automatically
165 defined clusters and found qualitatively similar overrepresentations to those identified in the manually
166 identified clusters (see **Methods, Supplementary Table 2, Supplementary Table 3, Supplementary**
167 **Figure 7**). These results indicate a proteome-wide association between the patterns of evolutionary
168 conserved molecular features of IDRs and their biological functions.

169 To obtain a first global picture of the types of biological functions involving human IDRs, we
170 discerned around functional 20 categories, with some overlap, covering the majority of overrepresented
171 GO terms linked to various IDR clusters (**Supplementary Figure 6, Supplementary Table 2**). We defined

172 those categories by grouping related overrepresented GO terms, as detailed in the **Methods**. Some of the
173 most populated clusters are associated with DNA binding (23%), Chromatin/Chromatin binding (33%), RNA
174 metabolism (22%), Cytoskeleton (12%), Signaling (11%), Transmembrane transport (7%), and
175 Reproduction (7%) (**Supplementary Figure 6**), including biological functions that are frequently attributed
176 to IDRs (e.g., DNA binding, RNA metabolism, signaling). We also take note of some less widespread, but
177 significantly overrepresented terms in the IDR-ome map, such as those associated with 'histone
178 modifications' (4%), 'cell morphogenesis' (2%), 'innate immune response' (2%), 'nuclear pore complex'
179 (1%) and 'clathrin binding' (1%) (**Supplementary Figure 6**). Focusing on overrepresented molecular
180 features in the GO-term enriched clusters (**Supplementary Table 2**), we find that the RNA-associated IDRs
181 are enriched in conserved Arg-Gly/Arg-Gly-Gly (RG/RGG) motifs, Lys (K) content and K homorepeats, Arg
182 (R) and Arg+Tyr (R+Y) content, as well as homorepeats of acidic residues (Asp (D), Glu (E)), all of which
183 is in line with features of IDRs typically associated with phase separation, as many RNA-associated IDRs
184 bind to RNA in the context of biomolecular condensates ([Alberti & Dormann 2019](#); [Chong et al. 2018](#); [Youn et al. 2018, 2019](#)) . For the IDRs associated with transmembrane transport protein GO terms, we note that
185 many of these IDRs belong to G protein-coupled receptors (GPCRs) (**Supplementary Table 2**). Many of
186 our select clusters show enrichments in biological functions less appreciated to be associated with IDRs
187 (e.g., development, cell morphogenesis, extracellular space, lipase activity) (**Supplementary Figure 6**),
188 suggesting that the diversity of functions in which IDRs are involved is even greater than currently
189 appreciated.
190

191 Having established that human IDRs can be clustered based on their evolutionary signatures
192 (**Figure 3, Supplementary Figure 5**), and that many of these clusters exhibit enrichments in specific
193 biological functions (**Supplementary Table 2**), we selected a few representative clusters to illustrate this
194 finding. First, as means of validation, we searched for clusters of IDRs with molecular features that have
195 been experimentally confirmed to be critical for specific biological functions. For example, a cluster of 69
196 IDRs exhibits strong overrepresentation of the GO terms 'structural constituent of the nuclear pore' (77-fold,
197 $p < 1e-9$) and 'signal sequence binding' (33-fold, $p < 1e-4$) (**Figure 3B, Supplementary Table 3 – Tab E**).
198 The nuclear pore complex contains many IDRs and provides binding sites for signal sequence-bearing
199 proteins (e.g., nuclear localization or export sequences) ([Mosalaganti et al. 2022](#); [Schmidt & Görlich 2016](#)).

200 The molecular features of the IDRs in this cluster are enriched in specific amino-acid content (Ala, Phe,
201 Gly, Thr), repeats (Gly-Gly (GG), Phe-Gly (FG), Ser-Gly (SG), Pro-Thr-Ser (PTS)), and FG-rich motifs
202 (**Figure 3B**). The specific enrichment in Gly and Phe content and FG repeats is consistent with expectations
203 from the literature, as the IDRs associated with the nuclear pore complex are known as FG-nucleoporins
204 and are rich in Gly, Phe, and FG repeats. For instance, in the essential component of NPCs, FG-NUP98
205 ([Yu et al. 2023a](#)), the amino acids Ala, Phe, Gly, and Thr comprise nearly 40% of its IDRs, where IDRs
206 map to residues 1 to 728, and 888 to 1133. These results confirm that the well-known unusual amino acid
207 distribution and FG-repeats in nucleoporins are conserved during evolution, and that this pattern of
208 conserved bulk molecular features is found in only a small number of IDRs in the human proteome.

209 A second validation comes from a cluster of 299 IDRs that contains GO-term overrepresentations
210 for 'mRNA splicing via the spliceosome' (23-fold, $p < 0.0001$), 'regulation of mRNA processing' (19-fold, p
211 <0.0001), and 'positive regulation of mRNA metabolism' (15-fold, $p < 0.001$) (**Figure 3B, Supplementary**
212 **Figure 8, Supplementary Table 3 – Tab F**). These IDRs are not significantly depleted in any feature but
213 have strong enrichments in Gly content, Gly homo-repeats, Arg-Gly (RG) and Arg-Gly-Gly (RGG) repeats,
214 FG repeats, Ser-Gly repeats (SG), and Phe-Gly-Arg (FGR) repeats (**Supplementary Figure 8**,
215 **Supplementary Table 2 – Tab D**). RG and RGG motifs are known to be enriched in IDRs that bind to RNA
216 ([Chong et al. 2018](#)) and are implicated in RNA recognition during spliceosome assembly ([De Vries et al.](#)
217 [2022](#)). Indeed, biophysical experiments in some RG/RGG-containing proteins have shown that mutation or
218 disruption of RG/RGG motifs can disrupt phase separation and the affinity for RNA ([Chong et al. 2018](#);
219 [Ozdilek et al. 2017](#)). These and numerous additional examples (**Supplementary Table 2**) suggest that our
220 clustering of the human IDR-ome based on conservation of molecular features retrieves findings consistent
221 with those reported in the literature.

222 Next, we examined a cluster of 136 IDRs that is significantly overrepresented in the GO terms
223 'histone binding' (7.7-fold, $p = 1e-3$) and 'chromatin binding' (5.2-fold, $p = 1e-2$) (**Figure 3B, Supplementary**
224 **Figure 8, Supplementary Table 3 – Tab A**). Histones contain positively charged intrinsically disordered
225 tails that are exposed to solvent ([Kim et al. 2023](#)), and these IDRs facilitate interactions, which are often
226 PTM-dependent, with many different histone-binding proteins. Histone-binding domains, such as

227 chromodomains and plant homeodomain (PHD) fingers, often rely on hydrophobic pockets and aromatic
228 residues to bind to methylated lysine residues in histone tails (Li et al. 2006; Nielsen et al. 2002).
229 Interestingly, however, we do not find aromatic residues within the enriched molecular features in our cluster
230 of histone- and chromatin-binding IDRs; instead, we observe strong enrichments in acidic content and
231 repeats of Asp (D), Glu (E), and Lys (K) (**Figure 3B, Supplementary Data**). Remarkably, a recent study
232 identified that an acidic TFIIS N-terminal domain (TND)-interacting motif (TIM) in IDRs can mediate binding
233 to histone chaperones and histone readers, including LEDGF and HRP2 (Cermakova et al. 2021, 2023).
234 The TIM motif is characterized by a short α -helix followed by an acidic region, which often contains D or E
235 repeats (Cermakova et al. 2021, 2023). Furthermore, we found numerous clusters with strong
236 overrepresentation for histone demethylase or histone deacetylase activity, which feature conservation of
237 D repeats, Asn (N) residues and N homo-repeats, suggesting how a specific molecular grammar of
238 negatively charged and Asn residues could support DNA binding more generally (**Supplementary Table 2**).
239 We detail functional and feature overrepresentations across clusters in **Supplementary Table 2**.

240 We then looked for novel functional insights in clusters showing seemingly unrelated enrichments.
241 In the cluster of IDRs associated with the nuclear pore complex (NPC), described above (**Figure 3B**), a
242 significant GO-term overrepresentation was also observed for 'clathrin binding' (26-fold, $p < 1e-5$), and the
243 IDRs in the cluster were enriched for SLiMs associated with clathrin-mediated endocytosis (NPF motif) and
244 endosomal sorting complexes required for transport (ESCRT) (**Supplementary Figure 9, Supplementary**
245 **Table 3 – Tab E**). The early stages of clathrin-mediated endocytosis involve many IDRs, including those in
246 NUMB and Epsin-1 that contain the NPF SLiM (Lomoriello et al. 2022). Consistent with this, IDRs from
247 Epsin-1/2/3 (along with PICALM and SCYL2) which are in this cluster, show strong signals for the NPF
248 motif in ELM (EH_1), while most of the FG-NUPs in the cluster do not (**Supplementary Figure 9**). As
249 expected, the IDRs from clathrin-associated proteins do not show conservation of the FG-repeats found in
250 the nuclear pore IDRs (**Supplementary Figure 9**). Given that NPCs are located in the nuclear envelope
251 and clathrin-mediated endocytosis occurs at the cell membrane, the observation of GO-term enrichments
252 in both processes seems unrelated. Functionally, however, the NPC and clathrin-coated vesicles both
253 oligomerize on membrane surfaces and induce membrane curvature (Beck et al. 2018). FG-NUP IDRs and
254 clathrin-associated IDRs cluster together because they all show conserved signals of unusually high

255 hydropathy and a paucity of charged residues (**Supplementary Figure 9**). We speculate that these
256 molecular properties are important for their oligomerization on membrane surfaces. Moreover, key scaffold
257 components of the NPC and clathrin-coated vesicles share similar structural folds and are speculated to
258 have evolved from a common ancestor (Beck et al. 2018; Devos et al. 2004). Recent work has even directly
259 linked NPCs and clathrin-mediated endocytosis: disruption of NPC assembly triggers activation of an
260 ESCRT-dependent chaperone system (Thaller et al. 2019), and clathrin regulates the recruitment of ESCRT
261 proteins (Wenzel et al. 2018). Our observation of similar evolutionary signatures for IDRs that are
262 associated with NPCs and clathrin-mediated endocytosis suggests that evolutionary selection for high
263 hydrophobicity and lack of charged residues may result from similar functionality of these processes.

264

265 **“Unexplored” clusters with fully disordered proteins and proteins of unknown functions**

266 The highlighted examples showcase how our IDR-ome map allows the association between biological
267 functions, evolutionary signatures, and specific IDR clusters (**Figure 3**, **Supplementary Table 2**,
268 **Supplementary Table 3**, **Supplementary Figure 8**), thereby establishing a relationship between IDR
269 sequence and function. However, in both automatic and exploratory analysis of clusters, it was evident that
270 several clusters defined by strong patterns of evolutionary signatures did not exhibit any known functional
271 enrichments. For instance, about 43% of the clusters selected in our exploratory analysis do not have any
272 significantly overrepresented GO terms (**Supplementary Table 2**). Some of these clusters may reflect the
273 difficulties and biases in protein annotation (Kustatscher et al. 2022), and we speculate that some of the
274 clusters have no overrepresented GO terms due to missing knowledge of the biological functions of many
275 IDRs and IDPs. For example, the IDR-containing proteins of unknown function ANKRD20A1, FAM131A,
276 and C8orf48 map to “unexplored” clusters that have no GO-term overrepresentation (**Supplementary**
277 **Figure 5, Supplementary Data**). Given the similar evolutionary signatures of the IDRs in the respective
278 “unexplored” clusters, this resource represents an opportunity to discover new biological functions of these
279 IDR-containing proteins. The conserved molecular features of IDRs in clusters without overrepresented GO
280 terms point to properties of these IDRs that are evolutionary conserved, and therefore presumably important
281 for the biological functions of these IDRs. At least four of our selected clusters, based on strong patterns

282 of evolutionary signatures and totaling over 1000 IDRs, show no appreciable overrepresentations of any
283 GO terms.

284 Next, we investigated where completely disordered proteins, or IDPs, cluster in our map of the IDR-
285 ome, as IDPs are typically challenging to predict biological functions from sequence alone. As compared
286 to IDRs, we found that a higher proportion of IDPs, roughly 31% (226 of 718), are not clustered at all
287 (**Supplementary Table 4**), indicating that these proteins did not pass one of our filtering criteria (see
288 **Methods**). For the remaining 69% of IDPs (492 of 718) that are clustered, approximately 60% of them (298
289 of 492) map to clusters with significantly overrepresented GO terms (**Supplementary Table 4**), which is
290 slightly higher than for IDRs in general (49%). Our results provide a valuable resource to further interrogate
291 IDP biology. The IDP-containing clusters that did not yield any overrepresented GO terms, amounting to
292 nearly 40% of the clustered IDPs, thus correspond to “unexplored” clusters.

293 Some of the IDP-containing “unexplored” clusters contain an abundance of fully disordered proteins
294 (**Supplementary Figure 10**), such as a cluster of 17 IDRs of which 15 are IDPs (88%) from the family of
295 late cornified envelope (LCE) proteins (**Supplementary Table 3 – Tab D**). At first glance, the clustering of
296 different LCE IDPs would appear to be caused by simple positional sequence conservation, as the proteins
297 are all from the same gene family. However, the sequences of these LCE IDPs have highly diverged and
298 traditional bioinformatic approaches reveal no homology between most members (**Supplementary Figure**
299 **10**). By contrast, the evolutionary signatures of these 15 different LCE IDPs are all related to one another
300 and show clearly that these IDPs are similar (**Supplementary Figure 10**). Although this cluster does not
301 have any overrepresented GO terms, there are evolutionary signatures from many different molecular
302 features, including strong enrichments in Gly- and Arg-rich motifs (RG, FG, Ser-Gly (SG), Ser-Arg (SR)),
303 dipeptide repeats (Gln-Gln (QQ), Ser-Ser (SS), Gly-Gly (GG)), amino-acid content (Gly, Cys), and SH3-
304 domain binding motif (LIG_SH3_2) (**Supplementary Data**). Another “unexplored” cluster of 21 IDRs with
305 13 IDPs (62%) shows evidence of conservation for amino-acid content with enrichment in Glu and depletion
306 in Ser residues (**Supplementary Table 3 – Tab B, Supplementary Data**). These IDPs are members of
307 the G-, P-, and X-antigen (GAGE, PAGE, XAGE) families, and like the IDP-rich cluster discussed above,
308 show some sequence homology but exhibit far enhanced relatedness when viewed through the lens of

309 evolutionary signatures (**Supplementary Figure 10**). Finally, a cluster of 76 IDRs that contains 42 IDPs
310 (55%) yields strong depletions in amino-acid content (Asn, Asp, His, Leu, Phe) and aliphatic residues, with
311 enrichments in dipeptide repeats (SS, GG), Gly-rich motifs (SG, FG), and Cys content (**Supplementary**
312 **Table 3 – Tab C, Supplementary Data**). These IDPs correspond to 35 different keratin-related (KR)
313 proteins and seven different small glycine and cysteine repeat (SGCR) proteins. Outside of a small group
314 of related sequences, very limited homology is detected by sequence alignments (**Supplementary Figure**
315 **10**). By contrast, our evolutionary signature approach shows clear similarities between the 42 IDPs
316 (**Supplementary Figure 10**). Thus, the “unexplored” clusters in our map of the IDR-ome that do not have
317 significantly overrepresented GO terms can provide a unique view of under-characterized IDRs and even
318 fully disordered proteins or IDPs that have similar evolutionary signatures. Furthermore, our analysis of
319 different IDP sequences confirms that our clustering is not caused by positional conservation but is instead
320 due to similar evolutionary signatures.

321 Finally, we wondered whether human proteins of unknown function that have remained
322 uncharacterized ([Duek et al. 2018](#); [Zahn-Zabal et al. 2020](#)) are clustered in our map of the IDR-ome. To
323 this end, we downloaded 1,521 proteins of unknown function from the neXtProt Database ([Zahn-Zabal et](#)
324 [al. 2020](#)), and we filtered this list to retain only IDR-containing proteins. We found that 58% of the
325 uncharacterized proteins contain IDRs (878 of 1,521 proteins, totaling 2,463 IDRs, **Supplementary Table**
326 **5**), which is slightly less than the background proteome (63%). However, over 10% of these uncharacterized
327 proteins are IDPs, which is nearly two-fold higher than the whole proteome. Moreover, although the median
328 IDR length of the uncharacterized proteins was unchanged from the IDR-ome (75 vs. 74 residues,
329 respectively), the median disorder content was significantly increased from 30% in the proteome overall to
330 53% in uncharacterized proteins (Mann-Whitney test, *p* value < 1e-6) (**Supplementary Figure 11**). Thus,
331 human proteins of unknown function have a higher overall content of disordered residues than the average
332 IDR-containing protein in the proteome (**Supplementary Figure 11**). In our map of the human IDR-ome,
333 over 90% of the 878 IDR-containing proteins of unknown function are clustered (93%; 818 of 878 proteins,
334 **Supplementary Table 5**). This indicates that conserved molecular features within the IDRs of
335 uncharacterized proteins exhibit similarities to other IDR-containing proteins in the proteome and that the
336 sequences of these IDRs pass our quality control criteria (**Methods**). Remarkably, nearly half of the

337 uncharacterized IDR-containing proteins (48%, 396 of 818 proteins) are clustered with significant GO-term
338 enrichments (**Supplementary Table 5**). As an example, we consider the protein of unknown function CDR2
339 that is predicted to be 92% disordered by SPOTD. The long IDR in CDR2 (residues 1-417) is clustered with
340 576 other IDRs that are enriched in the Glu-Asp (ED) ratio, Gln content, and helical calmodulin binding
341 motifs (LIG_CAM_IQ_9) (**Supplementary Table 2 – Tab D**). These IDRs are notably depleted in repeats
342 involving Pro, Arg, Ser, Thr, and Gly residues (SS, PR, SG, PTS). The GO terms overrepresented in this
343 cluster are associated with aspects of the cytoskeleton (microtubule motor activity, $p = 7e-3$; tubulin binding,
344 $p = 1e-4$; cytoskeleton organization, $p = 2e-4$) as well as the organization of the cilium ($p = 1e-2$)
345 (**Supplementary Table 2 – Tab D**). Interestingly, a recent affinity-purification proteomics study identified
346 CDR2 as one of the core components in the ciliary interactome ([Boldt et al. 2016](#)), with 30 different binding
347 partners identified, including the cytoskeletal proteins tubulin beta chain (TUBB), tubulin beta-4B chain
348 (TUBB4B), and kinecin (KTN1). This example illustrates the potential of our map to link sequence features
349 and biological functions to previously uncharacterized proteins.

350 Our functional map of the human IDR-ome stratifies human IDRs into clusters that frequently exhibit
351 significant GO enrichments, which helps to reveal the relationship between IDR sequence and function.
352 Our methodology is applicable to fully disordered proteins and proteins of unknown function that are
353 otherwise challenging for conventional bioinformatic approaches. The map is a resource that supports
354 exploration for novel insights by, e.g., comparing clusters with different conserved features of IDR
355 sequences but similar functional enrichments, or identifying groups of IDRs that share conserved features
356 but have no annotated functions yet (see **Code and data availability**). Our analyses above suggest that
357 potential functions can be proposed for a cluster of unknown function once a few of its members have been
358 characterized in depth.

359
360 ***Specific biological functions can be assigned to human IDRs based on evolutionary signatures***
361 Next, we tested whether a systematic prediction of the biological functions and locations of individual IDRs
362 in the human proteome could be achieved based on evolutionary conserved molecular features. To this
363 end, we applied a machine-learning approach termed FAIDR ([Zarin et al 2021](#)) (**Figure 4A**). FAIDR enables

364 the assignment of specific IDRs to specific functions or locations and simultaneously identifies a sparse set
365 of molecular features that are most predictive of (i.e., most associated with) each. The training of FAIDR is
366 based on GO molecular function, biological process and cellular localization annotations, which are
367 available on a per-protein level. If the protein contains multiple IDRs, FAIDR can be used to single out which
368 IDR is most likely involved. The top-scoring predictions for human IDRs, such as 'nucleolus,' 'spliceosomal
369 complex,' and 'GPCR activity,' consistently yield reasonably strong classification performance (AUC values
370 of 0.8 or higher, with corresponding PPV values at 0.4 or above) (**Figure 4A, Figure 4B**). Using these
371 AUC(PPV) cutoffs (see **Methods**), we found that we can annotate 148 GO terms to human IDRs (**Figure**
372 **4A, Supplementary Table 6**). Many other GO terms we could not reliably predict based on evolutionary
373 signatures, so we do not consider them further here (**Supplementary Table 6**). We found that one of the
374 most strongly predicted GO terms was 'histone binding' (AUC = 0.83) (**Figure 4B**). As expected, the
375 positively predictive molecular features of the model align with those overrepresented in the clusters
376 enriched for this term, but these molecular features are distributed across multiple clusters, with alanine
377 content overrepresented in one 'histone binding' cluster and di-lysine repeats, along with aspartate- and
378 glutamate-homorepeats, dominating signals in other cluster(s). This underscores the complementary
379 insights that can be derived from an unbiased, unsupervised clustering analysis (**Figure 3**) and the
380 supervised FAIDR approach (**Figure 4**).

381 Other well-predicted GO terms include "extracellular matrix" (AUC=0.82), "mRNA processing"
382 (0.78), "GTPase regulator activity" (0.77), "centrosome" (0.75), "actin binding" (0.75), "endopeptidase
383 activity" (0.73), and "mitotic cell cycle" (0.70) (**Figure 4A, Figure 4B**), once again highlighting the diversity
384 of IDR function in the human proteome (**Figure 4C**). We find that we can ascribe new functions to many
385 more IDRs than were previously annotated (**Figure 4C, Figure 4D**), opening venues for hypothesis-driven
386 and validation studies in the future. To provide an overview of FAIDR-based functional annotation
387 proteome-wide, we systematized GO terms into 19 broader, mostly non-overlapping categories, which we
388 refer to as "functional classes" (see **Methods, Figure 4C, Figure 4D, Supplementary Table 6**). For
389 instance, as observed in our map of the IDR-ome clustered by evolutionary signatures, we could ascribe
390 GO terms for biological functions that are often associated with IDRs, including "Transcription" (5%),
391 "Chromatin/histone binding" (5%), and "DNA metabolism, repair" (6%), "RNA processes" (11%), "RNP

392 complex" (4%) and "Signaling" (11%) (**Figure 4C**). However, once again, many IDRs are assigned to GO
393 terms that are not frequently associated with IDRs, including "Cytoskeleton" (8%), "Transport, channel"
394 (5%), and "Cell junction/surface/adhesion" (6%) (**Figure 4C**). Overall, there is a correspondence between
395 the overrepresentations of GO-terms observed in our map of the IDR-ome clustered by evolutionary
396 signatures (**Figure 3**), and those GO-terms we assigned using FAIDR (**Figure 4**).

397 Through our classification of FAIDR predictions into broader categories, it appears that the majority
398 of human IDRs tend to be associated with more than one functional class (**Figure 4E**). This observation
399 may suggest a certain degree of overlap in our definition of functional classes, but it is also in line with the
400 concept of IDR 'functional promiscuity' (Cumberworth et al. 2013). In support of the former, we find the
401 expected overlap in annotations of a broad category "metabolism" (**Figure 4F**, #14) with "DNA metabolism"
402 (**Figure 4F**, #3) and "RNA metabolism, splicing & binding" (**Figure 4F**, #5). However, strong overlaps are
403 also found annotations for "RNA processes (metabolism, splicing & binding)" (#5) and "DNA metabolism"
404 (#3), "DNA binding & transcription" (#4), "signaling (GPCRs, transmembrane)" (#8), and "cytoskeleton"
405 (#11) (**Figure 4F**). Furthermore, predictions for involvement in "signaling (GPCRs, transmembrane)" (#8)
406 are frequently shared with that of "cytoskeleton" (#11). In addition to the discussed overlap with "RNA
407 processes" (#5), we further note signals of shared predictions of "DNA metabolism and repair" (#3) with
408 "signaling" (#8) and of "cytoskeleton" (#11) with "nucleus" and its substructures ("lumen", "nuclear pore
409 complex", "nucleolus" and "nucleoplasm") (#7). Such overlaps in annotations for individual IDRs may point
410 to 'moonlighting' (Tompa et al. 2005) or coupling of these biological functions within an IDR sequence,
411 particularly in the case of linking function and localization. Our annotations of functional categories at the
412 IDR level offer a valuable resource for validation studies seeking to unravel sequence-function relationships
413 in greater detail.

414 To better understand the combinations of molecular features that drive IDR functions, we clustered
415 the FAIDR t-statistic to examine the predictive molecular features for various functions and those that are
416 shared between the most commonly co-occurring functions (**Figure 5**). For instance, among several
417 molecular features that are positively correlated with and predictive of GO terms associated with
418 transcription, we note a high positive Z-score for Pin1 WW domain-binding motifs (DOC_WW_Pin1_4) and
419 for specific SUMOylation motifs, such as KEPE and SUMO-1 (**Figure 5, cluster 7**). The role of Pin1 in

420 isomerizing phosphorylated Ser/Thr-Pro bonds in various substrate proteins, including transcription factors
421 and their regulators, has been well established (Hu & Chen 2020; Zhou & Lu 2016). For example, Pin1
422 binding and isomerization of IDRs can directly regulate the transcriptional activity of key transcription
423 factors, such as STAT3 (Lufei et al. 2007), c-Jun (Wulf et al. 2001), and NF- κ B (Ryo et al. 2003). Moreover,
424 among the many proteins that are SUMOylated, transcription factors constitute a large group (Hendriks et
425 al. 2014; Vertegaal 2022), and our data show that evolutionary conserved SUMOylation sites in IDRs are
426 positively predictive of transcription-related GO terms. At the molecular level, SUMOylation of IDRs within
427 transcription factors can regulate activity in various ways, for example by stabilizing a transcriptionally active
428 conformation, such as for SUMOylated HSF1 (Kmiecik et al. 2021), or by controlling subcellular localization,
429 as is the case for NFATC1 where C-terminal SUMOylation induces association with PML bodies (Nayak et
430 al. 2009).

431 Further, our model identifies phosphorylation-related features, including 14-3-3 binding pT/pS
432 motifs and phosphorylation sites for PKA and CDK2, as positively predictive for GO terms that are related
433 to RNA binding and splicing (**Figure 5, cluster 3**). The 14-3-3 binding motifs, common in IDRs, are also
434 linked to phase separation of proteins in various signaling pathways (Segal et al. 2023), including those
435 related to RNA processes (Huang et al. 2022). PKA and CDK2 phosphorylation sites have been previously
436 linked to RNA binding and splicing (Ginsberg et al. 2003; Gu et al. 2011; Loyer et al. 2005). Additionally,
437 FAIDR distinguishes the conservation of the PABP-interacting motif PAM2 as positively predictive of RNA
438 binding and splicing (**Figure 5, cluster 3**), which confirms the known function of the PAM2 motif in mediating
439 interactions with poly(A)-binding proteins (PABP) and the subsequent recruitment of translation factors and
440 proteins involved in mRNA stability (Kozlov et al. 2010; Xie et al. 2014). Interestingly, we observed that WF
441 complexity is positively predictive for GO terms related to transcription and DNA binding but negatively
442 predictive for terms related to RNA splicing and metabolism (**Figure 5, cluster 4**), suggesting that greater
443 sequence complexity in IDRs linked with transcription may hold a specific functional significance. For
444 instance, it is interesting to note that high sequence complexity IDRs linked to transcription or DNA binding
445 often conditionally fold (Wright & Dyson 2015); by contrast, low-complexity IDRs involved in RNA splicing
446 and metabolism are strongly associated with biomolecular condensates (Alberti & Dormann 2019).

447 We found that phosphorylation-related features, including the PABP-interacting motif PAM2, to be
448 also positively predictive of GTPase activity (**Figure 5, cluster 3**). Experimental evidence confirms the
449 association of 14-3-3 proteins with GTPase activity, either by inhibiting it or facilitating the recruitment of
450 proteins in signal transduction pathways (Brandwein & Wang 2017). There are also reports of the
451 involvement of CDK2 and PKA in the signaling pathways of various GTPase families (Ellerbroek et al. 2003;
452 Riou et al. 2013).

453 Our model also reveals IDR sites that are ligands for PDZ domains and N-glycosylation to be
454 common positively predictive features for GO terms associated with signaling, G protein-coupled receptors
455 (GPCRs), transmembrane transport, and ion channels (**Figure 5, cluster 5**). This finding aligns with the
456 recognized roles of PDZ domain-containing proteins as molecular adapters that assemble membrane-
457 associated proteins and signaling molecules (Dunn & Ferguson 2015; Møller et al. 2013; Romero et al.
458 2011). Additionally, N-glycosylation, prevalent in GPCRs, transmembrane receptors, and voltage-gated ion
459 channels, directly affects signaling via protein-protein interactions, receptor activation, and signal
460 transduction (Goth et al. 2020; Montpetit et al. 2009).

461 We next compared the FAIDR t-statistic on predicted GO term association for yeast IDRs (Zarin et
462 al 2021) with those of human IDRs. Similar to the Cdc28 targets in yeast, the term 'cell cycle' in human
463 IDRs is linked to the presence of CDK consensus and KEN box in the sequence. Both in yeast and human
464 IDRs, the DNA damage response is positively associated not only to the CDK consensus, but also to PIPbox
465 motifs and PIKK (Mec1) motifs. Finally, as we previously noted for yeast IDRs, mitochondrion has a positive
466 association with isoelectric point and aliphatic residues (Zarin et al 2021). These results indicate that the
467 molecular features associated with some biological functions have been preserved over very long
468 evolutionary times.

469

470 ***The global IDR-ome map reveals positions of disease-associated genes***

471 In addition to the above-described functional insights, the map of the human IDR-ome also reveals positions
472 of genes that are associated with different pathologies. Previously, we reported the enrichment of intrinsic
473 disorder in genes related to complex disease, such as autism-spectrum disorder (ASD) and cancer (Tsang
474 et al. 2020). Here, we asked if our map of the human IDR-ome contains areas where genes associated

475 with these diseases are overrepresented, and if so, what types of conserved sequence features these IDRs
476 contain? We found several clusters of different sizes that contain significant overrepresentation of ASD-risk
477 and cancer genes (**Supplementary Table 7**). At least eight of the clusters contain 10-fold or higher
478 overrepresentation in ASD-risk or cancer-associated genes (p values < 0.05 , **Supplementary Table 7**),
479 and most of these clusters are not associated with any overrepresented GO terms.

480 Increased conservation of Q and H residues is evident for several disease gene-containing clusters,
481 with some known to be involved in transcriptional regulation. Interestingly, conservation of the same
482 features was found to be predictive of autism-risk genes by FAIDR (see below). We also note a link between
483 clusters showing enrichment in cancer census genes and stress-granules (**Supplementary Table 7**),
484 indicating a possible association between dysregulated stress granule formation and cancer. Moreover, we
485 also note that some of the IDRs from genes related to ASD cluster together or close to the clusters enriched
486 for cancer genes, which is likely related to shared processes of these IDR-containing proteins, such as
487 transcriptional regulation ([Tsang et al. 2020](#)). It is important to note that several clusters enriched for
488 disease-risk genes (both cancer and autism) feature no overrepresentation in any known GO terms
489 (**Supplementary Table 7**). Our results suggest that evolutionary signatures could help understanding of
490 disease genes that encode for proteins with substantial intrinsic disorder.

491

492 ***Evolutionary signatures enable prediction of localization to specific biomolecular condensates***

493 In cells, many different proteins partition into distinct biomolecular condensates ([Banani et al. 2017](#);
494 [Forman-Kay et al. 2022](#); [Lyon et al. 2021](#)). Although the phase-separation propensity of many proteins can
495 be predicted from amino-acid sequences ([Cai et al. 2022](#); [Chu et al. 2022](#); [Hadarovich et al. 2023](#);
496 [Vendruscolo & Fuxreiter 2023](#); [Vernon & Forman-Kay 2019](#)), the molecular properties that drive the
497 specificity and composition of different condensates are less well understood.

498 To evaluate FAIDR's effectiveness in predicting proteins associated with biomolecular
499 condensates, we utilized two distinct datasets for each condensate category. The training datasets
500 comprised 229, 165, and 519 proteins that were experimentally validated to localize to stress granules,
501 nuclear speckles, and the nucleolus, respectively ([Youn et al. 2019](#), [Lu et al. 2019](#)). The test datasets
502 consisted of 32 (cytoplasmic stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234

503 (nucleolus, GO:0005730) unique proteins annotated for localization to the respective condensates in Gene
504 Ontology Browser (<https://www.ebi.ac.uk/QuickGO/>). Proteins present in both training and test sets were
505 excluded from the latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of
506 2,917 proteins for stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we
507 assessed the performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and
508 12,578 for stress granule, nuclear speckles and the nucleolus, respectively.

509 We asked whether we could identify the molecular features of human IDRs that lead to their
510 predominant association with a specific condensate. We trained FAIDR on a benchmark of 913 IDR-
511 containing proteins that are known to associate with stress granules ($n = 229$), nuclear speckles ($n = 165$),
512 or nucleoli ($n = 519$) based on experimentally derived datasets (**Methods**). Examining performance across
513 distinct datasets, utilizing Gene Ontology annotations, for 571 IDRs from 553 proteins (**Methods**), revealed
514 that evolutionary signatures of IDRs predict compartmentalization with moderate power (**Figure 6A**),
515 yielding AUC values of 0.69, 0.66, and 0.73 for stress granules, nuclear speckles, and nucleoli, respectively.
516 This performance is comparable to the state of the art, in which AUC values of up to 0.76 were obtained
517 for nuclear punctae proteins ([Hadarovich et al. 2023](#)). The top 10% of IDR-containing proteins that we
518 predict to associate with stress granules, nucleoli, and nuclear speckles are provided in **Supplementary**
519 **Table 7** (Tab E).

520 We next explored the underlying molecular properties of IDRs that encode the specificity for these
521 different condensates (**Figure 6B**). As an example, consider the IDRs that localize to two different
522 condensates within the nucleus: nuclear speckles and nucleoli. What molecular features of IDRs are
523 responsible for the distinct partitioning into nucleoli *versus* nuclear speckles? As expected, our model
524 identifies that nuclear localization signals (NLS) are important for IDRs that localize to both the nucleolus
525 and nuclear speckle (**Figure 6B**), as well as an increased presence of SUMOylation sites and a decreased
526 overall hydropathy. For nuclear speckles, we find an enrichment in molecular features that include pY
527 ligands of the SH2 domain NCK-1, Ser/Arg repeats, CDK and PKB phosphorylation sites, DYRK kinase
528 ligands, and homo-repeats of Gly, Gln, and Pro (**Figure 6B**). Indeed, nuclear speckle proteins are highly
529 phosphorylated and enriched in Ser/Arg repeats, which have been shown to direct localization to nuclear
530 speckles ([Krämer 1996; Li & Bingham 1991](#)). Remarkably, our model correctly identifies Ser/Arg repeats

531 and multiple phosphorylation motifs as distinguishing factors in IDRs that specifically drive localization to
532 the nuclear speckle (**Figure 6B**).

533 For IDRs that localize to stress granules, the overall pattern of conserved molecular features differs
534 from those of the nuclear condensates (**Figure 6B**). Our model identifies strong enrichments in RGG motifs,
535 FG-rich motifs, PDZ domain ligands, and KEAP1-binding degrons (**Figure 6B**). Multiple sets of
536 experimental evidence confirm that these motifs are abundant in stress granule-containing IDRs (Millar et
537 al. 2023; Youn et al. 2018), such as PRRC2A with several RG and FG, motifs. KEAP1 is an adaptor protein
538 that associates with the E3 ubiquitin ligase CUL3, and the positive predictive value of KEAP1-binding
539 degrons is particularly interesting in the context of recent works reporting on roles of ubiquitylation on stress
540 granule dynamics (Gwon et al. 2021; Maxwell et al. 2021). Other enrichments in bulk properties include
541 isoelectric point; sequence charge decoration; content of Trp, Asn, Ala, and Gln; di-peptide repeats NN and
542 DD; and homo-repeats of Gln, Gly, and Thr (**Figure 6B**). A strong negative signal for the property omega
543 (Martin et al. 2016) suggests selection for well-mixed patterning of charged and Pro residues relative to all
544 other residues (as opposed to blocky patterning) in stress granule-associating IDRs (**Figure 6B**).
545 Interestingly, while a significant depletion in classical NLS is detected for stress granule IDRs, a strong
546 enrichment is found for Pro-Tyr NLS (PY-NLS) (**Figure 6B**), which at first glance appears counter-intuitive
547 with the cytoplasmic localization of stress granules. However, recent work has shown that the stress
548 granule-associated proteins FUS, EWS, and TAF-15, which all harbor PY-NLS motifs that are adjacent to
549 RGG motifs, shuttle between the nucleus and cytoplasm in an Arg methylation-dependent manner
550 (Dormann et al. 2012). Other IDR-rich proteins with PY-NLS signals also undergo nucleocytoplasmic
551 shuttling, including hnRNPA1 and hnRNPA2 that harbor RGG motifs near the PY-NLS (Guo et al. 2018).
552 Thus, evolutionary conserved molecular features within IDRs appear to be sufficiently informative for
553 machine learning protocols to learn aspects of protein specificity for different condensates.

554

555 ***Leveraging evolutionary signatures to discover condensate- and disease-associated proteins***

556 We next sought to leverage the predictive power of our model to discover new condensate-associated
557 proteins. We filtered our predictions of IDRs associated with the nuclear speckle, nucleolus, and stress
558 granule (**Figure 6C**), and focused on IDRs that were not involved in training. We correctly identify 14 (PPV

559 70%), 18 (PPV 90%), and 12 (PPV 60%) of the top-20 scoring IDRs associated with the nucleolus, stress
560 granule, and nuclear speckle, respectively. This performance aligns with the recent reports from [Hadarovich](#)
561 [et al. 2023](#), where 87.5% of the predictions generated by the PICNIC model were experimentally validated.
562 Experimental evidence in The Human Protein Atlas or elsewhere in the literature provides independent
563 validation of our predicted condensate localization (**Figure 6C**). For example, among the top scoring IDRs
564 in the nuclear speckle are THRAP3, GPATCH8, SREK1, LUC7L and SCAF11, all of which are annotated
565 with nuclear speckle localization by The Human Protein Atlas (**Figure 6C**). For the nucleolus, the IDR-
566 containing proteins NOLC1, MKI67, NOP56, PUM3 and TOP1 are all predicted as nucleolar and validated
567 by literature reports ([Ahmad et al. 2012](#); [Chang et al. 2011](#); [Pai et al. 1995](#); [Rallabhandi et al. 2002](#); [Singh](#)
568 [et al. 2021](#)). Finally, for the stress granule, FAIDR gives high predictive scores to the proteins PRRC2A,
569 DDX3Y, TNRC6B, TAF15, and KHDRBS1 (**Figure 6C**), all of which are listed as “gold standard” category
570 (tier 1) components of stress granules in the RNA Granule Database ([Youn et al. 2019](#)).

571 We visualized the evolutionary signatures for the top-scoring IDRs predicted to localize to the
572 nucleolus or stress granule (**Figure 6C, Supplementary Table 7 – Tab E**). In this representation, we
573 compare the molecular features for individual IDRs that are predicted to localize to the same condensate.
574 For instance, [FR]G motifs in stress granule IDRs are strongly enriched overall (**Figure 6B**) and in four of
575 the five examples in **Figure 6C**. Even though TNRC6B exhibits no evolutionary selection on [FR]G motifs,
576 the remaining molecular features are highly similar to other stress granule-localizing IDRs (**Figure 6C**).
577 Presumably, the absence of evolutionary selection for [FR]G motifs in TNRC6B does not preclude its stress
578 granule localization; instead, it is likely that other molecular properties function in a compensatory manner,
579 e.g., the observed enrichments in G repeats or RGG motifs. Similar trends are seen for the nucleolus-
580 localizing IDRs, where the overall pattern of molecular features in each IDR is similar, even if slight
581 differences exist (e.g., no enrichment in Gln content for NOLC1, **Figure 6C**). As an example, the nucleolar
582 protein GTF2F1 contains a strong enrichment in RGG motifs, which are selected for in stress granule-
583 localizing IDRs (**Figure 6B**) and could hint toward an alternative localization for GTF2F1. Indeed, recent
584 experimental evidence confirms that an interacting partner of GTF2F1, GTF2B, shuttles between the
585 nucleus and stress granules ([Qin et al. 2023](#)). Thus, examination of the molecular signatures for individual

586 IDRs can provide additional insight into the molecular properties and localization of these IDR-containing
587 proteins.

588 Finally, the significant overrepresentation of genes encoding long IDR in ASD risk, as documented
589 by (Tsang et al. 2020), along with the observed enrichment of ASD-risk genes in various regions of the
590 IDR-ome map, implies that conserved characteristics of IDR may offer valuable insights into this complex
591 disease. We wondered if using FAIDR solely with evolutionary signatures of IDR could adequately predict
592 ASD-risk genes. To this end, we trained FAIDR using a curated set of IDR from ASD-risk genes identified
593 by (Satterstrom et al. 2020), and applied the model to estimate ASD-risk proteome-wide (**Methods**).
594 Through leave-one-out validation, we achieved a retrieval rate of 34% for known ASD-risk genes, with an
595 accuracy of 0.6 and precision of 0.4. Notably, among the top 10% of predicted risk genes across the
596 proteome, we identified several genes newly added to the Simons Foundation Autism Research Initiative
597 (SFARI) database in 2023 (Abrahams et al. 2013) (**Supplementary Table 7**). These and other novel
598 predictions indicate that a straightforward model based on IDR features could offer predictive power for
599 identifying new ASD genes.

600
601

602 **Discussion**

603 We measured evolutionary conservation of nearly 150 bulk molecular features (Zarin et al. 2019)
604 (**Supplementary Table 1**), including motif and repeat content and diverse physicochemical properties, in
605 nearly 20,000 IDR within the human proteome. We show, through both clustering (**Figure 3**,
606 **Supplementary Figure 5**) and classification (**Figure 4**, **Figure 5**, **Figure 6**) analysis, that combinations of
607 these molecular features are associated with diverse biological functions and localizations. Hence, by
608 recasting the sequences of IDR into evolutionary conserved molecular features, we found a way to connect
609 human IDR sequences to function without relying on multiple sequence alignments, which are not usually
610 observable for IDR. Our results lend further support to the idea that selection for or against specific features
611 suggests a link between biological function and IDR sequence, as previously established for budding yeast
612 and *Drosophila* IDR (Singleton & Eisen 2023; Zarin et al. 2019). Indeed, our feature-based concept has
613 been increasingly recognized and used to gain further insight into function and localization of IDR-

614 containing proteins (Cohan et al. 2022; Duffy et al. 2022; King et al. 2024; Loureiro et al. 2021; Millar et al.
615 2023).

616 Using the patterns of conservation in IDRs, we established a “map” of the human IDR-ome, in
617 which we can explore groups of IDRs with similar function or location. The map of the human IDR-ome
618 introduced here represents a resource for discovery of functional elements for vast parts of the human
619 proteome, which have thus far eluded standard bioinformatic approaches. We find that the map of the
620 human IDR-ome recapitulates some known biological functions or processes mediated by IDR-containing
621 proteins, such as overrepresentation of GO terms related to DNA- and RNA-binding, but also sheds light
622 on new or under-appreciated functions of IDRs, including their involvement in development and
623 transmembrane transport. For around 40% of the clusters, there are no known GO term annotations, which
624 likely reflects some of the biases and difficulties associated with functional annotation (Kustatscher et al.
625 2022), particularly for proteins having a large fraction of disordered residues. Importantly, the “unexplored”
626 clusters of IDRs with similar conserved molecular features but no known function are prime candidates for
627 discovering new biology. For instance, a limited set of IDR-containing proteins would need to be examined
628 in order to assign plausible functions to other IDRs in the cluster. Together, our work provides, to our
629 knowledge, the first comprehensive functional map of the human IDR-ome based on evolutionary
630 signatures. The map reveals known and novel combinations of specific molecular features that drive the
631 rich complexity and promiscuous nature of IDR functions.

632 Our initial functional map of the human IDRs stands to be improved in several ways. First, it is
633 based on a curated list of molecular features that is limited. The list of relevant molecular features will likely
634 increase in the future, and efforts have already been taken to discover functionally relevant features in a
635 systematic and unbiased way using self-supervised deep learning approaches (Lu et al. 2022). Second,
636 we used a combination of unsupervised (clustering) and supervised (classification using FAIDR) analyses
637 to make predictions about IDR function. In part, we rely on this two-stage approach because the numbers
638 of IDRs with some known function (such as those found in the nuclear pore, **Figure 3**) is too small ($n = 64$)
639 to train a standard supervised classifier in a space of nearly 150 features. Future approaches such as semi-
640 supervised, transfer-learning or data augmentation (Lee et al. 2023; Lindorff-Larsen & Kragelund 2021; Lu
641 et al. 2022; Pang & Liu 2023) approaches will likely address these challenges.

642 Understanding the impact of disease mutations in IDRs is a key area of research. Outside of IDRs
643 with strong positional alignments, which often conditionally fold (Alderson et al. 2023; Piovesan et al. 2022),
644 it is challenging to interpret disease-associated mutations that map to IDRs, which have no stable tertiary
645 structure and, by corollary, limited positional sequence conservation. Here we looked at overrepresentation
646 of genes involved in two diseases in which IDRs feature prominently, autism spectrum disorder (ASD) and
647 cancer (Tsang et al. 2020). The map of the human IDR-ome reveals specific clusters that show significant
648 enrichments in ASD-risk and cancer census genes. Based on these results, we hypothesize that mutations
649 that disrupt conserved features of IDRs in those clusters are more likely to have a pathological impact, a
650 focus of our future research. Functional prediction within IDRs at the residue level is a rapidly growing
651 research area (Barik et al. 2020; Hu et al. 2021). However, these efforts focused on relatively few broad
652 functions, such as protein binding, DNA binding, RNA binding, and linker or ‘entropic chain’, ‘assembler’,
653 ‘scavenger’, ‘effector’, ‘display site’, ‘chaperone’ (Pang & Liu 2022). Residue-level prediction approaches
654 that can more closely approach the diversity of IDR function we observed in the proteome will likely improve
655 the resolution of the initial map presented here, leading to insight into the functional impact of disease
656 mutations.

657 Although certain IDRs cluster together and are associated with equivalent biological functions, the
658 clusters alone do not precisely inform on specific aspects of IDR function. Which of the evolutionary
659 conserved molecular features are responsible for function? In full-length proteins with multiple IDRs, do one
660 or more of the IDR participate in the biological function? To answer these questions, we used FAIDR to
661 predict association with 148 different GO terms, stratified into 19 functional categories, across the human
662 IDR-ome (**Figure 4, Supplementary Table 6**). Our predictions reflect the rich complexity of IDR-driven
663 functions, suggesting that over 60% of IDRs could be assigned to more than one functional category. Here,
664 however, we caution that even a modest rate of false positives would impact the number of the predicted
665 functions. We therefore prefer to consider these predictions in a qualitative way and use them to discover
666 and contrast features strongly associated with different IDR functional categories (**Figure 5**).

667 An active area of IDR research focuses on the role of particular IDRs in phase separation and
668 formation of biomolecular condensates (Borcherds et al. 2021; Rostam et al. 2023). Although methods exist
669 to predict the phase-separation propensity of an IDR from its amino-acid sequence (Cai et al. 2022; Chu et

670 al. 2022; Hadarovich et al. 2023; Vendruscolo & Fuxreiter 2023; Vernon & Forman-Kay 2019), it remains
671 challenging to understand how condensates achieve specificity and why certain IDRs localize to certain
672 condensates. We showed that FAIDR can not only reliably predict which IDRs will localize to the nucleolus,
673 nuclear speckle, or stress granule (AUC values of ca. 0.7 on independent test sets), but can also reveal
674 which conserved molecular features are responsible for specificity. Our performance, with AUC values from
675 0.66 to 0.73, is near the state-of-the-art (AUC range 0.52-0.76) reported from four different algorithms when
676 tested on a larger set of proteins that localize to nuclear punctae (Hadarovich et al. 2023). A particularly
677 striking example of our feature-based approach is provided by the protein GTF2F1, which is predicted to
678 localize to the nucleolus and whose molecular features therefore resemble other nucleolar-predicted IDRs.
679 However, GTF2F1 contains a significant enrichment in conservation of the molecular feature 'RGG motifs',
680 which is otherwise associated with stress granule-localizing IDRs. The RNA Granule Database lists
681 GTF2F1 as a low-confidence potential stress granule protein (tier 4), which could suggest that GTF2F1
682 shuttles between nucleoli and stress granules depending on specific cellular conditions. While localization
683 by binding of folded domains to specific targets likely contributes, considering the evolutionary conserved
684 molecular features of IDRs can provide key insights into the complex interactions that underlie the specificity
685 of biomolecular condensates, as well as possible modes of regulation.

686 Finally, we note that widespread association of bulk molecular properties in IDRs with diverse
687 biological functions suggests that the evolutionary characterization of IDRs could be expanded in scope
688 with additional biophysical properties. For example, recent efforts to characterize the structural ensembles
689 of the human IDR-ome using coarse-grained molecular dynamics simulations found some association
690 between chain compaction and biological function (Lotthammer et al. 2023; Tesei et al. 2023). Here, by
691 considering the evolutionary conservation of sequence-based molecular features, we find strong and wide-
692 ranging functional association for nearly 50% of human IDRs. Based on our results, we anticipate that
693 placing IDRs within a higher-dimensional evolutionary and biophysical space will be a key step toward an
694 improved understanding of the molecular basis for cellular function of intrinsically disordered protein regions
695 (Holehouse & Kragelund 2023).

696

697 **Methods**

698 **Prediction of intrinsic disorder and boundaries definition**

699 The reference human proteome assembly was downloaded from UniProt (Proteome: UP000005640) in
700 August 2019. We note that “miniprotein” products of short open reading frames, many of which are likely to
701 contain IDRs, are increasingly recognized as functionally important constituents of the human proteome
702 (Duffy et al. 2022). However, such “miniproteins” are not yet included in the reference proteome and were
703 thus not considered here. SPOT-Disorder predictor v1.0 (Hanson et al. 2017) was used to predict the per-
704 residue probability of intrinsic disorder for every protein sequence in the human proteome. We used SPOT-
705 Disorder v1.0 because it provided the closest agreement with NMR-determined disordered content (Dass
706 et al. 2020; Nielsen & Mulder 2019) and is among the most accurate predictors overall (Necci et al. 2021).
707 A disorder probability above 0.5 was used to define disordered residues. Only protein regions with 30 or
708 more consecutive residues that were predicted to be intrinsically disordered were considered as IDRs in all
709 subsequent analyses.

710

711 **Computation of IDR fractions and length distribution**

712 To compute the distribution of IDRs in the human proteome, we used the SPOT-Disorder predictions as
713 described above to identify IDRs of 30 or more consecutive residues. Any protein without an IDR was
714 classified as a folded protein. Fully disordered proteins were defined as containing 95% or more disordered
715 residues. Mixed proteins, which contain both IDRs and folded domains, were filtered to test if IDRs are
716 more likely to appear as terminal regions or as linkers that are interspersed between folded domains. We
717 mapped folded domains to each protein via the PFAM database (Mistry et al. 2021) and then determined
718 the relative location of the IDR(s). The histogram of IDR lengths was fit to a power-law distribution ($y = Ax^b$
719 + c) using the scipy package in Python. The fitted parameters and the associated errors derived from the
720 covariance matrix are: $A = 7.87 \pm 0.28 \times 10^5$, $b = -1.55 \pm 0.01$, $c = -9.38 \pm 1.91$.

721

722 **Computation of positional sequence conservation in IDRs**

723 Positional sequence conservation was computed on alignments of human IDRs to IDR sequences from
724 orthologous species (see *Retrieval of orthologous protein sequences*). We computed positional
725 conservation across MSA columns using a modified metric of Shannon's entropy, the so-called property
726 entropy as previously introduced by Capra and Singh (Capra & Singh 2007). Gaps were ignored in the
727 computation of positional conservation. As the gap content of IDRs is relatively high compared to folded
728 domains, and the metric considers only the alignable columns, it grossly overestimates the positional
729 conservation of IDRs.

730

731 **Computation of sequence similarity between IDRs in the IDRome**

732 We ran BLASTP (Altschul et al. 1990) to determine to which extent human IDR sequences have positional
733 similarities with one another. BLASTP was run with E-value cut-off values of 0.0001. Any hit within the
734 threshold (other than to query) was considered homologous. For the IDP sequence analysis
735 (**Supplementary Figure 10**), for each IDP cluster we constructed a BLASTP sequence library with the
736 corresponding IDP sequences. We then subjected each IDP in the cluster to a BLASTP search. For any hit
737 with an alignment coverage of at least 50% of the query sequence length with at least 30% sequence
738 identity, we computed the product of these two values (alignment coverage * sequence identity) as a proxy
739 metric to reflect the degree of positional sequence similarity. We ignored any alignment gaps. As a
740 numerical example, an alignment of two sequences with 100% (50%) coverage of the query sequence
741 length and 80% (30%) sequence identity would yield a value of 0.80 (0.15). For any IDP sequence whose
742 alignment to another IDP did not meet the above two criteria, or was not reported in the BLASTP output
743 file, we assigned a value of zero. We then plotted these data as a heat map, and we imposed symmetry on
744 the heat map by taking the larger value between (i,j) and (j,i) and setting this as the value for both
745 coordinates in the final plot. The range of values is between 0 and 1, and thus reflects the similarity of IDP
746 sequences in the respective cluster as measured by a conventional sequence alignment approach
747 (**Supplementary Figure 10**). For the corresponding plot based on evolutionary signatures of these IDPs,
748 we computed the cosine similarity metric, defined as the dot product of the two vectors divided by the

749 product of the norms, between each IDR sequence in the cluster and all other IDR sequences in the same
750 cluster. The input vectors were the 144-dimensional evolutionary signatures. In this representation, IDR
751 sequences with similar (different) evolutionary signatures have values closer to 1 (0) (**Supplementary**
752 **Figure 10**). For both the alignment and evolutionary signature representations, the matrices are sorted
753 alphabetically by UniProt ID on the x and y axes.

754

755 **Molecular features definition and computation**

756 The majority of the molecular features used in this study were previously defined and summarized in
757 Supplementary Table S4 of the work by ([Zarin et al. 2019](#)). Definitions and details of computation of the
758 additional features introduced in this study are listed in **Supplementary Table 1**, which also documents the
759 features that have been modified or adapted for calculation speed purposes. For example, we updated the
760 list of SLiMs ([Kumar et al. 2022](#)), made it compatible with the human proteome, and added additional
761 features that have been reported as important for human IDRs in the recent literature (**Supplementary**
762 **Table 1**) ([Banani et al. 2017](#); [Bremer et al. 2022](#); [Chavali et al. 2017, 2020](#); [Kuechler et al. 2020](#); [Lyon et](#)
763 [al. 2021](#); [Martin et al. 2020](#)).

764 We introduced several methodological changes to work with IDRs in the human proteome. First,
765 the human proteome is roughly five times larger than the yeast proteome and significantly more complex,
766 which is reflected in imperfect annotations of orthologous and paralogous genes to human genes in other
767 species. Second, it is difficult and time-consuming to obtain reliable inferences of phylogenetic trees of
768 metazoan species. Hence, the elaborate protocol for null hypothesis computation based on inference of
769 evolutionary distances from a phylogenetic tree outlined by ([Zarin et al. 2019](#)) constitutes a bottleneck for
770 a fast and efficient computation of human IDR evolutionary signatures. Therefore, we resorted to a
771 substantially simplified protocol, as described in the sections below. The modified protocol provided similar
772 results as the original method (**Supplementary Figure 3**, **Supplementary Figure 4**).

773

774 **Retrieval of orthologous protein sequences**

775 The 'Retrieve/ID mapping tool' from UniProt was used to obtain Ensembl gene identifiers for every UniProt
776 identifier that is associated with each canonical protein sequence of the human proteome. The Ensembl
777 gene identifier was used in a call to the Ensembl API (Method: GET homology/id:id) to dynamically access
778 all orthologous protein sequences that map to the given Ensembl gene identifier. The retrieved sequences
779 were subsequently filtered to keep only those that were annotated as orthologous to the human Ensemble
780 protein identifier and had the amino-acid sequence that matched to the UniProt query sequence. The check
781 for the exact match to the canonical UniProt protein sequence was necessary, as one Ensembl gene
782 identifier matches to several different Ensembl protein identifiers, and annotations based on identifiers
783 alone (UniProt ID to Ensembl protein ID) may not always be accurate. Beyond this check, we relied on the
784 Ensembl annotation of orthology to the canonical human protein sequence.

785

786 **Defining orthologous IDRs and computing evolutionary distance**

787 Following the retrieval of orthologous protein sequences, sequence alignments were computed using
788 MAFFT ([Katoh & Standley 2013](#)), with the human protein sequence used as a reference. The IDR regions
789 from orthologous sequences were extracted based on the sequence alignments and using the IDR
790 boundaries as defined for the human sequence, as performed previously for yeast proteins ([Zarin et al.](#)
791 [2019](#)). For each orthologous IDR sequence, an estimate of a pairwise evolutionary distance to the human
792 IDR sequence was inferred. To this end, we used the Felsenstein 1981 model (F81) ([Felsenstein 1981](#))
793 model applied to proteins ([Lemey et al. 2009](#)). Under this model, we can compute the probability, p , that
794 any two sites are different at scaled evolutionary distance, d , in substitutions per site:

$$795 \quad p = 1 - \sum_{i=1}^n \pi_i P_{ii} \left(\frac{-d}{\sum_{i=1}^n \pi_i Q_{ii}} \right) \quad (\text{eq 1})$$

796 where π_i are the amino-acid probabilities in the extant human IDR sequences, i indexes the alphabet of
797 20 amino acids, and the 20×20 substitution rate matrix P is defined as in the F81 model ([Felsenstein](#)
798 [1981](#)) applied to proteins:

799
$$P_{ij}(v) = \begin{cases} e^{-\beta v} + \pi_j(1 - e^{-\beta v}) & \text{if } i = j \\ \pi_j(1 - e^{-\beta v}) & \text{if } i \neq j \end{cases} \quad (\text{eq 2})$$

800
$$\beta = \frac{1}{1 - \sum_{i=1}^n \pi_i^2} \quad (\text{eq 3})$$

801 where v represents the expected number of amino-acid changes per site. β can then be computed as given
802 in eq 3. To estimate p , the probability that two sites are different, we simply divide the total number of
803 different positions between the human IDR and an orthologous IDR by the total number of aligned positions,
804 so that gapped positions (i.e., indels) were ignored in the enumeration of p .

805
$$p = \frac{N(\text{diff.AA})}{N(\text{id.AA} + \text{diff.AA})} \quad (\text{eq 4})$$

806 Given the fraction of positions that differ between the reference human IDR and the query orthologous
807 IDR (our estimate of p), and β as defined above, the estimate of the evolutionary distance d is obtained
808 by substituting and rearranging eq. 1 as:

809
$$d = \frac{-\ln(1-p\beta)}{\beta} \quad (\text{eq 5})$$

810 Note that this evolutionary distance (d) is a method of moments estimator (Lemey et al. 2009). We highlight
811 that this simplified method does not require inference of a phylogenetic tree, or any other information from
812 the alignment other than the proportion of sites with different amino-acid identities between the reference
813 (human) and the query orthologous sequence.

814

815 **Orthologous sequence selection**

816 To select a set of orthologous sequences that give a wide distribution of approximate evolutionary distances
817 (see above) to the corresponding human IDR sequence, we employed an iterative heuristic. The human
818 IDR sequence was used as a reference in all comparisons. In the first steps, any orthologous sequences
819 that were *length_factor*-fold too short or too long relative to the reference were discarded. A *length_factor*
820 of 3 was used in all comparisons. On the remaining sequences, we first calculated a pairwise distance from

821 the reference using the approach described above. The distance d was computed as given in eq 5, with β
822 computed from amino acid frequencies in the human IDR-ome as given in eq 3. Distances were capped at
823 a value of 10 in instances where no amino-acid matches were found between the two compared sequences,
824 and when all amino-acid positions were equivalent the distances were set to 0. Any sequences with too
825 large (10) or too small (0) a distance from the human sequence were automatically discarded. To obtain a
826 sufficiently diverse set of orthologous sequences, we next employed a heuristic that selects for orthologous
827 sequences that are sufficiently distant from the reference human sequence and from one another. Two
828 parameters control the heuristic: 1.) d_ratio , the ratio of distance from the closest neighbor in approximate
829 evolutionary distance space relative to the reference, and 2.) d_total , the total sum of approximate
830 evolutionary distances of orthologous IDR sequences from the reference. To select for sufficient divergence
831 and spread, only the sequences that are at least d_ratio further away from the reference than from the
832 closest distance neighbour were kept. Furthermore, the sequences were collected until the maximum of
833 the total sum of distances (d_total) from the reference was reached. Setting d_ratio to a smaller value
834 imposes a strict restraint on the spread of orthologous sequences from one another in approximate
835 evolutionary distance space. On the other hand, setting d_total to a smaller value imposes a stricter restraint
836 on the tolerated divergence of the sequences from the reference. We used d_ratio of 5 and d_total of 30 in
837 all comparisons. Approximately 2,000 human IDRs were removed from our analysis due to a lack of
838 orthologous sequences or too high or too low sequence similarity among orthologs, amounting to a total of
839 19,032 human IDRs on which our protocol could be applied.

840

841 **Simulated null expectation**

842 We substantially changed simulations of null expectation relative to the approach originally applied to yeast
843 ([Zarin et al. 2019](#)), as detailed below. In addition, Zarin *et al.* preserved positionally conserved short linear
844 motifs (SLiMs) in simulations of null expectations, which led to an underestimate of the evolutionary
845 conservation of SLiMs. Here, we removed any such conservation requirements for SLiMs. Our simulation
846 of the null expectation was based on the estimated pairwise evolutionary distances between the human
847 IDR sequence and each orthologous IDR sequence that met the specified quality criteria (see *Orthologous*

848 sequence selection). Substitutions and insertions and deletions were simulated independently and
849 combined at the end.

850 First, given an estimated distance of an orthologous IDR sequence from the reference human
851 sequence d , and π_i and β (defined by amino-acid frequencies in the extant human IDR sequences, eq 3),
852 a substitution matrix P was computed based on the F81 model (Felsenstein 1981) as described in eq 2.
853 For each orthologous IDR sequence, a set of 1000 simulated sequences were computed from the reference
854 human IDR by amino-acid substitution at each position. The rate of amino-acid substitutions ($i \rightarrow j$) were
855 given by the probabilities as defined by P (eq 2). The simulated sequences initially all had lengths that were
856 equal to the reference human IDR.

857 In the next step, insertions and deletions (henceforth indels) were added to each sequence
858 following a Poisson process. Given d , the indel rate (R_{indel}) was defined as:

859

860
$$R_{\text{indel}} = \frac{1}{20} d \quad (\text{eq 6})$$

861

862 A Poisson process was used to get the positions in the sequence at which an indel occurs given $\lambda = R_{\text{indel}}^*$
863 *length_seq*. At every indel position in the sequence, the indel type was assigned at random to either
864 'insertion' or 'deletion' with equal probability. The size (k) of an indel at position was assigned from an
865 empirically derived distribution:

866

867
$$P(k|z) = \frac{k^{-z}}{\sum_{n=1}^{\infty} n^{-z}} \quad (\text{eq 7})$$

868 where $z = 1.5$, as previously established (Cartwright 2006; Nguyen Ba et al. 2012). Residues within the
869 inserted segments were drawn according to the amino acid probabilities found in human disordered
870 regions (π_i).

871

872 Computation of evolutionary Z-scores

873 The molecular features were computed for every human IDR sequence, as well as each of the selected
874 orthologous IDR sequences. In total, 144 different features were computed for each sequence (see above,

875 *Molecular features definition and computation*). The features were also computed for each sequence of the
876 sets of 1000 simulated IDR sequences. The mean Z-score of a feature was obtained by taking the difference
877 between the observed mean of the feature for the selected orthologous IDRs (x) and the mean of the
878 simulated means, i.e., the mean of 1000 means from the simulated distributions of the feature, (μ),
879 normalized by the standard deviation of the simulated means (σ), as introduced previously by Zarin ([Zarin](#)
880 [et al. 2019](#)).

881

882
$$Z = \frac{x-\mu}{\sigma} \quad (\text{eq 8})$$

883

884 **Z-scores post-processing and clustering**

885 The computed Z-scores measure evolutionary conservation of the molecular features. Prior to any
886 clustering, we removed any molecular features that yielded no Z-scores for any of human IDRs. The inability
887 to compute a Z-score arises when a feature is absent in IDRs of the selected extant species, or due to
888 numeric issues when computing a standard deviation under the null hypothesis for features that are rare
889 and difficult to generate with a simulated null model (e.g., typically SLiMs with long regular expressions and
890 some rare homorepeats, e.g., Trp homorepeat).

891 Next, to hierarchically cluster evolutionary Z-scores for all human IDRs we used Cluster3.0 ([de Hoon](#)
892 [et al. 2004](#)). We used the Cluster3.0 interface to first filter the data to remove any entries, that is IDRs,
893 which did not have any significant Z-scores, i.e., Z-scores with absolute value of 3 or more. We then
894 proceeded with default settings for “Hierarchical” clustering using uncentered correlation distance as a
895 similarity metric and average linkage as a clustering method. We calculated weights and clustered IDRs
896 (“Genes” in Cluster3.0 interface). The clustering output was visualized using JavaTreeview ([Saldanha](#)
897 [2004](#)), which allows for interactive exploration and export of clusters of interest.

898 To select the clusters for further analyses, we relied on both manual selection from the displayed
899 hierarchical tree calculated by Cluster3.0 (e.g., **Figure 3**), as well as on an automated selection of clusters
900 given a fixed distance. The distance refers to the uncentered correlation distance between the vectors
901 representing evolutionary Z-score of human IDRs, which is the same distance used in the hierarchical

902 clustering by Cluster3.0. The automated selection was performed on a range of clustering thresholds from
903 $d = 0.1$ to $d = 0.9$ in increment steps of 0.1 (**Supplementary Table 3**). The automatic approach enables a
904 more rapid analysis of data following the initial clustering step and any subsequent re-clustering using a
905 clustering method of choice.

906 Details of the GO analyses on the clusters and definitions of "broader functional categories" are given
907 below (see *Gene ontology overrepresentation*, *Definition of functional categories*). To confirm that the
908 functional overrepresentations that we identified were not the result of our potential bias in the selection of
909 clusters, we also tested proteins extracted from automatic clusters for GO overrepresentation
910 (**Supplementary Table 2**). Because it can be performed at a range of distance thresholds, the automatic
911 analysis often reveals functional and feature enrichments that might elude the limited exploratory manual
912 analysis of the IDR-ome map (**Supplementary Table 2**). Regardless of the distance threshold used to
913 define and extract the automatic clusters, a minimum of 30% of the clusters show significantly
914 overrepresented GO terms for molecular function, cellular component, or biological process
915 (**Supplementary Table 2**). This suggests that evolutionary conserved molecular features can be used to
916 effectively cluster the human IDR-ome and reveal functionally related IDRs. A comprehensive analysis of
917 selected clusters using both exploratory analysis and automatic clustering, GO term overrepresentation,
918 and enrichment in positive or negative Z-scores of molecular features relative to the background of the
919 entire IDR-ome is given in **Supplementary Table 2**.

920

921 **FAIDR**

922 The FAIDR model was used as published in its original version ([Zarin et al. 2021](#)), with adaptations to
923 support training models iteratively on sets of different functional categories and testing each model on
924 independent test sets. FAIDR was applied to our set of 19,032 IDRs from 11,640 unique full-length proteins,
925 of which 8,353 had annotated GO terms. The GO annotations on the protein (i.e., gene) level and the
926 associated evolutionary signatures of the IDRs were used as training data for FAIDR. The GO terms were
927 obtained from the PANTHER database ([Mi et al. 2010](#)) (release PANTHER18.0, downloaded in October
928 2022). We built separate FAIDR models for each of the 601 GO terms listed in **Supplementary Table 6**.
929 To comprehensively test the performance of the FAIDR models, for each model we took bootstrap test

930 samples from the available data and performed model training on the remainder of the data. This allowed
931 us to assess the performance on the entire dataset, whilst ensuring that the performance was tested on
932 examples that had not been seen in training (**Supplementary Table 6, Methods**). We defined a threshold
933 for a reliable FAIDR prediction as a model that on the test set had an AUC (area under the receiver
934 operating characteristic curve) value above or equal to 0.7 and PPV (positive predictive value) above or
935 equal to 0.4 (**Figure 6A**).

936

937 **Cross-validation of FAIDR models and functional annotations on the proteome level**

938 Having established that we can successfully identify which IDRs and which molecular features are
939 associated with different gene ontology (GO) terms, we next employed FAIDR to make functional
940 annotations for all IDRs in the human IDR-ome (**Figure 6C**). To this end, we performed cross-validation of
941 601 FAIDR models trained on 600 GO terms, obtained from PANTHER as mentioned above. For training
942 of FAIDR models, GO term annotations on gene (i.e., protein level) were used. These were assigned as
943 given in the PANTHER database. Upon training, FAIDR models were used to compute the probability of
944 association of each IDR in the proteome with each of the GO terms (Zarin et al. 2021). Only the models
945 trained on a minimum of 100 distinct instances were considered.

946 For each GO term (i.e., each FAIDR model), the full dataset consisted of 19,032 IDRs. These IDRs
947 were divided into training and test sets six times using sampling with replacement. In each of the six
948 iterations we held out approximately 15% of the IDRs from the positive class (class 1), which had not yet
949 been included in any of the previous test sets. The negative class in each iteration varied as it was set to
950 be three times bigger than the current positive set. This ensured that the positive class of test sets in each
951 iteration were distinct and representative of different portions of the full dataset. After evaluating FAIDR's
952 performance on the current test set using ROC analysis, we reintegrated it back into the dataset.
953 Consequently, in the next iteration, a different 15% of the positive class of the full dataset was chosen as
954 the test set, which allowed for comprehensive cross-validation of FAIDR across the entire proteome. This
955 approach ensured a robust evaluation of the model's effectiveness and minimized potential biases.
956 Cumulative ROC statistic of all six iterations was used to establish a threshold for performance of each

957 FAIDR model. For functional annotations of human IDRs across the proteome, only the models for GO
958 terms that achieved an AUC of 0.7 or higher and a PPV of 0.4 or higher were used, which amounted to 148
959 GO terms.

960 To assign human IDRs to each of 148 GO functional terms, we relied on likelihoods computed by our
961 regression model for each IDR (Zarin et al. 2021). Based on the receiver-operating-characteristic (ROC)
962 analysis from testing of each model on held-out data, we defined the threshold value of likelihood that
963 minimized false positives while maximizing true positives (**Supplementary Table 6**). To further minimize
964 the chance of false positive annotations, we only accepted an annotation of a function for a protein if the
965 computed probability for the protein was larger than or equal to twice the optimal threshold likelihood. In
966 addition, we only annotated IDRs to GO functional terms if computed probability exceeded 0.6 in case of
967 one or two IDRs in a protein and 0.5 in case of more than two IDRs in a protein. The final sets of functional
968 annotations were pruned to remove redundancies stemming from similar performances of FAIDR models
969 on closely related GO terms. Finally, the annotated GO terms were aggregated to a set of 19 broader
970 functional categories, as summarized in **Supplementary Table 6**. An annotation of an IDR to a category
971 was considered as “known” if the protein from which the IDR originates has been previously associated
972 with the category. If the category was assigned *de novo* to a protein and an IDR in the protein was given
973 high probability for the function (see above), the annotation was considered “new”. The 19 broader
974 functional categories (**Figure 6**) were defined as detailed below. In instances of multiple annotations,
975 pseudo counts were added to the total number of IDRs to compute the displayed percentages.

976

977 **Gene ontology overrepresentation**

978 As mentioned in the FAIDR section, the GO term annotations were extracted from the PANTHER database
979 (Mi et al. 2010). To compute GO term overrepresentations for IDRs in select clusters, we used GO
980 annotations available on the protein (gene) level. We considered a set of proteins (genes) in a cluster, i.e.,
981 we did not count any duplicates of proteins that might have more than one IDR in the same cluster. To
982 compute overrepresentation, the set of proteins from a cluster was compared against a background of the
983 human standard proteome set, filtered to include only the proteins that contain long IDRs (defined as greater

984 than or equal to 30 consecutive amino acids). The human proteome assembly was downloaded from
985 UniProt (Proteome: UP000005640) in August 2019. Overrepresentation statistics were computed using the
986 standard Fisher's test with Bonferroni correction for multiple testing. The correction was applied in two
987 steps to take into the account testing of multiple GO terms and testing of multiple clusters. The
988 overrepresentation statistics and corrected p-values are available in **Supplementary Table 2**. In **Figure 3**
989 and **Supplementary Figure 5**, the clusters are labelled with overrepresented GO term descriptions, which
990 have been abbreviated and represented in a shorter form where applicable.

991

992 **Definition of functional categories and grouping of GO terms**

993 To systematize the GO terms into broader categories, we consulted GO hierarchy (ancestor charts), GO
994 subsets, and GO co-occurring terms. For GO overrepresented terms from the clustering analysis, we
995 defined 23 broader functional categories (**Supplementary Table 2**). We applied the same strategy to group
996 GO terms predicted to individual IDRs by FAIDR (see *Cross validation of FAIDR and functional annotations*
997 *on the proteome level*). From 148 GO terms, we converged on 19 broader categories that we defined and
998 enumerated as given in **Supplementary Table 6** and **Figure 4C**. For instance, we grouped subcomponents
999 of a cellular location (e.g., nuclear lumen, nuclear pore complex, nucleolus, nucleoplasm) into a higher
1000 order category “Nucleus, #7”. While such decisions were relatively straightforward for cellular locations,
1001 some functions and processes were more challenging to neatly subscribe to only one broad category. For
1002 instance, we grouped “GTPase regulator activity” term with other cellular signaling related terms into
1003 category “Signaling, #8”, based on its frequent co-occurrence with the signaling related terms. However,
1004 when looking at the ancestor chart for the term, it is apparent that it could be alternatively joint with terms
1005 related to “enzyme activity” or “catalysis” into a different broader category. This example illustrates that our
1006 categorization features an inevitable degree of subjectivity and will be subject to future updates and
1007 improvements.

1008

1009 **Validation of FAIDR performance on independent datasets of disease-associated genes**

1010 To validate the performance of FAIDR on autism-spectrum disorder (ASD) associated genes, we utilized a
1011 leave-one-out approach. We iteratively trained the model on IDRs from 101 out of 102 ASD risk genes
1012 defined by (Satterstrom et al. 2020) (hereafter ‘ASD risk dataset’). We under sampled the negative data set
1013 to include IDRs from 400 randomly selected proteins from the human proteome. Based on the ROC from
1014 testing on held-out data, we defined the threshold value of likelihood that was used to assess predictions
1015 of ASD-risk proteome-wide (**Supplementary Table 7**). The top 10% of predictions were cross-validated
1016 against the SFARI (Simons Foundation Autism Research Initiative) dataset (Abrahams et al. 2013). This
1017 allowed us to evaluate the predictive power of FAIDR on an independent dataset specifically focused on
1018 ASD-associated genes.

1019 Additionally, to assess the performance of FAIDR on genes associated with cancer, we also used
1020 two separate datasets from the COSMIC database: Cancer census and Cancer classic (Sondka et al.
1021 2018). Firstly, we curated the positive class of Cancer census dataset by eliminating any redundant
1022 instances of IDRs that were also present in the positive class of the Cancer classic dataset. Subsequently,
1023 we utilized the Cancer classic dataset with 409 IDRs in the positive dataset to train FAIDR and the Cancer
1024 census dataset with 723 IDRs for testing.

1025

1026 **Prediction of condensate localization and feature specificity**

1027 To evaluate FAIDR’s effectiveness in predicting proteins associated with biomolecular condensates, we
1028 utilized two distinct datasets for each condensate category. The training datasets comprised 229, 165, and
1029 519 proteins that were experimentally validated to localize to stress granules, nuclear speckles, and the
1030 nucleolus, respectively (Youn et al. 2019, Lu et al. 2019). The test datasets consisted of 32 (cytoplasmic
1031 stress granule, GO:0010494), 305 (nuclear speck, GO:0016607), and 234 (nucleolus, GO:0005730) unique
1032 proteins annotated for localization to the respective condensates in Gene Ontology Browser
1033 (<https://www.ebi.ac.uk/QuickGO/>). Proteins present in both training and test sets were excluded from the
1034 latter and retained in the former. Subsequently, FAIDR was trained on a total dataset of 2,917 proteins for
1035 stress granules, 2,224 for nuclear speckles, and 6,454 for the nucleolus. Finally, we assessed the

1036 performance of the model proteome-wide, which encompassed a total of 16,115, 16,778 and 12,578 for
1037 stress granule, nuclear speckles and the nucleolus, respectively.

1038

1039 **Code and data availability**

1040 This study made use of UniProt, ENSEMBL, PANTHER, SFARI, RNA Granule Database and Human
1041 Protein Atlas databases, as specifically referenced throughout. Code and example files to compute all the
1042 steps described in the methods are available on GitHub (https://github.com/1Pritisanac/IDR_ES/). The
1043 hierarchically clustered evolutionary Z-scores of human IDRs (i.e., the functional map), tutorial on the
1044 exploratory and automatic analysis of the map, IDR clusters, IDR-ome sequence and alignment files, FAIDR
1045 t-statistic and target files for top predicted GO terms are available at Zenodo
1046 (<https://zenodo.org/records/10812875>).

1047

1048 **Competing Interests**

1049 The authors do not have any competing interests.

1050

1051 **Acknowledgements**

1052 IP and TRA were supported by a LiUNA! Fellowship for Research Innovation from The Hospital for Sick
1053 Children and a Banting Postdoctoral Fellowship from the Canadian Institutes of Health Research (CIHR),
1054 respectively. AMM and JDF-K acknowledge support from the CIHR (CIHR Foundation Grant (grant no.
1055 FDN-148375) to JDF-K; CIHR grant no. PJT-148532 to AMM and JDF-K) and the Canada Foundation for
1056 Innovation (CFI) for funding to AMM. JDF-K holds a Canada Research Chair in Intrinsically Disordered
1057 Proteins. AMM holds a Canada Research Chair in Computational Biology. We thank Ozren Kisić Morduš
1058 for creating the artwork in Figure 6.

1059 **References**

1060
1061 Abrahams BS, Arking DE, Campbell DB, Mefford HC, Morrow EM, et al. 2013. SFARI Gene 2.0: a
1062 community-driven knowledgebase for the autism spectrum disorders (ASDs). *Mol. Autism*. 4(1):36
1063 Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, et al. 2010. A method and server for
1064 predicting damaging missense mutations. *Nat. Methods*. 7(4):248–49
1065 Ahmad Y, Boisvert FM, Lundberg E, Uhlen M, Lamond AI. 2012. Systematic analysis of protein pools,
1066 isoforms, and modifications affecting turnover and subcellular localization. *Mol. Cell. Proteomics*.
1067 11(3):M111.013680
1068 Alberti S, Dormann D. 2019. Liquid–Liquid Phase Separation in Disease. *Annu. Rev. Genet.* 53(1):171–
1069 94
1070 Alderson TR, Adriaenssens E, Asselbergh B, Pritišanac I, Van Lent J, et al. 2021. A weakened interface
1071 in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes
1072 aberrant binding to interacting proteins. *EMBO J.* 40(8):e103811
1073 Alderson TR, Pritišanac I, Kolaric D, Moses AM, Forman-Kay JD. 2023. Systematic identification of
1074 conditionally folded intrinsically disordered regions by AlphaFold2. *Proc. Natl. Acad. Sci. U. S. A.*
1075 120(44):
1076 Alston JJ, Soranno A, Holehouse AS. 2023. Conserved molecular recognition by an intrinsically
1077 disordered region in the absence of sequence conservation. *bioRxiv*. 123(3):
1078 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J. Mol.*
1079 *Biol.* 215(3):403–10
1080 Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a
1081 new generation of protein database search programs. *Nucleic Acids Res.* 25(17):3389–3402
1082 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. 2000. Gene ontology: tool for the unification
1083 of biology. The Gene Ontology Consortium. *Nat. Genet.* 25(1):25–29
1084 Backwell L, Marsh JA. 2022. Diverse Molecular Mechanisms Underlying Pathogenic Protein Mutations:
1085 Beyond the Loss-of-Function Paradigm. *Annu. Rev. Genomics Hum. Genet.* 23:475–98
1086 Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, et al. 2021. Accurate prediction of protein
1087 structures and interactions using a three-track neural network. *Science (80-)*. 373(6557):871–76
1088 Banani SF, Lee HO, Hyman AA, Rosen MK. 2017. Biomolecular condensates: organizers of cellular
1089 biochemistry. *Nat. Rev. Mol. Cell Biol.* 18(5):285–98
1090 Barik A, Katuwawala A, Hanson J, Paliwal K, Zhou Y, Kurgan L. 2020. DEPICTER: Intrinsic Disorder and
1091 Disorder Function Prediction Server. *J. Mol. Biol.* 432(11):3379–87
1092 Basu S, Gsponer J, Kurgan L. 2023. DEPICTER2: a comprehensive webserver for intrinsic disorder and
1093 disorder function prediction. *Nucleic Acids Res.* 1:gkad330
1094 Basu S, Mackowiak SD, Niskanen H, Knezevic D, Asimi V, et al. 2020. Unblending of Transcriptional
1095 Condensates in Human Repeat Expansion Disease. *Cell.* 181(5):1062–1079.e30
1096 Beck M, Mosalaganti S, Kosinski J. 2018. From the resolution revolution to evolution: structural insights
1097 into the evolutionary relationships between vesicle coats and the nuclear pore. *Curr. Opin. Struct.*
1098 *Biol.* 52:32–40
1099 Beh LY, Colwell LJ, Francis NJ. 2012. A core subunit of Polycomb repressive complex 1 is broadly
1100 conserved in function but not primary sequence. *Proc. Natl. Acad. Sci. U. S. A.* 109(18):
1101 Boldt K, Van Reeuwijk J, Lu Q, Koutroumpas K, Nguyen TMT, et al. 2016. An organelle-specific protein
1102 landscape identifies novel diseases and molecular mechanisms. *Nat. Commun.* 2016 71. 7(1):1–13
1103 Borcherds W, Bremer A, Borgia MB, Mittag T. 2021. How do intrinsically disordered protein regions
1104 encode a driving force for liquid–liquid phase separation? *Curr. Opin. Struct. Biol.* 67:41–50
1105 Brandwein D, Wang Z. 2017. Interaction between Rho GTPases and 14-3-3 Proteins. *Int. J. Mol. Sci.*
1106 18(10):2148
1107 Bremer A, Farag M, Borcherds WM, Peran I, Martin EW, et al. 2022. Deciphering how naturally occurring
1108 sequence features impact the phase behaviours of disordered prion-like domains. *Nat. Chem.*
1109 14(2):196–207
1110 Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, et al. 2002. Evolutionary rate heterogeneity
1111 in proteins with long disordered regions. *J. Mol. Evol.* 55(1):104–10
1112 Cai H, Vernon RM, Forman-Kay JD. 2022. An Interpretable Machine-Learning Algorithm to Predict
1113 Disordered Protein Phase Separation Based on Biophysical Interactions. *Biomolecules*. 12(8):
1114 Capra JA, Singh M. 2007. Predicting functionally important residues from sequence conservation.

1115 *Bioinformatics*. 23(15):1875–82

1116 Cartwright RA. 2006. Logarithmic gap costs decrease alignment accuracy. *BMC Bioinformatics*. 7:527

1117 Cermakova K, Demeulemeester J, Lux V, Nedomova M, Goldman SR, et al. 2021. A ubiquitous

1118 disordered protein interaction module orchestrates transcription elongation. *Science* (80-).

1119 374(6571):1113–21

1120 Cermakova K, Veverka V, Hodges HC. 2023. The TFIIS N-terminal domain (TND): a transcription

1121 assembly module at the interface of order and disorder. *Biochem. Soc. Trans.* 51(1):125–35

1122 Chang HY, Fan CC, Chu PC, Hong BE, Lee HJ, Chang MS. 2011. hPuf-A/KIAA0020 modulates PARP-1

1123 cleavage upon genotoxic stress. *Cancer Res.* 71(3):1126–34

1124 Chavali S, Chavali PL, Chalanccon G, De Groot NS, Gemayel R, et al. 2017. Constraints and

1125 consequences of the emergence of amino acid repeats in eukaryotic proteins. *Nat. Struct. Mol. Biol.*

1126 24(9):765–77

1127 Chavali S, Singh AK, Santhanam B, Babu MM. 2020. Amino acid homorepeats in proteins. *Nat. Rev.*

1128 *Chem.* 4(8):420–34

1129 Chong PA, Vernon RM, Forman-Kay JD. 2018. RGG/RG Motif Regions in RNA Binding and Phase

1130 Separation

1131 Chow CFW, Ghosh S, Hadarovich A, Toth-Petroczi A. 2023. SHARK enables homology assessment in

1132 unalignable and disordered sequences. *bioRxiv*. 2023.06.26.546490

1133 Chu X, Sun T, Li Q, Xu Y, Zhang Z, et al. 2022. Prediction of liquid-liquid phase separating proteins using

1134 machine learning. *BMC Bioinformatics*. 23(1):72

1135 Cohan MC, Shinn MK, Lalmansingh JM, Pappu R V. 2022. Uncovering Non-random Binary Patterns

1136 Within Sequences of Intrinsically Disordered Proteins. *J. Mol. Biol.* 434(2):

1137 Cumberworth A, Lamour G, Babu MM, Gsponer J. 2013. Promiscuity as a functional trait: intrinsically

1138 disordered regions as central players of interactomes. *Biochem. J.* 454(3):361–69

1139 Dass R, Mulder FAA, Nielsen JT. 2020. ODINPred: comprehensive prediction of protein order and

1140 disorder. *Sci. Rep.* 10(1):

1141 Davey NE, Simonetti L, Ivarsson Y. 2023. The next wave of interactomics: Mapping the SLiM-based

1142 interactions of the intrinsically disordered proteome. *Curr. Opin. Struct. Biol.* 80:102593

1143 Davey NE, Van Roey K, Weatheritt RJ, Toedt G, Uyar B, et al. 2012. Attributes of short linear motifs. *Mol.*

1144 *Biosyst.* 8(1):268–81

1145 de Hoon MJL, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. *Bioinformatics*.

1146 20(9):1453–54

1147 De Vries T, Martelly W, Campagne S, Sabath K, Sarnowski CP, et al. 2022. Sequence-specific RNA

1148 recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. *Proc. Natl.*

1149 *Acad. Sci. U. S. A.* 119(6):

1150 Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, et al. 2004. Components of coated vesicles

1151 and nuclear pore complexes share a common molecular architecture. *PLoS Biol.* 2(12):e380

1152 Dormann D, Madl T, Valori CF, Bentmann E, Tahirovic S, et al. 2012. Arginine methylation next to the PY-

1153 NLS modulates Transportin binding and nuclear import of FUS. *EMBO J.* 31(22):4258–75

1154 Duek P, Gateau A, Bairoch A, Lane L. 2018. Exploring the Uncharacterized Human Proteome Using

1155 neXtProt. *J. Proteome Res.* 17(12):4211–26

1156 Duffy EE, Finander B, Choi GH, Carter AC, Pritisanac I, et al. 2022. Developmental dynamics of RNA

1157 translation in the human brain. *Nat. Neurosci.* 25(10):1353–65

1158 Dunn HA, Ferguson SSG. 2015. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and

1159 Signaling Pathways. *Mol. Pharmacol.* 88(4):624–29

1160 Ellerbroek SM, Wennerberg K, Burridge K. 2003. Serine phosphorylation negatively regulates RhoA in

1161 vivo. *J. Biol. Chem.* 278(21):19023–31

1162 Emenecker RJ, Griffith D, Holehouse AS. 2021. Metapredict: a fast, accurate, and easy-to-use predictor

1163 of consensus disorder and structure. *Biophys. J.* 120(20):4312–19

1164 Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. *J. Mol.*

1165 *Evol.* 17(6):368–76

1166 Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. 2022. What are the distinguishing features and size

1167 requirements of biomolecular condensates and their implications for RNA-containing condensates?

1168 *RNA*. 28(1):36–47

1169 Forman-Kay JD, Mittag T. 2013. From sequence and forces to structure, function, and evolution of

1170 intrinsically disordered proteins. *Structure*. 21(9):1492–99

1171 Frazer J, Notin P, Dias M, Gomez A, Min JK, et al. 2021. Disease variant prediction with deep generative
1172 models of evolutionary data. *Nature*. 599(7883):91–95
1173 Gemayel R, Chavali S, Pougach K, Legendre M, Zhu B, et al. 2015. Variable Glutamine-Rich Repeats
1174 Modulate Transcription Factor Activity. *Mol. Cell*. 59(4):615–27
1175 Ginsberg MD, Feliciello A, Jones JK, Avvedimento E V., Gottesman ME. 2003. PKA-dependent binding of
1176 mRNA to the mitochondrial AKAP121 protein. *J. Mol. Biol.* 327(4):885–97
1177 González-Foutel NS, Glavina J, Borchers WM, Safranchik M, Barrera-Vilarmau S, et al. 2022.
1178 Conformational buffering underlies functional selection in intrinsically disordered protein regions.
1179 *Nat. Struct. Mol. Biol.* 29(8):781–90
1180 Goth CK, Petäjä-Repo UE, Rosenkilde MM. 2020. G Protein-Coupled Receptors in the Sweet Spot:
1181 Glycosylation and other Post-translational Modifications. *ACS Pharmacol. Transl. Sci.* 3(2):237–45
1182 Gu Q, Jin N, Sheng H, Yin X, Zhu J. 2011. Cyclic AMP-dependent protein kinase A regulates the
1183 alternative splicing of CaMKII δ . *PLoS One*. 6(11):
1184 Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F, et al. 2018. Nuclear-Import Receptors Reverse
1185 Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. *Cell*. 173(3):677–
1186 692.e20
1187 Gwon Y, Maxwell BA, Kolaitis RM, Zhang P, Kim HJ, Taylor JP. 2021. Ubiquitination of G3BP1 mediates
1188 stress granule disassembly in a context-specific manner. *Science (80-).* 372(6549):eabf6548
1189 Hadarovich A, Singh HR, Ghosh S, Rostam N, Hyman AA, Toth-Petroczy A. 2023. PICNIC accurately
1190 predicts condensate-forming proteins regardless of their structural disorder across organisms.
1191 *bioRxiv*. 2023.06.01.543229
1192 Hanson J, Yang Y, Paliwal K, Zhou Y. 2017. Improving protein disorder prediction by deep bidirectional
1193 long short-term memory recurrent neural networks. *Bioinformatics*. 33(5):685–92
1194 Hendriks IA, D'Souza RCJ, Yang B, Verlaan-De Vries M, Mann M, Vertegaal ACO. 2014. Uncovering
1195 global SUMOylation signaling networks in a site-specific manner. *Nat. Struct. Mol. Biol.* 21(10):927–
1196 36
1197 Holehouse AS, Kragelund BB. 2023. The molecular basis for cellular function of intrinsically disordered
1198 protein regions. *Nat. Rev. Mol. Cell Biol.*
1199 Hopf TA, Ingraham JB, Poelwijk FJ, Schärfe CPI, Springer M, et al. 2017. Mutation effects predicted from
1200 sequence co-variation. *Nat. Biotechnol.* 35(2):128–35
1201 Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, et al. 2021. Ensembl 2021. *Nucleic Acids Res.*
1202 49(D1):D884–91
1203 Hu G, Katuwawala A, Wang K, Wu Z, Ghadermarzi S, et al. 2021. fIDPnn: Accurate intrinsic disorder
1204 prediction with putative propensities of disorder functions. *Nat. Commun.* 2021 12(1):1–8
1205 Hu X, Chen LF. 2020. Pinning Down the Transcription: A Role for Peptidyl-Prolyl cis-trans Isomerase Pin1
1206 in Gene Expression. *Front. Cell Dev. Biol.* 8:179
1207 Huang PS, Boyken SE, Baker D. 2016. The coming of age of de novo protein design. *Nature*.
1208 537(7620):320–27
1209 Huang X, Zheng Z, Wu Y, Gao M, Su Z, Huang Y. 2022. 14-3-3 Proteins are Potential Regulators of
1210 Liquid-Liquid Phase Separation. *Cell Biochem. Biophys.* 80(2):277–93
1211 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure
1212 prediction with AlphaFold. *Nature*. 596(7873):583–89
1213 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in
1214 performance and usability. *Mol. Biol. Evol.* 30(4):772–80
1215 Kim TH, Nosella ML, Bolik-Coulon N, Harkness RW, Huang SK, Kay LE. 2023. Correlating histone
1216 acetylation with nucleosome core particle dynamics and function. *Proc. Natl. Acad. Sci. U. S. A.*
1217 120(15):
1218 King MR, Ruff KM, Pappu R V. 2024. Emergent microenvironments of nucleoli. *Nucleus*. 15(1):2319957
1219 Kmiecik SW, Drzewicka K, Melchior F, Mayer MP. 2021. Heat shock transcription factor 1 is SUMOylated
1220 in the activated trimeric state. *J. Biol. Chem.* 296:100324
1221 Kozlov G, Ménade M, Rosenauer A, Nguyen L, Gehring K. 2010. Molecular determinants of PAM2
1222 recognition by the MLLE domain of poly(A)-binding protein. *J. Mol. Biol.* 397(2):397–407
1223 Krämer A. 1996. The structure and function of proteins involved in mammalian pre-mRNA splicing. *Annu.*
1224 *Rev. Biochem.* 65:367–409
1225 Kuechler ER, Budzyńska PM, Bernardini JP, Gsponer J, Mayor T. 2020. Distinct Features of Stress
1226 Granule Proteins Predict Localization in Membraneless Organelles. *J. Mol. Biol.* 432(7):2349–68

1227 Kuhlman B, Bradley P. 2019. Advances in protein structure prediction and design. *Nat. Rev. Mol. Cell
1228 Biol.* 20(11):681–97

1229 Kumar M, Michael S, Alvarado-Valverde J, McRossed D, Sign@száros B, Sámano-Sánchez H, et al. 2022.
1230 The Eukaryotic Linear Motif resource: 2022 release. *Nucleic Acids Res.* 50(D1):D497–508

1231 Kustatscher G, Collins T, Gingras AC, Guo T, Hermjakob H, et al. 2022. Understudied proteins:
1232 opportunities and challenges for functional proteomics. *Nat. Methods* 2022 197. 19(7):774–79

1233 Lancaster AK, Nutter-Upham A, Lindquist S, King OD. 2014. PLAAC: a web and command-line
1234 application to identify proteins with prion-like amino acid composition. *Bioinformatics*. 30(17):2501

1235 Langstein-Skora I, Schmid A, Emenecker RJ, Richardson MOG, Götz MJ, et al. 2022. Sequence- and
1236 chemical specificity define the functional landscape of intrinsically disordered regions. *bioRxiv*.
1237 2022.02.10.480018

1238 Lee D, Redfern O, Orengo C. 2007. Predicting protein function from sequence and structure. *Nat. Rev.
1239 Mol. Cell Biol.* 8(12):995–1005

1240 Lee NK, Tang Z, Toneyan S, Koo PK. 2023. EvoAug: improving generalization and interpretability of
1241 genomic deep neural networks with evolution-inspired data augmentations. *Genome Biol.* 24(1):105

1242 Lemey P, Salemi M, Vandamme A-M. 2009. *The Phylogenetic Handbook: A Practical Approach to
1243 Phylogenetic Analysis and Hypothesis Testing*. Cambridge University Press

1244 Li H, Bingham PM. 1991. Arginine/serine-rich domains of the su(wa) and tra RNA processing regulators
1245 target proteins to a subnuclear compartment implicated in splicing. *Cell.* 67(2):335–42

1246 Li H, Ilin S, Wang W, Duncan EM, Wysocka J, et al. 2006. Molecular basis for site-specific read-out of
1247 histone H3K4me3 by the BPTF PHD finger of NURF. *Nature*. 442(7098):91–95

1248 Lindorff-Larsen K, Kragelund BB. 2021. On the Potential of Machine Learning to Examine the
1249 Relationship Between Sequence, Structure, Dynamics and Function of Intrinsically Disordered
1250 Proteins. *J. Mol. Biol.* 433(20):

1251 Lomoriello IS, Sigismund S, Day KJ. 2022. Biophysics of endocytic vesicle formation: A focus on liquid–
1252 liquid phase separation. *Curr. Opin. Cell Biol.* 75:102068

1253 Lotthammer JM, Ginell GM, Griffith D, Emenecker RJ, Holehouse AS. 2023. Direct Prediction of
1254 Intrinsically Disordered Protein Conformational Properties From Sequence. *bioRxiv*.
1255 2023.05.08.539824

1256 Loureiro LO, Howe JL, Reuter MS, Iaboni A, Calli K, et al. 2021. A recurrent SHANK3 frameshift variant in
1257 Autism Spectrum Disorder. *NPJ Genomic Med.* 6(1):91

1258 Loyer P, Trembley JH, Katona R, Kidd VJ, Lahti JM. 2005. Role of CDK/cyclin complexes in transcription
1259 and RNA splicing. *Cell. Signal.* 17(9):1033–51

1260 Lu AX, Lu AX, Pritišanac I, Zarin T, Forman-Kay JD, Moses AM. 2022. Discovering molecular features of
1261 intrinsically disordered regions by using evolution for contrastive learning. *PLoS Comput. Biol.*
1262 18(6):e1010238

1263 Lu AX, Kraus OZ, Cooper S, Moses AM. 2019. Learning unsupervised feature representations for single
1264 cell microscopy images with paired cell inpainting. *PLoS Comp. Biol.* 15(9): e1007348

1265 Lufei C, Koh TH, Uchida T, Cao X. 2007. Pin1 is required for the Ser727 phosphorylation-dependent
1266 Stat3 activity. *Oncogene* 2007 2655. 26(55):7656–64

1267 Luppino F, Adzhubei IA, Cassa CA, Toth-Petroczy A. 2023. DeMAG predicts the effects of variants in
1268 clinically actionable genes by integrating structural and evolutionary epistatic features. *Nat.
1269 Commun.* 14(1):2230

1270 Lyon AS, Peebles WB, Rosen MK. 2021. A framework for understanding the functions of biomolecular
1271 condensates across scales. *Nat. Rev. Mol. Cell Biol.* 22(3):215–35

1272 Malhis N, Gsponer J. 2015. Computational identification of MoRFs in protein sequences. *Bioinformatics*.
1273 31(11):1738–44

1274 Mao AH, Crick SL, Vitalis A, Chicoine CL, Pappu R V. 2010. Net charge per residue modulates
1275 conformational ensembles of intrinsically disordered proteins. *Proc. Natl. Acad. Sci. U. S. A.*
1276 107(18):8183–88

1277 Martin EW, Holehouse AS, Grace CR, Hughes A, Pappu R V., Mittag T. 2016. Sequence Determinants of
1278 the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite
1279 Phosphorylation. *J. Am. Chem. Soc.* 138(47):15323–35

1280 Martin EW, Holehouse AS, Peran I, Farag M, Incicco JJ, et al. 2020. Valence and patterning of aromatic
1281 residues determine the phase behavior of prion-like domains. *Science (80-.).* 367(6478):694–99

1282 Maxwell BA, Gwon Y, Mishra A, Peng J, Nakamura H, et al. 2021. Ubiquitination is essential for recovery

1283 of cellular activities after heat shock. *Science* (80-). 372(6549):eabc3593

1284 Mensah MA, Niskanen H, Magalhaes AP, Basu S, Kircher M, et al. 2023. Aberrant phase separation and

1285 nucleolar dysfunction in rare genetic diseases. *Nature*. 614(7948):564–71

1286 Mi H, Dong Q, Muruganujan A, Gaudet P, Lewis S, Thomas PD. 2010. PANTHER version 7: improved

1287 phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium. *Nucleic Acids*

1288 Res. 38(suppl_1):D204–10

1289 Millar SR, Huang JQ, Schreiber KJ, Tsai YC, Won J, et al. 2023. A New Phase of Networking: The

1290 Molecular Composition and Regulatory Dynamics of Mammalian Stress Granules. *Chem. Rev.* in

1291 press:

1292 Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: The protein families

1293 database in 2021. *Nucleic Acids Res.* 49(D1):D412–19

1294 Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, et al. 2006. Analysis of molecular recognition

1295 features (MoRFs). *J. Mol. Biol.* 362(5):1043–59

1296 Møller TC, Wirth VF, Roberts NI, Bender J, Bach A, et al. 2013. PDZ domain-mediated interactions of G

1297 protein-coupled receptors with postsynaptic density protein 95: quantitative characterization of

1298 interactions. *PLoS One*. 8(5):

1299 Mollie A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, et al. 2015. Phase separation by low complexity

1300 domains promotes stress granule assembly and drives pathological fibrillization. *Cell*. 163(1):123–33

1301 Montpetit ML, Stocker PJ, Schwetz TA, Harper JM, Norring SA, et al. 2009. Regulated and aberrant

1302 glycosylation modulate cardiac electrical signaling. *Proc. Natl. Acad. Sci. U. S. A.* 106(38):16517–22

1303 Mosalaganti S, Obarska-Kosinska A, Sigel M, Taniguchi R, Turoňová B, et al. 2022. AI-based structure

1304 prediction empowers integrative structural analysis of human nuclear pores. *Science* (80-).

1305 376(6598):

1306 Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, et al. 2023. Phase separation of

1307 FSP1 promotes ferroptosis. *Nature*. 619(7969):371–77

1308 Nayak A, Glöckner-Pagel J, Vaeth M, Schumann JE, Buttmann M, et al. 2009. Sumoylation of the

1309 transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by

1310 histone deacetylase. *J. Biol. Chem.* 284(16):10935–46

1311 Necci M, Piovesan D, Hoque MT, Walsh I, Iqbal S, et al. 2021. Critical assessment of protein intrinsic

1312 disorder prediction. *Nat. Methods*. 18(5):472–81

1313 Nguyen Ba AN, Yeh BJ, Van Dyk D, Davidson AR, Andrews BJ, et al. 2012. Proteome-wide discovery of

1314 evolutionary conserved sequences in disordered regions. *Sci. Signal.* 5(215):rs1

1315 Nielsen JT, Mulder FAA. 2019. Quality and bias of protein disorder predictors. *Sci. Rep.* 9(1):

1316 Nielsen PR, Nietlispach D, Mott HR, Callaghan J, Bannister A, et al. 2002. Structure of the HP1

1317 chromodomain bound to histone H3 methylated at lysine 9. *Nature*. 416(6876):103–7

1318 Ozdilek BA, Thompson VF, Ahmed NS, White CI, Batey RT, Schwartz JC. 2017. Intrinsically disordered

1319 RGG/RG domains mediate degenerate specificity in RNA binding. *Nucleic Acids Res.* 45(13):7984–

1320 96

1321 Pai CY, Chen HK, Sheu HL, Yeh NH. 1995. Cell-cycle-dependent alterations of a highly phosphorylated

1322 nucleolar protein p130 are associated with nucleologenesis. *J. Cell Sci.* 108 (Pt 5)(5):1911–20

1323 Pang Y, Liu B. 2022. DMFpred: Predicting protein disorder molecular functions based on protein cubic

1324 language model. *PLoS Comput. Biol.* 18(10):

1325 Pang Y, Liu B. 2023. TransDFL: Identification of Disordered Flexible Linkers in Proteins by Transfer

1326 Learning. *Genomics. Proteomics Bioinformatics*. 21(2):359–69

1327 Pang Y, Liu B. 2024. DisoFLAG: accurate prediction of protein intrinsic disorder and its functions using

1328 graph-based interaction protein language model. *BMC Biol.* 22:3.

1329 Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, et al. 2015. A Liquid-to-Solid Phase Transition of the

1330 ALS Protein FUS Accelerated by Disease Mutation. *Cell*. 162(5):1066–77

1331 Piovesan D, Monzon AM, Tosatto SCE. 2022. Intrinsic protein disorder and conditional folding in

1332 AlphaFoldDB. *Protein Sci.* 31(11):e4466

1333 Pritišanac I, Vernon RM, Moses AM, Forman Kay JD. 2019. Entropy and Information within Intrinsically

1334 Disordered Protein Regions. *Entropy*. 21(7):662

1335 Qin W, Cheah JS, Xu C, Messing J, Freibaum BD, Boeynaems S, Taylor JP, Udeshi ND, Carr SA, Ting

1336 AY. 2023. Dynamic mapping of proteome trafficking within and between living cells by TransitID.

1337 *Cell* 186(15):3307-3324.

1338 Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, et al. 2013. A large-scale evaluation of

1339 computational protein function prediction. *Nat. Methods.* 10(3):221–27

1340 Rallabhandi P, Hashimoto K, Mo YY, Beck WT, Moitra PK, D'Arpa P. 2002. Sumoylation of

1341 topoisomerase I is involved in its partitioning between nucleoli and nucleoplasm and its clearing

1342 from nucleoli in response to camptothecin. *J. Biol. Chem.* 277(42):40020–26

1343 Ravarani CN, Erkina TY, De Baets G, Dudman DC, Erkine AM, Babu MM. 2018. High-throughput

1344 discovery of functional disordered regions: investigation of transactivation domains. *Mol. Syst. Biol.*

1345 14(5):e8190

1346 Riou P, Kjær S, Garg R, Purkiss A, George R, et al. 2013. 14-3-3 proteins interact with a hybrid prenyl-

1347 phosphorylation motif to inhibit G proteins. *Cell.* 153(3):640–53

1348 Romero G, Von Zastrow M, Friedman PA. 2011. Role of PDZ proteins in regulating trafficking, signaling,

1349 and function of GPCRs: means, motif, and opportunity. *Adv. Pharmacol.* 62:279–314

1350 Rostam N, Ghosh S, Chow CFW, Hadarovich A, Landerer C, et al. 2023. CD-CODE: crowdsourcing

1351 condensate database and encyclopedia. *Nat. Methods.* 20(5):673–76

1352 Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, et al. 2003. Regulation of NF- κ B signaling by Pin1-

1353 dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. *Mol. Cell.*

1354 12(6):1413–26

1355 Saldanha AJ. 2004. Java Treeview—extensible visualization of microarray data. *Bioinformatics.*

1356 20(17):3246–48

1357 Sanderson T, Bileschi ML, Belanger D, Colwell LJ. 2023. ProtelInfer, deep neural networks for protein

1358 functional inference. *Elife.* 12:

1359 Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, et al. 2020. Large-Scale Exome

1360 Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of

1361 Autism. *Cell.* 180(3):568–584.e23

1362 Schlessinger A, Schaefer C, Vicedo E, Schmidberger M, Punta M, Rost B. 2011. Protein disorder--a

1363 breakthrough invention of evolution? *Curr. Opin. Struct. Biol.* 21(3):412–18

1364 Schmidt HB, Görlich D. 2016. Transport Selectivity of Nuclear Pores, Phase Separation, and

1365 Membraneless Organelles. *Trends Biochem. Sci.* 41(1):46–61

1366 Segal D, Maier S, Mastromarco GJ, Qian WW, Nabeel-Shah S, et al. 2023. A central chaperone-like role

1367 for 14-3-3 proteins in human cells. *Mol. Cell.* 83(6):974–993.e15

1368 Shinn MK, Cohan MC, Bullock JL, Ruff KM, Levin PA, Pappu R V. 2022. Connecting sequence features

1369 within the disordered C-terminal linker of *Bacillus subtilis* FtsZ to functions and bacterial cell division.

1370 *Proc. Natl. Acad. Sci. U. S. A.* 119(42):

1371 Singh S, Broeck A, Vanden, Miller L, Chaker-Margot M, Klinge S. 2021. Nucleolar maturation of the

1372 human small subunit processome. *Science (80-).* 373(6560):

1373 Singleton M, Eisen M. 2023. Evolutionary analyses of IDRs reveal widespread signals of conservation.

1374 *bioRxiv.* 2023.12.05.570250

1375 Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. 2018. The COSMIC Cancer Gene

1376 Census: describing genetic dysfunction across all human cancers. *Nat. Rev. Cancer.* 18(11):696–

1377 705

1378 Staller M V., Holehouse AS, Swain-Lenz D, Das RK, Pappu R V., Cohen BA. 2018. A High-Throughput

1379 Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain. *Cell Syst.*

1380 6(4):444–455.e6

1381 Staller M V., Ramirez E, Kotha SR, Holehouse AS, Pappu R V., Cohen BA. 2022. Directed mutational

1382 scanning reveals a balance between acidic and hydrophobic residues in strong human activation

1383 domains. *Cell Syst.* 13(4):334–345.e5

1384 Steube N, Moldenhauer M, Weiland P, Saman D, Kilb A, et al. 2023. Fortuitously compatible protein

1385 surfaces primed allosteric control in cyanobacterial photoprotection. *Nat. Ecol. Evol.* 7(5):756–67

1386 Strickfaden SC, Winters MJ, Ben-Ari G, Lamson RE, Tyers M, Pryciak PMM. 2007. A mechanism for cell-

1387 cycle regulation of MAP kinase signaling in a yeast differentiation pathway. *Cell.* 128(3):519–31

1388 Tesei G, Trolle AI, Jonsson N, Betz J, Pesce F, et al. 2023. Conformational ensembles of the human

1389 intrinsically disordered proteome: Bridging chain compaction with function and sequence

1390 conservation. *bioRxiv.* 2023.05.08.539815

1391 Thaller DJ, Allegretti M, Borah S, Ronchi P, Beck M, Lusk CP. 2019. An ESCRT-LEM protein surveillance

1392 system is poised to directly monitor the nuclear envelope and nuclear transport system. *Elife.* 8:

1393 Tompa P, Davey NE, Gibson TJ, Babu MM. 2014. A million peptide motifs for the molecular biologist. *Mol.*

1394 *Cell.* 55(2):161–69

1395 Tompa P, Szász C, Buday L. 2005. Structural disorder throws new light on moonlighting. *Trends Biochem. Sci.* 30(9):484–89

1396 Tsang B, Pritišanac I, Scherer SW, Moses AM, Forman-Kay JD. 2020. Phase Separation as a Missing Mechanism for Interpretation of Disease Mutations

1397 Uversky VN, Oldfield CJ, Dunker AK. 2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. *Annu. Rev. Biophys.* 37:215–46

1400 Vacic V, Markwick PRL, Oldfield CJ, Zhao X, Haynes C, et al. 2012. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder. *PLOS Comput. Biol.* 8(10):e1002709

1401 Van Der Lee R, Buljan M, Lang B, Weatheritt RJ, Daughdrill GW, et al. 2014. Classification of intrinsically disordered regions and proteins

1402 Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, et al. 2014. Short linear motifs: ubiquitous and functionally diverse protein interaction modules directing cell regulation. *Chem. Rev.* 114(13):6733–78

1403 Vendruscolo M, Fuxreiter M. 2023. Towards sequence-based principles for protein phase separation predictions. *Curr. Opin. Chem. Biol.* 75:102317

1404 Vernon RM, Forman-Kay JD. 2019. First-generation predictors of biological protein phase separation. *Curr. Opin. Struct. Biol.* 58:88–96

1405 Vernon RMC, Chong PA, Tsang B, Kim TH, Bah A, et al. 2018. Pi-Pi contacts are an overlooked protein feature relevant to phase separation. *Elife.* 7:

1406 Vertegaal ACO. 2022. Signalling mechanisms and cellular functions of SUMO. *Nat. Rev. Mol. Cell Biol.* 23(11):715–31

1407 Warren C, Shechter D. 2017. Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches. *J. Mol. Biol.* 429(16):2401–26

1408 Wenzel EM, Schultz SW, Schink KO, Pedersen NM, Nähse V, et al. 2018. Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. *Nat. Commun.* 9(1):

1409 Wright PE, Dyson HJ. 2015. Intrinsically disordered proteins in cellular signalling and regulation

1410 Wulf GM, Ryo A, Wulf GG, Lee SW, Niu T, et al. 2001. Pin1 is overexpressed in breast cancer and cooperates with Ras signaling in increasing the transcriptional activity of c-Jun towards cyclin D1. *EMBO J.* 20(13):3459–72

1411 Xie J, Kozlov G, Gehring K. 2014. The “tale” of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. *Biochim. Biophys. Acta.* 1839(11):1062–68

1412 Yeh AHW, Norn C, Kipnis Y, Tischer D, Pellock SJ, et al. 2023. De novo design of luciferases using deep learning. *Nature.* 614(7949):774–80

1413 Youn JY, Dunham WH, Hong SJ, Knight JDR, Bashkurov M, et al. 2018. High-Density Proximity Mapping Reveals the Subcellular Organization of mRNA-Associated Granules and Bodies. *Mol. Cell.* 69(3):517–532.e11

1414 Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, et al. 2019. Properties of Stress Granule and P-Body Proteomes. *Mol. Cell.* 76(2):286–94

1415 Yu M, Heidari M, Mikhaleva S, Tan PS, Mingu S, et al. 2023a. Visualizing the disordered nuclear transport machinery *in situ*. *Nature.* 617(7959):

1416 Yu T, Cui H, Li JC, Luo Y, Jiang G, Zhao H. 2023b. Enzyme function prediction using contrastive learning. *Science (80-).* 379(6639):1358–63

1417 Zahn-Zabal M, Michel PA, Gateau A, Nikitin F, Schaeffer M, et al. 2020. The neXtProt knowledgebase in 2020: data, tools and usability improvements. *Nucleic Acids Res.* 48(D1):D328–34

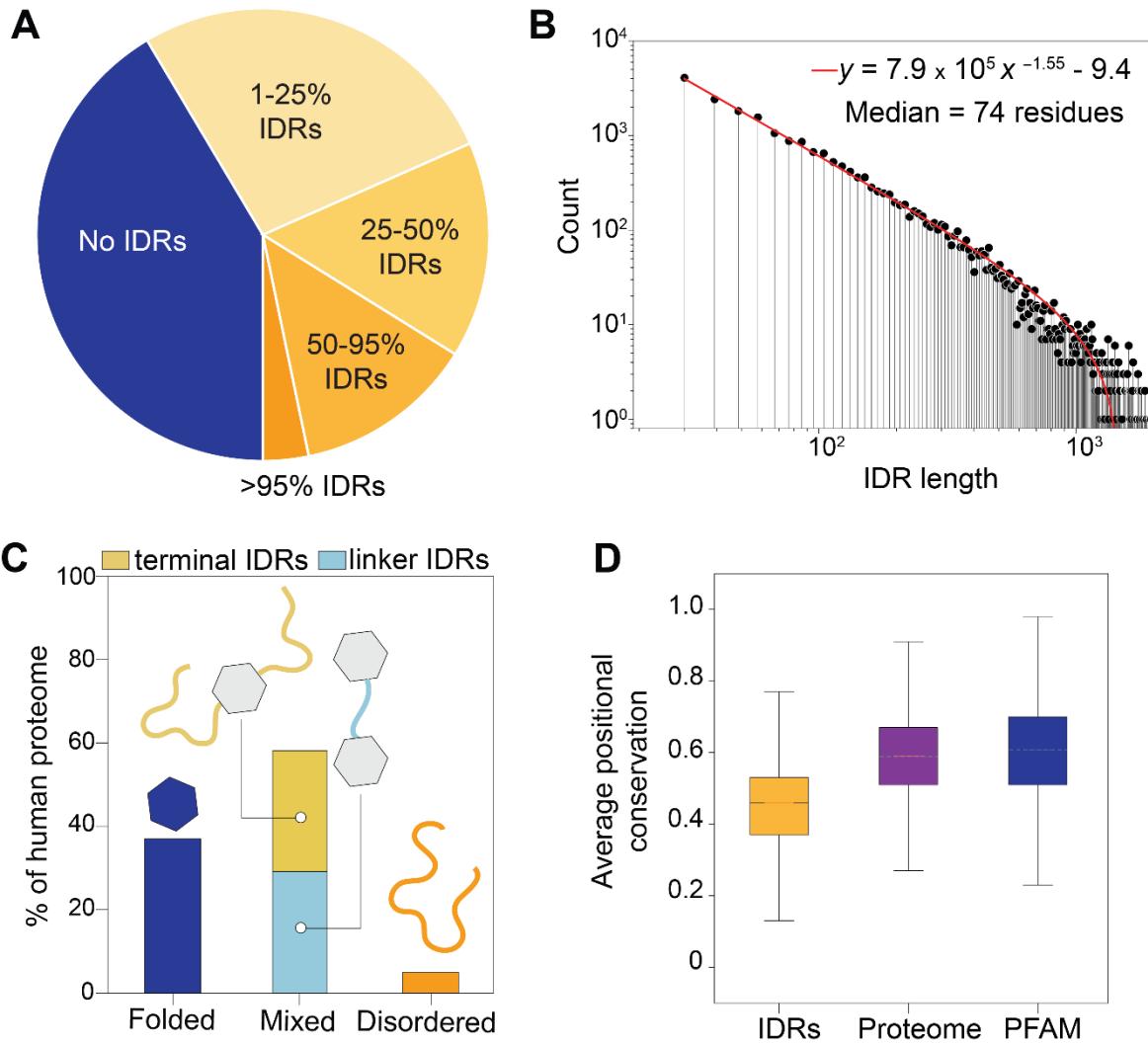
1418 Zarin T, Strome B, Nguyen Ba AN, Alberti S, Forman-Kay JD, Moses AM. 2019. Proteome-wide signatures of function in highly diverged intrinsically disordered regions. *Elife.* 8:

1419 Zarin T, Strome B, Peng G, Pritišanac I, Forman-Kay JD, Moses AM. 2021. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. *Elife.* 10:1–36

1420 Zarin T, Tsai CN, Ba ANN, Moses AM. 2017. Selection maintains signaling function of a highly diverged intrinsically disordered region. *Proc. Natl. Acad. Sci. U. S. A.* 114(8):E1450–59

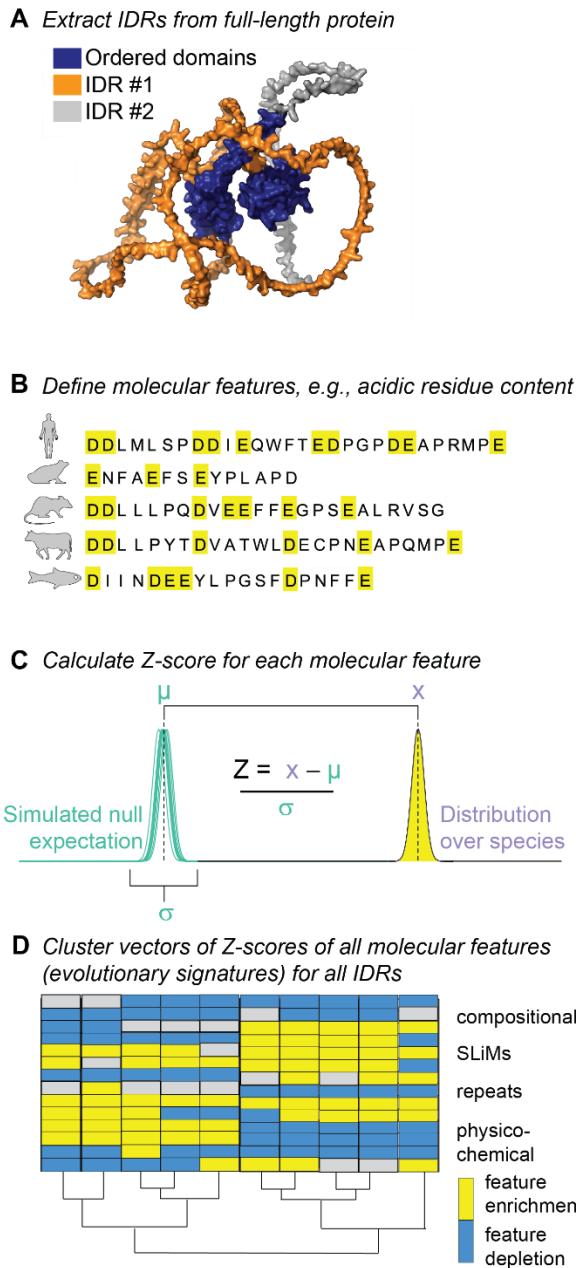
1421 Zhao B, Katuwawala A, Oldfield CJ, Dunker AK, Faraggi E, et al. 2021. DescribePROT: database of amino acid-level protein structure and function predictions. *Nucleic Acids Res.* 49(D1):D298–308

1422 Zhou XZ, Lu KP. 2016. The isomerase PIN1 controls numerous cancer-driving pathways and is a unique drug target. *Nat. Rev. Cancer.* 16(7):463–78



1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472

Figure 1. Extent and distribution of intrinsic disorder in the human proteome. (A) Break-up of the human proteome by the protein intrinsic disorder content based on the SPOT-Disorder predictor (Hanson J et al. 2017 & 2018). A minimum of 30 consecutive disordered residues was used as a criterion to define an IDR. The pie chart is stratified to emphasize the extent of intrinsically disordered regions as a percentage of the total protein sequence, i.e., 50-95% means that between 50% and 95% of the entire protein sequence is intrinsically disordered. It is evident that the majority of proteins in the human proteome have IDRs, with a sizeable fraction (15%) containing more than half of the sequence in disordered regions. (B) Distribution of lengths of human IDRs. The IDR lengths follow a power-law distribution ($Ax^b + c$), with A , b , and c as given on the plot. (C) Distribution of intrinsic disorder in the human proteome. Fully disordered and folded proteins are shown in green and pink, respectively. Mixed proteins that contain both IDRs and folded domains are separated into terminal IDRs (yellow) that are located at the N- or C-termini of a protein, and linker IDRs (blue) that are between folded domains. (D) Comparison of sequence similarity in alignments as measured by the average Jensen-Shannon divergence over alignment columns with the background distribution given as observed in extant human IDR sequences. The average positional conservation when aligned to ENSEMBL orthologs is shown in a box plot for IDRs, the entire human proteome, and PFAM domains (Mistry J, et al. 2021). Note that gaps, which are more frequent in IDRs when compared to PFAM domains (Khan T, et al. 2015, Chow CFW, et al. 2023), were ignored in the computation of positional conservation and thus the conservation for IDRs as shown is an overestimate. The boxes extend to the upper and lower quartiles, and the lines within the boxes corresponds to the median value.



1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

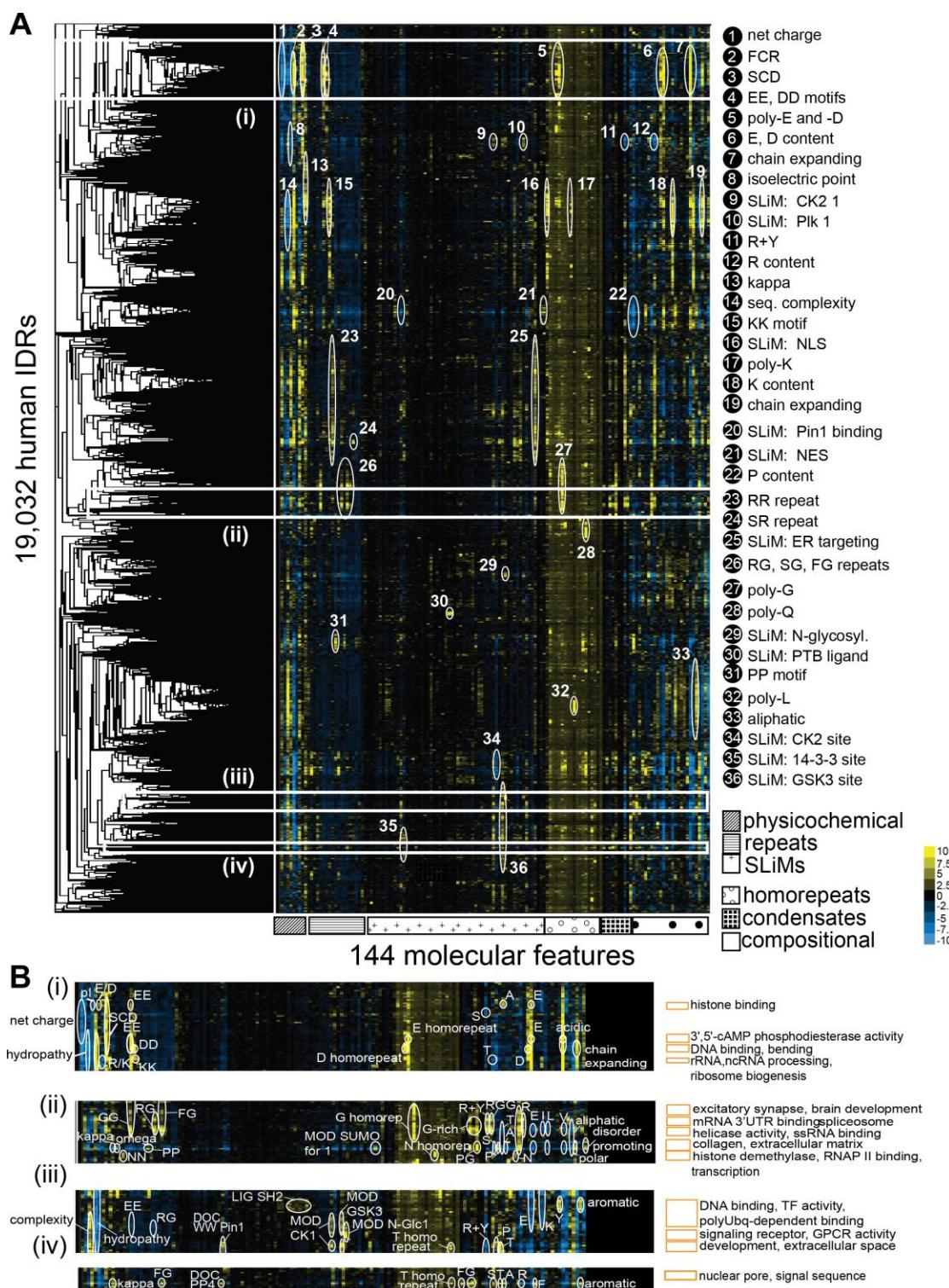
1483

1484

1485

1486

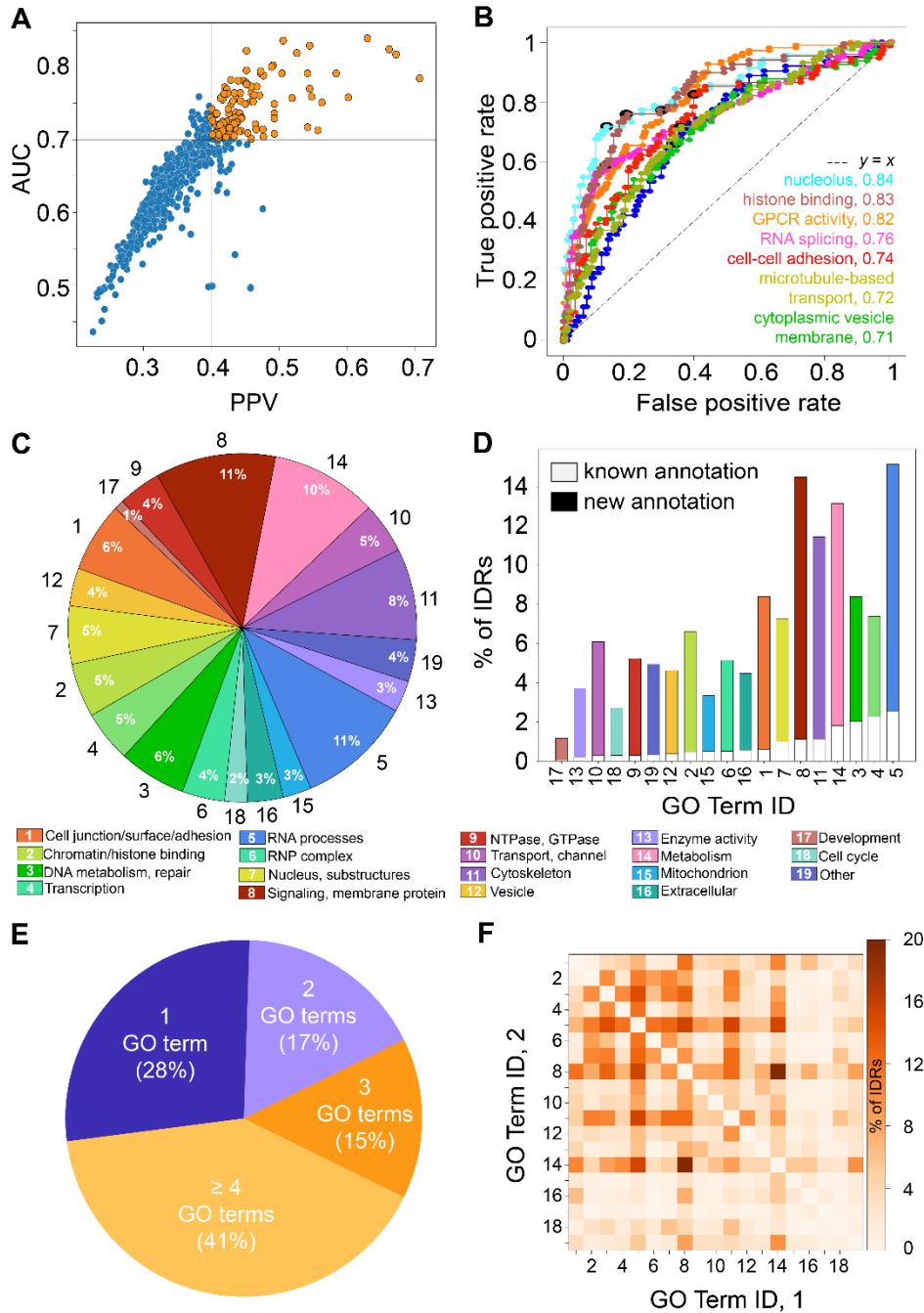
Figure 2. Computing evolutionary signatures in human IDRs. (A) A sequence-based disorder predictor is used to define boundaries of IDRs more than 30 consecutive residues in length. The AlphaFold2 structural model of p53 is shown here to illustrate the IDRs (orange, grey) and folded domains (blue). (B) Over 140 molecular features are computed for each human IDR sequence and for IDR sequences from other species in the set of orthologues. In the illustrated example, the content of acidic residues is the molecular feature that is computed. (C) A Z-score is computed between the evolutionary mean of feature in extant species (x) and the average evolutionary mean of the feature in simulations of the null-hypothesis (μ), normalized by the standard deviation of the evolutionary mean in simulations of the null-hypothesis (σ). (D) Cluster vectors of Z-scores of all molecular features (evolutionary signatures) for all human IDRs. The resultant evolutionary signatures summarize conservation across the IDRome. When IDRs are hierarchically clustered based on these Z-scores, patterns emerge that define a global map of the IDRome in which IDRs with similar evolutionary signatures appear in close proximity.



1487
1488

1489 **Figure 3. A global map of human IDRs obtained through clustering of evolutionary signatures. (A)**
1490 Hierarchical clustering of 19,032 human IDRs (y-axis) based on the evolutionary conservation of 144
1491 different molecular features (x-axis). The molecular features are grouped into six different categories
1492 (physicochemical, repeats, SLIMs, homorepeats, condensates, or compositional biases). This global map
1493 of the human IDR-ome shows conservation Z-scores, with some of the dominant molecular features
1494 annotated with white circles and numbers, described in the legend (right). A positive or negative Z-score,

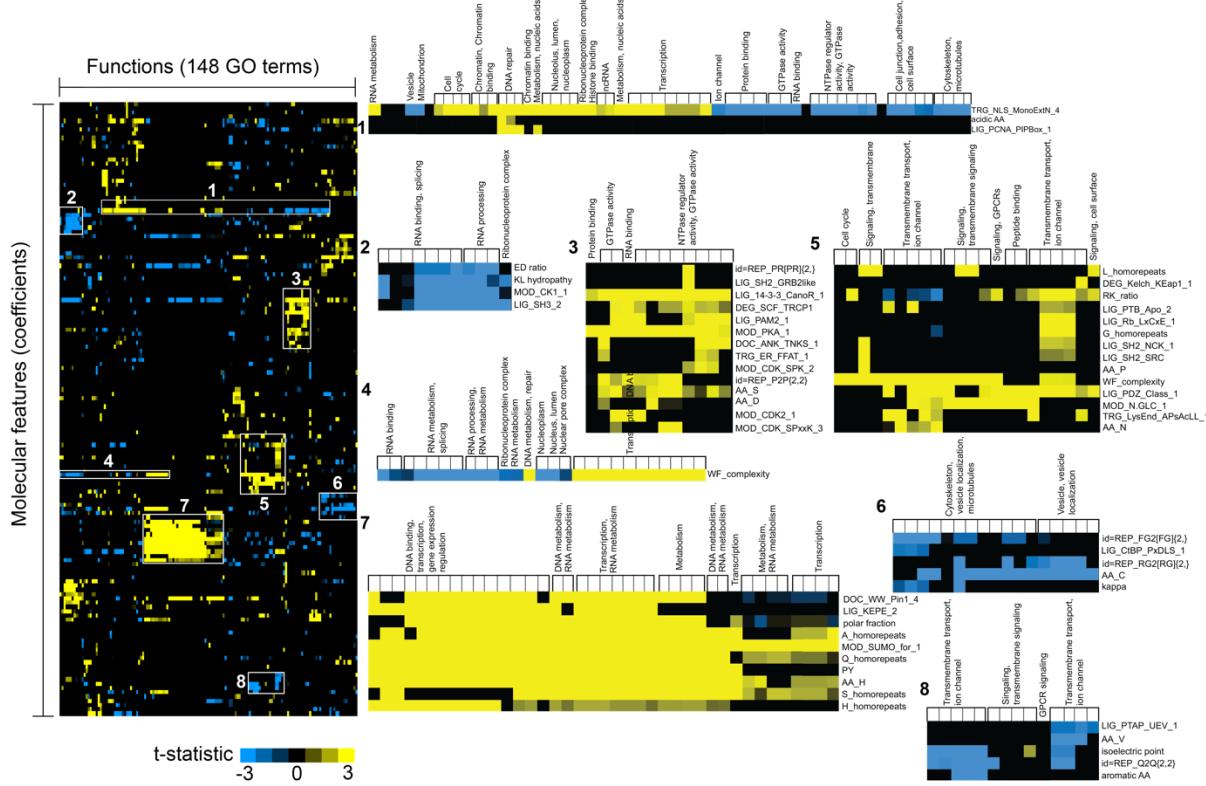
1495 respectively, is defined by a higher or lower value of a mean of a molecular feature over orthologous IDRs
1496 than expected based on a simulation of an absence of evolutionary conservation. White rectangles indicate
1497 areas of selected clusters featured in panel B. **(B)** Clusters that are defined by strong patterns of Z-scores
1498 often contain a statistically significant overrepresentation of GO-term molecular functions, biological
1499 processes and/or sub cellular localizations, as listed here for select examples in areas **(i)**, **(ii)**, **(iii)** and **(iv)**
1500 from the panel A. A detailed view of statistically overrepresented terms and features for the rest of the map
1501 are available in **Supplementary Figure S5**. Complete information on statistics of functional
1502 overrepresentation associated with each cluster selected manually or extracted using an automatic protocol
1503 are available in **Supplementary Table 2**.
1504



1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517

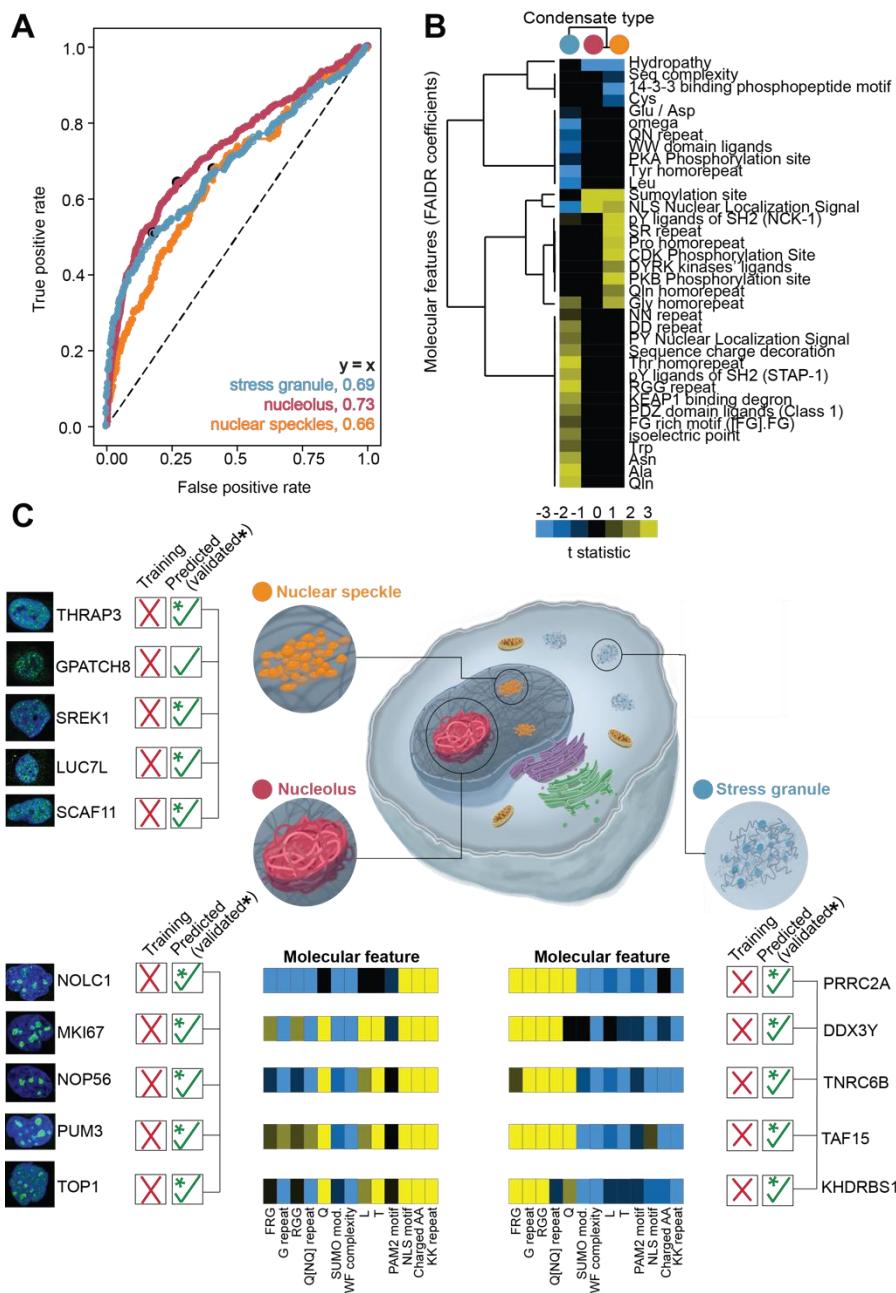
Figure 4. Predicting functions and locations of human IDRs. (A) Each point represents held-out data performance of a classifier for one of 600 GO terms covering a broad range of molecular functions, biological processes, and cellular localizations (Supplementary Table 4). The X-axis represents positive predictive value (PPV) and the y-axis represents area under the receiver operating curve (AUC) on the held-out data. The models corresponding to data points in orange (PPV > 0.4 and AUC > 0.7) were deemed sufficiently reliable for functional annotations of IDRs proteome-wide (as summarized in C and D). (B) Receiver operating characteristic (ROC) curve for classification of human IDRs to a representative set of GO terms. The performance is shown on held-out data. The terms were selected to display a variation in the FAIDR performance on the binary classification tasks. In addition to the protein level classification, the FAIDR classifier provides probabilities of GO term association for individual IDRs in the protein. These IDR probabilities were used in C and D to annotate human IDRs to a broad set of enumerated and color-coded

1518 functional and location categories. **(C)** A break-up of annotations for all human IDRs to broad functional
1519 and location categories as summarized in **Supplementary Table 4** (Tab D). Note that many IDRs get
1520 assigned to more than one category (see **E**). In **(D)** the fraction of “known” annotations is given in white
1521 boxes. An annotation of an IDR to a function or location was considered as “known” if the protein from
1522 which the IDR originates has been previously associated with the category. If the functional or location
1523 category was predicted for a protein not previously annotated with that category, and an IDR in the protein
1524 was given high probability for the association (see **Methods**), the annotation was considered “new”. See
1525 also **Supplementary Figure S12**. **(E)** Each section of the chart represents that fraction of IDRs with a given
1526 number of predicted annotations. Only 28% of human IDRs get assigned to a unique functional or location
1527 category. **(F)** Correlation between the categories expressed as a fraction of IDRs shared between any given
1528 two categories. The diagonal is set to 0. Some of the most frequently shared functional annotations are
1529 those associated with various aspects of RNA (5) and DNA metabolism (3 & 4).



1530
1531
1532
1533
1534
1535
1536

Figure 5. Identifying the molecular features that are predictive of IDR functions and locations. Left heat map represents t-statistics summarizing the predictive importance of different molecular features (y-axis) across GO terms (x-axis). Rows and columns have been organized by clustering. Selected regions, indicated with white rectangles and numbers, are expanded on the right side. Comparisons of the t-statistics within and between different clusters unveils how different combinations of molecular features can drive different biological functions and localization.



1537

1538 **Figure 6. Predictions of association with different bimolecular condensates (A)** Receiver operating
 1539 characteristic (ROC) curve for classification of human IDRs to different cellular bimolecular condensates:
 1540 stress granules (blue), the nucleolus (red), or nuclear speckles (orange). The performance was tested on
 1541 independent and non-overlapping datasets with condensate annotations (see **Methods**). Area under the
 1542 curve (AUC) values are shown in the lower right. **(B)** Hierarchical clustering of the t-statistics as in Figure
 1543 5. A negative or positive association of a conserved molecular feature with a particular biomolecular
 1544 condensate is given in blue or yellow scaling, respectively. The condensate type is shown at the top with
 1545 the colors the same as panel A. **(C)** Select examples from the top predictions of association to stress
 1546 granules, the nucleolus, or nuclear speckles. The examples include proteins that were not used in training
 1547 and for which an association with the indicated condensate was not previously reported. For the nucleolar
 1548 and stress granule-associating proteins, the evolutionary signatures for selected molecular features are
 1549 shown with the colors scheme of Figure 3.