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Abstract

Splicing is often dysregulated in cancer, leading to alterations in the expression of canonical and
alternative splice isoforms. This complex phenomenon can be revealed by an in-depth
understanding of cellular heterogeneity at the single-cell level. Recent advances in single-cell long-
read sequencing technologies enable comprehensive transcriptome sequencing at the single-cell
level. In this study, we have generated single-cell long-read sequencing of Patient-Derived Organoid

(PDO) cells of clear-cell Renal Cell Carcinoma (ccRCC), an aggressive and lethal form of cancer
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that arises in kidney tubules. We have used the Multiplexed Arrays Sequencing (MAS-ISO-Seq)
protocol of PacBio to sequence full-length transcripts exceptionally deep across 2,599 single cells
to obtain the most comprehensive view of the alternative landscape of ccRCC to date. On average,
we uncovered 86,182 transcripts across PDOs, of which 31,531 (36.6%) were previously
uncharacterized. In contrast to known transcripts, many of these novel isoforms appear to exhibit
cell-specific expression. Nonetheless, >50% of these novel transcripts were predicted to possess a
complete protein-coding open reading frame. This finding suggests a biological role for these
transcripts within kidney cells. Moreover, an analysis of the most dominant transcript switching
events between ccRCC and non-ccRCC cells revealed that many switching events were cell and
sample-specific, underscoring the heterogeneity of alternative splicing events in ccRCC.

Overall, our research elucidates the intricate transcriptomic architecture of ccRCC, potentially
exposing the mechanisms underlying its aggressive phenotype and resistance to conventional

cancer therapies.
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Introduction

Alternative splicing is a pivotal mechanism by which eukaryotic cells enhance their transcriptomic
and proteomic diversity (Graveley 2001). By allowing a single gene to encode multiple RNA variants,
alternative splicing contributes significantly to cellular complexity, tissue specificity (Xu 2002), and
organismal adaptability (Marasco and Kornblihtt 2023; Verta and Jacobs 2022). In the context of
human disease, notably cancer, dysregulation of alternative splicing events can lead to the
expression of oncogenic isoforms, influencing tumor initiation, progression, and resistance to
therapy (Sciarrillo et al. 2020; Bradley and Anczukéw 2023). Despite its recognized importance, the
comprehensive characterization of alternative splicing at the resolution of individual cells remains a
formidable challenge, primarily due to the limitations of conventional sequencing technologies in

capturing the full spectrum of splicing events.

Recent advances in single-cell RNA sequencing (scRNA-seq) have revolutionized our
understanding of cellular heterogeneity in complex tissues and tumoral environments, revealing
unprecedented insights into the transcriptomic variations that define cell types, states, and functions
(Cha and Lee 2020; Li et al. 2022; Travaglini et al. 2020; Yao et al. 2023; Dondi et al. 2023).
However, most single-cell studies have relied on short-read sequencing technologies, which, despite
their high throughput, fall short of accurately resolving complex splice variants due to their limited
read lengths. Long-read sequencing technologies offer a promising solution to these limitations. With
the ability to generate reads that span entire transcript isoforms, long-read sequencing enables the
direct observation of splicing patterns and the identification of novel isoforms that would be missed
or misassembled by short-read technologies (Byrne et al. 2017; Amarasinghe et al. 2020; Bolisetty
et al. 2015). However, long-read sequencing was not appropriate for single-cell transcriptome
measurements due to the initial lower throughput and high sequencing errors. With the recent
advances in sequencing chemistries and transcript concatenation protocols, the restrictions could
be overcome, allowing us to measure transcripts in the transcriptome at full-length at single-cell

resolution.
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Using derivatives of this new technology, the research community has begun to investigate the
transcriptome of various samples at single-cell resolution. For example, Shiau et al. identified a
distinct combination of isoforms in tumor and neighboring stroma/immune cells in a kidney tumor,
as well as cell-type-specific mutations like VEGFA mutations in tumor cells and HLA-A mutations in
immune cells (Shiau et al. 2023). Tian et al. highlighted the complexity of the transcriptome in human
and mouse samples by identifying thousands of novel transcripts with conserved functional modules
enriched in alternative transcript usage, including ribosome biogenesis and mRNA splicing. They
found drug-resistance mutations in subclones within transcriptional clusters (Tian et al. 2021). Also,
Yang et al. observed thousands of novel transcripts in human cerebral organoids, with differentially
spliced exons and retained introns (Yang et al. 2023). Cell-type-specific exons with de novo
mutations were enriched in autistic patients. In another interesting study, Wan et al. integrated
single-cell long-read sequencing with single-molecule microscopy and observed distinct but
consistent bursting expression for all genes with similar nascent RNA dwell time (Wan et al. 2021;
Shiau et al. 2023). The intron removal time spans minutes to hours, suggesting that the spliceosome
removes introns progressively in pieces. In a recent study, Dondi et al. identified over 52,000 novel
transcripts in five ovarian cancer samples that had not been reported previously, and similar to the
studies above, discovered cell-specific transcript and polyadenylation site usages and were able to
identify a gene fusion event that would have been missed using short-read sequencing (Dondi et al.

2023).

Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of kidney cancer, characterized
by its heterogeneous cellular composition and a complex genetic landscape (Hsieh et al. 2017;
Turajlic et al. 2018a). A hallmark of ccRCC is the loss of the von Hippel-Lindau (VHL) tumor
suppressor gene through genetic (point mutations, indels and 3p25 loss) and/or epigenetic
(promoter methylation) mechanisms. Loss of the VHL gene can lead to the stabilization of hypoxia-
inducible factors (HIFs) and subsequent activation of an hypoxic response even in oxygenated tissue
microenvironment. The resulting uncontrolled activation of transcriptional targets that regulate

angiogenesis, metabolic pathways, apoptosis, and other processes can drive tumor progression and
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survival while inducing the acceleration of clonal evolution and subclonal diversification (Turajlic et

al., 2018).

Here, we have applied PacBio’'s new Multiplexed Arrays Sequencing (MAS-ISO-Seq) protocol
(Arkhafaji et al. 2023) to probe full-length transcriptomic profiles of single cells in patient-derived
kidney organoids from four individuals with ccRCC. Importantly, the MAS-ISO-Seq method hinges
on the availability of intact RNA molecules that can exclusively be obtained from viable cells,
preventing its application for archival formalin-fixed paraffin embedded samples. Cancer-derived
organoids serve as an ideal starting material. They closely mirror important biological
features of the original tumors including genetic intra-tumor heterogeneity (ITH) as a three-
dimensional model, and provide a renewable source of living cells for analysis (Bolck et al.
2021). Thus, our organoids allow for an unprecedented exploration of the transcriptomic
diversity within patient-derived cellsand reveal important insights into the mechanisms driving
tumor evolution and therapy resistance. By applying long-read single-cell RNA sequencing to
PDOs, one can derive important insights into the transcriptional landscapes of these important

translational models.

Despite extensive research highlighting the role of alternative splicing in ccRCC development and
treatment response (Wang et al. 2022; Simmler et al. 2022; Zhang et al. 2021a), the transcriptome
landscape of ccRCC at the single-cell resolution remains unexplored. Given the well-known
genetic heterogeneity and complexity of the tumor microenvironment in ccRCC (Turajlic et al.
2018a, 2018b), understanding these processes at the single-cell resolution could reveal critical
insight for ccRCC biology. For example, recent single-cell studies have suggested VCAM1-
positive renal proximal tubule cells to be the likely origin of ccRCC (Zhang et al. 2021b; Schreibing
and Kramann 2022), which is consistent with the hypothesis that ccRCC is derived from the
proximal tubules. Also, ccRCC tumors were found to detain many CD8+ T-cells and macrophages
in immune checkpoint inhibition responsive and resistant samples, respectively (Krishna et al.
2021). The distinct response could explain the general good response of ccRCC patients to
immunotherapy despite having a low mutational burden in their ccRCC tumors (Borcherding et al.

2021).
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Here, for the first time, we explored the transcriptome landscape of ccRCC samples and one
matched-normal patient-derived organoids (PDOs) in single-cell resolution using single-cell long-
read sequencing technology. We aimed to understand the heterogeneity within cells and between
samples at the alternative splicing level, and identify isoform switching events in ccRCC cells that

could pave the way for novel therapeutic strategies.


https://doi.org/10.1101/2024.03.15.585271
http://creativecommons.org/licenses/by-nc/4.0/

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585271; this version posted November 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Results

Full-length single-cell sequencing reveals transcript diversity and the cell

heterogeneity of known and novel transcripts

To discern the transcriptome diversity in ccRCC, we have applied full-length single-cell sequencing
using the MAS-Seq protocol (A'Khafaji et al. 2023) on a PacBio Sequel lle instrument to five patient-
derived organoids (PDO) samples (Fig. 1A).The PDOs were established from fresh tissue samples
obtained from four individuals with ccRCC (Fig. 1B). We included one PDO that was generated from
matching normal kidney tissue from sample ccRCC2. All ccRCC-derived organoids carried a VHL
mutation, a hallmark of ccRCC (Table 1). To sequence the single-cell transcriptomes as deeply as
possible, we loaded transcript molecules of as few cells as possible on the flow cell. With 29.4 to
58.8 million segmented reads per sample we sequenced 310 - 1091 cells and obtained a total of
216,926 - 346,107 transcripts. The average sequencing depth thus ranged from 21,499 to 96,620
reads per cell (Table 2). Calculation of the number of unique genes and transcripts and their UMI
counts per cell revealed that the ccRCC4 PDO with the highest number of cells had the lowest

number of transcripts, genes, and UMI per cell (Table 2, Figure 1C, Supplementary Fig. 1A).

Table 1: Clinical data of patient-derived organoid (PDO) samples.

Sample Names in the FGCZ Sample No VHL Status WHO/ISUP
Manuscript Tumor Grade
Normal 030669/1 WT -
ccRCC2 030669/2 Mutated ¢.286C>T 3
ccRCC3 030669/3 Mutated c.74C>T 4
ccRCC4 030669/4 Mutated ¢.227T>C 4
ccRCC5 030669/5 Mutated c.230insT 4
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The Iso-seq pipeline classified transcripts into four categories using SQANTI3 in SMRT-Link. Based
on the alignment profile of exon coordinates of transcripts to the reference transcriptome, SQANTI3
(Pardo-Palacios et al. 2023) categorized the transcripts as full-splice match (FSM), incomplete-
splice match (ISM), novel in catalog (NIC), and novel not in catalog (NNC) (Fig. 1D). FSM transcripts
perfectly align with reference transcripts at their junctions; ISM transcripts have fewer exons at the
5' or 3' ends, while the rest of the internal junctions align with the reference transcript junctions. The
novel transcript categories NIC or NNC are made of new combinations of known splice junctions or
have at least one new donor or acceptor site, respectively. In addition, SQANTI3 sub-categorizes
isoforms based on their 5 and 3’ ends (Pardo-Palacios et al. 2023). We grouped the remaining
SQANTI3 transcripts, namely antisense, genic intron, genic genomic, and intergenic, into a single
category called 'Other'. Filtering based on the CAGE peak, 3’ and 5’ support and TSS ratio left on
average 86,182 isoforms, of which 31,531 (36.6%) were novel (Table 2). While 37.2% of the
transcripts were identified as ISM before filtering, this number reduced to 9.31% showing that many
ISM isoforms have missing 3’ or 5’ support and are prone to degradation. Filtered isoforms have on
average 53.7% FSM followed by 36.6% % novel transcripts, of which 17.1% and 19.4% were

identified as NIC and NNC, respectively. (Fig. 1E, Table 2).

Table 2: The number of HiFi reads, segmented reads, cells, genes, and transcripts and their
structural categories before and after filtering. **Number of genes, transcripts, and the structural
categories after filtering. FSM: Full splice match, ISM: Incomplete splice match, NIC: Novel In

Catalog, NNC: Novel Not In Catalog. Other: Genic, antisense, intergenic, fusion, more Junctions.
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Normal ccRCC2 ccRCC3 ccRCC4 ccRCC5
Cells 437 373 310 1091 388
HiFi Reads 3,504,085 3,785,895 2,166,307 1,880,180 2,275,670
Segmented reads (S- 54,962,298 58,333,415 34,180,213 29,404,003 35,635,073
reads)

Mean length of S-reads 844.2 910.0 801.0 859.0 890.0
Reads after Barcode 27,799,824 18,554,804 15,850,578 21,075,848 19,102,522
Correction and UMI

Deduplication
Reads in cells 68% 65% 68% 83% 65%
Mean reads per cell 82,703 96,620 70,423 21,499 57,006
Median UMIs per cell 56437.0 41881.5 42798.5 17705.0 40062.5
Unique Genes 29,138 26,260 26,657 29,074 30,065
Unique Transcripts 346,107 303,547 216,926 289,556 301,160
FSM (%) 71,205 68,352 50,983 62,582 64,378
(20.5%) (22.5%) (23.5%) (21.6%) (21.4%)
ISM (%) 126,715 101,665 96,380 109,263 102,536
(36.6%) (33.5%) (44.4%) (37.7%) (34%)
NIC (%) 52,740 49,142 23,054 42,698 49,049
(15.2%) (16.2%) (10.6%) (14.7%) (16.3%)
NNC (%) 83,308 73,820 37,997 62,710 72,372
(24.1%) (24.3%) (17.5%) (21.7%) (24.0%)
Other (%) 12,139 10,568 8,512 12,303 12,825 (4.3%)
(3.5%) (3.5%) (3.9%) (4.2%)
Cells** 390 334 272 1016 366
Unique Genes** 13,630 12,532 12,460 13,323 13,586
Unique Transcripts** 101,942 97,294 56,596 83,342 91,734
FSM** (%) 52,327 50,011 35,585 45,697 47,774
(51.3%) (51.4%) (62.9%) (54.8%) (52.1%)
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ISM** (%) 9,490 8,689 6,154 7,649 7,930
(9.31%) (8.9%) (10.9%) (9.2%) (8.64%)
NIC** (%) 18,084 17,168 7,094 14,123 17,406
(17.7%) (17.6 %) (12.5%) (16.9%) (19.0%)
NNC** (%) 21,632 21,020 7,591 15,444 18,092
(21.2%) (21.6%) (13.4%) (18.5%) (19.7%)

Other** (%) 409 (0.4%) 406 (0.417) 172 (0.3%) 429 (0.5%) 532 (0.6%)
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FSM transcripts mainly consisted of a subcategory of transcripts having alternative 3' ends, while
ISM transcripts of those with alternative 5' prime ends (Supplementary Figure 1B). We detected
more than 10 transcripts for the 26% of genes. ccRCC3 had the smallest number of genes (11%)
expressing more than ten transcripts. (Fig. 1F). With 8%, the highest percentage of genes with at
least 10 or more novel isoforms were detected in ccRCC2 and Normal samples. (Fig. 1G). FSM and
NIC transcripts tended to be the longest and to have similar lengths on average with 1,338 bp length
(t-test p-value=0.53) (Fig. 1H), while the ISM transcripts showed shorter lengths compared to FSM
and NIC (t-test, p-value < 2.2e-16). On average, ~50% of transcripts found in only one cell were
novel, while 93% of the transcripts found in more than 150 cells were FSM (Fig. 11). Most genes

were found to express one transcript per cell across all samples (Fig. 1J).

Both FSM and NIC transcripts tended to have a higher expression within a cell if they were also
expressed in many cells (Supplementary Fig. 1C and 1D). The highest UMI counts were found for
FSM transcripts compared to other categories (Supplementary Fig. 1E). Of the novel isoforms,
63.3% were found only within one cell of a sample. However, there were some exceptions, for
example, the novel transcripts of the genes Glyceraldehyde 3-phosphate dehydrogenase (GAPDH),
Pyruvate kinase (PKM), Angiopoietin-like 4 (ANGPTL4), Nicotinamide N-methyltransferase (NNMT),
and Karyopherin Subunit Alpha 2 (KPNA2) were expressed in at least 30% of the cells of one or
more samples (see Supplementary File 1 for the full list). Among those, GAPDH, PKM are known to

be involved in glycolysis, and it is reported that enzymes having a role in glycolysis are upregulated
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in the occurrence of VHL-deficient ccRCC due to the upregulation in hypoxia-inducible factor lalpha
(HIF-1a) (Miranda-Poma et al. 2023). ANGPTL4 is another hypoxia-inducible gene, and its
expression has been shown as a potential diagnostic marker for ccRCC (Verine et al. 2010). KPNA2
is overexpressed in many cancers (Sun et al. 2021) including ccRCC, and its knockdown has been
shown to inhibit kidney tumor proliferation (Zheng et al. 2021). NNMT is another gene overexpressed
in ccRCC, and it was previously characterized as a promising drug target for ccRCC (Reustle et al.
2022). Our findings suggest that those novel transcripts expressed more broadly across cells might

play an important role in the pathogenesis of ccRCC.

More than 50% of novel transcripts have translation capability

To assess whether the novel transcripts are protein coding, we predicted the Open Reading Frame
(ORF) using TransDecoder (Haas BJ.). Based on the occurrence of start and stop codons and
coding regions, TransDecoder assigned transcripts into varying sub-ORF categories, including 3’
partial (transcripts with missing stop codons), 5’ partial (transcripts with missing start codons),
internal (transcripts that miss both start and stop codons), and complete transcripts (including all
necessary parts to code a protein) (Figure 1B). For about 77.89% of the NIC transcripts, we were
able to predict an ORF (Fig. 2A). Even after applying our stringent filtering criteria, ISM transcripts
remained with the lowest proportion of complete ORFs (Fig. 2C). We also investigated the
prevalence of sub-ORF categories of novel transcripts across varying cell number ranges.
Transcripts commonly expressed in a sample were significantly more likely to have complete ORFs
as compared to cell-specific transcripts, (Cochran-Armitage test for trend test: p<2.2e-16) (Fig. 2D).
To understand whether the predicted protein isoforms form a stable protein structure that could hint
towards a biological function, we predicted intrinsically disordered regions for all isoforms with
complete ORFs using iupred2 (Mészaros et al. 2018). The calculations demonstrated that ISM
transcripts had the highest proportion of disordered residues (Wilcoxon rank sum test, p.adj: ISM-
FSM: 8e-13, ISM-NIC: 2.20e-18, ISM-NNC p-adj value: 4e-21,) (Fig. 2E) and NNC and NIC
transcripts with intron retention showed a higher disordered score than those with a new splice site

(Wilcox rank sum test p.adj value: <2e-16), combination of known junctions (Wilcoxon rank sum test,
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p-adj value: 1.7e-14) and known splice sites (Wilcoxon rank sum test, p-adj value: < 2e-16). On the
other hand, transcripts with a new combination of a splice site from the NIC category showed the
least proportion of disordered regions (Fig. 2F). For example, we identified eight novel transcripts of
Nicotinamide-N-methyltransferase (NNMT) in ccRCC2 PDO, each comprising three to four exons,
and each with a complete ORF. The protein sequences encoded by these transcripts were
characterized by more than 88% of their residues being ordered. These transcripts were found to be
expressed in a range of 1 to 144 cells. On the other hand, protein sequences of novel ADP
Ribosylation Factor Like GTPase 6 Interacting Protein 4 (ARL61P4) transcripts with complete ORF

exhibited on average 94.1% of their residues as disordered.

Genes expressing ccRCC Cell-Specific Transcripts play a role in ccRCC
related pathways

To evaluate the cell types in our samples, we examined the expression of ccRCC-specific marker
(CA9), a kidney proximal tubule marker (GGT1), and epithelial cell marker (EPCAM). ccRCC marker
CA9 was predominantly expressed in PDO cells from samples ccRCC2, ccRCC4, and ccRCC5 (Fig.
3A, Supplementary Figure 3B, 3D, 3E). As ccRCC originates from the proximal tubule (PTC), we
also found that nearly all CA9 expressing cells also expressed the PTC marker GGT1
(Supplementary Figure 3) Interestingly, EPCAM was expressed predominantly in the normal sample
and in the PDO cells of ccRCC3 (Supplementary Figure 3A, 3C). In addition, we annotated the cells
with a manually curated list of genes and observed that majority of CA9 expressing cells were
annotated as ccRCC or Epithelial-Mesenchymal Transition (EMT) process across ccRCC2,
ccRCC4, and ccRCCS5 (Supplementary Figure 4). The transcript expression profile of ccRCC3 stood
out compared to the other ccRCC organoids as we could not detect CA9 expression in this organoid
sample. Interestingly, ccRCC3 had P25L at the VHL mutations (Table 1). This variant was previously
described as a polymorphic likely benign mutation, which could explain the VHL-positive-like
expression profile of ccRCC3 (Rothberg 2001; Nickerson et al. 2008) lacking overexpression of the

VHL-HIF pathway.
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Moreover, to explore the gene and transcript diversity between typical ccRCC and non-ccRCC cells,
we categorized cells based on their CA9 expression. CA9 expression is a result of HIF up-regulation
due to VHL inactivation (Tostain et al. 2010). ccRCC2, ccRCC4, and ccRCC5 samples contained
321 (96.1%), 41 (4%), and 209 (57%) ccRCC cells with CA9 expression, respectively (Figure 3B).
Differential gene expression analysis between ccRCC and non-ccRCC cells revealed upregulation
of several ccRCC-related genes in ccRCC cells, including NADH dehydrogenase 1 alpha
subcomplex, 4-like 2 (NDUFA4L2), Lysyl oxidase (LOX), Vascular Endothelial Growth Factor A
(VEGFA), ANGPTL4, and Egl-9 Family Hypoxia Inducible Factor 3 (EGLN3) (Fig. 3C). Each of these
genes is known to have arole in the progression of ccRCC through various mechanisms. NDUFA4L2
and EGLN3 are critical for the adaptation of ccRCC cells to hypoxic conditions (Wang et al. 2017;
Tamukong et al. 2022), VEGFA is a key factor for new blood vessel formations, essential for tumor
metastasis, and LOX contributes to ccRCC progression by increasing the stiffness of the collagen

matrix, which in turn, facilitates the cellular migration (Di Stefano et al. 2016).

We explored the number of overlapping transcripts to understand the inter-tumor heterogeneity of
alternative splicing between patients. As the PacBio Iso-Seq pipeline assigns transcript IDs
randomly, we matched the transcripts based on their exon-boundaries as described before by
Healey et al. (Healey et al. 2022). Using the Tama tool, we could detect 11,283 common transcripts
from 4,746 genes after applying stringent filtering in every sample (see Methods). 2,393 transcripts
were found only in ccRCC2, ccRCC4, and ccRCC5 PDOs, not in the Normal and ccRCC3 (Fig 4A).
Transcripts that were not unique to a sample were found to be expressed in more cells (Figure 4B,
Wilcoxon test, p-value < 2.2e-16). A comparison of the number of all matched transcripts revealed
the highest similarities between Normal:ccRCC5 (Jaccard similarity index: 0.23) and
cCRCC2:ccRCC5 PDOs (Jaccard similarity index: 0.23) followed by Normal:ccRCC2 (Jaccard

similarity index: 0.22) (Supplementary Figure 5).
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The comparison of transcripts found explicitly in CA9+ or CA9- cells in each sample revealed 1,364
transcripts commonly detected in ccRCC cells of ccRCC2 and ccRCC5 PDOs, 48 transcripts
between ccRCC4 and ccRCC5, and 100 between ccRCC2 and ccRCC4 (Supplementary Figure 6A).
Next, we explored the splicing diversity between ccRCC and non-ccRCC cells. Interestingly, no
preference was found for the number of novel transcripts in ccRCC and non-ccRCC cells (Fig. 3D).
. Explicitly expressed transcripts in ccRCC and non-ccRCC cells showed a diverse structural
category pattern (Supplementary Figure 6B). Nevertheless, we observed 748 novel transcripts from
582 genes commonly found in ccRCC cells (Figure 3E, see Supplementary File 2 for a full list that
were mostly associated with ccRCC-relevant pathways, including hypoxia signaling, glycolysis and
oxidative phosphorylation (Fig. 3F). For example, the genes expressing highest number of common
novel isoforms in CA9 expressing cells in the ccRCC5 and ccRCC2 were NDUFA4L2 gene with 17
novel transcripts, and ANGPTL4 with 11 novel transcripts. Both genes play a role in ccRCC

progression, as mentioned earlier.

One of the most frequently found novel transcripts belonged to the Nicotinamide N-
Methyltransferase (NNMT) gene. It was categorized as NIC having a combination of known junctions

between three exons (Fig. 4C).

PCR validation experiments

We validated the novel transcript of NNMT using PCR (see Fig. 4C). The novel transcript of NNMT
differed from the commonly found FSM isoform by the presence of 36 nucleotides at the end of the
exon 2 (Fig. 5A). ORF prediction showed that the candidate novel isoform contained a stop codon
at the beginning of the unique sequence. The novel isoform of NNMT has 121 amino acids,
corresponding to part of the catalytic domain, NNMT_PNMT_TEMT compared to the canonical
NNMT protein sequence (PDB ID: 3ROD, (Peng et al. 2011)) (Fig. 5B). Thus, the novel transcript
lacks the complete binding pocket and likely any enzymatic activity. We successfully detected the
unique region of the novel transcript using PCR and Sanger sequencing (Fig. 5D, 5E, NNMT Novel,

Supplementary Fig. 7B). Additionally, we were able to detect the unique region of the FSM (NNMT


https://www.zotero.org/google-docs/?AV4lJ1
https://doi.org/10.1101/2024.03.15.585271
http://creativecommons.org/licenses/by-nc/4.0/

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585271; this version posted November 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Canonical). It should be noted that there is a known isoform of NNMT in the Ensembl database,
ENSTO00000545255, which contains only two exons and shares 100% sequence similarity with the
identified region of novel isoform in Sanger sequencing. However, the ENST00000545255 isoform
was not identified in our data, which supports the conclusion that the identified isoform is indeed
novel. Note that the validation of a novel transcript of TMEM91 gave non-conclusive results (see

Supplementary Materials).

Most Dominant Transcripts Switching Events in ccRCC Cells

As alternatively spliced transcripts can have different exons, they may result in different protein
domains, disrupt protein interactions, or form interaction with new protein partners. Previous
research has shown that most protein-coding genes have one most dominant transcript (MDT)
expressed at a significantly higher level than any other transcript of the same gene. These dominant
transcripts can be tissue-specific (Ezkurdia etal. 2015; Gonzalez-Porta et al. 2013; Tung et al. 2022).
We previously demonstrated that these MDTs switch during malignant transition in cancer, including
in ccRCC (Kahraman et al. 2020). To explore variations in MDT profiles between ccRCC and non-
ccRCC cells, we analyzed MDT distribution and their switches between ccRCC and non-ccRCC
cells across three PDOs, ccRCC2, ccRCC4, and ccRCC5. The highest number of genes having
MDT was found for ccRCC5 non-ccRCC cells (Fig. 6A). In total, we identified 7,986 unique cancer-
specific MDTs in 571 single cells, ranging between one and 48switches per cell (Fig. 5A). Most of
these switches were found only in one cell in a sample (78.1% in ccRCC2, 99.6% in ccRCC4, 88.4%
in ccRCC5). Interestingly, no cancer-specific MDT was found in three samples (Fig. 6C, left panel).
However,73 genes expressed different cMDT across all CA9+ samples (Fig. 6D, right panel), while
764 genes showed a cMDT in at least two ccRCC samples. Over-representation analysis of these
genes revealed functional roles in RNA and mRNA splicing pathways, ubiquitin dependent protein
catabolic process, regulation of mMRNA metabolic process, and mitochondrial translation (Fig. 6D).
The most frequently found cancer-specific MDT that was expressed in 115 cells of ccRCC2 was

APHI1A (Fig. 6E). The APH1A gene encodes for the transmembrane protein Aph-1. This protein is
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a part of the gamma-secretase complex, having a role in the cleavage of various transmembrane
proteins, including proteins associated with cancer, such as Notch, ErbB4, CD44, VEGFR, etc (Song
etal. 2023). The ccRCC MDT aligns to ENST00000369109.8 with an alternative 5’ end. It had seven
exons and encoded 265 amino acid-long protein. The non-ccRCC MDT mapped to
ENST00000360244.8 with an alternative 5’ end consisting of six exons and encoding for 247 amino
acid long protein (Fig. 6E). On GTEX, both isoforms were found to be expressed in high abundance;
ENST00000369109.8 is the most abundant isoform on Kidney Medulla, while the

ENST00000360244.8 is the most abundant transcript in Kidney Cortex (https://www.gtexportal.org).

The expression of both isoforms in the cells expressing ENST00000369109 as cMDT and in the

normal cells are shown in Fig. 6F.

In ccRCC5 PDO cells, the most frequently found cMDT belonged to the gene TMEM161B divergent
transcript (TMEM161B-DT) which is a long noncoding RNA. Higher expression of TMEM161B-DT
has been associated with malignancy of glioma cells (Chen et al. 2021) while it was found to be
downregulated in oesophageal squamous cell carcinoma (Shi et al. 2021)Here, we identified a cMDT
of TMEM161B-DT in 71 ccRCC cells of ccRCC5 PDO (Supplementary File 3). The cMDT had three
exons, mapped to ENST00000665319.2 with an alternative 3’ end. In non-ccRCC cells of ccRCCS5,

we identified diverse MDTs classified as FSM, NIC, or ISM, having three to four exons.

A differential splicing analysis with edgeR using acorde (Arzalluz-Luque et al. 2022) revealed three
upregulated transcripts in non-ccRCC cells within the ccRCC2 sample that matched MDTs in the

Normal sample (Supplementary Table 3).

Discussion

The recent advent of single-cell long-read sequencing technologies provides a unique opportunity
to gain insight into intra- and inter-tumor heterogeneity of tumors and to discover potential novel

predictive biomarkers. To reveal the heterogeneity in ccRCC, we utilised the MAS-Seq single-cell
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long-read sequencing protocol of PacBio. We generated a comprehensive catalogue of known and
novel transcripts for one normal and four ccRCC Patient-Derived Organoids (PDOs) without
employing short-read single-cell sequencing data. PDOs with the highest number of sequenced
cells, had, as expected, the least number of detected transcripts per gene per cell. However,

sequencing a low number of cells might also cause a loss of essential cell diversity in the samples.

Here, we uncovered over 256,088 unique isoforms across all samples, of which 114,434 (44.7%)
are novel transcripts with new combinations of known exons or new junctions. To interpret the
biological impact of transcripts sequenced, we investigated the prevalence across cells together with
their protein-coding capability. Our analysis revealed that, as expected, conserved well-
characterized transcripts were more widely expressed across all cells and samples. In contrast, on
average 61% of identified transcripts were found only in one cell suggesting rare diversity that would
need further investigation with a higher number of cells. Frequently identified known and novel

transcripts had more complete open reading frames, emphasizing their protein-coding capability.

As expected, the highest proportion of transcripts in our data was found to be incomplete splice
matches. These transcripts showed the least fraction of complete ORFs and the highest disordered
score for complete ORFs. Proteins encoded by these transcripts may exhibit enhanced functional
diversity or regulatory capacity due to the lack of a stable protein structure. To understand the
splicing diversity between ccRCC and non-ccRCC cells, we investigated explicitly expressed
transcripts in each category. ccRCC cells tended to have unique novel transcripts in ccRCC-related
pathways (e.g. for oxidative phosphorylation, hypoxia, and glycolysis), proposing a contribution to
ccRCC cancer progression. Our most dominant switch analysis between ccRCC and non-ccRCC
cells revealedmany cell and sample-specific switching events. Nevertheless, genes showing
switching events were often part of the mRNA-splicing pathway, highlighting a pivotal role alternative
splicing regulation. But abundant mRNA transcripts must not necessarily translate to high abundant
proteins. Miller et al. demonstrated how long-read data can drive the validation process of new

protein isoforms. For their validation, the authors constructed a protein reference database with full-
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length transcript sequences in order to use the database for querying the mass-spectrometry-based
proteomics data. The authors were able to confirm novel peptide and translated intronic sequences.
The total number of these identifications was low but highlighted the possibility of transcript

translations commonly ignored or overseen in classical proteomics experiments (Miller et al. 2022).

Our study provides an insight into the complex and under-explored functional diversity of cells in
ccRCC. In our data, where possible, we have meticulously addressed the issue of potential artifacts
and biases potentially introduced by sample processing or data analysis., Despite our efforts to
minimize any artifacts some limitations might still have remained. One issue we could not address
or quantify is the introduction of artifacts in the PCR amplification, an essential step in the MAS-1SO-
seq library protocol. However, a recent study by Lee et al. demonstrated a good overlap of transcript
abundances assessed with PCR amplified cDNA molecules and direct RNA sequencing using
Oxford Nanopore sequencing (Lee et al. 2023). Another issue could be associated with the difficulty
in delineating the actual isoform architecture disguised by any transcript degradation, fragmentation,
or incompleteness. I1so-Seq addresses the issue by flexibly merging isoforms with differing internal
and external junctions. However, the parameters might not be optimized to cell, sample, or tissue
types. Lastly, Iso-Seq works on a per-sample basis and provides arbitrary isoform IDs which cannot
be matched between samples. The tool Tama merge, that was used in this work, does not take into
account the sequence identity between matched transcripts, across samples, which can mask some
of the isoforms' diversity. Existent tools that can perform multi-sample isoform discovery and
guantification, including bambu (Chen et al. 2023), employ different algorithms (e.g., machine-
learning based) that often produce different sets of transcripts. This raises questions about the
isoform collapsing parameters, read correction methods, and the sufficient amount of evidence that
is required to call a transcript novel. We think the issue can be addressed with an investigation of

wider depth of tissue types and with the use of molecular validation assays.

In conclusion, single-cell long-read sequencing of patient-derived organoids offers an

unprecedented detailed view of the transcriptome landscape of individual cancer patients. It reveals
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hundreds of thousands of novel transcripts, of which only the minority are commonly expressed in
single and multiple patients, highlighting the intra- and inter-tumor heterogeneity of ccRCC. The
discovery of frequently found novel transcripts provides insights into cancer progression and a new
avenue for discovering potential novel biomarkers or therapeutic targets. The functional role of the

commonly expressed novel transcripts remains to be further explored and validated.
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Methods

Generation and Characterization of ccRCC Patient-Derived Organoid
Samples

Patient tissue samples were provided by the Department of Pathology and Molecular Pathology at
University Hospital Zirich. The tissues were collected and biobanked according to previously
described procedures (Bolck et al. 2019). The study was approved by the local Ethics Committee
(BASEC# 201 9-01 959) and in agreement with the Swiss Human Research Act (Swiss Human
Research Act). All patients gave written consent. Organoids were established as previously
described (Bolck et al. 2021). Surgically resected renal tissue was reviewed by a pathologist with
specialization in uropathology (Holger Moch) and suitable specimens were stored at 4 °C in transport
media (RPMI (Gibco) with 10 % fetal calf serum (FCS, Gibco) and Antibiotic-Antimycotic® (Gibco)).
For organoid derivation, tissue specimens were processed within 24 hours by rinsing them once with
PBS followed by finely cutting and digesting them in 0.025 mg/ml Liberase (Roche) for 15 min at 37
°C. The slurry was passed through a 100 um cell strainer and centrifuged at 1000 rpm for 5 min.
Cells were washed once with PBS and erythrocytes were lysed in ACK buffer (150 mM NH4CI, 10
mM KHCOs3, 100 MM EDTA) for 2 min at room temperature. After a final wash with PBS, appropriate
amounts of cell suspension were resuspended in CK3D medium (Advanced DMEM/F12 (Gibco) with

e 1X Glutamax (Gibco)

e 10 mM HEPES (Sigma-Aldrich)

e 1.5X B27 supplement (Gibco)

e Antibiotic-Antimycotic (Gibco)

e 1 mM N-Acetylcysteine (Sigma-Aldrich)

e 50 ng/mL Human Recombinant EGF (Sigma-Aldrich)

e 100 ng/mL Human Recombinant FGF-10 (Peprotech)

e 1 mM A-83-01 (Sigma-Aldrich)

e 10 mM Nicotinamide (Sigma-Aldrich)
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e 100 nM Hydrocortisone (HC, Sigma-Aldrich)

e 0.5 mg/ml epinephrine (Sigma-Aldrich)

e 4 pg/mL Triiodo-L-thyronine (T3, Promocell)

e R-Spondin (conditioned media, self-made)
The composition was mixed with two volumes of growth factor reduced Matrigel (Corning). Drops of
cell suspension/Matrigel were distributed in a 6-well low attachment cell culture plate (Sarstedt) and
allowed to solidify for 30 min at 37 °C, upon which CK3D media was added to cover the drops. To
evaluate the growth of PDOs, bright-field images were captured using a microscope. Organoids at
approximately 100-500 um were passaged, and at least 10,000 cells were collected for cell model
validation using targeted DNA sequencing of the VHL gene. To achieve this, DNA was isolated using
the Maxwell® 16 DNA Purification Kit (Promega) and corresponding Maxwell instrument. PCR and

sequencing of VHL were performed as previously described (Rechsteiner et al. 2011).

Full-length single-cell isoform sequencing and data processing of PDO cells
via MAS-1SO-Seq

To obtain single cell suspension, cell culture media was removed and PDOs from one well of a ULA
6-well plate were collected in ice-cold Cell Recovery Solution (Corning) and incubated for 1 hour at
4°C to resolve the Matrigel. Subsequently, PDOs were dissociated with TrypLE by incubation on a
thermal shaker set to 37 °C, 300 rpm. Every 2 min, the samples were picked up and mechanically
dissociated by pipetting up and down and the progress of dissociation was evaluated under a
microscope using a small fraction of the cells and tryphan blue. After dissociation, PBS
supplemented with 20 % FBS, was added to stop the reaction. Samples were centrifuged at 1000 g
for 5 min and the supernatant was aspirated. The pellet was washed once in 1X PBS with 0.04 %
BSA and filtered through a 70 ym strainer. Finally, cells were counted and diluted to the target cell
concentration using PBS with 0.04 % BSA. Cell viability and concentration were determined using a

LUNA-FX7 Automated Cell Counter (Logos).
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Generation of full-length cDNA with 10x Genomics platform and PacBio MAS-Seq library
preparation and sequencing

10x Genomics Chromium platform was used to analyze the dissociated organoid cells (Zheng et al.
2017). We targeted to recover 700 cells per library preparation to have a greater sequencing depth
using the PacBio platform. Library preparation was conducted following the 10x Genomics Single
Cell 3’ Reagent Kits v3.1 (Dual Index) User Guide. Cells were combined with a master mix containing
reverse transcription reagents. The single-cell 3’ v3.1 gel beads, which carry the lllumina TruSeq
Readl, a 16bp 10x barcode, a 12bp UMI, and a poly-dT primer, were loaded onto the chip along
with oil for the emulsion reaction. Chromium X partitioned the cells into nanoliter-scale gel beads in
emulsion (GEMSs) followed by reverse transcription. All cDNAs within a GEM, representing one cell,
shared a common barcode. After the reverse transcription reaction, the GEMs were broken, and the
full-length cDNAs were captured by MyOne SILANE Dynabeads and then amplified. The amplified
cDNA underwent cleanup with SPRI beads, followed by qualitative and quantitative analysis using
an Agilent 4200 TapeStation High Sensitivity D5000 ScreenTape and Qubit 1X dsDNA High
Sensitivity Kit (Thermo Fisher Scientific). The single-cell full-length cDNAs were directed for single-
cell MAS-Seq (Multiplexed Arrays Sequencing) library preparation using the MAS-Seq 10x Single
Cell 3’ kit (Pacific Bioscience, CA, USA). Template switch oligo (TSO) priming artifacts generated
during 10x cDNA synthesis were removed in the PCR step with a modified PCR primer (MAS capture
primer Fwd) to incorporate a biotin tag into desired cDNA products followed by capture with
streptavidin-coated MAS beads. TSO artefact-free cDNA was then further directed for the
incorporation of programmable segmentation adapter sequences in 16 parallel PCR
reactions/sample followed by directional assembly of amplified cDNA segments into a linear array.
The obtained 10-15 kb fragments were subjected to DNA damage repair and nuclease treatment.
The quality and quantity of the single-cell MAS-Seq libraries were assessed with Qubit 1X dsDNA
High Sensitivity Kit (Thermo Fisher Scientific) and pulse-field capillary electrophoresis system Femto
Pulse (Agilent), respectively. Each single-cell MAS-seq library was used to prepare the sequencing

DNA-Polymerase complex using 3.2 binding chemistry and further sequenced on a single 8M SMRT


https://www.zotero.org/google-docs/?Rj0Nib
https://www.zotero.org/google-docs/?Rj0Nib
https://doi.org/10.1101/2024.03.15.585271
http://creativecommons.org/licenses/by-nc/4.0/

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585271; this version posted November 14, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

cell (Pacific Bioscience), on Sequel lle sequencer (Pacific Bioscience) yielding in ~ 2 M HiFi reads

and~ 30M segmented reads per sample.

Short Read sequencing

The second part of the cDNA was used for lllumina sequencing library preparation, following the 10x
Genomics Chromium Single Cell 3° Reagent (v3.1 Chemistry Dual Index) protocol as described
above. The cDNA was enzymatically sheared to a target size of 200-300 bp, and Illumina sequencing
libraries were constructed. This process included end repair and A-tailing, adapter ligation, a sample
index PCR, and SPRI bead clean-ups with double-sided size selection. The sample index PCR
added a unique dual index for sample multiplexing during sequencing. The final libraries contained
P5 and P7 primers used in lllumina bridge amplification. Sequencing was performed using paired-
end 28-91 bp sequencing on an lllumina Novaseq 6000 to achieve approximately 300,000 reads per

cell.

SMRTLink Iso-Seq pipeline

In our study, we utilized the "Read Segmentation and Iso-Seq workflow" from SMRTLink version
11.1 to process our long-read sequencing data. For two specific samples, Normal and ccRCC2, we
combined the data from three SMRTcells to enhance coverage. Within the pipeline, the HiFi reads
were converted into segmented reads using the skera tool, followed by processing with the I1so-Seq
for removal of cDNA primers and barcode and UMI tags, reorientation, trimming of poly-A tails, cell
barcode correction, real cell identification and PCR deduplication via clustering by UMI and cell
barcodes. The reads were then aligned to the human genome (GRCh38.p13) using ppbmm2. We
verified the presence of the selected 10x cell barcodes using the GenomicAlignments R package

(Lawrence et al. 2013).

Full-length single-cell data analysis

Isoform Filtering
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After mapping, isoforms were collapsed into a unique set of transcripts with 1so-Seq using the default
options, setting —max-fuzzy-junction to 5bp, —max-5p-diff to 1000bp, —max-3p-diff to 100bp, —min-
aln-coverage to 0.99, —min-aln-identity to 0.95, —max-batch-mem 4096, and —split-group-size to 100.
In addition, at the Isoseq collapse step, reads that mapped chimerically or mapped with low identity
were filtered out. The pigeon make-seurat function was run on the remaining reads to generate the
gene count matrices. Subsequently, pigeon was used to classify the unique isoforms into SQANTI3
classification categories (Pardo-Palacios et al. 2023). After isoform classification, pigeon filtered out
intra-priming (with accidental priming of adenine stretches in the genomic position downstream of
the 3’ end), RT switching (reverse transcriptase template switching) and low coverage/non-canonical

isoforms (having non-canonical splice junctions).

In addition to the pigeon-based filtering, we manually filtered transcripts based on their Transcription
Start Site (TSS) ratio, their distance to the gene’s TSS and Transcription Termination Site (TTS) and
their distance to the gene’s CAGE peak. We calculated the TSS ratio using lllumina short reads as
an input to SQANTI3’s stand-alone sganti3_qc.py function and discarded any 5’ end-degraded
transcripts. We used different filtering criteria for each SQANTI category: FSM isoforms: TTS ratio
> 1;1SM, NNC, NIC, and other isoforms: TTS ratio > 1, distance to CAGE peak < 50 bp, and distance

to the gene’s TTS and TSS < 50 bp. All other isoforms were discarded for downstream analysis.

The isoform count matrices were generated with the pigeon make-seurat function on the filtered
isoforms with default parameters. Reads mapping to mitochondrial and ribosomal genes were not
retained during isoform and gene count matrix generation. Additionally, we only kept the cells with

mitochondrial content <30% for the downstream analysis.

Transcript Types and Their Prevalence Across Cells
We calculated the percentage of structural categories and their length in each sample using filtered
scisoseq_classification.filtered_lite_classification.txt files. We then checked transcript prevalence

across varying cell number ranges, and the number of transcripts per gene and cell.
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Functional Annotation of Long-read Sequencing Transcripts

Open Reading Frames (ORFs) were identified on long-read transcript sequences listed in fasta files
from the Iso-Seq collapse function wusing Transdecoder v5.7.1 (Haas BJ.). The
Transdecoder.LongOrfs function was used to predict all possible ORFs with a length 2100
nucleotides. To calculate protein sequences from the predicted ORFs, an extensive human
reference database containing 226,259 canonical and alternatively spliced isoform protein
sequences was generated using Uniprot (release date: 2023-11). The predicted ORFs were aligned
to this database via blastp, setting the e-value to 1e-5. In addition, hmmscan v3.4 was applied to
predict potential Pfam domains using the Pfam database (release date: 2023-09-12) with a
maximum e-value of 1e-10. The results from both hmmscan and blastp were used to predict the final
ORFs using the Transdecoder.Predict function. We then selected one ORF for each transcript based
on the highest score assigned by TransDecoder. We applied iupred2a on the transcripts having
complete ORFs to predict their intrinsically disordered regions (IDRs). A residue was annotated as
ordered or disordered, if its iupred2a score was below or above 0.5, respectively. We calculated the
percentage of disordered residues for each transcript and assigned a percentage disordered score

for each transcript.

Transcript Matching among Samples

Due to Iso-seq assigning transcript IDs randomly, we first converted all
sqanti_classification.filtered_lite.gff files to BED format using bedparse’s gtf2bed function (Healey
et al. 2022). A “genelD;TranscriptID” column was added to the BED file. Tama’s tama_merge.py
function was used to combine all transcript ids among samples using their exon and junction
coordinates. Mismatches up to 50 and 100 nucleotide from the 5'and 3' ends, respectively, were
accepted, as well as mismatches 5 nucleotides from any exon junction. The similarities of the
samples were calculated in R using the Jaccard similarity matrix, i.e. the number of overlapping

transcript IDs divided by the total number of transcripts found in two samples. The heatmaps were
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visualized using the pheatmap function in R, and the nhumber of overlapping transcripts was plotted

by UpsetR’s upset function (Conway et al. 2017).

Cell Type Annotations
Seurat (Hao et al. 2024) was used for quality control and integration of the samples using the output
files of the Iso-Seq make-seurat function. For gene-level analysis, each sample was normalized by
the SCTransform function. 3000 features were selected using SelectintegrationFeatures, and
anchors for integration were identified with FindintegrationAnchors. The samples were integrated
with the IntegrateData function using the SCT normalization. Subsequently, the PCA, and UMAP
analyses were performed using the RunPCA and RunUMAP functions, respectively. Markers for
each cluster were defined with the PrepSCTFindMarkers and FindAllMarkers functions. To
categorize the cells in each PDO, we analyzed the samples separately. SCT normalized gene
expression matrices were scaled, and the cells were categorized into two categories using the
scGate R package (Andreatta et al. 2022) by defining the CA9 as a ccRCC positive marker. The
other cells were assigned as non-ccRCC. We used SCpubr R package to visualize marker
expressions and clusters (Blanco-Carmona 2022). Genes expressing ccRCC-specific novel
transcripts in ccRCC cells of ccRCC2,ccRCC4 and ccRCC5 were analyzed using ClusterProfiler’s
enricher function (Yu et al. 2012) For the analysis a hallmark gene set from MsigDB was used as
the background gene set (Liberzon et al. 2015). An overrepresentation analysis was performed
setting pValueCutoff = 0.05, gvalueCutoff = 0.1, and pAdjustMethod = BH (Benjamini-Hochberg). In
addition, we annotated cells using manual curation of ccRCC and kidney related markers using sc-
Type (lanevski et al. 2022). We used the following markers for the annotation of cells:

e CCRCC cells: CA9, ANGPTL4, NDUFA4L2, LOX, VEGFA, VIM, and EGLNS3.

e Proximal Tubule Cells (PTC); EPCAM, PAX8, GGTL1, and RIDA.

e Stromal Cells: ACTA2, FAP, COL1A1, and COL1A2.

e Endothelial Vascular Cells: CDH5, FLT1, PECAM1, and KDR.

e Immune Cells: CD3, CD8A, PD1, CTLA4, CD68, CD163, and CD11C.

e Stem Cells: ALDH1A1, SOX2, and CD44.
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e Mesenchymal Cell: VIM, FN1, SNAI1, SNAI2, ZEB1, and ZEB2.

e Epithelial-mesenchymal transition (EMT): CDH2, TWIST1, MMP2, and MMP9.

Most Dominant Transcripts Switches between ccRCC and non-ccRCC cells

To assess Most Dominant Transcripts (MDTs) and cancer-specific MDTs (cMDTSs) in our 5 ccRCC
samples, we have used transcript UMI counts in each sample. Each MDT was required to have at
least two times higher UMI counts than the second most abundant transcript (Kahraman et al. 2020).
Orphan transcript of genes were automatically counted as MDT. cMDT were computed based on

the comparison of MDTs between ccRCC and non-ccRCC cells using following strict rules:

cMDT are unique to ccRCC cells.
- For at least 20% of non-ccRCC cells, a distinct MDT of the same gene exists.
- Ifan MDT and potential cMDT mapped to the same transcripts within the sample, cMDT was
discarded.
- UMl counts of MDTs in ccRCC cells should be higher than the mean of the MDTs’ UMI count
in non-ccRCC cells.
A cMDT was identified when an MDT switch event fulfilled all criteria. STRING db was used for the
enrichment analysis of genes showing MDT switches between ccRCC2 and ccRCC4, and ccRCC5
PDOs. For the enrichment analysis, the human gene list was used as a background (Szklarczyk et
al. 2023). ggVennDiagram R package was utilized to generate a Venn diagram of overlapping
cancer-specific MDTs among samples (Gao et al. 2021). Exon structures of the transcripts

were generated with the ggtranscript R package (Gustavsson et al. 2022).

In addition, a differential isoform expression analysis was performed between ccRCC and non-
ccRCC cells in each sample using the acorde software (Arzalluz-Luque et al. 2022). The software
calculates cell-level weights for each isoform using ZinBWaVE R package (Risso et al. 2018)

followed by performing differential expression with DESeq2 and edgeR.

Visualization of NNMT Reads and Structural Modelling
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The protein structure of the novel NNMT isoform was modeled using AlphaFold3 (Abramson et al.
2024) based on its ORF sequence. The structure was rendered with PyMOL (Schrddinger, LLC.).
Sequence reads were visualized using Gviz (Hahne and Ivanek 2016) and GenomicRanges

(Lawrence et al. 2013).

PCR Validations

To validate the isoforms using PCR, we targeted two novel isoforms of two genes, NNMT and
TMEM91. We selected these novel isoforms based on their frequency and presence across
samples. The novel isoform of NNMT was classified as Novel In Catalog (NIC) by SQANTI3. It was
found in all samples (IDs: PB.100830.44 in ccRCC2, PB.139561.14 in ccRCC5, PB.136593.16 in
ccRCC4, PB.130901.11 in Normal). The novel isoform of TMEM91 was classified as Novel not In
Catalog (NNC) by SQANTI3. The transcript was identified predominantly in CA9 expressing ccRCC

cells of ccRCC2 and ccRCC5 PDOs.

For the PCR experiment, total RNA was isolated directly from corresponding frozen tissue samples
of ccRCC2, ccRCC3, ccRC4 and ccRRC5 using Maxwell RSC simplyRNA Tissue (promega,
AS1340). 500 ng RNA was used to synthesize cDNA by gScript cDNA Synthesis Kit (Quanta bio,
95048-100) following the manufacturer’s protocol. Synthesized cDNA was used as a template for
PCR amplification. In order to capture novel and canonical isoforms, we designed three types of

primers against the novel transcripts:

- Common_primer: targeting sequences shared in both canonical and novel isoforms
- Canonical_primer: targeting sequences unique to canonical isoform

- Novel_primer: targeting sequences unique to novel isoform

For NNMT: A forward primer was specifically designed against the unique sequence of the novel

isoform at the end of exon 2. To detect the canonical isoform, another forward primer was designed
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to span the unique sequence of the canonical transcript at exon 1. Both the reverse primers were
designed against different regions of exon 3.

For TMEM91: A forward primer specific to the novel isoform was designed to span exon 1 of the
novel transcript. Additionally, a forward primer was designed against the sequence shared between
canonical and novel isoforms, corresponding to exon 2 in novel and exon 1 in canonical (mapping
to ENST00000392002.7) transcripts. Reverse primer was designed to target a shared region of exon
3 (novel isoform)/exon 2 (canonical isoform).

All the primers were designed using Primer3 software (Untergasser et al. 2012) and synthesized by
Microsynth AG. The details of primer sequences and primer pair combinations are listed in
Supplementary Table 1 and 2, respectively. PCR amplification was performed using AmpliTaq Gold
DNA Polymerase (Applied Biosystems, 4311806) following the manufacturer's protocol. The
amplified products were subjected to agarose gel electrophoresis (2%) and visualized with GelRed
(Biotium, 41003-1). The PCR products were further purified by the MinElute PCR Purification Kit

(Qiangen, 28006) and validated by Sanger sequencing at Microsynth AG.
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897

898 Fig 1. Transcript landscape and cell heterogeneity in Normal and ccRCC-PDOs: (A)
899  Schematic design of the project showing how patient-derived organoid (PDO) samples are
900 established, sequenced using single-cell long-read sequencing, and functionally characterized
901 (illustrations were created by Biorender (BioRender.com)). (B) The brightfield representative
902 images of our organoids. The dotted line marks the matched pair. The scale bar is 50um. (C).
903  Distribution of number of genes, UMI counts and filtered transcript numbers across samples.
904 (D). SQANTI3 transcript categories. (E). The proportion of transcript categories found across
905 four ccRCC-PDO and one normal PDO (see the (C) for the color code). (F). The number of
906 identified transcripts per gene in each PDO. The x-axis denotes the number of transcripts per
907 gene, categorized into bins (1, 2, 3, 4, 5, 6, 7, 8, 9, and >10), while the y-axis represents the
908 number of genes. The height of each bar reflects the count of genes that express the
909 corresponding number of transcripts. (G). The humber of identified novel transcripts per gene
910 per cell in each PDO. The x-axis shows the number of transcripts detected per gene per cell,
911  categorized into different bins, while the y-axis denotes the total number of genes, with the
912  height of each bar reflecting the count of genes that express the corresponding number of
913 transcripts per cell. (H). Distribution of transcript lengths for each structural category across
914  samples. (I). Proportional distribution of identified transcripts’ structural categories across cell
915 number ranges. (J). Number of transcripts per gene per cell across samples, categorized into
916  bins (1, 2-3, 4-6, 7-9, and >10).

917

918 Fig 2: Distribution of open reading frame (ORF) categories and intrinsically disordered
919 protein predictions: (A). Percentage of ORF hits across different structural categories in all
920 datasets. For percentage of ORF hits across isoform subcategories see Supplementary Figure
921  2A.(B). ORF types predicted by Transdecoder. (C). The fraction of different ORF types across
922 datasets in each structural category. Each color represents various ORF types. (D).
923 Distribution of ORF types in novel transcripts as a function of cell number range across

924  datasets. The x-axis categorizes the cell number range, while the y-axis shows the proportion
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925 of each ORF type (see (B) for the legends). (E). Comparison of disordered scores for the
926  protein sequences of complete-ORF transcripts across structural categories. (F). Comparison
927  of disordered scores for the protein sequence of NIC and NNC showing complete ORFs
928  across different sub-structural categories. For the percentage of disordered region scores
929 across FSM subcategories, see Supplementary Figure 2B.

930

931 Fig 3: Categorizing cells as ccRCC and non-ccRCC in PDOs: (A) UMAP plot of the ccRCC
932  marker CA9 expression in cells across all PDOs, with darker colors indicating CA9 expression
933 levels. (B). The table shows the number of ccRCC and non-ccRCC cells in each PDO
934  categorized based on their CA9 expression. (C). The heatmap shows the differential gene
935 expression between ccRCC and non-ccRCC cells. (D). The proportion of expressed
936 transcripts’ structural categories across ccRCC and non-ccRCC cells. (E). Overlap of novel
937 isoforms unigue to ccRCC cells only. (F). Over-representation hallmark analysis of genes
938  expressing common novel transcripts explicitly in ccRCC cells.

939

940 Fig 4: Shared transcripts across samples: (A). The number of overlapping transcripts
941  across all samples. (B). Box plots showing the mean number of cells a transcript was found in
942  asample on average (Wilcoxon test, p<2.2e-16). (C). Top four transcripts of NNMT transcripts
943  based on the number of cells across ccRCC2, ccRCC4, and ccRCCS5 and their exon structures
944  (left panel). The commonly found novel transcripts from ccRCC2, ccRCC4, and ccRCC5 are
945  depicted in orange, FSM transcripts are shown in blue, a distinct novel transcript from ccRCC4
946 is highlighted in yellow. The table next to the transcript structures lists the SQANTI3
947  categories, aligned reference transcripts, and the number of cells in which the transcripts were
948 identified (right panel).

949

950 Fig 5. NNMT novel transcripts: (A) Reads that align to the NNMT novel transcript. (B)
951  Alphafold3 structure of the NNMT novel isoform aligned to the canonical isoform of NNMT

952 (PDB ID: 3ROD). (C). Representation of the primer design strategy to validate and sequence
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953 the novel and canonical transcripts of NNMT. In the novel isoform the dotted box indicates the
954  position of the unique sequence at 3’ end of exon 2. (D). Agarose gel (2%) electrophoresis
955 image of PCR validation of different NNMT transcripts. All lanes are marked with
956  corresponding tumor samples and product name. The canonical transcript is amplified with
957  canonical forward primer and reverse primer 1 (see orange arrow). The novel transcript is
958 amplified with a novel forward primer and reverse primer 2 (see green arrow). (E). Sanger
959  sequencing result of NNMT novel transcript. Reverse sequencing confirmed the unique
960 sequence at the 3’ end of exon 2 of the novel transcript. The splice junction between exon 2
961 and exon 3 is marked.

962

963 Fig 6: MDTs and MDT Switches between ccRCC and non-ccRCC cells: (A). Distribution
964  of the number of MDTs in PDOs. (B). Distribution of the number of cMDT in ccRCC2, ccRCCA4,
965 and ccRCC5 PDOs. (C). The number of overlapping isoforms (left-panel) and genes (right-
966  panel) showing transcript switching events across three datasets. (D). GO term enrichment
967  analysis of genes commonly showing transcript switching events in any of ccRCC2 ccRCCS5,
968 and ccRCC4 PDO datasets. (E). Exon structures of ccRCC (PB.8161.7) and non-ccRCC
969 (PB.8161.6) MDTs. (F). UMI counts of cMDT and MDT APH1A transcripts in ccRCC and non-
970 ccRCC cells.

971
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