

1 Welding PROxAb Shuttles: A modular approach for 2 generating bispecific antibodies via site-specific protein- 3 protein conjugation

4 Tanja Lehmann^{†,‡}, Hendrik Schneider[‡], Jason Tonillo[‡], Jennifer Schanz[‡], Daniel Schwarz[‡],
5 Christian Schröter[‡], Harald Kolmar[†], Stefan Hecht[‡], Jan Anderl[‡], Nicolas Rasche[‡], Marcel Rieker[‡] and
6 Stephan Dickgiesser^{*,‡}

7 [†] Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt,
8 64287 Darmstadt, Germany

9 [‡] Merck KGaA, 64293 Darmstadt, Germany

10 Abstract

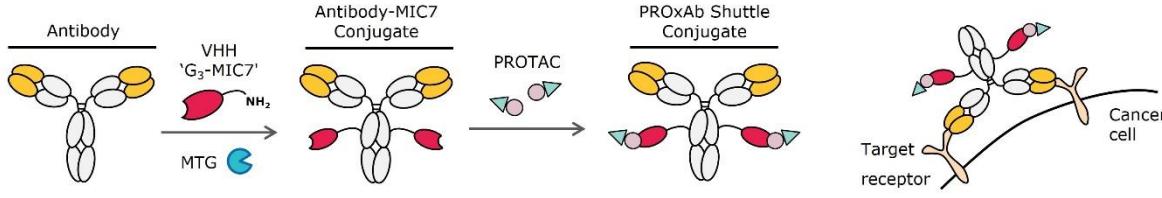
11 Targeted protein degradation is an innovative therapeutic strategy to selectively eliminate disease-
12 causing proteins. Exemplified by proteolysis-targeting chimeras (PROTACs), it has shown promise in
13 overcoming drug resistance and targeting previously undruggable proteins. However, PROTACs face
14 challenges such as low oral bioavailability and limited selectivity. The recently published PROxAb
15 Shuttle technology offers a solution enabling targeted delivery of PROTACs using antibodies fused with
16 PROTAC-binding domains derived from camelid single-domain antibodies (VHHs). Here, a modular
17 approach to quickly generate PROxAb Shuttles by enzymatically coupling PROTAC-binding VHHs to off-
18 the-shelf antibodies was developed. The resulting conjugates retained their target binding and
19 internalization properties and incubation with BRD4-targeting PROTACs resulted in formation of
20 defined PROxAb-PROTAC complexes. These complexes selectively induced degradation of the BRD4
21 protein, resulting in cytotoxicity specifically in cells expressing the antibody's target. The
22 chemoenzymatic approach described here provides a versatile and efficient solution for generating
23 antibody-VHH conjugates for targeted protein degradation applications but could also be used to
24 combine antibody and VHH binders to generate bispecific antibodies for further applications.

25 Introduction

26 Targeted protein degradation (TPD) is a promising new therapeutic strategy that has gained
27 considerable attention in drug discovery. The approach offers an alternative mode of action compared
28 to traditional small molecule inhibitors and antagonists by inducing selective degradation of target
29 proteins. By eliminating disease-causing proteins rather than simply inhibiting their activity, TPD is a
30 promising approach for previously undruggable targets, inducing enhanced responses, and

31 overcoming resistance mechanisms. Among the most prominent targeted degraders are hetero-
32 bifunctional molecules called proteolysis-targeting chimeras (PROTACs) which are composed of two
33 ligands that bind the E3 ligase and the target protein (POI) and are connected by a linker moiety.
34 Simultaneous binding of the E3 ligase and the POI leads to the formation of a ternary complex that
35 induces E3 ligase-mediated polyubiquitination of the POI followed by proteasomal POI degradation via
36 the ubiquitin-proteasome system (UPS).¹ The PROTAC itself is not degraded during this process and
37 therefore available to recruit the next target molecule in a catalytic mechanism of action.²

38 Unlike traditional inhibitors that require active binding sites to exert their effect, PROTACs can
39 potentially engage target molecules that lack active binding sites and are thus inaccessible to small
40 molecule inhibitors. This increases the likelihood to find suitable ligands especially since low-affinity
41 binding can already be sufficient for ternary complex formation.³ Hence, over thousand small molecule
42 PROTACs have been identified to date targeting a wide range of POIs with important biological
43 functions, particularly in cancer cells, including BET-bromodomain proteins⁴, estrogen receptor⁵,
44 androgen receptor⁶ and various kinases.^{7,8,9} More than 10 PROTACs have even been advanced to
45 clinical trials already.^{10,11,12}


46 While PROTACs hold great promise, they face several challenges for optimal efficacy in clinical
47 applications. They are relatively large molecules (molecular weight >800 Da) and often suffer from low
48 oral bioavailability, cell permeability, and water solubility.¹³ The limited serum stability and cell
49 permeability negatively affect their pharmacokinetics and bioavailability.¹⁴ Also, selectivity is often
50 limited and can result in off-target effects as E3 ligases deployed for protein degradation have a broad
51 expression spectrum in both tumor and healthy tissues. Therefore, enhancing PROTAC delivery and
52 selectivity is a crucial focus in PROTAC development.^{15,16} Various approaches are being explored such
53 as encapsulation in lipid nanoparticles for improved cell internalization and lysosomal escape¹⁷ or
54 fusion to target-selective peptides or chemical groups.¹⁸ Small-molecule binders, e.g. directed against
55 folate groups, can also serve as ligands for selective PROTAC delivery, as demonstrated by Lui and
56 colleagues.¹⁹ Notably, antibody-PROTAC conjugates that, similar to antibody-drug conjugates (ADC),
57 combine the target specificity and favorable pharmacokinetic profile of monoclonal antibodies (mAb)
58 with PROTAC-induced protein degradation, lead to enhanced exposure at target cells and potentially
59 reduced off-target effects.^{20,21} PROTACs frequently lack chemical groups like primary, secondary, or
60 tertiary amines that are typically used for covalent attachment and seamless in situ removal of
61 cleavable linkers for ADCs.²² Thus, a key challenge is the complex synthesis of PROTACs, which makes
62 it difficult to incorporate a suitable exit vector or chemical functionalities.

63 The PROxAb technology is a recently described approach that allows targeted delivery of PROTACs in
64 an ADC-like manner without the need for chemical PROTAC modification.²³ PROxAb Shuttles are IgG

65 antibodies directed against e.g. tumor-associated antigens fused with variable domains of camelid
66 single-domain antibodies (VHH) that specifically bind the E3 ligase-recruiting subunit of PROTACs and
67 thereby enable formation of non-covalent antibody-PROTAC complexes.^{24, 25} Schneider and colleagues
68 described the discovery of the VHH 'MIC7', which binds with high affinity and specificity to VH032 – a
69 recruiting domain for the E3 ligase Von Hippel-Lindau tumor suppressor (VHL). As most PROTACs
70 developed to date recruit either of the two E3 ligases VHL and cereblon (CRBN), PROxAb Shuttles are
71 applicable to a broad range of already existing molecules.^{26, 27, 28} Simple incubation of PROTACs with
72 MIC7-based antibody-fusion proteins yielded antibody-PROTAC complexes that induced degradation
73 of PROTAC target protein specifically in cells expressing the antibody target on the cell surface.²³ *In*
74 *vivo* studies demonstrated that complexation positively impacts PROTAC half-life in PK studies and
75 leads PROxAb Shuttle a non-covalent plug-and-play platform for the rapid generation of tumor-
76 targeting antibody-PROTAC conjugates to prolonged anti-tumor effects compared to free PROTAC.

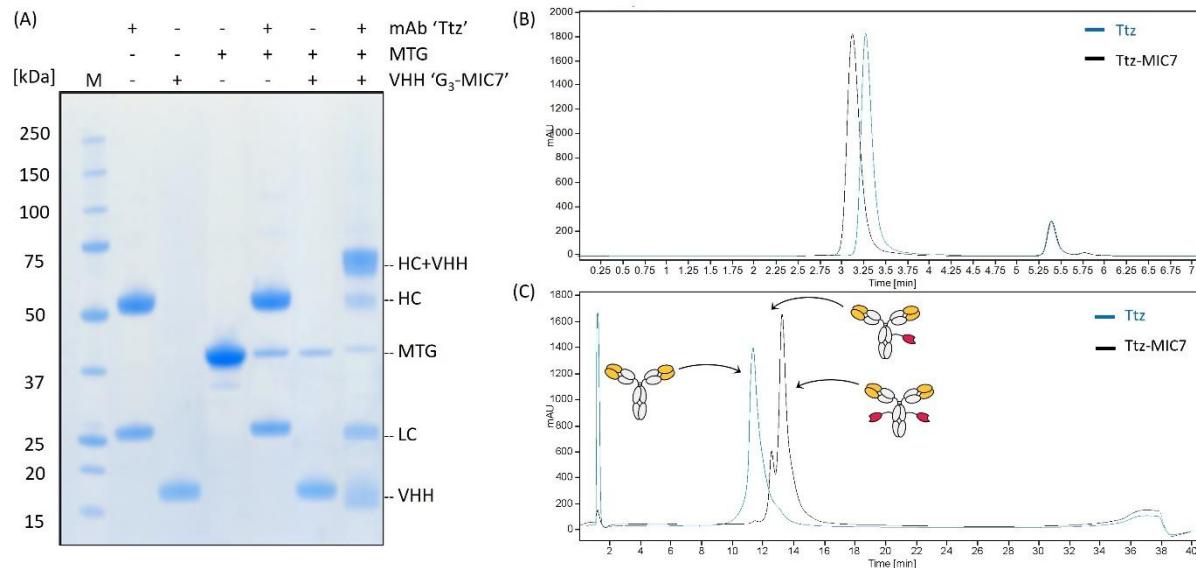
77 While the PROxAb Shuttle technology eliminates the need for covalent PROTAC modification, it
78 requires individual recombinant production of every antibody-VHH combination. To enhance the
79 flexibility and modularity of the PROxAb Shuttle technology even further, we envisioned biochemical
80 conjugation of PROTAC-binding VHHS to already existing, non-engineered antibodies. This would
81 enable the conversion of any commercially available IgG1-based antibody into a PROxAb shuttle and
82 thereby enable rapid screening of antibody-PROTAC combinations. Among the technologies available
83 for site-specific conjugation of native antibodies, we selected enzymatic coupling via microbial
84 transglutaminase (MTG). MTG catalyzes the formation of isopeptide bonds between glutamine
85 residues and acyl acceptor substrates. Our group has demonstrated previously, that certain MTGs can
86 specifically address the glutamine 295 (Q295; EU numbering) in the heavy chain (HC) of fully
87 glycosylated antibodies without the need for prior insertion of MTG recognition sequences.^{29, 30} Until
88 now, this method has primarily been shown to be effective for attaching small molecules or peptides.³¹
89 Hence, the objective of this study is to extend and optimize its application for protein-protein
90 conjugation, particularly for the attachment of VHH MIC7 (Figure 1).

91 A protein that is often targeted for PROTAC-induced degradation is the transcriptional regulator
92 bromodomain-containing protein 4 (BRD4) from the BET-family.²² Hence, several PROTACs targeting
93 BRD4 already exist and various recruit the E3 ligase VHL.³² We selected three of such for the underlying
94 work: GNE987, GNE987P and ARV771.^{33, 34, 32} GNE987 and GNE987P are closely related, but while
95 GNE987 utilizes an aliphatic linker, the GNE987P subunits are connected by a hydrophilic
96 polyethylenglycol chain (structure in supplemental section, Figure S1).³⁴ This subtle difference leads to
97 longer ternary complex half-life, and increased hydrophobicity and cell permeability of GNE987
98 compared to GNE987P.³⁴

99

100 *Figure 1 Principle of the modular to generate PROxAb shuttles. Off-the-shelf IgG-based antibodies are site-*
101 *specifically coupled with VHHS using microbial transglutaminase (MTG). The conjugated PROxAb shuttle as bispecific protein*
102 *is able to specifically bind PROTACs which is mediated by G₃-MIC7. Incubation with PROTACs results in formation of stable*
103 *complexes that induce selective target protein degradation and cytotoxicity exclusively in the target cells.*

104 Herein, we present a modular approach for rapid generation of PROTAC-delivering antibodies from
105 off-the-shelf, native mAbs (Figure 1). Therefore, a PROTAC-binding VHH was equipped with an N-
106 terminal triple-glycine motif to allow recognition by MTG³⁵ for site-specific conjugation to IgG-based
107 antibodies. The produced conjugates showed the same binding and internalization properties as the
108 parental antibodies. Incubation with PROTACs led to the formation of stable complexes that mediated
109 target protein degradation and cell cytotoxicity selectively to target cells only.


110 Results and discussion

111 **MTG conjugation allows to attach PROTAC-binding VHH to native antibodies**

112 We conjugated PROTAC-binding VHHS to any native, fully glycosylated IgG1 mAb in a single step using
113 enzymatic MTG conjugation targeting Q295 of the mAb heavy chain (Figure 1). Resulting VHH-antibody
114 conjugates function as 'PROxAb shuttles' by complexing PROTACs and delivering it to the target the
115 antibody is direct against. To allow for VHH-antibody conjugation, VHH 'MIC7' was equipped
116 recombinantly with an N-terminal triple-glycine motif meant to serve as an MTG recognition tag,
117 followed by a glycine-serine spacer. The modified VHH G₃-MIC7 was expressed in HEK293F cells and
118 purified by affinity chromatography to high monomeric purity of >99.3 % as determined by analytical
119 size exclusion chromatography (SEC) (Figure S2). To establish our solution, we used three IgG1
120 antibodies as model systems: human epidermal growth factor receptor 2 (HER2) binding Trastuzumab
121 (Ttz; Roche), human epidermal growth factor receptor binding Cetuximab (Ctx, Merck KGaA) as well as
122 digoxigenin-binding αDIG).^{36,37} Due to the homodimeric architecture of IgGs, site-specific conjugation
123 typically results in an antibody with two VHH molecules attached. 5 mg/ml Ttz were incubated with
124 10 molar equivalents G₃-MIC7 and 10 U/ml MTG (produced as described before³⁰) for 24 h at 30 °C.
125 Reduced SDS-PAGE analysis revealed a shift of the antibody heavy chain (HC) towards higher molecular
126 weight only in the mix containing all reaction components, indicating successful attachment of the
127 VHH to the HC (Figure 2 (A)).

128 SEC analysis of the reaction mix showed an apparent monomeric purity of the product of >97 %
129 suggesting no significant formation of high molecular weight species or non-reacted mAb (Figure S3).
130 In order to confirm site-specific conjugation to the targeted position within the antibody, a variant of
131 trastuzumab with a glutamine to alanine substitution at HC position Q295 was included as control.³⁰
132 Conjugation reactions with this variant did not result in any conjugation products confirming Q295 as
133 the only position targeted by MTG by this approach (Figure S8).

134 After assessing feasibility of our approach, we sought to produce and purify mAb-MIC7 conjugates for
135 further experiments. A demonstration of chromatographic purification and analysis is shown using Ttz
136 as an example, with the results for all antibodies listed in Table 1. Therefore, 2.0-5.0 mg scale reactions
137 using Ttz, Ctx and α DIG antibody were set up and purified by preparative SEC. Minor amounts of
138 aggregates formed during the reaction (Figure S4 (A)) were removed during purification resulting in
139 conjugates of high purity (Figure 2 (B)) and conjugate yields >72 % (Figure S4 (B)). Hydrophobic
140 interaction chromatography (HIC) (Figure 2 (C)) and reversed-phase chromatography (RPC) (Figure S5)
141 of purified Ttz-MIC7 revealed a full shift of the antibody peak towards later elution times, with a small
142 peak assigned to an antibody with 1 and a second, main peak to the conjugate with 2 VHH molecules.
143 Liquid chromatography-mass spectrometry (LC-MS) confirmed efficient conjugation of 1 VHH to each
144 antibody HC but no conjugation to the light chain (LC).

145
146 *Figure 2 Enzymatic conjugation of VHH 'G₃-MIC7' to Ttz to generate PROxAb shuttle Ttz-MIC7. (A) Reduced SDS-PAGE analysis*
147 *of individual reactants and reaction mixes. A shift of the Ttz HC but not the LC) band in the final reaction mix indicates*
148 *successful MTG-driven conjugation of MIC7 to the HC only. (B) Analytical SEC shows a shift towards higher molecular weight*
149 *in the expected range but does not indicate formation of larger species. (C) HIC analysis of SEC-purified product reveals full*
150 *conversion of Ttz to two species: a small peak assigned to species with 1 MIC7 attached and a second, major peak representing*
151 *the anticipated conjugate with 2 MIC7 molecules attached.*

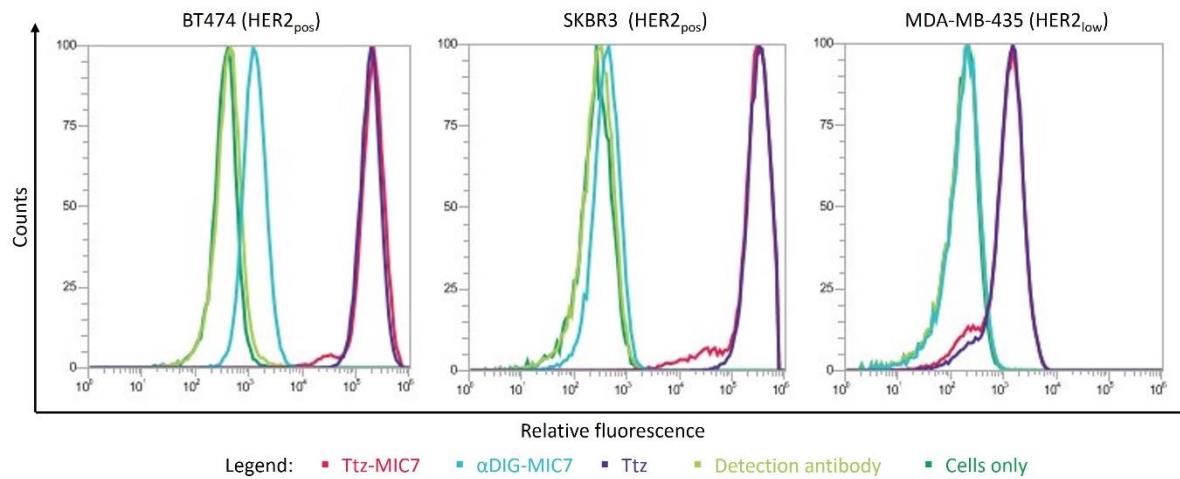
152 The LC-MS peak intensities were used to quantify the VHH-to-antibody ratios (VAR) resulting in 1.72
153 for Ttz-MIC7, 1.90 for Ctx-MIC7 and 1.76 α DIG-MIC7 (Table 1 and Figure S7) which confirms high
154 conjugation efficiencies close the theoretical maximum of 2.

155 *Table 1 Key data of Ttz-MIC7, Ctx-MIC7 and α DIG-MIC7 antibody conjugates. VHH-to-*
156 *antibody ratios (VAR) were determined using LC-MS and purity values using analytical*
157 *SEC.*

Antibody	Conjugate	Purity [%]	VAR
Trastuzumab	Ttz-MIC7	99.6	1.72
Cetuximab	Ctx-MIC7	99.5	1.90
α DIG mAb	α DIG-MIC7	99.7	1.76

158 Next, we wanted to evaluate whether our approach is flexible in the choice of antibody and therefore
159 applicable to generate PROTAC shuttles from other IgG1 antibodies. Therefore, we selected additional
160 commercially available antibodies to attach the VHH G₃-MIC7 and included the antibodies used before
161 for head-to-head comparison. SDS-PAGE analysis of reaction mixes (Figure S9) revealed efficient VHH
162 attachment to the HC of all tested antibodies Ttz, Ctx, Matuzumab, Atezolizumab, Avelumab,
163 Pertuzumab, Rituximab, and α DIG, with VAR values determined by LC-MS ranging from 1.62 to 1.97
164 (Table 2). SEC analysis showed a high monomer content for all reaction mixes indicating no aggregation
165 issues.

166 *Table 2 Generation of PROxAb shuttles from several native mAbs and confirmation of*
167 *conjugation site. G₃-MIC7 was conjugated using MTG and reaction mixes analyzed by*
168 *LC-MS and SEC revealing efficient conjugation with VHH-to-antibody ratios (VAR) close*
169 *to 2 and high purity. Trastuzumab Q295 with a glutamine to alanine substitution at*
170 *position 295 was not conjugated confirming this position as the conjugation site.*


Antibody	VAR	Purity [%]
Trastuzumab	1.88	97.8
Cetuximab	1.97	97.2
Matuzumab	1.91	96.7
Atezolizumab	1.62	98.0
Avelumab	1.96	97.4
Pertuzumab	1.93	97.4
Rituximab	1.95	96.4
α DIG IgG1	1.84	97.4
Trastuzumab Q295A	0	98.5

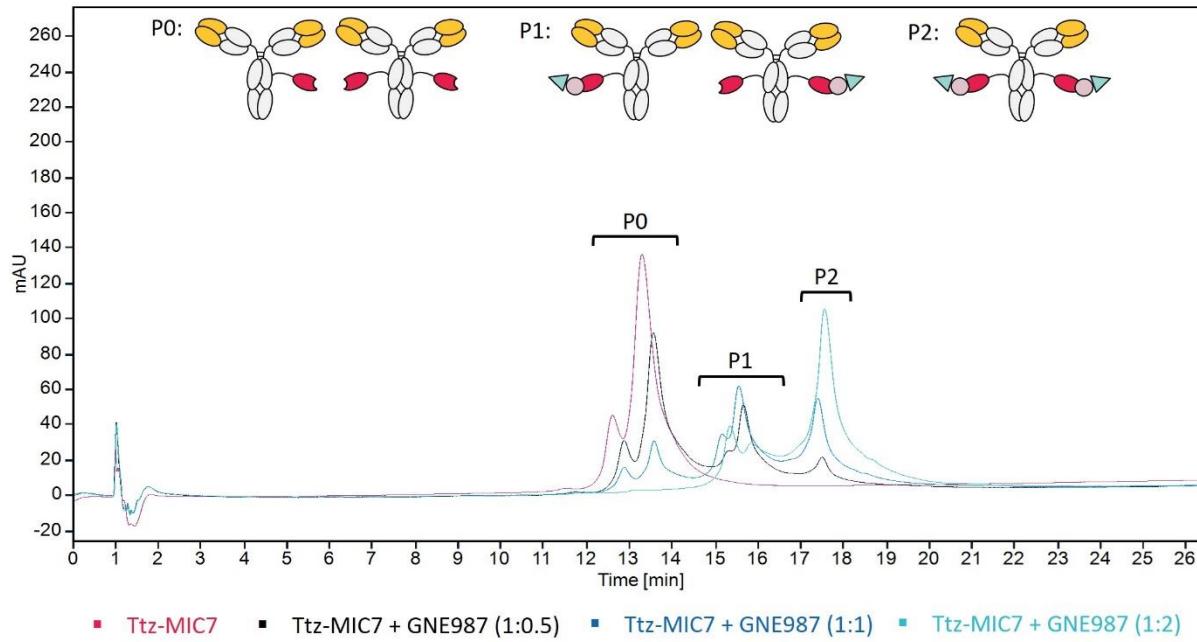
171 These results demonstrate that the presented approach can serve as a versatile technology for site-
172 specific protein-protein conjugation and the efficient generation of antibody-VHH conjugates. While
173 we demonstrate conjugation of the PROTAC-binding VHH only, this approach is not limited to the
174 generation of PROxAb shuttle conjugates but can probably also serve as a modular platform to produce
175 bispecific antibodies in general. Combination of VHHs of different target specificities with antibodies

176 of additional specificities would allow to quickly generate combinatorial libraries of bispecific
177 antibodies to screen for optimal target combinations. The need for scalable and robust methods to
178 screen bispecific antibody constructs was recently addressed in the “AJICAP second generation”
179 strategy, which employs affinity peptides pre-orientating amine reactive groups to attach Fab
180 fragments to antibodies.³⁸ However, this is a two-step synthesis which requires to eliminate excess
181 reaction compounds in between. Alternative approaches for generating dual binding constructs
182 include intein-based conjugation³⁹, the SypTag/SypCatcher approach⁴⁰, SynAbs strategy⁴¹ or controlled
183 Fab arm exchange⁴². Yet, in contrast to our approach, these further technologies are limited to the use
184 of antibodies or Fc fragments equipped with special functionalities and cannot be applied to off-the-
185 shelf antibodies.

186 **Antibody VHH bioconjugation does not impact cellular binding and uptake of antibodies as well as
187 VHH-PROTAC binding.**

188 To evaluate if the antibody binding properties are impaired by the VHH attachment, binding kinetics
189 of Ttz and Ctx as well as respective MIC7-conjugates were measured using biolayer interferometry
190 (BLI). Very similar dissociation constants (Table S1) and binding curves (Figure S10) were recorded for
191 the individual antibodies and corresponding conjugates. Additionally, binding of Ttz and Ttz-MIC7 to
192 target expressing cells was assessed using two HER2-positive (HER2_{pos}) cell lines, namely SKBR3 and
193 BT474⁴³, and one HER2 low (HER2_{low}) expressing cell line, MDA-MB-435⁴⁴. Cells were incubated with
194 Ttz-MIC7, Ttz or isotype control αDIG-MIC7, stained with an AF488-labeled anti-human IgG1 detection
195 antibody and analyzed using flow cytometry.

196
197 *Figure 3 Target cell binding and internalization of conjugated Ttz-MIC7. HER2_{pos} BT474 and SKBR3 cells as well as HER2_{low}*
198 *MDA-MB-435 cells incubated with Ttz (purple) or Ttz-MIC7 (red) and a fluorescent secondary antibody show equal MFIs*
199 *compared to controls (isotype control αDIG-MIC7 (cyan), AF488-labeled anti-human detection antibody (light green) and cells*
200 *only (green)) in flow cytometry analysis.*


201 Much higher mean fluorescence intensities (MFI) were observed for cells incubated with Ttz or Ttz-
202 MIC7 than with control molecules and signal intensities increased with HER2 expression levels
203 reported in literature (SKBR3 > BT474 > MDA-MB-435)⁴⁴ (Figure 3). In addition, no differences between
204 Ttz and the Ttz-MIC7 incubated cells were observed which, together with the BLI kinetic data,
205 demonstrates that the conjugated VHH does not influence the antibody binding properties. Next, we
206 studied the uptake and accumulation of VHH-conjugated antibodies into cancer cells to assess their
207 suitability for intracellular PROTAC delivery. For this, Ttz, Ttz-MIC7 and α DIG-MIC7 were labeled with
208 pH-sensitive pHAb amine reactive dye (Promega) which shows increased fluorescence at acidic pH and
209 thereby allows to detect labeled constructs in acidic cellular compartments such as the lysosome.⁴⁵
210 The labeling ratios of the conjugates and respective controls ranged between 6.5 and 9.3 dyes per
211 antibody (Table S3) and live cell fluorescence was monitored over a 24-hour period. Relative
212 fluorescent units normalized to cell count and labeling ratio of each construct increased over time in
213 the Ttz and Ttz-MIC7 treated wells (Figure S11 and S12) whereas no fluorescence was observed with
214 the HER2_{low} cell line. Enhanced cellular uptake of Ttz-MIC7 clearly correlates with a higher count of
215 HER2 receptors on SKBR3 compared to a lower HER2 count on BT474 cells.⁴⁶ In summary, efficient and
216 selective cellular uptake of PROxAb shuttles could be demonstrated.

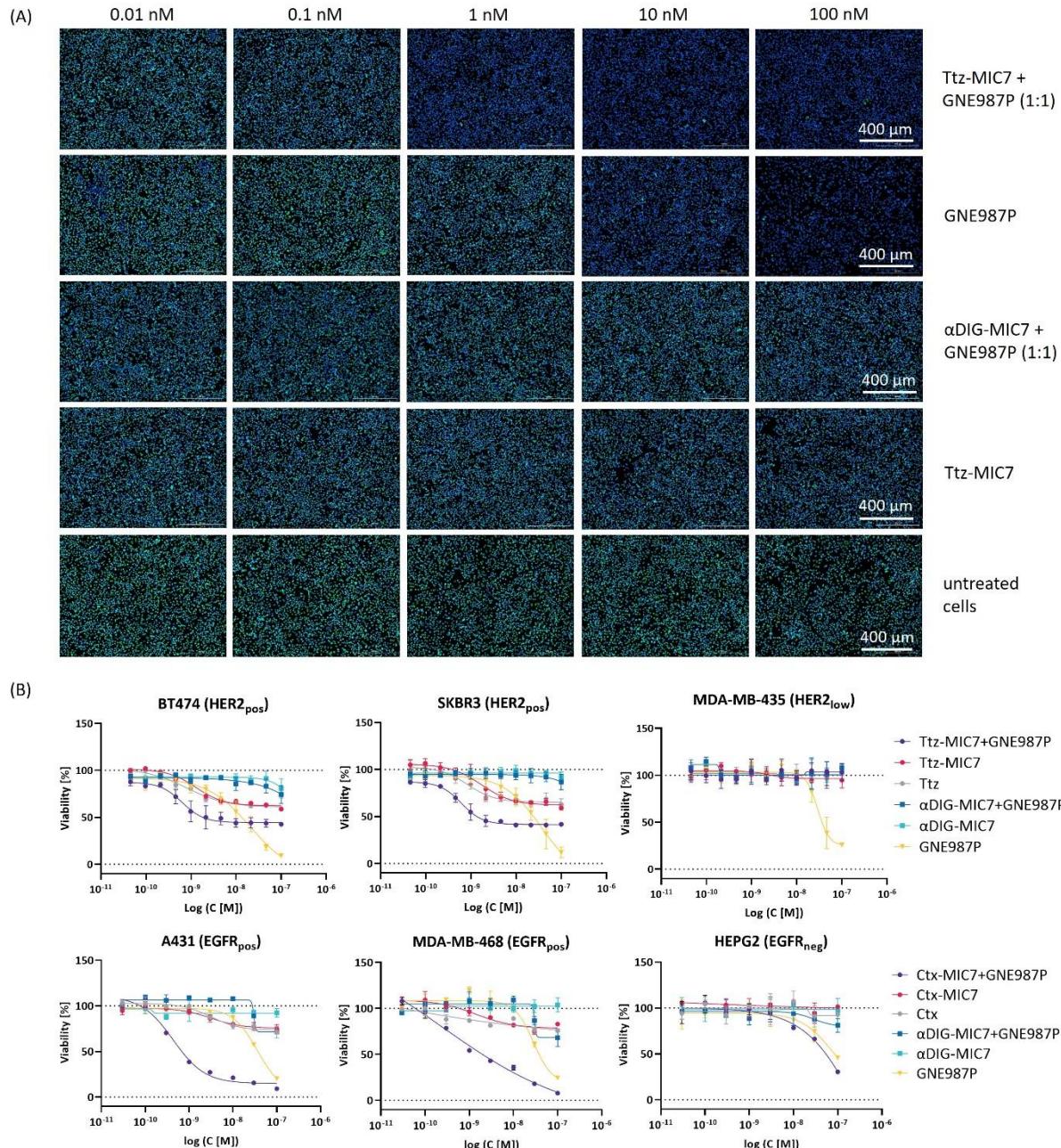
217 Finally, we assessed whether conjugation to the antibody altered the binding affinity of MIC7 VHH to
218 PROTACs. Therefore, Ttz-MIC7 and Ctx-MIC7 along with unmodified Ttz and Ctx were immobilized on
219 surface plasmon resonance (SPR) sensors, and their binding kinetic and affinity parameters to the VHL-
220 based PROTACs GNE987, GNE987P and ARV771 were measured. Unmodified antibody controls
221 showed no interaction with PROTACs, while the affinities of Ttz-MIC7 and Ctx-MIC7 to GNE987,
222 GNE987P and ARV771 were in single-digit to sub-nanomolar range (Table S2), which is in line with
223 previous reports for genetically fused PROxAb Shuttles.²³ These results indicate, that the conjugation
224 of MIC7 via its N-terminus does not affect its affinity to VHL based PROTACs which is in line with
225 literature findings reporting no loss of PROTAC binding after genetic fusion to antibody C-
226 termini.^{42, 47, 48}

227 **Incubation of conjugated PROxAb shuttles with PROTACs results in formation of defined complexes**

228 Next, we assembled PROxAb shuttles via incubation of VHH-antibody conjugates with BRD4 degrading
229 PROTACs. Therefore, Ttz-MIC7 was incubated with increasing concentrations of GNE987, and complex
230 formation was monitored by HIC and expressed as PROTAC to antibody ratio (PAR). Addition of
231 0.5 molar equivalents of PROTAC per conjugated VHH resulted in the appearance of two new peaks at
232 later elution times interpreted as complexes with 1 (P1) or 2 PROTACs (P2) per antibody (Figure 4).
233 Increasing equivalents (1:1 to 1:2) of added PROTAC resulted in a stepwise decrease of the
234 uncomplexed species (P0) accompanied by an increase in P2 species but no appearance of higher

235 loaded species indicating successful formation of defined PROxAb shuttle complexes carrying 1
236 PROTAC per VHH.

237
238 Figure 4 Assembly of PROxAb shuttle-PROTAC complexes. Incubation of Ttz-MIC7 with GNE987 at molar ratios of 1:0.5, 1:1 to
239 1:2 followed by monitoring of complex formation via HIC. P0, P1 and P2 indicate the elution areas corresponding to PROxAb
240 shuttle conjugates loaded with 0, 1, or 2 PROTACs, respectively.
241 Following these initial experiments, complex formation of Ttz-MIC7, Ctx-MIC7 and α DIG-MIC7 in
242 combination with GNE987 and GNE987P was investigated in a similar fashion. HIC peak areas were
243 used to determine the PAR. To judge on the efficiency of PROTAC complexation, the VARs (which equal
244 the theoretical maximum PAR assuming each VHH can bind one PROTAC molecule) were divided by
245 the respective PAR resulting in the loading efficiency (in detail see supplemental section 6). As
246 summarized in Table 3, all conjugates incubated with PROTACs at a 1:2 ratio efficiently formed
247 anticipated complexes with loading efficiencies ranging from 73 % to near complete loading resulting
248 in PARs ranging from 1.39 to 1.73.


249 Table 3 Efficiency of PROTAC complexation. PAR determined by HIC after incubation of antibody-VHH conjugates and PROTACs
250 at a 1:2 molar ratio. Loading efficiencies were calculated by dividing PAR and VAR values. nd: not determined.

Parental mAb-MIC7		GNE987		GNE987P	
Construct	VAR (VHH/mAb)	Loading efficiency [%]	PAR (PROTAC/mAb -MIC7)	Loading efficiency [%]	PAR (PROTAC/mAb -MIC7)
Ttz-MIC7	1.72	96.4	1.66	90.2	1.55
Ctx-MIC7	1.90	73.0	1.39	nd	nd
α DIG-MIC7	1.76	98.1	1.73	93.2	1.64

251 **PROxAb shuttles complexed with PROTACs mediate cell specific BRD4 degradation and cell killing.**

252 Finally, *in vitro* cell based assays were performed to evaluate the biological activity of BRD4 degrading
253 PROTACs complexed with PROxAb shuttles. Degradation was evaluated in SKBR3 cells treated for
254 24 hours with GNE987P-loaded conjugates, free GNE987P or Ttz-MIC7 alone. Following cellular fixation
255 and permeabilization, the BRD4 level was assessed using an anti-BRD4 antibody and fluorescence-
256 labeled detection antibody by immunofluorescence assay. Thus, the fluorescence intensity (green
257 signal) correlates with the BRD4 level.

258 Complexed GNE987P and free GNE987P effectively induced BRD4 degradation at nanomolar
259 concentrations as judged from a concentration-dependent reduction in green signal. In contrast,
260 unloaded Ttz-MIC7 and non-binding control α DIG-MIC7 loaded with GNE987P had no impact on BRD4
261 levels (Figure 5 (A)), indicating that degradation is indeed triggered by selectively delivered PROTAC.
262 In contrast, no degradation effect observed for α DIG-MIC7 + GNE987P indicating that GNE987P is
263 efficiently bound to α DIG-MIC7 which prohibits it from entering the cells. Similarly, effective BRD4
264 degradation in the nanomolar range was obtained upon treatment with GNE987 and Ttz-
265 MIC7 + GNE987 (Figure S13). In contrast to treatment with free PROTAC, where BRD4 degradation was
266 observed in the double-digit nanomolar range, Ttz-MIC7 complexed PROTACs induced reduced BRD4
267 levels already at single-digit concentrations. In line with our data, Maneiro and colleagues observed
268 increased BRD4 degradation in immunofluorescence assays after targeted delivery of GNE987.¹⁸

269

270 *Figure 5 Targeted BRD4 degradation and in vitro potency. (A) Monitoring of BRD4 degradation level in SKBR3 (HER2_{pos}) cancer*
271 *cells via immunofluorescence microscopy analysis. Cells were treated with Ttz-MIC7 or aDig-MIC7 complexed with GNE987P*
272 *(molar ratio 1:1) or controls for 24 h and afterwards fixated, permeabilized and stained with primary anti-BRD4 antibody,*
273 *secondary Alexa Fluor™ 488-labeled antibody (green.) Cell nuclei are counterstained with Hoechst dye (blue.). (B) Dose-*
274 *response curves of target positive and low/negative cell lines treated with Ttz-MIC7, Ctx-MIC7 and aDig-MIC7 complexed with*
275 *GNE987P (molar ratio 1:1) and control molecules. Cells were treated for six (upper panel) or three days (lower panel). Each*
276 *curve represents the mean of technical duplicates, standard deviation shown as error bars.*

277 As treatment with BRD4-degraders is known to affect cellular viability, we assessed our constructs in
278 *in vitro* cell potency assays. HER2_{pos} (BT474, SKBR3) and HER2_{low} (MDA-MB-435) cells were treated with
279 serial dilutions of Ttz-MIC7 + GNE987P, αDIG-MIC7 + GNE987P and free GNE987P for six days followed
280 by determination of cell viability using CellTiter Glo® (Promega) luminescence assay. Free PROTAC

281 GNE987P reduced viability of all cells irrespective of HER2 expression by 80-90 % with half maximal
282 inhibitory concentration (IC_{50}) values in the single digit nanomolar range. In contrast, Ttz-
283 MIC7 + GNE987P showed sub-nanomolar potency on HER2_{pos} cell lines with viabilities reduced by
284 about 60 % while no effects were seen on HER2_{low} cells (Figure 5 (B), Table S4) suggesting increased
285 and specific potency on target positive cells only. Additionally, Ctx-based molecules as well as controls
286 were tested on EGFR_{pos} (A431, MDA-MB-468) and EGFR_{low} (HEPG2) cancer cells. Cell viabilities
287 determined after three days treatment revealed selective cell killing of both EGFR_{pos} cell lines (A431,
288 MDA-MB-468) at sub-nanomolar concentrations and no cytotoxic effect within the evaluated
289 concentration range on EGFR_{low} (HEPG2) cells (Figure 5 (B) and Table S4). Notably, non-binding control
290 α DIG-MIC7 mixed with GNE987P did not induce significant reduction of cell viability in all assays
291 confirming that PROxAb complexing strongly reduces the PROTAC activity on cells that do not express
292 the antibody target. Consistent with previous reports, we observed anti-proliferative effects for Ttz
293 and Ctx antibodies as well as unloaded conjugates.^{49,50} Equivalent experiments using PROTAC GNE987
294 were conducted as well and also revealed selective killing of target cells, however free GNE987 was
295 more potent than GNE987P and complexed shuttles showed similar potencies on target cells as
296 GNE987 (Table S4). In contrast, potency of complexed GNE987P was increased on target-positive cells
297 by about ten- to 100-fold compared to PROTAC alone, which is likely due to the lower cellular
298 permeability of GNE987P that is overcome by the shuttle-mediated transport.³⁴ Similar effects on
299 target cells were observed previously by Pillow et al who covalently conjugated GNE987 to an anti-
300 CLL1 antibody.³³

301 In conclusion, the tested mAb-VHH conjugates show very similar characteristics as the original PROxAb
302 shuttle molecules allowing for complexation of PROTACs and specific delivery to target cells only.²³
303 However, while the original technology requires individual recombinant production of each mAb-VHH
304 fusion protein, the technology presented herein can be used for straight-forward generation of
305 PROxAb shuttles from off-the-shelf antibodies to rapidly screen for the most promising mAb-VHH
306 combinations.

307 Conclusion

308 In summary, we have developed a new approach for effective chemoenzymatic conjugation of VHH to
309 native antibodies. Through fusion of an N-terminal recognition tag to VHH we were able to site-
310 specifically conjugate the VHH to glutamine 295 of the heavy chain in native IgG-based antibodies and
311 thereby generate bispecific antibodies. This novel approach was exemplarily used to generate PROxAb
312 Shuttle conjugates by coupling G₃-MIC7 VHH with native IgG-based antibodies. The biological
313 functionality of the conjugate was demonstrated by loading with BRD4 degrading PROTAC and
314 subsequent immunofluorescence degradation and cell viability experiments. This chemoenzymatic

315 method is a modular approach that could be applied for high-throughput screening to identify ideal
316 binder combinations and fits into both worlds, the fast growing field of TPD and bispecific antibodies.

317 **Author Information**

318 Corresponding Author

319 **Stephan Dickgiesser** - Merck KGaA, 64293 Darmstadt, Germany; Email:
320 stephan.dickgiesser@merckgroup.com

321 Authors

322 **Tanja Lehmann** - Merck KGaA, 64293 Darmstadt, Germany and Clemens-Schöpf-Institut für
323 Organische Chemie und Biochemie, Technische Universität Darmstadt, 64287 Darmstadt, Germany

324 **Hendrik Schneider** - Merck KGaA, 64293 Darmstadt, Germany

325 **Jason Tonillo** - Merck KGaA, 64293 Darmstadt, Germany

326 **Jennifer Schanz** - Merck KGaA, 64293 Darmstadt, Germany

327 **Daniel Schwarz** - Merck KGaA, 64293 Darmstadt, Germany

328 **Christian Schröter** - Merck KGaA, 64293 Darmstadt, Germany

329 **Harald Kolmar** - Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische
330 Universität Darmstadt, 64287 Darmstadt, Germany

331 **Stefan Hecht** - Merck KGaA, 64293 Darmstadt, Germany

332 **Jan Anderl** - Merck KGaA, 64293 Darmstadt, Germany

333 **Nicolas Rasche** - Merck KGaA, 64293 Darmstadt, Germany

334 **Marcel Rieker** - Merck KGaA, 64293 Darmstadt, Germany

335 **Notes**

336 H.S., J.T., J.S., D.S., C.S., S.H., J.A., N.R., M.R. and S.D. are employees of Merck KGaA, Darmstadt,
337 Germany.

338 **Acknowledgements**

339 The authors kindly like to thank L. Basset, M. Fleischer, J. Finkernagel, J. Hannewald, S. Jäger, S. Keller,
340 V. Lautenbach, K. Leidinger, I. Schmidt, A. Schoenemann, P. Steiner, and K. Waurisch for advice and
341 laboratory support.

342 **Abbreviations**

343 ADC, antibody-drug conjugates; TPD, targeted protein degradation; PROTACs, proteolysis-targeting
344 chimeras; UPS, ubiquitin-proteasome system; CCRN, Cereblon; VHH, camelid single-domain antibody;
345 VHL, Von Hippel-Lindau; MTG, microbial transglutaminase; BRD4, bromodomain-containing protein 4;
346 HER2, human epidermal growth factor 2; Tz, Trastuzumab; Ctx, Cetuximab; HIC, Hydrophobic
347 Interaction Chromatography; RPC, Reversed-Phase Chromatography; VAR, VHH-to-antibody ratio; LC-
348 MS, liquid chromatography-mass spectrometry; αDIG, digoxigenin targeting human IgG1 antibody;

349 MFI, Mean fluorescence intensity; RFU, relative fluorescent unit; mAb, monoclonal antibody; HC,
350 heavy chain; SPR, Surface Plasmon Resonance

351 **Keywords**

352 PROTAC, antibody, antibody drug conjugate, targeted protein degradation, MTG, bioconjugation

353 **References**

354 (1) Sakamoto, K. M.; Kim, K. B.; Kumagai, A.; Mercurio, F.; Crews, C. M.; Deshaies, R. J. Protacs:
355 Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination
356 and Degradation. *Proc. Natl. Acad. Sci. U. S. A.* **2001**, *98* (15), 8554–8559.
357 <https://doi.org/10.1073/pnas.141230798>.

358 (2) Bondeson, D. P.; Mares, A.; Smith, I. E. D.; Ko, E.; Campos, S.; Miah, A. H.; Mulholland, K. E.;
359 Routly, N.; Buckley, D. L.; Gustafson, J. L.; Zinn, N.; Grandi, P.; Shimamura, S.; Bergamini, G.;
360 Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D. A.; Willard, R. R.; Flanagan, J. J.; Casillas,
361 L. N.; Votta, B. J.; Den Besten, W.; Famm, K.; Kruidenier, L.; Carter, P. S.; Harling, J. D.; Churcher,
362 I.; Crews, C. M. Catalytic in Vivo Protein Knockdown by Small-Molecule PROTACs. *Nat. Chem.
363 Biol.* **2015**, *11* (8), 611–617. <https://doi.org/10.1038/nchembio.1858>.

364 (3) Bondeson, D. P.; Smith, B. E.; Burslem, G. M.; Buhimschi, A. D.; Hines, J.; Jaime-Figueroa, S.;
365 Wang, J.; Hamman, B. D.; Ishchenko, A.; Crews, C. M. Lessons in PROTAC Design from Selective
366 Degradation with a Promiscuous Warhead. *Cell Chem. Biol.* **2018**, *25* (1), 78-87.e5.
367 <https://doi.org/10.1016/j.chembiol.2017.09.010>.

368 (4) Zengerle, M.; Chan, K. H.; Ciulli, A. Selective Small Molecule Induced Degradation of the BET
369 Bromodomain Protein BRD4. *ACS Chem. Biol.* **2015**, *10* (8), 1770–1777.
370 <https://doi.org/10.1021/acschembio.5b00216>.

371 (5) Hu, J.; Hu, B.; Wang, M.; Xu, F.; Miao, B.; Yang, C. Y.; Wang, M.; Liu, Z.; Hayes, D. F.;
372 Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ERD-308 as a Highly Potent
373 Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER). *J. Med. Chem.*
374 **2019**, *62* (3), 1420–1442. <https://doi.org/10.1021/acs.jmedchem.8b01572>.

375 (6) Han, X.; Wang, C.; Qin, C.; Xiang, W.; Fernandez-Salas, E.; Yang, C. Y.; Wang, M.; Zhao, L.; Xu, T.;
376 Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ARD-69 as a Highly Potent
377 Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the
378 Treatment of Prostate Cancer. *J. Med. Chem.* **2019**, *62* (2), 941–964.
379 <https://doi.org/10.1021/acs.jmedchem.8b01631>.

380 (7) Zhao, B.; Burgess, K. PROTACs Suppression of CDK4/6, Crucial Kinases for Cell Cycle Regulation

381 in Cancer. *Chem. Commun.* **2019**, *55* (18), 2704–2707. <https://doi.org/10.1039/c9cc00163h>.

382 (8) Crew, A. P.; Raina, K.; Dong, H.; Qian, Y.; Wang, J.; Vigil, D.; Serebrenik, Y. V.; Hamman, B. D.;
383 Morgan, A.; Ferraro, C.; Siu, K.; Neklesa, T. K.; Winkler, J. D.; Coleman, K. G.; Crews, C. M.
384 Identification and Characterization of von Hippel-Lindau-Recruiting Proteolysis Targeting
385 Chimeras (PROTACs) of TANK-Binding Kinase 1. *J. Med. Chem.* **2018**, *61* (2), 583–598.
386 <https://doi.org/10.1021/acs.jmedchem.7b00635>.

387 (9) Burslem, G. M.; Song, J.; Chen, X.; Hines, J.; Crews, C. M. Enhancing Antiproliferative Activity
388 and Selectivity of a FLT-3 Inhibitor by Proteolysis Targeting Chimera Conversion. *J. Am. Chem.
389 Soc.* **2018**, *140* (48), 16428–16432. <https://doi.org/10.1021/jacs.8b10320>.

390 (10) Gao, X.; Burris III, H. A.; Vuky, J.; Dreicer, R.; Sartor, A. O.; Sternberg, C. N.; Percent, I. J.; Hussain,
391 M. H. A.; Rezazadeh Kalebasti, A.; Shen, J.; Heath, E. I.; Abesada-Terk, G.; Gandhi, S. G.; McKean,
392 M.; Lu, H.; Berghorn, E.; Gedrich, R.; Chirnomas, S. D.; Vogelzang, N. J.; Petrylak, D. P. Phase 1/2
393 Study of ARV-110, an Androgen Receptor (AR) PROTAC Degrader, in Metastatic Castration-
394 Resistant Prostate Cancer (MCRPC). *J. Clin. Oncol.* **2022**, *40* (6), 17.
395 <https://doi.org/10.1200/JCO.2022.40.6\suppl.017>.

396 (11) Chirnomas, D.; Hornberger, K. R.; Crews, C. M. Protein Degraders Enter the Clinic — a New
397 Approach to Cancer Therapy. *Nat. Rev. Clin. Oncol.* **2023**, *20* (4), 265–278.
398 <https://doi.org/10.1038/s41571-023-00736-3>.

399 (12) Weng, G.; Cai, X.; Cao, D.; Du, H.; Shen, C.; Deng, Y.; He, Q.; Yang, B.; Li, D.; Hou, T. PROTAC-DB
400 2.0: An Updated Database of PROTACs. *Nucleic Acids Res.* **2023**, *51* (D1), D1367–D1372.
401 <https://doi.org/10.1093/nar/gkac946>.

402 (13) Klein, V. G.; Townsend, C. E.; Testa, A.; Zengerle, M.; Maniaci, C.; Hughes, S. J.; Chan, K. H.; Ciulli,
403 A.; Lokey, R. S. Understanding and Improving the Membrane Permeability of VH032-Based
404 PROTACs. *ACS Med. Chem. Lett.* **2020**, *11* (9), 1732–1738.
405 <https://doi.org/10.1021/acsmedchemlett.0c00265>.

406 (14) Jaime-Figueroa, S.; Buhimschi, A. D.; Toure, M.; Hines, J.; Crews, C. M. Design, Synthesis and
407 Biological Evaluation of Proteolysis Targeting Chimeras (PROTACs) as a BTK Degraders with
408 Improved Pharmacokinetic Properties. *Bioorganic Med. Chem. Lett.* **2020**, *30* (3), 126877.
409 <https://doi.org/10.1016/j.bmcl.2019.126877>.

410 (15) Goracci, L.; Desantis, J.; Valeri, A.; Castellani, B.; Eleuteri, M.; Cruciani, G. Understanding the
411 Metabolism of Proteolysis Targeting Chimeras (PROTACs): The Next Step toward
412 Pharmaceutical Applications. *J. Med. Chem.* **2020**, *63* (20), 11615–11638.

413 https://doi.org/10.1021/acs.jmedchem.0c00793.

414 (16) Poongavanam, V.; Atilaw, Y.; Siegel, S.; Giese, A.; Lehmann, L.; Meibom, D.; Erdelyi, M.; Kihlberg,
415 J. Linker-Dependent Folding Rationalizes PROTAC Cell Permeability. *J. Med. Chem.* **2022**, *65*
416 (19), 13029–13040. https://doi.org/10.1021/acs.jmedchem.2c00877.

417 (17) Chen, Y.; Tandon, I.; Heelan, W.; Wang, Y.; Tang, W.; Hu, Q. Proteolysis-Targeting Chimera
418 (PROTAC) Delivery System: Advancing Protein Degraders towards Clinical Translation. *Chem.*
419 *Soc. Rev.* **2022**, *51* (13), 5330–5350. https://doi.org/10.1039/d1cs00762a.

420 (18) Maneiro, M.; Forte, N.; Shchepinova, M. M.; Kounde, C. S.; Chudasama, V.; Baker, J. R.; Tate, E.
421 W. Antibody-PROTAC Conjugates Enable HER2-Dependent Targeted Protein Degradation of
422 BRD4. *ACS Chem. Biol.* **2020**, *15* (6), 1306–1312. https://doi.org/10.1021/acscchembio.0c00285.

423 (19) Liu, J.; Chen, H.; Liu, Y.; Shen, Y.; Meng, F.; Kaniskan, H. Ü.; Jin, J.; Wei, W. Cancer Selective
424 Target Degradation by Folate-Caged PROTACs. *J. Am. Chem. Soc.* **2021**, *143* (19), 7380–7387.
425 https://doi.org/10.1021/jacs.1c00451.

426 (20) Dragovich, P. S.; Adhikari, P.; Blake, R. A.; Blaquiere, N.; Chen, J.; Cheng, Y. X.; den Besten, W.;
427 Han, J.; Hartman, S. J.; He, J.; He, M.; Rei Ingalla, E.; Kamath, A. V.; Kleinheinz, T.; Lai, T.; Leipold,
428 D. D.; Li, C. S.; Liu, Q.; Lu, J.; Lu, Y.; Meng, F.; Meng, L.; Ng, C.; Peng, K.; Lewis Phillips, G.; Pillow,
429 T. H.; Rountree, R. K.; Sadowsky, J. D.; Sampath, D.; Staben, L.; Staben, S. T.; Wai, J.; Wan, K.;
430 Wang, X.; Wei, B. Q.; Wertz, I. E.; Xin, J.; Xu, K.; Yao, H.; Zang, R.; Zhang, D.; Zhou, H.; Zhao, Y. Antibody-Mediated Delivery of Chimeric Protein Degraders Which Target Estrogen Receptor
431 Alpha (ER α). *Bioorganic Med. Chem. Lett.* **2020**, *30* (4), 126907.
432 https://doi.org/10.1016/j.bmcl.2019.126907.

433 (21) He, S.; Gao, F.; Ma, J.; Ma, H.; Dong, G.; Sheng, C. Aptamer-PROTAC Conjugates (APCs) for
434 Tumor-Specific Targeting in Breast Cancer. *Angew. Chemie* **2021**, *133* (43), 23487–23493.
435 https://doi.org/10.1002/ange.202107347.

436 (22) Dragovich, P. S. Degrader-Antibody Conjugates. *Chem. Soc. Rev.* **2022**, *51* (10), 3886–3897.
437 https://doi.org/10.1039/d2cs00141a.

438 (23) Schneider, H.; Jäger, S.; Könning, D.; Rasche, N.; Schröter, C.; Elter, D. PROxAb Shuttle : A Non-
439 Covalent Plug-and-Play Platform for the Rapid Generation of Tumor-Targeting Antibody-
440 PROTAC Conjugates. *bioRxiv* **2023**, 2023.09.29.558399.
441 https://doi.org/https://doi.org/10.1101/2023.09.29.558399.

442 (24) Schneider, B.; Grote, M.; John, M.; Haas, A.; Bramlage, B.; Lckenstein, L. M.; Jahn-Hofmann, K.;

444 Bauss, F.; Cheng, W.; Croasdale, R.; Daub, K.; Dill, S.; Hoffmann, E.; Lau, W.; Burtscher, H.;
445 Ludtke, J. L.; Metz, S.; Mundigl, O.; Neal, Z. C.; Scheuer, W.; Stracke, J.; Herweijer, H.; Brinkmann,
446 U. Targeted SiRNA Delivery and mRNA Knockdown Mediated by Bispecific Digoxigenin-Binding
447 Antibodies. *Mol. Ther. - Nucleic Acids* **2012**, *1* (9), e46. <https://doi.org/10.1038/mtna.2012.39>.

448 (25) Metz, S.; Haas, A. K.; Daub, K.; Croasdale, R.; Stracke, J.; Lau, W.; Georges, G.; Josel, H. P.;
449 Dziadek, S.; Hopfner, K. P.; Lammens, A.; Scheuer, W.; Hoffmann, E.; Mundigl, O.; Brinkmann,
450 U. Bispecific Digoxigenin-Binding Antibodies for Targeted Payload Delivery. *Proc. Natl. Acad.
451 Sci. U. S. A.* **2011**, *108* (20), 8194–8199. <https://doi.org/10.1073/pnas.1018565108>.

452 (26) Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C. M.; Deshaies, R. J.; Sakamoto,
453 K. M. Targeting Steroid Hormone Receptors for Ubiquitination and Degradation in Breast and
454 Prostate Cancer. *Oncogene* **2008**, *27* (57), 7201–7211. <https://doi.org/10.1038/onc.2008.320>.

455 (27) Lu, J.; Qian, Y.; Altieri, M.; Dong, H.; Wang, J.; Raina, K.; Hines, J.; Winkler, J. D.; Crew, A. P.;
456 Coleman, K.; Crews, C. M. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4.
457 *Chem. Biol.* **2015**, *22* (6), 755–763. <https://doi.org/10.1016/j.chembiol.2015.05.009>.

458 (28) Luo, X.; Archibeque, I.; Dellamaggiore, K.; Smither, K.; Homann, O.; Lipford, J. R.; Mohl, D.
459 Profiling of Diverse Tumor Types Establishes the Broad Utility of VHL-Based ProTaCs and Triages
460 Candidate Ubiquitin Ligases. *iScience* **2022**, *25* (3), 103985.
461 <https://doi.org/10.1016/j.isci.2022.103985>.

462 (29) Fuchsbauer, H. Approaching Transglutaminase from Streptomyces Bacteria over Three
463 Decades. *FEBS J.* **2022**, *289* (16), 4680–4703. <https://doi.org/10.1111/febs.16060>.

464 (30) Dickgiesser, S.; Rieker, M.; Mueller-Pompalla, D.; Schröter, C.; Tonillo, J.; Warszawski, S.; Raab-
465 Westphal, S.; Kühn, S.; Knehans, T.; Könning, D.; Dotterweich, J.; Betz, U. A. K.; Anderl, J.; Hecht,
466 S.; Rasche, N. Site-Specific Conjugation of Native Antibodies Using Engineered Microbial
467 Transglutaminases. *Bioconjug. Chem.* **2020**, *31* (4), 1070–1076.
468 <https://doi.org/10.1021/acs.bioconjchem.0c00061>.

469 (31) Sadiki, A.; Vaidya, S. R.; Abdollahi, M.; Bhardwaj, G.; Dolan, M. E.; Turna, H.; Arora, V.; Sanjeev,
470 A.; Robinson, T. D.; Koid, A.; Amin, A.; Zhou, Z. S. Site-Specific Conjugation of Native Antibody.
471 *Antib. Ther.* **2020**, *3* (4), 271–284. <https://doi.org/10.1093/abt/tbaa027>.

472 (32) Raina, K.; Lu, J.; Qian, Y.; Altieri, M.; Gordon, D.; Rossi, A. M. K.; Wang, J.; Chen, X.; Dong, H.;
473 Siu, K.; Winkler, J. D.; Crew, A. P.; Crews, C. M.; Coleman, K. G. PROTAC-Induced BET Protein
474 Degradation as a Therapy for Castration-Resistant Prostate Cancer. *Proc. Natl. Acad. Sci. U. S.
475 A.* **2016**, *113* (26), 7124–7129. <https://doi.org/10.1073/pnas.1521738113>.

476 (33) Pillow, T. H.; Adhikari, P.; Blake, R. A.; Chen, J.; Del Rosario, G.; Deshmukh, G.; Figueroa, I.;
477 Gascoigne, K. E.; Kamath, A. V.; Kaufman, S.; Kleinheinz, T.; Kozak, K. R.; Latifi, B.; Leipold, D. D.;
478 Sing Li, C.; Li, R.; Mulvihill, M. M.; O'Donohue, A.; Rountree, R. K.; Sadowsky, J. D.; Wai, J.; Wang,
479 X.; Wu, C.; Xu, Z.; Yao, H.; Yu, S. F.; Zhang, D.; Zang, R.; Zhang, H.; Zhou, H.; Zhu, X.; Dragovich,
480 P. S. Antibody Conjugation of a Chimeric BET Degrader Enables in Vivo Activity. *ChemMedChem*
481 **2020**, *15* (1), 17–25. <https://doi.org/10.1002/cmdc.201900497>.

482 (34) Dragovich, P. S.; Pillow, T. H.; Blake, R. A.; Sadowsky, J. D.; Adaligil, E.; Adhikari, P.; Chen, J.; Corr,
483 N.; Dela Cruz-Chuh, J.; Del Rosario, G.; Fullerton, A.; Hartman, S. J.; Jiang, F.; Kaufman, S.;
484 Kleinheinz, T.; Kozak, K. R.; Liu, L.; Lu, Y.; Mulvihill, M. M.; Murray, J. M.; O'Donohue, A.;
485 Rountree, R. K.; Sawyer, W. S.; Staben, L. R.; Wai, J.; Wang, J.; Wei, B.; Wei, W.; Xu, Z.; Yao, H.;
486 Yu, S. F.; Zhang, D.; Zhang, H.; Zhang, S.; Zhao, Y.; Zhou, H.; Zhu, X. Antibody-Mediated Delivery
487 of Chimeric BRD4 Degraders. Part 2: Improvement of in Vitro Antiproliferation Activity and in
488 Vivo Antitumor Efficacy. *J. Med. Chem.* **2021**, *64* (5), 2576–2607.
489 <https://doi.org/10.1021/acs.jmedchem.0c01846>.

490 (35) Tanaka, T.; Kamiya, N.; Nagamune, T. N-Terminal Glycine-Specific Protein Conjugation
491 Catalyzed by Microbial Transglutaminase. *FEBS Lett.* **2005**, *579* (10), 2092–2096.
492 <https://doi.org/10.1016/j.febslet.2005.02.064>.

493 (36) Bramlage, B.; Brinkmann, U.; Croasdale, R.; Dill, S.; Dormeyer, W.; Georges, G.; Grote, M.; Haas,
494 A.; Hoffmann, E.; Ickenstein, L. M.; Jahn-Hofmann, K.; John, M.; Metz, S.; Mundigl, O.; Scheuer,
495 W.; Stracke, J. O. Bi-Specific Digoxigenin Binding Antibodies. WO2011003780, 2011.

496 (37) HÖLTKE, H.-J.; Seibl, R.; Schmitz, G.; SCHÖLER, H. R.; Kessler, C.; Mattes, R. Process for Detecting
497 Nucleic Acids. PCT/EP1989/000026, 1989. <https://doi.org/WO/1989/006698>.

498 (38) Fujii, T.; Ito, K.; Takahashi, K.; Aoki, T.; Takasugi, R.; Seki, T.; Iwai, Y.; Watanabe, T.; Hirama, R.;
499 Tsumura, R.; Fuchigami, H.; Yasunaga, M.; Matsuda, Y. Bispecific Antibodies Produced via
500 Chemical Site-Specific Conjugation Technology: AJICAP Second-Generation. *ACS Med. Chem.*
501 *Lett.* **2023**. <https://doi.org/10.1021/acsmedchemlett.3c00414>.

502 (39) Hofmann, T.; Schmidt, J.; Ciesielski, E.; Becker, S.; Rysiok, T.; Schütte, M.; Toleikis, L.; Kolmar,
503 H.; Doerner, A. Intein Mediated High Throughput Screening for Bispecific Antibodies. *MAbs*
504 **2020**, *12* (1). <https://doi.org/10.1080/19420862.2020.1731938>.

505 (40) Yumura, K.; Akiba, H.; Nagatoishi, S.; Kusano-Arai, O.; Iwanari, H.; Hamakubo, T.; Tsumoto, K.
506 Use of SpyTag/SpyCatcher to Construct Bispecific Antibodies That Target Two Epitopes of a
507 Single Antigen. *J. Biochem.* **2017**, *162* (3), 203–210. <https://doi.org/10.1093/jb/mvx023>.

508 (41) Thoreau, F.; Szijj, P. A.; Greene, M. K.; Rochet, L. N. C.; Thanasi, I. A.; Blayney, J. K.; Maruani, A.;
509 Baker, J. R.; Scott, C. J.; Chudasama, V. Modular Chemical Construction of IgG-like Mono- and
510 Bispecific Synthetic Antibodies (SynAbs). *ACS Cent. Sci.* **2023**, *9* (3), 476–487.
511 <https://doi.org/10.1021/acscentsci.2c01437>.

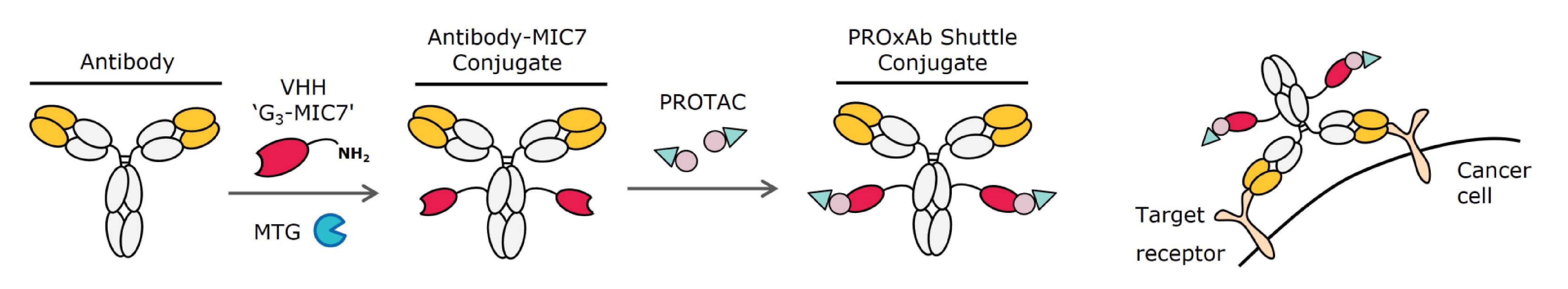
512 (42) Barron, N.; Dickgiesser, S.; Fleischer, M.; Bachmann, A.; Klewinghaus, D.; Hannewald, J.;
513 Ciesielski, E.; Kusters, I.; Hammann, T.; Krause, V.; Fuchs, S.; Siegmund, V.; Gross, A. W.; Mueller-
514 pompalla, D.; Krah, S.; Zielonka, S.; Doerner, A. A Generic Approach for Miniaturized Unbiased
515 High-Throughput Screens of Bispecific Antibodies and Biparatopic Antibody – Drug Conjugates.
516 *Int. J. Mol. Sci.* **2024**, *25* (4), 2097. <https://doi.org/10.3390/ijms25042097>.

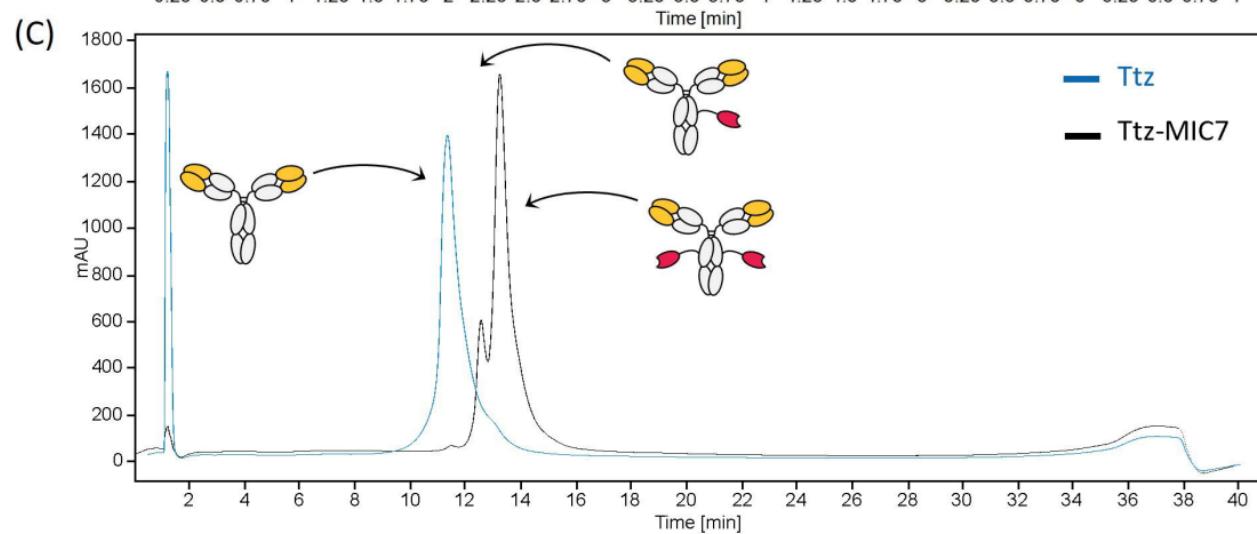
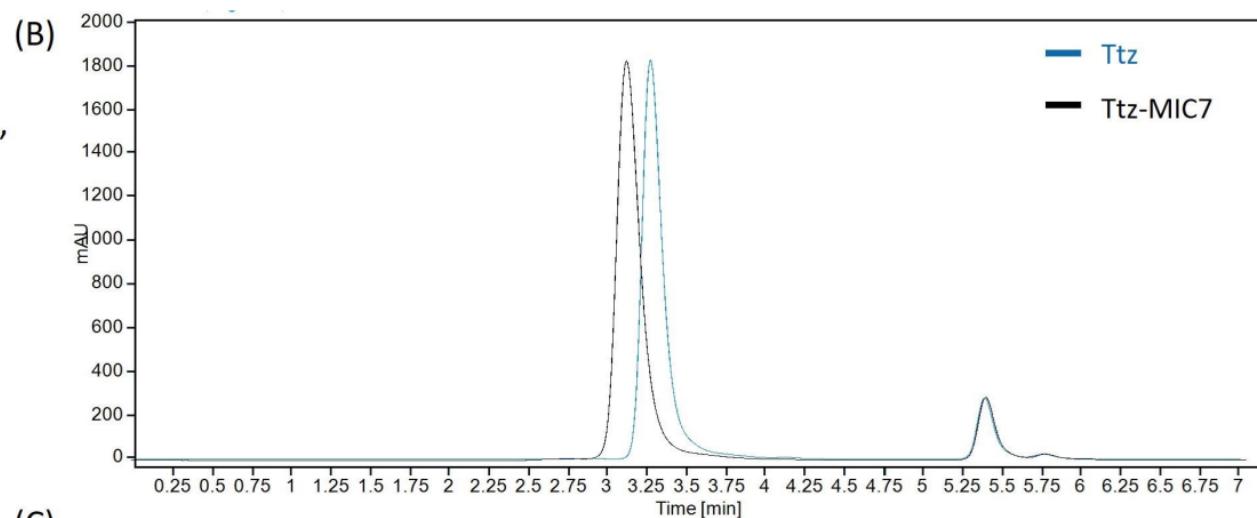
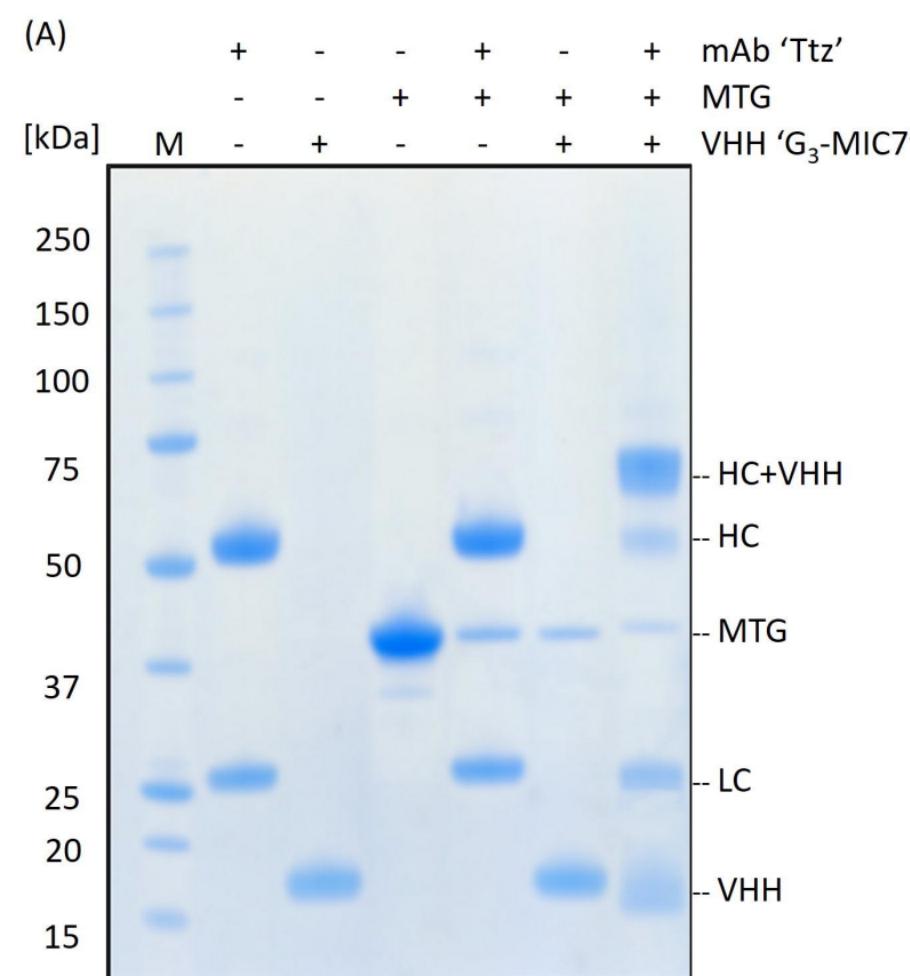
517 (43) Gall, V. A.; Philips, A. V.; Qiao, N.; Clise-Dwyer, K.; Perakis, A. A.; Zhang, M.; Clifton, G. T.;
518 Sukhumalchandra, P.; Ma, Q.; Reddy, S. M.; Yu, D.; Molldrem, J. J.; Peoples, G. E.; Alatrash, G.;
519 Mittendorf, E. A. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic
520 Cells. *Cancer Res.* **2017**, *77* (19), 5374–5383. <https://doi.org/10.1158/0008-5472.CAN-16-2774>.

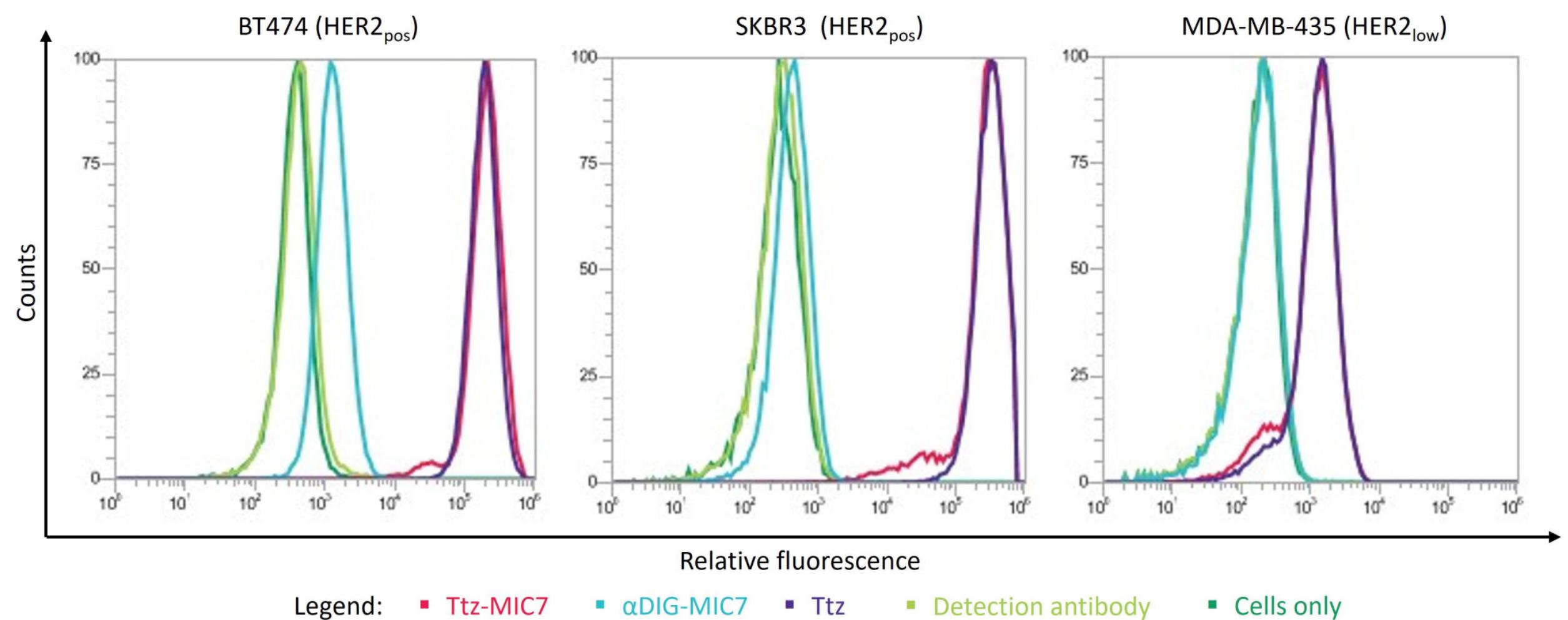
521 (44) Ram, S.; Kim, D.; Ober, R. J.; Ward, E. S. The Level of HER2 Expression Is a Predictor of Antibody-
522 HER2 Trafficking Behavior in Cancer Cells. *MAbs* **2014**, *6* (5), 1211–1219.
523 <https://doi.org/10.4161/mabs.29865>.

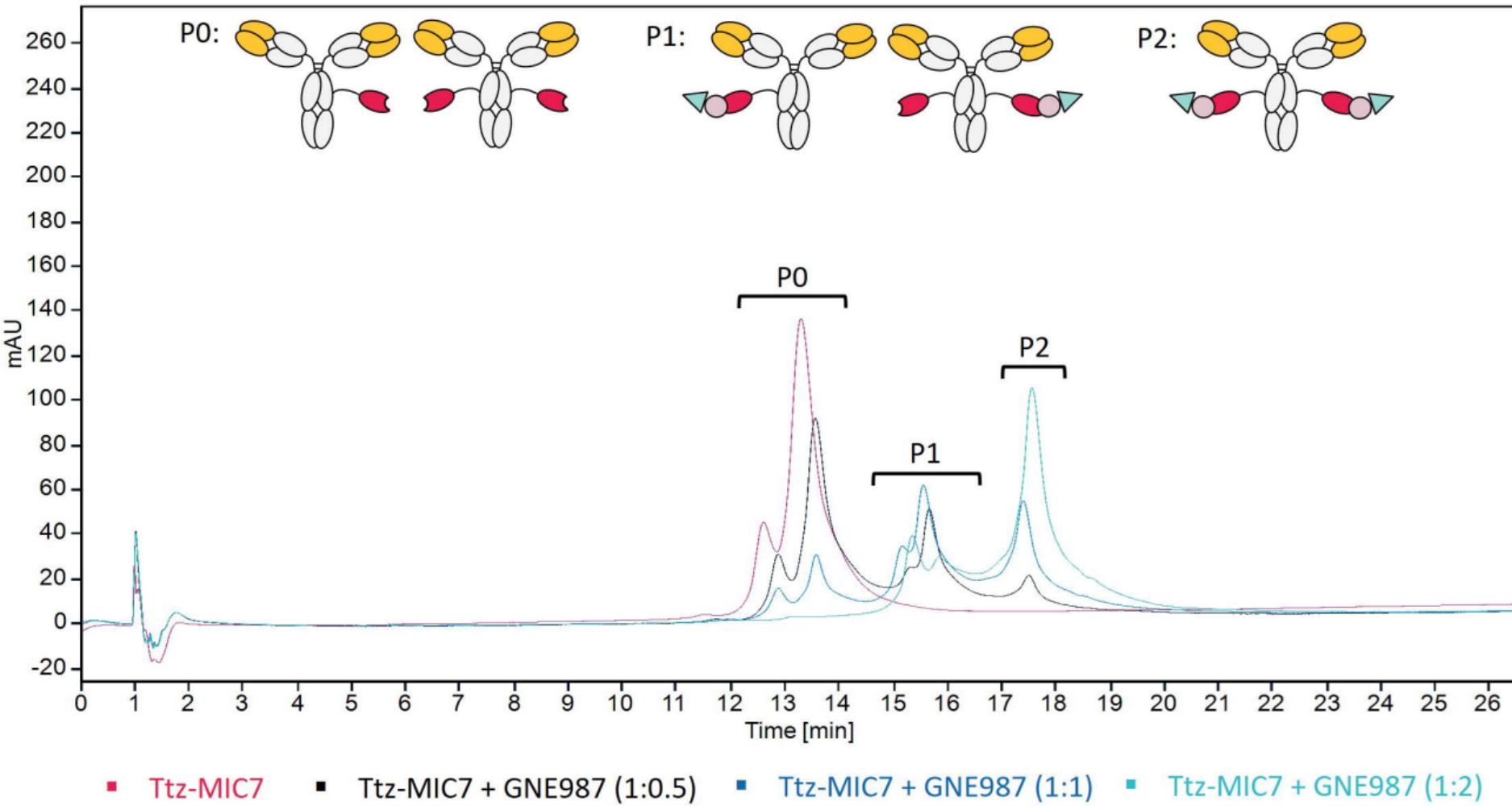
524 (45) Nath, N.; Godat, B.; Zimprich, C.; Dwight, S. J.; Corona, C.; McDougall, M.; Urh, M. Homogeneous
525 Plate Based Antibody Internalization Assay Using PH Sensor Fluorescent Dye. *J. Immunol.*
526 *Methods* **2016**, *431*, 11–21. <https://doi.org/10.1016/j.jim.2016.02.001>.

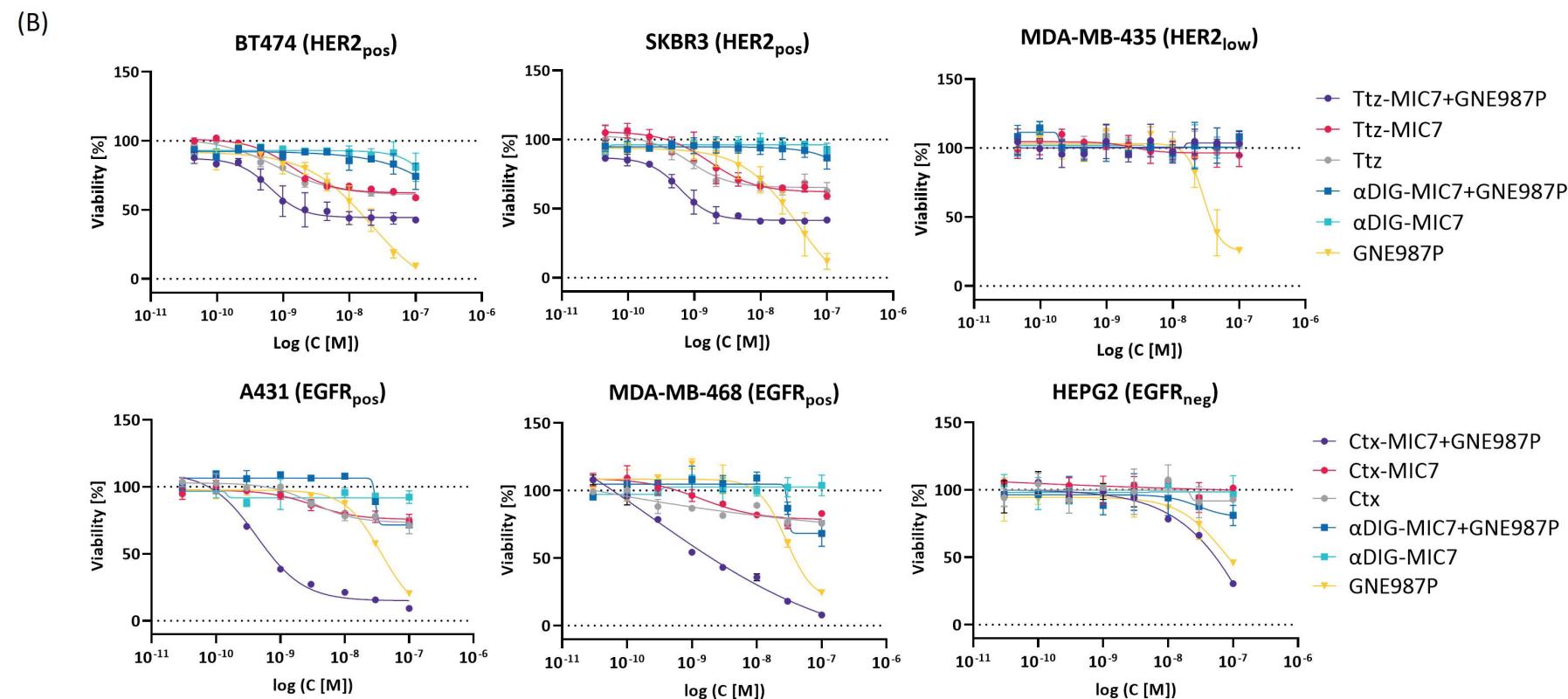
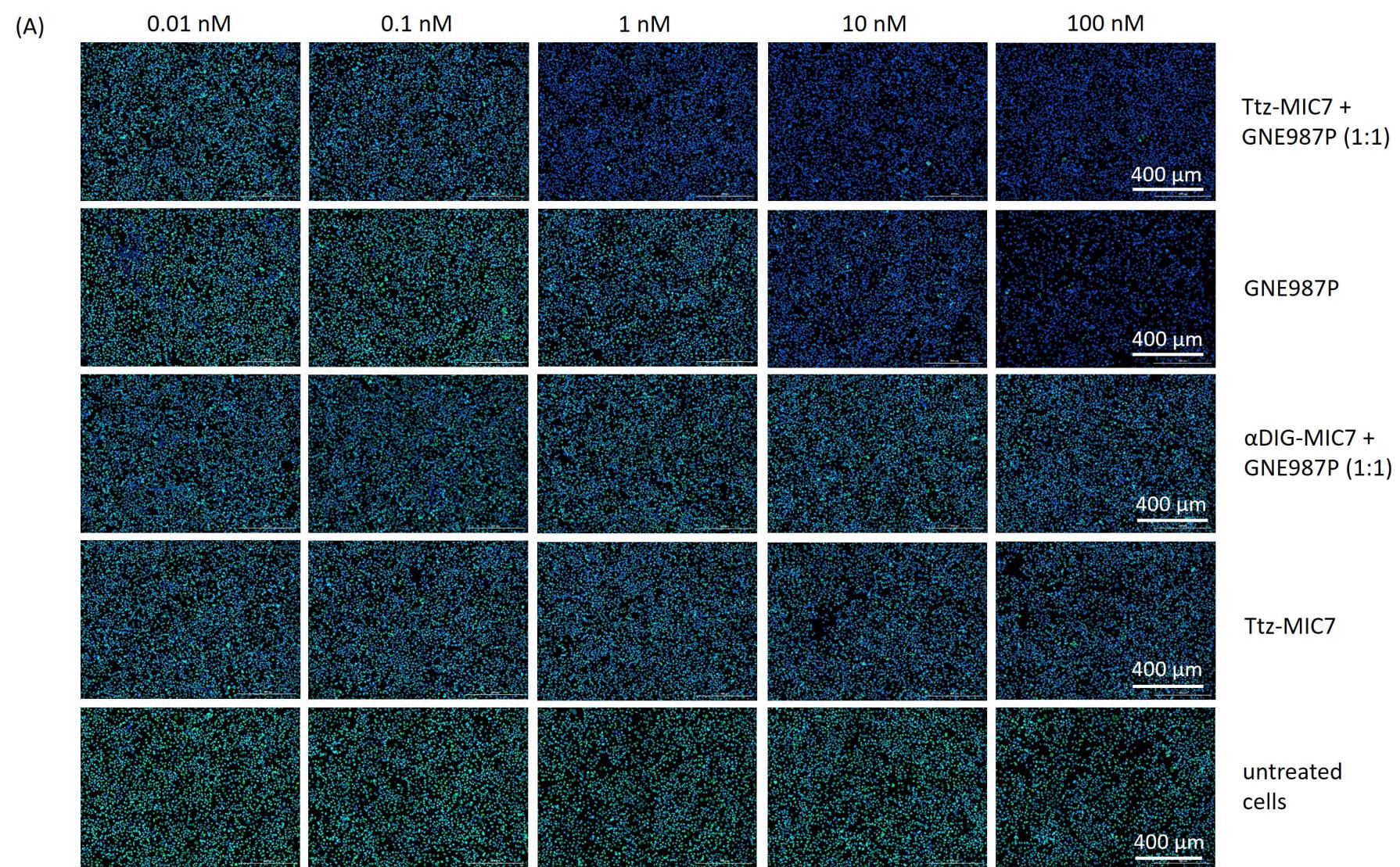
527 (46) Jäger, S.; Wagner, T. R.; Rasche, N.; Kolmar, H.; Hecht, S.; Schröter, C. Generation and Biological
528 Evaluation of Fc Antigen Binding Fragment-Drug Conjugates as a Novel Antibody-Based Format
529 for Targeted Drug Delivery. *Bioconjug. Chem.* **2021**, *32* (8), 1699–1710.
530 <https://doi.org/10.1021/acs.bioconjchem.1c00240>.


531 (47) Yanakieva, D.; Pekar, L.; Evers, A.; Fleischer, M.; Keller, S.; Mueller-Pompalla, D.; Toleikis, L.;
532 Kolmar, H.; Zielonka, S.; Krah, S. Beyond Bispecificity: Controlled Fab Arm Exchange for the
533 Generation of Antibodies with Multiple Specificities. *MAbs* **2022**, *14* (1), 2018960.
534 <https://doi.org/10.1080/19420862.2021.2018960>.




535 (48) Chi, H.; Wang, L.; Liu, C.; Cheng, X.; Zheng, H.; Lv, L.; Tan, Y.; Zhang, N.; Zhao, S.; Wu, M.; Luo,
536 D.; Qiu, H.; Feng, R.; Fu, W.; Zhang, J.; Xiong, X.; Zhang, Y.; Zu, S.; Chen, Q.; Ye, Q.; Yan, X.; Hu,
537 Y.; Zhang, Z.; Yan, R.; Yin, J.; Lei, P.; Wang, W.; Lang, G.; Shao, J.; Deng, Y.; Wang, X.; Qin, C. An
538 Engineered IgG–VHH Bispecific Antibody against SARS-CoV-2 and Its Variants. *Small Methods*
539 **2022**, *6* (12), 1–11. <https://doi.org/10.1002/smtd.202200932>.


540 (49) Arteaga, C. L.; Sliwkowski, M. X.; Osborne, C. K.; Perez, E. A.; Puglisi, F.; Gianni, L. Treatment of
541 HER2-Positive Breast Cancer: Current Status and Future Perspectives. *Nat. Rev. Clin. Oncol.*
542 **2012**, *9* (1), 16–32. <https://doi.org/10.1038/nrclinonc.2011.177>.


543 (50) Meira, D. D.; Nóbrega, I.; de Almeida, V. H.; Mororó, J. S.; Cardoso, A. M.; Silva, R. L. A.; Albano,
544 R. M.; Ferreira, C. G. Different Antiproliferative Effects of Matuzumab and Cetuximab in A431
545 Cells Are Associated with Persistent Activity of the MAPK Pathway. *Eur. J. Cancer* **2009**, *45* (7),
546 1265–1273. <https://doi.org/10.1016/j.ejca.2008.12.012>.



547

