

Evolution of temperature preference behaviour among drosophilids

Tane Kafle^{1*}, Manuel Grub¹, Panagiotis Sakagiannis², Martin Paul Nawrot², Roman Arguello^{3*}

¹ Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Switzerland;

² Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Germany;

³ School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK

* Corresponding authors

Abstract

Small-bodied ectotherms are acutely vulnerable to temperature changes, but diverse thermotactic behaviours have contributed to their ability to inhabit broad climatic niches. Understanding how - and how quickly - these behaviours evolve are outstanding biological questions that are also relevant to conservation. Among insects, *Drosophila melanogaster* is a preeminent ectothermic model for temperate sensing and thermotaxis. However, little is known about how its temperature-related behaviours have evolved in comparison to its closely related species. We have thermo-profiled over 2400 larvae from eight closely related species of *Drosophila* from different thermal habitats. Consistent with local adaptation, we found substantial variation in temperature preference and fine-scale navigational behaviours amongst these species. Agent-based modelling of the larval thermotaxis circuit suggests that it is the balance between cool and warm avoidance circuits, rather than changes in temperature sensitivity, that drive differences in temperature preference. Our findings highlight the recurrent evolution of temperature-related behaviours in an experimentally tractable cross-species system.

Introduction

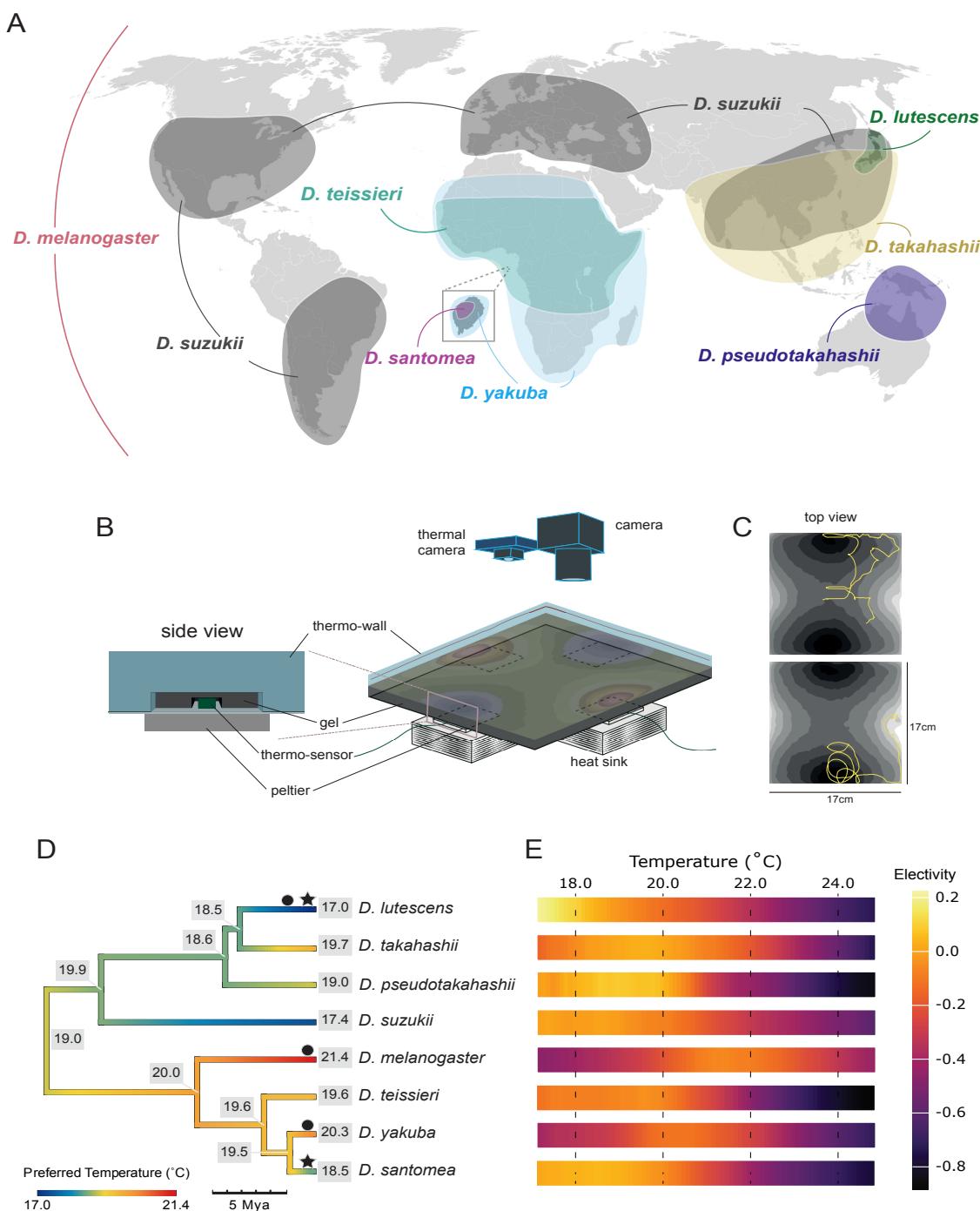
Underlying the capacities that animals have to inhabit environments that are as variable as searing deserts^{1–3} and freezing polar regions^{4–6} are strategies to cope with temperature fluctuations that can vary extensively over short (e.g., seconds) and long (e.g., annual) timespans. For endotherms, strategies such as vasodilation, vasoconstriction and the use of brown adipose tissue, have evolved to maintain body temperature and metabolic balance thereby safeguarding homeostasis^{7,8}. Such strategies that buffer internal body temperature against ambient temperature are largely unavailable to poikilotherms, animals that primarily rely on behavioural strategies such as moving up or down temperature gradients (thermotaxis), stopping in sunlight (basking), maximizing exposure to sunlight (flanking), or burrowing to regulate their internal temperature⁹.

The ability to make rapid behavioural changes for thermoregulatory purposes is particularly crucial for small-bodied poikilotherms, a group that includes most insects, as their internal temperature can match that of the environment within seconds due to rapid heat exchange^{10–12}. The global distribution of ectothermic insects is a testament to their abilities to adapt thermoregulatory behaviours to their local conditions. These capacities have garnered extensive lab- and field-based research into the behavioural variation that exists within and between species across thermal environments^{13–16}. Given that many small insects have been found to survive only within a narrow viable temperature range, an understanding of how fast such behaviours evolve - or how constrained they are - is increasingly relevant in light of rapid climatic change¹⁷.

50

51 A substantial part of our understanding of temperature-related adaptations in insects comes from
52 work on drosophilids. Drosophilids are found in most places outside the polar regions and they have
53 long served as study subjects for research on local adaptation. Initial work focused on cytological
54 data that dates to Dobzhansky's classic studies linking chromosomal inversions to climatic clines^{18,19},
55 and has maintained a strong current to this day²⁰⁻²³. The behavioural and physiological studies that
56 followed likewise began to document the roles that variable microclimates have in shaping diverse
57 drosophilid species' daily behaviours (e.g., hours of activity) and geographic distributions (with many
58 species having very restricted ranges)²⁴⁻³⁰. Field observations, combined with collections that could
59 be lab-maintained, helped to guide numerous thermotolerance experiments in which species' ability
60 to survive (or recover from) acute experimental temperature regimes could be readily assayed. This
61 large body of work demonstrated remarkable differences among species' abilities to survive both
62 cold and hot temperatures and showed that these differences largely correspond with the thermal
63 environments in which they are found^{25,26,31}. Simple thermal gradient arenas and programmable
64 Peltier elements have become increasingly common tools for quantifying temperature preference
65 behaviours, principally in adult flies³²⁻³⁴. As with the tolerance experiments, these behavioural
66 studies have identified large interspecies differences. For example, adults from a North American
67 desert species, *D. mojavensis*, were found to prefer 27.9°C²⁸ while adults from a high European
68 alpine species, *D. nigrosparsa*, were found to prefer 10.4°C³⁵. Adult *D. melanogaster* and *D.*
69 *simulans*, two globally distributed ecological generalist species, prefer 24.3°C and 23.0°C,
70 respectively²⁸.

71


72 Temperature-related behavioural responses rely on the peripheral detection of thermal differences
73 in the environment and the processing of that information by the central brain³⁶. *D. melanogaster* is
74 a preeminent neurogenetic model for thermosensation, and the characterisation of neural circuits
75 and thermoreceptor proteins that underlie these behaviours is becoming increasingly complete,
76 particularly with respect to the periphery. In adults, innocuous cool temperatures are detected by
77 sensory neurons located in the antenna's arista and sacculus^{37,38}, with innocuous warm
78 temperatures detected by another set of neurons in the arista and in the central brain's anterior
79 cells^{37,39}. The neuron populations involved in cold and hot nociception in the adults are yet to be
80 defined. In larvae, each dorsal organ ganglion, located in the head, houses distinct neuron
81 populations that differentially respond to innocuous temperature changes by detecting ambient
82 cooling or warming^{33,40}. Noxious hot and cold temperatures are detected by multiple different classes
83 of dendritic cells along the body wall of larvae⁴¹⁻⁴³. The thermosensors that have so far been
84 identified within these temperature sensitive neurons come from diverse families of ion channels
85 including transient receptor potential channels, ionotropic receptors, and gustatory receptors, as well
86 as members of the rhodopsin family; these have been detailed in recent review papers^{44,45}.

87

88 Most of the species that are closely related to *D. melanogaster* have narrower or non-overlapping
89 climatic ranges^{31,46-48}. The thermoecological diversity among these species, together with the cellular
90 and genetic understanding of thermotaxis provided by *D. melanogaster*, put in place a strong
91 foundation for comparative approaches to understanding the evolution of temperature-related
92 behaviours^{44,45}. Previous studies that have compared thermotaxis between drosophilids have
93 primarily used distantly related species, which may have overlooked recurrent temperature
94 preference changes if they evolve rapidly and limit phylogenetically-informed inferences about the
95 history of the changes^{28,49,50}. The few studies that have compared closely related species have
96 focused only on a small number of target species⁵¹. As a result, it remains unclear how often
97 temperature preferences evolve between species on short timescales. In addition, as most of this
98 work has been carried out on adults, little is known about temperature-related behavioural evolution
99 at the larval stage. Given the small size of larvae and their limited mobility, it is likely that selective

100 pressures on thermotaxis at this developmental stage are distinct from those experienced by adult flies.
101
102 To address these questions, we have carried out a large larval thermotaxis experiment using eight species from two sister subgroups within the *D. melanogaster* species group: the *D. melanogaster* subgroup (hereafter abbreviated *Dmel*-subgroup) and the Oriental subgroup (Fig 1A). We focused on these two subgroups due to the inclusion of, and evolutionary proximity to, *D. melanogaster* and due to the evidence that multiple species within these two clades are believed to have recently experienced lineage-specific temperature-related adaptations^{46,52–54}. We aimed to investigate if there is evidence that behavioural adaptation accompanied these changes. Our balanced species sampling from these two subgroups, together with divergence times that span relatively short to intermediate ranges, provide a powerful framework to investigate the rate and repeatability of thermotaxis evolution.
113
114 To quantify temperature-related behaviours in larvae, we implemented a novel temperature gradient assay paired with high resolution individual tracking. These data allowed us to continuously monitor broad patterns of species' thermotaxis, as well as individual's fine-scale behaviours throughout each experiment, details that have previously only been collected for *D. melanogaster*^{55,33}. Analysing these data within a phylogenetic context, we have identified recurrent evolutionary changes within both species subgroups. Fitting species-specific models of larva thermotaxis to our data, we found evidence that evolutionary changes between species are explained by differences in the balancing of signals from the cool and warm circuits in the larval brain and not by changes in sensitivity to cooling/warming temperatures.
123
124 **Results & Discussion**
125
126 **Recurrent changes in temperature preference**
127
128 Thermal environment at the microhabitat scale (the scale of a single plant or fruit) is an important behavioural determinant of small ectotherms^{56,57}. To provide a realistic “thermoscape”, similar to what is experienced by crawling insects in the wild (e.g., moving into/out of sun/shade over short distances), we developed an assay that tracks the movements of individuals within a 17 x 17cm thermal arena that was designed to hold patchy non-noxious temperature gradients on its surface⁵⁶ (Figure 1B-C). We collected temperature-profiled tracks for third-instar larvae from eight species: *D. lutescens*, *D. takahashii*, *D. pseudotakahashii*, *D. suzukii*, *D. santomea*, *D. yakuba*, *D. teissieri* and *D. melanogaster*. Three strains were used for each species, except for *D. pseudotakahashii*, for which we could only obtain a single strain. In total, we collected 3884 larvae, assayed across 191 independent 20-minute experiments (Methods; Table S1). Following quality control filtering that, among other criteria, ensured that all gradients maintained a temperature range of 17–25°C, a dataset of 2418 larva tracks from 129 experiments remained for analysis. Each species' temperature preference was quantified using Ivlev's Electivity⁵⁸ (Methods, Equation 1). Ivlev's Electivity (*E*) is a common preference index used in the foraging literature that accounts for uneven resources and is well-suited for our analysis due to the unequal temperature bins generated over the surface of our arena. *E* ranges from -1 to 1, where -1 denotes a strong avoidance of those temperatures, and 1 denotes a strong preference for those temperatures. Because temperature bins that are never (or rarely) explored result in negative *E* values (and because larvae can only be within one temperature bin at a given time) our estimates of temperature preference tend to be negatively biased (see Figure S1 for additional details).
148

149

150

151 **Figure 1:** Ecologically diverse *Drosophila* species exhibit vastly different behaviours in relation to
152 temperature.

153

154 (A) Estimated ranges of the species used in this study. *Drosophila melanogaster* is found across the globe⁵⁹,
155 while the invasive pest species *D. suzukii* is found on most continents and is currently undergoing a global
156 range expansion⁶⁰. *Drosophila yakuba* and *D. teissieri* overlap for most of their ranges on the African continent,
157 with the former extending further into southern regions of the continent⁵¹. *D. santomea* is endemic to the island
158 of São Tomé off the coast of west Africa⁴⁸. *Drosophila pseudotakahashii* is found primarily in northern Australia,
159 and *D. lutescens* is found mainly in Japan⁶¹. *Drosophila takahashii* is also found in Japan but has a much
160 greater range extending across mainland Asia⁶¹.

161

162 (B) Schematic of the behavioural arena. The left panel shows a magnification of the side of the gel and plate.
163 A small temperature sensor is placed between the plate and the gel above each Peltier element. This feeds
164 back temperature recordings to an Arduino device, which in turn alters power fed to the Peltier elements to
165 control the temperature. The right panel shows the arena with a thermal gradient overlaid on top of a black gel
166 on an aluminium plate. Underneath the plate are four Peltier elements which are the temperature sources for
167 the arena. Two cameras were placed above the arena, one to record larval movement and one to record the
168 surface temperature.
169
170 (C) Example tracks from two different larvae on the temperature gradient shown in panel B. Lighter colours
171 represent warmer temperatures and darker colours represent cooler temperatures. The first track shows a
172 weak Electivity to the darker regions of the gradient (i.e. weak preference to cool temperatures), whereas the
173 second track shows a very strong Electivity to the darker regions (i.e. strong preference to cool temperatures).
174
175 (D) Dated phylogeny of the eight species used in this study coloured by E_{peak} values. Black stars indicate a
176 shift found in E_{peak} and black circles demonstrate shifts found in the upper limit of $E_{breadth}$. A reduction in E_{peak}
177 values for both *D. lutescens* and *D. santomea*, indicates that they prefer cooler temperatures than their closely
178 related species. Additionally, a downward shift of the upper limit of $E_{breadth}$ in *D. lutescens* indicates that it
179 displays warm avoidance behaviours at lower temperatures than other species. In contrast, *D. melanogaster*
180 and *D. yakuba* have increased their upper limits of $E_{breadth}$, indicating they spend more time at warmer
181 temperatures than their sister species. Ancestral E_{peak} values are displayed at the nodes of the species tree
182 (Methods).
183
184 (E) Heatmap for each species showing their Electivity scores across temperatures tested in our experiments
185 with lighter (orange, yellow) shades representing positive Electivities (preference) and darker (purple) shades
186 representing negative Electivities (avoidance).
187

188 Our initial examination of temperature preferences over the eight species revealed significant
189 variation between species in peak preference (E_{peak}) and the breadth of the preferred temperature
190 range ($E_{breadth}$). Temperature preference varied significantly more between species than within
191 species, indicating that substantial genetic change has occurred over the diversification of the eight
192 species for this trait (ANOVA on E_{peak} : $F(6,18) = 7.43$, p -value <0.01; Fig. S2-3, Table S2). Despite
193 the negative bias for E in our experiments, all Oriental clade species, along with *D. santomea*, had
194 significantly positive mean Electivity values at E_{peak} , indicating strong preference for those
195 temperatures (Table 1). Interestingly, in each case the strong preference was for the cooler
196 temperatures available in the arena (Fig. 1D). In contrast to the aforementioned six species, *D.*
197 *melanogaster* and *D. yakuba* had relatively low values of Electivity at E_{peak} which occurred at warmer
198 temperatures, indicating that they have a comparably weak temperature preference over the range
199 tested (Table 1).
200

Species	E_{peak} (°C)	Mean (E)	$E_{breadth}$ (°C)	$E_{breadth}$ (strong; °C)
<i>D. lutescens</i>	17.0	0.226	17.0 - 19.3	17.0 - 18.6
<i>D. takahashii</i>	19.7	0.034	17.0 - 21.7	18.8 - 20.2
<i>D. pseudotakahashii</i>	19.0	0.084	17.0 - 20.9	19.8
<i>D. suzukii</i>	17.4	0.005	17.0 - 20.5	17.0
<i>D. santomea</i>	18.5	0.050	17.0 - 20.5	17.0 - 19.3
<i>D. yakuba</i>	20.3	-0.113	19.4 - 22.1	NA
<i>D. teissieri</i>	19.6	-0.047	17.0 - 20.6	17.7 - 17.8
<i>D. melanogaster</i>	21.4	-0.065	20.2 - 23.3	NA

201
202 **Table 1:** Electivity measures across species.
203

204 E_{peak} is defined as the temperature (°C) with the highest mean Electivity. The Mean column provides the mean
205 Electivity value of E_{peak} for each species. Values in the $E_{breadth}$ column provide the range of temperatures
206 where larvae spent time, calculated using a sign test on electivity values comparing larval movement across

207 temperatures to random movement (Methods). The $E_{breadth}$ (strong) column shows the temperature range
208 where larvae spent significantly more time than expected based on a from the sign test (Methods). NA indicates
209 that there was no temperature range in which the species showed a strong preference.
210

211
212
213 Among the most notable differences in temperature preferences are the prominent cool-preferences
214 observed for *D. lutescens* ($E_{peak} = 17^{\circ}\text{C}$ (lower limit of study), $E_{breadth} = 17.0\text{-}19.3^{\circ}\text{C}$) and *D. santomea*
215 ($E_{peak} = 18.5^{\circ}\text{C}$, $E_{breadth} = 17.0\text{-}20.5^{\circ}\text{C}$). In both cases, the preferences are significantly different
216 when compared to their sister species (*D. takahashii* and *D. yakuba*, respectively) indicating that the
217 changes happened relatively recently: *D. lutescens* preference is significantly higher than *D. takahashii* between
218 $17.0\text{-}17.8^{\circ}\text{C}$ and *D. santomea* preference significantly higher than *D. yakuba* between $17.0\text{-}19.6^{\circ}\text{C}$ (both MWU tests $p<0.01$). These species-specific preference changes for
219 cooler temperatures are intriguing because *D. lutescens* and *D. santomea* are both found in cooler
220 climates compared to their respective sister species^{31,48} and because past work has independently
221 provided evidence that they have adapted to cooler climates. For example, even after exposing *D.*
222 *lutescens* larvae to near freezing temperatures (3°C) for over a month, larvae are viable and able to
223 eclose after pupating³⁰. In contrast, *D. takahashii* larvae die under the same conditions within four
224 days³⁰. The increased cold temperature resistance in *D. lutescens* compared to *D. takahashii* is also
225 observed in adults^{31,54}. Our results suggest that behavioural changes have coevolved with
226 physiological adaptations to enable *D. lutescens* to live in colder environments. Similarly, adult *D.*
227 *santomea* prefer cooler temperatures compared to *D. yakuba* and each species suffers fitness costs
228 if reared at the other's preferred temperature (particularly *D. santomea*)^{52,62}. Our findings expand
229 upon these observations by demonstrating that temperature preference behaviour spans both adult
230 and larval stages.
231

232
233 Beyond *D. lutescens*' and *D. santomea*'s cooler preferences, the broader variation that we observed
234 in temperature Electivity suggested further changes in the history of the eight species (Fig. 1D).
235 Between the two subgroups we found that the Oriental clade species have stronger preferences
236 (higher Electivity) at cooler temperatures than species of the *Dmel*-subgroup (MWU tests $p<0.001$
237 for temperatures below 19°C). To test for changes in temperature preference more generally, we
238 modelled the evolution of E_{peak} and the onset of warm avoidance (the upper bound of $E_{breadth}$) within a
239 phylogenetic context and asked if there is evidence of significant changes in either metric along any
240 of the branches in the species tree. Due to limitations of the arena's design we were unable to carry
241 out the same tests for the lower bound of $E_{breadth}$. These analyses provided additional confirmation
242 of the changes in *D. lutescens*' and *D. santomea*'s E_{peak} , with estimated lineage-specific shifts of -2.34°C and -1.68°C , respectively, compared to their inferred ancestral values. For *D. lutescens*, this
243 is particularly notable given the conservative estimate of its E_{peak} . Intriguingly, we identified additional
244 parallel preference shifts impacting warm avoidance (upper bound of $E_{breadth}$) for *D. lutescens*, *D.*
245 *melanogaster*, and *D. yakuba*. The onset of heat avoidance has evolved to be 1.87°C lower in
246 comparison to the inferred ancestral value for *D. lutescens*, suggesting a decrease of the upper
247 tolerance bound of its preference of $\sim 17^{\circ}\text{C}$. In contrast, the onset of heat avoidance has expanded
248 for both *D. melanogaster* and *D. yakuba*, indicating that both spend significantly more time within
249 warm zones in comparison to the estimate inferred for their respective common ancestors. We found
250 the change in the upper $E_{breadth}$ for *D. melanogaster* to be 1.56°C higher than the inferred ancestral
251 value, while the same estimate was 2.66°C greater for *D. yakuba*'s (Fig. 1D). These results highlight
252 the recurrent and fast rates at which the peak and breadth of temperature preferences have evolved
253 among larvae of closely related *Drosophila* species.
254

255
256

257 **Navigational metrics support the recurrent evolution of temperature preference**
258

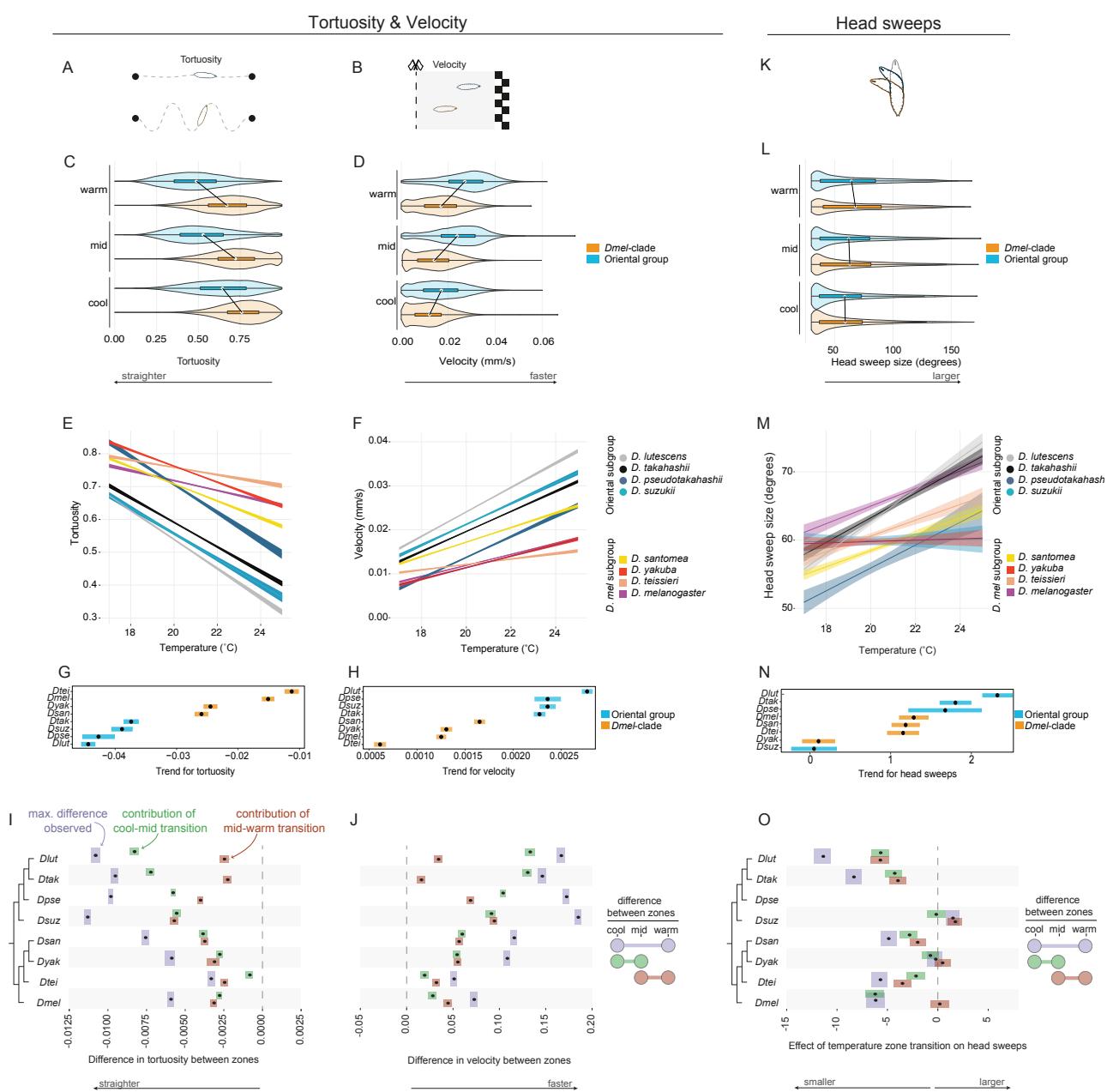
259 In addition to the relative amount of time *Drosophila* larvae spend within temperature zones, fine-
260 scale individual navigational behaviours are also reflective of thermal preference and avoidance.
261 During positive taxis, larvae move with relatively direct linear motion in comparison to negative taxis
262 during which they move more tortuously, reflecting attempts to stay within preferred temperatures⁶³
263 (Fig. 2A). While agent-based modelling has shown that changes in the rate of turning can capture
264 most larval taxis behaviour⁶⁴, they also vary speed whilst navigating (Fig. 2B). For example, in
265 response to olfactory cues, larvae modulate speed in response to aversive and attractive odour
266 gradients⁶⁵, and similar changes in speed have been observed on thermogradients⁶⁶. Additionally,
267 because a larva's non-noxious thermosensors are located at the tip of their head⁴⁴ (along with
268 sensors that detect other environmental cues^{67,68}), the initiation of turns is established by first probing
269 their environment using head sweeps. As negative thermal stimuli evoke larger turns³³, larger head
270 sweeps are expected to reflect increasingly aversive temperatures compared to head sweeps in
271 preferred temperatures³³ (or other favoured stimuli; wind⁶⁹, light⁷⁰, olfactory⁷¹) (Fig. 2K).
272

273 Because our tracking of individual larvae allowed us to quantify speed, tortuosity, and head sweep
274 sizes in relation to temperature gradients, we next asked if these elements of larval navigation reflect
275 species' preference differences that are consistent with our estimates based on temperature
276 Electivity (above). We hypothesised that there would be significant behavioural differences between
277 the species of the cooler-preferring Oriental group and the species of the *Dmel*-subgroup. In addition,
278 our Electivity estimates led us to expect that, because *D. santomea* larvae are cool preferring, this
279 species would display navigational behaviours more like the Oriental clade than any other species
280 in the *Dmel*-subgroup.
281

282 We began by examining velocity and tortuosity across three temperature zones in our arena: cool
283 (17.00-19.67°C), mid (19.67-22.33°C), and warm (22.33-25.00°C). As expected, the two measures
284 are negatively correlated for all species (Pearson's *R* ranged between -0.45 to - 0.84; Fig. S3),
285 demonstrating that when larvae move faster their path is straighter⁷¹. Comparisons of speed and
286 tortuosity between clades revealed that the Oriental species move faster and straighter across the
287 three temperature zones compared to the *Dmel*-subgroup species (Wilcoxon rank sum test: *p*<0.001
288 for all temperature zones for velocity and tortuosity; Fig. 2D, E). On average, therefore, the Oriental
289 species' locomotion is faster than the species from the *Dmel*-subgroup clade. However, the
290 magnitude of the differences between the two clades varied across temperatures, with the largest
291 differences occurring within the warm and intermediate zones (Fig. 2D), suggesting species within
292 the Oriental clade respond more aversively to the warmer temperatures than the *Dmel*-subgroup
293 species. To investigate this further, we fit linear models to the data and asked if individual species
294 within the Oriental group displayed stronger changes in behaviours in response to temperature
295 transitions compared to the *Dmel*-subgroup species. Consistent with our expectations, we found that
296 the slopes of the fitted regression models for both speed and tortuosity are significantly different
297 between clades, with the species of the Oriental clade displaying significantly more rapid
298 deceleration and increased tortuosity in response to cooler temperatures (see Table S3 for full stats;
299 Fig. 2E,F). Grouping the species according to the trend of their responses separated the two clades
300 and also highlighted *D. lutescens* and *D. santomea* - the species that we identified as having evolved
301 the strongest cool preferences - as having the strongest responses within their respective clades
302 (Fig. 2G,H).
303

304 The species variation in velocity and tortuosity prompted us to further examine how the magnitude
305 of behavioural changes differed across the temperature zone transitions. We estimated the maximal
306 velocity and tortuosity differences that were observed for each species between the cool and warm

307 zones by taking the difference between randomly sampled velocity (or tortuosity) values between
308 the two. To estimate the contribution to these maximal differences by the cool-mid and mid-cool
309 transitions, we repeated the same sampling procedure between each of the two zones (Methods).
310 Plotting these values accentuated the differences between the *Dmel*-subgroup and Oriental clade.
311 Species from the Oriental Clade had the largest speed and tortuosity differences between the cool
312 and warm zones (Fig. 2I,J), and, with the exception of *D. suzukii*, the behavioural differences evoked
313 between the mid-cool temperature provided the bigger contribution. This pattern differed for the
314 *Dmel*-subgroup species, for which the behaviours changed relatively consistently across the two
315 temperature zone transitions (Fig. 2I,J). Together, these results provided additional evidence that
316 the cooler temperatures elicit stronger attractive behaviours among the Oriental clade species
317 compared to the *Dmel*-subgroup species and identified the responses to the mid-cool transition as
318 the primary source of the differences (19.67-22.33°C to 17.00-19.67°C).
319

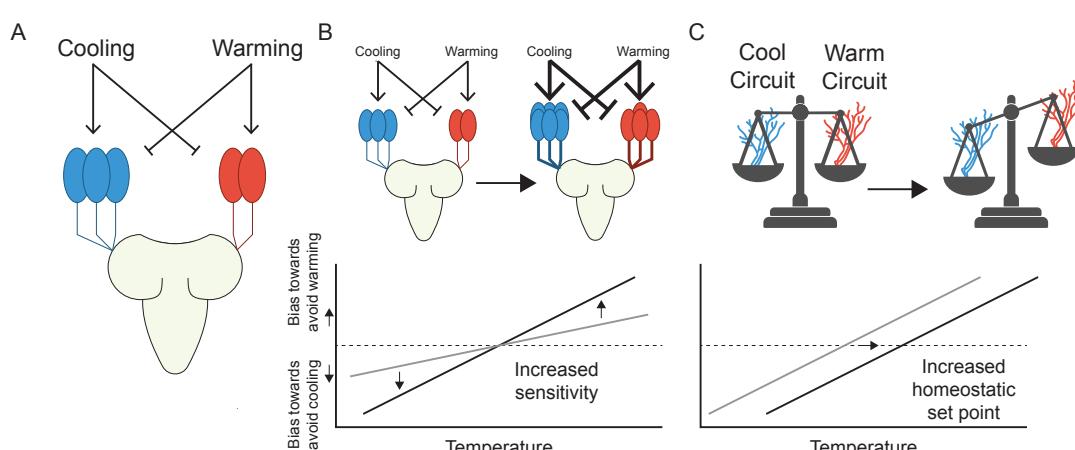

320 Analogous analyses of head sweeps in response to temperature zone transitions uncovered fewer
321 differences between the Oriental and *Dmel*-subgroup species than we observed for velocity and
322 tortuosity, consistent with previous findings⁴⁰ (Fig. 2K-O). And though a linear model resulted in a
323 significant negative relationship between the two (Fig. 2M, N; Stats in Table S3), it explained very
324 little of the variation (adjusted $R^2 = 0.0159$). The size of head sweeps is, therefore, significantly more
325 variable over non-noxious temperature gradients compared to velocity and tortuosity. The overall
326 variation in head sweep metrics between and within species was large. Despite this, investigation of
327 the magnitude of species' differences across temperature zones did reveal *D. lutescens* and *D.*
328 *takahashii* to have the largest maximal reduction in head sweep size (between the warm and cool
329 zones), consistent with their relatively strong cool preference (Fig. 2O).
330
331

332 **Agent-based modelling of species thermotactic differences**

333

334 We have identified between-species differences in thermotactic behaviours based on both broad
335 and fine-scale metrics. These changes raise questions about evolved differences in the larvae's
336 nervous systems. For *D. melanogaster*, considerable advances have been made in understanding
337 the neural circuitry underpinning its homeostatic temperature preference, and so we next sought to
338 leverage these insights together with an agent-based simulation approach to further examine
339 species differences.
340

341 *D. melanogaster* larvae detect changes in innocuous cool and warm temperatures with two distinct
342 peripheral neuron populations - Cooling Cells (CCs) and Warming Cells (WCs) - that express
343 partially overlapping ionotropic receptors. CCs express Ir25a, Ir93a and Ir21a^{72,73} while WCs express
344 Ir25a, Ir93a, and Ir68a⁴⁰. Both neuron populations mediate avoidance behaviour to temperature
345 changes, CCs specify avoidance to cooling and WCs specify avoidance to warming (Fig. 3A). Using
346 behavioural, connectomic, and manipulative experiments, Hernandez-Nunez et al.⁴⁰ also identified
347 cross-inhibition between CCs and WCs, such that the activity of the cooling circuit inhibits the activity
348 of the warming circuit and vice versa. In *D. melanogaster* larvae, it was found that cooling avoidance
349 is initialised below 24°C and warming avoidance above 24°C. At temperatures close to 24°C, the
350 two populations suppress avoidance behaviours, thereby establishing *D. melanogaster*'s
351 homeostatic temperature preference at 24°C⁴⁰.
352



372

373 (I,J,O) Quantification of the cool-mid (green) and mid-warm (orange) behavioural changes in relation to each
374 species' overall differences (purple). Black dots represent the mean, and the bars represent the first and third
375 quartiles. The Oriental clade species have the largest overall changes in velocity and tortuosity across
376 temperature zones. Except for *D. suzukii*, most of these changes occur within the cool-mid transitions.
377 Changes for these same behaviours among the *Dmel*-subgroup species are more consistent across
378 temperature transitions (closer or overlapping green/orange distributions). Other than *D. lutescens*' and *D.
379 takahashii*'s large reduction in head sweep size, clear clade differences for head sweeps were not observed.
380

380

381 In Hernandez-Nunez et al.'s cross-inhibition model, the CCs and WCs dynamically generate neural
382 responses upon detecting temperature changes. The relationship between the neural activity and
383 avoidance behaviour (turning rate) is modelled using an empirically informed filter (See Equations 1
384 to 4 in ⁴⁰). To introduce variability in the amplitude of neuronal responses at different temperatures,
385 weights on CCs and WCs were introduced as free variables. These weights are temperature-
386 dependent and modulate the magnitude of the neurons' influence on turning rate and the strength
387 of cross-inhibition on the other neuron type. For example, at temperatures below the homeostatic
388 set point, the CCs are weighted to have a larger influence on turning rate. This results in larvae that
389 are more likely to turn when going down the gradient and, due to cross-inhibition, less likely to turn
390 when going up the gradient. Similarly, WCs are weighted to have a stronger influence on turning rate
391 when going up the gradient when above the homeostatic set point. We reasoned that our large
392 dataset could be used to fit species-specific parameters to this model, thereby providing a
393 complementary approach for understanding how species differences may arise, and for generating
394 hypotheses about their causes^{64,74,75}.
395

396

397

398 **Figure 3:** Diagram of larval cooling and warming circuits in the context of our simulation parameters.
399

400

401 (A) Simplified representation of the three CCs and two WCs found in one side of the larval dorsal organ.
402 Warming activates WCs and inhibits CCs and cooling activates CCs and inhibits WCs. Cross-inhibition occurs
403 between CCs and WCs. Signals from these cells are transmitted to higher brain centres, ultimately influencing
404 the behaviour that leads to temperature preference.
405

406

407 (B) The slope parameter in the model effects the sensitivity of larvae to temperature. Larger slope values result
408 in stronger avoidance behaviours at smaller changes in temperature. This could be driven by changes in the
409 periphery such as changes in cell number (as depicted in the cartoon) or due to functional differences in the
410 thermosensors expressed in cells, causing larvae to be more sensitive to changes in temperature. In the graph
411 this is represented by the slope of the line, with larger slopes indicating higher sensitivity. The dashed
412 horizontal line indicates where the cool and warm avoidance circuits are balanced. The further the line is from
413 the dashed line, the more likely a larva will turn back towards the homeostatic set point.

412
413
414
415
416
417

(C) The set point occurs where there is an equal balance between the cool-avoidance and warm-avoidance circuits. On the graph, this is at the point where the larval avoidance response line crosses the dashed horizontal line. Shifts in the balance between the cool-avoidance and warm-avoidance changes the temperature of a larva's homeostatic set point.

418

419 Following the details established in the above cross-inhibition model we configured thermosensing
420 virtual larvae and tested them using agent-based simulations⁶⁴ in a simulated thermal arena that
421 matched our experimental gradient. We implemented this model in Larvaworld, a recently developed
422 behavioural analysis and modelling platform that supports a broad range of agent-based larvae
423 simulations, extending it to integrate thermotactic behaviour⁷⁵ (Methods). To estimate the species-
424 specific aversion parameters (lateral body-bending behaviour in response to temperature changes),
425 we simulated larvae over a grid of "homeostatic set points" and "slope values". The homeostatic set
426 points are the temperatures at which the weights for the WCs and CCs are equal and the slope
427 values relate the weights to temperature (see Equations 2 - 5 in Methods; Fig. 3B, C). A higher slope
428 elicits a stronger aversive behavioural response in simulated larvae as they move away from the
429 homeostatic set point. We made the simplifying assumption that the relation between temperature
430 and behavioural bias for the cooling and warming cells are linear and symmetric with a scalar slope
431 parameter, which significantly reduces the dimensionality of our simulations (Methods). Estimates of
432 these two model parameters were acquired by applying rejection sampling to the simulated datasets
433 (Fig 2A-H; Table S4; simulated agents per grid point = 1000; acceptance threshold = Euclidean
434 distance < 1.75 compared to our empirical data; Methods).

435

436 Examination of the posterior distributions of the model's parameters revealed variation in the best-
437 fitting point estimates for slope and set point across the eight species (Fig. 4A-H white circles, see
438 Table S4 for best-fit parameter values). The estimated set points are consistent with our empirical
439 measurements of Electivity (above) and fall within the individual empirical E_{breadth} boundaries for all
440 species, with a tendency to lie close to the higher end of the empirical ranges. Inspection of the 95%
441 credible interval of the joint parameters (Fig. 4I, J), revealed significant differences in the set point
442 among multiple species while slope values largely overlapped. These results suggest that shifts in
443 the balance of signals from the cool- and warm-detecting circuits drive species differences rather
444 than changes in sensitivity to cooling or warming temperatures. Our inspection of a sparser grid of
445 simulations over a larger range of slope values revealed that lower slope values were better for
446 predicting our empirical data for all species, indicating that larval exploration in this temperature
447 range is driven by relatively weak aversive behaviours (Fig. S5). This is perhaps not surprising as
448 the temperature range is innocuous and any thermal preference may be minimised by foraging
449 needs or other behavioural drivers. Despite the weak aversive behaviours, it is notable that species
450 differences in the homeostatic set point values – themselves indicators of temperature preference –
451 could still be clearly identified.

452

453 Within the Oriental group, we found the largest difference (2°C) in set point was between *D.*
454 *takahashii* (21°C, Fig. 4B) and *D. lutescens* (19°C, Fig. 4A). The lack of a significant overlap in the
455 joint distribution of the model parameters for this pair of species highlights their divergence in
456 temperature preference. Inspection of the parameters that best fit *D. takahashii*'s avoidance below
457 20°C revealed stronger avoidance to cooling at these temperatures compared to *D. lutescens* (Fig.
458 4K). At temperatures above 21°C, both species exhibit a similar avoidance behaviour (with equal
459 avoidance to moving up the gradient at 25°C; Fig. 4K), consistent with the observation that neither
460 species explored temperatures above 22°C in our behavioural assays. *D. suzukii*'s and *D.*
461 *pseudotakahashii*'s estimated homeostatic set points, 20°C for both, were intermediate to *D.*

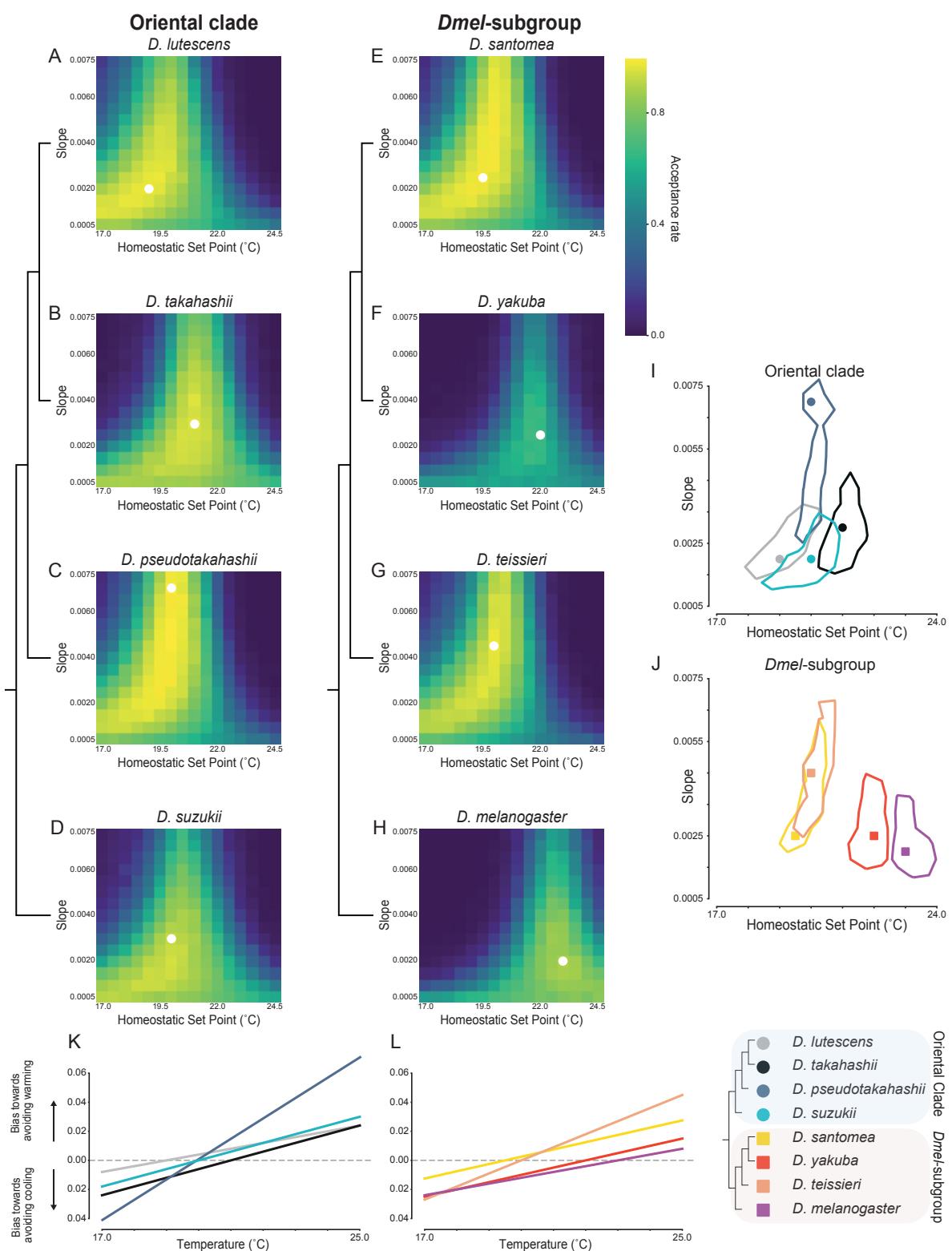
462 *lutescens*' and *D. takahashii*'s. Although the joint distribution of their model parameters shows
463 significant overlap (Fig. 4C, D), *D. pseudotakahashii*'s best-fitting slope value is considerably higher
464 than *D. suzukii*'s – consistent with *D. suzukii*'s shallower E_{peak} profile when compared to *D.*
465 *pseudotakahashii*'s (Table 1).

466
467 In the *Dmel*-subgroup, *D. santomea* and *D. teissieri* share similar posterior distributions (Fig. 4J), but
468 differ significantly from *D. yakuba* and *D. melanogaster*, which in turn have significantly different
469 distributions from each other (Fig. 4J). *Drosophila melanogaster* was found to have the warmest
470 overall predicted homeostatic set point at 23°C (a close match to Hernandez-Nunez et al.'s 24°C)
471 and is the only species whose posterior distribution does not overlap with another's. When inspecting
472 the avoidance behaviour weights from the best-fitting simulations (Figure 4L), we observed that *D.*
473 *melanogaster* and *D. yakuba* avoid temperatures below 20°C with similar avoidance profiles. At
474 temperatures above 22°C, however, *D. yakuba* is more likely to turn down the gradient than *D.*
475 *melanogaster*. The two cooler-preferring species in the clade, *D. santomea* and *D. teissieri*, were
476 found to have a significantly stronger tendency to avoid the warmest temperatures of our assay (Fig.
477 4L).

478
479 Overall, our agent-based simulation approach demonstrates that the simple cross-inhibition model
480 can be used to parameterise species-specific differences in temperature behaviour. Despite using
481 larva tracks collected over non-noxious temperatures, we were still able to infer significantly different
482 model estimates among members of the Oriental clade and the *Dmel*-subgroup clade, including *D.*
483 *lutescens*–*D. takahashii* and *D. santomea*–*D. yakuba* - the species pairs that have evolved cooler
484 preference in parallel. Importantly, the differences that we found suggest that changes in sensitivity
485 to either warm or cool temperatures have remained unchanged and instead evolutionary shifts in the
486 balance of signals from the cool- and warm-detecting circuits drive species temperature preference
487 differences.

488

489 Discussion


490

491 Understanding how animals adapt (or fail to adapt) to novel environments is a fundamental biological
492 question, and in the context of novel thermal environments also presents pressing challenges due
493 to rapid climatic changes^{76,77}. To understand how temperature-related behaviours evolve in
494 poikilotherms, animals that are particularly vulnerable due to their exclusive reliance on behavioural
495 strategies for thermoregulation, we have carried out a large-scale comparative thermotaxis study
496 using *Drosophila* larvae from diverse thermoeologies. By applying phylogenetically informed
497 analyses to thousands of tracked individual larvae across eight closely related species, we were able
498 to identify recurrent changes in temperature preferences that have evolved over short and
499 intermediate timescales.

500

501 Evolution in temperature preference based on aggregated larval locomotory tracks revealed that
502 temperature preference evolved recurrently within and between the Oriental clade and *Dmel*
503 subgroup, two closely related clades from the *D. melanogaster* species group. Species from the
504 Oriental clade tend to prefer cooler temperatures (Fig. 1D), and we inferred a “cool shift” in their
505 common ancestor. However, given the fast rate that temperature preferences evolve (Fig. 1D),
506 additional outgroup species are needed to better inform this transition. Temperature preference
507 difference based on individual larva's velocity and tendency to turn (tortuosity) along thermal
508 gradients also support the rapid evolution of thermotaxis. Species from the Oriental clade avoid the
509 warmer temperature zones (19.67–25°C) by exiting them more quickly and with fewer turns than
510 species from the *Dmel*-subgroup. Notably, the Oriental clade has evolved to be faster crawlers

511 irrespective of temperature (Fig. 2D). While velocity is related to other phenotypes, we hypothesise
 512 that this is an adaptation resulting in part from their narrower thermal preferences and elevated
 513 demands for rapid thermotactic responses.
 514
 515

516
 517 **Figure 4:** Agent-based simulation results indicate that shifts in the balance of cool and warm circuits, not
 518 sensitivity, drives species specific temperature preference profiles.
 519

520 (A-H) Heatmaps displaying the acceptance rates of simulations for each parameter combination, each
521 containing a set of 1000 simulated agents. The simulations were run with two variable parameters, homeostatic
522 set point (x-axis) and slope values which represent sensitivity of circuits (y-axis). If the best fitting simulations
523 have a low temperature and high slope, this indicates that the species has a high affinity for cooler
524 temperatures. The white dot represents the best fitting simulation for the species.
525

526 (I-J) Contour plots displaying the parameter combinations that are within the 95th percentile of best fitting
527 parameter sets, with the best fitting simulation denoted with a circle/square. In (I) the Asian clade species all
528 tend to have best fitting simulations towards the cooler end for their homeostatic set points, with *D. lutescens*
529 and *D. takahashii* still having a clear difference. *Drosophila pseudotakahashii* and *D. suzukii* are intermediate
530 between the two. The *Dmel*-clade (J) have a larger spread across the homeostatic set point temperature.
531 *Drosophila santomea* and *D. teissieri* show similarity in their best fitting simulations, whereas *D. yakuba* and
532 *D. melanogaster* match simulations with a higher temperature preference, representative of the temperature
533 preference difference between the two pairs of species.
534

535 (K-L) The bias of larvae moving away from cooling (below zero) and warming (above zero) according to best
536 fitting model parameters. The further from zero the line is, the stronger the contribution from the warm cells
537 (above zero) or the cool cells (below zero). The point where a line crosses zero is the homeostatic set point
538 (warm and cool circuits have balanced contributions to the avoidance behavioural output). For reference, the
539 species topology is shown to the right.
540

541
542
543 Further underscoring the rapid evolution of temperature preference is the discovery of a parallel
544 divergence between the larvae of the two most closely related species-pairs, *D. takahashii*-*D.*
545 *lutescens* and *D. yakuba*-*D. santomea* (Fig. 1D). In both instances, there was a behavioural match
546 to the species' known thermoeontology, with the species that live in the cooler habitats (*D. lutescens*
547 and *D. santomea*) found to prefer a cooler temperature range compared to their sister species that
548 live in warmer habitats (*D. takahashii* and *D. yakuba*; Fig. 1). Measurements of the individual larva's
549 velocity and tortuosity provided additional support for the recently evolved differences, with *D.*
550 *lutescens* displaying the largest avoidance responses to warm temperatures within the clade (Fig.
551 2M,N). Though temperature-related behaviours have not been previously studied within the Oriental
552 clade, thermotolerance experiments were motivated by the cooler northern distribution of *D.*
553 *lutescens* in comparison to the warmer subtropical distribution of *D. takahashii*. These studies found
554 *D. lutescens* to be more cold tolerant compared to *D. takahashii* across all life stages^{30,54}. For
555 example, the temperature leading to 50% experimental population mortality of adult flies is 4.5-4.6°C
556 for *D. takahashii* while it is 0.5-1.1°C for *D. lutescens*³¹. Although thermotolerance differences may
557 not be indicative of temperature preferences within an innocuous range, this question remained
558 open. Our results have demonstrated that *D. lutescens* indeed prefers significantly cooler
559 temperatures than *D. takahashii* (E_{peak} : 17.0°C compared to E_{peak} : 19.7°C; See Fig. 3C and Table 1).
560 Together, these observations are consistent with the thermotactic changes evolving adaptively and
561 motivate future fitness assays carried out for the two species over a similar range of temperatures.
562

563 Within the *Dmel*-clade, *D. santomea* adults have a behavioural preference just below 23°C whereas
564 *D. yakuba* adults have a higher temperature preference of 26-27°C^{51,52}. We have shown that a
565 difference in temperature preference of ~2-3°C also exists between these species at the larval stage
566 (*D. santomea* E_{peak} = 18.5°C, *D. yakuba* E_{peak} = 20.3°C). Electivity-based differences were again
567 supported by individual larva's velocity and tortuosity, with *D. santomea* displaying the strongest
568 avoidance to warm temperatures within the *Dmel*-subgroup (Fig. 2). As with *D. lutescens*-*D.*
569 *takahashii*, we argue that our observations for *D. santomea* and *D. yakuba*, in combination with
570 previous fitness and tolerance assays, are consistent with recent adaptation to different thermal

571 environments. The consistency in temperature preference between adults and larvae also extend to
572 *D. teissieri*, the closest outgroup species of *D. yakuba* and *D. santomea*. Adult *D. teissieri* have
573 temperature preferences comparable to *D. santomea*, ~23°C⁵¹. We likewise found that the
574 temperature preference of *D. teissieri* larvae is more similar to *D. santomea* ($E_{breadth} = 17.0\text{--}20.6^\circ\text{C}$
575 compared to $E_{breadth} = 17.0\text{--}20.5^\circ\text{C}$) than to *D. yakuba* ($E_{breadth} = 19.4\text{--}22.1^\circ\text{C}$) (Fig 1D and Table 1).
576 These results are therefore consistent with our understanding of the species' thermoclimatic ranges:
577 *D. santomea* is found at cooler higher altitudes than *D. yakuba* on the island of São Tomé^{48,52}, and
578 even though there is considerable range overlap between *D. yakuba* and *D. teissieri*, the latter tends
579 to occupy cooler mid-high elevations within this range⁵¹.
580

581 As most, if not all, of the eight species that we studied contain considerable genetic diversity^{78\text{--}81} it
582 is expected that they display behavioural polymorphism too. To guard against mischaracterising a
583 species' thermal preference due to a single outlier strain, we analysed three strains per species
584 (except *D. pseudotakahashii* for which we were able to obtain only a single strain). We found
585 significantly more variation in thermotaxis between species than within (ANOVA on E_{peak} : F -value =
586 6.01, p -value <0.01), indicating a significant portion of this behaviour is heritable and that we have
587 quantified genetic divergence and not plasticity. Interestingly, the most behaviourally variable
588 species was *D. melanogaster*, which also has the warmest temperature preference ($E_{peak} = 21.4^\circ\text{C}$).
589 However, inspection of the full Electivity profile reveals that the preference is weaker than in other
590 species (E_{peak} median: 0.026), resulting from between-strain variation in Electivity (Fig. S2-3, Table
591 S1). Previous work on *D. melanogaster* w1118 larvae reported a preferred temperature for third-
592 instar larva of 24°C⁸². We also included w1118, and estimated a comparable E_{peak} of 22.8°C.
593 However, the other two strains, Canton-S and a Chinese strain (B63⁷⁹) had a notably different E_{peak}
594 of 19.1 and 20.8°C, respectively. These differences suggest considerable thermotaxis variation
595 across *D. melanogaster* populations which are genetically structured⁷⁹ and serves as a reminder that
596 phenotypes measured from w1118 - a common lab strain used in many behavioural assays - may
597 not be representative of the species. We hypothesise that the lack of strong temperature preference
598 in *D. melanogaster* may have contributed to this species' ability to successfully inhabit the globe. An
599 interesting contrast, however, is the agricultural pest, *D. suzukii*, which is currently undergoing a
600 global expansion^{60,83,84} but has a relatively strong cool preference (E_{peak} : 17.4°C; E_{peak} median:
601 0.149), consistent with previous reports in adults^{85,86}. This *D. suzukii* example implies that a weak
602 temperature preference does not necessarily precede a poikilotherm's global spread.
603

604 How might thermotaxis evolve? Using simulations based on the neural circuitry that drives *D.*
605 *melanogaster* larval thermotaxis behaviour⁴⁰, we were able to explore how this circuitry could evolve
606 between species. We investigated two non-mutually exclusive hypotheses for how thermotaxis might
607 evolve: (1) a change in thermosensitivity feeding the avoidance pathways and (2) shifts in balance
608 between the Cooling Cells (CC)/Warming Cells (WC) circuits. The former could entail changes in the
609 peripheral cell's (CC or WC) sensitivity, number, or morphology⁸⁷. The latter does not necessarily
610 rely on sensitivity and could be attributed to changes in upstream circuitry that influences the balance
611 between the two avoidance circuits, causing shifts in homeostatic set points. In our simulations,
612 varying both the sensitivity and the balance between the circuits did not result in evidence for
613 differences in sensitivity; we found that sensitivity of larvae towards the temperatures tested (18-
614 25°C) does not vary greatly between species and that it tended to be relatively low (Fig. 4I,J, S4).
615 This indicates that within the innocuous range of temperatures that we tested, none of these species
616 differ in their strength of avoidance to perceived changes in temperature, nor do they differ in their
617 preferences towards their homeostatic set points. Instead, we found evidence for the differences
618 between species being largely driven by differences in the balance between the CC and WC circuits.
619
620

621 Limitations of the study

622

623 *Species sampling*: An important result of this work has been to reveal how quickly larval temperature
624 preferences evolve. An upshot of its rapid evolution and multiple species-specific changes is that it
625 limits the ability to polarise when several of the preference shifts occurred. Additional species
626 sampling would provide finer resolution. In particular, additional outgroup species would help to
627 polarise the cool/warm preference that differentiates the Oriental clade and the *Dmel*-subgroup.

628

629 *Behavioural Assays*: The design of our thermal arena prevented temperatures below 17°C from
630 being held stably. As a result, we have underestimated *D. lutescens*' E_{peak} and its lower bound of
631 E_{breadth} . Our results for this species are therefore conservative.

632

633 *Simulations*: Previous models using *D. melanogaster* larvae have shown that turning rate variation
634 alone is enough to predict taxis behaviours⁶⁴. For this and other reasons, they assume that larvae
635 move at the same speed across temperatures. However, we demonstrated that larval velocity does
636 change across temperatures and that species have different speeds. We propose that adding model
637 flexibility for velocity changes will provide better matches to empirical data and that future
638 developments of the model will benefit by adding speed as a variable.

639

640 The cross-inhibitory model was previously parameterised using empirical data from *D.*
641 *melanogaster*⁴⁰. Analogous data does not exist for other species and so we made the simplifying
642 assumptions that the weights are linear and symmetric between the WCs and CCs. Although the
643 dimensionality of the simulations would quickly become prohibitive, varying the weights of the CCs
644 and WCs individually and introducing more complex weight-temperature relations may likewise
645 provide better matches to empirical data.

646

647 Methods

648

649 *Drosophila* species, maintenance, and larvae collection

650

651 All species used in this study belong to the *D. melanogaster* species group. Each species was
652 studied using three strains (apart from *D. pseudotakahashii*, where only one strain was available).
653 The species and strains that were used in this study are shown in Table S5. All species were
654 maintained in vials containing a standard fly media composed of yeast, agar and cornmeal
655 supplemented with Formula 4-24 Instant Drosophila Medium, Blue (Carolina). Flies were kept at
656 23°C in a 12:12 light cycle.

657

658 To collect third-instar larvae across the different species, we first tested the developmental times
659 required to reach this stage at 23°C. Limiting a window of time for egg laying to two hours, we found
660 that for *D. melanogaster*, *D. yakuba*, *D. takahashii*, *D. suzukii*, and *D. teissieri*, five days were
661 needed, while for *D. lutescens*, *D. pseudotakahashii*, *D. santomea* the duration was six days. On the
662 day of an experiment, larvae were floated in a 15% sucrose solution and third-instar were collected
663 and rinsed with tap water. We recorded the approximate number of larvae applied to the arena prior
664 to starting the assay and we determined the final sample sizes based on the larval tracks kept after
665 filtering steps.

666 ***de novo D. lutescens* genome assembly**

667

668 Seven of the eight species used in this study had reference genomes available (*D. santomea*, *D.*
669 *yakuba*, *D. melanogaster*, *D. teissieri*, *D. takahashii*, *D. pseudotakahashii* and *D. suzukii*). We
670 additionally generated a *de novo* assembly for *D. lutescens*. We collected 200 *D. lutescens* AK96-3
671 male flies and prepared them for DNA extraction by flashing freezing flies and rupturing cells with
672 metal beads in a cryomill. We then used the Qiagen DNA extraction kit to extract long DNA strands,
673 followed by gentle shaking in a cold room (4°C) for two weeks to dissolve DNA in a buffer. Library
674 preparation and sequencing on two lanes of PacBio's SMRT cell V2 was done by the Lausanne
675 Genomics Facility.

676

677 The raw PacBio reads were assembled and subsequently used for a single iteration of polishing
678 using Flye⁸⁸. Heterozygous contigs were assigned as haplotigs, and contigs with extremely low or
679 high coverage were assigned as artefacts using PurgeHaplotigs⁸⁹. The genome was polished using
680 RNAseq reads with two rounds of Pilon. RNAseq reads from *D. lutescens* whole bodies were
681 generated using the same methodology as Bontonou et al.⁹⁰. Alignment required for this polishing
682 was done with STAR's 2-pass mode⁹¹. The Sequence data used for the *D. lutescens* assembly is
683 available on GenBank under BioProject PRJNA1002970.

684

685

686 **Species divergence estimation**

687

688 To obtain single copy orthologues to build a phylogeny we used OrthoFinder⁹². This required all
689 genomes to be soft-masked. We built a *de novo* repeat library per species (+ 12 other genomes to
690 aid in calibrating node dates downstream) using RepeatModeler2.0 with the LTRStruct flag⁹³. The
691 library was combined with Dfam3.0 as a custom species-specific database on RepeatMasker⁹⁴, to
692 soft-mask the genome. We then annotated the genome using the BRAKER^{95,96} pipeline with
693 evidence from the Arthropoda orthologue database (v10)⁹⁷, and for *D. lutescens* we also included
694 the RNAseq data. Orthofinder was then ran with the following flags: -M msa -T fasttree. The resulting
695 species tree from OrthoFinder was then input into MEGA11⁹⁸ to date the tree using secondary
696 calibrations based on node estimation dates from⁹⁹ These are shown in Table S5. The resulting tree
697 (Fig. S5) was then pruned using ape in R.

698

699

700 **Arena construction**

701

702 The arena was built using a 170x170x0.5mm aluminium plate placed on top of four Peltier elements
703 (Fig. 1B). The temperature of the Peltier elements was controlled by an Arduino microcontroller. We
704 employed a closed feedback loop to achieve our desired temperature range, where temperature
705 sensors placed on the aluminium plate directly above the Peltier elements, provided real-time
706 temperature data to the microcontroller. This could then modify the power provided by the bench top
707 power supplies (PeakTech) to the Peltier elements, using pulse width modulation, until the desired
708 temperatures were reached. To prevent larvae from escaping, the arena's perimeter was surrounded
709 by a thermal wall, which contained a nichrome wire maintained at a noxious temperature range of
710 50-60°C (the wire was not in contact with the gel surface and inspection of our thermal imaging
711 indicated the wire had no discernible impact on the temperature of the arena's surface).

712

713 The build also consists of two cameras that record the arena from above. A camera to record larvae
714 exploring the arena, and a FLIR thermal camera to record the thermal gradient. Illumination for the

715 camera was provided by red LED lights, which should not influence larval behaviour as larvae lack
716 photoreceptors to light in the red range^{100,101}. To prevent external disturbance from light, wind, and
717 sound, we encased the arena with an outer shell made of cardboard and black fabric. Details of the
718 arena build are available on <https://gitlab.com/EvoNeuro/patchythermalgradient>.
719
720

721 **Running behavioural assays**

722 All assays were carried out on a 170x170x6mm 4% agarose gel, which was placed upon the
723 aluminium plate. To provide contrast 1% charcoal was added, along with 10% sucrose to encourage
724 larvae to stay on the arena. To reach our desired temperature range of 17-25°C, we set the
725 temperatures of the arena to be 15°C on the cold sides, and 29°C on the hot sides, accounting for
726 the difference in temperature from the Peltier elements to the top of the assay gel. To run an assay,
727 floated and rinsed third-instar larvae were brushed onto the middle of the arena, and were allowed
728 to explore for twenty minutes, whilst being recorded. Assays were conducted in a dark room with
729 19°C ambient temperature between 15 June to 04 August 2021. To limit external biases, the arena
730 was rotated by 90° every two weeks, changing the positioning of the cold and hot temperature
731 sources.
732
733

734 **Image processing**

735 We used the cameras propriety software Spinnaker SDK to save TIFF images at 10Hz onto a Dell
736 Precision 3640 computer. The thermal camera data was saved using a Python script that read data
737 from the thermal camera, a modified version of uvc-radiometry.py
738 (<https://github.com/RDelg/Footshot/blob/master/uvc-radiometry.py>), set up to capture the thermal
739 gradient topology three times per minute. Due to problems with the thermal camera's internal
740 heating, we had to smooth abnormal spikes in recordings using an in-house Python programme (see
741 script smoothspikes.py).
742

743 A quality control step was run with the following criteria: 5% of the arena had to be below 17.5°C and
744 above 24.5°C, and this had to be maintained during over 90% (91.67%) of the run. Additionally, no
745 pixel on the arena could fluctuate more than 3°C (see script QC_check.py). Image data from the
746 camera and thermal camera, from assays that passed the quality control steps, were cropped to
747 contain only the arena using a custom Python script with opencv2 (see script click2crop.py).
748
749

750 **Track analyses**

751 Cropped camera data was input into the larval tracking software FIMtrack¹⁰² to obtain coordinates
752 for larval movement during the run. To reduce file size, we ran an awk command to remove tracks
753 shorter than ten seconds (see script 02cleandata.sh). Tracks were classified as non-moving if they
754 did not travel more than 0.5mm accumulatively and 0.3mm from their origin (see script
755 03showtracks.py) and were subsequently manually removed with our deletetracks.py script. Clashes
756 between larvae during runs caused loss of larval identity, splitting their runs into multiple tracks. We
757 automatically joined tracks from clashes using an algorithm that detects when two tracks abruptly
758 end on the same frame, and joins them to the reciprocally closest track, in terms of time and distance
759 (with time taking priority; see 04jointracks.py with -ac flag to automatically join clashes).
760
761

764 The remaining disjointed tracks lost due to problems in tracking were resolved using a similar joining
765 algorithm. Tracks were joined if they were reciprocally the track that ended and started the closest
766 in time and distance. This was run in multiple rounds, with the first round requiring the end point of
767 the first track and the start point of the second track to be within 150px and 22.5s of each other. This
768 was run iteratively until no more tracks could be joined. Subsequent rounds became less stringent,
769 with the second round distance being extended to 500px and end to start timing being increased to
770 75s of each other, and in the final round all restrictions were dropped. In rounds one and two, we
771 also placed a restriction on joining if the speed of the larva to reach end point of the first track and
772 the start point of the second track was deemed unreasonable (round 1 <15px/s and round 2 <30px/s).
773

774 Complete larval tracks were then matched to temperatures using the thermal images that were taken
775 closest in time to that point. We removed the first two minutes of every assay as a burn in period,
776 allowing larvae to acclimatise to the assay.
777

778 We used a modified version of Ivlev's Electivity (E) as our temperature preference index (Equation
779 1)⁵⁸. We calculated this for 1°C windows with 0.1°C steps and described a larva's temperature
780 preference profile by the temperature of the maximum E value (E_{peak}) and the range of temperatures
781 where they spent time ($E_{breadth}$).
782

$$783 E = \frac{\text{time spent}_{\text{larva}} - \text{time spent}_{\text{random}}}{\text{time spent}_{\text{larva}} + \text{time spent}_{\text{random}}}$$

784 (1)

785 To create null tracks ($\text{time spent}_{\text{random}}$) a set of 1000 randomly moving agents was simulated for each
786 run on the same temperature gradient (see script 05nulldistribution.py). The average speed and turn
787 rate of the larvae of that run were input as parameters for the simulated agents, which were
788 calculated by the 04autojoin_tracks.py script with the -ndp option. Starting positions were randomly
789 generated within the middle 33% of the arena, and starting orientation was also random. Simulated
790 agents explored the arena for twenty minutes, and the first two minutes were removed for the
791 simulations as we did for actual runs.
792

793
794

795 Agent-based simulations

796 The description of the cross-inhibition model for larval thermotaxis in *D. melanogaster* prompted
797 exploration into how parameters of the model differ for other species. Within the model weights
798 describing the influence of Cooling and Warming Cells to causing avoidance behaviours with respect
799 to temperature were estimated for *D. melanogaster* empirically. We aimed to estimate how and if
800 these weight parameters differ between species.
801

802 For our simulations, we used the software package [Larvaworld](#)⁷⁵. Larvaworld supports several
803 sensory modalities such as olfaction, touch and wind mechanoception. For each modality the
804 respective sensors are available when configuring a virtual larva's behavioural architecture and the
805 respective sensory landscape is available to superimpose onto the virtual arena, eventually allowing
806 for closed-loop sensorimotor simulations. We therefore extended the platform by implementing
807 thermosensation, enabling thermal gradients across the arena (thermoscape) and introducing
808 thermosensing agents. Gradients are created by setting a baseline plate temperature and placing
809 cold/hot sources on the plate that modify the base temperature through a Gaussian spread. In our
810 case, we set this to a 17x17cm gradient, with the four temperature sources located at the same
811

812 position as in the original experiments (plate temperature at 21°C, two cold at 14°C, two warm at
813 28°C, Gaussian spread: 0.1 with SciPy's multivariate_normal function).

814

815 Virtual agents have thermosensors located at the tip of their heads by which they dynamically detect
816 temperature changes. While each sensor can vary in its thermosensitivity, they all converge to form
817 a single locomotion-influencing input that biases the larva's turning behaviour towards positive or
818 negative thermotaxis. We set the cool sensor's gain so that its activation encourages turning when
819 moving towards cooler temperatures and inhibits turning when going up temperatures, whereas the
820 warm sensor does the opposite, encouraging turning when going towards warmer temperatures and
821 inhibiting turning when going down temperatures. Temperature-dependent modulation of turning is
822 based on an earlier model, proposed in the context of chemotaxis, by Wystrach et al. (2016)⁶⁴, as
823 later extended and used in Larvaworld¹⁰³.

824

825 Both sensors are always active, but their aversive strength (determined by gain in Larvaworld) is
826 linearly weighted with absolute temperature (Equations 2 and 3). For example, the warm sensor
827 encourages turning more strongly when going up the temperature gradient at warmer temperatures
828 than at cooler temperatures and inhibits turning more strongly when going down the gradient at
829 warmer temperatures than cooler temperatures. The cool sensor, on the other hand, has stronger
830 aversive properties when going down the gradient at cooler temperatures than warmer temperatures.

831

832 In our simulations, the weight of each sensor was determined by the slope parameter of a linear
833 function, with the cool sensor having a negative slope and the warm sensor having a positive slope.
834 To reduce the number of parameters, both sensors were assigned equal slope values of opposite
835 sign and limited values between 0 and 1. The weights of both sensors always overlapped at 0.5 and
836 as the aversive properties of both sensors are very close around the corresponding temperature, it
837 results in random movement at this temperature. Ultimately, this leads to a preference for that
838 temperature, which can be referred to as the homeostatic set point. The weights of the cool circuit
839 (w_{cool}) and warm circuit (w_{warm}) are calculated by the following formulae:

840

$$w_{cool} = 0.5 + s \cdot (T - T_{hsp}) \quad (2)$$

841 (2)

843

$$w_{warm} = 0.5 + s \cdot (T_{hsp} - T) \quad (3)$$

844 (3)

846

847 where s is the slope value (that determines sensitivity), T is the temperature where the agent is at,
848 and T_{hsp} is the temperature of the homeostatic set point. The two weights (w_{cool}) and (w_{warm}) are
849 equal when $T = T_{hsp}$.

850

851

852 To model the behavior-modulating signal (A_0) that a larva extracts from its thermosensory
853 environment, we assume that changes in thermal perception are proportional to the logarithm of
854 changes in sensed temperature as dictated by the Weber–Fechner law¹⁰⁴ widely used across
855 sensory modalities. We add a decay term which gradually returns A_0 back to zero. The equation is:

856

$$\dot{A}_0 = -c_0 A_0 + G(T) \cdot \frac{\dot{T}}{T} \quad (4)$$

857 (4)

859 where $c_0 = 1$ is a decay coefficient and $G(T)$ a temperature-dependent gain parameter that is
860 proportional to slope and the relationship between the homeostatic set point and temperature. $G(T)$
861 is determined by the subtraction of the weights presented in Equations 2 and 3. The gain value
862 (always set to below 0) determines the avoidance behaviour in Larvaworld.

863

$$864 \quad G(T) = w_{warm} - w_{cool} = 2s \cdot (T_{hsp} - T) \quad (5)$$

865

866

867 Overall, the larvae's movement depends upon the interplay between the homeostatic set point
868 temperature (T_{hsp}) and the temperature the larvae is at (T), alongside the change in temperature
869 over between steps (\dot{T}). The parameter G signifies a set gain value that is what determines the
870 avoidance behaviour in Larvaworld.

871

872 We varied the point of this overlap, the homeostatic set point, in our simulations. The first set of
873 simulations was run with homeostatic set points ranging from 17-25°C (0.5° step size), and slopes
874 were varied from 0.0025-0.05 (0.0025 step size). After finding that lower slopes were better fits for
875 all species, we ran another set of simulations with the same homeostatic set point range, but slopes
876 ranging from 0.0005-0.007 (0.0005 step size). Each simulation in the first round consisted of 500
877 simulated agents, and in the second round, this was doubled to 1000 virtual larvae. A set of 2000
878 "temperature-blind" virtual larvae (i.e. equal avoidance output of warm and cool circuits across all
879 temperatures) were also simulated to calculate our temperature preference index (Equation 1).

880

881

882 Determining temperature preference

883

884 Once Electivity was calculated across bins for every individual larva, we determined E_{peak} by the
885 temperature with the highest mean Electivity. $E_{breadth}$, the range of temperatures where larvae were
886 comfortable, was determined using the sign test. The null hypothesis of this statistical test is that the
887 median Electivity of a temperature bin is equal to zero. Temperature bins which resulted in statistical
888 significance after multiple correction were considered strongly preferred temperatures if positive, and
889 if negative they were considered aversive temperatures. Temperature bins with medians that were
890 at 0 (not significant in the sign test) were labelled as preferred temperature zones, with the lowest
891 temperature forming the lower boundary of $E_{breadth}$ and the highest temperature being the upper
892 boundary of $E_{breadth}$. As E_{peak} is skewed towards negative values (due to multiple bins and constantly
893 moving larvae, Electivities reach -1 frequently and it is rare to have Electivities closer to 1; Figure
894 S1).

895

896 When comparing key species pairs, we used a Mann-Whitney U test due to the non-normal
897 distribution of the Electivity values. The null hypothesis was that species were not different in their
898 Electivities, and the alternative was testing if one of the species had a stronger preference. As we
899 tested across temperature bins, these were corrected for multiple testing. To check if variation within
900 species (between strains) was lower than between species, we ran a phylANOVA on E_{peak} , using the
901 phytools package in R. A significant ANOVA value indicates that there is less variation within species
902 than between species, supporting the grouping of species. To check for shifts in E_{peak} , and the upper
903 bound of $E_{breadth}$, we used the phylolm package in R and input our dated phylogeny. The lower bound
904 of $E_{breadth}$ was not analysed as there was little variation due to the lower limit of the temperature
905 gradient (17°C).

906

908 **Analysing fine-scale behavioural metrics**

909

910 We calculated velocity using the `compute_velocity_window` function in the custom script
911 `polarplotsV2.py`, with window size set to 3s and each step being a frame (step size: 1/10th of a
912 second). We recorded velocity in both mm/s and body lengths/s. Tortuosity was also calculated using
913 a window-based method over various window sizes (2,5,10,20,30 seconds). This is calculated by
914 dividing the as-the-crow-fly distance moved by the larva in that time by the actual accumulated
915 distance the larva travelled, then subtracting the resulting value from one. The average of all the
916 windows is taken to give the final tortuosity value.

917

918 To detect head sweeps, we first pulled the body bending feature for every track provided by FIMtrack.
919 We then used SciPy's `findpeaks` function to detect head sweeps. Body bends greater than 30° that
920 return to within 10° of a straight posture were considered head sweeps, with a buffer of 2 seconds
921 between head sweeps. In the final analysis, only head sweeps greater than 45° were kept.

922

923 We measured correlation between speed and tortuosity using Pearson correlation coefficient, for
924 each species. We analysed clade differences in speed, tortuosity and head sweeps using a Wilcoxon
925 rank sum test. At the species level, we carried out linear regressions across temperatures. The
926 function `emtrends` from the `emmeans` package in R was then used to compare trends between
927 species, a compact-letter display was generated to group species after pairwise comparisons.

928

929 To measure differences in these navigational metrics at different temperatures, we split the arena
930 into three temperature zones (cool: 17.00-19.67°C, mid: 19.67-22.33°C, and warm: 22.33-25.00°C).
931 We took measurements of velocity, tortuosity, or head sweeps for each species in each zone, and
932 subtracted this in a pairwise manner warm-cool, mid-cool and warm-mid, we did this 1000 times with
933 random selections of the behaviour. We then performed a t-test to compare differences between
934 different zones within species. We were able to also test for magnitude difference between species
935 by using a t-test. All these analyses are available in `07_finercalebehaviours_other.py`.

936

937

938 **Analysis of agent-based simulations**

939

940 We applied a rejection sampling approach to fit species-specific models to our data. For every agent
941 in each simulation, we calculated Electivity using the "temperature-blind" larvae as our null set. To
942 determine which of these simulations best fit each species, we compared them to the species' mean
943 Electivity using a distance measure (Euclidean distance) and rejected individual agents that
944 exhibited distances larger than 1.75. For each species we then determined the 95th percent credible
945 interval (i.e. the 95th percentile of the 2D distribution), which we visualised using a contour plot
946 (modifying the contour so that the whole of the best fitting simulation square was included, Fig. 4
947 I,J). The best fitting simulation was that with the highest acceptance rate (white circles in Fig. 4 A-
948 H). To calculate how similar species were overall on simulations, we ran a PCA using the acceptance
949 rates for all simulations per species (Fig. S6).

950

951 **Data, code and resource availability**

952

953 All original code has been made publicly available on our lab's repository:
954 <https://gitlab.com/EvoNeuro/patchythermalgradient>. DOIs are listed in the Resources Table.

955

956 **Resource availability**

957

958 **Materials availability**

959 All fly strains used in this study are available from the lead contact upon request.

960

961 **Lead contact**

962 Further information and requests for resources should be directed to and will be fulfilled by the lead
963 contact, Roman Arguello (roman.arguello@unil.ch)

964

965

966

967 **Resources table**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Strains		
<i>D. lutescens</i> AK96-3	Kyorin	E-12001
<i>D. lutescens</i> NGN22	Kyorin	E-12020
<i>D. lutescens</i> 29		
<i>D. takahashii</i> KMM9	Kyorin	E-12231
<i>D. takahashii</i> IHYT1	Kyorin	E-12230
<i>D. takahashii</i> 39		
<i>D. pseudotakahashii</i> 0301.01	Kyorin	E-24401
<i>D. suzukii</i> WT3	US Stock centre; Benjamin Prud'homme	
<i>D. suzukii</i> NGM-2	Kyorin	k-awa036
<i>D. suzukii</i>	Bruno Lemaitre	
<i>D. santomea</i> STO.7	Daniel Matute	
<i>D. santomea</i> DBAT400.2	Daniel Matute	
<i>D. santomea</i> Thera13	Daniel Matute	
<i>D. yakuba</i> 4-26	Daniel Matute	
<i>D. yakuba</i> 1235.4	Daniel Matute	
<i>D. yakuba</i> NY62	US Stock centre	
<i>D. teissieri</i> TUZ11	Daniel Matute	
<i>D. teissieri</i> Selinda	Daniel Matute	
<i>D. teissieri</i> CT03	Daniel Matute	
<i>D. melanogaster</i> w1118		
<i>D. melanogaster</i> Canton-S		
<i>D. melanogaster</i> B12	Global Diversity Line	
Assay materials		
Sucrose	Sigma-Aldrich	S5390

Activated charcoal	Sigma-Aldrich	242276
AgaPure Agarose	Canvax	AG005
Aluminium plate 0.5mm thickness	Alfer / Jumbo	4.151.908
Microcontroller board	Arduino	Uno Rev3
Temperature sensors	Variohm EuroSensor	ERTD-PT-1000-A-3850
Peltier elements	Hebei	TEC1-12705
Bench top power supplies	PeakTech	P6080
Camera	Teledyne Flir	CM3-U3-50S5M-CS
Lens	Computar	M1620-MPW2
Thermal camera	Teledyne Flir	Lepton 3.5
Software and datasets		
Flye	84	https://github.com/fenderglass/Flye
Purge Haplotype	85	https://bitbucket.org/mroachawri/purge_haplotype
Pilon	86	https://github.com/broadinstitute/pilon
STAR	87	https://github.com/alexdobin/STAR
OrthoFinder	88	https://github.com/davidemms/OrthoFinder
RepeatModeler2.0	89	https://github.com/Dfam-consortium/RepeatModeler
RepeatMasker	90	https://www.repeatmasker.org/RepeatMasker/
BRAKER pipeline	91,92	https://github.com/Gaius-Augustus/BRAKER
MEGA11	93	https://www.megasoftware.net/
Arthropoda odb v10	94	https://busco.ezlab.org/frames/art
FIMtrack	95	https://www.uni-muenster.de/Geoinformatics.cvmls/media/fim-media.html
Spinnaker SDK	Teledyne Flir	Spinnaker-SDK
Python packages		
opencv2	96	https://pypi.org/project/opencv-python/
pandas	97,98	https://pypi.org/project/pandas/
numpy	99	https://pypi.org/project/numpy/
SciPy	100	https://pypi.org/project/scipy/
Larvaworld	71	https://pypi.org/project/larvaworld/
R packages		
ape	101	https://cran.r-project.org/web/packages/ape/index.html
geiger	102	https://cran.r-project.org/web/packages/geiger/index.html
phyloM	103	https://cran.r-project.org/web/packages/phyloM/index.html
phytools	56	https://cran.r-project.org/web/packages/phytools/index.html
emmeans		https://cran.r-project.org/web/packages/emmeans/index.html
R 4.2.2	104	https://www.r-project.org

969

970

971 Supplemental Information

972

973 **Document S1.** Figures S1–S7 and Tables S1, S3–S6

974

975 **Document S2.** Tables S2–S3

976 Table S2 Electivity measures for each strain used in study.

977 Table S3 Linear regression results for thermotactic behaviours.

978

979

980 Acknowledgements

981

982 We thank Gwénaëlle Bontonou and Bastien Saint-Leandre for their insightful feedback throughout
983 the course of this work and on earlier comments on the manuscript; Simon Sprecher, Tim-Henning
984 Humberg, Martin Kapun, and Anton Strunov for valuable discussions on arena builds and larval
985 tracking; the Swiss Institute of Bioinformatics for providing computational resources; Koichiro
986 Tamura, Bruno Lemaitre, Benjamin Prud'homme, and Daniel Matute for generously providing fly
987 specimens; and Tess Baticle and Afrah Hassan assisting in fly work and maintenance. P.S. is funded
988 through the “iBehave” research consortium (<https://ibehave.nrw/>) from the program “Netzwerke
989 2021” an initiative of the Ministry of Culture and Science of the State of North Rhine-Westphalia,
990 Germany. Research in JRA’s laboratory was supported by the University of Lausanne and the Swiss
991 National Science Foundation (grants PP00P3_176956 and 310030_201188).

992

993 Author contributions

994

995 Conceptualisation: T.K. and J.R.A.; Methodology: T.K., P.S., and J.R.A.; Software: T.K. and P.S.;
996 Formal Analysis: T.K. and J.R.A.; Investigation: T.K., M.G., and J.R.A.; Data Curation: T.K. and
997 J.R.A.; Writing – Original Draft: T.K.; Writing – Reviewing and Editing: T.K., P.S., M.P.N., and J.R.A.;
998 Funding Acquisition: J.R.A.

999

1000 Declaration of interests

1001

1002 The authors declare no competing interests.

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014 **References**

1015

1016 1. Stratman, R., and Markow, T.A. (1998). Resistance to thermal stress in desert *Drosophila*:
1017 Desert *Drosophila* thermotolerance. *Functional Ecology* 12, 965–970.
1018 <https://doi.org/10.1046/j.1365-2435.1998.00270.x>.

1019 2. Nagy, K.A. (1973). Behavior, Diet and Reproduction in a Desert Lizard, *Sauromalus obesus*.
1020 *Copeia* 1973, 93. <https://doi.org/10.2307/1442363>.

1021 3. Schmidt-Nielsen, K., and Schmidt-Nielsen, B. (1952). Water metabolism of desert mammals.
1022 *Physiological Reviews* 32, 135–166.

1023 4. De Jong, H., and Ciliberti, P. (2014). How cold-adapted flightless flies dispersed over the
1024 northern hemisphere: phylogeny and biogeography of the snow fly genus *Chionea* Dalman
1025 (Diptera: Limoniidae): Phylogeny and biogeography of the snow fly genus Chionea. *Syst*
1026 *Entomol* 39, 563–589. <https://doi.org/10.1111/syen.12075>.

1027 5. Bista, I., Wood, J.M.D., Desvignes, T., McCarthy, S.A., Matschiner, M., Ning, Z., Tracey, A.,
1028 Torrance, J., Sims, Y., Chow, W., et al. (2023). Genomics of cold adaptations in the Antarctic
1029 notothenioid fish radiation. *Nat Commun* 14, 3412. <https://doi.org/10.1038/s41467-023-38567-6>.

1031 6. Pirri, F., Ometto, L., Fuselli, S., Fernandes, F.A.N., Ancona, L., Perta, N., Di Marino, D., Le
1032 Bohec, C., Zane, L., and Trucchi, E. (2022). Selection-driven adaptation to the extreme
1033 Antarctic environment in the Emperor penguin. *Heredity* 129, 317–326.
1034 <https://doi.org/10.1038/s41437-022-00564-8>.

1035 7. Seebacher, F. (2009). Responses to temperature variation: integration of thermoregulation and
1036 metabolism in vertebrates. *Journal of Experimental Biology* 212, 2885–2891.
1037 <https://doi.org/10.1242/jeb.024430>.

1038 8. Rezende, E.L., and Bacigalupe, L.D. (2015). Thermoregulation in endotherms: physiological
1039 principles and ecological consequences. *J Comp Physiol B* 185, 709–727.
1040 <https://doi.org/10.1007/s00360-015-0909-5>.

1041 9. Kearney, M., Shine, R., and Porter, W.P. (2009). The potential for behavioral thermoregulation
1042 to buffer “cold-blooded” animals against climate warming. *Proceedings of the National*
1043 *Academy of Sciences* 106, 3835–3840. <https://doi.org/10.1073/pnas.0808913106>.

1044 10. Heinrich, B. (1974). Thermoregulation in Endothermic Insects: Body temperature is closely
1045 attuned to activity and energy supplies. *Science* 185, 747–756.
1046 <https://doi.org/10.1126/science.185.4153.747>.

1047 11. Stevenson, R.D. (1985). Body Size and Limits to the Daily Range of Body Temperature in
1048 Terrestrial Ectotherms. *The American Naturalist* 25, 102–117.

1049 12. Garrity, P.A., Goodman, M.B., Samuel, A.D., and Sengupta, P. (2010). Running hot and cold:
1050 behavioral strategies, neural circuits, and the molecular machinery for thermotaxis in *C.*
1051 *elegans* and *Drosophila*. *Genes Dev.* 24, 2365–2382. <https://doi.org/10.1101/gad.1953710>.

1052 13. Sømme, L. (1989). Adaptations of Terrestrial Arthropods to the Alpine Environment. *Biological*
1053 *Reviews* 64, 367–407. <https://doi.org/10.1111/j.1469-185X.1989.tb00681.x>.

1054 14. Ward, D., and Seely, M.K. (1996). Behavioral Thermoregulation of Six Namib Desert
1055 Tenebrionid Beetle Species (Coleoptera). *Annals of the Entomological Society of America* 89,
1056 442–451. <https://doi.org/10.1093/aesa/89.3.442>.

1057 15. Ma, G., and Ma, C.-S. (2012). Effect of acclimation on heat-escape temperatures of two aphid
1058 species: Implications for estimating behavioral response of insects to climate warming. *Journal of Insect Physiology* 58, 303–309. <https://doi.org/10.1016/j.jinsphys.2011.09.003>.

1060 16. Malmos, K.G., Lüdeking, A.H., Vosegaard, T., Aagaard, A., Bechsgaard, J., Sørensen, J.G.,
1061 and Bilde, T. (2021). Behavioural and physiological responses to thermal stress in a social
1062 spider. *Functional Ecology* 35, 2728–2742. <https://doi.org/10.1111/1365-2435.13921>.

1063 17. Harvey, J.A., Tougeron, K., Gols, R., Heinen, R., Abarca, M., Abram, P.K., Basset, Y., Berg,
1064 M., Boggs, C., Brodeur, J., et al. (2023). Scientists' warning on climate change and insects.
1065 *Ecological Monographs* 93. <https://doi.org/10.1002/ecm.1553>.

1066 18. Dobzhansky, T. (1943). Genetics of Natural Populations IX. Temporal Changes in the
1067 Composition of Populations of *Drosophila pseudoobscura*. *Genetics* 28, 162–186.
1068 <https://doi.org/10.1093/genetics/28.2.162>.

1069 19. Dobzhansky, T. (1950). Genetics of Natural Populations. XIX. Origin of Heterosis through
1070 Natural Selection in Populations of *Drosophila pseudoobscura*. *Genetics* 35, 288–302.
1071 <https://doi.org/10.1093/genetics/35.3.288>.

1072 20. Rego, C., Balanyà, J., Fragata, I., Matos, M., Rezende, E.L., and Santos, M. (2010). Clinal
1073 Patterns of Chromosomal Inversion Polymorphisms in *Drosophila subobscura* are Partly
1074 Associated with Thermal Preferences and Heat Stress Resistance. *Evolution* 64, 385–397.
1075 <https://doi.org/10.1111/j.1558-5646.2009.00835.x>.

1076 21. Kapun, M., Fabian, D.K., Goudet, J., and Flatt, T. (2016). Genomic Evidence for Adaptive
1077 Inversion Clines in *Drosophila melanogaster*. *Mol Biol Evol* 33, 1317–1336.
1078 <https://doi.org/10.1093/molbev/msw016>.

1079 22. Kapun, M., and Flatt, T. (2019). The adaptive significance of chromosomal inversion
1080 polymorphisms in *Drosophila melanogaster*. *Mol Ecol* 28, 1263–1282.
1081 <https://doi.org/10.1111/mec.14871>.

1082 23. Fuller, Z.L., Koury, S.A., Phadnis, N., and Schaeffer, S.W. (2019). How chromosomal
1083 rearrangements shape adaptation and speciation: Case studies in *Drosophila pseudoobscura*
1084 and its sibling species *Drosophila persimilis*. *Mol Ecol* 28, 1283–1301.
1085 <https://doi.org/10.1111/mec.14923>.

1086 24. Parsons, P.A. (1977). Genes, Behavior, and Evolutionary Processes: The Genus *Drosophila*.
1087 In *Advances in Genetics*, E. W. Caspary, ed. (Academic Press), pp. 1–32.
1088 [https://doi.org/10.1016/S0065-2660\(08\)60244-8](https://doi.org/10.1016/S0065-2660(08)60244-8).

1089 25. Gibert, P., Moreteau, B., Pétavy, G., Karan, D., and David, J.R. (2001). Chill-Coma Tolerance,
1090 a Major Climatic Adaptation Among *Drosophila* Species. *Evol* 55, 1063.
1091 [https://doi.org/10.1554/0014-3820\(2001\)055\[1063:CCTAMC\]2.0.CO;2](https://doi.org/10.1554/0014-3820(2001)055[1063:CCTAMC]2.0.CO;2).

1092 26. Kellerman, V., Overgaard, J., Fløjgaard, C., Svenning, J.-C., and Loeschke, V. (2012). Upper
1093 thermal limits of *Drosophila* are linked to species distributions and strongly constrained
1094 phylogenetically. *PNAS* 109, 16228–16233.

1095 27. Michalak, P., Minkov, I., Helin, A., Lerman, D.N., Bettencourt, B.R., Feder, M.E., Korol, A.B.,
1096 and Nevo, E. (2001). Genetic evidence for adaptation-driven incipient speciation of *Drosophila*
1097 *melanogaster* along a microclimatic contrast in "Evolution Canyon," Israel. *Proceedings of the*
1098 *National Academy of Sciences* 98, 13195–13200. <https://doi.org/10.1073/pnas.231478298>.

1099 28. Ito, F., and Awasaki, T. (2022). Comparative analysis of temperature preference behavior and
1100 effects of temperature on daily behavior in 11 *Drosophila* species. *Sci Rep* 12, 12692.
1101 <https://doi.org/10.1038/s41598-022-16897-7>.

1102 29. Soto-Yéber, L., Soto-Ortiz, J., Godoy, P., and Godoy-Herrera, R. (2018). The behavior of adult
1103 Drosophila in the wild. *PLoS ONE* 13, e0209917.
1104 <https://doi.org/10.1371/journal.pone.0209917>.

1105 30. Kimura, M.T. (1988). Adaptations to Temperate Climates and Evolution of Overwintering
1106 Strategies in the *Drosophila Melanogaster* Species Group. *Evolution* 42, 1288–1297.
1107 <https://doi.org/10.1111/j.1558-5646.1988.tb04188.x>.

1108 31. Kimura, M.T. (2004). Cold and heat tolerance of drosophilid flies with reference to their
1109 latitudinal distributions. *Oecologia* 140, 442–449. <https://doi.org/10.1007/s00442-004-1605-4>.

1110 32. Goda, T., Leslie, J.R., and Hamada, F.N. (2014). Design and Analysis of Temperature
1111 Preference Behavior and its Circadian Rhythm in *Drosophila*. *JoVE*, 51097.
1112 <https://doi.org/10.3791/51097>.

1113 33. Klein, M., Afonso, B., Vonner, A.J., Hernandez-Nunez, L., Berck, M., Tabone, C.J., Kane, E.A.,
1114 Pieribone, V.A., Nitabach, M.N., Cardona, A., et al. (2015). Sensory determinants of behavioral
1115 dynamics in *Drosophila* thermotaxis. *Proc. Natl. Acad. Sci. U.S.A.* 112,
1116 <https://doi.org/10.1073/pnas.1416212112>.

1117 34. Frank, D.D., Jouandet, G.C., Kearney, P.J., Macpherson, L.J., and Gallio, M. (2015).
1118 Temperature representation in the *Drosophila* brain. *Nature* 519, 358–361.
1119 <https://doi.org/10.1038/nature14284>.

1120 35. Tratter Kinzner, M., Kinzner, M.-C., Kaufmann, R., Hoffmann, A.A., Arthofer, W., Schlick-
1121 Steiner, B.C., and Steiner, F.M. (2019). Is temperature preference in the laboratory ecologically
1122 relevant for the field? The case of *Drosophila nigrosparsa*. *Global Ecology and Conservation*
1123 18, e00638. <https://doi.org/10.1016/j.gecco.2019.e00638>.

1124 36. Abram, P.K., Boivin, G., Moiroux, J., and Brodeur, J. (2017). Behavioural effects of
1125 temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity:
1126 Effects of temperature on animal behaviour. *Biol Rev* 92, 1859–1876.
1127 <https://doi.org/10.1111/brv.12312>.

1128 37. Gallio, M., Ofstad, T.A., Macpherson, L.J., Wang, J.W., and Zuker, C.S. (2011). The Coding of
1129 Temperature in the *Drosophila* Brain. *Cell* 144, 614–624.
1130 <https://doi.org/10.1016/j.cell.2011.01.028>.

1131 38. Budelli, G., Ni, L., Berciu, C., Van Giesen, L., Knecht, Z.A., Chang, E.C., Kaminski, B.,
1132 Silbering, A.F., Samuel, A., Klein, M., et al. (2019). Ionotropic Receptors Specify the
1133 Morphogenesis of Phasic Sensors Controlling Rapid Thermal Preference in *Drosophila*.
1134 *Neuron* 101, 738-747.e3. <https://doi.org/10.1016/j.neuron.2018.12.022>.

1135 39. Hamada, F.N., Rosenzweig, M., Kang, K., Pulver, S.R., Ghezzi, A., Jegla, T.J., and Garrity,
1136 P.A. (2008). An internal thermal sensor controlling temperature preference in *Drosophila*.
1137 *Nature* 454, 217–220. <https://doi.org/10.1038/nature07001>.

1138 40. Hernandez-Nunez, L., Chen, A., Budelli, G., Berck, M.E., Richter, V., Rist, A., Thum, A.S.,
1139 Cardona, A., Klein, M., Garrity, P., et al. (2021). Synchronous and opponent thermosensors
1140 use flexible cross-inhibition to orchestrate thermal homeostasis. *Science Advances* 7,
1141 eabg6707. <https://doi.org/10.1126/sciadv.abg6707>.

1142 41. Liu, L., Yermolaieva, O., Johnson, W.A., Abboud, F.M., and Welsh, M.J. (2003). Identification
1143 and function of thermosensory neurons in *Drosophila* larvae. *Nat Neurosci* 6, 267–273.
1144 <https://doi.org/10.1038/nn1009>.

1145 42. Hwang, R.Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K., and Tracey, W.D.
1146 (2007). Nociceptive Neurons Protect *Drosophila* Larvae from Parasitoid Wasps. *Current*
1147 *Biology* 17, 2105–2116. <https://doi.org/10.1016/j.cub.2007.11.029>.

1148 43. Turner, H.N., Armengol, K., Patel, A.A., Himmel, N.J., Sullivan, L., Iyer, S.C., Bhattacharya, S.,
1149 Iyer, E.P.R., Landry, C., Galko, M.J., et al. (2016). The TRP Channels Pkd2, NompC, and
1150 Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in
1151 *Drosophila*. *Current Biology* 26, 3116–3128. <https://doi.org/10.1016/j.cub.2016.09.038>.

1152 44. Barbagallo, B., and Garrity, P.A. (2015). Temperature sensation in *Drosophila*. *Current Opinion*
1153 in *Neurobiology* 34, 8–13. <https://doi.org/10.1016/j.conb.2015.01.002>.

1154 45. Xiao, R., and Xu, X.Z.S. (2021). Temperature Sensation: From Molecular Thermosensors to
1155 Neural Circuits and Coding Principles. *Annu. Rev. Physiol.* 83, 205–230.
1156 <https://doi.org/10.1146/annurev-physiol-031220-095215>.

1157 46. Kimura, M.T. (1982). Cold Hardiness and Preimaginal Period in Two Closely Related Species,
1158 *Drosophila takahashii* and *D. lutescens*. *Kontyu* 50, 638–648.

1159 47. Lachaise, D., Cariou, M.-L., David, J.R., Lemeunier, F., Tsacas, L., and Ashburner, M. (1988).
1160 Historical Biogeography of the *Drosophila melanogaster* Species Subgroup. In *Evolutionary*
1161 *Biology*, M. K. Hecht, B. Wallace, and G. T. Prance, eds. (Springer US), pp. 159–225.
1162 https://doi.org/10.1007/978-1-4613-0931-4_4.

1163 48. Lachaise, D., Harry, M., Solignac, M., Lemeunier, F., Bénassi, V., and Cariou, M.-L. (2000).
1164 Evolutionary novelties in islands: *Drosophila santomea*, a new *melanogaster* sister species
1165 from São Tomé. *Proc. R. Soc. Lond. B* 267, 1487–1495.
1166 <https://doi.org/10.1098/rspb.2000.1169>.

1167 49. MacLean, H.J., Overgaard, J., Kristensen, T.N., Lyster, C., Hessner, L., Olsvig, E., and
1168 Sørensen, J.G. (2019). Temperature preference across life stages and acclimation
1169 temperatures investigated in four species of *Drosophila*. *Journal of Thermal Biology* 86,
1170 102428. <https://doi.org/10.1016/j.jtherbio.2019.102428>.

1171 50. Huda, A., Omelchenko, A.A., Vaden, T.J., Castaneda, A.N., and Ni, L. (2022). Responses of
1172 different *Drosophila* species to temperature changes. *Journal of Experimental Biology* 225,
1173 *jeb*243708. <https://doi.org/10.1242/jeb.243708>.

1174 51. Turissini, D.A., Liu, G., David, J.R., and Matute, D.R. (2015). The evolution of reproductive
1175 isolation in the *Drosophila yakuba* complex of species. *J Evol Biol* 28, 557–575.
1176 <https://doi.org/10.1111/jeb.12588>.

1177 52. Matute, D.R., Novak, C.J., and Coyne, J.A. (2009). Temperature-based extrinsic reproductive
1178 isolation in two species of *Drosophila*. *Evolution* 63, 595–612. <https://doi.org/10.1111/j.1558-5646.2008.00588.x>.

1180 53. Cooper, B.S., Sedghifar, A., Nash, W.T., Comeault, A.A., and Matute, D.R. (2018). A
1181 Maladaptive Combination of Traits Contributes to the Maintenance of a *Drosophila* Hybrid
1182 Zone. *Current Biology* 28, 2940–2947.e6. <https://doi.org/10.1016/j.cub.2018.07.005>.

1183 54. Fukatami, A. (1984). Cold temperature resistance in *Drosophila lutescens* and *D. takahashii*.
1184 *Jpn J Genet.* 59, 61–70. <https://doi.org/10.1266/jjg.59.61>.

1185 55. Luo, L., Gershow, M., Rosenzweig, M., Kang, K., Fang-Yen, C., Garrity, P.A., and Samuel,
1186 A.D.T. (2010). Navigational Decision Making in *Drosophila* Thermotaxis. *J Neurosci* 30, 4261–
1187 4272. <https://doi.org/10.1523/JNEUROSCI.4090-09.2010>.

1188 56. Pincebourde, S., Murdock, C.C., Vickers, M., and Sears, M.W. (2016). Fine-Scale
1189 Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both
1190 Natural and Urban Environments. *Integr. Comp. Biol.* 56, 45–61.
1191 <https://doi.org/10.1093/icb/icw016>.

1192 57. Pincebourde, S., and Woods, H.A. (2012). Climate uncertainty on leaf surfaces: the biophysics
1193 of leaf microclimates and their consequences for leaf-dwelling organisms. *Functional Ecology*
1194 26, 844–853. <https://doi.org/10.1111/j.1365-2435.2012.02013.x>.

1195 58. Ivlev, V.S. (1961). *Experimental Ecology of the Feeding of Fishes* (Yale University Press).

1196 59. Arguello, J.R., Laurent, S., and Clark, A.G. (2019). Demographic History of the Human
1197 Commensal *Drosophila melanogaster*. *Genome Biology and Evolution* 11, 844–854.
1198 <https://doi.org/10.1093/gbe/evz022>.

1199 60. Ørsted, I.V., and Ørsted, M. (2019). Species distribution models of the Spotted Wing
1200 *Drosophila* (*Drosophila suzukii*, Diptera: Drosophilidae) in its native and invasive range reveal
1201 an ecological niche shift. *J Appl Ecol* 56, 423–435. <https://doi.org/10.1111/1365-2664.13285>.

1202 61. Watanabe, T.K., and Kawanishi, M. (1983). Stasipatric speciation in *Drosophila*. *Jpn J Genet.*
1203 58, 269–274. <https://doi.org/10.1266/jjg.58.269>.

1204 62. Comeault, A., and Matute, D. (2020). Temperature-dependent competitive outcomes between
1205 the fruit flies *Drosophila santomea* and *D. yakuba*. Version 1 (Dryad).
1206 <https://doi.org/10.5061/DRYAD.BK3J9KD8T> <https://doi.org/10.5061/DRYAD.BK3J9KD8T>.

1207 63. Loveless, J., and Webb, B. (2018). A Neuromechanical Model of Larval Chemotaxis.
1208 *Integrative and Comparative Biology*. <https://doi.org/10.1093/icb/icy094>.

1209 64. Wystrach, A., Lagogiannis, K., and Webb, B. (2016). Continuous lateral oscillations as a core
1210 mechanism for taxis in *Drosophila* larvae. *eLife* 5, e15504. <https://doi.org/10.7554/eLife.15504>.

1211 65. Gershow, M., Berck, M., Mathew, D., Luo, L., Kane, E.A., Carlson, J.R., and Samuel, A.D.T.
1212 (2012). Controlling airborne cues to study small animal navigation. *Nat Methods* 9, 290–296.
1213 <https://doi.org/10.1038/nmeth.1853>.

1214 66. Soto-Padilla, A., Ruijsink, R., Sibon, O.C.M., Van Rijn, H., and Billeter, J.-C. (2018).
1215 Thermosensory perception regulates speed of movement in response to temperature changes
1216 in *Drosophila melanogaster*. *Journal of Experimental Biology*, jeb.174151.
1217 <https://doi.org/10.1242/jeb.174151>.

1218 67. Mazzoni, E.O., Desplan, C., and Blau, J. (2005). Circadian Pacemaker Neurons Transmit and
1219 Modulate Visual Information to Control a Rapid Behavioral Response. *Neuron* 45, 293–300.
1220 <https://doi.org/10.1016/j.neuron.2004.12.038>.

1221 68. Komarov, N., and Sprecher, S.G. (2022). The chemosensory system of the *Drosophila* larva:
1222 an overview of current understanding. *Fly* 16, 1–12.
1223 <https://doi.org/10.1080/19336934.2021.1953364>.

1224 69. Jovanic, T., Winding, M., Cardona, A., Truman, J.W., Gershow, M., and Zlatic, M. (2019).
1225 Neural Substrates of *Drosophila* Larval Anemotaxis. *Current Biology* 29, 554–566.e4.
1226 <https://doi.org/10.1016/j.cub.2019.01.009>.

1227 70. Kane, E.A., Gershow, M., Afonso, B., Larderet, I., Klein, M., Carter, A.R., De Bivort, B.L.,
1228 Sprecher, S.G., and Samuel, A.D.T. (2013). Sensorimotor structure of *Drosophila* larva
1229 phototaxis. *Proc. Natl. Acad. Sci. U.S.A.* 110. <https://doi.org/10.1073/pnas.1215295110>.

1230 71. Gomez-Marin, A., and Louis, M. (2014). Multilevel control of run orientation in *Drosophila* larval
1231 chemotaxis. *Front. Behav. Neurosci.* 8. <https://doi.org/10.3389/fnbeh.2014.00038>.

1232 72. Knecht, Z.A., Silbering, A.F., Ni, L., Klein, M., Budelli, G., Bell, R., Abuin, L., Ferrer, A.J.,
1233 Samuel, A.D., Benton, R., et al. (2016). Distinct combinations of variant ionotropic glutamate
1234 receptors mediate thermosensation and hygrosensation in *Drosophila*. *eLife* 5, e17879.
1235 <https://doi.org/10.7554/eLife.17879>.

1236 73. Ni, L., Klein, M., Svec, K.V., Budelli, G., Chang, E.C., Ferrer, A.J., Benton, R., Samuel, A.D.,
1237 and Garrity, P.A. (2016). The Ionotropic Receptors IR21a and IR25a mediate cool sensing in
1238 *Drosophila*. *eLife* 5, e13254. <https://doi.org/10.7554/eLife.13254>.

1239 74. Wong, P.H., Braun, A., Malagarriga, D., Moehlis, J., Moreno-Bote, R., Pouget, A., and Louis,
1240 M. (2023). Computational principles of adaptive multisensory combination in the *Drosophila*
1241 larva (bioRxiv) <https://doi.org/10.1101/2023.05.04.539474>.

1242 75. Sakagiannis, P., Jürgensen, A.-M., and Nawrot, M.P. (2024). A behavioral architecture for
1243 realistic simulations of *Drosophila* larva locomotion and foraging. Preprint at bioRxiv,
1244 <https://doi.org/10.1101/2021.07.07.451470> <https://doi.org/10.1101/2021.07.07.451470>.

1245 76. Malhi, Y., Franklin, J., Seddon, N., Solan, M., Turner, M.G., Field, C.B., and Knowlton, N.
1246 (2020). Climate change and ecosystems: threats, opportunities and solutions. *Phil. Trans. R.*
1247 *Soc. B* 375, 20190104. <https://doi.org/10.1098/rstb.2019.0104>.

1248 77. Arguello, J.R., and Benton, R. (2017). Open questions: Tackling Darwin's "instincts": the
1249 genetic basis of behavioral evolution. *BMC Biology* 15. <https://doi.org/10.1186/s12915-017-0369-3>.

1250 78. Pool, J.E., Corbett-Detig, R.B., Sugino, R.P., Stevens, K.A., Cardeno, C.M., Crepeau, M.W.,
1251 Duchen, P., Emerson, J.J., Saelao, P., Begun, D.J., et al. (2012). Population Genomics of Sub-
1252 Saharan *Drosophila melanogaster*: African Diversity and Non-African Admixture. *PLoS Genet*
1253 8, e1003080. <https://doi.org/10.1371/journal.pgen.1003080>.

1254 79. Grenier, J.K., Arguello, J.R., Moreira, M.C., Gottipati, S., Mohammed, J., Hackett, S.R.,
1255 Boughton, R., Greenberg, A.J., and Clark, A.G. (2015). Global Diversity Lines—A Five-
1256 Continent Reference Panel of Sequenced *Drosophila melanogaster* Strains. *G3*
1257 *Genes|Genomes|Genetics* 5, 593–603. <https://doi.org/10.1534/g3.114.015883>.

1258 80. Reilly, P.F. (2020). Population genomics of the *D. yakuba* clade. In *Work, wealth, and well-
1259 being: Essays in macroeconomics*, P. Andolfatto, ed. (Princeton University), pp. 62–121.

1260 81. Lewald, K.M., Abrieux, A., Wilson, D.A., Lee, Y., Conner, W.R., Andreazza, F., Beers, E.H.,
1261 Burrack, H.J., Daane, K.M., Diepenbrock, L., et al. (2021). Population genomics of *Drosophila*
1262 *suzukii* reveal longitudinal population structure and signals of migrations in and out of the
1263 continental United States. *G3 Genes|Genomes|Genetics* 11, jkab343.
1264 <https://doi.org/10.1093/g3journal/jkab343>.

1265 82. Sokabe, T., Chen, H.-C., Luo, J., and Montell, C. (2016). A Switch in Thermal Preference in
1266 *Drosophila* Larvae Depends on Multiple Rhodopsins. *Cell Reports* 17, 336–344.
1267 <https://doi.org/10.1016/j.celrep.2016.09.028>.

1268 83. Bieńkowski, A.O., and Orlova-Bienkowskaja, M.J. (2020). Invasive Agricultural Pest *Drosophila*
1269 *suzukii* (Diptera, Drosophilidae) Appeared in the Russian Caucasus. *Insects* 11, 826.
1270 <https://doi.org/10.3390/insects11110826>.

1271 84. Estay, S.A., Silva, C.P., López, D.N., and Labra, F.A. (2023). Disentangling the spread
1272 dynamics of insect invasions using spatial networks. *Front. Ecol. Evol.* 11, 1124890.
1273 <https://doi.org/10.3389/fevo.2023.1124890>.

1274

1275 85. Hamby, K.A., E. Bellamy, D., Chiu, J.C., Lee, J.C., Walton, V.M., Wiman, N.G., York, R.M., and
1276 Biondi, A. (2016). Biotic and abiotic factors impacting development, behavior, phenology, and
1277 reproductive biology of *Drosophila suzukii*. *J Pest Sci* 89, 605–619.
1278 <https://doi.org/10.1007/s10340-016-0756-5>.

1279 86. Winkler, A., Jung, J., Kleinhenz, B., and Racca, P. (2020). A review on temperature and
1280 humidity effects on *Drosophila suzukii* population dynamics. *Agr Forest Entomol* 22, 179–192.
1281 <https://doi.org/10.1111/afe.12381>.

1282 87. Tyrrell, J.J., Wilbourne, J.T., Omelchenko, A.A., Yoon, J., and Ni, L. (2021). Ionotropic
1283 Receptor-dependent cool cells control the transition of temperature preference in *Drosophila*
1284 larvae. *PLOS Genetics* 17, e1009499. <https://doi.org/10.1371/journal.pgen.1009499>.

1285 88. Kolmogorov, M., Yuan, J., Lin, Y., and Pevzner, P.A. (2019). Assembly of long, error-prone
1286 reads using repeat graphs. *Nat Biotechnol* 37, 540–546. [https://doi.org/10.1038/s41587-019-0072-8](https://doi.org/10.1038/s41587-019-
1287 0072-8).

1288 89. Roach, M.J., Schmidt, S.A., and Borneman, A.R. (2018). Purge Haplotts: allelic contig
1289 reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics* 19, 460.
1290 <https://doi.org/10.1186/s12859-018-2485-7>.

1291 90. Bontonou, G., Saint-Leandre, B., Kafle, T., Baticle, T., Hassan, A., Sánchez-Alcañiz, J.A., and
1292 Arguello, J.R. (2024). Evolution of chemosensory tissues and cells across ecologically diverse
1293 Drosophilids. *Nat Commun* 15, 1047. <https://doi.org/10.1038/s41467-023-44558-4>.

1294 91. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
1295 M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* 29,
1296 15–21. <https://doi.org/10.1093/bioinformatics/bts635>.

1297 92. Emms, D.M., and Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
1298 comparative genomics. *Genome Biol* 20, 238. <https://doi.org/10.1186/s13059-019-1832-y>.

1299 93. Flynn, J.M., Hubley, R., Goubert, C., Rosen, J., Clark, A.G., Feschotte, C., and Smit, A.F.
1300 (2020). RepeatModeler2 for automated genomic discovery of transposable element families.
1301 *Proc. Natl. Acad. Sci. U.S.A.* 117, 9451–9457. <https://doi.org/10.1073/pnas.1921046117>.

1302 94. Smit, A.F., Hubley, R., and Green, P. (2013). RepeatMasker Open-4.0.

1303 95. Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M., and Stanke, M. (2016). BRAKER1:
1304 Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.
1305 *Bioinformatics* 32, 767–769. <https://doi.org/10.1093/bioinformatics/btv661>.

1306 96. Hoff, K.J., Lomsadze, A., Borodovsky, M., and Stanke, M. (2019). Whole-Genome Annotation
1307 with BRAKER. In *Gene Prediction Methods in Molecular Biology*, M. Kollmar, ed. (Springer
1308 New York), pp. 65–95. https://doi.org/10.1007/978-1-4939-9173-0_5.

1309 97. Kriventseva, E.V., Kuznetsov, D., Tegenfeldt, F., Manni, M., Dias, R., Simão, F.A., and
1310 Zdobnov, E.M. (2019). OrthoDB v10: sampling the diversity of animal, plant, fungal, protist,
1311 bacterial and viral genomes for evolutionary and functional annotations of orthologs. *Nucleic
1312 Acids Research* 47, D807–D811. <https://doi.org/10.1093/nar/gky1053>.

1313 98. Tamura, K., Stecher, G., and Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics
1314 Analysis Version 11. *Molecular Biology and Evolution* 38, 3022–3027.
1315 <https://doi.org/10.1093/molbev/msab120>.

1316 99. Suvorov, A., Kim, B.Y., Wang, J., Armstrong, E.E., Peede, D., D'Agostino, E.R.R., Price, D.K.,
1317 Waddell, P.J., Lang, M., Courtier-Orgogozo, V., et al. (2022). Widespread introgression across

1318 a phylogeny of 155 *Drosophila* genomes. *Current Biology* 32, 111-123.e5.
1319 <https://doi.org/10.1016/j.cub.2021.10.052>.

1320 100. Warrick, J.M., Vakil, M.F., and Tompkins, L. (1999). Spectral Sensitivity of Wild-Type and
1321 Mutant *Drosophila Melanogaster* Larvae. *Journal of Neurogenetics* 13, 145–156.
1322 <https://doi.org/10.3109/01677069909083471>.

1323 101. Xiang, Y., Yuan, Q., Vogt, N., Looger, L.L., Jan, L.Y., and Jan, Y.N. (2010). Light-
1324 avoidance-mediating photoreceptors tile the *Drosophila* larval body wall. *Nature* 468, 921–926.
1325 <https://doi.org/10.1038/nature09576>.

1326 102. Risse, B., Berh, D., Otto, N., Klämbt, C., and Jiang, X. (2017). FIMTrack: An open source
1327 tracking and locomotion analysis software for small animals. *PLoS Comput Biol* 13, e1005530.
1328 <https://doi.org/10.1371/journal.pcbi.1005530>.

1329 103. Sakagiannis, P., Jürgensen, A.-M., and Nawrot, M.P. (2021). A realistic locomotory model
1330 of *Drosophila* larva for behavioral simulations (bioRxiv)
1331 <https://doi.org/10.1101/2021.07.07.451470>.

1332 104. Kandel E.R., Schwartz J.H., Jessell T.M., Siegelbaum S.A., Hudspeth A.J., and Mack S
1333 Principles of Neural Science, Fifth Edition | AccessBiomedical Science. McGraw Hill Medical.
1334 <https://neurology.mhmedical.com/content.aspx?sectionid=59138139&bookid=1049>.

1335