

1 Transposable element methylation state predicts age and disease

2
3 Francesco Morandini¹, Jinlong Y. Lu¹, Cheyenne Rechsteiner¹, Aladdin H. Shadyab², Ramon
4 Casanova³, Beverly M. Snively³, Andrei Seluanov^{1, 4, #}, Vera Gorbunova^{1, 4, #}

5 Affiliations:

6 ¹ University of Rochester, Department of Biology, Rochester, NY, USA

7 ² Herbert Wertheim School of Public Health and Human Longevity Science and Division of Geriatrics, Gerontology, and Palliative
8 Care, Department of Medicine, University of California San Diego, La Jolla, CA

9 ³ Wake Forest University School of Medicine, Division of Public Health Sciences, Department of Biostatistics and Data Science,
10 Winston-Salem, NC, USA

11 ⁴ University of Rochester Medical Center, Department of Medicine, Rochester, NY, USA

12
13 # Correspondence: vera.gorbunova@rochester.edu, andrei.seluanov@rochester.edu

14 Abstract

15
16
17 Transposable elements (TEs) are DNA sequences that expand selfishly in the genome, possibly
18 causing severe cellular damage. While normally silenced, TEs have been shown to activate
19 during aging. DNA methylation is one of the main mechanisms by which TEs are silenced and
20 has been used to train highly accurate age predictors. Yet, one common criticism of such
21 predictors is that they lack interpretability. In this study, we investigate the changes in TE
22 methylation that occur during human aging. We find that evolutionarily young LINE1s (L1s), the
23 only known TEs capable of autonomous transposition in humans, undergo the fastest loss of
24 methylation, suggesting an active mechanism of de-repression. We then show that accurate
25 age predictors can be trained on both methylation of individual TE copies and average
26 methylation of TE families genome wide. Lastly, we show that while old L1s gradually lose
27 methylation during the entire lifespan, demethylation of young L1s only happens late in life and
28 is associated with cancer.

29
30
31

32 33 Introduction

34
35 Repetitive elements (REs) are DNA sequences found in high copy number in the genome¹.
36 Transposable elements (TEs), or selfish REs, are REs that have the ability to copy themselves
37 and move to new genomic locations, either directly as DNA (DNA transposons) or through an
38 RNA intermediate that is reverse-transcribed (LINEs, SINEs, LTRs). The selfish replication of

39 TEs has led them to occupy a large portion of genomes (around 40% in mammals). TE activity
40 is potentially highly detrimental to the individual, as random integrations can disable genes and
41 even unsuccessful integration attempts can generate double stranded breaks². Even further,
42 TEs can produce cDNA copies that stimulate cytosolic DNA sensing pathways leading to
43 inflammation³⁻⁶. Finally, TEs can disrupt normal gene regulatory networks by influencing the
44 expression of nearby genes through their regulatory sequences⁷. Due to their pathogenic
45 potential, TEs are kept under tight control by the host with multiple regulatory layers⁸. DNA
46 methylation is one of the main ways by which cells silence TEs⁹. DNA methylation patterns are
47 established in bulk during development and are then largely maintained throughout lifespan,
48 although de-novo methylation and active demethylation still occur¹⁰. Prior studies in multiple
49 organisms and tissues found that methylation patterns undergo a slow drift during aging, with
50 many normally hypermethylated regions becoming less repressed¹¹⁻¹³. At the same time, TEs
51 have been shown to activate during aging in invertebrates, mice, human senescent cells, and
52 certain cancers^{2,14,15}. It thus seems possible that age-related alterations of DNA methylation
53 could play a role in TE activation.

54 Aging clocks are statistical models trained to predict age and age-related phenotypes, including
55 time to death¹⁶. In addition to predicting the age of samples of unknown age, for example in
56 forensics, aging clocks have been used to study health conditions, lifestyles, genetic or
57 pharmacological treatments that alter an organism's biological age. Typically, age predictions
58 are based on omic data types including gene expression^{17,18}, protein abundance¹⁹, chromatin
59 accessibility²⁰ and most commonly, DNA methylation²¹⁻²⁶. One common criticism of aging clocks
60 deals with the difficulty in interpreting the biological meaning of observed changes in DNA
61 methylation patterns. One strategy previously used to improve clock interpretability is to group
62 clock CpGs into different modules corresponding to different biological processes^{27,28}.

63 In this study, we explore the use of TE methylation as a biomarker of age and disease. First, we
64 reanalyzed public human blood methylation data to determine the trajectory of TE methylation
65 during aging, comparing evolutionarily young and old TEs. We then constructed age predictors
66 for mice and humans. Lastly, we investigated associations between accelerated age prediction,
67 and more generally loss of methylation at TEs, and disease.

68

69 **Results**

70

71 **Data description**

72 To investigate changes in RE methylation that occur during aging we collected publicly available
73 human blood methylation array data. Later, we additionally investigate association between TE
74 methylation and disease using the Women's Health Initiative (WHI) BA23 dataset. The dataset
75 characteristics are summarized in **Figure 1a**. All datasets were generated with the Illumina
76 Infinium 450k array, which measures methylation at 485578 CpGs. We annotated array CpGs
77 based on the type of RE and genic region (Exon, intron, promoter, 5' UTR, 3' UTR, intergenic)
78 they lied within. Array CpGs were generally biased to genic regions, whereas complex repeats
79 generally lie in intergenic regions or introns (**Supplementary figure 1a**). Nonetheless, 69426
80 CpGs were contained within REs, mainly LINEs, SINEs, LTRs, DNA transposons, and simple
81 repeats, **Supplementary figure 1b**). While most RE CpGs were primarily intergenic and intronic

82 (Supplementary figure 1b), simple repeats and low complexity regions were predominantly
83 found in promoters.

84 Transposable elements and especially young L1s become derepressed during aging
85 Next, we investigated the age dynamics of RE and non-RE CpGs. We used limma²⁹ to fit linear
86 regression models to the methylation levels of all array CpGs including age, sex and the study
87 of origin as independent variables (Data file 1). Patients with reported health conditions in the
88 original studies were not included in the analysis, to initially focus on RE methylation changes
89 that are associated with aging rather than disease. RE CpGs were hypermethylated in young
90 individuals (20 years old), but were more likely to have decreased methylation in older
91 individuals, compared to non-RE CpGs (Figure 1b). When investigating different classes of REs
92 individually, we found that TEs (LINEs, SINEs, LTRs, DNA transposons, retroposons) were
93 much more prone to losing methylation than non-selfish REs (tRNA, rRNA, satellites, simple
94 repeats, low complexity regions. Figure 1c). We initially focused on L1s, since they are the only
95 TEs known to be active and autonomous in humans³⁰. Therefore, de-repression of L1s could be
96 sufficient to cause cellular damage. Fortunately, most L1 copies are truncated, or have mutated
97 over evolutionary time scales and are thus inactive^{31,32}. Conversely, competent, evolutionarily
98 young L1 copies are closer to 6000 bp long. We found an association between the average
99 length of L1 families and their propensity to become demethylated with age (Figure 1d). The
100 most extreme methylation loss was observed in L1HS, L1PA2, L1PA3 and L1PA4, which are
101 the 4 youngest L1 families present in the human genome³¹. Older families were also generally
102 prone to methylation loss, but to a much smaller extent. We then investigated other TE classes:
103 among LTRs, families THE1A and THE1C showed the fastest methylation loss (Figure 1e).
104 While not retrotransposition-competent, derepression of these families was shown to drive
105 expression of oncogenes⁷. Most SINE and DNA transposons were also biased towards losing
106 methylation during age, but the median drift rate was relatively small, and no particular family
107 stood out. (Supplementary figure 1c, d)

108 Demethylation of young L1s outpaces passive methylation loss

109 The difference in demethylation rate between young and old L1 could indicate that they become
110 de-repressed by different means: de-repression of old L1s may be a result of global age-related
111 methylation loss, which has been previously documented and is often attributed to imperfect
112 maintenance of methylation marks by DNMT1¹². Conversely, young L1s may actively de-
113 repress by recruiting activating transcription factors at their 5' UTR³³. Alternatively, this
114 discrepancy may be explained by differences between the CpG landscape of young and old L1
115 families. For example, young L1s have a higher CpG density, which is gradually lost over
116 evolutionary time scales due to C-to-T mutations³⁴, and CpG density has been shown to affect
117 the rate of passive methylation loss^{35,36}. Additionally, the initial (post-development) level of CpG
118 methylation may affect the methylation drift rate simply because highly polarized states (e.g.
119 fully methylated) can only lose methylation, while intermediate methylation states are able to
120 both gain and lose methylation during aging. Thus, we modelled the average methylation drift
121 rate of CpGs based on local CpG density, youthful methylation level and the interaction of the
122 two (Figure 2a). This model explained 24.7% of age coefficient variation and confirmed prior
123 reports that low CpG density associates with age-related methylation loss. Hypomethylated
124 CpGs (< 20% methylated) were more likely to gain methylation during aging, but
125 hypermethylated CpGs (> 80% methylated) were not particularly biased towards methylation
126 loss. We then adjusted the previously calculated age coefficients with this information (Data file
127 1). These adjusted age coefficients should be interpreted as “the age drift rate of a given CpG,

128 compared to what would be expected from the average CpG with the same local CpG density
129 and youthful methylation level". The adjusted coefficients of most TE families of all 4 major
130 classes were close to zero or even slightly positive, meaning that their aging trajectory could be
131 explained by the local CpG context and youthful methylation state and is likely a passive
132 phenomenon (**Figure 2b, c, d, e**). Conversely, L1HS, L1PA2, L1PA3 and L1PA4 retained a
133 higher-than-expected rate of methylation loss, reinforcing the hypothesis that their derepression
134 may be, at least in part, an active process.

135 **TE methylation as an accurate and interpretable biomarker of age**

136 Next, we investigated if the methylation state of TEs could be used to predict chronological age.
137 Thus, we selected CpGs found in TEs (LINE, SINE, LTR, DNA transposons, ncpG=56352,
138 **figure 3a**) and trained an elastic net model on a portion of our data (n=999), leaving out a
139 portion of each dataset (n=248) and the entirety of GSE64495 (n=104) as external validation
140 (**Figure 3b, c**). The coefficients are available in **data file 2**. This individual CpG TE clock was in
141 both cases highly accurate (RMSE = 5.58, MAE = 2.96, r = 0.95 on GSE64495). We compared
142 this performance with other state-of-the-art chronological age clocks and found that the
143 individual CpG TE clock performed better than the Hannum and Horvath pan-tissue clocks but
144 worse than Horvath Skin & Blood. Thus, the methylation state of individual CpGs within TEs can
145 be used to construct a remarkably accurate clock.

146 While constructing a biomarker on a particular biological process such as TE derepression can
147 indeed help with interpretability, further considerations should be made. Most importantly,
148 transposons are disseminated everywhere in the genome, including near genes and very
149 commonly in introns. Thus, while the state of methylation of a single TE CpG may be
150 representative of the status of that TE copy, it may also be affected by the local chromatin
151 context (for example, whether a nearby gene is transcribed or not). To further improve
152 interpretability, we trained a new clock, this time on the average genome-wide methylation state
153 of TE families, separating genic and intergenic TE copies. We chose not to completely discard
154 genic TE copies because a sizeable portion of TEs, including some active L1s, is found in
155 introns. Additionally, we only kept groups of at least 5 CpGs, to reduce the impact of the local
156 regulatory context at each CpG and ensure that each feature could be interpreted as the global
157 methylation of a given TE family (**Figure 3a**). Validation was again performed on a portion of
158 each dataset (n=248) and the entirety of GSE64495 (n=104). The coefficients are available in
159 **data file 2**. We were surprised to see that while performance of this Combined CpG TE clock
160 was worse than that of the individual CpG TE clock, it was still satisfactory (**Figure 3b, c**). In
161 particular, it still had an r of 0.90 when validated on the external dataset GSE64495.

162 Lastly, we applied the same combined CpG training strategy on reduced representation bisulfite
163 sequencing (RRBS) data of multiple mouse tissues. Due to the limited data availability, the
164 predictor was trained and validated using nested cross validation, once again only including
165 wild-type, untreated mice (n=276). The coefficients are available in **data file 2**. This again
166 yielded an accurate predictor, with r = 0.90 (**Figure 3e**). Thus, our feature construction strategy
167 is successful on multiple sequencing platforms, tissues and organisms. We note that while the
168 strategy is indeed successful across different species, generating a single TE-based biomarker
169 for multiple species would be difficult, as TEs evolve very rapidly. For example, mice and
170 humans have a very different number and set of active TEs^{31,37}.

171 Accelerated TE methylation age is associated with health status

172 Next, we investigated associations between age acceleration (the difference between predicted
173 and chronological age) and health status. We tested our biomarkers on methylation data from
174 the Women's Health Initiative (WHI), a long-term study, deeply phenotyped among
175 postmenopausal women. Specifically, we used data from substudy BA23, comprising 2175
176 women aged 50-79 years at baseline, of which ~1070 developed coronary heart disease (CHD)
177 during follow-up. We examined associations between age acceleration and time to death,
178 diagnosis of any cancer, and CHD using Cox regression, including chronological age as a
179 covariate. Accelerated aging according to the individual CpG TE clock was significantly
180 associated with higher risk for all three outcomes (**Figure 4a**). Age acceleration according to
181 PhenoAge²⁴, an aging biomarker trained on clinical phenotypes rather than chronological age
182 alone, had similar associations with risk of cancer and mortality as our individual CpG TE clock.
183 Increased CHD risk, however, was most associated with age acceleration according to
184 PhenoAge. Our combined CpG TE clock, on the other hand showed no significant associations
185 with cancer or CHD risk, but was still associated with risk of death. We suspect this may be due
186 to the decreased accuracy of this predictor, which relies on genome-wide methylation features.
187 We additionally tested our mouse RRBS clock on data from Petkovich et al. comprising long-
188 lived growth hormone KO (GHRKO) and Snell dwarf mice³⁸. We note that the matching WT
189 controls were not used to train the RRBS clock. Excitingly, both Snell Dwarf and GHRKO mice
190 were predicted as significantly younger than the matching controls (**Figure 3f**). Thus, we
191 conclude that both individual CpG and combined CpG TE clocks show an association with the
192 health status of the individual and not only their chronological age.

193 Properties of young and old L1s as biomarkers

194 Finally, we investigated the TE families selected by our combined CpG clocks. Among the
195 notable TE families we identified, only L1HS (genic) was chosen as a feature by human
196 combined CpG clock, with methylation loss associating with increased age. However, several
197 older L1 families were chosen with stronger coefficients (L1MEi, L1PA11, L1MA4A, L1M7 ...).
198 We found this puzzling, as we expected that the strong age association of younger L1s (L1HS,
199 L1PA2, L1PA3 and L1PA4) would make them useful for age prediction. Thus, we investigated
200 the exact trajectory of young L1 de-repression in greater detail (**Figure 4b**). We were surprised
201 to see that young L1s had negligible methylation loss under the age of 65 and then rapidly lost
202 methylation in older patients with a non-linear trajectory. In comparison, the older L1 families
203 selected by our combined CpG predictor showed a more linear trajectory, and began
204 demethylating at younger ages. This led us to suspect that older, "passively demethylating" TE
205 families may be better predictors of chronological age, whereas methylation loss at younger
206 TEs, in particular those with pathogenic potential, may be better predictors of disease risk.
207 Thus, we modelled average methylation at young L1s (L1HS, L1PA2, L1PA3, L1PA4) and old
208 L1s with large clock coefficients (L1MEi, L1PA11, L1MA4A, L1M7) as a function of age, this
209 time including whether individuals would be diagnosed with any cancer within 3 years of sample
210 collection (Methylation ~ Age + AnyCancerIn3y, **Figure 4c**). We found that cancer was
211 significantly associated with decreased methylation of young L1s, but not at older ones,
212 although a trend was still present. Conversely, when accounting for cancer, age was associated
213 with decreased methylation at older L1s but not at young ones. With this knowledge we trained
214 predictors of cancer, CHD and mortality within the next 3 years solely based on young L1 CpGs
215 (n=621) in the WHI data. These events were quite rare (cancer: n = 52, chd: n = 140, death: n =
216 39, total: n = 2175) making training challenging. Nonetheless, the resulting models had mild

217 predictive ability (**Figure 4d**). Interestingly, while the mortality and CHD predictors were rather
218 complex, even when choosing the optimal model with parsimony (Best mortality predictor: ncpg
219 = 93, parsimonious mortality predictor: ncpg = 60; best CHD predictor: ncpg = 180,
220 parsimonious CHD predictor: ncpg = 106, **data file 3**) the cancer predictors were remarkably
221 simple, using only a handful of CpGs. The simplest model based predictions on just 2 CpGs:
222 cg07575166, found in an intergenic L1HS 5'UTR, and cg26106149, located in a full length
223 L1PA3 in an intron of FBXL4, a gene with no known role in cancer initiation. The more complex
224 model used 5 more CpGs but assigned the most weight to the aforementioned 2.

225

226 Discussion

227

228 In summary, we studied the age dynamics of TE methylation, finding that most TEs, from
229 evolutionarily young, to ancestral ones, were likely to lose methylation during the course of
230 aging. However, this tendency was accentuated for young L1 elements: L1HS, L1PA2, L1PA3
231 and L1PA4, and two LTR families: THE1A and THE1C. Local CpG density and youthful
232 methylation have been previously reported to affect methylation drift rate during aging. The rate
233 of methylation loss at most TEs was well described by those two factors, but this was not the
234 case for young L1s. Thus, we hypothesize that most TEs have lost their regulatory sequences,
235 and thus lose methylation passively. Conversely, young L1s are likely to still contain regulatory
236 sequences that enable recruitment of activating epigenetic machinery. We next explored the
237 use of TE methylation loss as biomarkers of age and disease. An age predictor based on
238 individual CpGs found in TEs had remarkable accuracy, and showed associations with cancer
239 and mortality comparable to PhenoAge. We generated additional predictors based on average
240 methylation of TEs genome-wide, for both human blood methylation array data and multi-tissue
241 mouse RRBS data. While less accurate than their individual CpG counterparts, these predictors
242 were still satisfactory ($r > 0.9$) and showed associations with health status. We were surprised to
243 see that these predictors did not mainly rely on young L1s despite their strong age association,
244 prompting us to investigate the exact timing of young L1 derepression. We found that young L1s
245 rapidly derepressed only after age of 65 and were otherwise very stable beforehand. This age
246 coincides with the age of onset of many age-related diseases. Thus, we explored associations
247 between loss of methylation and disease, finding that methylation loss at young L1s was
248 associated with cancer but not age, while the opposite was true for the older L1s selected by the
249 clock. Finally, we trained predictors for cancer, CHD, and mortality within 3 years of the
250 methylation measurement, solely based on young L1 CpGs. The mortality and cancer predictors
251 were mildly successful and, in particular, the cancer predictor made use of only 2 CpGs in
252 young L1s. Future studies may investigate the mechanism behind this seemingly direct
253 relationship. An obvious question is whether young L1 derepression is the cause or
254 consequence of cancer. Indeed, both mechanisms are possible, as mutations of epigenetic
255 machinery are common in cancer³⁹. However, as the loss of CpGs was detected in the blood
256 and was predictive of cancer events in other organs, it is possible that TE derepression may
257 promote cancer by accelerating inflammation or by promoting other pathological processes
258 through other non-cell autonomous mechanisms. Finally, loss of methylation at young L1s could
259 be neither the cause nor the consequence of cancer, and instead both events could have
260 common drivers. The clonal haematopoiesis is a likely suspect, as the most common mutation

261 in clonal hematopoiesis is DNMT3A, a de-novo methyltransferase⁴⁰⁻⁴², which may also
262 contribute to the loss of methylation on TEs.

263

264

265 Methods

266 Datasets

267 We used 4 public human blood array datasets (GSE64495⁴³, GSE40279²¹, GSE157131⁴⁴,
268 GSE147221⁴⁵) to determine associations between age and TE methylation loss, and to train
269 and validate the human age predictors. GSE87648⁴⁶ was only included in predictor training and
270 validation because it appeared to have an internal batch effect (determined by PCA). The WHI
271 human blood dataset BA23 (<https://www.whi.org/study/BA23>) and related metadata were used
272 to investigate relationships between TE clock age acceleration and risk of disease and mortality,
273 and later investigate associations between young L1 methylation loss and disease. Mouse
274 multi-tissue datasets GSE60012⁴⁷, GSE93957⁴⁸, GSE80672³⁸ we used to train and validate the
275 mouse age predictor. All data was used as pre-processed by the original authors with the
276 exception of GSE60012, as the needed processed files were unavailable.

277 Annotation of CpGs and repetitive elements

278 The coordinates of infinium array CpGs were obtained from the Illumina manifest. We used
279 RepeatMasker to annotate repeats in GRCh37 and GRCm38 genomes. ChipSeeker⁴⁹ was used
280 to annotate the genomic context of CpGs.

281 Statistics

282 Associations between age and Infinium array CpG methylation were determined using limma²⁹,
283 with the design ~ age + sex + study. The fitted coefficients were used as methylation drift rates,
284 whereas methylation at 20 years of age was calculated as intercept + coef * 20. Our fitting of
285 expected age drift as function of CpG density and youthful methylation level employed a general
286 additive model (gam) with covariates for CpG density within 100 bp of the CpG in question, the
287 methylation of that CpG at 20 years of age, and the interaction of the two covariates (age_coef
288 ~ s(methylationAt20yo, bs = "cs") + s(CpG_density, bs = "cs") + s(methylationAt20yo, bs = "cs",
289 by=CpG_density)). Associations between age acceleration and mortality/disease risk were
290 tested using a Cox regression model (coxph in R) with formula Surv(time-to-event, status) ~
291 acceleration + age.

292 Predictor training and validation

293 All predictors in this study are a form of elastic net, implemented by the glmnet R package. Age
294 predictors use the gaussian family argument whereas the disease/mortality predictors use the
295 binomial (logistic) family argument. Age predictions were evaluated by root mean squared
296 error(RMSE), median absolute error(MAE) and pearson's r. Disease/mortality predictions were
297 evaluated by receiver operating characteristic area-under-the-curve (ROC AUC). Prior to
298 training/predicting, we transformed ages using the same age transformation used by Horvath in
299 the Pan-tissue²² and Skin & Blood²³ clocks. Briefly, ages below the age of maturity (20 years for
300 humans, 6 weeks for mice) were log transformed, to linearize the relationship between age and
301 methylation in developmental stages. When sufficient samples were available, we validated our
302 predictors by leaving out a portion of all data and an entire dataset (GSE64495) for testing, and
303 training/choosing hyperparameters on the remainder of the data by cross-validation. When the

304 number of samples was limited, we used nested cross-validation. Hyperparameters explored by
305 grid search and selected to give the lowest cross-validation MSE (mean squared error) or ROC
306 AUC, with the exception of the models we called “parsimonious” for which hyperparameters
307 were selected to give the simplest model within 1 standard deviation of the best performance.
308 Any individual with known health conditions or treatments were excluded from model training.
309 The matching wild-type controls of GHRKO and Snell dwarf strains were also excluded from
310 clock training, to have a fair comparison.

311 **Predictor benchmarking**

312 We downloaded clock coefficients published with the original manuscripts. Ages were
313 transformed (and inverse transformed) for prediction if required (Horvath Pan-tissue and Skin &
314 Blood). All clocks were then applied to the same samples of GSE64495 and the WHI BA23
315 dataset. Clock features with missing values in the WHI BA23 (1.5% of all values) were imputed
316 using the makeX R function.

317 **RRBS data processing**

318 Raw reads were downloaded from SRA and trimmed using TrimGalore!⁵⁰ with the --rrbs option.
319 We aligned trimmed reads to the GRCm38 genome build using Bismark⁵¹ and quantified
320 methylation with bismark_methylation_extractor and bismark2bedGraph.

321

322 **Acknowledgements**

323 This research was supported by grants from the US National Institutes of Health to AS and VG,
324 and Milky Way Research Foundation to VG. A.H.S. was supported by grant RF1AG074345 from
325 the National Institute on Aging. The WHI program is supported by contracts from the National
326 Heart, Lung and Blood Institute, NIH. The authors thank the WHI investigators and staff for their
327 dedication, and the study participants for making the program possible. A listing of WHI
328 investigators can be found at <https://www.whi.org/doc/WHI-Investigator-Long-List.pdf>.

329

330 **Conflict of Interest statements**

331 Authors declare no conflict of interest.

332

333

334 **Figure legends**

335

336 **Figure 1: Transposons and particularly young L1s are biased towards losing methylation**
337 **during aging.** (A) Public human blood DNA methylation datasets and age distributions. (B)
338 Youthful methylation level and age-related drift of CpGs in and outside of repetitive elements.
339 (C) Methylation drift rate of CpG, grouped by major repeat class. Selfish (transposons) and non-
340 selfish repeated grouped separately. (D) Methylation drift rate of CpG in L1s, grouped by family
341 and sorted by average sequence length: a proxy of evolutionary age. Only families represented
342 by 40 or more CpGs in the infinium array were shown (E) Methylation drift rate of CpG in LTRs,
343 grouped by family and sorted by average sequence length. Only families represented by 40 or
344 more CpGs in the infinium array were shown.

345

346 **Figure 2: Age drift of TE CpGs compared to what is expected based on CpG density and**
347 **youthful methylation level.** (A) Trends of methylation drift based on youthful methylation
348 levels. (B) Trends of methylation drift based on local CpG density. (C,D,E,F) Age coefficient of
349 methylation at LINEs, LTRs, SINEs and DNA transposon CpGs after adjustment for CpG
350 density and youthful methylation level. Only families represented by 40 or more CpGs in the
351 infinium array were shown.

352

353 **Figure 3: Construction of age biomarkers based on methylation of individual CpGs within**
354 **TEs and genome-wide TE family methylation.** (A) Feature construction strategy. (B) Test set
355 performance of single CpG clock. (C) Test set performance of combined CpG clock. (D)
356 Benchmark of individual and combined CpG clock against state-of-the art methylation clocks.
357 The benchmark was performed on GSE64495, which was not included in the training set of any
358 of the clocks shown. (E) Performance of a combined CpG clock trained on multi-tissue mouse
359 RRBS data. (F) Age prediction on long lived mouse strains compared to matching controls.

360

361 **Figure 4: Association between TE clock acceleration, TE methylation loss and disease.**
362 (A) Association between age acceleration and risk of cancer, CHD and mortality according to
363 the individual and combined CpG clocks in the WHI BA23 dataset. Results are benchmarked
364 against state of the art chronological age clocks (Horvath Pan-tissue and Horvath Skin and
365 Blood) and biological age clocks (Horvath PhenoAge). (B) Age trajectory of methylation at
366 young L1s (first row) and old L1s with the largest coefficients in the combined CpG clock (second
367 row). Data from GSE40279. Orange dashed line shows a linear fit, excluding patients over 65
368 years-old. Teal line shows a loess fit on the full age range. (C) Effect of cancer within 3 years
369 and age on methylation of young and old L1s in the WHI data. (D) Performance of predictors of
370 risk of cancer, CHD and mortality within 3 years. Best and parsimonious models are shown.

371

372 **Figure S1: Genomic context of RE CpGs. Age trends of SINE and DNA transposon**
373 **methylation.** (A) Genomic context of all REs, all probes in the infinium array, RE probes in the
374 infinium array. (B) Genomic context of infinium probes by major RE class. (C) Methylation drift
375 rate of CpG in SINEs, grouped by family and sorted by average sequence length. Only families

376 represented by 40 or more CpGs in the infinium array were shown. (D) Methylation drift rate of
377 CpG in DNA transposons, grouped by family and sorted by average sequence length. Only
378 families represented by 40 or more CpGs in the infinium array were shown.

379

380 **Figure S2: Composition of TE clocks by class.**

381

382

383 **References**

384

385 1. Liao, X. *et al.* Repetitive DNA sequence detection and its role in the human genome.
386 *Commun Biol* **6**, 1–21 (2023).

387 2. Gorbunova, V. *et al.* The role of retrotransposable elements in ageing and age-associated
388 diseases. *Nature* **596**, 43–53 (2021).

389 3. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 Prevents Cell-Intrinsic
390 Initiation of Autoimmunity. *Cell* **134**, 587–598 (2008).

391 4. Thomas, C. A. *et al.* Modeling of TREX1-Dependent Autoimmune Disease using Human
392 Stem Cells Highlights L1 Accumulation as a Source of Neuroinflammation. *Cell Stem Cell*
393 **21**, 319-331.e8 (2017).

394 5. Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a
395 therapeutic target in inflammatory diseases. *Nat Rev Immunol* **21**, 548–569 (2021).

396 6. Gázquez-Gutiérrez, A., Witteveldt, J., Heras, S. R. & Macias, S. Sensing of transposable
397 elements by the antiviral innate immune system. *RNA* **27**, 735–752 (2021).

398 7. Babaian, A. & Mager, D. L. Endogenous retroviral promoter exaptation in human cancer.
399 *Mobile DNA* **7**, 24 (2016).

400 8. Di Stefano, L. All Quiet on the TE Front? The Role of Chromatin in Transposable Element
401 Silencing. *Cells* **11**, 2501 (2022).

402 9. Jansz, N. DNA methylation dynamics at transposable elements in mammals. *Essays
403 Biochem* **63**, 677–689 (2019).

404 10. Greenberg, M. V. C. & Bourc'his, D. The diverse roles of DNA methylation in mammalian
405 development and disease. *Nat Rev Mol Cell Biol* **20**, 590–607 (2019).

406 11. Xiao, F.-H., Kong, Q.-P., Perry, B. & He, Y.-H. Progress on the role of DNA methylation in
407 aging and longevity. *Brief Funct Genomics* **15**, 454–459 (2016).

408 12. Wang, K. *et al.* Epigenetic regulation of aging: implications for interventions of aging and
409 diseases. *Sig Transduct Target Ther* **7**, 1–22 (2022).

410 13. Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic Mechanisms of Longevity and
411 Aging. *Cell* **166**, 822–839 (2016).

412 14. De Cecco, M. *et al.* Transposable elements become active and mobile in the genomes of
413 aging mammalian somatic tissues. *Aging (Albany NY)* **5**, 867–883 (2013).

414 15. De Cecco, M. *et al.* L1 drives IFN in senescent cells and promotes age-associated
415 inflammation. *Nature* **566**, 73–78 (2019).

416 16. Bell, C. G. *et al.* DNA methylation aging clocks: challenges and recommendations. *Genome
417 Biology* **20**, 249 (2019).

418 17. Meyer, D. H. & Schumacher, B. BiT age: A transcriptome-based aging clock near the
419 theoretical limit of accuracy. *Aging Cell* **20**, e13320 (2021).

420 18. LaRocca, T. J., Cavalier, A. N. & Wahl, D. Repetitive elements as a transcriptomic marker of
421 aging: Evidence in multiple datasets and models. *Aging Cell* **19**, e13167 (2020).

422 19. Lehallier, B., Shokhirev, M. N., Wyss-Coray, T. & Johnson, A. A. Data mining of human
423 plasma proteins generates a multitude of highly predictive aging clocks that reflect different
424 aspects of aging. *Aging Cell* **19**, e13256 (2020).

425 20. Morandini, F. *et al.* ATAC-clock: An aging clock based on chromatin accessibility.
426 *GeroScience* **46**, 1789–1806 (2024).

427 21. Hannum, G. *et al.* Genome-wide methylation profiles reveal quantitative views of human
428 aging rates. *Mol Cell* **49**, 359–367 (2013).

429 22. Horvath, S. DNA methylation age of human tissues and cell types. *Genome Biology* **14**,
430 3156 (2013).

431 23. Horvath, S. *et al.* Epigenetic clock for skin and blood cells applied to Hutchinson Gilford
432 Progeria Syndrome and *ex vivo* studies. *Aging* **10**, 1758–1775 (2018).

433 24. Levine, M. E. *et al.* An epigenetic biomarker of aging for lifespan and healthspan. *Aging*
434 *(Albany NY)* **10**, 573–591 (2018).

435 25. Lu, A. T. *et al.* DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging*
436 *(Albany NY)* **11**, 303–327 (2019).

437 26. Lu, A. T. *et al.* DNA methylation GrimAge version 2. *Aging* **14**, 9484–9549 (2022).

438 27. Levine, M. E., Higgins-Chen, A., Thrush, K., Minteer, C. & Niimi, P. Clock Work:
439 Deconstructing the Epigenetic Clock Signals in Aging, Disease, and Reprogramming.
440 2022.02.13.480245 Preprint at <https://doi.org/10.1101/2022.02.13.480245> (2022).

441 28. Moqri, M. *et al.* PRC2 clock: a universal epigenetic biomarker of aging and rejuvenation.
442 2022.06.03.494609 Preprint at <https://doi.org/10.1101/2022.06.03.494609> (2022).

443 29. Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-sequencing and
444 microarray studies. *Nucleic Acids Research* **43**, e47 (2015).

445 30. Beck, C. R., Garcia-Perez, J. L., Badge, R. M. & Moran, J. V. LINE-1 Elements in Structural
446 Variation and Disease. *Annu Rev Genomics Hum Genet* **12**, 187–215 (2011).

447 31. Khan, H., Smit, A. & Boissinot, S. Molecular evolution and tempo of amplification of human
448 LINE-1 retrotransposons since the origin of primates. *Genome Res* **16**, 78–87 (2006).

449 32. Boissinot, S. & Sookdeo, A. The Evolution of LINE-1 in Vertebrates. *Genome Biol Evol* **8**,
450 3485–3507 (2016).

451 33. Protasova, M. S., Andreeva, T. V. & Rogaev, E. I. Factors Regulating the Activity of LINE1
452 Retrotransposons. *Genes (Basel)* **12**, 1562 (2021).

453 34. Zhou, W., Liang, G., Molloy, P. L. & Jones, P. A. DNA methylation enables transposable
454 element-driven genome expansion. *Proceedings of the National Academy of Sciences* **117**,
455 19359–19366 (2020).

456 35. Bertucci, E. M. & Parrott, B. B. Is CpG Density the Link between Epigenetic Aging and
457 Lifespan? *Trends Genet* **36**, 725–727 (2020).

458 36. Higham, J. *et al.* Local CpG density affects the trajectory and variance of age-associated
459 DNA methylation changes. *Genome Biology* **23**, 216 (2022).

460 37. Sookdeo, A., Hepp, C. M., McClure, M. A. & Boissinot, S. Revisiting the evolution of mouse
461 LINE-1 in the genomic era. *Mobile DNA* **4**, 3 (2013).

462 38. Petkovich, D. A. *et al.* Using DNA Methylation Profiling to Evaluate Biological Age and
463 Longevity Interventions. *Cell Metab* **25**, 954-960.e6 (2017).

464 39. Muntean, A. G. & Hess, J. L. Epigenetic Dysregulation in Cancer. *Am J Pathol* **175**, 1353–
465 1361 (2009).

466 40. Fabre, M. A. *et al.* The longitudinal dynamics and natural history of clonal haematopoiesis.
467 *Nature* **606**, 335–342 (2022).

468 41. Mitchell, E. *et al.* Clonal dynamics of haematopoiesis across the human lifespan. *Nature*
469 **606**, 343–350 (2022).

470 42. Uddin, M. d M. *et al.* Clonal hematopoiesis of indeterminate potential, DNA methylation, and
471 risk for coronary artery disease. *Nat Commun* **13**, 5350 (2022).

472 43. Walker, R. F. *et al.* Epigenetic age analysis of children who seem to evade aging. *Aging*
473 (Albany NY) **7**, 334–339 (2015).

474 44. Kho, M. *et al.* Epigenetic loci for blood pressure are associated with hypertensive target
475 organ damage in older African Americans from the genetic epidemiology network of
476 Arteriopathy (GENOA) study. *BMC Med Genomics* **13**, 131 (2020).

477 45. Hannon, E. *et al.* DNA methylation meta-analysis reveals cellular alterations in psychosis
478 and markers of treatment-resistant schizophrenia. *Elife* **10**, e58430 (2021).

479 46. Ventham, N. T. *et al.* Integrative epigenome-wide analysis demonstrates that DNA
480 methylation may mediate genetic risk in inflammatory bowel disease. *Nat Commun* **7**, 13507
481 (2016).

482 47. Reizel, Y. *et al.* Gender-specific postnatal demethylation and establishment of epigenetic
483 memory. *Genes Dev* **29**, 923–933 (2015).

484 48. Stubbs, T. M. *et al.* Multi-tissue DNA methylation age predictor in mouse. *Genome Biol* **18**,
485 68 (2017).

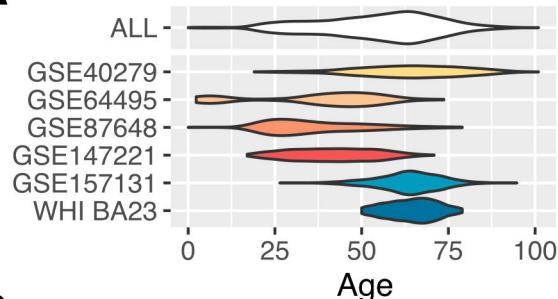
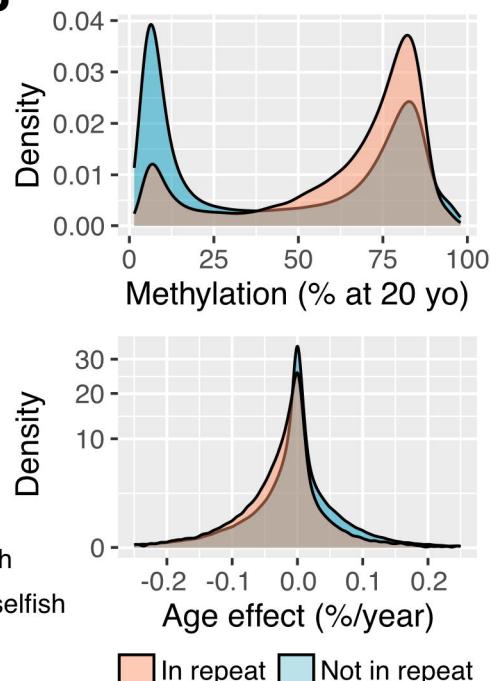
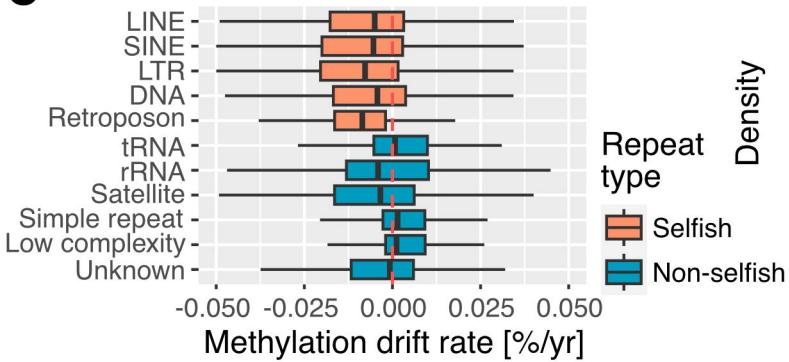
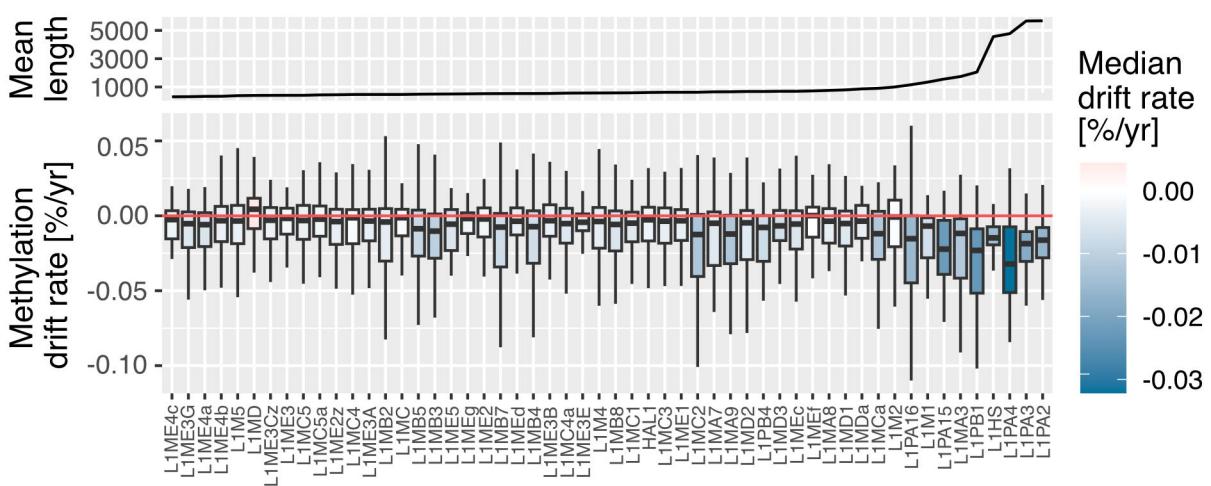
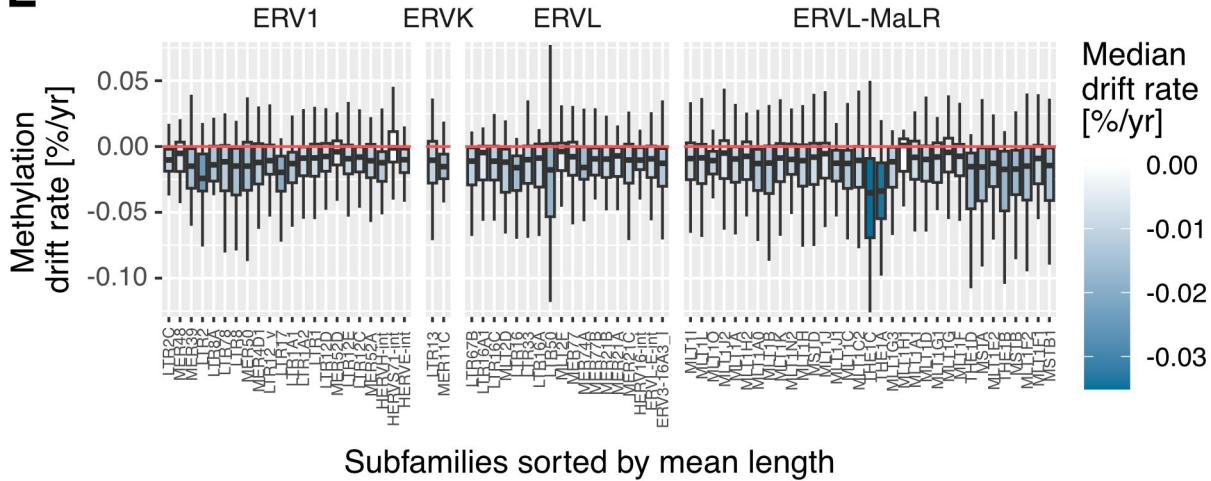
486 49. Yu, G., Wang, L.-G. & He, Q.-Y. ChIPseeker: an R/Bioconductor package for ChIP peak
487 annotation, comparison and visualization. *Bioinformatics* **31**, 2382–2383 (2015).

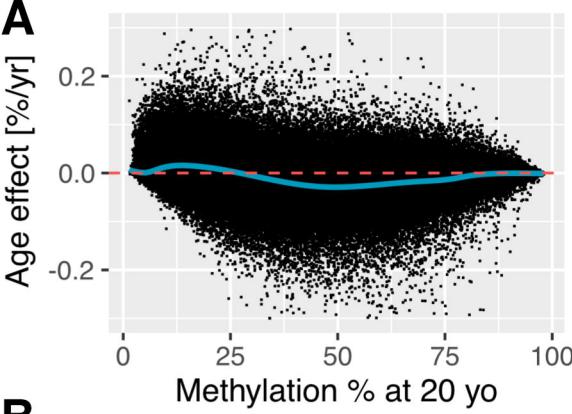
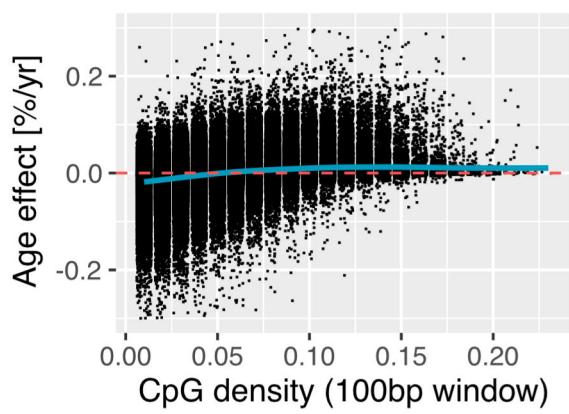
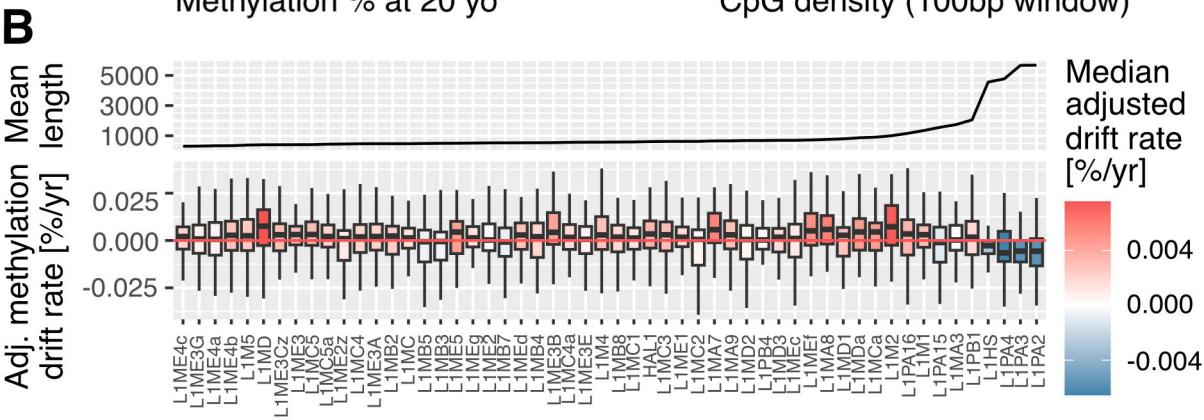
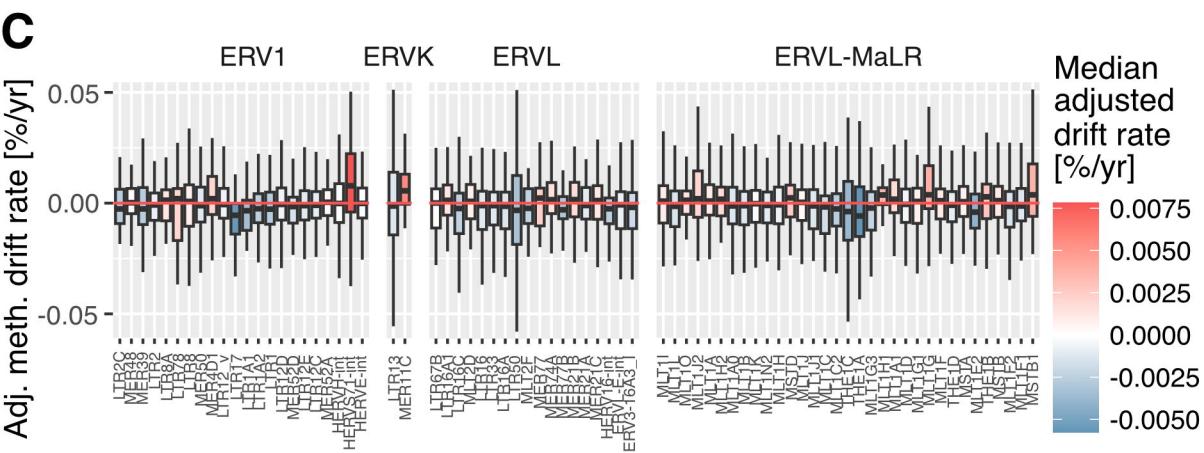
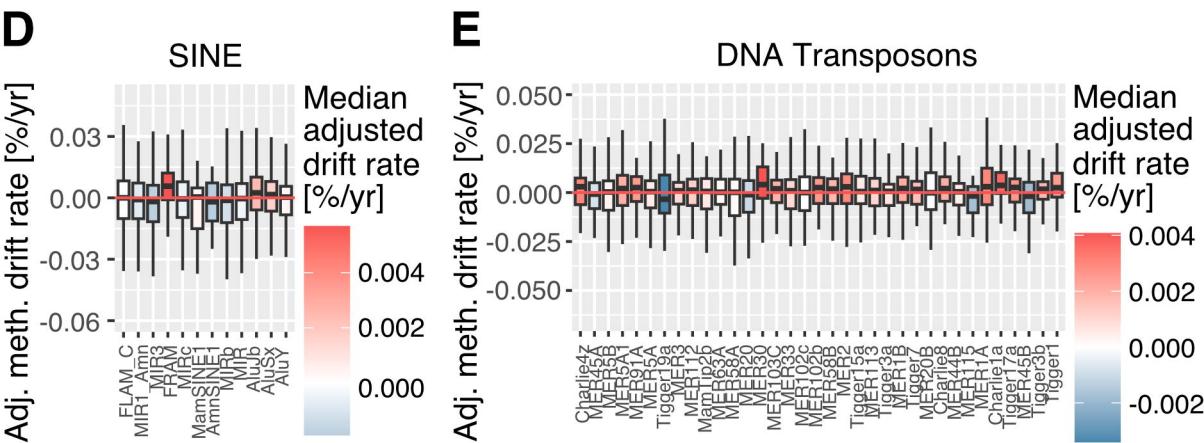
488 50. Babraham Bioinformatics - Trim Galore!
489 https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/.

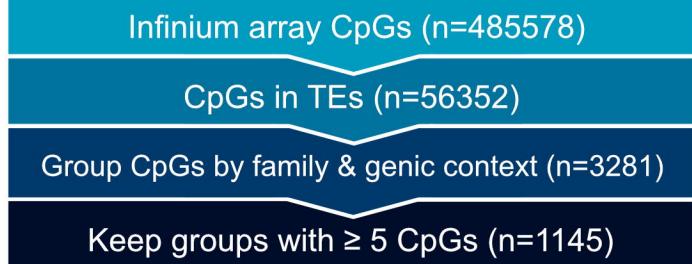
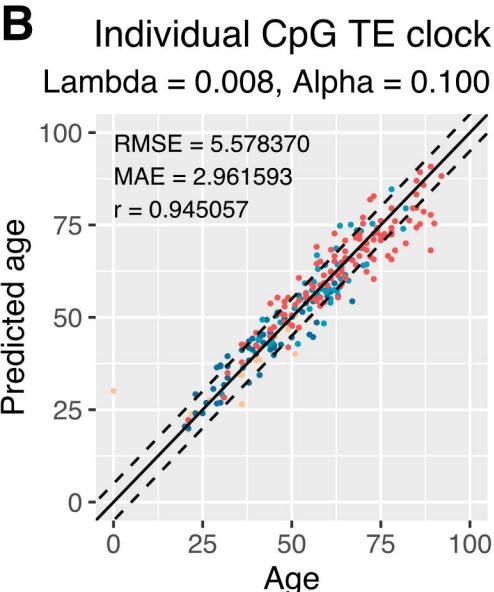
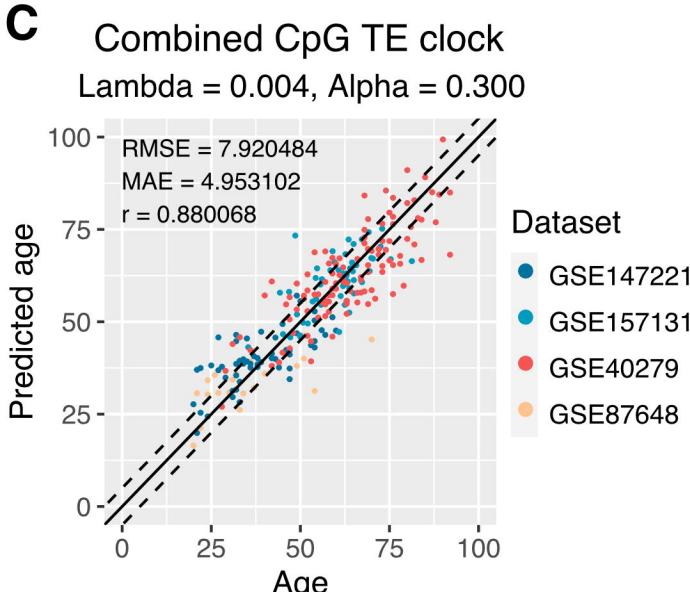
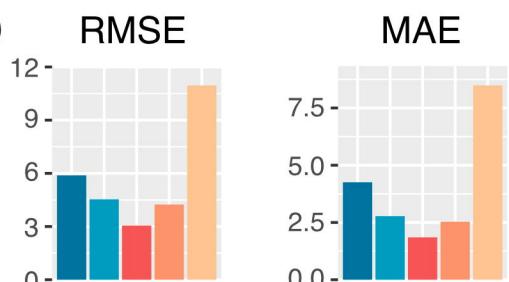
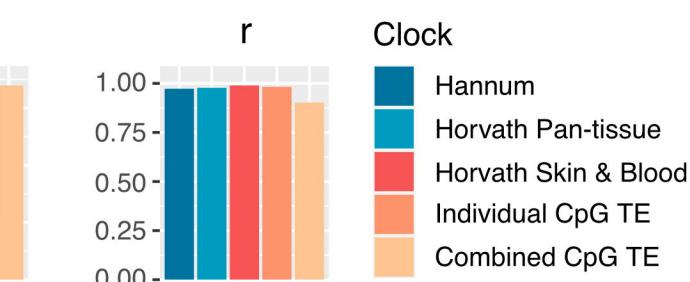
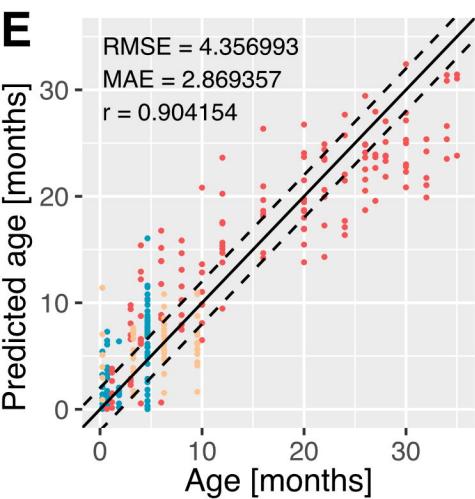
490 51. Babraham Bioinformatics - Bismark Bisulfite Read Mapper and Methylation Caller.
491 <https://www.bioinformatics.babraham.ac.uk/projects/bismark/>.

492

493

A**B****C****D****E**



A**B****C****D****E**

Dataset

- GSE60012
- GSE80672
- GSE93957

F