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Abstract

Transposable elements (TEs) are DNA sequences that expand selfishly in the genome, possibly
causing severe cellular damage. While normally silenced, TEs have been shown to activate
during aging. DNA methylation is one of the main mechanisms by which TEs are silenced and
has been used to train highly accurate age predictors. Yet, one common criticism of such
predictors is that they lack interpretability. In this study, we investigate the changes in TE
methylation that occur during human aging. We find that evolutionarily young LINE1s (L1s), the
only known TEs capable of autonomous transposition in humans, undergo the fastest loss of
methylation, suggesting an active mechanism of de-repression. We then show that accurate
age predictors can be trained on both methylation of individual TE copies and average
methylation of TE families genome wide. Lastly, we show that while old L1s gradually lose
methylation during the entire lifespan, demethylation of young L1s only happens late in life and
is associated with cancer.

Introduction

Repetitive elements (REs) are DNA sequences found in high copy number in the genome®.
Transposable elements (TEs), or selfish REs, are REs that have the ability to copy themselves
and move to new genomic locations, either directly as DNA (DNA transposons) or through an
RNA intermediate that is reverse-transcribed (LINEs, SINEs, LTRs). The selfish replication of
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TEs has led them to occupy a large portion of genomes (around 40% in mammals). TE activity
is potentially highly detrimental to the individual, as random integrations can disable genes and
even unsuccessful integration attempts can generate double stranded breaks®. Even further,
TEs can produce cDNA copies that stimulate cytosolic DNA sensing pathways leading to
inflammation®®. Finally, TEs can disrupt normal gene regulatory networks by influencing the
expression of nearby genes through their regulatory sequences’. Due to their pathogenic
potential, TEs are kept under tight control by the host with multiple regulatory layers®. DNA
methylation is one of the main ways by which cells silence TEs®. DNA methylation patterns are
established in bulk during development and are then largely maintained throughout lifespan,
although de-novo methylation and active demethylation still occur'®. Prior studies in multiple
organisms and tissues found that methylation patterns undergo a slow drift during aging, with
many normally hypermethylated regions becoming less repressed™*™3. At the same time, TEs
have been shown to activate during aging in invertebrates, mice, human senescent cells, and
certain cancers®**'. It thus seems possible that age-related alterations of DNA methylation
could play a role in TE activation.

Aging clocks are statistical models trained to predict age and age-related phenotypes, including
time to death'®. In addition to predicting the age of samples of unknown age, for example in
forensics, aging clocks have been used to study health conditions, lifestyles, genetic or
pharmacological treatments that alter an organism’s biological age. Typically, age predictions
are based on omic data types including gene expression'’*8, protein abundance'®, chromatin
accessibility?® and most commonly, DNA methylation?*?®. One common criticism of aging clocks
deals with the difficulty in interpreting the biological meaning of observed changes in DNA
methylation patterns. One strategy previously used to improve clock interpretability is to group
clock CpGs into different modules corresponding to different biological processes®’?,

In this study, we explore the use of TE methylation as a biomarker of age and disease. First, we
reanalyzed public human blood methylation data to determine the trajectory of TE methylation
during aging, comparing evolutionarily young and old TEs. We then constructed age predictors
for mice and humans. Lastly, we investigated associations between accelerated age prediction,
and more generally loss of methylation at TEs, and disease.

Results

Data description

To investigate changes in RE methylation that occur during aging we collected publicly available
human blood methylation array data. Later, we additionally investigate association between TE
methylation and disease using the Women’s Health Initiative (WHI) BA23 dataset. The dataset
characteristics are summarized in Figure la. All datasets were generated with the Illumina
Infinium 450k array, which measures methylation at 485578 CpGs. We annotated array CpGs
based on the type of RE and genic region (Exon, intron, promoter, 5 UTR, 3’ UTR, intergenic)
they lied within. Array CpGs were generally biased to genic regions, whereas complex repeats
generally lie in intergenic regions or introns (Supplementary figure 1a). Nonetheless, 69426
CpGs were contained within REs, mainly LINEs, SINEs, LTRs, DNA transposons, and simple
repeats, Supplementary figure 1b). While most RE CpGs were primarily intergenic and intronic
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82 (Supplementary figure 1b), simple repeats and low complexity regions were predominantly
83  found in promoters.

84  Transposable elements and especially young L1s become derepressed during aging
85  Next, we investigated the age dynamics of RE and non-RE CpGs. We used limma® to fit linear
86  regression models to the methylation levels of all array CpGs including age, sex and the study
87  of origin as independent variables (Data file 1). Patients with reported health conditions in the
88  original studies were not included in the analysis, to initially focus on RE methylation changes
89 that are associated with aging rather than disease. RE CpGs were hypermethylated in young
90 individuals (20 years old), but were more likely to have decreased methylation in older
91 individuals, compared to non-RE CpGs (Figure 1b). When investigating different classes of REs
92  individually, we found that TEs (LINEs, SINEs, LTRs, DNA transposons, retroposons) were
93 much more prone to losing methylation than non-selfish REs (tRNA, rRNA, satellites, simple
94  repeats, low complexity regions. Figure 1c). We initially focused on L1s, since they are the only
95  TEs known to be active and autonomous in humans®. Therefore, de-repression of L1s could be
96  sufficient to cause cellular damage. Fortunately, most L1 copies are truncated, or have mutated
97  over evolutionary time scales and are thus inactive®?. Conversely, competent, evolutionarily
98 young L1 copies are closer to 6000 bp long. We found an association between the average
99 length of L1 families and their propensity to become demethylated with age (Figure 1d). The
100 most extreme methylation loss was observed in L1HS, L1PA2, L1PA3 and L1PA4, which are
101  the 4 youngest L1 families present in the human genome®!. Older families were also generally
102  prone to methylation loss, but to a much smaller extent. We then investigated other TE classes:
103 among LTRs, families THE1A and THE1C showed the fastest methylation loss (Figure 1e).
104  While not retrotransposition-competent, derepression of these families was shown to drive
105  expression of oncogenes’. Most SINE and DNA transposons were also biased towards losing
106  methylation during age, but the median drift rate was relatively small, and no particular family
107  stood out. (Supplementary figure 1c, d)

108 Demethylation of young L1s outpaces passive methylation loss

109 The difference in demethylation rate between young and old L1 could indicate that they become
110 de-repressed by different means: de-repression of old L1s may be a result of global age-related
111  methylation loss, which has been previously documented and is often attributed to imperfect
112  maintenance of methylation marks by DNMT1'2. Conversely, young L1s may actively de-
113  repress by recruiting activating transcription factors at their 5° UTR®. Alternatively, this
114  discrepancy may be explained by differences between the CpG landscape of young and old L1
115 families. For example, young L1s have a higher CpG density, which is gradually lost over
116  evolutionary time scales due to C-to-T mutations®*, and CpG density has been shown to affect
117  the rate of passive methylation loss*?¢. Additionally, the initial (post-development) level of CpG
118 methylation may affect the methylation drift rate simply because highly polarized states (e.g.
119 fully methylated) can only lose methylation, while intermediate methylation states are able to
120 both gain and lose methylation during aging. Thus, we modelled the average methylation drift
121  rate of CpGs based on local CpG density, youthful methylation level and the interaction of the
122  two (Figure 2a). This model explained 24.7% of age coefficient variation and confirmed prior
123  reports that low CpG density associates with age-related methylation loss. Hypomethylated
124  CpGs (< 20% methylated) were more likely to gain methylation during aging, but
125 hypermethylated CpGs (> 80% methylated) were not particularly biased towards methylation
126  loss. We then adjusted the previously calculated age coefficients with this information (Data file
127 1). These adjusted age coefficients should be interpreted as “the age drift rate of a given CpG,
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128 compared to what would be expected from the average CpG with the same local CpG density
129  and youthful methylation level”. The adjusted coefficients of most TE families of all 4 major
130 classes were close to zero or even slightly positive, meaning that their aging trajectory could be
131 explained by the local CpG context and youthful methylation state and is likely a passive
132 phenomenon (Figure 2b, c, d, e). Conversely, L1HS, L1PA2, L1PA3 and L1PA4 retained a
133  higher-than-expected rate of methylation loss, reinforcing the hypothesis that their derepression
134  may be, at least in part, an active process.

135 TE methylation as an accurate and interpretable biomarker of age

136  Next, we investigated if the methylation state of TEs could be used to predict chronological age.
137 Thus, we selected CpGs found in TEs (LINE, SINE, LTR, DNA transposons, ncpg=56352,
138 figure 3a) and trained an elastic net model on a portion of our data (n=999), leaving out a
139 portion of each dataset (n=248) and the entirety of GSE64495 (n=104) as external validation
140  (Figure 3b, c). The coefficients are available in data file 2. This individual CpG TE clock was in
141  both cases highly accurate (RMSE = 5.58, MAE = 2.96, r = 0.95 on GSE64495). We compared
142  this performance with other state-of-the-art chronological age clocks and found that the
143 individual CpG TE clock performed better than the Hannum and Horvath pan-tissue clocks but
144  worse than Horvath Skin & Blood. Thus, the methylation state of individual CpGs within TEs can
145  be used to construct a remarkably accurate clock.

146  While constructing a biomarker on a particular biological process such as TE derepression can
147 indeed help with interpretability, further considerations should be made. Most importantly,
148 transposons are disseminated everywhere in the genome, including near genes and very
149 commonly in introns. Thus, while the state of methylation of a single TE CpG may be
150 representative of the status of that TE copy, it may also be affected by the local chromatin
151 context (for example, whether a nearby gene is transcribed or not). To further improve
152  interpretability, we trained a new clock, this time on the average genome-wide methylation state
153 of TE families, separating genic and intergenic TE copies. We chose not to completely discard
154  genic TE copies because a sizeable portion of TEs, including some active L1s, is found in
155 introns. Additionally, we only kept groups of at least 5 CpGs, to reduce the impact of the local
156  regulatory context at each CpG and ensure that each feature could be interpreted as the global
157 methylation of a given TE family (Figure 3a). Validation was again performed on a portion of
158 each dataset (n=248) and the entirety of GSE64495 (n=104). The coefficients are available in
159 data file 2. We were surprised to see that while performance of this Combined CpG TE clock
160 was worse than that of the individual CpG TE clock, it was still satisfactory (Figure 3b, c¢). In
161  particular, it still had an r of 0.90 when validated on the external dataset GSE64495.

162 Lastly, we applied the same combined CpG training strategy on reduced representation bisulfite
163 sequencing (RRBS) data of multiple mouse tissues. Due to the limited data availability, the
164  predictor was trained and validated using nested cross validation, once again only including
165 wild-type, untreated mice (n=276). The coefficients are available in data file 2. This again
166 vyielded an accurate predictor, with r = 0.90 (Figure 3e). Thus, our feature construction strategy
167 is successful on multiple sequencing platforms, tissues and organisms. We note that while the
168  strategy is indeed successful across different species, generating a single TE-based biomarker
169 for multiple species would be difficult, as TEs evolve very rapidly. For example, mice and
170  humans have a very different number and set of active TEs®*’.
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171  Accelerated TE methylation age is associated with health status

172  Next, we investigated associations between age acceleration (the difference between predicted
173  and chronological age) and health status. We tested our biomarkers on methylation data from
174 the Women's Health Initiative (WHI), a long-term study, deeply phenotyped among
175 postmenopausal women. Specifically, we used data from substudy BA23, comprising 2175
176  women aged 50-79 years at baseline, of which ~1070 developed coronary heart disease (CHD)
177  during follow-up. We examined associations between age acceleration and time to death,
178 diagnosis of any cancer, and CHD using Cox regression, including chronological age as a
179 covariate. Accelerated aging according to the individual CpG TE clock was significantly
180 associated with higher risk for all three outcomes (Figure 4a). Age acceleration according to
181  PhenoAge®, an aging biomarker trained on clinical phenotypes rather than chronological age
182 alone, had similar associations with risk of cancer and mortality as our individual CpG TE clock.
183 Increased CHD risk, however, was most associated with age acceleration according to
184  PhenoAge. Our combined CpG TE clock, on the other hand showed no significant associations
185  with cancer or CHD risk, but was still associated with risk of death. We suspect this may be due
186 to the decreased accuracy of this predictor, which relies on genome-wide methylation features.
187  We additionally tested our mouse RRBS clock on data from Petkovich et al. comprising long-
188 lived growth hormone KO (GHRKO) and Snell dwarf mice®. We note that the matching WT
189  controls were not used to train the RRBS clock. Excitingly, both Snell Dwarf and GHRKO mice
190 were predicted as significantly younger than the matching controls (Figure 3f). Thus, we
191  conclude that both individual CpG and combined CpG TE clocks show an association with the
192  health status of the individual and not only their chronological age.

193  Properties of young and old L1s as biomarkers

194  Finally, we investigated the TE families selected by our combined CpG clocks. Among the
195 notable TE families we identified, only L1HS (genic) was chosen as a feature by human
196 combined CpG clock, with methylation loss associating with increased age. However, several
197  older L1 families were chosen with stronger coefficients (LLMEi, L1PA1l, LIMA4A, L1M7 ...).
198 We found this puzzling, as we expected that the strong age association of younger L1s (L1HS,
199 L1PA2, L1PA3 and L1PA4) would make them useful for age prediction. Thus, we investigated
200 the exact trajectory of young L1 de-repression in greater detail (Figure 4b). We were surprised
201 to see that young L1s had negligible methylation loss under the age of 65 and then rapidly lost
202  methylation in older patients with a non-linear trajectory. In comparison, the older L1 families
203 selected by our combined CpG predictor showed a more linear trajectory, and began
204  demethylating at younger ages. This led us to suspect that older, “passively demethylating” TE
205 families may be better predictors of chronological age, whereas methylation loss at younger
206 TEs, in particular those with pathogenic potential, may be better predictors of disease risk.
207  Thus, we modelled average methylation at young L1s (L1HS, L1PA2, L1PA3, L1PA4) and old
208 L1s with large clock coefficients (LAMEi, LIPA11, LIMA4A, L1M7) as a function of age, this
209 time including whether individuals would be diagnosed with any cancer within 3 years of sample
210 collection (Methylation ~ Age + AnyCancerin3y, Figure 4c). We found that cancer was
211  significantly associated with decreased methylation of young L1s, but not at older ones,
212  although a trend was still present. Conversely, when accounting for cancer, age was associated
213  with decreased methylation at older L1s but not at young ones. With this knowledge we trained
214  predictors of cancer, CHD and mortality within the next 3 years solely based on young L1 CpGs
215 (n=621) in the WHI data. These events were quite rare (cancer: n = 52, chd: n = 140, death: n =
216 39, total: n = 2175) making training challenging. Nonetheless, the resulting models had mild
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217  predictive ability (Figure 4d). Interestingly, while the mortality and CHD predictors were rather
218 complex, even when choosing the optimal model with parsimony (Best mortality predictor: ncpg
219 = 93, parsimonious mortality predictor: ncpg = 60; best CHD predictor: ncpg = 180,
220  parsimonious CHD predictor: ncpg = 106, data file 3) the cancer predictors were remarkably
221  simple, using only a handful of CpGs. The simplest model based predictions on just 2 CpGs:
222  cg07575166, found in an intergenic L1HS 5'UTR, and cg26106149, located in a full length
223 L1PAS3in an intron of FBXL4, a gene with no known role in cancer initiation. The more complex
224  model used 5 more CpGs but assigned the most weight to the aforementioned 2.

225

226 Discussion
227

228 In summary, we studied the age dynamics of TE methylation, finding that most TEs, from
229  evolutionarily young, to ancestral ones, were likely to lose methylation during the course of
230 aging. However, this tendency was accentuated for young L1 elements: L1HS, L1PA2, L1PA3
231 and L1PA4, and two LTR families: THELA and THEL1C. Local CpG density and youthful
232  methylation have been previously reported to affect methylation drift rate during aging. The rate
233  of methylation loss at most TEs was well described by those two factors, but this was not the
234  case for young L1s. Thus, we hypothesize that most TEs have lost their regulatory sequences,
235 and thus lose methylation passively. Conversely, young L1s are likely to still contain regulatory
236  sequences that enable recruitment of activating epigenetic machinery. We next explored the
237 use of TE methylation loss as biomarkers of age and disease. An age predictor based on
238 individual CpGs found in TEs had remarkable accuracy, and showed associations with cancer
239 and mortality comparable to PhenoAge. We generated additional predictors based on average
240  methylation of TEs genome-wide, for both human blood methylation array data and multi-tissue
241  mouse RRBS data. While less accurate than their individual CpG counterparts, these predictors
242  were still satisfactory (r > 0.9) and showed associations with health status. We were surprised to
243  see that these predictors did not mainly rely on young L1s despite their strong age association,
244 prompting us to investigate the exact timing of young L1 derepression. We found that young L1s
245  rapidly derepressed only after age of 65 and were otherwise very stable beforehand. This age
246  coincides with the age of onset of many age-related diseases. Thus, we explored associations
247  between loss of methylation and disease, finding that methylation loss at young L1ls was
248  associated with cancer but not age, while the opposite was true for the older L1s selected by the
249  clock. Finally, we trained predictors for cancer, CHD, and mortality within 3 years of the
250 methylation measurement, solely based on young L1 CpGs. The mortality and cancer predictors
251  were mildly successful and, in particular, the cancer predictor made use of only 2 CpGs in
252 young L1s. Future studies may investigate the mechanism behind this seemingly direct
253 relationship. An obvious question is whether young L1 derepression is the cause or
254  consequence of cancer. Indeed, both mechanisms are possible, as mutations of epigenetic
255 machinery are common in cancer®. However, as the loss of CpGs was detected in the blood
256 and was predictive of cancer events in other organs, it is possible that TE derepression may
257 promote cancer by accelerating inflammation or by promoting other pathological processes
258  through other non-cell autonomous mechanisms. Finally, loss of methylation at young L1s could
259 be neither the cause nor the consequence of cancer, and instead both events could have
260 common drivers. The clonal haematopoiesis is a likely suspect, as the most common mutation
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261 in clonal hematopoiesis is DNMT3A, a de-novo methyltransferase®®*?

262  contribute to the loss of methylation on TEs.

, which may also

263
264

265 Methods

266  Datasets

267 We used 4 public human blood array datasets (GSE64495*, GSE40279%', GSE157131*,
268 GSE147221%) to determine associations between age and TE methylation loss, and to train
269 and validate the human age predictors. GSE87648%° was only included in predictor training and
270 validation because it appeared to have an internal batch effect (determined by PCA). The WHI
271  human blood dataset BA23 (https://www.whi.org/study/BA23) and related metadata were used
272  toinvestigate relationships between TE clock age acceleration and risk of disease and mortality,
273 and later investigate associations between young L1 methylation loss and disease. Mouse
274  multi-tissue datasets GSE60012%", GSE93957*°, GSE80672%® we used to train and validate the
275 mouse age predictor. All data was used as pre-processed by the original authors with the
276  exception of GSE60012, as the needed processed files were unavailable.

277  Annotation of CpGs and repetitive elements

278  The coordinates of infinium array CpGs were obtained from the Illumina manifest. We used
279  RepeatMasker to annotate repeats in GRCh37 and GRCm38 genomes. ChipSeeker* was used
280 to annotate the genomic context of CpGs.

281  Statistics

282  Associations between age and Infinium array CpG methylation were determined using limma?®,
283  with the design ~ age + sex + study. The fitted coefficients were used as methylation drift rates,
284  whereas methylation at 20 years of age was calculated as intercept + coef * 20. Our fitting of
285  expected age drift as function of CpG density and youthful methylation level employed a general
286  additive model (gam) with covariates for CpG density within 100 bp of the CpG in question, the
287  methylation of that CpG at 20 years of age, and the interaction of the two covariates (age_coef
288  ~ s(methylationAt20yo, bs = "cs") + s(CpG_density, bs = "cs") + s(methylationAt20yo, bs = "cs",
289 by=CpG_density)). Associations between age acceleration and mortality/disease risk were
290 tested using a Cox regression model (coxph in R) with formula Surv(time-to-event, status) ~
291  acceleration + age.

292  Predictor training and validation

293  All predictors in this study are a form of elastic net, implemented by the gimnet R package. Age
294  predictors use the gaussian family argument whereas the disease/mortality predictors use the
295 binomial (logistic) family argument. Age predictions were evaluated by root mean squared
296 error(RMSE), median absolute error(MAE) and pearson’s r. Disease/mortality predictions were
297 evaluated by receiver operating characteristic area-under-the-curve (ROC AUC). Prior to
298 training/predicting, we transformed ages using the same age transformation used by Horvath in
299 the Pan-tissue? and Skin & Blood® clocks. Briefly, ages below the age of maturity (20 years for
300 humans, 6 weeks for mice) were log transformed, to linearize the relationship between age and
301 methylation in developmental stages. When sufficient samples were available, we validated our
302 predictors by leaving out a portion of all data and an entire dataset (GSE64495) for testing, and
303 training/choosing hyperparameters on the remainder of the data by cross-validation. When the
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304 number of samples was limited, we used nested cross-validation. Hyperparameters explored by
305 grid search and selected to give the lowest cross-validation MSE (mean squared error) or ROC
306 AUC, with the exception of the models we called “parsimonious” for which hyperparameters
307  were selected to give the simplest model within 1 standard deviation of the best performance.
308 Any individual with known health conditions or treatments were excluded from model training.
309 The matching wild-type controls of GHRKO and Snell dwarf strains were also excluded from
310 clock training, to have a fair comparison.

311 Predictor benchmarking

312 We downloaded clock coefficients published with the original manuscripts. Ages were
313 transformed (and inverse transformed) for prediction if required (Horvath Pan-tissue and Skin &
314  Blood). All clocks were then applied to the same samples of GSE64495 and the WHI BA23
315 dataset. Clock features with missing values in the WHI BA23 (1.5% of all values) were imputed
316  using the makeX R function.

317 RRBS data processing

318 Raw reads were downloaded from SRA and trimmed using TrimGalore!*® with the --rrbs option.
319 We aligned trimmed reads to the GRCm38 genome build using Bismark® and quantified
320 methylation with bismark_methylation_extractor and bismark2bedGraph.
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334 Figure legends
335

336 Figure 1: Transposons and particularly young L1s are biased towards losing methylation
337 during aging. (A) Public human blood DNA methylation datasets and age distributions. (B)
338  Youthful methylation level and age-related drift of CpGs in and outside of repetitive elements.
339 (C) Methylation drift rate of CpG, grouped by major repeat class. Selfish (transposons) and non-
340 selfish repeated grouped separately. (D) Methylation drift rate of CpG in L1s, grouped by family
341 and sorted by average sequence length: a proxy of evolutionary age. Only families represented
342 by 40 or more CpGs in the infinium array were shown (E) Methylation drift rate of CpG in LTRs,
343 grouped by family and sorted by average sequence length. Only families represented by 40 or
344  more CpGs in the infinium array were shown.

345

346  Figure 2: Age drift of TE CpGs compared to what is expected based on CpG density and
347 youthful methylation level. (A) Trends of methylation drift based on youthful methylation
348 levels. (B) Trends of methylation drift based on local CpG density. (C,D,E,F) Age coefficient of
349 methylation at LINEs, LTRs, SINEs and DNA transposon CpGs after adjustment for CpG
350 density and youthful methylation level. Only families represented by 40 or more CpGs in the
351 infinium array were shown.

352

353  Figure 3: Construction of age biomarkers based on methylation of individual CpGs within
354 TEs and genome-wide TE family methylation. (A) Feature construction strategy. (B) Test set
355 performance of single CpG clock. (C) Test set performance of combined CpG clock. (D)
356 Benchmark of individual and combined CpG clock against state-of-the art methylation clocks.
357 The benchmark was performed on GSE64495, which was not included in the training set of any
358 of the clocks shown. (E) Performance of a combined CpG clock trained on multi-tissue mouse
359 RRBS data. (F) Age prediction on long lived mouse strains compared to matching controls.

360

361 Figure 4: Association between TE clock acceleration, TE methylation loss and disease.
362  (A) Association between age acceleration and risk of cancer, CHD and mortality according to
363 the individual and combined CpG clocks in the WHI BA23 dataset. Results are benchmarked
364 against state of the art chronological age clocks (Horvath Pan-tissue and Horvath Skin and
365 Blood) and biological age clocks (Horvath PhenoAge). (B) Age trajectory of methylation at
366  young L1s (first row) and old L1s with the largest coefficients in the combined CpG clock (send
367 row). Data from GSE40279. Orange dashed line shows a linear fit, excluding patients over 65
368 years-old. Teal line shows a loess fit on the full age range. (C) Effect of cancer within 3 years
369 and age on methylation of young and old L1s in the WHI data. (D) Performance of predictors of
370  risk of cancer, CHD and mortality within 3 years. Best and parsimonious models are shown.

371

372  Figure S1. Genomic context of RE CpGs. Age trends of SINE and DNA transposon
373  methylation. (A) Genomic context of all REs, all probes in the infinium array, RE probes in the
374  infinium array. (B) Genomic context of infinium probes by major RE class. (C) Methylation drift
375 rate of CpG in SINEs, grouped by family and sorted by average sequence length. Only families
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376 represented by 40 or more CpGs in the infinium array were shown. (D) Methylation drift rate of
377 CpG in DNA transposons, grouped by family and sorted by average sequence length. Only
378  families represented by 40 or more CpGs in the infinium array were shown.

379
380 Figure S2: Composition of TE clocks by class.
381
382
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