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Abstract 17 
 18 

Transposable elements (TEs) are DNA sequences that expand selfishly in the genome, possibly 19 
causing severe cellular damage. While normally silenced, TEs have been shown to activate 20 
during aging. DNA methylation is one of the main mechanisms by which TEs are silenced and 21 
has been used to train highly accurate age predictors. Yet, one common criticism of such 22 
predictors is that they lack interpretability. In this study, we investigate the changes in TE 23 
methylation that occur during human aging. We find that evolutionarily young LINE1s (L1s), the 24 
only known TEs capable of autonomous transposition in humans, undergo the fastest loss of 25 
methylation, suggesting an active mechanism of de-repression. We then show that accurate 26 
age predictors can be trained on both methylation of individual TE copies and average 27 
methylation of TE families genome wide. Lastly, we show that while old L1s gradually lose 28 
methylation during the entire lifespan, demethylation of young L1s only happens late in life and 29 
is associated with cancer. 30 

 31 

 32 

Introduction 33 
 34 

Repetitive elements (REs) are DNA sequences found in high copy number in the genome1. 35 
Transposable elements (TEs), or selfish REs, are REs that have the ability to copy themselves 36 
and move to new genomic locations, either directly as DNA (DNA transposons) or through an 37 
RNA intermediate that is reverse-transcribed (LINEs, SINEs, LTRs). The selfish replication of 38 
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TEs has led them to occupy a large portion of genomes (around 40% in mammals). TE activity 39 
is potentially highly detrimental to the individual, as random integrations can disable genes and 40 
even unsuccessful integration attempts can generate double stranded breaks2. Even further, 41 
TEs can produce cDNA copies that stimulate cytosolic DNA sensing pathways leading to 42 
inflammation3–6. Finally, TEs can disrupt normal gene regulatory networks by influencing the 43 
expression of nearby genes through their regulatory sequences7. Due to their pathogenic 44 
potential, TEs are kept under tight control by the host with multiple regulatory layers8. DNA 45 
methylation is one of the main ways by which cells silence TEs9. DNA methylation patterns are 46 
established in bulk during development and are then largely maintained throughout lifespan, 47 
although de-novo methylation and active demethylation still occur10. Prior studies in multiple 48 
organisms and tissues found that methylation patterns undergo a slow drift during aging, with 49 
many normally hypermethylated regions becoming less repressed11–13. At the same time, TEs 50 
have been shown to activate during aging in invertebrates, mice, human senescent cells, and 51 
certain cancers2,14,15. It thus seems possible that age-related alterations of DNA methylation 52 
could play a role in TE activation.  53 

Aging clocks are statistical models trained to predict age and age-related phenotypes, including 54 
time to death16. In addition to predicting the age of samples of unknown age, for example in 55 
forensics, aging clocks have been used to study health conditions, lifestyles, genetic or 56 
pharmacological treatments that alter an organism’s biological age. Typically, age predictions 57 
are based on omic data types including gene expression17,18, protein abundance19, chromatin 58 
accessibility20 and most commonly, DNA methylation21–26. One common criticism of aging clocks 59 
deals with the difficulty in interpreting the biological meaning of observed changes in DNA 60 
methylation patterns. One strategy previously used to improve clock interpretability is to group 61 
clock CpGs into different modules corresponding to different biological processes27,28.  62 

In this study, we explore the use of TE methylation as a biomarker of age and disease. First, we 63 
reanalyzed public human blood methylation data to determine the trajectory of TE methylation 64 
during aging, comparing evolutionarily young and old TEs. We then constructed age predictors 65 
for mice and humans. Lastly, we investigated associations between accelerated age prediction, 66 
and more generally loss of methylation at TEs, and disease. 67 

 68 

Results 69 
 70 

Data description 71 
To investigate changes in RE methylation that occur during aging we collected publicly available 72 
human blood methylation array data. Later, we additionally investigate association between TE 73 
methylation and disease using the Women’s Health Initiative (WHI) BA23 dataset. The dataset 74 
characteristics are summarized in Figure 1a. All datasets were generated with the Illumina 75 
Infinium 450k array, which measures methylation at 485578 CpGs. We annotated array CpGs 76 
based on the type of RE and genic region (Exon, intron, promoter, 5’ UTR, 3’ UTR, intergenic) 77 
they lied within. Array CpGs were generally biased to genic regions, whereas complex repeats 78 
generally lie in intergenic regions or introns (Supplementary figure 1a). Nonetheless, 69426 79 
CpGs were contained within REs, mainly LINEs, SINEs, LTRs, DNA transposons, and simple 80 
repeats, Supplementary figure 1b). While most RE CpGs were primarily intergenic and intronic 81 
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(Supplementary figure 1b), simple repeats and low complexity regions were predominantly 82 
found in promoters. 83 

Transposable elements and especially young L1s become derepressed during aging 84 
Next, we investigated the age dynamics of RE and non-RE CpGs. We used limma29 to fit linear 85 
regression models to the methylation levels of all array CpGs including age, sex and the study 86 
of origin as independent variables (Data file 1). Patients with reported health conditions in the 87 
original studies were not included in the analysis, to initially focus on RE methylation changes 88 
that are associated with aging rather than disease. RE CpGs were hypermethylated in young 89 
individuals (20 years old), but were more likely to have decreased methylation in older 90 
individuals, compared to non-RE CpGs (Figure 1b). When investigating different classes of REs 91 
individually, we found that TEs (LINEs, SINEs, LTRs, DNA transposons, retroposons) were 92 
much more prone to losing methylation than non-selfish REs (tRNA, rRNA, satellites, simple 93 
repeats, low complexity regions. Figure 1c). We initially focused on L1s, since they are the only 94 
TEs known to be active and autonomous in humans30. Therefore, de-repression of L1s could be 95 
sufficient to cause cellular damage. Fortunately, most L1 copies are truncated, or have mutated 96 
over evolutionary time scales and are thus inactive31,32. Conversely, competent, evolutionarily 97 
young L1 copies are closer to 6000 bp long. We found an association between the average 98 
length of L1 families and their propensity to become demethylated with age (Figure 1d). The 99 
most extreme methylation loss was observed in L1HS, L1PA2, L1PA3 and L1PA4, which are 100 
the 4 youngest L1 families present in the human genome31. Older families were also generally 101 
prone to methylation loss, but to a much smaller extent. We then investigated other TE classes: 102 
among LTRs, families THE1A and THE1C showed the fastest methylation loss (Figure 1e). 103 
While not retrotransposition-competent, derepression of these families was shown to drive 104 
expression of oncogenes7. Most SINE and DNA transposons were also biased towards losing 105 
methylation during age, but the median drift rate was relatively small, and no particular family 106 
stood out. (Supplementary figure 1c, d) 107 

Demethylation of young L1s outpaces passive methylation loss  108 
The difference in demethylation rate between young and old L1 could indicate that they become 109 
de-repressed by different means: de-repression of old L1s may be a result of global age-related 110 
methylation loss, which has been previously documented and is often attributed to imperfect 111 
maintenance of methylation marks by DNMT112. Conversely, young L1s may actively de-112 
repress by recruiting activating transcription factors at their 5’ UTR33. Alternatively, this 113 
discrepancy may be explained by differences between the CpG landscape of young and old L1 114 
families. For example, young L1s have a higher CpG density, which is gradually lost over 115 
evolutionary time scales due to C-to-T mutations34, and CpG density has been shown to affect 116 
the rate of passive methylation loss35,36. Additionally, the initial (post-development) level of CpG 117 
methylation may affect the methylation drift rate simply because highly polarized states (e.g. 118 
fully methylated) can only lose methylation, while intermediate methylation states are able to 119 
both gain and lose methylation during aging. Thus, we modelled the average methylation drift 120 
rate of CpGs based on local CpG density, youthful methylation level and the interaction of the 121 
two (Figure 2a). This model explained 24.7% of age coefficient variation and confirmed prior 122 
reports that low CpG density associates with age-related methylation loss. Hypomethylated 123 
CpGs (< 20% methylated) were more likely to gain methylation during aging, but 124 
hypermethylated CpGs (> 80% methylated) were not particularly biased towards methylation 125 
loss. We then adjusted the previously calculated age coefficients with this information (Data file 126 
1). These adjusted age coefficients should be interpreted as “the age drift rate of a given CpG, 127 
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compared to what would be expected from the average CpG with the same local CpG density 128 
and youthful methylation level”. The adjusted coefficients of most TE families of all 4 major 129 
classes were close to zero or even slightly positive, meaning that their aging trajectory could be 130 
explained by the local CpG context and youthful methylation state and is likely a passive 131 
phenomenon (Figure 2b, c, d, e). Conversely, L1HS, L1PA2, L1PA3 and L1PA4 retained a 132 
higher-than-expected rate of methylation loss, reinforcing the hypothesis that their derepression 133 
may be, at least in part, an active process. 134 

TE methylation as an accurate and interpretable biomarker of age 135 
Next, we investigated if the methylation state of TEs could be used to predict chronological age. 136 
Thus, we selected CpGs found in TEs (LINE, SINE, LTR, DNA transposons, ncpg=56352, 137 
figure 3a) and trained an elastic net model on a portion of our data (n=999), leaving out a 138 
portion of each dataset (n=248) and the entirety of GSE64495 (n=104) as external validation 139 
(Figure 3b, c). The coefficients are available in data file 2. This individual CpG TE clock was in 140 
both cases highly accurate (RMSE = 5.58, MAE = 2.96, r = 0.95 on GSE64495). We compared 141 
this performance with other state-of-the-art chronological age clocks and found that the 142 
individual CpG TE clock performed better than the Hannum and Horvath pan-tissue clocks but 143 
worse than Horvath Skin & Blood. Thus, the methylation state of individual CpGs within TEs can 144 
be used to construct a remarkably accurate clock.  145 

While constructing a biomarker on a particular biological process such as TE derepression can 146 
indeed help with interpretability, further considerations should be made. Most importantly, 147 
transposons are disseminated everywhere in the genome, including near genes and very 148 
commonly in introns. Thus, while the state of methylation of a single TE CpG may be 149 
representative of the status of that TE copy, it may also be affected by the local chromatin 150 
context (for example, whether a nearby gene is transcribed or not). To further improve 151 
interpretability, we trained a new clock, this time on the average genome-wide methylation state 152 
of TE families, separating genic and intergenic TE copies. We chose not to completely discard 153 
genic TE copies because a sizeable portion of TEs, including some active L1s, is found in 154 
introns. Additionally, we only kept groups of at least 5 CpGs, to reduce the impact of the local 155 
regulatory context at each CpG and ensure that each feature could be interpreted as the global 156 
methylation of a given TE family (Figure 3a). Validation was again performed on a portion of 157 
each dataset (n=248) and the entirety of GSE64495 (n=104). The coefficients are available in 158 
data file 2. We were surprised to see that while performance of this Combined CpG TE clock 159 
was worse than that of the individual CpG TE clock, it was still satisfactory (Figure 3b, c). In 160 
particular, it still had an r of 0.90 when validated on the external dataset GSE64495.  161 

Lastly, we applied the same combined CpG training strategy on reduced representation bisulfite 162 
sequencing (RRBS) data of multiple mouse tissues. Due to the limited data availability, the 163 
predictor was trained and validated using nested cross validation, once again only including 164 
wild-type, untreated mice (n=276). The coefficients are available in data file 2. This again 165 
yielded an accurate predictor, with r = 0.90 (Figure 3e). Thus, our feature construction strategy 166 
is successful on multiple sequencing platforms, tissues and organisms. We note that while the 167 
strategy is indeed successful across different species, generating a single TE-based biomarker 168 
for multiple species would be difficult, as TEs evolve very rapidly. For example, mice and 169 
humans have a very different number and set of active TEs31,37. 170 
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Accelerated TE methylation age is associated with health status 171 
Next, we investigated associations between age acceleration (the difference between predicted 172 
and chronological age) and health status. We tested our biomarkers on methylation data from 173 
the Women’s Health Initiative (WHI), a long-term study, deeply phenotyped among 174 
postmenopausal women. Specifically, we used data from substudy BA23, comprising 2175 175 
women aged 50-79 years at baseline, of which ~1070 developed coronary heart disease (CHD) 176 
during follow-up. We examined associations between age acceleration and time to death, 177 
diagnosis of any cancer, and CHD using Cox regression, including chronological age as a 178 
covariate. Accelerated aging according to the individual CpG TE clock was significantly 179 
associated with higher risk for all three outcomes (Figure 4a). Age acceleration according to 180 
PhenoAge24, an aging biomarker trained on clinical phenotypes rather than chronological age 181 
alone, had similar associations with risk of cancer and mortality as our individual CpG TE clock. 182 
Increased CHD risk, however, was most associated with age acceleration according to 183 
PhenoAge. Our combined CpG TE clock, on the other hand showed no significant associations 184 
with cancer or CHD risk, but was still associated with risk of death. We suspect this may be due 185 
to the decreased accuracy of this predictor, which relies on genome-wide methylation features. 186 
We additionally tested our mouse RRBS clock on data from Petkovich et al. comprising long-187 
lived growth hormone KO (GHRKO) and Snell dwarf mice38. We note that the matching WT 188 
controls were not used to train the RRBS clock. Excitingly, both Snell Dwarf and GHRKO mice 189 
were predicted as significantly younger than the matching controls (Figure 3f). Thus, we 190 
conclude that both individual CpG and combined CpG TE clocks show an association with the 191 
health status of the individual and not only their chronological age.  192 

Properties of young and old L1s as biomarkers 193 
Finally, we investigated the TE families selected by our combined CpG clocks. Among the 194 
notable TE families we identified, only L1HS (genic) was chosen as a feature by human 195 
combined CpG clock, with methylation loss associating with increased age. However, several 196 
older L1 families were chosen with stronger coefficients (L1MEi, L1PA11, L1MA4A, L1M7 …). 197 
We found this puzzling, as we expected that the strong age association of younger L1s (L1HS, 198 
L1PA2, L1PA3 and L1PA4) would make them useful for age prediction. Thus, we investigated 199 
the exact trajectory of young L1 de-repression in greater detail (Figure 4b). We were surprised 200 
to see that young L1s had negligible methylation loss under the age of 65 and then rapidly lost 201 
methylation in older patients with a non-linear trajectory. In comparison, the older L1 families 202 
selected by our combined CpG predictor showed a more linear trajectory, and began 203 
demethylating at younger ages. This led us to suspect that older, “passively demethylating” TE 204 
families may be better predictors of chronological age, whereas methylation loss at younger 205 
TEs, in particular those with pathogenic potential, may be better predictors of disease risk. 206 
Thus, we modelled average methylation at young L1s (L1HS, L1PA2, L1PA3, L1PA4) and old 207 
L1s with large clock coefficients (L1MEi, L1PA11, L1MA4A, L1M7) as a function of age, this 208 
time including whether individuals would be diagnosed with any cancer within 3 years of sample 209 
collection (Methylation ~ Age + AnyCancerIn3y, Figure 4c). We found that cancer was 210 
significantly associated with decreased methylation of young L1s, but not at older ones, 211 
although a trend was still present. Conversely, when accounting for cancer, age was associated 212 
with decreased methylation at older L1s but not at young ones. With this knowledge we trained 213 
predictors of cancer, CHD and mortality within the next 3 years solely based on young L1 CpGs 214 
(n=621) in the WHI data. These events were quite rare (cancer: n = 52, chd: n = 140, death: n = 215 
39, total: n = 2175) making training challenging. Nonetheless, the resulting models had mild 216 
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predictive ability (Figure 4d). Interestingly, while the mortality and CHD predictors were rather 217 
complex, even when choosing the optimal model with parsimony (Best mortality predictor: ncpg 218 
= 93, parsimonious mortality predictor: ncpg = 60; best CHD predictor: ncpg = 180, 219 
parsimonious CHD predictor: ncpg = 106, data file 3) the cancer predictors were remarkably 220 
simple, using only a handful of CpGs. The simplest model based predictions on just 2 CpGs: 221 
cg07575166, found in an intergenic L1HS 5’UTR, and cg26106149, located in a full length 222 
L1PA3 in an intron of FBXL4, a gene with no known role in cancer initiation. The more complex 223 
model used 5 more CpGs but assigned the most weight to the aforementioned 2. 224 

 225 

Discussion 226 
 227 

In summary, we studied the age dynamics of TE methylation, finding that most TEs, from 228 
evolutionarily young, to ancestral ones, were likely to lose methylation during the course of 229 
aging. However, this tendency was accentuated for young L1 elements: L1HS, L1PA2, L1PA3 230 
and L1PA4, and two LTR families: THE1A and THE1C. Local CpG density and youthful 231 
methylation have been previously reported to affect methylation drift rate during aging. The rate 232 
of methylation loss at most TEs was well described by those two factors, but this was not the 233 
case for young L1s. Thus, we hypothesize that most TEs have lost their regulatory sequences, 234 
and thus lose methylation passively. Conversely, young L1s are likely to still contain regulatory 235 
sequences that enable recruitment of activating epigenetic machinery. We next explored the 236 
use of TE methylation loss as biomarkers of age and disease. An age predictor based on 237 
individual CpGs found in TEs had remarkable accuracy, and showed associations with cancer 238 
and mortality comparable to PhenoAge. We generated additional predictors based on average 239 
methylation of TEs genome-wide, for both human blood methylation array data and multi-tissue 240 
mouse RRBS data. While less accurate than their individual CpG counterparts, these predictors 241 
were still satisfactory (r > 0.9) and showed associations with health status. We were surprised to 242 
see that these predictors did not mainly rely on young L1s despite their strong age association, 243 
prompting us to investigate the exact timing of young L1 derepression. We found that young L1s 244 
rapidly derepressed only after age of 65 and were otherwise very stable beforehand. This age 245 
coincides with the age of onset of many age-related diseases. Thus, we explored associations 246 
between loss of methylation and disease, finding that methylation loss at young L1s was 247 
associated with cancer but not age, while the opposite was true for the older L1s selected by the 248 
clock. Finally, we trained predictors for cancer, CHD, and mortality within 3 years of the 249 
methylation measurement, solely based on young L1 CpGs. The mortality and cancer predictors 250 
were mildly successful and, in particular, the cancer predictor made use of only 2 CpGs in 251 
young L1s. Future studies may investigate the mechanism behind this seemingly direct 252 
relationship. An obvious question is whether young L1 derepression is the cause or 253 
consequence of cancer. Indeed, both mechanisms are possible, as mutations of epigenetic 254 
machinery are common in cancer39. However, as the loss of CpGs was detected in the blood 255 
and was predictive of cancer events in other organs, it is possible that TE derepression may 256 
promote cancer by accelerating inflammation or by promoting other pathological processes 257 
through other non-cell autonomous mechanisms. Finally, loss of methylation at young L1s could 258 
be neither the cause nor the consequence of cancer, and instead both events could have 259 
common drivers. The clonal haematopoiesis is a likely suspect, as the most common mutation 260 
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in clonal hematopoiesis is DNMT3A, a de-novo methyltransferase40–42, which may also 261 
contribute to the loss of methylation on TEs.  262 

 263 

 264 

Methods 265 

Datasets 266 
We used 4 public human blood array datasets (GSE6449543, GSE4027921, GSE15713144, 267 
GSE14722145) to determine associations between age and TE methylation loss, and to train 268 
and validate the human age predictors. GSE8764846 was only included in predictor training and 269 
validation because it appeared to have an internal batch effect (determined by PCA). The WHI 270 
human blood dataset BA23 (https://www.whi.org/study/BA23) and related metadata were used 271 
to investigate relationships between TE clock age acceleration and risk of disease and mortality, 272 
and later investigate associations between young L1 methylation loss and disease. Mouse 273 
multi-tissue datasets GSE6001247, GSE9395748, GSE8067238 we used to train and validate the 274 
mouse age predictor. All data was used as pre-processed by the original authors with the 275 
exception of GSE60012, as the needed processed files were unavailable. 276 

Annotation of CpGs and repetitive elements 277 
The coordinates of infinium array CpGs were obtained from the Illumina manifest. We used 278 
RepeatMasker to annotate repeats in GRCh37 and GRCm38 genomes. ChipSeeker49 was used 279 
to annotate the genomic context of CpGs.  280 

Statistics 281 
Associations between age and Infinium array CpG methylation were determined using limma29, 282 
with the design ~ age + sex + study. The fitted coefficients were used as methylation drift rates, 283 
whereas methylation at 20 years of age was calculated as intercept + coef * 20. Our fitting of 284 
expected age drift as function of CpG density and youthful methylation level employed a general 285 
additive model (gam) with covariates for CpG density within 100 bp of the CpG in question, the 286 
methylation of that CpG at 20 years of age, and the interaction of the two covariates (age_coef 287 
~ s(methylationAt20yo, bs = "cs") + s(CpG_density, bs = "cs") + s(methylationAt20yo, bs = "cs", 288 
by=CpG_density)). Associations between age acceleration and mortality/disease risk were 289 
tested using a Cox regression model (coxph in R) with formula Surv(time-to-event, status) ~ 290 
acceleration + age.  291 

Predictor training and validation 292 
All predictors in this study are a form of elastic net, implemented by the glmnet R package. Age 293 
predictors use the gaussian family argument whereas the disease/mortality predictors use the 294 
binomial (logistic) family argument. Age predictions were evaluated by root mean squared 295 
error(RMSE), median absolute error(MAE) and pearson’s r. Disease/mortality predictions were 296 
evaluated by receiver operating characteristic area-under-the-curve (ROC AUC). Prior to 297 
training/predicting, we transformed ages using the same age transformation used by Horvath in 298 
the Pan-tissue22 and Skin & Blood23 clocks. Briefly, ages below the age of maturity (20 years for 299 
humans, 6 weeks for mice) were log transformed, to linearize the relationship between age and 300 
methylation in developmental stages. When sufficient samples were available, we validated our 301 
predictors by leaving out a portion of all data and an entire dataset (GSE64495) for testing, and 302 
training/choosing hyperparameters on the remainder of the data by cross-validation. When the 303 
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number of samples was limited, we used nested cross-validation. Hyperparameters explored by 304 
grid search and selected to give the lowest cross-validation MSE (mean squared error) or ROC 305 
AUC, with the exception of the models we called “parsimonious” for which hyperparameters 306 
were selected to give the simplest model within 1 standard deviation of the best performance. 307 
Any individual with known health conditions or treatments were excluded from model training. 308 
The matching wild-type controls of GHRKO and Snell dwarf strains were also excluded from 309 
clock training, to have a fair comparison. 310 

Predictor benchmarking 311 
We downloaded clock coefficients published with the original manuscripts. Ages were 312 
transformed (and inverse transformed) for prediction if required (Horvath Pan-tissue and Skin & 313 
Blood). All clocks were then applied to the same samples of GSE64495 and the WHI BA23 314 
dataset. Clock features with missing values in the WHI BA23 (1.5% of all values) were imputed 315 
using the makeX R function. 316 

RRBS data processing 317 
Raw reads were downloaded from SRA and trimmed using TrimGalore!50 with the --rrbs option. 318 
We aligned trimmed reads to the GRCm38 genome build using Bismark51 and quantified 319 
methylation with bismark_methylation_extractor and bismark2bedGraph. 320 

 321 
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Figure legends 334 
 335 

Figure 1: Transposons and particularly young L1s are biased towards losing methylation 336 
during aging. (A) Public human blood DNA methylation datasets and age distributions. (B) 337 
Youthful methylation level and age-related drift of CpGs in and outside of repetitive elements. 338 
(C) Methylation drift rate of CpG, grouped by major repeat class. Selfish (transposons) and non-339 
selfish repeated grouped separately. (D)  Methylation drift rate of CpG in L1s, grouped by family 340 
and sorted by average sequence length: a proxy of evolutionary age. Only families represented 341 
by 40 or more CpGs in the infinium array were shown (E) Methylation drift rate of CpG in LTRs, 342 
grouped by family and sorted by average sequence length. Only families represented by 40 or 343 
more CpGs in the infinium array were shown. 344 

 345 

Figure 2: Age drift of TE CpGs compared to what is expected based on CpG density and 346 
youthful methylation level. (A) Trends of methylation drift based on youthful methylation 347 
levels. (B) Trends of methylation drift based on local CpG density. (C,D,E,F) Age coefficient of 348 
methylation at LINEs, LTRs, SINEs and DNA transposon CpGs after adjustment for CpG 349 
density and youthful methylation level. Only families represented by 40 or more CpGs in the 350 
infinium array were shown. 351 

 352 

Figure 3: Construction of age biomarkers based on methylation of individual CpGs within 353 
TEs and genome-wide TE family methylation. (A) Feature construction strategy. (B) Test set 354 
performance of single CpG clock. (C) Test set performance of combined CpG clock. (D) 355 
Benchmark of individual and combined CpG clock against state-of-the art methylation clocks. 356 
The benchmark was performed on GSE64495, which was not included in the training set of any 357 
of the clocks shown. (E) Performance of a combined CpG clock trained on multi-tissue mouse 358 
RRBS data. (F) Age prediction on long lived mouse strains compared to matching controls. 359 

 360 

Figure 4: Association between TE clock acceleration, TE methylation loss and disease. 361 
(A) Association between age acceleration and risk of cancer, CHD and mortality according to 362 
the individual and combined CpG clocks in the WHI BA23 dataset. Results are benchmarked 363 
against state of the art chronological age clocks (Horvath Pan-tissue and Horvath Skin and 364 
Blood) and biological age clocks (Horvath PhenoAge). (B) Age trajectory of methylation at 365 
young L1s (first row) and old L1s with the largest coefficients in the combined CpG clock (send 366 
row). Data from GSE40279. Orange dashed line shows a linear fit, excluding patients over 65 367 
years-old. Teal line shows a loess fit on the full age range. (C) Effect of cancer within 3 years 368 
and age on methylation of young and old L1s in the WHI data. (D) Performance of predictors of 369 
risk of cancer, CHD and mortality within 3 years. Best and parsimonious models are shown. 370 

 371 

Figure S1: Genomic context of RE CpGs. Age trends of SINE and DNA transposon 372 
methylation. (A) Genomic context of all REs, all probes in the infinium array, RE probes in the 373 
infinium array. (B) Genomic context of infinium probes by major RE class. (C) Methylation drift 374 
rate of CpG in SINEs, grouped by family and sorted by average sequence length. Only families 375 
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represented by 40 or more CpGs in the infinium array were shown. (D) Methylation drift rate of 376 
CpG in DNA transposons, grouped by family and sorted by average sequence length. Only 377 
families represented by 40 or more CpGs in the infinium array were shown. 378 

 379 

Figure S2: Composition of TE clocks by class.  380 

 381 

  382 
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