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Abstract
In 2018-2019, Thailand experienced a nationwide spread of chikungunya virus (CHIKV), with
approximately 15,000 confirmed cases of disease reported. Here, we investigated the evolutionary
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and molecular history of the East/Central/South African (ECSA) genotype to determine the origins
of the 2018-2019 CHIKYV outbreak in Thailand. This was done using newly sequenced clinical
samples from travellers returning to Sweden from Thailand in late 2018 and early 2019 and
previously published genome sequences. Our phylogeographic analysis showed that before the
outbreak in Thailand, the Indian Ocean lineage (IOL) found within the ESCA, had evolved and
circulated in East Africa, South Asia, and Southeast Asia for about 15 years. In the first half of
2017, an introduction occurred into Thailand from another South Asian country, most likely
Bangladesh, which subsequently developed into a large outbreak in Thailand with export to
neighbouring countries. Based on comparative phylogenetic analyses of the complete CHIKV
genome and protein modelling, we also identified amino acid substitutions that may be associated
with immune evasion, increased spread, and virulence. We identified several mutations in the
E1/E2 spike complex, such as E1 K211E and E2 V264A, which are highly relevant as they may
lead to changes in vector competence, transmission efficiency and pathogenicity of the virus. A
number of mutations (E2 G205S, Nsp3 D372E, Nsp2 V793A), that emerged shortly before the
outbreak of the virus in Thailand in 2018 may have altered antibody binding and recognition due to
their position. This study not only improves our understanding of the factors contributing to the
epidemic in Southeast Asia, but also has implications for the development of effective response
strategies and the potential development of new vaccines.

Author Summary
We investigated the evolutionary and molecular history of the East/Central/South African (ECSA)

genotype to determine the origins of the 2018-2019 chikungunya virus (CHIKV) outbreak in
Thailand. We used newly sequenced clinical samples from travellers returning to Sweden from
Thailand in late 2018 and early 2019 together with previously published genome sequences. Our
phylogeographic analysis shows that the Indian Ocean lineage (IOL), found within ECSA, evolved
in Eastern Africa, Southern Asia, and Southeast Asia for about 15 years before the outbreak in
Thailand in 2018. We have also identified amino acid substitutions that may be associated with
immune evasion, increased spread, and higher virulence that occurred prior to the outbreak and may
have played a critical role in the rapid spread of the virus. Our study concludes that monitoring and
understanding CHIKV dynamics remains critical for an effective response to the previously
unpredictable outbreaks of the virus.

Introduction
Chikungunya virus (CHIKYV, Togaviridae), is a single-strand positive-sense mosquito-borne RNA

virus with a genome of approximately 12 kb that comprises two open reading frames (ORFs)
encoding non-structural and structural proteins respectively [1]. The virus is transmitted to humans
mainly through the bites of infected mosquitoes, such as Aedes aegypti and Ae. albopictus, which
are widely distributed in tropical and subtropical regions around the world. [2-5]. These mosquito
species are also responsible for the transmission of other well-known viruses, for example dengue
virus, Zika virus, and yellow fever virus [2]. CHIKV was first discovered in Tanzania in 1952 and
has since its discovery both been identified and/or suggested to be the causative agent of multiple
outbreaks in Africa and Asia for several decades, if not centuries [6, 7]. However, since 2004 the
virus has spread rapidly to new geographic regions and cases are now reported from over 100
countries in Asia, Africa, Europe, and the Americas [8, 9]. The geographic distribution of CHIKV
is primarily determined by the presence and spread of its mosquito vectors.
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In African forests, a sylvatic cycle of CHIKV occurs between mosquitoes and non-human primates
[10, 11]. This sylvatic cycle may lead to sporadic spill-over events, where the virus is transmitted to
humans, initiating a separate urban cycle [12]. In the urban cycle, non-human primates are not
necessary to sustain the epidemic, since the virus is transmitted between humans and Aedes
mosquitoes. The sylvatic and the urban cycles can exist separately, contributing to the complex
transmission dynamics of CHIKV in African regions.

Following the expansion of CHIKV since 2004, outbreaks have occurred throughout the tropical-
and subtropical regions of the world, becoming a significant public health concern. Between 2004
and 2020, 3.4 million suspected and confirmed CHIKYV cases were reported from various countries
[13]. The actual number of CHIKV infections is likely considerably higher due to underreporting
and asymptomatic cases. CHIKV infections, although rarely fatal, can lead to prolonged and
incapacitating joint pain, lasting months or even years in some cases [9, 14, 15]. There are several
vaccines for CHIKV that are currently under development. The Coalition for Epidemic
Preparedness Innovations and the European Commission are currently supporting the development
of a live-attenuated, single-dose vaccine that is designed by deleting a part of the CHIKV genome
(Ixchiq, VLA1553 by Valneva). In November 2023, the US Food and Drug Administration
approved and authorized this vaccine in the US [16, 17]. The Jenner Institute research group has
developed another CHIKV vaccine using a combination of recombinant chimpanzee adenoviruses
and Modified vaccinia Ankara (MVA), which however is not approved for use yet [18]. Other
prevention efforts focus primarily on reducing mosquito populations and avoiding mosquito bites.
As of now, there is no specific treatment for CHIKV [19].

Based on phylogenetic analyses, CHIKV is commonly divided into three major lineages: the
East/Central/South African (ECSA), the West African, and the Asian lineages [20, 21]. The ECSA
lineage gave rise to the Indian Ocean lineage (IOL), which has been responsible for epidemics in
the Indian Ocean islands, South and Southeast Asia, and Europe since 2005 [21, 22]. The first
CHIKV outbreak in Thailand was reported in Bangkok in 1958, and the Asian genotype was
identified as the cause of that outbreak [23]. The next notable outbreak occurred in southern
Thailand between 2008 and 2009, followed by a smaller local spread in 2013 in north-eastern
Thailand, both caused by the ECSA genotype [24, 25]. The overall number of reported cases
remained low until just before the start of the 2018-2019 outbreak, according to the Bureau of
Epidemiology in Thailand. In June 2018, the number of monthly reported chikungunya cases in
Thailand began to increase and a nationwide spread of CHIKV was observed with approximately
15,000 confirmed cases reported between 2018 and 2019 [26]. The virus primarily affected urban
and semi-urban areas, with high transmission rates observed in densely populated regions. Due to
international travel and the popularity of Thailand and other tropical regions as tourist destinations,
an increase in imported CHIKV cases to other countries, including Europe and the United States,
was observed both after the outbreak in Thailand in 2018 and after the CHIKV outbreak in the
Caribbean and South America in 2014 [27-32].

To improve our understanding of the factors that contributed to this epidemic in Southeast Asia,
and, in particular, the sudden increase of cases in the 2018 Thailand outbreak, we conducted a
comprehensive phylogeographic and mutational outbreak lineage analysis focusing on the ECSA
and IOL. We performed phylogeny, time estimation and mutational profiling. We also carried out
protein folding predictions from genes related to transmission and virulence. The analyses were
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performed on previously sequenced genomes as well as newly sequenced clinical samples from
travellers who returned to Sweden from Thailand in late 2018 and early 2019.

Methods

Preparation of patient material

Serum samples from a total of 12 patients who had travelled from Thailand to Sweden between
December 2018 and April 2019 and who were PCR-positive for CHIKV in a real-time PCR
screening were included in the study (supplementary Table S1). Total RNA was extracted from all
patient samples by automated magnetic bead total nucleic acid extraction using a MagLEAD system
(Precision System Science Co.) from the aqueous phase after Trizol-chloroform separation. RNA-
seq libraries were then prepared using the Trio RNA-Seq Library Preparation Kit (NuGen)
according to the manufacturer’s instructions and subsequently sequenced on one Illumina X10 lane.
RNAseq library preparation and high-throughput sequencing were performed by BGI, Hong Kong.

Sequence processing
First, low-quality reads were removed with Trimmomatic v.0.36 using the default settings [33]. All

quality-checked sequence data libraries were then mapped with Bowtie v.2.3.4. using the default
local settings against a NCBI CHIKV reference sequence (NCBI GenBank accession number:
MF773566), whereupon 50% majority consensus sequences were generated. All CHIKV sequences
were deposited to the NCBI GenBank under accession numbers PP193832—PP193843 and the raw
data (excluding human reads) was deposited under NCBI SRA accession nr: PRINA1066385.

Evolutionary analyses
First, 2,564 CHIKV sequences of >8000bp, with known collection date and geographic location

together with the 12 CHIKV genomes generated above were aligned using MAFFT v.7.520 [34, 35]
utilizing the L-INS-i algorithm, where the 5° and 3’ ends were trimmed. To reduce the number of
sequences prior to temporal analyses, we constructed a maximum likelihood phylogenetic tree with
IQ-TREE v.2.2.0 [36] using the Generalized time-reversible model of Tavaré 1986 (GTR) with
empirical base frequencies, invariant sites, and invariant sites plus FreeRate model with tree
categories (GTR+F+I+I+R3) following the ModelFinder implemented in IQ-TREE [37]. We then
subsampled the phylogenetic tree to include a total of 218 CHIKV ECSA genotype sequences (see
coloured terminal nodes in Supplementary Fig. S1 for sequences included), which were used for the
temporal and evolutionary analyses. The temporal structure of the subsampled dataset, sampled
between the years 1953 and 2023, was then assessed using TempEst v.1.5.3 (Supplementary Fig.
S2) [38]. Finally, the evolutionary history of the subsampled dataset was assessed using BEAST
v.1.10.4 [39, 40] by performing a single run of 250 million MCMC generations, sampling every 5k
generations, using terminal node calendar dates (i.e. tip dates) as temporal calibration, GTR with
invariant sites and four gamma variables with default flat Dirichlet priors as a model of nucleotide
evolution, an uncorrelated lognormal relaxed molecular clock with default prior distribution, and a
non-parametric Gaussian Markov random field Bayesian Skyride tree prior [41]. Following 10%
burn-in, the run was checked using Tracer v.1.7.2 [42] to confirm that the effective sample size for
all parameters was >200. Finally, we used TreeAnnotator v.1.10.4 [40] to compute a maximum
clade credibility tree and calculate median node heights. The resulting tree was viewed and
annotated in FigTree v.1.4.4 [43]. Posterior probabilities > 0.95 are presented in Supplementary Fig.
S3).
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Mutational analysis
In order to analyse emergent mutations arising in the IOL, we mapped them on the existing

structural models of chikungunya protein complexes. This approach was used to visualise mutations
in the proteins of the replication and spike complexes respectively. To gain insight into mutations
that were located outside of the experimentally resolved regions we additionally predicted the
structural models using Colabfold [44]. Colabfold predictions were in excellent agreement with the
solved crystal structures in regard to globular domains and also allowed us to visualise the
disordered regions found in viral proteins. The replication complex mutations were mapped on the
structure accessible under PDBid entry 7y38 (complex of Nspl, Nsp2 helicase domain and Nsp4)
[45] and 4ztb (Nsp2 protease domain) [46]. It should be noted that not all of the amino-acid
residues are resolved in these crystal structures. For the EI-E2-E3 trimer spike complex we
visualised mutations based on the PDBid entry 6jo8 [47] and 6nk6 [47]. Finally, for the Nsp3, 6K
and CP we mapped the mutations directly onto the Colabfold structure prediction due to the high
degree of disorder (Nsp3, CP) or lack of other structural information (6K). For both Nsp3 and CP,
we superimposed Colabfold predictions onto the relevant solved crystal structures of their
respective globular domains to confirm the quality of the predictions and found them to be in
excellent agreement (Nsp3 Macrodomain, PDBid: 6vuq, RMSD: 0.344; Nsp3 Zinc-binding domain,
PDBid: 4gua, RMSD: 0.58; CP protease domain, PDBid: 5h23, RMSD: 0.505). PyMOL (The
PyMOL Molecular Graphics System, Version 2.5.4 Schrodinger, LLC) was used to visualise the
protein structures. Different protein sequences were used for the experimentally determined
structures meaning that the stick model of the mutation used for figures does not always
corresponds to the amino acids involved in the mutation we discuss in text (example: for the Nsp4
structure in Fig. 2D the T75A mutation, a methionine (M) is the actual residue in the Nsp4 sequence
that was used for Cryo-electron microscopy experiment, and is thus visualised in the figures). With
that in mind the highlighted residues are intended to indicate the position of the mutation rather than
imply any amino-acid change or impact of the mutation itself.

Ethical statement
This study was in part conducted at the Public Health Agency of Sweden supported by the

ordinance (2021:248:§37) from the Swedish Parliament to study and monitor the situation and
development of infectious diseases. It should be noted that, apart from the country of infection and
the date of sample collection, no information or data from this project can be linked or traced to a
specific individual included in the study. Therefore, the CHIKV-positive samples were used in
accordance with the regulations governing the use of such material and in accordance with the
mandate of the Swedish Parliament.

Results

Evolutionary history of CHIKV
Based on the phylogenetic analysis, CHIKV can be divided into three different genotypes

(Supplementary Fig. S1), the West African, the Asian, and the ECSA genotype, which are
supported by high posterior probabilities (Fig. S3). High posterior probabilities (= 0.95) were also
observed for all nodes, which are described in the results section. The ECSA genotype is
characterised by three clusters, as shown in Fig. 1: the paraphyletic group ECSA 1 (light green) and
the monophyletic groups ECSA 2 (red) and IOL (blue) (see also Supplementary Fig. S1). When
analysing the complete ECSA genotype (consisting of light green, red, and blue, see Supplementary
Fig. S2), the root-to-tip analysis showed that our investigated data set exhibited a significant
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temporal structure (correlation coefficient = 0.90; R-squared = 0.82, p<0.001, Supplementary Fig.
S2). To investigate the dispersal history and temporal structure of the CHIKV ECSA genotype and
the IOL in particular, we then performed a phylogeographic analysis of 218 viral genomes of this
genotype, covering approximately 70 years of CHIKV evolution and movement between regions
(Fig. 1). Fig. 1 shows the resulting time-calibrated phylogenetic tree with maximum clade
credibility of CHIKV together with a map indicating the major routes of CHIKV movement for
ECSA lineages 1 and 2 (green and red) and the IOL (blue).

For the ECSA genotype as a whole, i.e., including the IOL, the lognormal, uncorrelated relaxed
clock estimated the mean evolutionary rate to be 4.4 x 10 substitutions/site/year (95% highest
posterior density [95% HPD] = 4.1-4.8 x 10*#) with a most recent common ancestor emerging
around 1952 [95% HPD = 1948-1953] (Fig. 1). For the IOL, the mean evolutionary rate was
estimated to be 2.8 x 10 substitutions/site/year (95% HPD = 2.2-3.5 x 10*#) and a most recent
common ancestor emerging around February 2003 (95% HPD 2001-07 to 2004-02). However, we
recognise, that there are rate variation between lineages even within the ECSA genotype [48],
affecting the African clades, which have a lower sampling frequency. It is noteworthy that the
earliest recorded CHIKV isolates are from West and East Africa, emphasising the historical
importance of this region in the evolutionary trajectory of the virus.

Early evolution and movement of the ECSA genotype
Following the divergence from a West African ancestor (Supplementary Fig. S1) [48], our

phylogeographic analysis of the ECSA genotype reveals a highly structured dispersal network with
a significant interregional spread of CHIKV. Since the emergence of the most recent common
ancestor of the ESCA genotype, CHIKV has circulated to date, moving between many sub-Saharan
African countries, particularly in eastern, central, and southern African countries. The first CHIKV
discoveries and isolations were limited to East Africa in 1953 (Tanzania) and West Africa in 1964
(Nigeria) (Fig. 1, Supplementary Fig. S1). Between the 1950s and the 1980s, African ECSA-
CHIKYV viruses continued to diversify, followed by a long period of sporadic detection but possibly
continuous sylvatic circulation [10]. The first of the evolved ECSA lineages, African ECSA 1 (light
green), showed intermediate-range dissemination within sub-Saharan Africa, spreading from
Central Africa to the Americas (red) in the late 1980s and early 2010s (1995 in the USA and 2014
in Brazil) (Fig. 1). Subsequently, the African ECSA 1 lineage spread eastwards to the Indian Ocean
islands (Madagascar, Mauritius, Mayotte, Comoros) in the 1960s and to India in the 1980s (blue)
(Fig. 1). A more recent African cluster with representatives from Cameroon, Gabon and the
Democratic Republic of Congo, probably emerged more than 20 years ago and circulated in this
region until at least 2018. A similar but independent cluster in Angola and the Democratic Republic
of Congo, was separated by more than 30 years of evolution before it emerged in 2011. A similar
scenario occurred when the pathogen was introduced to Brazil via Western Africa or the USA after
circa 30 years of unaccounted evolution, which later led to a significant and sustained outbreak in
South America [49]. The Southeast Asian region in particular, including India, emerged as a major
inter-regional transmission hub, facilitating the spread of CHIKV to other regions. Sub-Saharan
Africa, where the virus originally emerged in the 1920s, also played a central role in the global
spread and maintenance of the virus, albeit to a lesser extent than Southeast Asia and India.
Bidirectional transmission events between Africa and Asia have been documented, including early
transmission from Africa to India in the late 1920s, with subsequent introductions in 1986 and
2000.
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Spread and recent emergence of the IOL in Southeast Asia
The emergence and spread of CHIKV in the Indian Ocean islands, the Indian subcontinent, and

Southeast Asia are associated with a significant increase in cases. Here we examine the
evolutionary history of CHIKV to trace the origins of the outbreak lineage that caused a substantial
number of cases in Thailand and other Southeast Asian countries in 2018 and 2019 [24, 26]. The
2004 outbreak of CHIKYV in the Indian Ocean islands was the first documented outbreak in the IOL
[50]. The outbreak was mainly observed in urban and semi-urban areas, for example on the
Comoros Islands where more than 5,000 cases were reported [51]. Seroprevalence studies from
2011 indicate that 20% of the population on Ngazidja (Grande Comore), the largest island in the
Comoros with a population of approximately 316,600, were infected with CHIKV on [52]. The
outbreak then spread to other islands in the Indian Ocean, including Madagascar, Mauritius, and the
Seychelles, and eventually to other parts of the world, including Europe [53, 54]. The IOL has been
circulating in South and Southeast Asia for two decades now, with several sub-lineages and variants
having emerged and spread throughout the region (Fig. 1). The last common ancestor of the IOL of
the ECSA genotype is estimated to have originated in coastal Kenya and the Mascarene islands,
around early 2003 (95% HPD: 2001-07-2004-02), which is consistent with previous estimates [50,
55]. A new IOL sub-lineage, distinct from the previous IOL that originated from the Kenyan coast,
was found to have originated in India and circulated during 2008-2016, with subsequent spread to
Pakistan, Bangladesh, Thailand, and Italy [56]. Several introductions and re-introductions of IOL
strains to Africa (Kenya, Djibouti, and Sudan) and the Arabian Peninsula have been observed over
the years. Most outbreaks in South Asian countries since 2005 have reportedly been caused by IOL
strains, and new clades have evolved in multiple Southeast Asian countries over time, indicating a
significant presence of the IOL in the region.

Emergence of mutations in the IOL preceding the Thai outbreak in 2018
The CHIKV sequences isolated in this study from Swedish travellers, as well as other sequences

isolated during the 2018-2019 outbreak in Thailand, belonged to the IOL but show marked
differences from the strains responsible for the massive CHIKV outbreak in Thailand in 2008—
2009, indicating a clear, non-local origin. The outbreak was likely due to the introduction of a viral
strain from South Asia, possibly Bangladesh (Fig. 1) [56], since phylogenetic analysis of the
isolates revealed that the Thai sequences diverged from a Bangladeshi ancestor around April 2017
(95% HPD: January—May 2017). Following its introduction and epidemic spread in Thailand,
CHIKYV also spread to Cambodia, Malaysia, Myanmar and China starting in mid-2018 (Fig. 1). Our
analysis of the IOL outbreak strains led to the detection of mutations in the ancestral strain,
distinguishing the outbreak strains from ESCA 1 and 2 at the last common ancester node (Fig. 1,
Node A). Our results revealed a high frequency of amino acid substitutions in both structural and
non-structural genes of CHIKV. Nine substitutions were detected in non-structural proteins and
nine in structural proteins. Over the subsequent history of the IOL, 18 additional amino acid
substitutions were introduced on 14 occasions in the main lineage (green boxes in Fig. 1), while 16
different substitutions were introduced on 12 occasions in different subclades (orange boxes in Fig.

1.

Genetic diversity in the IOL
Throughout the CHIKV IOL divergence, we identified 47 mutations that occurred at different time

points in viral evolution. To rationalise the impact of the mutations on viral proteins function of, we
mapped the emergent mutations that occurred in the IOL to solved crystal structures or Colabfold-
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predicted models. We analysed the replication complex and the trimeric E1-E2-E3 spike separately,
as they consist of highly interactive complexes and high-quality structural models are available for
these complexes. For the Nsp3, CP, and 6K proteins, which had a high number of mutations in the
experimentally unsolved regions, we mapped the mutations to the Colabfold-predicted models and
confirmed minimal deviation from the experimentally determined structures of their globular
domains to ensure a high quality of prediction. Not surprisingly, we found that most mutations
occurred in the surface-exposed regions of the viral proteins and that the mutations were
predominantly conservative in nature, with a few notable exceptions (Fig. 2-4). We found most
mutations in the E1-E2-E3 spike complex, where mutations were evenly distributed across all three
proteins, and the fewest mutations in protein 6K, where only one emergent mutation was observed.
An overview of all identified mutations is shown in Table 1.

Table 1:

Amino acid substitutions in the IOL.

Published functional

Protein _Aminoacid Conservation Location Effect Node .
- studies
Pos. Ori. Sub.
Nspl 12868 T K |polarto charged surface exposed minimal G
290 1 V | conservative hydrophobic core | may effect protein stability AA
376 T M |polarto hydrophobic |ambigous may effect docking of Nsp4, into Nsp1 ring C
488 Q R | polarto charged surface exposed minimal A
Nsp2 54 S N |conservative Nsp4 interface may impact Nsp2, Nsp4 interaction A
130 H Y |semi-conservative surface exposed minimal N
145 E D | conservative surface exposed minimal U
495 N S conservative surface exposed may effect substrate recognition V4
539 L S |hydrophobic to polar | surface exposed may alter protein stability or protein protein H
interactions, may effect substrate recognition
566 S F polar to aromatic surface exposed may alter protein stability or protein protein Y
interactions, may effect substrate recognition
793 AV | semi-conservative surface exposed likely unfavorable X
Nsp3 59 M T | hydrophobic to polar | surface exposed may have stabilizing effects D
217 'Y H |semi-conservative surface exposed may effect RNA replication and essembly AA
337 T 1 polar to hydrophobic | surface exposed may be new interaction sites, or minimal effect A
333z T M |polarto hydrophobic | surface exposed may be new interaction sites, or minimal effect F
372 D E |conservative surface exposed may be new interaction sites, or minimal effect w
461 L P hydrophobic to cyclic | surface exposed may be new interaction sites, or minimal effect A
471 P S cyclic to polar surface exposed may be new interaction sites, or minimal effect A
Nsp4 55 S N |conservative surface exposed minimal T
75 T A [semi-conservative surface exposed minimal A
82 R S charged to polar surface exposed minimal 1
85 R G |charged to small surface exposed may affect Nsp1-Nsp4 interface, may impact (0]
flexible dimer formation
254 T A |semi-conservative surface exposed minimal A
El 55 I V | conservative hydrophobic core | may interfere with folding M
136 L F semi-conservative surface exposed minimal S
211 K E polar to charged surface exposed effects adaptability to de. aegypti L [68-73]
226 A 'V |semi-conservative Mxra8 interface increases fitness in Ae. albopictus B,E |[[71,74-76]
269 M V |conservative surface exposed minimal A
284 D E |conservative surface exposed minimal A
317 1 V| conservative surface exposed minimal R
E2 74 M 1 conservative Mxra8 interface minimal S
76 A T semi-conservative Mxra8 interface minimal P
205 G S small flexible to polar | surface exposed may effect immune evasion \'%
210 L Q |hydrophobic to polar | surface exposed may effect immune evasion D
211 1 T | hydrophobic to polar | surface exposed may effect immune evasion A
252 K Q |charged to polar E3 interface may affect E2, E3 interface H
264 V A |semi-conservative Mxra8 interface may affect MXRAS, spike interaction K [71,95-99]
312 T M |polarto hydrophobic | surface exposed minimal A
375 S T conservative surface exposed minimal A
386 VA |semi-conservative surface exposed minimal A
E3 39 vV 1 conservative E2 interface may affect E2, E3 interface J
56 P S cyclic to polar surface exposed minimal J
6K 8 vV 1 conservative surface exposed minimal A
CP 23 P S cyclic to polar surface exposed minimal G
27 vV 1 conservative surface exposed minimal G
73 K R |conservative surface exposed minimal V4
79 N S conservative surface exposed minimal Q

Replication complex

The replication complex consists of the proteins Nspl, Nsp2, and Nsp4, which form a disc-like
structure that docks into the neck of the ultrastructures packed with viral RNA, the so-called
spherules (Fig. 2A) [45, 57]. In this complex, eleven monomers of the RNA capping enzyme Nspl
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form an outer ring to which the RNA-dependent RNA polymerase Nsp4 is docked. The viral
protease Nsp2 also associates with the complex from the cytoplasmic side (Fig. 2A) [45]. In Nspl,
two mutations, T128K and Q488R, are located on the protein surface, which probably have only
minimal effects on the stability and function of the protein (Fig. 2B). The conservative mutation
1290V was found to be buried in the hydrophobic core of the protein and may have slight effects on
protein stability, while the T376M mutation is located near the Nsp1-Nsp4 interface and thus may
affect the docking of Nsp4 to the oligomeric ring of Nspl.

Of the seven mutations found in Nsp2, three were located in the N-terminal helicase domain (S54N,
H130Y and E145D) and four in the C-terminal protease domain (N495S, L539S, S566F and
A793V; Fig. 2C). While H130Y and E145D are conservative surface mutations that likely have
limited effects on Nsp2 function, S54N is located at the interface between Nsp2 and Nsp4 so the
mutation could potentially have an impact on the interaction between Nsp2 and Nsp4 and on the
overall stability of the complex. Of the four mutations found in the protease domain, N495S retains
a hydrophilic character and is unlikely to affect the function of the protein. The non-conservative
surface mutations L539S and S566F could alter the stability of the protein or interactions with
potential binding partners, and A793V introduces a larger hydrophobic moiety on the surface of the
short, disordered C-terminal peptide of the Nsp2 protease domain, which is unlikely to be
favourable. Being in moderate proximity to the Nsp2 active site, it is possible that the N495S,
L539S and S566F mutations affect substrate recognition, as the exact substrate binding interface for
CHIKV Nsp2 is not clear. Interestingly, the A793V mutation reverted to A in the last common
ancestor of the 2018 Thai outbreak lineage.

The Nsp4 is largely devoid of emergent mutations, with the exception of the N-terminal domain,
which extends into the replication spheroid space and for which an interaction with the RNA
template has been proposed [45] (Fig. 2D). All of the mutations we identified in Nsp4 (S55N,
T75A, R82S, R85G and T254A) are surface mutations, with R82S and R85G being the most likely
to affect Nsp4 protein function due to their non-conservative nature. The R85G mutation in
particular is located close to the Nspl-Nsp4 interface and could impair the respective dimer
formation.

Spike complex

The spike complex is a trimer of E1-E2-E3 heterotrimers, that forms the icosahedral outer envelope
(Fig. 3A) of virus particles and is responsible for receptor binding, membrane fusion and viral entry
[58-62]. While E1 performs membrane fusion in acidic environments [63], E2 facilitates Matrix
remodelling-associated protein 8 (MXRAS) receptor binding [64], and E3 protects premature
exposure of the El1 fusion loop and is important for correct E1-E2 maturation [64, 65]. We
identified seven, ten and two emergent mutations in the E1, E2, and E3 proteins, respectively. All
mutations found in E1 are surface mutations with the exception of 155V, which is located in the
hydrophobic core of domain II and could interfere with the correct folding of the protein (Fig. 3B).
Of the remaining six mutations, three are located in the domain I and domain III regions of the
protein and are located both proximal to the membrane and at the base of the spike. Mutation
L136F is located on the surface of domain I, I317V is located on the surface of domain III, and
mutation D284E is situated in the linker region between domains I and III. This junction region
undergoes substantial rearrangement upon conversion of E1 to the fusion form [66, 67], but given
the conservative nature of the mutation, the rearrangement is unlikely to be affected by the
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identified mutation. As the surface mutations found in domains I and III are positioned at the outer
surface of the spike, they could also affect the packing of neighbouring spike complexes into the
icosahedral viral lattice. Of the remaining three mutations, K211E has already been described to
have an impact on viral replication and the adaptability to the Ae. aegypti vector [68-73]. The
conservative mutation M269V is located on the inner spike surface of E1 and probably has no effect
on protein function. The A226V mutation of E1, which is associated with increased fitness of
CHIKYV in Ae. albopictus [71, 74-76], and probably contributes to the epidemic potential of
CHIKYV, was introduced in two different subclades at different time points (Fig. 1, Node B and E).
However, in the subclade following node E, two sequences, FJ000067.1 from India and FJ445428.2
from Sri Lanka, do not have valine at position 226 but alanine. In the main IOL, the ancestral
alanine remained at position 226.

MXRAS is a cell surface receptor for several arthritogenic alphaviruses, such as CHIKV [62, 77],
and interacts mainly with the outer crown of the spike complex consisting of three E2 proteins.
Although the E2 mutations M741 and A76T are located proximal to the MXRAS interface, they are
unlikely to have a significant impact on receptor interaction given their conservative nature. In
contrast, V264A 1is in direct contact with the MXRAS, so this mutation probably has a greater
impact on the interaction between the spike complex and the cell surface receptor. Because it is
exposed on the surface of the virion, E2 is also the primary target of natural and recombinant
antibodies [78-80]. Several of the antibodies target the B domain of E2 [78, 79] in the region where
we also found three emergent mutations: G205S, L210Q, and 1211T (Fig. 3C). Since the same
residues are targeted by antibodies, their mutation could serve as an immune evasion mechanism
leading to enhanced viral fitness [78, 79, 81]. Interestingly, the K252Q mutation is located at the
interface of E2 and E3 and is in direct contact with the V391 mutation on the E3 protein. Since these
mutations do not occur in the same viral clade, they are likely not the result of coevolution, but
suggest that some degree of amino acid variation is operative in this region of E1-E3 (Fig. 3C).
Finally, T312M is a surface mutation with likely limited effects on protein function and S375T,
V386A are located in the transmembrane region of the E2 protein with likely minimal effects on the
protein function.

Apart from the V391 mutation, only one other mutation was found in the E3 protein (Fig. 3D). The
P56S mutation, which is located in the immediate vicinity of the C-terminal furin cleavage site [64],
probably has no major influence on protein function. Both E3 mutations occur only in one clade of
CHIKYV with node J as the closest common ancestor (Fig. 1).

Nsp3, 6K, and capsid proteins

For the proteins that are neither part of the replication nor the spike complex, we have mapped the
mutations to the individual structural models predicted by Colabfold. The Nsp3 protein, which is
closely associated with the replication complex [45, 82], consists of two folded globular domains,
the N-terminal macro-domain and the zinc-binding domain, followed by an elongated hypervariable
C-terminal disordered region (Fig. 4A) [82]. The macro-domain exhibits ADP-ribosylhydrolase
activity [83], while the zinc-binding domain, although poorly understood, is associated with various
functions in viral genome replication and transcription that are often species- and cell type-specific
[84]. The hypervariable C-terminal region has been shown to be intrinsically disordered [85] and
serves as a platform for the binding of various host factors [85, 86]. We identified one emergent
mutation in each of the two folded domains and five mutations in the hypervariable C-terminal
disordered region (Fig. 4A). The M59T mutation, located on the surface of the macro-domain, is on
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the opposite side of the active site and might have a stabilising effect due to the transition from a
hydrophobic to a hydrophilic surface-exposed amino acid. The Y217H mutation is located at the
base of a small, shallow pocket on the surface of the zinc-binding domain, which could be a binding
pocket. Interestingly, a reversal to an ancestral Y can be observed at this position in 2019 (Node
AA, Fig. 1). As the function of this domain is unclear, it is difficult to speculate on the effects of
this specific mutation. However, it has been shown that the entire domain is crucial for RNA
replication and viral assembly [87]. None of the five mutations found in the C-terminal domain
interfere with the previously described short linear motifs found in this region, which interact with
amphiphysin-SH3 (which is recruited by the virus to promote viral RNA replication) [88] and the
G3BP-NTF2 domains (which are hijacked to block stress granule formation) [89]. Given the high
density of short linear motifs in the disordered regions of viral proteins and the fact that the C-
terminal disorder domain of Nsp3 acts as an interaction hub for host factors, it is possible that the
T3371, T338M, D372E, L461P, and P471S mutations create new binding sites for host proteins or
destroy existing ones [90]. Alternatively, these mutations might not have significant effects on the
function of the protein and might be consequences of random drift.

The 6K protein is a poorly understood, highly hydrophobic protein that forms hexameric ion
channels in the endoplasmic reticulum (ER) membrane [91, 92]. We have identified only one
conservative mutation, V8I, which likely has limited or no effect on protein function (Fig. 4B).
Finally, the capsid protein (CP) is a multifunctional protein with an N-terminal, positively charged,
intrinsically disordered region involved in RNA encapsidation [93], and a C-terminal,
chymotrypsin-like protease domain that binds to the transmembrane helix of E2 and forms the inner
lattice of the mature viral nucleocapsid [65, 94]. All four mutations found in the CP protein, P23S,
V271, K73R, and N79S, are located in the N-terminal disordered region (Fig. 4C). The mainly
conservative nature makes it unlikely that these mutations have a major impact on the function of
CP. This, and the fact that we found no emergent mutations in the C-terminal protease domain,
suggests that the CP protein is under tight evolutionary constraints that allows only very limited
variation in the amino acid sequence.

We speculated about the effect of the mutations based on their position in the structure, but further
experimental validations should be performed to accurately determine the effect of individual
mutations. This opens an interesting avenue for future work.

Discussion

CHIKYV has left an indelible mark on the global landscape of infectious diseases, and its emergence
and spread over time provide valuable insights into the complexity of vector-borne diseases. The
current diversity of CHIKYV is thought to have originated in sub-Saharan Africa in the 1920s [6].
This is consistent with our analysis, where the deepest split in our CHIKV tree is estimated to be in
the 1950s. The emergence of the Asian genotype shortly thereafter in the 1930s marked the
beginning of a series of events that eventually led to the formation of distinct lineages. These
genotypes, including the West African, the Asian, and the ECSA genotype with the IOL, illustrate
the intricate evolutionary history of CHIKV. Each genotype has played a unique role in the global
spread of the virus.
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Our analysis shows that there is considerable interregional transmission of CHIKV. The Southeast
Asian region, particularly India, stands out as an important interregional transmission site linking
CHIKYV isolates from other regions. Sub-Saharan Africa, where CHIKYV first emerged, also plays a
central role in the global spread, albeit to a lesser extent than Southeast Asia. South America
appears to be the primary source of intra-continental spread, rather than a source of transmission of
CHIKYV to other continents. This long-distance transmission emphasises the adaptability of CHIKV
to different ecological and environmental conditions, as it can be transmitted in both urban and
sylvatic cycles [100]. This is evidence of the resilience and adaptability of CHIKV as it navigates
different regions and ecosystems. The possibility of transmission in both urban and sylvatic
environments gives CHIKV the opportunity to spread through infected human travellers and cause
new outbreaks, but also to circulate locally and establish an endemic occurrence of the virus.

The IOL represents an intriguing aspect of the global spread of CHIKV. It shows a multitude of
bidirectional transmission events linking Southeast Asia, India, East Africa, the Arabian Peninsula,
and Europe. This lineage emphasises the intricate network of CHIKV transmission in the Indian
Ocean region and highlights the role of different regions in maintaining the presence of the virus.
Phylogenetic analysis of CHIKV Thai strains isolated between 2018 and 2020 during the large
outbreak in Thailand revealed that they are mapped within the IOL to the ECSA genotype, the same
genotype responsible for the massive Thailand outbreak in 2008-2009. The strains from the 2008—
2009 outbreak however, possess the E1 A226V mutation, which is associated with enhanced
transmission by Ae. albopictus, compared to strains circulating before 2008 [71, 75, 76, 96, 101-
103]. A 2021 study by Khongwichit et. al. found that none of the ECSA strains isolated during the
second massive outbreak in Thailand from late 2018 to early 2020 carried this E1 A226V mutation
[24], nor did we find it in our Thai isolates (Fig. 1). Instead, the new Thai strains had the ancestral
alanine at position 226 of the E1 envelope glycoprotein, showing similarities to previous outbreaks
in Thailand in 1958 [23]. This leads us to hypothesise that there must have been other factors in the
2018 outbreak that lead to the rapid spread of the virus.

We and others found that the 2018-2020 Thai strains had additional mutations of interest, such as
El K211E (Fig. 1, Node L, Fig. 3B) and E2 V264A (Fig. 1, Node K, Fig. 3C) [24]. It has been
reported that positive selection had a dramatic effect on the alteration of the amino acid residue
from lysine (K) to glutamic acid (E) at position 221 of the E1 protein and that mutations on the E1
and E2 envelope glycoproteins in general can affect the vector competence, transmission efficiency,
and pathogenicity of the virus [71, 95-99]. The V264A substitution is located at the MXRAS
receptor-binding interface and the mutation could alter the interaction between the viral spike
complex and the cell surface receptor. The E1 K211E mutation has been associated with enhanced
viral infection in Ae. aegypti and has also been reported in other regions [104-108]. This adaptation
to a different vector may have influenced the increased spread of CHIKV in Thailand in 2018—
2019. Consistently, all sequences isolated and sequenced in this study contain alanine at position
226 of the E1 protein and carry the mutations E1 K211E and E2 V264A.

Two other notable mutations in the structural protein E2 are 1211T (Fig. 1, Node A, Fig. 3C) and
G205S (Fig. 1, Node V, Fig. 3C). The 1211T mutation occurs at the IOL ancestral node while the
G205S substitution occurs at node V, probably in early 2016, shortly before the progenitor of the
2018 Thai outbreak began to circulate in Bangladesh. Both mutations are located in the region that
has been described as critical for antibody binding and recognition [78, 79]. Mutations at these
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positions could therefore lead to evasion of the immune system, increased spread, and higher
virulence in the population.

Another substitution that occurred later, around the end of 2017, in Bangladesh is the Nsp2 V793 A
reverse mutation (Fig. 1, Node X, Fig. 2C). As this mutation is located at the very end of the C-
terminal disordered tail of Nsp2 (as predicted by Colabfold), which was not resolved in the
crystallisation studies [46], we propose that the introduction of the hydrophobic moiety interferes
with the optimal function of Nsp2, leading to the observed V793 A back mutation. Importantly, the
alanine at position 793 is also present in the rapidly expanding ECSA 2 lineage in South America,
suggesting that it may have a beneficial effect on viral transmission (Fig. 1).

The comparison of the phylogenetic relationship of the CHIKV sequences from the 2018-2020
Thai outbreaks with other global sequences showed that the most recent outbreak in Thailand did
not originate from the strain circulating in the country. It also belongs to the IOL, but probably
originated from other countries in South Asia, most likely from Bangladesh via Myanmar in late
2017 or early 2018. The timing suggests a gradual overland introduction into Thailand from
Bangladesh via Myanmar, e.g. through travelling and resettlement of people with subsequent spread
within Thailand and spill over to China and Cambodia in mid-2019 and 2020. Due to the political
situation in Myanmar, no information could be obtained on the number of positive CHIKV cases in
the years between 2016 and 2018.

The emergence of CHIKYV outbreaks in certain regions, such as the outbreak in Thailand in 2018, is
an example of the ability of the virus to re-emerge and spread rapidly. This emphasises the
importance of monitoring and understanding the dynamics of CHIKV transmission in order to take
effective public health measures. It is not yet fully understood whether the re-emergence of the
virus is caused by purely urban cycles with occasional re-introduction from other countries or
whether there also is a sylvatic component. CHIKV could circulate in a sylvatic cycle of non-
human primates and mosquitoes and remain undetected in the wild until a spill over event into the
urban human mosquito cycle occurs, which in some cases could cause new local outbreaks [10, 11].
Both scenarios are possible and plausible. In some cases, very low genetic variation can be detected
in strains occurring in the same geographical area years apart (Fig. 1, observed in Brazil in ECSA 2
or after Node M in India). In these cases, undetected sylvatic transmission could be suggested as a
silent reservoir. However, in cases such as the 2018 Thai outbreak, introduction from an urban
cycle in a neighbouring country is more likely considering the genetic relatedness and timing of
virus spread.

A global increase in CHIKYV circulation was detected in 2023. By 30 November, more than 460 000
cases had been reported accompanied by 360 deaths [109]. South America was particularly
affected. Argentina and Uruguay reported local transmission for the first time in 2023 [110].
Contributing factors include climate change, which leads to changes in vector activity and
distribution, and increased human travel, which plays an important role in the spread of CHIKV in
South America and globally [111-115]. Unusual temperature spikes, prolonged warm spells, and
altered rainfall patterns combined with increased humidity have created conditions that favour the
survival and proliferation of Ae. aegypti and Ae. albopictus mosquitoes in regions where they were
previously absent [116-121]. The emergence of CHIKV in the Caribbean islands, a favourite
destination for tourists from North America and Europe, creates additional new opportunities for
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intercontinental transmission of the infection [115]. Unanticipated and rapid urbanization further
promotes the spread of the virus, as Ae. aegypti and Ae. albopictus are particularly attracted to
urban areas and warm environments. These mosquitoes utilise water-containers in or near
households, such as plant pots and vases, for breeding, which further increases the rate of
transmission [122, 123].

In summary, CHIKV has a rich evolutionary history, originating in sub-Saharan Africa and
spreading worldwide through complex genotypes, lineages, and transmission centres. A detailed
analysis of Thai strains from 2018 to 2020 shows that unique mutations associated with virus
replication, receptor binding and transmission occur throughout the genome, suggesting alternative
factors for the rapid spread in the 2018 outbreak. The ability of the virus to re-emerge and spread
rapidly, combined with climate change and urbanisation, poses an ongoing public health challenge.
Monitoring and understanding CHIKV dynamics remain critical to an effective response to the
unpredictable outbreaks of the virus.
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Figure legends

Fig. 1. Phylogenetic and Phylogeographic Analysis of the ECSA CHIKYV samples included in
the present study. Phylogenetic tree of the CHIKV ECSA genotype. Strains are colour-coded by
CHIKV lineage (where light green represents ECSA 1, red ECSA 2, and blue IOL). Strains
sequenced in this study are indicated by an *. Black values at red circles indicate branching times,
grey values display the mutational speed. Major (basal) branches with posterior probabilities of
>0.95 are indicated by an *. Amino acid substitutions at different alphabetically characterized nodes
are indicated in green boxes if affecting the entire IOL and in orange boxes if affecting only certain
clades. Countries are colour-coded according to the phylogenetic tree, and suggested transmission
events are shown with arrows on the global map. Uninterrupted lines on the map show data from
our investigation, while dashed lines display previous assumptions of spread.

Fig. 2: Emergent mutations in the Nsp1-Nsp2-Nsp4 replication complex. A) Representative
view of the CHIKV replication complex. Nspl is in grey, Nsp2 in yellow and Nsp4 in pink colour.
Structural models for visualization were obtained from PDBid 7y38 [45] and 4ztb [46]. In all panels
the mutations arising in the IOL are shown as purple sticks. Note that highlighted amino acids
correspond to the position of the indicated mutations but not always to the actual amino acid
involved in the mutation process. (see methods for more information) B) Close-up view,
highlighting the mutations on Nspl. The GTP and ATP which are cofactors for the Nsp1 are also
shown as orange sticks. C) Model of Nsp2 with indicated mutations. The catalytic residues are
shown as green sticks and the RNA fragment bound to the helicase domain is shown as orange
sticks. D) Detailed view showcasing the mutations on Nsp4. E) Summary of all mutations found in
the replication complex.

Fig. 3: Emergent mutations in the E1-E2-E3 spike complex. A) Representative view of the Spike
trimer. Structural models for visualization were obtained from PDBid 6jo8 [47]. El is coloured
cyan, E2 blue and E3 is green. The receptor Mxra8 is included to aid the visualization of the
receptor binding interface and is coloured brown. The position of the membrane at the base of the
spike is indicated. All emergent mutations are shown as sticks and coloured purple as in Fig. 2. B)
Close-up view, highlighting the mutations on El. The domains I, II and III are indicated. C)
enlarged model of E2 highlighting emergent mutations. Domains A, B and C are indicated. D)
Close-up view, showcasing the mutations on E3. E) Summary of all mutations found in the spike
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complex. Asterix denotes mutations that are not part of the analysed structure and are therefore not
visualized.

Fig. 4: Emergent mutations in the Nsp3, 6K and CP proteins. All mutations were mapped onto
the Colabfold-predicted structural models. Positions of mutations are shown as purple sticks, and
the overall colouring of the proteins is according to the pIDDT score indicating the confidence of
the prediction. Blue colour signifies highest prediction confidence and orange lowest as shown by
the legend. A) Emergent mutations in Nsp3 protein. Macro and Zinc-binding domains are indicated.
B) Predicted structure of 6K protein with highlighted V6I mutation. C) Capsid protein model with
highlighted mutations in the disordered N-terminal tail of the protein. D) Summary of all emergent
mutations found in the Nsp3, 6K and capsid proteins.

Supplementary information

Supplementary Fig. S1. A maximum likelihood tree of all 2,564 complete or near complete CHIKV
genome sequences. Sequences that were included in the subsampled dataset were colour coded
according colours in Fig. 1.

Supplementary Fig. S2. TempEst regression for the ECSA genotype. Data points were colour coded
according colours in Fig. 1.

Supplementary Fig. S3. Maximum clade credibility tree from Fig. 1, here depicting all branches
with posterior probability of > 0.95.

Supplementary Table S1. Includes strain name, sampling date, geographical location and NCBI
GenBank accession number for all twelve patient samples sequenced in the present study.
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