

## Title

The evolutionary and molecular history of a chikungunya virus outbreak lineage

## Authors

Janina Krambrich<sup>1,A</sup>

Filip Mihalič<sup>1</sup>

Michael W. Gaunt<sup>2</sup>

Jon Bohlin<sup>3</sup>

Jenny Hesson<sup>1,4,A</sup>

Åke Lundkvist<sup>1,A</sup>

Xavier de Lamballerie<sup>5</sup>

Cixiu Li<sup>6,7</sup>

Weifeng Shi<sup>7,8</sup>

John H.-O. Pettersson<sup>9,10,11,A\*</sup>

## Corresponding author

John H.-O. Pettersson (john.pettersson@uu.se | @folkhalsomyndigheten.se)

## Author affiliations

1) Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden;

2) Solena Ag, 300 Lincoln Center Dr. Foster City, CA 94404, USA;

3) Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway;

4) Biologisk Myggkontroll, Nedre Dalälvens Utvecklings AB, Kölnavägen 25, 81197 Gysinge, Sweden;

5) Unité des Virus Émergents (UVE), Aix-Marseille University - IRD 190 - Inserm 1207, Marseille, France;

6) Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271000, China;

7) Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;

8) Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;

9) Department of Medical Science, Uppsala University, SE-751 85 Uppsala, Sweden

10) Department of Clinical Microbiology and Hospital Hygiene, Uppsala University Hospital, SE-751 85 Uppsala, Sweden.

11) Department of Microbiology, Public Health Agency of Sweden, Nobels väg 18, SE-171 82 Solna, Sweden.

A) Members of the Zoonosis Science Center, Uppsala University, Sweden.

## 1 Abstract

2 In 2018–2019, Thailand experienced a nationwide spread of chikungunya virus (CHIKV), with  
3 approximately 15,000 confirmed cases of disease reported. Here, we investigated the evolutionary

4 and molecular history of the East/Central/South African (ECSA) genotype to determine the origins  
5 of the 2018–2019 CHIKV outbreak in Thailand. This was done using newly sequenced clinical  
6 samples from travellers returning to Sweden from Thailand in late 2018 and early 2019 and  
7 previously published genome sequences. Our phylogeographic analysis showed that before the  
8 outbreak in Thailand, the Indian Ocean lineage (IOL) found within the ESCA, had evolved and  
9 circulated in East Africa, South Asia, and Southeast Asia for about 15 years. In the first half of  
10 2017, an introduction occurred into Thailand from another South Asian country, most likely  
11 Bangladesh, which subsequently developed into a large outbreak in Thailand with export to  
12 neighbouring countries. Based on comparative phylogenetic analyses of the complete CHIKV  
13 genome and protein modelling, we also identified amino acid substitutions that may be associated  
14 with immune evasion, increased spread, and virulence. We identified several mutations in the  
15 E1/E2 spike complex, such as E1 K211E and E2 V264A, which are highly relevant as they may  
16 lead to changes in vector competence, transmission efficiency and pathogenicity of the virus. A  
17 number of mutations (E2 G205S, Nsp3 D372E, Nsp2 V793A), that emerged shortly before the  
18 outbreak of the virus in Thailand in 2018 may have altered antibody binding and recognition due to  
19 their position. This study not only improves our understanding of the factors contributing to the  
20 epidemic in Southeast Asia, but also has implications for the development of effective response  
21 strategies and the potential development of new vaccines.

## 22 Author Summary

23 We investigated the evolutionary and molecular history of the East/Central/South African (ECSA)  
24 genotype to determine the origins of the 2018–2019 chikungunya virus (CHIKV) outbreak in  
25 Thailand. We used newly sequenced clinical samples from travellers returning to Sweden from  
26 Thailand in late 2018 and early 2019 together with previously published genome sequences. Our  
27 phylogeographic analysis shows that the Indian Ocean lineage (IOL), found within ECSA, evolved  
28 in Eastern Africa, Southern Asia, and Southeast Asia for about 15 years before the outbreak in  
29 Thailand in 2018. We have also identified amino acid substitutions that may be associated with  
30 immune evasion, increased spread, and higher virulence that occurred prior to the outbreak and may  
31 have played a critical role in the rapid spread of the virus. Our study concludes that monitoring and  
32 understanding CHIKV dynamics remains critical for an effective response to the previously  
33 unpredictable outbreaks of the virus.

## 34 Introduction

35 Chikungunya virus (CHIKV, *Togaviridae*), is a single-strand positive-sense mosquito-borne RNA  
36 virus with a genome of approximately 12 kb that comprises two open reading frames (ORFs)  
37 encoding non-structural and structural proteins respectively [1]. The virus is transmitted to humans  
38 mainly through the bites of infected mosquitoes, such as *Aedes aegypti* and *Ae. albopictus*, which  
39 are widely distributed in tropical and subtropical regions around the world. [2-5]. These mosquito  
40 species are also responsible for the transmission of other well-known viruses, for example dengue  
41 virus, Zika virus, and yellow fever virus [2]. CHIKV was first discovered in Tanzania in 1952 and  
42 has since its discovery both been identified and/or suggested to be the causative agent of multiple  
43 outbreaks in Africa and Asia for several decades, if not centuries [6, 7]. However, since 2004 the  
44 virus has spread rapidly to new geographic regions and cases are now reported from over 100  
45 countries in Asia, Africa, Europe, and the Americas [8, 9]. The geographic distribution of CHIKV  
46 is primarily determined by the presence and spread of its mosquito vectors.

48 In African forests, a sylvatic cycle of CHIKV occurs between mosquitoes and non-human primates  
49 [10, 11]. This sylvatic cycle may lead to sporadic spill-over events, where the virus is transmitted to  
50 humans, initiating a separate urban cycle [12]. In the urban cycle, non-human primates are not  
51 necessary to sustain the epidemic, since the virus is transmitted between humans and *Aedes*  
52 mosquitoes. The sylvatic and the urban cycles can exist separately, contributing to the complex  
53 transmission dynamics of CHIKV in African regions.

54  
55 Following the expansion of CHIKV since 2004, outbreaks have occurred throughout the tropical-  
56 and subtropical regions of the world, becoming a significant public health concern. Between 2004  
57 and 2020, 3.4 million suspected and confirmed CHIKV cases were reported from various countries  
58 [13]. The actual number of CHIKV infections is likely considerably higher due to underreporting  
59 and asymptomatic cases. CHIKV infections, although rarely fatal, can lead to prolonged and  
60 incapacitating joint pain, lasting months or even years in some cases [9, 14, 15]. There are several  
61 vaccines for CHIKV that are currently under development. The Coalition for Epidemic  
62 Preparedness Innovations and the European Commission are currently supporting the development  
63 of a live-attenuated, single-dose vaccine that is designed by deleting a part of the CHIKV genome  
64 (Ixchiq, VLA1553 by Valneva). In November 2023, the US Food and Drug Administration  
65 approved and authorized this vaccine in the US [16, 17]. The Jenner Institute research group has  
66 developed another CHIKV vaccine using a combination of recombinant chimpanzee adenoviruses  
67 and Modified vaccinia Ankara (MVA), which however is not approved for use yet [18]. Other  
68 prevention efforts focus primarily on reducing mosquito populations and avoiding mosquito bites.  
69 As of now, there is no specific treatment for CHIKV [19].

70  
71 Based on phylogenetic analyses, CHIKV is commonly divided into three major lineages: the  
72 East/Central/South African (ECSA), the West African, and the Asian lineages [20, 21]. The ECSA  
73 lineage gave rise to the Indian Ocean lineage (IOL), which has been responsible for epidemics in  
74 the Indian Ocean islands, South and Southeast Asia, and Europe since 2005 [21, 22]. The first  
75 CHIKV outbreak in Thailand was reported in Bangkok in 1958, and the Asian genotype was  
76 identified as the cause of that outbreak [23]. The next notable outbreak occurred in southern  
77 Thailand between 2008 and 2009, followed by a smaller local spread in 2013 in north-eastern  
78 Thailand, both caused by the ECSA genotype [24, 25]. The overall number of reported cases  
79 remained low until just before the start of the 2018–2019 outbreak, according to the Bureau of  
80 Epidemiology in Thailand. In June 2018, the number of monthly reported chikungunya cases in  
81 Thailand began to increase and a nationwide spread of CHIKV was observed with approximately  
82 15,000 confirmed cases reported between 2018 and 2019 [26]. The virus primarily affected urban  
83 and semi-urban areas, with high transmission rates observed in densely populated regions. Due to  
84 international travel and the popularity of Thailand and other tropical regions as tourist destinations,  
85 an increase in imported CHIKV cases to other countries, including Europe and the United States,  
86 was observed both after the outbreak in Thailand in 2018 and after the CHIKV outbreak in the  
87 Caribbean and South America in 2014 [27-32].

88  
89 To improve our understanding of the factors that contributed to this epidemic in Southeast Asia,  
90 and, in particular, the sudden increase of cases in the 2018 Thailand outbreak, we conducted a  
91 comprehensive phylogeographic and mutational outbreak lineage analysis focusing on the ECSA  
92 and IOL. We performed phylogeny, time estimation and mutational profiling. We also carried out  
93 protein folding predictions from genes related to transmission and virulence. The analyses were

94 performed on previously sequenced genomes as well as newly sequenced clinical samples from  
95 travellers who returned to Sweden from Thailand in late 2018 and early 2019.

## 96 Methods

### 97 Preparation of patient material

98 Serum samples from a total of 12 patients who had travelled from Thailand to Sweden between  
99 December 2018 and April 2019 and who were PCR-positive for CHIKV in a real-time PCR  
100 screening were included in the study (supplementary Table S1). Total RNA was extracted from all  
101 patient samples by automated magnetic bead total nucleic acid extraction using a MagLEAD system  
102 (Precision System Science Co.) from the aqueous phase after Trizol–chloroform separation. RNA-  
103 seq libraries were then prepared using the Trio RNA-Seq Library Preparation Kit (NuGen)  
104 according to the manufacturer's instructions and subsequently sequenced on one Illumina X10 lane.  
105 RNAseq library preparation and high-throughput sequencing were performed by BGI, Hong Kong.

### 106 Sequence processing

107 First, low-quality reads were removed with Trimmomatic v.0.36 using the default settings [33]. All  
108 quality-checked sequence data libraries were then mapped with Bowtie v.2.3.4. using the default  
109 local settings against a NCBI CHIKV reference sequence (NCBI GenBank accession number:  
110 MF773566), whereupon 50% majority consensus sequences were generated. All CHIKV sequences  
111 were deposited to the NCBI GenBank under accession numbers PP193832–PP193843 and the raw  
112 data (excluding human reads) was deposited under NCBI SRA accession nr: PRJNA1066385.

### 113 Evolutionary analyses

114 First, 2,564 CHIKV sequences of  $\geq$ 8000bp, with known collection date and geographic location  
115 together with the 12 CHIKV genomes generated above were aligned using MAFFT v.7.520 [34, 35]  
116 utilizing the L-INS-i algorithm, where the 5' and 3' ends were trimmed. To reduce the number of  
117 sequences prior to temporal analyses, we constructed a maximum likelihood phylogenetic tree with  
118 IQ-TREE v.2.2.0 [36] using the Generalized time-reversible model of Tavaré 1986 (GTR) with  
119 empirical base frequencies, invariant sites, and invariant sites plus FreeRate model with tree  
120 categories (GTR+F+I+R3) following the ModelFinder implemented in IQ-TREE [37]. We then  
121 subsampled the phylogenetic tree to include a total of 218 CHIKV ECSA genotype sequences (see  
122 coloured terminal nodes in Supplementary Fig. S1 for sequences included), which were used for the  
123 temporal and evolutionary analyses. The temporal structure of the subsampled dataset, sampled  
124 between the years 1953 and 2023, was then assessed using TempEst v.1.5.3 (Supplementary Fig.  
125 S2) [38]. Finally, the evolutionary history of the subsampled dataset was assessed using BEAST  
126 v.1.10.4 [39, 40] by performing a single run of 250 million MCMC generations, sampling every 5k  
127 generations, using terminal node calendar dates (i.e. tip dates) as temporal calibration, GTR with  
128 invariant sites and four gamma variables with default flat Dirichlet priors as a model of nucleotide  
129 evolution, an uncorrelated lognormal relaxed molecular clock with default prior distribution, and a  
130 non-parametric Gaussian Markov random field Bayesian Skyride tree prior [41]. Following 10%  
131 burn-in, the run was checked using Tracer v.1.7.2 [42] to confirm that the effective sample size for  
132 all parameters was  $>200$ . Finally, we used TreeAnnotator v.1.10.4 [40] to compute a maximum  
133 clade credibility tree and calculate median node heights. The resulting tree was viewed and  
134 annotated in FigTree v.1.4.4 [43]. Posterior probabilities  $\geq 0.95$  are presented in Supplementary Fig.  
135 S3).

136

## 137 **Mutational analysis**

138 In order to analyse emergent mutations arising in the IOL, we mapped them on the existing  
139 structural models of chikungunya protein complexes. This approach was used to visualise mutations  
140 in the proteins of the replication and spike complexes respectively. To gain insight into mutations  
141 that were located outside of the experimentally resolved regions we additionally predicted the  
142 structural models using Colabfold [44]. Colabfold predictions were in excellent agreement with the  
143 solved crystal structures in regard to globular domains and also allowed us to visualise the  
144 disordered regions found in viral proteins. The replication complex mutations were mapped on the  
145 structure accessible under PDBid entry 7y38 (complex of Nsp1, Nsp2 helicase domain and Nsp4)  
146 [45] and 4ztb (Nsp2 protease domain) [46]. It should be noted that not all of the amino-acid  
147 residues are resolved in these crystal structures. For the E1-E2-E3 trimer spike complex we  
148 visualised mutations based on the PDBid entry 6jo8 [47] and 6nk6 [47]. Finally, for the Nsp3, 6K  
149 and CP we mapped the mutations directly onto the Colabfold structure prediction due to the high  
150 degree of disorder (Nsp3, CP) or lack of other structural information (6K). For both Nsp3 and CP,  
151 we superimposed Colabfold predictions onto the relevant solved crystal structures of their  
152 respective globular domains to confirm the quality of the predictions and found them to be in  
153 excellent agreement (Nsp3 Macrodomain, PDBid: 6vuq, RMSD: 0.344; Nsp3 Zinc-binding domain,  
154 PDBid: 4gua, RMSD: 0.58; CP protease domain, PDBid: 5h23, RMSD: 0.505). PyMOL (The  
155 PyMOL Molecular Graphics System, Version 2.5.4 Schrödinger, LLC) was used to visualise the  
156 protein structures. Different protein sequences were used for the experimentally determined  
157 structures meaning that the stick model of the mutation used for figures does not always  
158 corresponds to the amino acids involved in the mutation we discuss in text (example: for the Nsp4  
159 structure in Fig. 2D the T75A mutation, a methionine (M) is the actual residue in the Nsp4 sequence  
160 that was used for Cryo-electron microscopy experiment, and is thus visualised in the figures). With  
161 that in mind the highlighted residues are intended to indicate the position of the mutation rather than  
162 imply any amino-acid change or impact of the mutation itself.

## 163 **Ethical statement**

164 This study was in part conducted at the Public Health Agency of Sweden supported by the  
165 ordinance (2021:248:§37) from the Swedish Parliament to study and monitor the situation and  
166 development of infectious diseases. It should be noted that, apart from the country of infection and  
167 the date of sample collection, no information or data from this project can be linked or traced to a  
168 specific individual included in the study. Therefore, the CHIKV-positive samples were used in  
169 accordance with the regulations governing the use of such material and in accordance with the  
170 mandate of the Swedish Parliament.

## 171 **Results**

### 172 **Evolutionary history of CHIKV**

173 Based on the phylogenetic analysis, CHIKV can be divided into three different genotypes  
174 (Supplementary Fig. S1), the West African, the Asian, and the ECSA genotype, which are  
175 supported by high posterior probabilities (Fig. S3). High posterior probabilities ( $\geq 0.95$ ) were also  
176 observed for all nodes, which are described in the results section. The ECSA genotype is  
177 characterised by three clusters, as shown in Fig. 1: the paraphyletic group ECSA 1 (light green) and  
178 the monophyletic groups ECSA 2 (red) and IOL (blue) (see also Supplementary Fig. S1). When  
179 analysing the complete ECSA genotype (consisting of light green, red, and blue, see Supplementary  
180 Fig. S2), the root-to-tip analysis showed that our investigated data set exhibited a significant

181 temporal structure (correlation coefficient = 0.90; R-squared = 0.82, p<0.001, Supplementary Fig.  
182 S2). To investigate the dispersal history and temporal structure of the CHIKV ECSA genotype and  
183 the IOL in particular, we then performed a phylogeographic analysis of 218 viral genomes of this  
184 genotype, covering approximately 70 years of CHIKV evolution and movement between regions  
185 (Fig. 1). Fig. 1 shows the resulting time-calibrated phylogenetic tree with maximum clade  
186 credibility of CHIKV together with a map indicating the major routes of CHIKV movement for  
187 ECSA lineages 1 and 2 (green and red) and the IOL (blue).

188  
189 For the ECSA genotype as a whole, i.e., including the IOL, the lognormal, uncorrelated relaxed  
190 clock estimated the mean evolutionary rate to be  $4.4 \times 10^{-4}$  substitutions/site/year (95% highest  
191 posterior density [95% HPD] =  $4.1\text{--}4.8 \times 10^{-4}$ ) with a most recent common ancestor emerging  
192 around 1952 [95% HPD = 1948–1953] (Fig. 1). For the IOL, the mean evolutionary rate was  
193 estimated to be  $2.8 \times 10^{-4}$  substitutions/site/year (95% HPD =  $2.2\text{--}3.5 \times 10^{-4}$ ) and a most recent  
194 common ancestor emerging around February 2003 (95% HPD 2001-07 to 2004-02). However, we  
195 recognise, that there are rate variation between lineages even within the ECSA genotype [48],  
196 affecting the African clades, which have a lower sampling frequency. It is noteworthy that the  
197 earliest recorded CHIKV isolates are from West and East Africa, emphasising the historical  
198 importance of this region in the evolutionary trajectory of the virus.

### 199 **Early evolution and movement of the ECSA genotype**

200 Following the divergence from a West African ancestor (Supplementary Fig. S1) [48], our  
201 phylogeographic analysis of the ECSA genotype reveals a highly structured dispersal network with  
202 a significant interregional spread of CHIKV. Since the emergence of the most recent common  
203 ancestor of the ESCA genotype, CHIKV has circulated to date, moving between many sub-Saharan  
204 African countries, particularly in eastern, central, and southern African countries. The first CHIKV  
205 discoveries and isolations were limited to East Africa in 1953 (Tanzania) and West Africa in 1964  
206 (Nigeria) (Fig. 1, Supplementary Fig. S1). Between the 1950s and the 1980s, African ECSA-  
207 CHIKV viruses continued to diversify, followed by a long period of sporadic detection but possibly  
208 continuous sylvatic circulation [10]. The first of the evolved ECSA lineages, African ECSA 1 (light  
209 green), showed intermediate-range dissemination within sub-Saharan Africa, spreading from  
210 Central Africa to the Americas (red) in the late 1980s and early 2010s (1995 in the USA and 2014  
211 in Brazil) (Fig. 1). Subsequently, the African ECSA 1 lineage spread eastwards to the Indian Ocean  
212 islands (Madagascar, Mauritius, Mayotte, Comoros) in the 1960s and to India in the 1980s (blue)  
213 (Fig. 1). A more recent African cluster with representatives from Cameroon, Gabon and the  
214 Democratic Republic of Congo, probably emerged more than 20 years ago and circulated in this  
215 region until at least 2018. A similar but independent cluster in Angola and the Democratic Republic  
216 of Congo, was separated by more than 30 years of evolution before it emerged in 2011. A similar  
217 scenario occurred when the pathogen was introduced to Brazil via Western Africa or the USA after  
218 circa 30 years of unaccounted evolution, which later led to a significant and sustained outbreak in  
219 South America [49]. The Southeast Asian region in particular, including India, emerged as a major  
220 inter-regional transmission hub, facilitating the spread of CHIKV to other regions. Sub-Saharan  
221 Africa, where the virus originally emerged in the 1920s, also played a central role in the global  
222 spread and maintenance of the virus, albeit to a lesser extent than Southeast Asia and India.  
223 Bidirectional transmission events between Africa and Asia have been documented, including early  
224 transmission from Africa to India in the late 1920s, with subsequent introductions in 1986 and  
225 2000.

## 226 **Spread and recent emergence of the IOL in Southeast Asia**

227 The emergence and spread of CHIKV in the Indian Ocean islands, the Indian subcontinent, and  
228 Southeast Asia are associated with a significant increase in cases. Here we examine the  
229 evolutionary history of CHIKV to trace the origins of the outbreak lineage that caused a substantial  
230 number of cases in Thailand and other Southeast Asian countries in 2018 and 2019 [24, 26]. The  
231 2004 outbreak of CHIKV in the Indian Ocean islands was the first documented outbreak in the IOL  
232 [50]. The outbreak was mainly observed in urban and semi-urban areas, for example on the  
233 Comoros Islands where more than 5,000 cases were reported [51]. Seroprevalence studies from  
234 2011 indicate that 20% of the population on Ngazidja (Grande Comore), the largest island in the  
235 Comoros with a population of approximately 316,600, were infected with CHIKV on [52]. The  
236 outbreak then spread to other islands in the Indian Ocean, including Madagascar, Mauritius, and the  
237 Seychelles, and eventually to other parts of the world, including Europe [53, 54]. The IOL has been  
238 circulating in South and Southeast Asia for two decades now, with several sub-lineages and variants  
239 having emerged and spread throughout the region (Fig. 1). The last common ancestor of the IOL of  
240 the ECSA genotype is estimated to have originated in coastal Kenya and the Mascarene islands,  
241 around early 2003 (95% HPD: 2001-07–2004-02), which is consistent with previous estimates [50,  
242 55]. A new IOL sub-lineage, distinct from the previous IOL that originated from the Kenyan coast,  
243 was found to have originated in India and circulated during 2008–2016, with subsequent spread to  
244 Pakistan, Bangladesh, Thailand, and Italy [56]. Several introductions and re-introductions of IOL  
245 strains to Africa (Kenya, Djibouti, and Sudan) and the Arabian Peninsula have been observed over  
246 the years. Most outbreaks in South Asian countries since 2005 have reportedly been caused by IOL  
247 strains, and new clades have evolved in multiple Southeast Asian countries over time, indicating a  
248 significant presence of the IOL in the region.

## 249 **Emergence of mutations in the IOL preceding the Thai outbreak in 2018**

250 The CHIKV sequences isolated in this study from Swedish travellers, as well as other sequences  
251 isolated during the 2018–2019 outbreak in Thailand, belonged to the IOL but show marked  
252 differences from the strains responsible for the massive CHIKV outbreak in Thailand in 2008–  
253 2009, indicating a clear, non-local origin. The outbreak was likely due to the introduction of a viral  
254 strain from South Asia, possibly Bangladesh (Fig. 1) [56], since phylogenetic analysis of the  
255 isolates revealed that the Thai sequences diverged from a Bangladeshi ancestor around April 2017  
256 (95% HPD: January–May 2017). Following its introduction and epidemic spread in Thailand,  
257 CHIKV also spread to Cambodia, Malaysia, Myanmar and China starting in mid-2018 (Fig. 1). Our  
258 analysis of the IOL outbreak strains led to the detection of mutations in the ancestral strain,  
259 distinguishing the outbreak strains from ESCA 1 and 2 at the last common ancestor node (Fig. 1,  
260 Node A). Our results revealed a high frequency of amino acid substitutions in both structural and  
261 non-structural genes of CHIKV. Nine substitutions were detected in non-structural proteins and  
262 nine in structural proteins. Over the subsequent history of the IOL, 18 additional amino acid  
263 substitutions were introduced on 14 occasions in the main lineage (green boxes in Fig. 1), while 16  
264 different substitutions were introduced on 12 occasions in different subclades (orange boxes in Fig.  
265 1).

## 266 **Genetic diversity in the IOL**

267 Throughout the CHIKV IOL divergence, we identified 47 mutations that occurred at different time  
268 points in viral evolution. To rationalise the impact of the mutations on viral proteins function of, we  
269 mapped the emergent mutations that occurred in the IOL to solved crystal structures or Colabfold-

270 predicted models. We analysed the replication complex and the trimeric E1-E2-E3 spike separately,  
 271 as they consist of highly interactive complexes and high-quality structural models are available for  
 272 these complexes. For the Nsp3, CP, and 6K proteins, which had a high number of mutations in the  
 273 experimentally unsolved regions, we mapped the mutations to the Colabfold-predicted models and  
 274 confirmed minimal deviation from the experimentally determined structures of their globular  
 275 domains to ensure a high quality of prediction. Not surprisingly, we found that most mutations  
 276 occurred in the surface-exposed regions of the viral proteins and that the mutations were  
 277 predominantly conservative in nature, with a few notable exceptions (Fig. 2–4). We found most  
 278 mutations in the E1-E2-E3 spike complex, where mutations were evenly distributed across all three  
 279 proteins, and the fewest mutations in protein 6K, where only one emergent mutation was observed.  
 280 An overview of all identified mutations is shown in Table 1.

281

282 Table 1: Amino acid substitutions in the IOL.

| Protein | Aminoacid | Conservation | Location                | Effect           | Node                                                                                          | Published functional studies |
|---------|-----------|--------------|-------------------------|------------------|-----------------------------------------------------------------------------------------------|------------------------------|
|         | Pos.      | Ori.         | Sub.                    |                  |                                                                                               |                              |
| Nsp1    | 128 T     | K            | polar to charged        | surface exposed  | minimal                                                                                       |                              |
|         | 290 I     | V            | conservative            | hydrophobic core | may effect protein stability                                                                  | AA                           |
|         | 376 T     | M            | polar to hydrophobic    | ambiguous        | may effect docking of Nsp4, into Nsp1 ring                                                    | C                            |
|         | 488 Q     | R            | polar to charged        | surface exposed  | minimal                                                                                       | A                            |
| Nsp2    | 54 S      | N            | conservative            | Nsp4 interface   | may impact Nsp2, Nsp4 interaction                                                             | A                            |
|         | 130 H     | Y            | semi-conservative       | surface exposed  | minimal                                                                                       | N                            |
|         | 145 E     | D            | conservative            | surface exposed  | minimal                                                                                       | U                            |
|         | 495 N     | S            | conservative            | surface exposed  | may effect substrate recognition                                                              | Z                            |
|         | 539 L     | S            | hydrophobic to polar    | surface exposed  | may alter protein stability or protein protein interactions, may effect substrate recognition | H                            |
|         | 566 S     | F            | polar to aromatic       | surface exposed  | may alter protein stability or protein protein interactions, may effect substrate recognition | Y                            |
|         | 793 A     | V            | semi-conservative       | surface exposed  | likely unfavorable                                                                            | X                            |
| Nsp3    | 59 M      | T            | hydrophobic to polar    | surface exposed  | may have stabilizing effects                                                                  | D                            |
|         | 217 Y     | H            | semi-conservative       | surface exposed  | may effect RNA replication and assembly                                                       | AA                           |
|         | 337 T     | I            | polar to hydrophobic    | surface exposed  | may be new interaction sites, or minimal effect                                               | A                            |
|         | 338 T     | M            | polar to hydrophobic    | surface exposed  | may be new interaction sites, or minimal effect                                               | F                            |
|         | 372 D     | E            | conservative            | surface exposed  | may be new interaction sites, or minimal effect                                               | W                            |
|         | 461 L     | P            | hydrophobic to cyclic   | surface exposed  | may be new interaction sites, or minimal effect                                               | A                            |
|         | 471 P     | S            | cyclic to polar         | surface exposed  | may be new interaction sites, or minimal effect                                               | A                            |
| Nsp4    | 55 S      | N            | conservative            | surface exposed  | minimal                                                                                       | T                            |
|         | 75 T      | A            | semi-conservative       | surface exposed  | minimal                                                                                       | A                            |
|         | 82 R      | S            | charged to polar        | surface exposed  | minimal                                                                                       | I                            |
|         | 85 R      | G            | charged to small        | surface exposed  | may affect Nsp1-Nsp4 interface, may impact dimer formation                                    | O                            |
|         | 254 T     | A            | flexible                | surface exposed  | minimal                                                                                       |                              |
|         |           |              | semi-conservative       | surface exposed  | minimal                                                                                       | A                            |
| E1      | 55 I      | V            | conservative            | hydrophobic core | may interfere with folding                                                                    | M                            |
|         | 136 L     | F            | semi-conservative       | surface exposed  | minimal                                                                                       | S                            |
|         | 211 K     | E            | polar to charged        | surface exposed  | effects adaptability to <i>Ae. aegypti</i>                                                    | L                            |
|         | 226 A     | V            | semi-conservative       | Mxra8 interface  | increases fitness in <i>Ae. albopictus</i>                                                    | [68-73]                      |
|         | 269 M     | V            | conservative            | surface exposed  | minimal                                                                                       | B, E                         |
|         | 284 D     | E            | conservative            | surface exposed  | minimal                                                                                       | A                            |
|         | 317 I     | V            | conservative            | surface exposed  | minimal                                                                                       | A                            |
| E2      | 74 M      | I            | conservative            | Mxra8 interface  | minimal                                                                                       | R                            |
|         | 76 A      | T            | semi-conservative       | Mxra8 interface  | minimal                                                                                       |                              |
|         | 205 G     | S            | small flexible to polar | surface exposed  | may effect immune evasion                                                                     | S                            |
|         | 210 L     | Q            | hydrophobic to polar    | surface exposed  | may effect immune evasion                                                                     | P                            |
|         | 211 I     | T            | hydrophobic to polar    | surface exposed  | may effect immune evasion                                                                     | V                            |
|         | 252 K     | Q            | charged to polar        | E3 interface     | may affect E2, E3 interface                                                                   | D                            |
|         | 264 V     | A            | semi-conservative       | Mxra8 interface  | may affect E2, E3 interface                                                                   | A                            |
|         | 312 T     | M            | polar to hydrophobic    | surface exposed  | may affect MXRA8, spike interaction                                                           | H                            |
|         | 375 S     | T            | conservative            | surface exposed  | minimal                                                                                       | K                            |
|         | 386 V     | A            | semi-conservative       | surface exposed  | minimal                                                                                       | A                            |
| E3      | 39 V      | I            | conservative            | E2 interface     | may affect E2, E3 interface                                                                   | J                            |
|         | 56 P      | S            | cyclic to polar         | surface exposed  | minimal                                                                                       | J                            |
| 6K      | 8 V       | I            | conservative            | surface exposed  | minimal                                                                                       | A                            |
| CP      | 23 P      | S            | cyclic to polar         | surface exposed  | minimal                                                                                       | G                            |
|         | 27 V      | I            | conservative            | surface exposed  | minimal                                                                                       | G                            |
|         | 73 K      | R            | conservative            | surface exposed  | minimal                                                                                       | Z                            |
|         | 79 N      | S            | conservative            | surface exposed  | minimal                                                                                       | Q                            |

283

284 *Replication complex*

285 The replication complex consists of the proteins Nsp1, Nsp2, and Nsp4, which form a disc-like  
 286 structure that docks into the neck of the ultrastructures packed with viral RNA, the so-called  
 287 spherules (Fig. 2A) [45, 57]. In this complex, eleven monomers of the RNA capping enzyme Nsp1

288 form an outer ring to which the RNA-dependent RNA polymerase Nsp4 is docked. The viral  
289 protease Nsp2 also associates with the complex from the cytoplasmic side (Fig. 2A) [45]. In Nsp1,  
290 two mutations, T128K and Q488R, are located on the protein surface, which probably have only  
291 minimal effects on the stability and function of the protein (Fig. 2B). The conservative mutation  
292 I290V was found to be buried in the hydrophobic core of the protein and may have slight effects on  
293 protein stability, while the T376M mutation is located near the Nsp1-Nsp4 interface and thus may  
294 affect the docking of Nsp4 to the oligomeric ring of Nsp1.

295

296 Of the seven mutations found in Nsp2, three were located in the N-terminal helicase domain (S54N,  
297 H130Y and E145D) and four in the C-terminal protease domain (N495S, L539S, S566F and  
298 A793V; Fig. 2C). While H130Y and E145D are conservative surface mutations that likely have  
299 limited effects on Nsp2 function, S54N is located at the interface between Nsp2 and Nsp4 so the  
300 mutation could potentially have an impact on the interaction between Nsp2 and Nsp4 and on the  
301 overall stability of the complex. Of the four mutations found in the protease domain, N495S retains  
302 a hydrophilic character and is unlikely to affect the function of the protein. The non-conservative  
303 surface mutations L539S and S566F could alter the stability of the protein or interactions with  
304 potential binding partners, and A793V introduces a larger hydrophobic moiety on the surface of the  
305 short, disordered C-terminal peptide of the Nsp2 protease domain, which is unlikely to be  
306 favourable. Being in moderate proximity to the Nsp2 active site, it is possible that the N495S,  
307 L539S and S566F mutations affect substrate recognition, as the exact substrate binding interface for  
308 CHIKV Nsp2 is not clear. Interestingly, the A793V mutation reverted to A in the last common  
309 ancestor of the 2018 Thai outbreak lineage.

310

311 The Nsp4 is largely devoid of emergent mutations, with the exception of the N-terminal domain,  
312 which extends into the replication spheroid space and for which an interaction with the RNA  
313 template has been proposed [45] (Fig. 2D). All of the mutations we identified in Nsp4 (S55N,  
314 T75A, R82S, R85G and T254A) are surface mutations, with R82S and R85G being the most likely  
315 to affect Nsp4 protein function due to their non-conservative nature. The R85G mutation in  
316 particular is located close to the Nsp1-Nsp4 interface and could impair the respective dimer  
317 formation.

### 318 *Spike complex*

319 The spike complex is a trimer of E1-E2-E3 heterotrimers, that forms the icosahedral outer envelope  
320 (Fig. 3A) of virus particles and is responsible for receptor binding, membrane fusion and viral entry  
321 [58-62]. While E1 performs membrane fusion in acidic environments [63], E2 facilitates Matrix  
322 remodelling-associated protein 8 (MXRA8) receptor binding [64], and E3 protects premature  
323 exposure of the E1 fusion loop and is important for correct E1-E2 maturation [64, 65]. We  
324 identified seven, ten and two emergent mutations in the E1, E2, and E3 proteins, respectively. All  
325 mutations found in E1 are surface mutations with the exception of I55V, which is located in the  
326 hydrophobic core of domain II and could interfere with the correct folding of the protein (Fig. 3B).  
327 Of the remaining six mutations, three are located in the domain I and domain III regions of the  
328 protein and are located both proximal to the membrane and at the base of the spike. Mutation  
329 L136F is located on the surface of domain I, I317V is located on the surface of domain III, and  
330 mutation D284E is situated in the linker region between domains I and III. This junction region  
331 undergoes substantial rearrangement upon conversion of E1 to the fusion form [66, 67], but given  
332 the conservative nature of the mutation, the rearrangement is unlikely to be affected by the

333 identified mutation. As the surface mutations found in domains I and III are positioned at the outer  
334 surface of the spike, they could also affect the packing of neighbouring spike complexes into the  
335 icosahedral viral lattice. Of the remaining three mutations, K211E has already been described to  
336 have an impact on viral replication and the adaptability to the *Ae. aegypti* vector [68-73]. The  
337 conservative mutation M269V is located on the inner spike surface of E1 and probably has no effect  
338 on protein function. The A226V mutation of E1, which is associated with increased fitness of  
339 CHIKV in *Ae. albopictus* [71, 74-76], and probably contributes to the epidemic potential of  
340 CHIKV, was introduced in two different subclades at different time points (Fig. 1, Node B and E).  
341 However, in the subclade following node E, two sequences, FJ000067.1 from India and FJ445428.2  
342 from Sri Lanka, do not have valine at position 226 but alanine. In the main IOL, the ancestral  
343 alanine remained at position 226.

344

345 MXRA8 is a cell surface receptor for several arthritogenic alphaviruses, such as CHIKV [62, 77],  
346 and interacts mainly with the outer crown of the spike complex consisting of three E2 proteins.  
347 Although the E2 mutations M74I and A76T are located proximal to the MXRA8 interface, they are  
348 unlikely to have a significant impact on receptor interaction given their conservative nature. In  
349 contrast, V264A is in direct contact with the MXRA8, so this mutation probably has a greater  
350 impact on the interaction between the spike complex and the cell surface receptor. Because it is  
351 exposed on the surface of the virion, E2 is also the primary target of natural and recombinant  
352 antibodies [78-80]. Several of the antibodies target the B domain of E2 [78, 79] in the region where  
353 we also found three emergent mutations: G205S, L210Q, and I211T (Fig. 3C). Since the same  
354 residues are targeted by antibodies, their mutation could serve as an immune evasion mechanism  
355 leading to enhanced viral fitness [78, 79, 81]. Interestingly, the K252Q mutation is located at the  
356 interface of E2 and E3 and is in direct contact with the V39I mutation on the E3 protein. Since these  
357 mutations do not occur in the same viral clade, they are likely not the result of coevolution, but  
358 suggest that some degree of amino acid variation is operative in this region of E1-E3 (Fig. 3C).  
359 Finally, T312M is a surface mutation with likely limited effects on protein function and S375T,  
360 V386A are located in the transmembrane region of the E2 protein with likely minimal effects on the  
361 protein function.

362 Apart from the V39I mutation, only one other mutation was found in the E3 protein (Fig. 3D). The  
363 P56S mutation, which is located in the immediate vicinity of the C-terminal furin cleavage site [64],  
364 probably has no major influence on protein function. Both E3 mutations occur only in one clade of  
365 CHIKV with node J as the closest common ancestor (Fig. 1).

366 *Nsp3, 6K, and capsid proteins*

367 For the proteins that are neither part of the replication nor the spike complex, we have mapped the  
368 mutations to the individual structural models predicted by Colabfold. The Nsp3 protein, which is  
369 closely associated with the replication complex [45, 82], consists of two folded globular domains,  
370 the N-terminal macro-domain and the zinc-binding domain, followed by an elongated hypervariable  
371 C-terminal disordered region (Fig. 4A) [82]. The macro-domain exhibits ADP-ribosylhydrolase  
372 activity [83], while the zinc-binding domain, although poorly understood, is associated with various  
373 functions in viral genome replication and transcription that are often species- and cell type-specific  
374 [84]. The hypervariable C-terminal region has been shown to be intrinsically disordered [85] and  
375 serves as a platform for the binding of various host factors [85, 86]. We identified one emergent  
376 mutation in each of the two folded domains and five mutations in the hypervariable C-terminal  
377 disordered region (Fig. 4A). The M59T mutation, located on the surface of the macro-domain, is on

378 the opposite side of the active site and might have a stabilising effect due to the transition from a  
379 hydrophobic to a hydrophilic surface-exposed amino acid. The Y217H mutation is located at the  
380 base of a small, shallow pocket on the surface of the zinc-binding domain, which could be a binding  
381 pocket. Interestingly, a reversal to an ancestral Y can be observed at this position in 2019 (Node  
382 AA, Fig. 1). As the function of this domain is unclear, it is difficult to speculate on the effects of  
383 this specific mutation. However, it has been shown that the entire domain is crucial for RNA  
384 replication and viral assembly [87]. None of the five mutations found in the C-terminal domain  
385 interfere with the previously described short linear motifs found in this region, which interact with  
386 amphiphysin-SH3 (which is recruited by the virus to promote viral RNA replication) [88] and the  
387 G3BP-NTF2 domains (which are hijacked to block stress granule formation) [89]. Given the high  
388 density of short linear motifs in the disordered regions of viral proteins and the fact that the C-  
389 terminal disorder domain of Nsp3 acts as an interaction hub for host factors, it is possible that the  
390 T337I, T338M, D372E, L461P, and P471S mutations create new binding sites for host proteins or  
391 destroy existing ones [90]. Alternatively, these mutations might not have significant effects on the  
392 function of the protein and might be consequences of random drift.  
393

394 The 6K protein is a poorly understood, highly hydrophobic protein that forms hexameric ion  
395 channels in the endoplasmic reticulum (ER) membrane [91, 92]. We have identified only one  
396 conservative mutation, V8I, which likely has limited or no effect on protein function (Fig. 4B).  
397 Finally, the capsid protein (CP) is a multifunctional protein with an N-terminal, positively charged,  
398 intrinsically disordered region involved in RNA encapsidation [93], and a C-terminal,  
399 chymotrypsin-like protease domain that binds to the transmembrane helix of E2 and forms the inner  
400 lattice of the mature viral nucleocapsid [65, 94]. All four mutations found in the CP protein, P23S,  
401 V27I, K73R, and N79S, are located in the N-terminal disordered region (Fig. 4C). The mainly  
402 conservative nature makes it unlikely that these mutations have a major impact on the function of  
403 CP. This, and the fact that we found no emergent mutations in the C-terminal protease domain,  
404 suggests that the CP protein is under tight evolutionary constraints that allows only very limited  
405 variation in the amino acid sequence.

406 We speculated about the effect of the mutations based on their position in the structure, but further  
407 experimental validations should be performed to accurately determine the effect of individual  
408 mutations. This opens an interesting avenue for future work.  
409

## 410 Discussion

411 CHIKV has left an indelible mark on the global landscape of infectious diseases, and its emergence  
412 and spread over time provide valuable insights into the complexity of vector-borne diseases. The  
413 current diversity of CHIKV is thought to have originated in sub-Saharan Africa in the 1920s [6].  
414 This is consistent with our analysis, where the deepest split in our CHIKV tree is estimated to be in  
415 the 1950s. The emergence of the Asian genotype shortly thereafter in the 1930s marked the  
416 beginning of a series of events that eventually led to the formation of distinct lineages. These  
417 genotypes, including the West African, the Asian, and the ECSA genotype with the IOL, illustrate  
418 the intricate evolutionary history of CHIKV. Each genotype has played a unique role in the global  
419 spread of the virus.  
420

421 Our analysis shows that there is considerable interregional transmission of CHIKV. The Southeast  
422 Asian region, particularly India, stands out as an important interregional transmission site linking  
423 CHIKV isolates from other regions. Sub-Saharan Africa, where CHIKV first emerged, also plays a  
424 central role in the global spread, albeit to a lesser extent than Southeast Asia. South America  
425 appears to be the primary source of intra-continental spread, rather than a source of transmission of  
426 CHIKV to other continents. This long-distance transmission emphasises the adaptability of CHIKV  
427 to different ecological and environmental conditions, as it can be transmitted in both urban and  
428 sylvatic cycles [100]. This is evidence of the resilience and adaptability of CHIKV as it navigates  
429 different regions and ecosystems. The possibility of transmission in both urban and sylvatic  
430 environments gives CHIKV the opportunity to spread through infected human travellers and cause  
431 new outbreaks, but also to circulate locally and establish an endemic occurrence of the virus.

432  
433 The IOL represents an intriguing aspect of the global spread of CHIKV. It shows a multitude of  
434 bidirectional transmission events linking Southeast Asia, India, East Africa, the Arabian Peninsula,  
435 and Europe. This lineage emphasises the intricate network of CHIKV transmission in the Indian  
436 Ocean region and highlights the role of different regions in maintaining the presence of the virus.  
437 Phylogenetic analysis of CHIKV Thai strains isolated between 2018 and 2020 during the large  
438 outbreak in Thailand revealed that they are mapped within the IOL to the ECSA genotype, the same  
439 genotype responsible for the massive Thailand outbreak in 2008–2009. The strains from the 2008–  
440 2009 outbreak however, possess the E1 A226V mutation, which is associated with enhanced  
441 transmission by *Ae. albopictus*, compared to strains circulating before 2008 [71, 75, 76, 96, 101–  
442 103]. A 2021 study by Khongwichit et. al. found that none of the ECSA strains isolated during the  
443 second massive outbreak in Thailand from late 2018 to early 2020 carried this E1 A226V mutation  
444 [24], nor did we find it in our Thai isolates (Fig. 1). Instead, the new Thai strains had the ancestral  
445 alanine at position 226 of the E1 envelope glycoprotein, showing similarities to previous outbreaks  
446 in Thailand in 1958 [23]. This leads us to hypothesise that there must have been other factors in the  
447 2018 outbreak that lead to the rapid spread of the virus.  
448

449 We and others found that the 2018–2020 Thai strains had additional mutations of interest, such as  
450 E1 K211E (Fig. 1, Node L, Fig. 3B) and E2 V264A (Fig. 1, Node K, Fig. 3C) [24]. It has been  
451 reported that positive selection had a dramatic effect on the alteration of the amino acid residue  
452 from lysine (K) to glutamic acid (E) at position 221 of the E1 protein and that mutations on the E1  
453 and E2 envelope glycoproteins in general can affect the vector competence, transmission efficiency,  
454 and pathogenicity of the virus [71, 95–99]. The V264A substitution is located at the MXRA8  
455 receptor-binding interface and the mutation could alter the interaction between the viral spike  
456 complex and the cell surface receptor. The E1 K211E mutation has been associated with enhanced  
457 viral infection in *Ae. aegypti* and has also been reported in other regions [104–108]. This adaptation  
458 to a different vector may have influenced the increased spread of CHIKV in Thailand in 2018–  
459 2019. Consistently, all sequences isolated and sequenced in this study contain alanine at position  
460 226 of the E1 protein and carry the mutations E1 K211E and E2 V264A.  
461

462 Two other notable mutations in the structural protein E2 are I211T (Fig. 1, Node A, Fig. 3C) and  
463 G205S (Fig. 1, Node V, Fig. 3C). The I211T mutation occurs at the IOL ancestral node while the  
464 G205S substitution occurs at node V, probably in early 2016, shortly before the progenitor of the  
465 2018 Thai outbreak began to circulate in Bangladesh. Both mutations are located in the region that  
466 has been described as critical for antibody binding and recognition [78, 79]. Mutations at these

467 positions could therefore lead to evasion of the immune system, increased spread, and higher  
468 virulence in the population.

469

470 Another substitution that occurred later, around the end of 2017, in Bangladesh is the Nsp2 V793A  
471 reverse mutation (Fig. 1, Node X, Fig. 2C). As this mutation is located at the very end of the C-  
472 terminal disordered tail of Nsp2 (as predicted by Colabfold), which was not resolved in the  
473 crystallisation studies [46], we propose that the introduction of the hydrophobic moiety interferes  
474 with the optimal function of Nsp2, leading to the observed V793A back mutation. Importantly, the  
475 alanine at position 793 is also present in the rapidly expanding ECSA 2 lineage in South America,  
476 suggesting that it may have a beneficial effect on viral transmission (Fig. 1).

477

478 The comparison of the phylogenetic relationship of the CHIKV sequences from the 2018–2020  
479 Thai outbreaks with other global sequences showed that the most recent outbreak in Thailand did  
480 not originate from the strain circulating in the country. It also belongs to the IOL, but probably  
481 originated from other countries in South Asia, most likely from Bangladesh via Myanmar in late  
482 2017 or early 2018. The timing suggests a gradual overland introduction into Thailand from  
483 Bangladesh via Myanmar, e.g. through travelling and resettlement of people with subsequent spread  
484 within Thailand and spill over to China and Cambodia in mid-2019 and 2020. Due to the political  
485 situation in Myanmar, no information could be obtained on the number of positive CHIKV cases in  
486 the years between 2016 and 2018.

487

488 The emergence of CHIKV outbreaks in certain regions, such as the outbreak in Thailand in 2018, is  
489 an example of the ability of the virus to re-emerge and spread rapidly. This emphasises the  
490 importance of monitoring and understanding the dynamics of CHIKV transmission in order to take  
491 effective public health measures. It is not yet fully understood whether the re-emergence of the  
492 virus is caused by purely urban cycles with occasional re-introduction from other countries or  
493 whether there also is a sylvatic component. CHIKV could circulate in a sylvatic cycle of non-  
494 human primates and mosquitoes and remain undetected in the wild until a spill over event into the  
495 urban human mosquito cycle occurs, which in some cases could cause new local outbreaks [10, 11].  
496 Both scenarios are possible and plausible. In some cases, very low genetic variation can be detected  
497 in strains occurring in the same geographical area years apart (Fig. 1, observed in Brazil in ECSA 2  
498 or after Node M in India). In these cases, undetected sylvatic transmission could be suggested as a  
499 silent reservoir. However, in cases such as the 2018 Thai outbreak, introduction from an urban  
500 cycle in a neighbouring country is more likely considering the genetic relatedness and timing of  
501 virus spread.

502

503 A global increase in CHIKV circulation was detected in 2023. By 30 November, more than 460 000  
504 cases had been reported accompanied by 360 deaths [109]. South America was particularly  
505 affected. Argentina and Uruguay reported local transmission for the first time in 2023 [110].  
506 Contributing factors include climate change, which leads to changes in vector activity and  
507 distribution, and increased human travel, which plays an important role in the spread of CHIKV in  
508 South America and globally [111-115]. Unusual temperature spikes, prolonged warm spells, and  
509 altered rainfall patterns combined with increased humidity have created conditions that favour the  
510 survival and proliferation of *Ae. aegypti* and *Ae. albopictus* mosquitoes in regions where they were  
511 previously absent [116-121]. The emergence of CHIKV in the Caribbean islands, a favourite  
512 destination for tourists from North America and Europe, creates additional new opportunities for

513 intercontinental transmission of the infection [115]. Unanticipated and rapid urbanization further  
514 promotes the spread of the virus, as *Ae. aegypti* and *Ae. albopictus* are particularly attracted to  
515 urban areas and warm environments. These mosquitoes utilise water-containers in or near  
516 households, such as plant pots and vases, for breeding, which further increases the rate of  
517 transmission [122, 123].

518

519 In summary, CHIKV has a rich evolutionary history, originating in sub-Saharan Africa and  
520 spreading worldwide through complex genotypes, lineages, and transmission centres. A detailed  
521 analysis of Thai strains from 2018 to 2020 shows that unique mutations associated with virus  
522 replication, receptor binding and transmission occur throughout the genome, suggesting alternative  
523 factors for the rapid spread in the 2018 outbreak. The ability of the virus to re-emerge and spread  
524 rapidly, combined with climate change and urbanisation, poses an ongoing public health challenge.  
525 Monitoring and understanding CHIKV dynamics remain critical to an effective response to the  
526 unpredictable outbreaks of the virus.

527

## 528 Acknowledgements

529 JHOP is funded by the Swedish Research Council VR (grant no.: 2020-02593). This study was  
530 partially funded by the Academic Promotion Programme of Shandong First Medical University  
531 (grant no.: 2019QL006). JK was funded by the European Union's Horizon 2020 research  
532 innovation program (grant no.: 874735 (VEO)), and the SciLifeLab Pandemic Preparedness  
533 projects (grant no.: LPP1-007 and REPLP1:005).

534

## 535 References

- 536 1. Strauss, J. H.; Strauss, E. G., The alphaviruses: gene expression, replication, and evolution.  
537 *Microbiological reviews* **1994**, 58, (3), 491-562.
- 538 2. Cook, G. C.; Zumla, A.; Manson, P. S., *Manson's tropical diseases*. 22nd;22; ed.;  
539 Saunders/Elsevier: Edinburgh, 2009.
- 540 3. Robinson, M.; Conan, A.; Duong, V.; Ly, S.; Ngan, C.; Buchy, P.; Tarantola, A.; Rodó, X.,  
541 A model for a chikungunya outbreak in a rural Cambodian setting: implications for disease  
542 control in uninfected areas. *PLoS Negl Trop Dis* **2014**, 8, (9), e3120.
- 543 4. Yakob, L.; Clements, A. C., A mathematical model of chikungunya dynamics and control:  
544 the major epidemic on Réunion Island. *PLoS One* **2013**, 8, (3), e57448.
- 545 5. Powers, A. M.; Logue, C. H., Changing patterns of chikungunya virus: re-emergence of a  
546 zoonotic arbovirus. *J Gen Virol* **2007**, 88, (Pt 9), 2363-2377.
- 547 6. Staples, J. E.; Breiman, R. F.; Powers, A. M., Chikungunya fever: an epidemiological  
548 review of a re-emerging infectious disease. *Clin Infect Dis* **2009**, 49, (6), 942-8.
- 549 7. Gould, E.; Pettersson, J.; Higgs, S.; Charrel, R.; de Lamballerie, X., Emerging arboviruses:  
550 Why today? *One Health* **2017**, 4, 1-13.
- 551 8. CDC Chikungunya Virus.
- 552 9. Vairo, F.; Haider, N.; Kock, R.; Ntoumi, F.; Ippolito, G.; Zumla, A., Chikungunya:  
553 Epidemiology, Pathogenesis, Clinical Features, Management, and Prevention. *Infect Dis  
554 Clin North Am* **2019**, 33, (4), 1003-1025.
- 555 10. Althouse, B. M.; Guerbois, M.; Cummings, D. A. T.; Diop, O. M.; Faye, O.; Faye, A.;  
556 Diallo, D.; Sadio, B. D.; Sow, A.; Faye, O.; Sall, A. A.; Diallo, M.; Benefit, B.; Simons, E.;  
557 Watts, D. M.; Weaver, S. C.; Hanley, K. A., Role of monkeys in the sylvatic cycle of  
558 chikungunya virus in Senegal. *Nat Commun* **2018**, 9, (1), 1046.
- 559 11. Thiboutot, M. M.; Kannan, S.; Kawalekar, O. U.; Shedlock, D. J.; Khan, A. S.; Sarangan,  
560 G.; Srikanth, P.; Weiner, D. B.; Muthumani, K., Chikungunya: A Potentially Emerging  
561 Epidemic? *PLOS Neglected Tropical Diseases* **2010**, 4, (4), e623.

562 12. Tsetsarkin, K. A.; Chen, R.; Weaver, S. C., Interspecies transmission and chikungunya virus  
563 emergence. *Curr Opin Virol* **2016**, 16, 143-150.

564 13. Powers, A. M., Vaccine and Therapeutic Options To Control Chikungunya Virus. *Clin  
565 Microbiol Rev* **2018**, 31, (1), 10.1128/cmr.00104-16.

566 14. Powers, A.; Huang, H.; Roehrig, J.; Strauss, E.; Weaver, S., Family - Togaviridae. In *Virus  
567 Taxonomy - Ninth Report of the International Committee on Taxonomy of Viruses*, King, A.  
568 M. Q.; Adams, M. J.; Carstens, E. B.; Lefkowitz, E. J., Eds. Elsevier: San Diego, 2012; pp  
569 1103-1110.

570 15. Rodríguez-Morales, A. J.; Cardona-Ospina, J. A.; Fernanda Urbano-Garzón, S.; Sebastian  
571 Hurtado-Zapata, J., Prevalence of Post-Chikungunya Infection Chronic Inflammatory  
572 Arthritis: A Systematic Review and Meta-Analysis. *Arthritis Care Res (Hoboken)* **2016**, 68,  
573 (12), 1849-1858.

574 16. Schneider, M.; Narciso-Abraham, M.; Hadl, S.; McMahon, R.; Toepfer, S.; Fuchs, U.;  
575 Hochreiter, R.; Bitzer, A.; Kosulin, K.; Larcher-Senn, J.; Mader, R.; Dubischar, K.; Zoihs, L.;  
576 Jaramillo, J.-C.; Eder-Lingelbach, S.; Buerger, V.; Wressnigg, N., Safety and  
577 immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind,  
578 multicentre, randomised, placebo-controlled, phase 3 trial. *The Lancet* **2023**, 401, (10394),  
579 2138-2147.

580 17. Valneva SE, Valneva Announces U.S. FDA Approval of World's First Chikungunya  
581 Vaccine, IXCHIQ®. In SE, V., Ed. Saint-Herblain (France), 2023.

582 18. Campos, R. K.; Preciado-Llanes, L.; Azar, S. R.; Kim, Y. C.; Brandon, O.; López-Camacho,  
583 C.; Reyes-Sandoval, A.; Rossi, S. L., Adenoviral-Vectored Mayaro and Chikungunya Virus  
584 Vaccine Candidates Afford Partial Cross-Protection From Lethal Challenge in A129 Mouse  
585 Model. *Frontiers in Immunology* **2020**, 11.

586 19. de Lima Cavalcanti, T. Y. V.; Pereira, M. R.; de Paula, S. O.; Franca, R. F. d. O., A Review  
587 on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development.  
588 *Viruses* **2022**, 14, (5), 969.

589 20. Volk, S. M.; Chen, R.; Tsetsarkin, K. A.; Adams, A. P.; Garcia, T. I.; Sall, A. A.; Nasar, F.;  
590 Schuh, A. J.; Holmes, E. C.; Higgs, S.; Maharaj, P. D.; Brault, A. C.; Weaver, S. C.,  
591 Genome-Scale Phylogenetic Analyses of Chikungunya Virus Reveal Independent  
592 Emergences of Recent Epidemics and Various Evolutionary Rates. *Journal of Virology*  
593 **2010**, 84, (13), 6497-6504.

594 21. Weaver, S. C.; Lecuit, M., Chikungunya Virus and the Global Spread of a Mosquito-Borne  
595 Disease. *New England Journal of Medicine* **2015**, 372, (13), 1231-1239.

596 22. Suhrbier, A., Rheumatic manifestations of chikungunya: emerging concepts and  
597 interventions. *Nat Rev Rheumatol* **2019**, 15, (10), 597-611.

598 23. Hammon, W. M.; Rundnick, A.; Sather, G. E., Viruses Associated with Epidemic  
599 Hemorrhagic Fevers of the Philippines and Thailand. *Science* **1960**, 131, (3407), 1102-1103.

600 24. Khongwichit, S.; Chansaenroj, J.; Thongmee, T.; Benjamanukul, S.; Wanlapakorn, N.;  
601 Chirathaworn, C.; Poovorawan, Y., Large-scale outbreak of Chikungunya virus infection in  
602 Thailand, 2018–2019. *PLOS ONE* **2021**, 16, (3), e0247314.

603 25. Wanlapakorn, N.; Thongmee, T.; Linsuwanon, P.; Chattakul, P.; Vongpunsawad, S.;  
604 Payungporn, S.; Poovorawan, Y., Chikungunya outbreak in Bueng Kan Province, Thailand,  
605 2013. *Emerg Infect Dis* **2014**, 20, (8), 1404-6.

606 26. Division of Epidemiology, D. o. D. C., Ministry of Public Health Thailand, Annual  
607 Epidemiological Surveillance Report. In Department of Disease Control, T., Ed. Division of  
608 Epidemiology, Department of Disease Control, Ministry of Public Health Thailand: 2008 to  
609 2022.

610 27. Lindsey, N. P.; Prince, H. E.; Kosoy, O.; Laven, J.; Messenger, S.; Staples, J. E.; Fischer,  
611 M., Chikungunya virus infections among travelers-United States, 2010-2013. *Am J Trop  
612 Med Hyg* **2015**, 92, (1), 82-7.

613 28. Gibney, K. B.; Fischer, M.; Prince, H. E.; Kramer, L. D.; St George, K.; Kosoy, O. L.;  
614 Laven, J. J.; Staples, J. E., Chikungunya fever in the United States: a fifteen year review of  
615 cases. *Clin Infect Dis* **2011**, 52, (5), e121-6.

616 29. Lindsey, N. P.; Staples, J. E.; Fischer, M., Chikungunya Virus Disease among Travelers-  
617 United States, 2014-2016. *Am J Trop Med Hyg* **2018**, 98, (1), 192-197.

618 30. Adams, L. E.; Martin, S. W.; Lindsey, N. P.; Lehman, J. A.; Rivera, A.; Kolsin, J.; Landry,  
619 K.; Staples, J. E.; Sharp, T. M.; Paz-Bailey, G.; Fischer, M., Epidemiology of Dengue,  
620 Chikungunya, and Zika Virus Disease in U.S. States and Territories, 2017. *Am J Trop Med  
621 Hyg* **2019**, 101, (4), 884-890.

622 31. Centers for Disease Control and Prevention, N. C. f. E. a. Z. I. D. N., Division of Vector-  
623 Borne Diseases (DVBD) Chikungunya in the US.  
<https://www.cdc.gov/chikungunya/geo/chikungunya-in-the-us.html> (May 25),

624 32. European Centre for Disease Prevention and Control *Annual epidemiological report. Chikungunya fever*; ECDC: Stockholm, 2008 to 2021.

625 33. Bolger, A. M.; Lohse, M.; Usadel, B., Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* **2014**, 30, (15), 2114-2120.

626 34. Katoh, K.; Misawa, K.; Kuma, K. i.; Miyata, T., MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Research* **2002**, 30, (14), 3059-3066.

627 35. Rozewicki, J.; Li, S.; Amada, K. M.; Standley, D. M.; Katoh, K., MAFFT-DASH: integrated protein sequence and structural alignment. *Nucleic Acids Research* **2019**, 47, (W1), W5-W10.

628 36. Minh, B. Q.; Schmidt, H. A.; Chernomor, O.; Schrempf, D.; Woodhams, M. D.; von  
629 Haeseler, A.; Lanfear, R., IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Molecular Biology and Evolution* **2020**, 37, (5), 1530-1534.

630 37. Kalyaanamoorthy, S.; Minh, B. Q.; Wong, T. K. F.; von Haeseler, A.; Jermiin, L. S., ModelFinder: fast model selection for accurate phylogenetic estimates. *Nature Methods* **2017**, 14, (6), 587-589.

631 38. Rambaut, A.; Lam, T. T.; Max Carvalho, L.; Pybus, O. G., Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evolution* **2016**, 2, (1), vew007.

632 39. Drummond, A. J.; Suchard, M. A.; Xie, D.; Rambaut, A., Bayesian Phylogenetics with BEAUTi and the BEAST 1.7. *Molecular Biology and Evolution* **2012**, 29, (8), 1969-1973.

633 40. Suchard, M. A.; Lemey, P.; Baele, G.; Ayres, D. L.; Drummond, A. J.; Rambaut, A., Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. *Virus Evolution* **2018**, 4, (1).

634 41. Minin, V. N.; Suchard, M. A., Counting labeled transitions in continuous-time Markov models of evolution. *J Math Biol* **2008**, 56, (3), 391-412.

635 42. Rambaut, A.; Drummond, A. J.; Xie, D.; Baele, G.; Suchard, M. A., Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. *Systematic Biology* **2018**, 67, (5), 901-904.

636 43. Rambaut, A. FigTree - Tree Figure Drawing Tool Version 1.4.4. <http://tree.bio.ed.ac.uk/> (May 30),

637 44. Mirdita, M.; Schutze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M., ColabFold: making protein folding accessible to all. *Nat Methods* **2022**, 19, (6), 679-682.

638 45. Tan, Y. B.; Chmielewski, D.; Law, M. C. Y.; Zhang, K.; He, Y.; Chen, M.; Jin, J.; Luo, D., Molecular architecture of the Chikungunya virus replication complex. *Sci Adv* **2022**, 8, (48), eadd2536.

639 46. Narwal, M.; Singh, H.; Pratap, S.; Malik, A.; Kuhn, R. J.; Kumar, P.; Tomar, S., Crystal structure of chikungunya virus nsP2 cysteine protease reveals a putative flexible loop blocking its active site. *Int J Biol Macromol* **2018**, 116, 451-462.

664 47. Song, H.; Zhao, Z.; Chai, Y.; Jin, X.; Li, C.; Yuan, F.; Liu, S.; Gao, Z.; Wang, H.; Song, J.;  
665 Vazquez, L.; Zhang, Y.; Tan, S.; Morel, C. M.; Yan, J.; Shi, Y.; Qi, J.; Gao, F.; Gao, G. F.,  
666 Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya  
667 Virus Envelope Protein. *Cell* **2019**, 177, (7), 1714-1724 e12.

668 48. Chen, R.; Puri, V.; Fedorova, N.; Lin, D.; Hari, K. L.; Jain, R.; Rodas, J. D.; Das, S. R.;  
669 Shabman, R. S.; Weaver, S. C., Comprehensive Genome Scale Phylogenetic Study Provides  
670 New Insights on the Global Expansion of Chikungunya Virus. *J Virol* **2016**, 90, (23),  
671 10600-10611.

672 49. Giovanetti, M.; Vazquez, C.; Lima, M.; Castro, E.; Rojas, A.; de la Fuente, A. G.; Aquino,  
673 C.; Cantero, C.; Fleitas, F.; Torales, J.; Barrios, J.; Ortega, M. J.; Gamarra, M. L.; Villalba,  
674 S.; Alfonzo, T.; Xavier, J.; Adelino, T.; Fritsch, H.; Iani, F. C. M.; Pereira, G. C.; de  
675 Oliveira, C.; Schuab, G.; Rodrigues, E. S.; Kashima, S.; Leite, J.; Gresh, L.; Franco, L.;  
676 Tegally, H.; Van Voorhis, W. C.; Lessels, R.; de Filippis, A. M. B.; Ojeda, A.; Sequera, G.;  
677 Montoya, R.; Holmes, E. C.; de Oliveira, T.; Rico, J. M.; Lourenço, J.; Fonseca, V.;  
678 Alcantara, L. C. J., Rapid epidemic expansion of chikungunya virus-ECSA lineage in  
679 Paraguay. *medRxiv* **2023**.

680 50. Phadungsombat, J.; Imad, H. A.; Nakayama, E. E.; Leaungwutiwong, P.; Ramasoota, P.;  
681 Nguiragool, W.; Matsee, W.; Piyaphanee, W.; Shioda, T., Spread of a Novel Indian Ocean  
682 Lineage Carrying E1-K211E/E2-V264A of Chikungunya Virus East/Central/South African  
683 Genotype across the Indian Subcontinent, Southeast Asia, and Eastern Africa.  
684 *Microorganisms* **2022**, 10, (2).

685 51. Parola, P.; de Lamballerie, X.; Jourdan, J.; Rovery, C.; Vaillant, V.; Minodier, P.; Brouqui,  
686 P.; Flahault, A.; Raoult, D.; Charrel, R. N., Novel chikungunya virus variant in travelers  
687 returning from Indian Ocean islands. *Emerg Infect Dis* **2006**, 12, (10), 1493-9.

688 52. Dellagi, K.; Salez, N.; Maquart, M.; Larrieu, S.; Yssouf, A.; Silaï, R.; Leparc-Goffart, I.;  
689 Tortosa, P.; de Lamballerie, X., Serological Evidence of Contrasted Exposure to Arboviral  
690 Infections between Islands of the Union of Comoros (Indian Ocean). *PLoS Negl Trop Dis*  
691 **2016**, 10, (12), e0004840.

692 53. Pulmanausahakul, R.; Roytrakul, S.; Auewarakul, P.; Smith, D. R., Chikungunya in  
693 Southeast Asia: understanding the emergence and finding solutions. *International Journal of*  
694 *Infectious Diseases* **2011**, 15, (10), e671-e676.

695 54. Wahid, B.; Ali, A.; Rafique, S.; Idrees, M., Global expansion of chikungunya virus:  
696 mapping the 64-year history. *International Journal of Infectious Diseases* **2017**, 58, 69-76.

697 55. Sahadeo, N. S. D.; Allicock, O. M.; De Salazar, P. M.; Auguste, A. J.; Widen, S.;  
698 Olowokure, B.; Gutierrez, C.; Valadere, A. M.; Polson-Edwards, K.; Weaver, S. C.;  
699 Carrington, C. V. F., Understanding the evolution and spread of chikungunya virus in the  
700 Americas using complete genome sequences. *Virus Evolution* **2017**, 3, (1).

701 56. Phadungsombat, J.; Imad, H.; Rahman, M.; Nakayama, E. E.; Kludkleeb, S.; Ponam, T.;  
702 Rahim, R.; Hasan, A.; Poltep, K.; Yamanaka, A.; Matsee, W.; Piyaphanee, W.;  
703 Phumratanaprapin, W.; Shioda, T., A Novel Sub-Lineage of Chikungunya Virus  
704 East/Central/South African Genotype Indian Ocean Lineage Caused Sequential Outbreaks in  
705 Bangladesh and Thailand. *Viruses* **2020**, 12, (11).

706 57. Jones, R.; Bragagnolo, G.; Arranz, R.; Reguera, J., Capping pores of alphavirus nsP1 gate  
707 membranous viral replication factories. *Nature* **2021**, 589, (7843), 615-619.

708 58. Cheng, R. H.; Kuhn, R. J.; Olson, N. H.; Rossmann, M. G.; Choi, H. K.; Smith, T. J.; Baker,  
709 T. S., Nucleocapsid and glycoprotein organization in an enveloped virus. *Cell* **1995**, 80, (4),  
710 621-30.

711 59. Li, L.; Jose, J.; Xiang, Y.; Kuhn, R. J.; Rossmann, M. G., Structural changes of envelope  
712 proteins during alphavirus fusion. *Nature* **2010**, 468, (7324), 705-8.

713 60. Lescar, J.; Roussel, A.; Wien, M. W.; Navaza, J.; Fuller, S. D.; Wengler, G.; Wengler, G.;  
714 Rey, F. A., The Fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly  
715 primed for fusogenic activation at endosomal pH. *Cell* **2001**, 105, (1), 137-48.

716 61. Lee, R. C.; Hapuarachchi, H. C.; Chen, K. C.; Hussain, K. M.; Chen, H.; Low, S. L.; Ng, L.  
717 C.; Lin, R.; Ng, M. M.; Chu, J. J., Mosquito cellular factors and functions in mediating the  
718 infectious entry of chikungunya virus. *PLoS Negl Trop Dis* **2013**, 7, (2), e2050.

719 62. Zhang, R.; Kim, A. S.; Fox, J. M.; Nair, S.; Basore, K.; Klimstra, W. B.; Rimkunas, R.;  
720 Fong, R. H.; Lin, H.; Poddar, S.; Crowe, J. E., Jr.; Doranz, B. J.; Fremont, D. H.; Diamond,  
721 M. S., Mxra8 is a receptor for multiple arthritogenic alphaviruses. *Nature* **2018**, 557, (7706),  
722 570-574.

723 63. Wahlberg, J. M.; Garoff, H., Membrane fusion process of Semliki Forest virus. I: Low pH-  
724 induced rearrangement in spike protein quaternary structure precedes virus penetration into  
725 cells. *J Cell Biol* **1992**, 116, (2), 339-48.

726 64. Voss, J. E.; Vaney, M. C.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.;  
727 Thompson, A.; Bricogne, G.; Rey, F. A., Glycoprotein organization of Chikungunya virus  
728 particles revealed by X-ray crystallography. *Nature* **2010**, 468, (7324), 709-12.

729 65. Yap, M. L.; Klose, T.; Urakami, A.; Hasan, S. S.; Akahata, W.; Rossmann, M. G., Structural  
730 studies of Chikungunya virus maturation. *Proc Natl Acad Sci U S A* **2017**, 114, (52), 13703-  
731 13707.

732 66. Mangala Prasad, V.; Blijlevens, J. S.; Smit, J. M.; Lee, K. K., Visualization of  
733 conformational changes and membrane remodeling leading to genome delivery by viral  
734 class-II fusion machinery. *Nat Commun* **2022**, 13, (1), 4772.

735 67. Sahoo, B.; Gudigamolla, N. K.; Chowdary, T. K., Acidic pH-Induced Conformational  
736 Changes in Chikungunya Virus Fusion Protein E1: a Spring-Twisted Region in the Domain  
737 I-III Linker Acts as a Hinge Point for Swiveling Motion of Domains. *J Virol* **2020**, 94, (23).

738 68. Su, L.; Lou, X.; Yan, H.; Yang, Z.; Mao, H.; Yao, W.; Sun, Y.; Pan, J.; Zhang, Y.,  
739 Importation of a novel Indian Ocean lineage carrying E1-K211E and E2-V264A of  
740 Chikungunya Virus in Zhejiang Province, China, in 2019. *Virus Genes* **2023**, 59, (5), 693-  
741 702.

742 69. Agarwal, A.; Sharma, A. K.; Sukumaran, D.; Parida, M.; Dash, P. K., Two novel epistatic  
743 mutations (E1:K211E and E2:V264A) in structural proteins of Chikungunya virus enhance  
744 fitness in *Aedes aegypti*. *Virology* **2016**, 497, 59-68.

745 70. Rangel, M. V.; McAllister, N.; Dancel-Manning, K.; Noval, M. G.; Silva, L. A.; Stapleford,  
746 K. A., Emerging Chikungunya Virus Variants at the E1-E1 Interglycoprotein Spike  
747 Interface Impact Virus Attachment and Inflammation. *J Virol* **2022**, 96, (4), e0158621.

748 71. Tsetsarkin, K. A.; Vanlandingham, D. L.; McGee, C. E.; Higgs, S., A single mutation in  
749 chikungunya virus affects vector specificity and epidemic potential. *PLoS Pathog* **2007**, 3,  
750 (12), e201.

751 72. Tsetsarkin, K. A.; Chen, R.; Yun, R.; Rossi, S. L.; Plante, K. S.; Guerbois, M.; Forrester, N.;  
752 Perng, G. C.; Sreekumar, E.; Leal, G.; Huang, J.; Mukhopadhyay, S.; Weaver, S. C., Multi-  
753 peaked adaptive landscape for chikungunya virus evolution predicts continued fitness  
754 optimization in *Aedes albopictus* mosquitoes. *Nat Commun* **2014**, 5, 4084.

755 73. Fortuna, C.; Toma, L.; Remoli, M. E.; Amendola, A.; Severini, F.; Boccolini, D.; Romi, R.;  
756 Venturi, G.; Rezza, G.; Di Luca, M., Vector competence of *Aedes albopictus* for the Indian  
757 Ocean lineage (IOL) chikungunya viruses of the 2007 and 2017 outbreaks in Italy: a  
758 comparison between strains with and without the E1:A226V mutation. *Eurosurveillance*  
759 **2018**, 23, (22), 1800246.

760 74. Kumar, A.; Mamidi, P.; Das, I.; Nayak, T. K.; Kumar, S.; Chhatai, J.; Chattopadhyay, S.;  
761 Suryawanshi, A. R.; Chattopadhyay, S., A novel 2006 Indian outbreak strain of  
762 Chikungunya virus exhibits different pattern of infection as compared to prototype strain.  
763 *PLoS One* **2014**, 9, (1), e85714.

764 75. Arias-Goeta, C.; Mousson, L.; Rougeon, F.; Failloux, A. B., Dissemination and transmission  
765 of the E1-226V variant of chikungunya virus in *Aedes albopictus* are controlled at the  
766 midgut barrier level. *PLoS One* **2013**, 8, (2), e57548.

767 76. Vazeille, M.; Moutailler, S.; Coudrier, D.; Rousseaux, C.; Khun, H.; Huerre, M.; Thiria, J.;  
768 Dehecq, J. S.; Fontenille, D.; Schuffenecker, I.; Despres, P.; Failloux, A. B., Two  
769 Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different  
770 patterns of infection in the mosquito, *Aedes albopictus*. *PLoS One* **2007**, 2, (11), e1168.

771 77. Kim, A. S.; Zimmerman, O.; Fox, J. M.; Nelson, C. A.; Basore, K.; Zhang, R.; Durnell, L.;  
772 Desai, C.; Bullock, C.; Deem, S. L.; Oppenheimer, J.; Shapiro, B.; Wang, T.; Cherry, S.;  
773 Coyne, C. B.; Handley, S. A.; Landis, M. J.; Fremont, D. H.; Diamond, M. S., An  
774 Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to  
775 Alphavirus Infection and Pathogenesis. *Cell Host & Microbe* **2020**, 27, (3), 428-440.e9.

776 78. Porta, J.; Mangala Prasad, V.; Wang, C. I.; Akahata, W.; Ng, L. F.; Rossmann, M. G.,  
777 Structural Studies of Chikungunya Virus-Like Particles Complexed with Human  
778 Antibodies: Neutralization and Cell-to-Cell Transmission. *J Virol* **2016**, 90, (3), 1169-77.

779 79. Zhou, Q. F.; Fox, J. M.; Earnest, J. T.; Ng, T. S.; Kim, A. S.; Fibriansah, G.; Kostyuchenko,  
780 V. A.; Shi, J.; Shu, B.; Diamond, M. S.; Lok, S. M., Structural basis of Chikungunya virus  
781 inhibition by monoclonal antibodies. *Proc Natl Acad Sci U S A* **2020**, 117, (44), 27637-  
782 27645.

783 80. Pal, P.; Dowd, K. A.; Brien, J. D.; Edeling, M. A.; Gorlatov, S.; Johnson, S.; Lee, I.;  
784 Akahata, W.; Nabel, G. J.; Richter, M. K.; Smit, J. M.; Fremont, D. H.; Pierson, T. C.;  
785 Heise, M. T.; Diamond, M. S., Development of a highly protective combination monoclonal  
786 antibody therapy against Chikungunya virus. *PLoS Pathog* **2013**, 9, (4), e1003312.

787 81. Gaunt, M. W.; Gubler, D. J.; Pettersson, J. H. O.; Kuno, G.; Wilder-Smith, A.; de  
788 Lamballerie, X.; Gould, E. A.; Falconar, A. K., Recombination of B- and T-cell epitope-rich  
789 loci from Aedes- and Culex-borne flaviviruses shapes Zika virus epidemiology. *Antiviral  
790 Research* **2020**, 174, 104676.

791 82. Götte, B.; Liu, L.; McInerney, G. M., The Enigmatic Alphavirus Non-Structural Protein 3  
792 (nsP3) Revealing Its Secrets at Last. *Viruses* **2018**, 10, (3).

793 83. McPherson, R. L.; Abraham, R.; Sreekumar, E.; Ong, S.-E.; Cheng, S.-J.; Baxter, V. K.;  
794 Kistemaker, H. A.; Filippov, D. V.; Griffin, D. E.; Leung, A. K., ADP-ribosylhydrolase  
795 activity of Chikungunya virus macrodomain is critical for virus replication and virulence.  
796 *Proceedings of the National Academy of Sciences* **2017**, 114, (7), 1666-1671.

797 84. Gao, Y.; Goonawardane, N.; Ward, J.; Tuplin, A.; Harris, M., Multiple roles of the non-  
798 structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus  
799 genome replication and transcription. *PLoS pathogens* **2019**, 15, (1), e1007239.

800 85. Meshram, C. D.; Agback, P.; Shiliaev, N.; Urakova, N.; Mobley, J. A.; Agback, T.; Frolova,  
801 E. I.; Frolov, I., Multiple host factors interact with the hypervariable domain of chikungunya  
802 virus nsP3 and determine viral replication in cell-specific mode. *Journal of virology* **2018**,  
803 92, (16), 10.1128/jvi. 00838-18.

804 86. Mutso, M.; Morro, A. M.; Smedberg, C.; Kasvandik, S.; Aquilimeba, M.; Teppor, M.;  
805 Tarve, L.; Lulla, A.; Lulla, V.; Saul, S., Mutation of CD2AP and SH3KBP1 binding motif in  
806 alphavirus nsP3 hypervariable domain results in attenuated virus. *Viruses* **2018**, 10, (5), 226.

807 87. Gao, Y.; Goonawardane, N.; Ward, J.; Tuplin, A.; Harris, M., Multiple roles of the non-  
808 structural protein 3 (nsP3) alphavirus unique domain (AUD) during Chikungunya virus  
809 genome replication and transcription. *PLoS Pathog* **2019**, 15, (1), e1007239.

810 88. Neuvonen, M.; Kazlauskas, A.; Martikainen, M.; Hinkkanen, A.; Ahola, T.; Saksela, K.,  
811 SH3 domain-mediated recruitment of host cell amphiphysins by alphavirus nsP3 promotes  
812 viral RNA replication. *PLoS Pathog* **2011**, 7, (11), e1002383.

813 89. Panas, M. D.; Schulte, T.; Thaa, B.; Sandalova, T.; Kedersha, N.; Achour, A.; McInerney,  
814 G. M., Viral and cellular proteins containing FGDF motifs bind G3BP to block stress  
815 granule formation. *PLoS Pathog* **2015**, 11, (2), e1004659.

816 90. Mihalic, F.; Simonetti, L.; Giudice, G.; Sander, M. R.; Lindqvist, R.; Peters, M. B. A.; Benz,  
817 C.; Kassa, E.; Badgujar, D.; Inturi, R.; Ali, M.; Krystkowiak, I.; Sayadi, A.; Andersson, E.;  
818 Aronsson, H.; Soderberg, O.; Dobritzsch, D.; Petsalaki, E.; Overby, A. K.; Jemth, P.;

819      Davey, N. E.; Ivarsson, Y., Large-scale phage-based screening reveals extensive pan-viral  
820      mimicry of host short linear motifs. *Nat Commun* **2023**, 14, (1), 2409.

821      91. Melton, J. V.; Ewart, G. D.; Weir, R. C.; Board, P. G.; Lee, E.; Gage, P. W., Alphavirus 6K  
822      proteins form ion channels. *J Biol Chem* **2002**, 277, (49), 46923-31.

823      92. Dey, D.; Siddiqui, S. I.; Mamidi, P.; Ghosh, S.; Kumar, C. S.; Chattopadhyay, S.; Ghosh, S.;  
824      Banerjee, M., The effect of amantadine on an ion channel protein from Chikungunya virus.  
825      *PLoS Negl Trop Dis* **2019**, 13, (7), e0007548.

826      93. Lulla, V.; Kim, D. Y.; Frolova, E. I.; Frolov, I., The amino-terminal domain of alphavirus  
827      capsid protein is dispensable for viral particle assembly but regulates RNA encapsidation  
828      through cooperative functions of its subdomains. *J Virol* **2013**, 87, (22), 12003-19.

829      94. Choi, H. K.; Tong, L.; Minor, W.; Dumas, P.; Boege, U.; Rossmann, M. G.; Wengler, G.,  
830      Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the  
831      organization of the virion. *Nature* **1991**, 354, (6348), 37-43.

832      95. Maljkovic Berry, I.; Eyase, F.; Pollett, S.; Konongoi, S. L.; Joyce, M. G.; Figueroa, K.;  
833      Ofula, V.; Koka, H.; Koskei, E.; Nyunja, A.; Mancuso, J. D.; Jarman, R. G.; Sang, R.,  
834      Global Outbreaks and Origins of a Chikungunya Virus Variant Carrying Mutations Which  
835      May Increase Fitness for Aedes aegypti: Revelations from the 2016 Mandera, Kenya  
836      Outbreak. *Am J Trop Med Hyg* **2019**, 100, (5), 1249-1257.

837      96. Tsetsarkin, K. A.; Chen, R.; Leal, G.; Forrester, N.; Higgs, S.; Huang, J.; Weaver, S. C.,  
838      Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive  
839      landscapes. *Proc Natl Acad Sci U S A* **2011**, 108, (19), 7872-7.

840      97. Tsetsarkin, K. A.; McGee, C. E.; Volk, S. M.; Vanlandingham, D. L.; Weaver, S. C.; Higgs,  
841      S., Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes  
842      albopictus and Ae. aegypti mosquitoes. *PLoS One* **2009**, 4, (8), e6835.

843      98. Hawman, D. W.; Carpenter, K. S.; Fox, J. M.; May, N. A.; Sanders, W.; Montgomery, S.  
844      A.; Moorman, N. J.; Diamond, M. S.; Morrison, T. E., Mutations in the E2 Glycoprotein and  
845      the 3' Untranslated Region Enhance Chikungunya Virus Virulence in Mice. *J Virol* **2017**,  
846      91, (20).

847      99. Singh, R. K.; Tiwari, S.; Mishra, V. K.; Tiwari, R.; Dhole, T. N., Molecular epidemiology  
848      of Chikungunya virus: mutation in E1 gene region. *J Virol Methods* **2012**, 185, (2), 213-20.

849      100. Silva, J. V. J., Jr.; Ludwig-Begall, L. F.; Oliveira-Filho, E. F.; Oliveira, R. A. S.; Durães-  
850      Carvalho, R.; Lopes, T. R. R.; Silva, D. E. A.; Gil, L., A scoping review of Chikungunya  
851      virus infection: epidemiology, clinical characteristics, viral co-circulation complications,  
852      and control. *Acta Trop* **2018**, 188, 213-224.

853      101. Theamboonlers, A.; Rianthavorn, P.; Praianantathavorn, K.; Wuttirattanakowit, N.;  
854      Poovorawan, Y., Clinical and molecular characterization of chikungunya virus in South  
855      Thailand. *Jpn J Infect Dis* **2009**, 62, (4), 303-5.

856      102. Pulmanausahakul, R.; Roytrakul, S.; Auewarakul, P.; Smith, D. R., Chikungunya in  
857      Southeast Asia: understanding the emergence and finding solutions. *Int J Infect Dis* **2011**,  
858      15, (10), e671-6.

859      103. Powers, A. M.; Brault, A. C.; Tesh, R. B.; Weaver, S. C., Re-emergence of Chikungunya  
860      and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant  
861      evolutionary relationships. *J Gen Virol* **2000**, 81, (Pt 2), 471-9.

862      104. Shrinet, J.; Jain, S.; Sharma, A.; Singh, S. S.; Mathur, K.; Rana, V.; Bhatnagar, R. K.;  
863      Gupta, B.; Gaind, R.; Deb, M.; Sunil, S., Genetic characterization of Chikungunya virus  
864      from New Delhi reveal emergence of a new molecular signature in Indian isolates. *Virol J*  
865      **2012**, 9, 100.

866      105. Patil, J.; More, A.; Patil, P.; Jadhav, S.; Newase, P.; Agarwal, M.; Amdekar, S.; Raut, C. G.;  
867      Parashar, D.; Cherian, S. S., Genetic characterization of chikungunya viruses isolated during  
868      the 2015-2017 outbreaks in different states of India, based on their E1 and E2 genes. *Arch  
869      Virol* **2018**, 163, (11), 3135-3140.

870 106. Badar, N.; Salman, M.; Ansari, J.; Aamir, U.; Alam, M. M.; Arshad, Y.; Mushtaq, N.;  
871 Ikram, A.; Qazi, J., Emergence of Chikungunya Virus, Pakistan, 2016-2017. *Emerg Infect*  
872 *Dis* **2020**, 26, (2), 307-310.

873 107. Lindh, E.; Argentini, C.; Remoli, M. E.; Fortuna, C.; Faggioni, G.; Benedetti, E.; Amendola,  
874 A.; Marsili, G.; Lista, F.; Rezza, G.; Venturi, G., The Italian 2017 Outbreak Chikungunya  
875 Virus Belongs to an Emerging Aedes albopictus-Adapted Virus Cluster Introduced From the  
876 Indian Subcontinent. *Open Forum Infect Dis* **2019**, 6, (1), ofy321.

877 108. Melan, A.; Aung, M. S.; Khanam, F.; Paul, S. K.; Riaz, B. K.; Tahmina, S.; Kabir, M. I.;  
878 Hossain, M. A.; Kobayashi, N., Molecular characterization of chikungunya virus causing the  
879 2017 outbreak in Dhaka, Bangladesh. *New Microbes New Infect* **2018**, 24, 14-16.

880 109. ECDC Chikungunya worldwide overview. <https://www.ecdc.europa.eu/en/chikungunya-monthly> (20. October),

881 110. PAHO With rising cases, experts discuss Chikungunya spread in the Americas.  
<https://www.paho.org/en/news/4-5-2023-rising-cases-experts-discuss-chikungunya-spread-americas#:~:text=Situation%20in%20the%20Americas&text=Over%20a%20million%20cases%20were,over%202014%2C000%20cases%20reported%20cases>. (20. October),

882 111. Mercier, A.; Obadia, T.; Carraretto, D.; Velo, E.; Gabiane, G.; Bino, S.; Vazeille, M.;  
883 Gasperi, G.; Dauga, C.; Malacrida, A. R.; Reiter, P.; Failloux, A. B., Impact of temperature  
884 on dengue and chikungunya transmission by the mosquito Aedes albopictus. *Sci Rep* **2022**,  
885 12, (1), 6973.

886 112. Jourdain, F.; Roiz, D.; de Valk, H.; Noel, H.; L'Ambert, G.; Franke, F.; Paty, M. C.;  
887 Guinard, A.; Desenclos, J. C.; Roche, B., From importation to autochthonous transmission:  
888 Drivers of chikungunya and dengue emergence in a temperate area. *PLoS Negl Trop Dis*  
889 **2020**, 14, (5), e0008320.

890 113. Fischer, D.; Thomas, S. M.; Suk, J. E.; Sudre, B.; Hess, A.; Tjaden, N. B.; Beierkuhnlein,  
891 C.; Semenza, J. C., Climate change effects on Chikungunya transmission in Europe:  
892 geospatial analysis of vector's climatic suitability and virus' temperature requirements.  
893 *International Journal of Health Geographics* **2013**, 12, (1), 51.

894 114. Tjaden, N. B.; Suk, J. E.; Fischer, D.; Thomas, S. M.; Beierkuhnlein, C.; Semenza, J. C.,  
895 Modelling the effects of global climate change on Chikungunya transmission in the 21st  
896 century. *Scientific Reports* **2017**, 7, (1), 3813.

897 115. Leparc-Goffart, I.; Nougairede, A.; Cassadou, S.; Prat, C.; de Lamballerie, X., Chikungunya  
898 in the Americas. *The Lancet* **2014**, 383, (9916), 514.

899 116. Marengo, J. A.; Ambrizzi, T.; Barreto, N.; Cunha, A. P.; Ramos, A. M.; Skansi, M.; Molina  
900 Carpio, J.; Salinas, R., The heat wave of October 2020 in central South America.  
901 *International Journal of Climatology* **2022**, 42, (4), 2281-2298.

902 117. Cai, W.; McPhaden, M. J.; Grimm, A. M.; Rodrigues, R. R.; Taschetto, A. S.; Garreaud, R.  
903 D.; Dewitte, B.; Poveda, G.; Ham, Y.-G.; Santoso, A., Climate impacts of the El Niño–  
904 southern oscillation on South America. *Nature Reviews Earth & Environment* **2020**, 1, (4),  
905 215-231.

906 118. Ellwanger, J. H.; Kulmann-Leal, B.; Kaminski, V. L.; Valverde-Villegas, J. M.; Veiga, A.;  
907 Spilki, F. R.; Fearnside, P. M.; Caesar, L.; Giatti, L. L.; Wallau, G. L.; Almeida, S. E. M.;  
908 Borba, M. R.; Hora, V. P. D.; Chies, J. A. B., Beyond diversity loss and climate change:  
909 Impacts of Amazon deforestation on infectious diseases and public health. *An Acad Bras  
910 Cienc* **2020**, 92, (1), e20191375.

911 119. Olmos, M. B.; Bostik, V., Climate Change and Human Security-The Proliferation of Vector-  
912 Borne Diseases due to Climate Change. *Military Medical Science Letters/Vojenské  
913 Zdravotnické Listy* **2021**, 90, (2).

914 120. Sadeghieh, T.; Sargeant, J. M.; Greer, A. L.; Berke, O.; Dueymes, G.; Gachon, P.; Ogden,  
915 N. H.; Ng, V., Zika virus outbreak in Brazil under current and future climate. *Epidemics*  
916 **2021**, 37, 100491.

921 121. Lippi, C. A.; Stewart-Ibarra, A. M.; Loor, M. F. B.; Zambrano, J. E. D.; Lopez, N. A. E.;  
922 Blackburn, J. K.; Ryan, S. J., Geographic shifts in *Aedes aegypti* habitat suitability in  
923 Ecuador using larval surveillance data and ecological niche modeling: Implications of  
924 climate change for public health vector control. *PLoS neglected tropical diseases* **2019**, 13,  
925 (4), e0007322.

926 122. Colón-González, F. J.; Sewe, M. O.; Tompkins, A. M.; Sjödin, H.; Casallas, A.; Rocklöv, J.;  
927 Caminade, C.; Lowe, R., Projecting the risk of mosquito-borne diseases in a warmer and  
928 more populated world: a multi-model, multi-scenario intercomparison modelling study. *The  
929 Lancet Planetary Health* **2021**, 5, (7), e404-e414.

930 123. Kolimenakis, A.; Heinz, S.; Wilson, M. L.; Winkler, V.; Yakob, L.; Michaelakis, A.;  
931 Papachristos, D.; Richardson, C.; Horstick, O., The role of urbanisation in the spread of  
932 *Aedes* mosquitoes and the diseases they transmit—A systematic review. *PLOS Neglected  
933 Tropical Diseases* **2021**, 15, (9), e0009631.

934

935

936

937

### 938 Figure legends

939 **Fig. 1. Phylogenetic and Phylogeographic Analysis of the ECSA CHIKV samples included in  
940 the present study.** Phylogenetic tree of the CHIKV ECSA genotype. Strains are colour-coded by  
941 CHIKV lineage (where light green represents ECSA 1, red ECSA 2, and blue IOL). Strains  
942 sequenced in this study are indicated by an \*. Black values at red circles indicate branching times,  
943 grey values display the mutational speed. Major (basal) branches with posterior probabilities of  
944  $\geq 0.95$  are indicated by an \*. Amino acid substitutions at different alphabetically characterized nodes  
945 are indicated in green boxes if affecting the entire IOL and in orange boxes if affecting only certain  
946 clades. Countries are colour-coded according to the phylogenetic tree, and suggested transmission  
947 events are shown with arrows on the global map. Uninterrupted lines on the map show data from  
948 our investigation, while dashed lines display previous assumptions of spread.

949

950 **Fig. 2: Emergent mutations in the Nsp1-Nsp2-Nsp4 replication complex.** **A)** Representative  
951 view of the CHIKV replication complex. Nsp1 is in grey, Nsp2 in yellow and Nsp4 in pink colour.  
952 Structural models for visualization were obtained from PDBid 7y38 [45] and 4ztb [46]. In all panels  
953 the mutations arising in the IOL are shown as purple sticks. Note that highlighted amino acids  
954 correspond to the position of the indicated mutations but not always to the actual amino acid  
955 involved in the mutation process. (see methods for more information) **B)** Close-up view,  
956 highlighting the mutations on Nsp1. The GTP and ATP which are cofactors for the Nsp1 are also  
957 shown as orange sticks. **C)** Model of Nsp2 with indicated mutations. The catalytic residues are  
958 shown as green sticks and the RNA fragment bound to the helicase domain is shown as orange  
959 sticks. **D)** Detailed view showcasing the mutations on Nsp4. **E)** Summary of all mutations found in  
960 the replication complex.

961

962 **Fig. 3: Emergent mutations in the E1-E2-E3 spike complex.** **A)** Representative view of the Spike  
963 trimer. Structural models for visualization were obtained from PDBid 6jo8 [47]. E1 is coloured  
964 cyan, E2 blue and E3 is green. The receptor Mxra8 is included to aid the visualization of the  
965 receptor binding interface and is coloured brown. The position of the membrane at the base of the  
966 spike is indicated. All emergent mutations are shown as sticks and coloured purple as in Fig. 2. **B)**  
967 Close-up view, highlighting the mutations on E1. The domains I, II and III are indicated. **C)**  
968 enlarged model of E2 highlighting emergent mutations. Domains A, B and C are indicated. **D)**  
969 Close-up view, showcasing the mutations on E3. **E)** Summary of all mutations found in the spike

970 complex. Asterix denotes mutations that are not part of the analysed structure and are therefore not  
971 visualized.

972

973 **Fig. 4: Emergent mutations in the Nsp3, 6K and CP proteins.** All mutations were mapped onto  
974 the Colabfold-predicted structural models. Positions of mutations are shown as purple sticks, and  
975 the overall colouring of the proteins is according to the pIDDT score indicating the confidence of  
976 the prediction. Blue colour signifies highest prediction confidence and orange lowest as shown by  
977 the legend. **A)** Emergent mutations in Nsp3 protein. Macro and Zinc-binding domains are indicated.  
978 **B)** Predicted structure of 6K protein with highlighted V6I mutation. **C)** Capsid protein model with  
979 highlighted mutations in the disordered N-terminal tail of the protein. **D)** Summary of all emergent  
980 mutations found in the Nsp3, 6K and capsid proteins.

981

982

983 **Supplementary information**

984 Supplementary Fig. S1. A maximum likelihood tree of all 2,564 complete or near complete CHIKV  
985 genome sequences. Sequences that were included in the subsampled dataset were colour coded  
986 according colours in Fig. 1.

987

988 Supplementary Fig. S2. TempEst regression for the ECSA genotype. Data points were colour coded  
989 according colours in Fig. 1.

990

991 Supplementary Fig. S3. Maximum clade credibility tree from Fig. 1, here depicting all branches  
992 with posterior probability of  $\geq 0.95$ .

993

994 Supplementary Table S1. Includes strain name, sampling date, geographical location and NCBI  
995 GenBank accession number for all twelve patient samples sequenced in the present study.

996

997 **Author contribution**

998 Conceptualization Ideas: JHOP, XdL, WS; Funding Acquisition: JHOP, ÅL, WS; Investigation: JK,  
999 FM; Formal Analysis: MWG, JB, JH, CL; Visualization: JK, FM; Writing – Original Draft  
1000 Preparation: JK, FM; Writing – Editing: JK, FM, JHOP; Review: JK, MG, JB, ÅL, JH, XdL, JHOP.

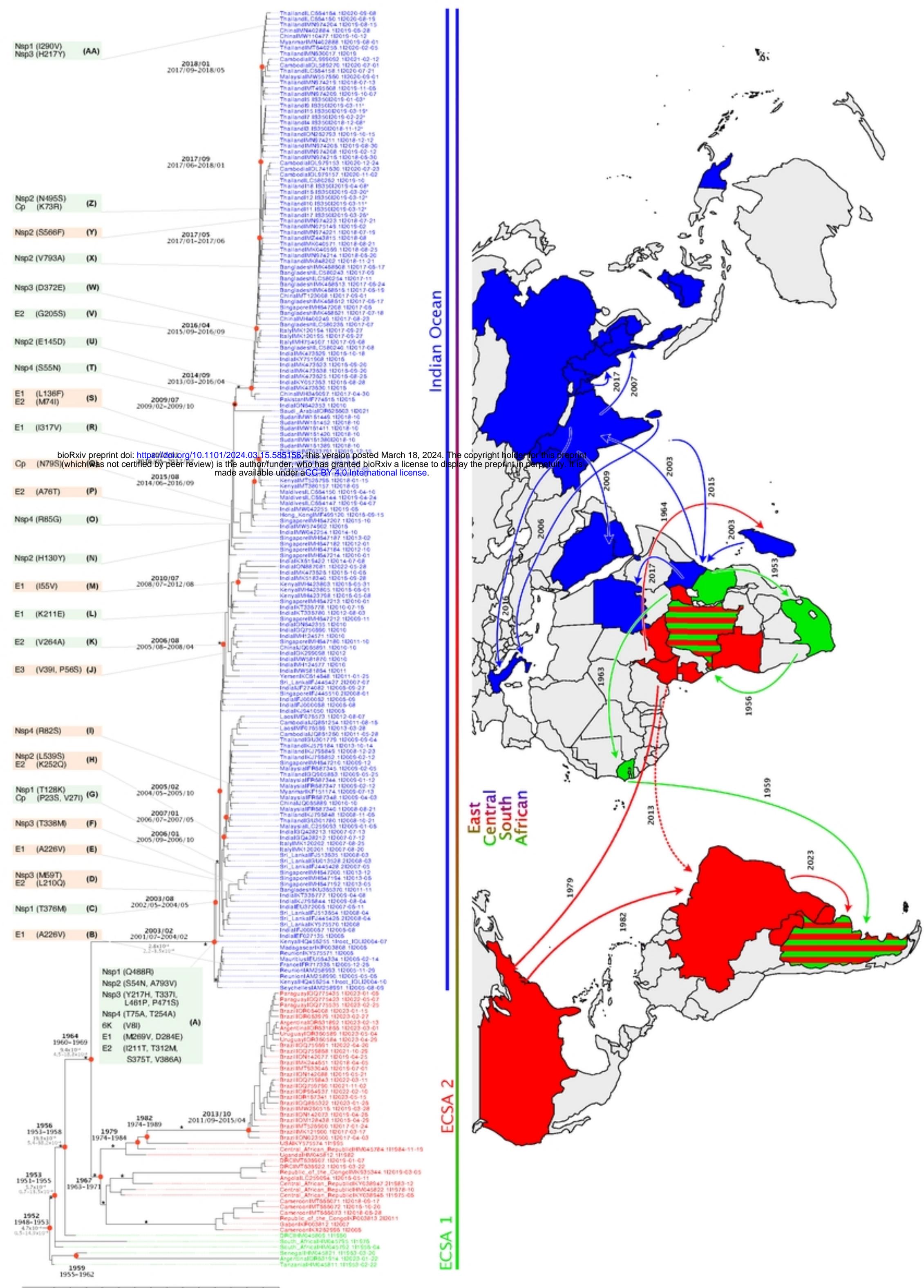



Figure 1

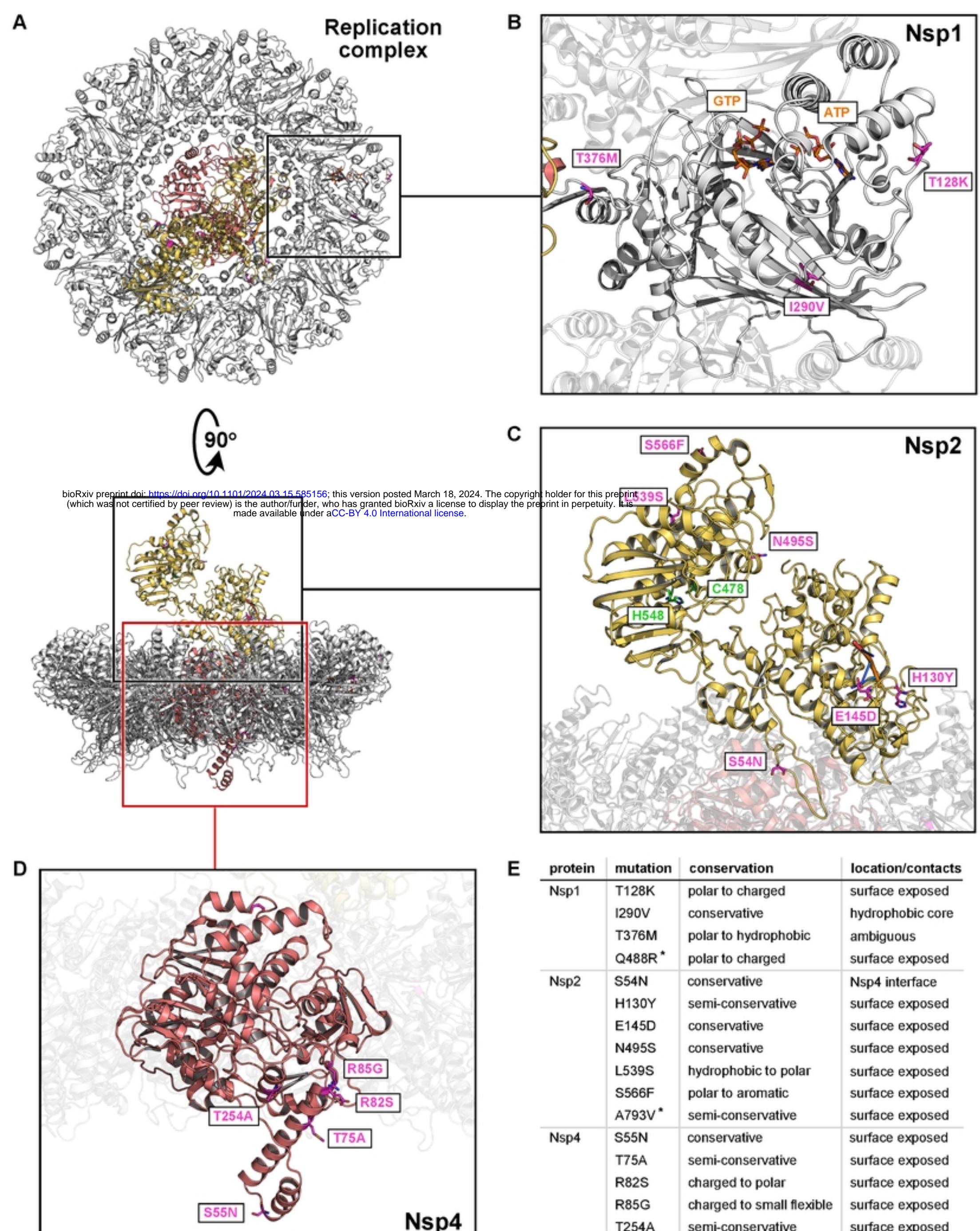



Figure 2

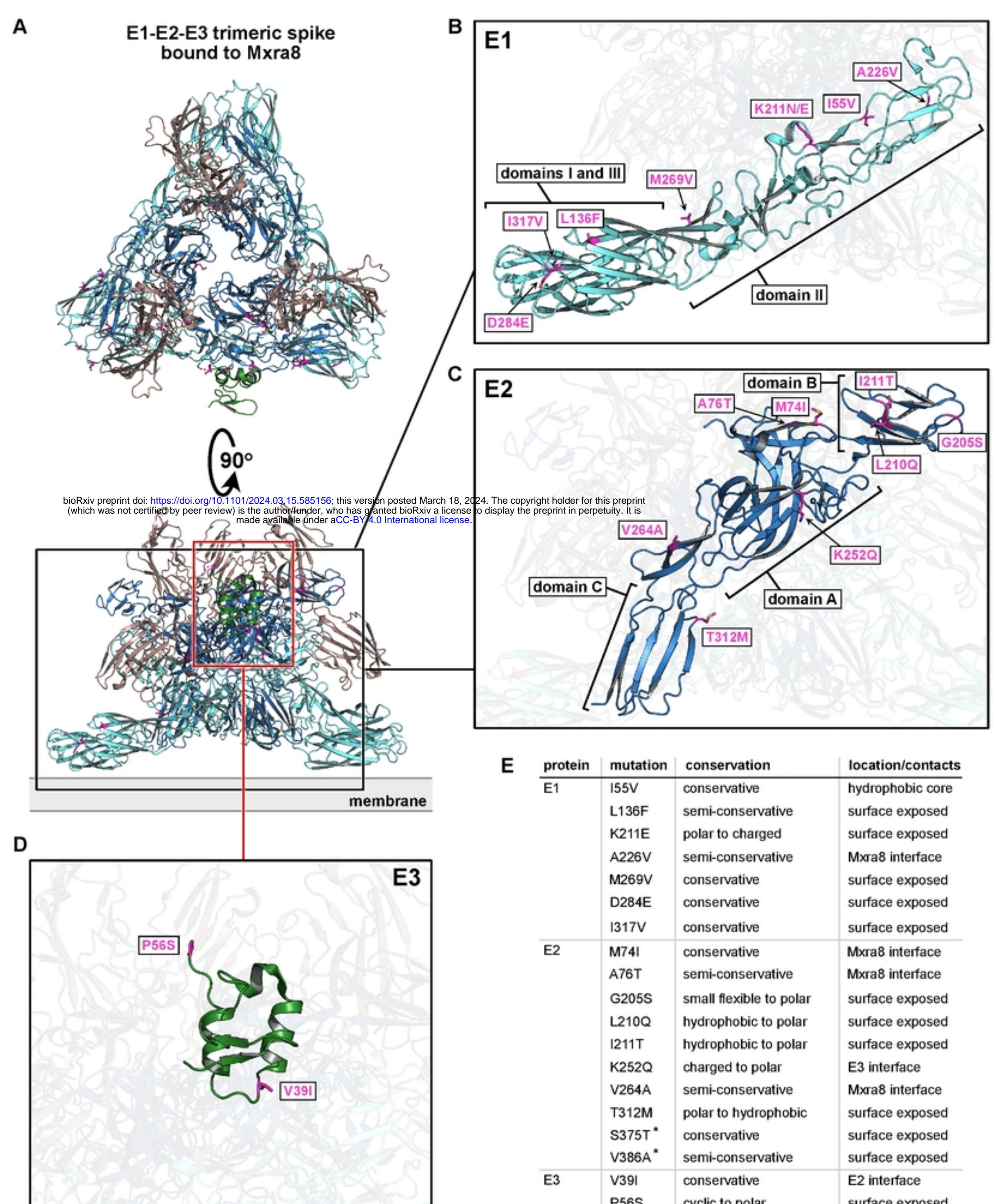



Figure 3

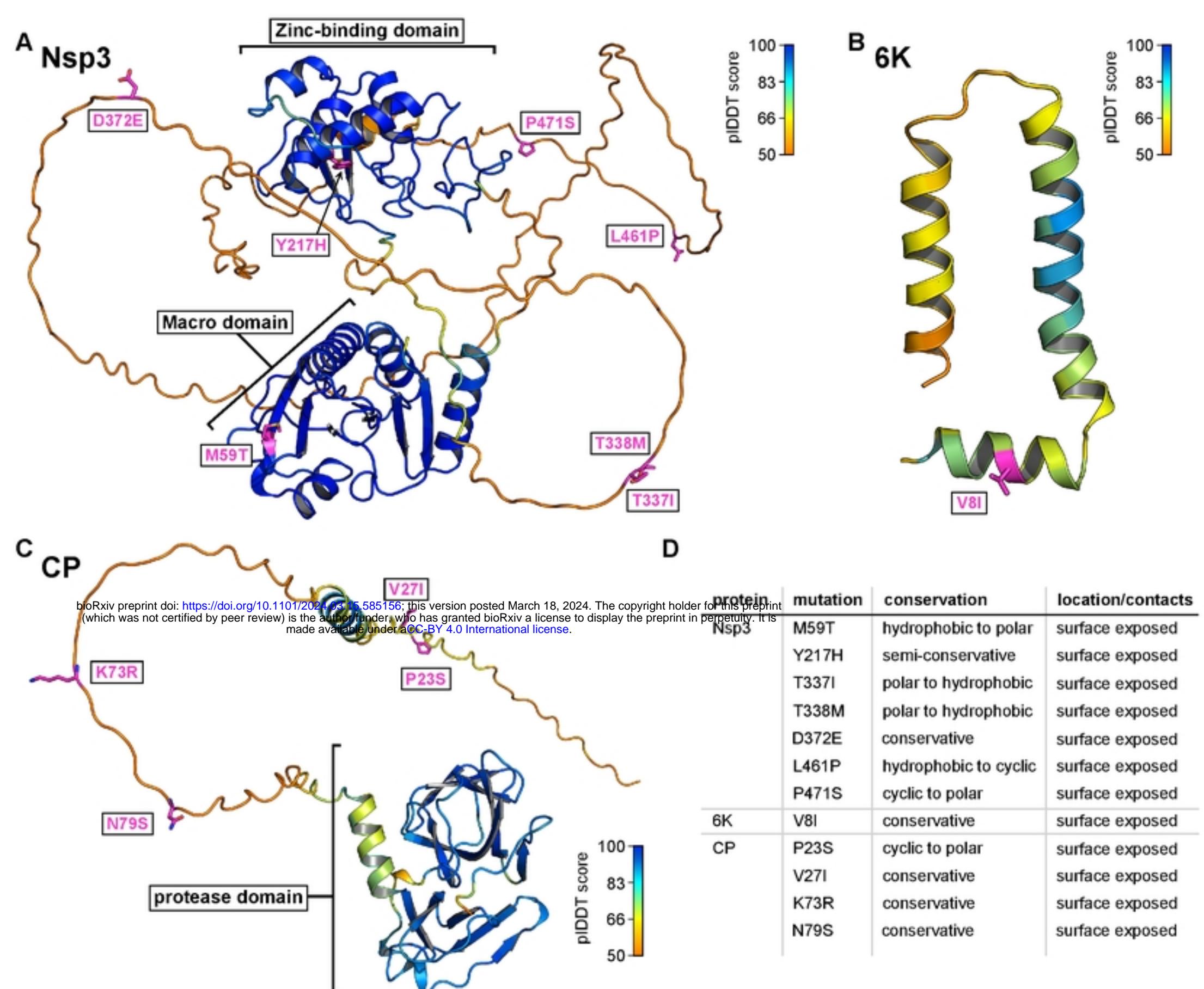



Figure 4