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Abstract  15 

We developed a new data analysis method, named Coexistence–Exclusion–Synchronization–16 

Antisynchronization (CESA), to reveal statistically significant correlations from a set of integer 17 

compositional abundance time series of Operational Taxonomic Unit (OTU) data of mouse gut 18 

microbiota. First, time series are transformed to 0 (absence) and 1 (presence), and statistical tests are 19 

applied to extract significant coexistence and mutual exclusion relationships. Subsequently, for all pairs, 20 
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the difference time series are transformed to +1 (up), 0 (even), and -1 (down), and synchronized and 21 

antisynchronized pairs are classified based on statistical tests after carefully removing the effect of 22 

spurious correlation caused by changes in compositional shares. We performed a comprehensive 23 

classification of all pairs based on the p-values in terms of coexistence and synchronization, including 24 

time series data with many zeros, which are difficult to analyze using conventional methods. We found 25 

that almost all OTUs (419 out of 420) have significant correlations with at least one OTU in one of the 26 

four characteristics: coexisting, exclusive, synchronizing, or antisynchronizing. Considering OTU 27 

pairs, about 25% of all possible pairs (22,356 out of 87,990) show a high correlation with the p-values 28 

less than 10-5, which is less than the inverse of the total number of pairs. Interaction among phyla are 29 

summarized as a network diagram. 30 

Author summary 31 

The gut microbiota ecosystem is often thought to be stable. However, when observed over a 32 

long period, there are turnovers in the microbiota, each OTU time series is highly non-stationary, and 33 

even species with high overall abundance are often observed to have zero values in some periods. In 34 

this study, we developed a comprehensive data analysis method for extracting significant correlations 35 

between any pair of OTUs, including OTUs whose observed values contain many zeros or exhibit clear 36 

non-stationarity, for which processing methods have not yet been established. We focused on pairwise 37 

correlations in terms of coexistence, exclusivity, synchrony, and antisynchrony of increase/decrease, 38 

and all combinations of pairs were checked by statistical tests based on the p-values. In order to remove 39 

spurious correlations in compositional time series, a new method was introduced to correct the sample 40 

sizes for the remaining OTUs, hypothetically assuming a situation in which one OTU was not present. 41 

Low abundance OTUs are often overlooked in traditional analyses. However, it becomes 42 

evident that all OTUs, including those with low abundance, interact strongly with each other. 43 

Additionally, our findings suggest that coexistence and synchrony can be summarized as cooperative 44 

relationships, while exclusion and antisynchrony can be summarized as antagonistic relationships. 45 

Cooperative interactions are more likely to occur between pairs of OTUs in the same phyla, and 46 
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antagonistic interactions are more likely to appear between OTUs in different phyla. The time series 47 

data analysis method developed in this paper includes no black-box, making it broadly applicable to 48 

compositional time series data with integer values. 49 

Introduction 50 

The gut microbiome is a highly complex and dynamic ecosystem that has attracted considerable 51 

scientific interest due to its profound influence on host health and development [1–6]. This complex 52 

microbial community orchestrates a variety of physiological processes within the host, ranging from 53 

nutrient metabolism to modulation of the immune system. To unravel the full extent of these effects 54 

and their temporal dynamics, the study of the mouse gut microbiome has become increasingly 55 

important. The gut microbiome is a vast collection of microorganisms that reside in the gastrointestinal 56 

tract. It includes bacteria, viruses, fungi, and other microbes that form a dynamic and complex 57 

ecosystem. This ecosystem evolves over time, with microbial composition and functions adapting in 58 

response to various factors, including diet, age, and environmental exposures. Understanding the 59 

temporal dynamics of the gut microbiome is critical because it can shed light on the mechanisms 60 

underlying health and disease. Recent advances in high-throughput sequencing technologies have 61 

revolutionized our ability to characterize the gut microbiome. Numerous studies have investigated its 62 

composition and functions in various contexts, revealing its role in metabolic disorders, immune system 63 

regulation, and even neurological diseases [7–11]. 64 

From a data analysis perspective, time series data of bacterial flora ecosystems are challenging 65 

to analyze for various reasons, and numerous methods of data analysis have been developed [12]. In 66 

most cases, the total number of abundances observed in a single measurement is fixed, thus, the 67 

abundances are relative rather than absolute quantities. Therefore, it needs to be considered that spurious 68 

correlations may arise, wherein an increase in the number of one species leads to a decrease in the 69 

number of other species [13,14]. In a typical bacterial ecosystem, approximately 1000 OTUs are 70 

observed, and their abundance varies by more than three orders of magnitude, with high- and low-71 

abundance species exhibiting markedly different behaviors [15,16]. 72 
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For time series of high abundance OTUs, the z-score transformation [17] and the log-ratio 73 

transformations [18,19] are standard pretreatments. Among various proposed models, the stochastic 74 

logistic model is known to successfully reproduce the basic characteristics of high-abundance stationary 75 

time series [15,20,21]. To estimate mutual interactions between species, the Lotka–Voltera equation is 76 

used as a basic dynamical equation [22,23]. The analysis of linear and nonlinear correlations [24,25] 77 

and network analyses [26] is also under intensive investigation. Approaches to estimating causal 78 

relationships between species from time series data are also being explored [27,28].  79 

Thus, data analysis methods for high-frequency and stationary cases are well-developed, 80 

whereas those for low-frequency time series and clearly non-stationary cases are still under 81 

development. Time series of low-abundance species contain many zeros, and the analysis of such data 82 

requires different processing than that of high-frequency cases. For example, the log-ratio method 83 

cannot be directly applied to data containing zeros. For time series with many zeros, studies have been 84 

conducted since the 1960s to examine correlations between species by binarizing them as present or 85 

absent [29]. It is reported that Pearson’s correlation coefficient, the most fundamental quantity 86 

characterizing correlations, is biased toward a positive value in the case of binary data depending on 87 

the proportion of zeros included, and it is argued that a null model based on a hypergeometric 88 

distribution should be considered [30]. Recently, a machine learning approach was introduced for time 89 

series with many zeros to infer the interaction network between bacterial species based on the hurdle 90 

model. This approach applies the group lasso penalty to the matrix of time series data, which is 91 

converted into binary form (1 for presence and 0 for absence) [31].  92 

In this paper, we introduce a novel non-black-box data analysis method named Coexistence–93 

Exclusion–Synchronization–Antisynchronization (CESA) using the OTU time series in the gut 94 

microbiota of seven mice. This allowed us to comprehensively reveal significant correlations among all 95 

OTU pairs, including low-abundance or non-stationary cases, with a new framework for adjusting 96 

spurious correlations caused by compositional property. The paper is organized as follows, with a flow-97 

chart shown in Fig 1. In the next Results section, we first describe the data we are dealing with. We 98 

examine the distribution of frequencies per OTU as a fundamental property of the data, focusing on all 99 

pairs of 420 OTUs common to all mice, totaling 87,990 pairs. After binarizing the time series data in 100 
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terms of presence, we test for each pair of time series whether there is a significant coexisting or 101 

exclusively non-coexisting relationship by calculating the p-value based on the hypergeometric 102 

distribution, the Fisher exact test. Next, focusing on the change in the time series, the data are 103 

transformed into ternary values, +1 for an increase, 0 for no change, and -1 for a decrease, and pairs 104 

with significant synchronous and antisynchronous relationships are extracted through a statistical test 105 

after removing spurious correction caused by the compositional nature of data. In the Discussion 106 

section, we address the validity of the classified correlations extracted in this way. In the Materials and 107 

Methods section, we introduce details of our new correction method of removing spurious correlations 108 

of synchronization. Additionally, details about the mathematical formulations used in this paper are 109 

explained in this section.  110 

 111 

Fig 1. Flowchart of the data analysis methods in this paper. For any two OTUs, four correlations 112 

are extracted based on the p-values: CO, EX, SY, and AS. Finally, the OTUs are grouped into phyla 113 

and then analyzed for inter-phyla correlations. 114 

 115 

Our new method is simple, does not involve a black box, and is versatile enough to be 116 

immediately applied to any similar time series data set. 117 

Results 118 

The data and basic properties of the time series  119 

In this study, we use the time series data of the mouse gut microbiome to demonstrate the broad 120 

applicability of our method. Specifically, our analysis focuses on the OTUs within seven mice 121 

(designated M1, M2, M3, M4, M5, M7 and M8) over their entire lifespan from birth to natural death. 122 

The average lifespan of these mice is 923 days, with individual lifespans ranging from 827 to 1,044 123 

days [32]. An OTU represents a group of closely related microorganisms, typically observed through 124 

gene sequencing, specified by a natural number up to five digits, such as OTU279. In one observation, 125 
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3,000 samples are detected from fecal microbiomes, demonstrating the presence of a specific set of 126 

genetic information across different samples. The average observation interval was 4.3 days, resulting 127 

in about 200 data points for each mouse. This dataset serves as a critical component of our research, 128 

allowing us to examine the temporal variation in gut microbiome composition in different mice. 129 

The total number of OTUs in the data for all seven mice over their lifetime is approximately 4 130 

million, consisting of 1,230 OTUs. Fig 2a shows the cumulative distribution of the sampling probability 131 

for each OTU in our entire data on a log–log scale. It is a typical fat-tailed distribution with a range of 132 

variation that is spread out over five digits. This distribution can be approximated by the well-known 133 

log-normal distribution (red curve), which is consistent with the stochastic logistic model [15]. 134 

In Fig 2b, the percentage of non-zeros observed in each OTU time series is plotted for each 135 

mouse. The vertical axis is the OTU index, sorted in descending order of sampling probability from Fig 136 

2a. The colors indicate the number of mice on which the OTU was observed.  For example, there are 137 

seven red dots for seven mice of the same OTU index plotted horizontally, six orange dots for six mice, 138 

etc., and the OTU of the blue dots is observed in only one mouse. This plot shows that the percentage 139 

of 0 is generally high, even for popular OTUs that are common to all mice. It is also confirmed that 140 

there is no OTU that is always present in all observations. This result would indicate that even a highly 141 

abundant OTU is not stationary throughout life. The number of OTUs common to all seven mice shown 142 

as red dots in Fig 2b is 420, and in the following analysis we will focus on all combinations of pairs of 143 

these common OTUs, 87,990 pairs.  144 

 145 

Fig 2. Basic properties for all OTUs. Fig 2a. Complementary cumulative distribution of sampling 146 

probabilities for all 1230 OTUs observed in 7 mice plotted in a log-log plot. The red curve shows a log-147 

normal distribution fitted with μ=-10.1 and σ=2.47. Fig 2b. Observed percentage of non-zeros plotted 148 

for all OTUs for all mice individually. The vertical axis of the OTU index is numbered in the descending 149 

order of sampling probability. The color indicates the number of mice observed: red for seven mice, 150 

orange for six mice, ..., blue dots indicate the OTU appearing only in 1 mouse. The number of OTUs 151 

common to all seven mice is 420. 152 
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Detection of coexistence and exclusion pairs 153 

As described in the previous section, most of the time series in our data contain many zeroes. 154 

We were interested in the correlation of presence and absence between the time series of two different 155 

OTUs of each mouse. For this purpose, we transformed all time series {𝑥𝑖(𝑡)} into a binary form (1 for 156 

presence and 0 for absence), where “sign” designates the sign function (1 for positive, 0 for 0, and -1 157 

for negative), as follows:  158 

 𝑠𝑖(𝑡) = sign(𝑥𝑖(𝑡)) (1) 

   

Focusing on the binary time series of OTU-i and OTU-j of the k-th mouse, there are four cases: 159 

(1,1), (1,0), (0,1) or (0,0). At each observation time step, and we count the numbers. Let a be the number 160 

of co-presence (1,1), b the number of (1,0), c the number of (0,1), and d the number of (0,0), which is 161 

the case of co-absence; the sum of these numbers makes the length of the time series, T=a+b+c+d (see 162 

Materials and Methods for mathematical formulation). 163 

As a null model, we assume randomly shuffled time series for OTU-i and OTU-j, where the 164 

numbers 0 and 1 are conserved for each OTU. If the actual number of a is larger than the random case, 165 

it means that OTU-i and OTU-j tend to coexist; if a is smaller than the random case, it means that these 166 

OTUs tend to be exclusive. It is known that the distribution of {a, b, c, d} follows a hypergeometric 167 

distribution [30], thus, we can estimate the corresponding p-value by using Fisher’s exact test for a 2×2 168 

contingency table. As the degree of freedom of this contingency table is 1, the p-value for coexistence 169 

is calculated by summing the probability of the null model where the number of (1,1) is equal to or 170 

greater than a. This value can be small in the case of ad-bc>0. Similarly, the p-value for exclusion is 171 

calculated by summing the probability of the null model where the number of (1,1) is equal to or smaller 172 

than a. This value can be small in the case of ad-bc<0. It should be noted that if one of the OTU is 173 

always present, then the p-value is automatically 1 for both coexistence and exclusion, because the set 174 

of numbers {a, b, c, d} of any randomly shuffled time series is identical to the real data. In fact, to make 175 

the p-value small, both OTU should have a certain amount of zeros for both coexistence and exclusion. 176 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.15.585153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585153
http://creativecommons.org/licenses/by/4.0/


8 

Fig 3a shows the cumulative distributions of p-values of one mouse (M1) for coexistence (green 177 

line) and for exclusion (orange line) compared to the theoretical distribution of the p-values of the null 178 

model (gray line), which follows the uniform distribution. We found that it is reasonable to set a 179 

threshold of statistical significance for the p-value at 10-5 (gray dotted line) since this probability is 180 

smaller than the inverse of the total number of observed OTU pairs, 1/87990≒1.1x10-5. Fig 3b displays 181 

the resulting scatter plot for all combinations of OTUs of mouse M1. The horizontal axis is the number 182 

of coexistences (a), and the vertical axis is (ad-bc)/T2, a value characterizing the strength of coexistence 183 

normalized by the length of the time series. The green and orange dots indicate statistically significant 184 

OTU pairs of coexistence (ad-bc>0) and exclusion (ad-bc<0), respectively, while the gray dots indicate 185 

non-significant cases. In this instance, approximately 7% of OTU pairs show significance in 186 

coexistence, and approximately 1% are significant in exclusion. As observed in the figure, the values 187 

of a are always small in cases of significant exclusion, while in cases of coexistence, the values of a are 188 

widely distributed. 189 

Figs 3c and 3d show two examples of the original time series of OTUs with very small p-values 190 

for coexistence and exclusion, respectively. The light green shade indicates coexisting periods (1,1), 191 

the light orange indicates exclusive periods (1,0) or (0,1), and the white periods represent (0,0), which 192 

contribute to coexistence. Note that all of these examples are intuitively consistent as representatives of 193 

coexistence and exclusion. Conventional methods of data analysis may miss these examples because 194 

these time series contain a large number of zeros and appear to be non-stationary. 195 

 196 

Fig 3. Coexistence and exclusion for one mouse. Fig 3a. Cumulative distribution of the p-values for 197 

coexistence (green) and exclusion (orange) for all combinations of OTUs in the log-log plot. The 198 

distribution of p-values in the case of the null model follows the uniform distribution for both cases 199 

(gray). The dashed line indicates the statistical significance threshold, 10-5. Fig 3b.  Scatter plot of the 200 

values a (number of coexistence) vs (ad-bc)/T2. Green and orange dots show significant cases of 201 

coexistence and exclusion, respectively, and gray dots are plotted for non-significant cases. Fig 3c. 202 

Examples of OTU pairs of time series for coexistence. Green and orange shades show coexistence (1,1) 203 

and exclusion (1,0) or (0,1), respectively, while (0,0) are in white. Top: The probability of appearance 204 
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is very low for both, but the timing of appearance tends to coincide. Bottom: Abundances are high for 205 

these OTUs, and both disappear in the second half of life. Fig 3d. Examples of OTU pairs of time series 206 

for exclusion. Green and orange shades show coexistence (1,1) and exclusion (1,0) or (0,1), 207 

respectively, while (0,0) are in white. Top: OTU6 disappears in the second half of life, while OTU45 208 

appears in the second half of life. Bottom: OTU32 appears young except right after the birth, while 209 

OTU77 appears in the period right after the birth and in the second half of life. 210 

 211 

We calculate the p-values for all OTU pairs from all seven mice. For each OTU pair, we then 212 

evaluated the combined p-value using the p-values from all seven mice. There are numerous ways to 213 

define the combined p-value, and it is known that particular care should be taken when the number of 214 

data points is very different or when the characteristics of the data are different [33]. In this study, we 215 

use the most popular standard Fisher’s method, since the data sizes and observation conditions were 216 

nearly the same for the seven mice [34]. Let p1, p2, ..., p7 be the p-values of the seven mice. We 217 

introduced the following test statistic, S, and estimated the combined p-value from the χ2 distribution 218 

with degrees of freedom 2x7=14: 219 

 

𝑆 = −2 ∑ log 𝑝𝑖

7

𝑖=1

 
(2) 

 220 

For each OTU pair, we compute the combined p-values for coexistence and exclusion separately based 221 

on this method. Fig 4a shows the cumulative distribution of the combined p-values for coexistence and 222 

exclusion, compared to the theoretical distribution of the null model (gray line). We set the threshold 223 

of statistical significance for the p-value at 10-5 (dotted line), consistent with the threshold p-value for 224 

a single mouse. The number of OTU pairs whose combined p-value for coexistence is less than this 225 

threshold is 18597, approximately 21.1% of the total pairs, while that for exclusion is 2347, 226 

approximately 2.7%. Interestingly, 18 OTU pairs show significance for both coexistence and exclusion 227 

individually, categorized as marginal.  228 

For all significant OTU pairs, we arranged them in ascending order of p-values on the horizontal 229 

axis and plot the values of (ad-bc)/T2 for seven mice on the vertical axis as shown in Fig 4b. If the 230 
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coexistence p-value per mouse is significant, it is plotted as a large dark green dot; if it is not significant 231 

per mouse, it is plotted as a small light green dot. Similarly, if the relationship is exclusive, it is plotted 232 

in orange. If the relationship is marginal, individual values are plotted in black with larger dots for 233 

individually significant cases. In Fig 4c, a typical time series of significant OTU pairs of coexistence is 234 

shown for all seven mice. Fig 4d shows a time series of a typical significant coexistence OTU pair with 235 

small a for all mice, confirming simultaneous appearances.  Fig 4e shows a typical case of exclusive 236 

OTU pair for all mice; there, the orange periods showing exclusion dominate for all mice. Fig 4f shows 237 

a case of a marginal OTU pair, where coexistence is significant for mice M3, M5, M7 and M8, and 238 

exclusion is significant for M1.  239 

 240 

Fig 4. Coexistence and exclusion for seven mice. Fig 4a. Cumulative distribution of the p-values 241 

combined for all mice for coexistence (green) and exclusion (orange). The distribution of p-values in 242 

the case of the null model follows the same uniform distribution (gray) as the case of Fig 3a for one 243 

mouse. Fig 4b. Characteristics of significant coexistence and exclusion pairs. The vertical axis shows 244 

the value of polarity, (ad-bc)/T2; the horizontal axis represents the OTU pairs sorted in the ascending 245 

order of the combined p-value for the seven mice. For each OTU pair, 7 points are plotted corresponding 246 

to each mouse. Green dots are for significant coexistence pairs, dark green dots represent individually 247 

significant cases, and light green dots show individually non-significant cases. Orange dots are for 248 

significant exclusion pairs; dark orange and light orange represent the same meaning as green. Black 249 

dots show the marginal cases, larger dots show individually significant cases, and small dots show non-250 

significant cases. Fig 4c. Examples of OTU pairs of time series for coexistence for seven mice. Green 251 

and orange shades show coexistence (1,1) and exclusion (1,0) or (0,1), respectively, while (0,0) are in 252 

white. Individually significant cases are framed in green for coexistence. Fig 4d. Examples of OTU 253 

pairs of time series for coexistence for seven mice with very small abundance. Individually significant 254 

cases are framed in green for coexistence. Fig 4e. Examples of OTU pairs of time series for exclusion 255 

for seven mice. Individually significant cases are framed in orange for exclusion. Fig 4f. Examples of 256 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.15.585153doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.15.585153
http://creativecommons.org/licenses/by/4.0/


11 

OTU pairs of time series of the marginal case for seven mice. Individually significant cases are framed 257 

in green for coexistence and in orange for exclusion. 258 

Detection of synchronization and antisynchronization 259 

For a pair of time series whose number of co-occurrences, i.e. the number of (1,1) in the 260 

previous subsection is not zero, we can introduce a statistical test for up-down synchronization. To do 261 

this, we introduce the ternary transformation from the time difference of the original integer time series 262 

xi(t) to yi(t): 263 

 𝑦𝑖(𝑡) = sign(𝑥𝑖(𝑡 + 1) − 𝑥𝑖(𝑡)) (3) 

 264 

In order to quantify the strength of synchronization of OTU-i and OTU-j we introduce the 265 

following inner product I: 266 

 

𝐼 = ∑ 𝑦𝑖(𝑙)𝑦𝑗(𝑙)

𝑇−1

𝑙=1

 
(4) 

         267 

This quantity is positive when the up-down of the original time sequences are synchronized, and it is 268 

negative for an antisynchronized case.  For this inner product, the corresponding p-value is estimated 269 

by comparing it with the null hypothesis model, in which the non-zero values of the time series {xi(t)} 270 

are randomly shuffled, while the points with xi(t)=0 are kept as 0. In this randomized time series, for 271 

the time point t* that fulfills xi(t*)=0 and xi(t*+1)=0, the value of yi(t*) is always 0, and this time point 272 

does not contribute to I, so we neglect such time point in the calculation of I. For each pair of OTU-i 273 

and OTU-j the number of time points that can contribute to I, Lij, is counted as described in the Materials 274 

and Methods section, and the value of the inner product is normalized as I/Lij., which takes a value 275 

between -1 and 1. The corresponding p-value is calculated by a binomial distribution as explained in 276 

the Materials and Methods section. Fig 5a shows the results of the p-value distributions for 277 

synchronization (blue) and antisynchronization (red) for the mouse M1. The combined p-value 278 

distributions are plotted in Fig 5b, where the threshold of significance is the same as the former cases 279 
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of coexistence and exclusion. We observe numerous significantly correlated OTU pairs; however, we 280 

should remove spurious correlations resulting from changes in compositional shares. 281 

We consider instances of spurious correlations where an OTU, let it be called OTU-i, has a 282 

dominant share that changes drastically over time. For example, if  xi(t)=2000 at time t and xi(t+1)=1000, 283 

then the sum of all other OTUs at time t is 1000, while it becomes 2000 at time t+1 maintaining a total 284 

sum of OTU is always 3000. Let us assume that this population change is purely caused by this OTU-i 285 

independently of all other OTUs. In this case, OTU-i will have antisynchronous correlations with all 286 

other OTUs, as the compositional shares of these OTUs would drop to half their average values. 287 

Simultaneously, any pair of other OTUs would show synchronous correlations, as their populations 288 

decrease together. To correct these spurious correlations, we hypothetically assume a situation where 289 

OTU-i did not exist, and the total sum of the sampling number of OTUs, excluding OTU-i is adjusted 290 

to 3000. Details of this new correction method of spurious correlation are described in the Materials 291 

and Methods section. We applied this correction for all possible combinations of OTUs, and judged the 292 

statistical significance by the condition that the corresponding p-values are always lower than the 293 

threshold. By this correction, the number of significant pairs decreased from 6,140 to 5,447 for 294 

synchronization and from 740 to 511 for antisynchronization. 295 

In Fig 5c, the resulting distributions of the corrected combined p-values for synchronization 296 

and antisynchronization are shown in darker colors compared with the cases of no correction in lighter 297 

colors.  Fig 5d is plotted similarly to Fig 4b; namely, for all significant OTU pairs, we arrange OTU 298 

pairs in ascending order of p-values on the horizontal axis and plot the values of I/Lij for seven mice on 299 

the vertical axis. If the synchronous p-value per mouse is significant, it is plotted as a large dark blue 300 

dot; if it is not significant per mouse, it is plotted as a small light blue dot; similarly, if the relationship 301 

is antisynchronous, it is plotted in red. It should be noted that there is no marginal case in which both 302 

synchronization and antisynchronization are significant individually. As known from this plot, there are 303 

many individually significant cases in the synchronization analysis, while there are fewer individually 304 

significant antisynchronization cases. This tendency is understood by the property that the number of 305 

time points Lij is generally smaller in the cases of antisynchronization because it is similar to an 306 

exclusive relation, and it is challenging to attain small p-values individually. Typical examples of time 307 
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series for synchronization and antisynchronization are shown in Figs 5e and 5f; in both cases, the 308 

properties of all seven mice look similar.  309 

 310 

Fig 5. Synchronization and antisynchronization for seven mice. Fig 5a. Cumulative distribution of 311 

the p-values using the original time series for one mouse for synchronization (light blue) and 312 

antisynchronization (pink). The distribution of p-values in the case of the null model follows the same 313 

uniform distribution (gray) as the case of Fig 3a for one mouse. Fig 5b. Cumulative distribution of the 314 

combined p-values using the original time series for synchronization (light blue) and 315 

antisynchronization (pink). The distribution of p-values in the case of the null model follows the same 316 

uniform distribution (gray) as the case of Fig 3a for one mouse. Fig 5c. Cumulative distribution of the 317 

combined p-values after correction of spurious correlations for synchronization (blue) and 318 

antisynchronization (red) compared with the plots in Fig 5b. The distribution of p-values in the case of 319 

the null model follows the same uniform distribution (gray) as the case of Fig 3a for one mouse. Fig 5d. 320 

Characteristics of significant synchronization and antisynchronization pairs. The vertical axis shows the 321 

value of inner products, I, and, the horizontal axis represents the OTU pairs sorted in the ascending 322 

order of the combined p-value for the seven mice. For each OTU pair, 7 points are plotted corresponding 323 

to each mouse.  Blue dots are for significant synchronization pairs, dark blue dots represent individually 324 

significant cases and light blue dots show individually non-significant cases. Red dots are for significant 325 

antisynchronization pairs. Dark red and pink depict the same meaning as blue. There is no marginal 326 

case. Fig 5e. Examples of OTU pairs of time series for synchronization for seven mice. Blue shades 327 

show synchronization (+1,+1) or (-1,-1), and red shades show antisynchronization (+1,-1) or (-1,+1), 328 

while the white shade shows the time points to be excluded for this analysis. Individually significant 329 

cases are framed in blue for synchronization. Fig 5f. Examples of OTU pairs of time series for 330 

antisynchronization for seven mice. Individually significant cases are framed in red for 331 

antisynchronization. 332 

 333 
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Our results for all 87,990 combinations of OTUs are summarized in Table 1. Rows show 334 

coexistence relationships, and columns show synchronization relationships. The numbers for 335 

coexistence (CO), exclusion (EX), synchronization (SY), and antisynchronization (AS) means the 336 

number of OTU pairs whose combined p-value is smaller than the significant level. The numbers in 337 

brackets are the expected numbers if the coexistence property and synchronization property are 338 

independent. For example, 4,436 OTU pairs, both CO and SY, are significant, which is about four times 339 

bigger than the mean expectation of an independent random case (1,151).  Similarly, the number of 340 

significant OTUs in both EX and AS (that is 70), is more than five times larger. For the case of both 341 

EX and SY, there was no OTU pair, while the independent random case is expected to be 147. From 342 

these results, it is evident that CO and SY, as well as EX and AS, are highly correlated, and EX and SY 343 

are highly negatively correlated.  344 

Table 1. Results of the significant pair numbers.  345 

 SY AS MA RA  

CO 4436 

(1151) 

58 

(111) 

0 14103 18597 

(21.1%) 

EX 0 

(147) 

70 

(14) 

0 2277 2347 

(2.7%) 

MA 0 0 0 18 18 
(0.02%) 

RA 1011 383 0 65634 67028 

 5447 

(6.2%) 

511 

(0.6%) 

0 82032 87990 

CO for coexistence, Ex for exclusion, SY for synchronization, AS for antisynchronization, MA for 346 
marginal, RA for random meaning not significant. The numbers in brackets are the mean numbers 347 
expected if the horizontal columns and vertical columns are independent. It is confirmed that CO and 348 
SY, EX, and AS are strongly correlated, while EX and SY, CO and AS are negatively correlated.   349 

 350 

Approximately 25% of all 87,990 OTU pairs show a significant relationship in one of the four 351 

statistical tests. Furthermore, it has been established that nearly all 420 OTUs participate in at least one 352 

of such significant relationship, with only one OTU identified as not belonging to any significant 353 

relation to other OTUs. Our results underscore the prevailing strength of interactions among OTUs, 354 

even among those with low populations characterized by numerous zero values.     355 
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Interaction among phyla 356 

As described in the preceding subsections, there are approximately 25% of significant 357 

interactions between OTUs. A part of these interactions is shown in Fig 6a by a network diagram 358 

connecting significant OTU pairs with the colored lines of corresponding significant statistical tests 359 

compared to the gene phylogenetic trees with eight phyla. This intricate interaction diagram shows a 360 

tendency that the OTUs belonging to the same phylum tend to have more CO (green) and SY (blue) 361 

links, while OTUs between different phyla tend to have more EX (orange) and AS (red) links. In order 362 

to quantify these properties, we categorize the OTUs into eight phyla and count the number of 363 

significant OTU pairs between the phyla. Figs 6b, 6c, 6d and 6e show a combination of phyla in which 364 

the number of significant OTU pair numbers is statistically high for CO, EX, SY and AS, respectively, 365 

compared with the numbers of the null model of independent random cases. There are 20 combinations 366 

of phyla whose p-value is at a significant level, less than 0.01, and the results are summarized in Fig 6f 367 

by a network diagram.  Regarding CO and SY as cooperative, and EX and AS as antagonistic 368 

relationships, there are two cooperative groups of phyla, {Firmicutes, Deferribactreses}, and 369 

{Bacteroidetes, Verrucomicrobia, Tenericutes, Actinobacteria, TM7, Proteobacteria}, which are 370 

connected by CO links. The Firmicutes group seems to be antagonistic to the Bacteroidetes group, as 371 

these groups are connected by EX and AS links. Within the Bacteroidetes group, Proteobacteria has a 372 

marginal relation as it is also antagonistically linked by EX and AY to Bacteroidetes and also linked by 373 

EX to TM7.   374 

 375 

Fig 6. Interaction among eight phyla. Fig 6a. A part of significant relations between OTUs is 376 

categorized into 8 phyla with the gene phylogenetic trees. Significant pairs are connected by curved 377 

lines, CO (green), SY (blue), EX (orange), and AS (red). Fig 6b. Densities of significant CO between 378 

phyla. Darker green means more significant pairs than the null model, assuming random independent 379 

connection keeping the link numbers. The value in the green scale shows the absolute value of the 380 

logarithm of the p-value. Grey means the density is less than independent cases with the p-value less 381 

than 10-2. White represents the density, which is the level of independence. Fig 6c. The same plot as Fig 382 
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6b for EX is drawn in orange. Fig 6d. The same plot as Fig 6b for SY is drawn in blue. Fig 6e. The 383 

same plot as Fig 6b for AS is drawn in red. Fig 6f. Network diagram representing the relation between 384 

phyla. Green (CO) and blue (SY) lines show significant cooperative relations, and orange (EX) and red 385 

(AS) lines show significant antagonistic relations, with the thickness representing the statistical 386 

significance.  The diameter of each node is proportional to the logarithm of the number of included 387 

OTUs. 388 

Discussion 389 

In this paper, we introduced new data analysis methods that are designed to detect statistically 390 

significant correlations between any pair of OTU time series. As described in Sec.2.1, our data of OTU 391 

time series contain numerous zero values, no OTU has always existed in the seven mice for their whole 392 

lives; therefore, we thought that a careful treatment of zero values in the time series is key to detecting 393 

correlations among all OTUs. 394 

To achieve this objective, in the “Detection of coexistence and exclusion pairs” subsection, we 395 

introduced the binary transformation (Eq (1)) for coexistence and exclusion, in which the data points of 396 

zero values play the central role. As shown in Fig 3a, we detected various significant OTU pairs for 397 

both coexistence (approximately 5%) and exclusion (approximately 1%) for the data of 1 mouse; 398 

additionally, by combining the results of seven mice, we found that 21% of pairs are significant in 399 

coexistence, and 2.7% in exclusion. As shown in Fig 4d, our method can detect significant coexistence 400 

for the cases with more than 97% of data points being zero values, and all seven mice showing a 401 

consistent property. Furthermore, as mentioned in “Detection of synchronization and 402 

antisynchronization” subsection, we confirmed that there is only 1 OTU that was not involved in 403 

significant coexistence nor exclusion pairs, and all other 419 OTUs have some significant correlations 404 

with other OTUs. We believe that the robust interactions among OTUs, even those with minimal 405 

presence, constitutes a noteworthy discovery. This outcome underscores the importance of directing 406 

greater attention toward OTUs with low populations to uncover the complex ecosystem of microbiomes. 407 

In this study, to avoid inclusion by chance, the p-value threshold for the significance of the time 408 
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series pairs was set to be 10-5, which is smaller than the inverse of the number of all pairs. This high 409 

standard was achieved for two reasons: one is the length of each time series that contains more than 200 410 

data points, and the other is the parallel observation for seven mice. In fact, by combining the results of 411 

seven mice, the number of significant pairs increased three to four times for both coexistence and 412 

exclusion. In a case where the number of data points is half, namely approximately 100 data points, the 413 

p-values would become about square root of the original values; thus, it is roughly equivalent to make 414 

the threshold value to 10-10 in Fig 4a. We can estimate that the number of significant pairs will become 415 

approximately one-third. If the data points are about 50 and if we have only one mouse data, then we 416 

would be able to detect nearly 100 coexistence pairs and less than 10 exclusion pairs estimated from 417 

Fig 3a, assuming an imaginary threshold of 10-20. If the number of time points is less than 25, which 418 

corresponds to an imaginary threshold of 10-40, it would be difficult to detect significant coexistence or 419 

exclusion from 1 mouse data; however, by combining seven mice data, we will be able to detect more 420 

than 100 of significant pairs, as estimated from Fig 4a. It is important to prepare parallel experiments 421 

in the case there is a limitation in the number of data points. 422 

In order to detect synchronization and antisynchronization, we introduced a null model that is 423 

created by randomly shuffling the values of raw data for non-zero time points, and we calculated the 424 

inner product values of the ternary transformed time difference sequence, representing up-0-down 425 

properties. It should be noted that we did not shuffle the data points of 0, so these analyses purely count 426 

the co-occurrence of ups and downs between the pair of OTUs.  Compared with coexistence and 427 

exclusion analysis, the resulting p-values for synchronization and antisynchronization are much larger, 428 

meaning they are less significant. This is a natural consequence of the fact that the number of effective 429 

data points for OTU-i and OTU-j, Lij, is smaller, especially for antisynchronization. Both exclusion and 430 

antisynchronization are likely typical antagonistic relationships, and the number of Lij, becomes smaller 431 

for significant exclusion cases. In fact, the number of significant OTU pairs belonging to both exclusion 432 

and antisynchronization in Table 1 is 70, which is five times more than the number expected in the 433 

uncorrelated and random case (14). In this table, it should be noted that the number of OTU pairs that 434 

are significant in both exclusion and synchronization is 0, while the expected number is 147 in the 435 

uncorrelated and random case.  These results are consistent with the assumption that both exclusion and 436 
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antisynchronization represent antagonistic interactions between OTUs.  437 

In the analysis of synchronization and antisynchronization in the subsection “Detection of 438 

synchronization and antisynchronization”, we introduced a new correction method to check spurious 439 

correlations caused by the compositional nature of the data. Details are described in the Materials and 440 

Methods section. The aim is to hypothetically remove the OTU-i of attention and make a proportional 441 

adjustment by integerizing the remaining OTUs so that the sum of the remaining OTUs becomes the 442 

whole number 3,000 of sampling. This correction removes the effect of decreasing or increasing the 443 

number of remaining OTUs due to an increase or decrease in the OTU-i of interest. Thus, it corrects for 444 

false negative correlations between OTU-i and OTU-j, as well as false positive correlations for pairs 445 

other than OTU-i. In the actual calculation, when correcting the correlation between OTU-j and OTU-446 

k, the correction is calculated for all i (except j and k) when i is hypothetically removed, and the p-value 447 

of the pair, OTU-j and OTU-k, is given by the largest among all p-values, including the case when 448 

nothing is removed. As summarized in the Materials and Methods section, this correction reduces the 449 

number of significant pairs by approximately 30%. However, we confirmed that most of the strong 450 

correlations are still significant and that the functional form of the distribution of p-values is not much 451 

affected, as shown in Fig 5c. A merit of our correction method is the transparency of each procedure. 452 

We can quantitatively check which OTUs are causing spurious correlations in the shares of other OTUs, 453 

as shown in Fig 7. 454 

In the “Interaction among phyla” subsection, we introduced the grouping of the OTUs into eight 455 

phyla and displayed the interactions between the phyla and themselves as a network diagram. It was 456 

confirmed that OTUs between the same phyla tend to be linked more cooperatively, while interactions 457 

with different phyla can be cooperative or antagonistic, as shown in Fig 6f. 458 

In summary, the methods proposed in this paper are generally applicable to any similar data, 459 

such as integer-valued vector-type time series. We believe our methods can serve as basic general tools 460 

for the detection of statistically significant correlations. Note that if there is no regulation for the total 461 

sum of values, our four methods, CO, EX, SY and AS, can be used without the compositional correction. 462 

The methods CO and EX are suitable and powerful for data with numerous zero values. If the time 463 

series contains no or minimal number of zero values, then SY and AS will be useful to detect 464 
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cooperative or antagonistic interactions. Our methods include no black-box and every detail of 465 

statistical tests can be checked directly by the p-values estimated by comparing them with the null 466 

models. The programming codes of these methods are available via GitHub. 467 

Materials and Methods 468 

The data 469 

The data we used in this paper is the same data in reference [13] and the raw data is available 470 

from this reference. Initially, there were eight mice, M1 to M8; however, M6 died at a young age from 471 

cancer, and the others lived long and healthy for more than 820 days. In this paper, we omitted M6 and 472 

used the data for the other seven mice. 473 

Counting the numbers {a,b,c,d} 474 

For the given time series for OTU-i, {𝑥𝑖(𝑡)}, we introduce the transform, 𝑠𝑖(𝑡) = sign(𝑥𝑖(𝑡)), 475 

which takes either 1 or 0 as {𝑥𝑖(𝑡)} are non-negative integers. For the pair of OTU-i and OTU-j, the 476 

numbers {a,b,c,d} are calculated by the following forms of inner product. 477 

𝑎 = ∑ 𝑠𝑖(𝑡)𝑠𝑗(𝑡)

𝑇

𝑡=1

 478 

𝑏 = ∑ 𝑠𝑖(𝑡)(1 − 𝑠𝑗(𝑡))

𝑇

𝑡=1

 479 

𝑐 = ∑ (1 − 𝑠𝑖(𝑡))𝑠𝑗(𝑡)𝑇
𝑡=1                                                                                                                                                             480 

𝑑 = ∑ (1 − 𝑠𝑖(𝑡))(1 − 𝑠𝑗(𝑡))𝑇
𝑡=1  481 
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Definition Lij and calculation of the p-value of up-down 482 

synchronization 483 

In this subsection, we describe the definition of Lij for the pair of OTU-i and OTU-j and the 484 

way of calculation of p-value for the inner product I defined by Eq (4). The time points of Lij  are those 485 

points that either x(t) or x(t+1) is not 0 for both i and j. It is calculated by the following equation. 486 

𝐿𝑖𝑗 = ∑{𝑆𝑖(𝑡) + 𝑆𝑖(𝑡 + 1) − 𝑆𝑖(𝑡)𝑆𝑖(𝑡 + 1)}{𝑆𝑗(𝑡) + 𝑆𝑗(𝑡 + 1) − 𝑆𝑗(𝑡)𝑆𝑗(𝑡 + 1)}

𝑇−1

𝑡=1

  487 

Next, we introduce the null model and estimate the p-value for the inner product I. The null 488 

model is defined by random shuffling of the non-zero values of the time series {xi(t)}, while the points 489 

with xi(t)=0 are kept as 0 as shown in Fig 7a.  For a time series thus randomized {x'(t)}, we approximate 490 

that the value of  y'(t)=sign{x'(t+1)- x'(t)} can be approximated by an independent random number +1 491 

or -1 with probability 1/2. Then, the value of I can be approximated by the following equation: 492 

𝐼 = 2𝑧 − 𝐿𝑖𝑗  493 

where z is a binomial random number taking a non-negative integer given by the probability density 494 

function, B(Lij, 1/2). In Fig 7b, the probability density function for the null model created by 10,000 495 

random samples is plotted with the theoretical functional form of the binomial distribution; both 496 

distributions fit nicely. From this theoretical function, we can calculate the p-value by integrating the 497 

probability that is more extreme, as shown in Fig 7c.  498 

 499 

Fig 7. Random shuffling method for synchronization. Fig 7a. Randomly shuffled time series for 500 

calculation of synchronization. Left: The original time series of an OTU pair. Right: An example of a 501 

randomly shuffled time series, where shuffling is applied to non-zero points. The periods shown in 502 

yellow are the time points where synchronization is calculated, Lij. Synchronized time points are shaded 503 

in light blue, and antisynchronized points are shaded in pink, and the points that belong to neither are 504 

shaded in gray. Fig 7b. The probability density of the value, (I+Lij)/2. Black bars show the result of 505 

randomly shuffled null-models. The yellow curve presents the theoretical function approximately 506 

derived by the binomial distribution. The red line indicates the value for the real-time series. Fig.7c. 507 
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The cumulative distribution plot of Fig 7b. The p-value is estimated from the value of the cross point 508 

of the red line and the yellow curve. 509 

Correction of spurious correlations in compositional time series  510 

Herein, we introduce a new method of correction of spurious correlations in compositional time 511 

series. The correlations we pay attention are schematically shown in Fig.8a. At time t, let us assume the 512 

case that the abundances of OTU-i, OTU-j, and OTU-k are xi(t)=2000, xj(t)=200, xk(t)=100, with the 513 

total sampling number of OTUs at t being always N=3000. We also assume the case that these OTUs 514 

are independent and OTU-j and OTU-k are stationary keeping the same absolute density all the time. In 515 

the case that OTU-i changes drastically such as xi(t+1)=1000, xi(t+2)=2000 and xi(t+3)=1000, then the 516 

sum of abundance of all other OTUs are 1000 at time t,  2000 at time t+1, 1000 at time t+2, and 2000 517 

at time t+3. We can expect that xj(t+1)=400, xk(t+1)=200, xj(t+2)=200, xk(t+2)=100, xj(t+3)=400, 518 

xk(t+3)=200, as schematically shown in Fig.8a Left. 519 

In order to correct these spurious fluctuations of OTU-j and OTU-k caused by the number 520 

change of OTU-i, we introduce an imaginary removal of OTU-i, namely, we select N samples without 521 

OTU-i. Then, the corrected numbers of OTU-j would be xj(t)= xj(t+1)= xj(t+2)= xj(t+3)=600. Those of 522 

OTU-k would be xk(t)= xk(t+1)= xk(t+2)= xk(t+3)=300, and no correlation would exist between OTU-i 523 

and corrected OTU-j, also between corrected OTU-j and corrected OTU-k. In this way the spurious 524 

negative correlation between OTU-i and OTU-j, OTU-i and OTU-k, and the spurious positive 525 

correlation between OTU-j and OTU-k, shown in Fig.8b, can be corrected. This process of imaginary 526 

removal of OTU-i and the corrected value of OTU-j at time t, 𝑥′
𝑗|~𝑖(𝑡), can be given by the following 527 

formulation. 528 

𝑥′
𝑗|~𝑖(𝑡) = ⌊

𝑁

𝑁 − 𝑥𝑖(𝑡)
𝑥𝑗(𝑡)⌋

 

 529 

where ⌊𝑥⌋  
denotes the greatest integer function of a real number x. In Fig 8c, an example of this 530 

correction is shown for OTU-2 to be removed and OTU-7 to be corrected. The dotted line shows the 531 

corrected values of OTU-7, and those time points are shaded where the signs of up-0-down changed by 532 

this correction. We apply this imaginary removal process for all OTUs one by one, and calculate the 533 
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correction for all other OTU time sequences. Fig.8d and its partial enlargement, Fig.8e, show how this 534 

imaginary removal of OTU-i affects OTU-j by counting the corrected numbers of signs in the time 535 

series of OTU-j. The horizontal axis shows the name of the imaginarily removed OTU and the vertical 536 

axis show the name of the corrected OTU, and the color of each column indicates the number of 537 

corrected up-0-down signs. The maximum number of changes is less than 20, and some OTUs are very 538 

influential to other OTUs; however, many small population OTUs do not affect other OTUs at all. The 539 

final result of the corrected p-value for OTU-j and OUT-k is given by the largest p-value among all 540 

corrected p-values by assuming the removal of OTU-i for all i, including the p-value estimated for the 541 

original time series without the correction. Namely, the significant cases are the cases in which all these 542 

p-values are less than 10-5. By this correction, the number of significant pairs of synchronization and 543 

antisynchronization decreases approximately 30%. 544 

 545 

Fig 8. Correction of spurious correlations. Fig 8a. Schematic figure showing how to correct the 546 

spurious correlations. Left: OTU-i oscillates as {2000, 1000, 2000, 1000, 2000,...}, OTU-j oscillates as 547 

{200, 400, 200, 400, 200,...}, OTU-k oscillates as {100, 200, 100, 200, 100,...}. Right: OTU-i is 548 

imaginarily removed, and the rest of OTUs are normalized to make the sum to be 3000, then OTU-j' 549 

becomes flat as {600, 600, 600, 600, 600,...}, OTU-k' also becomes flat as {300, 300, 300, 300, 300,...}. 550 

Fig 8b. Schematic figure showing the spurious correlations. In the case of Fig.8a Left, we can observe 551 

synchronization between OTU-j and OTU-k, and antisynchronization between OTU-i and OTU-j, and 552 

also OTU-i and OTU-k. These correlations vanish after correction, as shown in Fig 8a Right. Fig 8c. 553 

An example of correction for synchronization.  OTU2 (red line) is imaginarily removed, and all other 554 

OTUs counts are corrected so that the portion of OTU2 eliminated is supplemented proportionally by 555 

other OTUs proportionally. The dashed line is the corrected time series of OTU7 with the original data 556 

shown by the black line. At the shaded periods, the up-0-down properties are changed by this correction. 557 

Fig 8d. Results of corrected numbers of up-0-down by the imaginary removal. The OTUs in the 558 

horizontal column are removed, and the counts of OTUs in the vertical column are corrected. This 559 

correction is effective only for OTUs with relatively high abundances, which are located in the left top 560 

area. The area surrounded by the purple dotted line is enlarged in the next figure. Fig 8e. Enlarged part 561 
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of Fig.8d. There are some OTUs that affects many other OTUs, and there are some OTUs that are 562 

affected by many other OTUs.    563 

 564 

It should be noted that the sum of OTUs after correction is not exactly 3000, as the total number 565 

may be reduced by the fraction that is rounded down when the resulting number of corrections is 566 

converted to an integer. This method of imaginary removal and correction can be generalized to the 567 

removal of two or more OTUs. However, the number of combinations to be removed would be so large 568 

that the computational cost would diverge, so here the number of imaginary removals of OTU is limited 569 

to one. 570 

Code Availability Statement 571 

All data and Python scripts used to perform this data analysis are available on GitHub. 572 

https://github.com/rie-maskawa/CESA 573 
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