

Overlapping roles of *Arabidopsis INCURVATA11* and *CUPULIFORMIS2* as Polycomb Repressive Complex 2 accessory proteins

Riad Nadi^{1,*}, Lucía Juan-Vicente^{1,*}, Samuel Daniel Lup¹, Yolanda Fernández², Vicente Rubio², and José Luis Micol¹

¹Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain

²Centro Nacional de Biotecnología, CNB-CSIC, Madrid 28049, Spain

*These authors contributed equally to this work.

Corresponding author: J.L. Micol (telephone: 34 96 665 85 04; email: jlmicol@umh.es)

Running title: ICU11 and CP2 as PRC2 accessory proteins

Keywords: 2OGD, ICU11, CP2, PRC2 accessory proteins, TAP, BiFC, RNA-seq, H3K36me3, H3K27me3, functional redundancy.

Word count (total): 11884.

Supplemental Data Sets: 8

26 **ABSTRACT**

27 Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone
28 H3 (H3K27me3) and plays a key role in epigenetic repression of gene expression in plants
29 and animals. PRC2 core components have all been identified in *Arabidopsis thaliana*, with an
30 expanding list of accessory proteins, some of which facilitate the recruitment of PRC2 to
31 specific targets. INCURVATA11 (ICU11) is a 2-oxoglutarate and Fe²⁺-dependent dioxygenase
32 that was previously shown to be a likely PRC2 accessory protein. In Tandem Affinity
33 Purification (TAP)-based screens for interacting partners of ICU11 and its redundant paralog
34 CUPULIFORMIS2 (CP2), we discovered that ICU11 interacts with four PRC2 core
35 components, including EMBRYONIC FLOWER 2 (EMF2), and with the accessory proteins
36 EMF1, TELOMERE REPEAT BINDING 1 (TRB1), TRB2, and TRB3. CP2 did not interact with
37 PRC2 core components, nor with TRB1, TRB2, or TRB3, but did interact with TRB4 and TRB5.
38 Both ICU11 and CP2 interacted with the nuclear proteins NAC DOMAIN CONTAINING
39 PROTEIN 50 (NAC050), NAC052 and COP9 SIGNALOSOME SUBUNIT 1 (CSN1).
40 Bimolecular Fluorescence Complementation (BiFC) assays revealed that ICU11 and CP2 both
41 interact with the PRC2 core components CURLY LEAF and SWINGER, and the accessory
42 proteins LIKE HETEROCHROMATIN PROTEIN 1, TRB1, and TRB3. ICU11 and CP2 did not
43 interact with each other. Beyond their phenotypes, transcriptomic profiles revealed strong
44 similarities between *emf2-3* and the double mutant *icu11-5 cp2-1*, as well as with mutants in
45 PRC2 core components. A significant proportion of the genes mis-regulated in *icu11-5 cp2-1*
46 are known to harbor H3K27me3 repressive marks in the wild type. Our results provide further
47 evidence that ICU11 acts as a PRC2 accessory protein, and strongly suggest that CP2 plays
48 a similar role.

49 **INTRODUCTION**

50 The first gene encoding a Polycomb group (PcG) protein was discovered by the
51 characterization of a mutation in the fruit fly *Drosophila melanogaster* (Lewis, 1947). PcG
52 proteins are highly conserved among eukaryotes and epigenetically repress the expression of
53 genes controlling growth, development, and environmental adaptation (Jiao et al., 2020; Xiao
54 and Wagner, 2015). PcG proteins form part of two heteromultimeric Polycomb Repressive
55 Complexes (PRCs), which perform different epigenetic activities: PRC1 is a histone H2A
56 ubiquitin ligase, whereas PRC2 is a histone H3 lysine 27 (H3K27) methyltransferase (Bratzel
57 et al., 2010).

58 Plant PRCs function in many critical developmental stages and events, such as the
59 transition from embryo to seedling (Bouyer et al., 2011), gametophyte and seed development
60 (Roszak and Köhler, 2011), and vernalization and flowering induction (Pazhouhandeh et al.,
61 2011; Tian et al., 2019; Whittaker and Dean, 2017). In *Arabidopsis* (*Arabidopsis thaliana*),
62 PRC2 comprises eight core components: CURLY LEAF (CLF; Goodrich et al., 1997),
63 SWINGER (SWN; Chanvivattana et al., 2004), MEDEA (MEA; Grossniklaus et al., 1998),
64 FERTILIZATION INDEPENDENT SEED 2 (FIS2; Luo et al., 1999), EMBRYONIC FLOWER 2
65 (EMF2; Yoshida et al., 2001), VERNALIZATION2 (VRN2; Gendall et al., 2001),
66 FERTILIZATION-INDEPENDENT ENDOSPERM (FIE; Ohad et al., 1999), and MULTICOPY
67 SUPPRESSOR OF IRA (inhibitory regulator of the RAS-cAMP pathway) 1 (MSI1; Hennig et al.,
68 2003; Köhler et al., 2003). The *Arabidopsis* PRC1 core components include three B Lymphoma
69 Mo-MLV Insertion Region 1 (BMI1) homologs (BMI1A, BMI1B, and BMI1C) and two RING
70 FINGER proteins (RING1A and RING1B) (Sanchez-Pulido et al., 2008).

71 Accessory proteins facilitate the recruitment of PRC1 and PRC2 to specific chromatin
72 regions; for example, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and the plant-specific
73 protein EMBRYONIC FLOWER 1 (EMF1) interact with each other and with PRC1 and PRC2
74 core components (Bratzel et al., 2010; Calonje et al., 2008; Derkacheva et al., 2013; Mozgova
75 and Hennig, 2015). LHP1 contributes to the maintenance of the tri-methylated H3K27
76 (H3K27me3) chromatin repressive state through the continuous recruitment of PRC2 to
77 regions enriched with the H3K27me3 mark (Ramirez-Prado et al., 2019; Turck et al., 2007;
78 Zhang et al., 2007). EMF1 contributes to H3K27me3 deposition at a subgroup of PRC2 target
79 genes, and is also required for histone H2A monoubiquitination by PRC1 (Kim et al., 2012).

80 Lack of vegetative development and the formation of flower-like organs immediately
81 after germination—the so-called embryonic flowers—is a conspicuous phenotype that was first
82 observed in *emf1* mutants (Aubert et al., 2001; Sung et al., 1992; Yang et al., 1995; Yoshida
83 et al., 2001). Embryonic flowers are also produced by the *telomere repeat binding1-2* (*trb1-2*)
84 *trb2-1 trb3-2* triple mutant (Yang et al., 2013; Zhou et al., 2018). *Arabidopsis* TRB1, TRB2, and
85 TRB3 bind to telomeric repeat DNA sequences to maintain chromosome ends (Klepikova et

86 al., 2016; Lee and Cho, 2016; Nadi et al., 2023; Schubert et al., 2006), and are thought to
87 recruit the PRC2 complex to certain genes for H3K27me3 deposition (Zhou et al., 2018).

88 The 2-oxoglutarate and Fe(II)-dependent dioxygenase (2OGD, also called 2ODD)
89 domain characterizes the second largest protein superfamily in the plant kingdom (Martinez
90 and Hausinger, 2015) and is represented by about 150 genes in Arabidopsis (Kawai et al.,
91 2014; Nadi et al., 2018). 2OGD proteins catalyze oxidative reactions using 2-oxoglutarate (also
92 called α -ketoglutarate) and molecular oxygen as co-substrates, and Fe^{2+} as a cofactor (Islam
93 et al., 2018). Phylogenetic analyses of plant 2OGDs grouped them into the DOXA, DOXB,
94 DOXC, and JUMONJI (JMJ) protein classes, with demonstrated functions that include DNA
95 and RNA demethylation, collagen hydroxylation, a diverse range of metabolic processes, and
96 histone demethylation, respectively (Islam et al., 2018; Kawai et al., 2014). Two Arabidopsis
97 DOXB-type 2OGDs, INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2), are redundant
98 components of the epigenetic machinery (Mateo-Bonmatí et al., 2018; Nadi et al., 2023).
99 Whereas *icu11* mutants exhibit a mild morphological phenotype consisting of hyponastic
100 leaves and early flowering, and *cp2* mutants are phenotypically wild type, *icu11 cp2* double
101 mutants skip vegetative development and develop embryonic flowers immediately after
102 germination, culminating in plant death 20–40 days after stratification (Mateo-Bonmatí et al.,
103 2018; Nadi et al., 2023).

104 Based on co-immunoprecipitation (co-IP) analyses, ICU11 was proposed to be a PRC2
105 accessory protein, probably involved in H3K36me3 demethylation at the *FLOWERING LOCUS*
106 C (*FLC*) floral repressor gene (Bloomer et al., 2020). Here, we provide further evidence for
107 ICU11 as a PRC2 accessory protein through experimental approaches complementary to co-
108 IP, including an *in vitro* tandem affinity purification (TAP)-based screen and *in vivo*
109 heterologous bimolecular fluorescence complementation (BiFC) assays. We also used these
110 approaches to identify several interacting partners of CP2, some of which are PRC2 core
111 components or accessory proteins. Furthermore, using RNA sequencing (RNA-seq), we
112 identified many genes that are upregulated in the lethal embryonic flowers of the *icu11-5 cp2-1*
113 double mutant and involved in flower development, as previously shown by microarray
114 analysis in the *emf2-3* single mutant (Kim et al., 2010). Taken together, our results confirm that
115 ICU11 is a PRC2 accessory protein and strongly suggest that CP2 also plays this role.

116 **RESULTS**

117 **ICU11 interacts with PRC2 core components and accessory proteins in a TAP-based**
118 **screen**

119 To identify interactors of ICU11 and CP2, we carried out a TAP-based screen followed by liquid
120 chromatography electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS).
121 Specifically, we used C-terminal translational fusions of ICU11 and CP2 to the GS^{Rhino} tag,
122 consisting of protein G, a streptavidin-binding peptide, and rhinovirus 3C protease cleavage
123 sites. We transformed PSB-D *Arabidopsis* cell cultures with *Agrobacterium tumefaciens*
124 carrying the aforehead mentioned translational fusions. In line with previous results obtained
125 using co-IP assays followed by tandem mass spectrometry (Bloomer et al., 2020), we
126 determined that ICU11 interacts with the PRC2 core components EMF2, FIE, SWN, and MSI1,
127 as well as the PRC2 accessory proteins EMF1, TRB1, TRB2, and TRB3 (Supplemental Figure
128 S1, Supplemental Table S1 and Supplemental Dataset DS1). TRB1, TRB2, and TRB3 are
129 components of the PWWPs-EPCRs-ARIDs-TRBs (PEAT) complexes that recruit PRC2 to
130 telobox-related motifs present at telomeres (Tan et al., 2018; Zhou et al., 2016; Zhou et al.,
131 2018). We also identified MSI1 and SWN as interactors of ICU11 in one of our TAP-based
132 replicates (Supplemental Dataset DS1). In contrast to Bloomer et al. (2020), we did not identify
133 CLF or LHP1 as ICU11 interactors.

134 Among the best-represented interactors of ICU11, we also noticed three paralogous
135 proteins, which are predicted to be nuclear: the AT5G66000 hypothetical protein and the
136 AT3G17460 and AT4G35510 uncharacterized proteins with a PHD finger domain. AT5G66000
137 was previously detected as an interactor of EMF1, CLF, and ICU11 in the co-IP assays
138 performed by Bloomer et al. (2020), in which these authors also detected AT3G17460 as an
139 ICU11 interactor, and AT4G35510 as an interactor of CLF but not ICU11.

140

141 **CP2 interacts with TRB4, TRB5, and other nuclear proteins in a TAP-based screen**

142 We also performed a TAP-based screen to identify CP2 interactors, from which we detected
143 no PRC2 core component. CP2 strongly interacted with TRB4 and TRB5 (Supplemental Figure
144 S1 and Supplemental Table S1), two poorly characterized members of the TRB family;
145 however, their TRB1, TRB2, and TRB3 paralogs were not detected as CP2 interactors. We
146 excluded any possible ambiguity in the interactions of ICU11 and CP2 with the TRB proteins
147 by checking that the peptides identified from each TRB were protein-specific, the only
148 exception being one peptide whose sequence matches an identical region in TRB2 and TRB3
149 (Supplemental Figure S3). Other nuclear proteins identified as interactors of CP2 but not of
150 ICU11 were DEVELOPMENT RELATED MYB-LIKE1 (DRMY1) and DRMY PARALOG 1 (DP1;
151 Supplemental Figure S1 and Supplemental Table S1), which belong to the single repeat MYB
152 family of transcription factors. Whereas the *dp1* mutant is indistinguishable from the wild type,

153 *drmy1* loss-of-function mutants exhibit pleotropic defects in root, vegetative, and floral
154 development, but not in flowering time (Wu et al., 2018; Yanhui et al., 2006; Zhu et al., 2020).
155 Another interactor of CP2 but not of ICU11 was INOSITOL REQUIRING 80 (INO80;
156 Supplemental Figure S1 and Supplemental Table S1), a nuclear chromatin remodeling factor
157 conserved among eukaryotes. Depletion of INO80 represses photomorphogenesis and
158 causes multiple developmental defects including reduced plant size, late flowering, abnormal
159 shape of reproductive organs, reduced pollen grain number per anther, and smaller siliques
160 (Kang et al., 2019; Yang et al., 2020; Zhang et al., 2015).

161 Another CP2 interactor we identified was the JMJ-type 2OGD protein INCREASE IN
162 BONSAI METHYLATION 1 (IBM1; Supplemental Figure S1 and Supplemental Table S1), a
163 known H3K9me2/1 demethylase (Miura et al., 2009). Several *ibm1* alleles perturb leaf and
164 flower morphogenesis and reduce fertility. The depletion of IBM1 increases H3K9me marks
165 and DNA methylation in the CHG and CHH genomic contexts (Saze et al., 2008).
166

167 **Nuclear proteins that interact with both ICU11 and CP2 in TAP-based screens**

168 Our TAP assays also revealed nuclear proteins that interact with both ICU11 and CP2
169 (Supplemental Figure S1, Supplemental Table S1 and Supplemental Dataset DS1). Two of
170 these were the paralogous transcription factors NAC050 and NAC052, which associate with
171 the histone demethylase JMJ14 in the negative regulation of flowering through the removal of
172 the H3K4me3 mark at flowering regulator genes such as *FLC* (Ning et al., 2015). Neither
173 NAC050 nor NAC052 was identified as an ICU11 interactor by Bloomer et al. (2020). By
174 contrast, JMJ14 was identified as an ICU11 interactor by Bloomer et al. (2020) but was not
175 detected in our TAP assays.

176 We also identified COP9 SIGNALOSOME SUBUNIT 1 (CSN1), also named FUSCA 6
177 (FUS6), a member of the CONSTITUTIVE PHOTOMORPHOREGULATION 9 (COP9) signalosome
178 complex, which maintains skotomorphogenesis by repressing photomorphogenesis (Qin et al.,
179 2020; Wang et al., 2002), and is required for the proper development of floral organs (Wang
180 et al., 2003). CSN1 was not detected by Bloomer et al. (2020). Neither of our two TAP-based
181 screens revealed any interaction between ICU11 and CP2, despite their shared interactors.
182

183 **ICU11 and CP2 interact with PRC2 core components and accessory proteins in BiFC 184 assays**

185 To obtain complementary evidence for the results of our TAP-based screens, we performed
186 heterologous BiFC assays through the transient transformation of *Nicotiana benthamiana*
187 leaves (Kerppola, 2006; Martin et al., 2009). The co-infiltration of such leaves with constructs
188 encoding the N-terminal half of enhanced yellow fluorescence protein (EYFP) fused to ICU11
189 (nEYFP-ICU11) and the C-terminal half of EYFP fused to CLF (cEYFP-CLF), SWN (cEYFP-

190 SWN), or LHP1 (cEYFP-LHP1) all produced strong nuclear EYFP signals (Figure 1A–I), which
191 is consistent with the known nucleoplasmic colocalization of *ICU11* (Mateo-Bonmatí et al.,
192 2018), CLF (Schubert et al., 2006), SWN (Wang et al., 2006), and LHP1 (Zemach et al., 2006).
193 We established that nEYFP-CP2 interacts with cEYFP-CLF, cEYFP-SWN, and cEYFP-LHP1
194 (Figure 1P–X). All co-infiltrations of nEYFP-*ICU11* or nEYFP-CP2 with cEYFP-TRB1 or
195 cEYFP-TRB3 resulted in strong EYFP signals (Figure 1J–O, Y–AD), consistent with the known
196 subnuclear localization of TRB1 and TRB3 (Zhou et al., 2016). As a positive control, both
197 coinfiltrations of cEYFP-LHP1 with nEYFP-UBP12 and nEYFP-UBP13 rendered strong
198 nuclear signals, as previously described (Supplemental Figure S3A–F; Derkacheva et al.,
199 2016). The absence of interaction between *ICU11* and CP2 was confirmed by coinfiltration of
200 *Nicotiana benthamiana* leaves with nEYFP-*ICU11* and cEYFP-CP2 (Supplemental Figure
201 S3G–I). nEYFP-*ICU11* and nEYFP-CP2 were used as negative controls (Supplemental Figure
202 S3O–Q).

203

204 **The transcriptomic profile of the *icu11-5 cp2-1* double mutant resemble that of the *emf2-3* single mutant**

205 We previously used both RNA-seq and reverse transcription-quantitative PCR (RT-qPCR) to
206 show that the *icu11-1* mutant, in the *Arabidopsis* S96 genetic background, transcriptionally
207 misregulates hundreds of genes (Mateo-Bonmatí et al., 2018). As *ICU11* and *CP2* encode
208 putative PRC2 accessory proteins and the morphological phenotype of their double mutant
209 combinations (namely, embryonic flowers) resembles that of the *emf1* and *emf2* single
210 mutants, we compared the transcriptome of the *icu11-5 cp2-1* double mutant with that of the
211 PRC2 strong loss-of-function mutant *emf2-3*. We used clustered regularly interspaced short
212 palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated mutagenesis
213 to obtain the *icu11-5* and *icu11-6* alleles of *ICU11* in a Col-0 genetic background to avoid
214 possible differences in gene expression due to the genetic background (Nadi et al., 2023).

215 We performed RNA-seq analyses of the Col-0, *icu11-5* and *cp2-1* seedlings, and the
216 *icu11-5 cp2-1* and *emf2-3* embryonic flowers, which were all collected 10 days after
217 stratification (das); Col-0 inflorescences were also collected 40 das for RNA-seq (Figure 2,
218 Supplemental Table S2 and Supplemental Dataset DS2). We only identified 23 upregulated
219 genes and 5 downregulated genes in the *cp2-1* mutant relative to Col-0; the morphological
220 phenotype of this mutant is indistinguishable from the wild type. We also identified 738
221 upregulated genes and 78 downregulated genes in the *icu11-5* mutant, whose morphological
222 phenotype is relatively weak. By contrast, the number of de-regulated genes in the *icu11-5*
223 and *emf2-3* embryonic flowers was similar: these plants showed 3199 upregulated
224 genes and 1770 downregulated genes, and 2520 upregulated genes and 1774 downregulated
225 genes, respectively, when compared to Col-0 seedlings. Moreover, the Col-0 inflorescences
226

227 showed the expected strong transcriptomic differences when compared to Col-0 seedlings,
228 with 5431 upregulated genes and 3084 downregulated genes, in agreement with similar data
229 previously published (Klepikova et al., 2016).

230 Genes encoding MADS-box transcription factors, such as *AGAMOUS* (*AG*) and
231 *SEEDSTICK* (*STK*), are flower organ identity genes repressed by PRC2 during the vegetative
232 stage (Petrella et al., 2020; Schubert et al., 2006). In the present study, *AG*, *SHATTERPROOF*
233 2 (*SHP2*), and *STK* were found upregulated in *icu11-5* seedlings, *icu11-5 cp2-1* and *emf2-3*
234 embryonic flowers, and Col-0 inflorescences, but not in *cp2-1* seedlings, which we confirmed
235 using RT-qPCR. Among the genes upregulated in *cp2-1* seedlings, we found *EARLY*
236 *ARABIDOPSIS INDUCED 1* (*EARL1*), which encodes a proline-rich family protein involved in
237 lignin biosynthesis and flowering time control (Shi et al., 2011); *PIRIN 1* (*PRN1*), a cupin-fold
238 protein involved in seed germination, development, and the response to abscisic acid and light
239 (Orozco-Nunnelly et al., 2014); and *RIBONUCLEASE 1* (*RNS1*), a protein that functions in cell
240 death and the generation of tRNA-derived fragments, which are involved in the regulation of
241 gene expression, RNA degradation, and the inhibition of protein synthesis (Goodman et al.,
242 2022; Megel et al., 2019) (Supplemental Figure S4).

243 A principal component analysis identified different patterns of transcriptional
244 misregulation, with three main clusters: one formed by the seedlings of Col-0, *cp2-1*, and to a
245 certain extent *icu11-5*; another one consisting of the *icu11-5 cp2-1* and *emf2-3* embryonic
246 flowers; and the last one representing the transcriptome of the Col-0 inflorescence (Figure 2F).
247 The transcriptomes of *icu11-5 cp2-1* and *emf2-3* were similar ($R^2 = 0.787$; Figure 2G).

248 A protein domain enrichment analysis revealed that *icu11-5* seedlings, *icu11-5 cp2-1* and *emf2-3*
249 embryonic flowers and Col-0 inflorescences share an upregulation of genes in the
250 Mitogen-Activated Protein Kinase (MAPK) cascade, an important conserved mechanism in
251 eukaryotes that triggers the intracellular transduction response to a range of developmental
252 and environmental signals (Jagodzik et al., 2018; Plotnikov et al., 2011; Supplemental
253 Datasets DS3 to DS7). The *icu11-5 cp2-1* and *emf2-3* transcriptomes also had similar Gene
254 Ontology (GO) enrichment of biological processes profiles, among the most significant of which
255 for the upregulated genes included response to phytohormones, abiotic stresses, and
256 transcriptional regulation (Supplemental Datasets DS5 and DS7). We also observed that most
257 enriched GO terms in the downregulated genes in the *icu11-5 cp2-1* and *emf2-3* embryonic
258 flowers and the Col-0 inflorescence are related to photosynthesis, chloroplast organization and
259 biosynthesis, and sucrose biosynthesis (Supplemental Datasets DS5 and DS7).

260 Regarding the protein domain enrichment analysis, the genes upregulated in *icu11-5*
261 were enriched in those encoding proteins harboring the keratin-like (K-box) and MADS-box
262 domains (Supplemental Dataset DS3), which are associated with the regulation of flowering
263 time (Alvarez-Buylla et al., 2000). The same categories were also enriched in the upregulated

264 genes of *icu11-5 cp2-1* and *emf2-3* embryonic flowers, and Col-0 inflorescences, which also
265 encompassed 13 other categories, including Non Apical Meristem (NAM), a FAD-binding
266 domain, and WRKY domains, which are also related to the regulation of flowering (Aida et al.,
267 1997; Liu et al., 2008; Martignago et al., 2019; Singh et al., 2014; Spedaletti et al., 2008). The
268 genes upregulated in *icu11-5 cp2-1* and *emf2-3* embryonic flowers were significantly enriched
269 in genes encoding transcription factors containing the APETALA2/ETHYLENE-RESPONSIVE
270 ELEMENT BINDING FACTOR (AP2/ERF) domain (Drews et al., 1991; Feng et al., 2020;
271 Okamuro et al., 1997; Supplemental Datasets DS5-DS7).

272

273 **The transcriptomic profile of *icu11-5 cp2-1* resembles that of mutants affected in genes
274 encoding PRC2 core components or accessory proteins**

275 Venn diagrams of the Differentially Expressed Genes (DEGs) of *icu11-5* and *cp2-1* seedlings
276 and *icu11-5 cp2-1* embryonic flowers, all compared with Col-0 seedlings, showed no overlap
277 between the genes downregulated in *icu11-5* and *cp2-1*, and only eight genes were
278 upregulated in both *icu11-5* and *cp2-1*. We also found that 78% and 58% of the genes
279 upregulated and downregulated in *icu11-5*, respectively, are coregulated in the *icu11-5 cp2-1*
280 double mutant (Figure 3A, D).

281 We conducted comparative analyses of the published transcriptomic profiles of mutants
282 carrying mutant alleles of genes encoding PRC2 core components or accessory proteins,
283 which exhibit morphological phenotypes ranging from wild type to callus-like, as is the case for
284 *clf-29 swn-21* (Wang et al., 2016; Yang et al., 2013). The *trb1-2 trb2-1 trb3-2* triple mutant
285 exhibits an embryonic flower phenotype (Zhou et al., 2018); we determined that 56% of the
286 411 upregulated genes and 40% of the 31 downregulated genes in *icu11-5* are similarly
287 upregulated or downregulated in *trb1-2 trb2-1 trb3-2* (Figure 3B, E). The morphological
288 phenotypes of *trb1-2 trb2-1 trb3-2*, *emf2-3*, and *icu11-5 cp2-1* are similar, and their
289 transcriptomic profiles included 530 and 275 genes that are similarly upregulated or
290 downregulated, respectively. Only 548 (17%) and 337 (19%) genes were exclusively
291 upregulated and downregulated, respectively, in *icu11-5 cp2-1* but not in *emf2-3*, *clf29 swn-21*,
292 or *trb1-2 trb2-1 trb3-2* (Figure 3C, F).

293 Hierarchical clustering of the *icu11-5* and *icu11-5 cp2-1* transcriptomic profiles and
294 those of mutants affected in genes encoding PRC2 core components and accessory
295 components, as well as PRC1 core components, revealed that *icu11-5 cp2-1* showed a high
296 transcriptomic similarity to *emf2-3*, and to a lesser extent with *trb1-2 trb2-1 trb3-2*. The *icu11-5*
297 mutant clustered with the mutants affected in PcG genes with milder morphological
298 phenotypes, such as *clf-29* (Figure 3G).

299 To ascertain which set of the genes misregulated in *icu11-5 cp2-1* contributes to its
300 embryonic flower phenotype, we performed k-clustering with the 3500 most variably expressed

301 genes and a k value of 7 (Figure 3H). Clusters 2, 3, and 4 harbored 453, 762, and 162 genes,
302 respectively, for which the Col-0 inflorescence presented significantly different expression
303 levels compared to the remaining samples. Cluster 2 genes were repressed in Col-0
304 inflorescences, suggesting that these genes are important for vegetative development. On the
305 contrary, 924 genes from clusters 3 and 4 were highly expressed in Col-0 inflorescences,
306 suggesting a role in reproductive development instead. We identified 817 genes from cluster
307 1 (downregulated) and 556 genes from cluster 7 (upregulated) as being coregulated in the
308 *icu11-5 cp2-1* and *emf2-3* embryonic flowers and Col-0 inflorescences in comparison to Col-0
309 seedlings. Moreover, cluster 5 contained 610 genes that are highly expressed in *icu11-5 cp2-1*
310 and *emf2-3* but not in the remaining samples (Figure 3H). The embryonic flower phenotype
311 of *icu11-5 cp2-1* and *emf2-3* is therefore likely to be a direct consequence of the misregulation
312 of genes composing clusters 1, 5, and 7. Cluster 6 comprised 140 genes that are
313 downregulated in Col-0 and *cp2-1* seedlings, moderately downregulated in *icu11-5* seedlings,
314 and upregulated in *icu11-5 cp2-1* and *emf2-3* embryonic flowers, as well as in Col-0
315 inflorescences (Figure 3H).

316 GO and protein domain enrichment analyses of each k-cluster revealed that the
317 categories enriched in cluster 5 are related to responses to different stimuli, regulation of
318 metabolic processes, and regulation of transcription, being mainly represented by WRKY,
319 NAC, and the Ethylene Responsive Factor (ERF) transcription factors. In cluster 6, only the
320 positive regulation of transcription mediated by RNA polymerase II category was enriched,
321 represented by 10 MADS-box genes (Supplemental Data Set 8B). In cluster 1, we observed
322 enrichment in processes related to photosynthesis, while cluster 7 included more enriched
323 categories related to responses to biotic and abiotic stresses. In conclusion, our RNA-seq
324 analyses provide evidence of the substantial alteration of transcript levels in the *icu11-5 cp2-1*
325 double mutant compared to the profiles of the *icu11-5* and *cp2-1* single mutants. Additionally,
326 the transcriptomic profile of *icu11-5 cp2-1* resembles that of mutants affected in genes
327 encoding the PRC2 core components and accessory proteins, in particular the *emf2-3* mutant.
328 Finally, some of the misregulated genes (clusters 1 and 7) in the *icu11-5 cp2-1* embryonic
329 flowers are expressed as they are in the wild-type reproductive organs of Col-0 inflorescences.
330

331 **Genes misregulated in the *icu11-5 cp2-1* double mutant are enriched in PRC2 targets 332 and genes marked with H3K27me3**

333 A previous report suggested that ICU11 is a H3K36me3 demethylase, based on the substantial
334 decrease of the H3K27me3 repressive mark seen in the *icu11-3* mutant (Bloomer et al., 2020).
335 We performed a comparative analysis of the genes misregulated in *icu11-5*, *icu11-5 cp2-1*,
336 and *emf2-3* with genes known to be marked by H3K27me3, H2AK121ub, and H3K36me3 in
337 Col-0 by chromatin immunoprecipitation (ChIP)-seq published data, which are deposited by

338 PRC2, PRC1 and SET DOMAIN-CONTAINING GROUP 8 (SDG8), respectively (Li et al.,
339 2015; Merini et al., 2017; Sanders et al., 2017; Yang et al., 2014; Zhou et al., 2017). We
340 determined that the genes marked with H3K27me3 and H2AK121ub in Col-0 are significantly
341 overrepresented among the DEGs of *icu11-5*, *icu11-5 cp2-1*, and *emf2-3*; genes marked with
342 H3K36me3 in Col-0 were underrepresented among the DEGs of these mutants (Figure 4A and
343 Supplemental Table S3). Genes individually targeted by the TRB1, EMF1, and LHP1
344 accessory proteins of PRC2 and by both CLF and SWN (Kim et al., 2012; Shu et al., 2019;
345 Veluchamy et al., 2016; Zhou et al., 2018) were significantly enriched among the genes
346 misregulated in *icu11-5*, *icu11-5 cp2-1*, and *emf2-3*. The TRB1 targets, however, were
347 underrepresented among the downregulated genes in *icu11-5* and *icu11-5 cp2-1*. Taken
348 together, these data suggest that most genes misregulated in the *icu11-5 cp2-1* double mutant
349 are direct targets of PRC2 or its accessory proteins.

350 **DISCUSSION**

351 **The TAP- and BiFC-based protein-protein interaction profiles of ICU11 and CP2 partially**
352 **overlap, pointing to their roles as PRC2 accessory proteins**

353 We previously showed that *ICU11* and *CP2* are close paralogs whose encoded proteins
354 behave as components of the epigenetic machinery of *Arabidopsis*, which display unequal
355 functional redundancy (Mateo-Bonmatí et al., 2018; Nadi et al., 2023). A co-IP analysis
356 indicated that *ICU11* is a PRC2 accessory protein (Bloomer et al., 2020). Very recently, both
357 *ICU11* and *CP2* were shown by co-IP followed by mass spectrometry to interact with the PRC2
358 accessory proteins *TRB1*, *TRB2* and *TRB3*, although this result was not discussed by the
359 authors (Wang et al., 2023).

360 Here, we aimed to define the *ICU11* and *CP2* interactomes and their potential overlap
361 in order to ascertain their epigenetic activities. We confirmed the physical interactions between
362 *ICU11* and the core components and accessory proteins of PRC2, through experimental
363 approaches that are complementary to co-IP: TAP-based screens, and heterologous BiFC-
364 based assays. Through these techniques, we also provide evidence that *CP2* is likely to play
365 a role as a PRC2 accessory protein, as *ICU11* appears to do.

366 Our TAP-based screens revealed different protein-protein interaction profiles for *ICU11*
367 and *CP2*, despite their unequal functional redundancy; however, in our BiFC assays, *ICU11*
368 and *CP2* showed similar *in vivo* interaction profiles. Other examples of partially or completely
369 divergent results obtained from different methods of studying protein-protein interactions have
370 been published for *Arabidopsis*. One of these examples is given by the pentatricopeptide
371 repeat proteins SLOW GROWTH 2 (*SLO2*) and MITOCHONDRIAL EDITING FACTOR 57
372 (*MEF57*), which appeared to interact in mitochondria based on a BiFC assay, but did not
373 interact using co-IP assays (Andrés-Colás et al., 2017). The *Arabidopsis* circadian clock
374 regulators SPINDLY (*SPY*) and PSEUDO-RESPONSE REGULATOR 5 (*PRR5*) interacted in
375 co-IP followed by mass spectrometry, as well as in co-IP followed by the identification of
376 interactors by Western Blot and BiFC assays, but not in yeast two-hybrid (Y2H) assays; in
377 addition interaction between *SPY* and GIGANTEA (*GI*) was detected using Y2H but not by co-
378 IP either followed by mass spectrometry or Western Blot (Wang et al., 2020).

379 Our results indicate that *CP2* can bind to *TRBs* and other proteins related to PRC2, and
380 suggest that *CP2* has the potential to bind to *ICU11* interactors with less affinity than *ICU11*.
381 A similar observation has been made in budding yeast (*Saccharomyces cerevisiae*), in a
382 protein fragment complementation assay that was performed for 56 pairs of redundant
383 paralogs. For 22 such pairs, one paralog had weaker detectable interactions than the other
384 because of lower abundance or affinity; when the latter was lost, the former compensated for
385 its function by binding to the same partners (Diss et al., 2017). It is of note that for
386 compensating pairs, there was no detectable change in the level of expression of the functional

387 paralog when the other was deleted. The same appears to hold for *CP2* in an *icu11*
388 background, as *CP2* is not upregulated in the *icu11-5* mutant (this work) or in *icu11-1* (Mateo-
389 Bonmatí et al., 2018). Another example is provided in human T cells by the retinoblastoma-
390 associated protein p130, which binds to EARLY 2 FACTOR (E2F) transcription factors to
391 control cell proliferation by gene repression. When p130 is depleted, its paralogous p107 gains
392 new interactions with E2F proteins to compensate for the absence of p130 (Mulligan et al.,
393 1998).

394

395 **In addition to their morphological phenotypes, the molecular phenotypes of the *icu11-*
396 *5 cp2-1* and *emf2-3* embryonic flowers are similar**

397 Our RNA-seq analyses revealed that about 21% of *Arabidopsis* genes were significantly
398 misregulated in the *icu11-5 cp2-1* lethal embryonic flowers. Alongside its synergistic
399 morphological phenotype, the *icu11-5 cp2-1* double mutant also had six times more
400 misregulated genes than the *icu11-5* single mutant, overlapping to a large extent with
401 misregulated genes in mutants affected in the *PcG* genes with strongly aberrant phenotypes,
402 such as the *emf2-3* embryonic flowers and the *clf-29 swn-21* callus-like seedlings (Wang et
403 al., 2016). Like in the *emf1* and *emf2* single mutants, in which many genes related to
404 photosynthesis are repressed (Moon et al., 2003), *ICU11* and *CP2* appear to be involved in
405 the positive regulation of photosynthesis, photosystem II assembly, the response to light
406 stimulus, and auxin biosynthesis and signaling. Except for the latter, the downregulation of
407 these genes in *icu11-5 cp2-1* and *emf2-3* embryonic flowers is also shown in wild-type *Col-0*
408 inflorescences (Kim et al., 2010; Moon et al., 2003).

409 During vegetative growth, *ICU11* and/or *CP2* seem to negatively regulate hundreds of
410 genes to ensure the proper repression of genes that induce flowering, the formation of flower
411 organs, the response to phytohormones, and abiotic stress. Genes encoding homeobox,
412 MADS-box, and MYB, AP2/ERF and NAM/NAC domain transcription factors were enriched
413 among the *icu11-5 cp2-1* upregulated DEGs. These genes were also highly expressed in *Col-*
414 0 inflorescence meristems, where they play a crucial role in floral meristem development
415 (Jofuku et al., 1994; Zhang et al., 2014; Zhang et al., 2009). Our k-mean clustering analysis of
416 the most differentially regulated genes allowed the identification of a set of 1573 genes
417 (clusters 1, 6, and 7 in Figure 3) that are expressed similarly in the *icu11-5 cp2-1* and *emf2-3*
418 embryonic flowers and *Col-0* inflorescences. Another set encompassed 1377 genes (clusters
419 2, 3, and 4) that are exclusively differentially expressed in *Col-0* inflorescences. Finally, a set
420 of 610 genes (cluster 5) comprised those highly upregulated only in *icu11-5 cp2-1* and *emf2-3*,
421 and slightly upregulated in the *icu11-5* single mutant seedlings. This last set of genes was
422 characterized by GO enrichment related to the responses to chemicals, oxygen-containing
423 compounds, drugs, chitin and inorganic substances and stimuli, the regulation of metabolic

424 and biosynthetic processes, with 54 genes involved in regulation of transcription. Our results
425 explain the embryonic flower phenotypes of *icu11-5 cp2-1* and *emf2-3*, given that there are
426 696 and 817 common up- and down-regulated genes with the wild-type inflorescence,
427 respectively (clusters 1, 6, and 7), but also their failure to form a proper inflorescence, as
428 expected from the 1377 genes that behave differently in the Col-0 inflorescences (clusters 2,
429 3, and 5). In conclusion, the similarity of not only the morphological but also the molecular
430 phenotypes of *icu11-5 cp2-1* and *emf2-3* provides further support for the hypothesis that both
431 ICU11 and CP2 are PRC2 accessory proteins.

432

433 **Our interactomic and transcriptomic data suggest that CP2 can replace ICU11**

434 Bloomer et al. (2020) proposed that ICU11 is a H3K36me3 demethylase. The depletion of a
435 protein involved in the removal of an activating mark is expected to yield predominantly
436 upregulated genes, which is in line with the pattern of misregulation detected here. This pattern
437 has also been observed for lack-of-function alleles of the *JMJ17* and *JMJ14* genes, whose
438 encoded proteins remove the H3K4me1/2/3 activating marks (Huang et al., 2019; Ning et al.,
439 2015). The H3K36me3 mark antagonizes the deposition of H3K27me3 by PRC2 (Yang et al.,
440 2014), which may explain the requirement of ICU11 for the deposition of the latter mark at the
441 *FLC* locus by PRC2 during vernalization (Bloomer et al., 2020). It is therefore reasonable to
442 assume that the transcriptomic profile of *icu11-5 cp2-1* is similar to that of a strong PcG mutant,
443 such as *emf2-3*, because PRC2 cannot deposit H3K27me3 when the H3K36me3 mark cannot
444 be removed.

445 Our comparison of the transcriptional misregulation of *icu11-5*, *icu11-5 cp2-1* and
446 *emf2-3* with published ChIP-seq data reveals that genes marked by H3K27me3 and
447 H2AK121ub or targeted by PRC2 core components and accessory proteins are
448 overrepresented among the genes misregulated in these three mutants; the morphological and
449 transcriptomic alterations observed for these genotypes are likely to be due to defective PRC2
450 repression on a substantial set of genes. If ICU11 and CP2 targets are not marked with
451 H3K36me3 in Col-0, this would explain the underrepresentation of H3K36me3 marked genes
452 among the differentially expressed genes in *icu11-5* and *icu11-5 cp2-1*.

453 We propose that ICU11 interacts with PRC2 core and accessory proteins, some of
454 which recruit ICU11 to their target genes, so ICU11 can demethylate H3K36me3 and PRC2
455 can deposit H3K27me3 afterwards (Figure 5A). In the *icu11* mutants, although CP2 has less
456 affinity for PRC2 core and accessory proteins, it can substitute ICU11 and demethylate
457 H3K36me3 (Figure 5B). In the *icu11-5 cp2-1* double mutant, the H3K36me3 mark cannot be
458 removed, leading to an impairment of PRC2 repression, resulting in the characteristic
459 embryonic flower phenotype (Figure 5C). Since this does not explain the wild-type function of
460 CP2, further research will be required to assess the specific function of CP2.

461

462 **TRB and NAC proteins may recruit both ICU11 and CP2**

463 ICU11 was previously described as a putative H3K36me3 demethylase, required for the
464 removal of H3K36me3 during vernalization to allow the deposition of H3K27me3 (Bloomer et
465 al., 2020). The interaction of both ICU11 and CP2 with TRB1, TRB2, and TRB3 suggests that
466 these TRB proteins may recruit ICU11 and CP2 to their chromatin targets (Zhou et al., 2018).
467 This hypothesis is reinforced by the similar embryonic flower phenotypes and transcriptomic
468 profiles of the *icu11 cp2* double mutants and the *trb1-2 trb2-1 trb3-2* triple mutant.

469 The *Arabidopsis* genome encodes 21 2OGD proteins of the JMJ class, some of which
470 are known to be involved in histone demethylation (Lu et al., 2008; Nadi et al., 2018). The
471 H3K4 demethylase JMJ14 interacts with the NAC050 and NAC052 transcription factors
472 through its phenylalanine/tyrosine-rich C-terminal (FYRC) domain, and plays an essential role
473 in controlling flowering time (Ning et al., 2015). Here, we showed that ICU11 and CP2 also
474 interact with NAC050 and NAC052, even though unlike JMJ14, ICU11 and CP2 do not have
475 FYRC or FYRN domains. It is of note that neither NAC050 nor NAC052 were identified as
476 ICU11 interactors by Bloomer et al. (2020), although JMJ14 was. NAC050 and/or NAC052
477 might recruit ICU11 and CP2 to their targets.

478 We also found three paralogous nuclear proteins that were not previously described as
479 ICU11 interactors: At5g66000, At3g17460 and AT4G35510. At3g17460 and At4g35510 have
480 a PHD domain. Bloomer et al. (2020) showed that the protein encoded by At5g66000 interacts
481 with ICU11, EMF1 and CLF, that At3g17460 interacts with ICU11 and that At4g35510
482 interacts with CLF. We also showed that CP2 interacts with DRMY1 and DP1. Given that both
483 ICU11 and CP2 lack any known DNA- or chromatin-binding domain, our results indicate they
484 interact with proteins that may mediate their interaction with DNA or chromatin. Taken together,
485 our interactome and transcriptome data confirm that ICU11 is a PRC2 accessory protein, and
486 strongly suggest that CP2 also does this role for the correct deposition of H3K27me3 by PRC2.

487 **METHODS**

488 **Plant materials, culture conditions, and crosses**

489 The Nottingham Arabidopsis Stock Center (NASC) provided seeds for the wild-type
490 *Arabidopsis thaliana* (L.) Heynh. accession Columbia-0 (Col-0, N1092), and the mutants *cp2-*
491 *1* (N861581, in the Col-0 genetic background) and *emf2-3* (N16240, in Col-0). The *icu11-5* (in
492 Col-0) single mutant was obtained using CRISPR/Cas9 mutagenesis and was described
493 previously by Nadi et al. (2023). The presence and position of all mutations were confirmed by
494 PCR amplification using gene-specific primers and, if required, Sanger sequencing
495 (Supplemental Table S4).

496 Unless otherwise stated, plants were grown under sterile conditions in 150-mm Petri
497 plates containing 100 ml half-strength Murashige and Skoog (MS) agar medium with 1% (w/v)
498 sucrose at 20°C ± 1°C, 60–70% relative humidity, and continuous illumination at ~75 μmol m⁻² s⁻¹, as previously described (Ponce et al., 1998). The crosses were performed as previously
499 described (Quesada et al., 2000). Unless otherwise stated, all plants studied in this work were
500 homozygous for the indicated mutations.

502

503 **Gene constructs**

504 All inserts were PCR amplified using Phusion High Fidelity Polymerase (Thermo Fisher
505 Scientific, Waltham, MA, USA), primers containing *attB* sites at their 5' ends (Supplemental
506 Table S4), and Col-0 complementary DNA (cDNA) as a template. The PCR products were
507 purified using an Illustra GFX PCR and Gel Band Purification Kit (Cytiva, Marlborough, MA,
508 USA) and then cloned into the pGEM-T Easy221 vector and transferred to *Escherichia coli*
509 DH5α cells, as previously described (Mateo-Bonmatí et al., 2018).

510

511 **Tandem affinity purification assays**

512 To obtain the GSRhino-TAP-tagged ICU11 or CP2 fusions (Supplemental Table S5), the
513 pGEM-T Easy221 vector harboring the *ICU11* or *CP2* full-length coding sequences without
514 their stop codons, together with the vectors pEN-L4-2-R1 and pEN-R2-GSrhinotag-L3, were
515 recombined into the pKCTAP destination vector, as previously described (Van Leene et al.,
516 2015). PSB-D Arabidopsis cell suspension cultures were transformed with *Agrobacterium*
517 *tumefaciens* cells carrying the constructs and the TAP purification of the GSRhino-TAP-tagged
518 ICU11 and CP2 fusions was performed as previously described (García-León et al., 2018; Van
519 Leene et al., 2015). Two independent TAP assays were performed for each fusion protein.
520 Proteins were identified using nano liquid chromatography–mass spectrometry (LC–MS)/MS
521 at the Centro Nacional de Biotecnología (CNB, Madrid). Tandem mass spectra were searched
522 against the Araport11 annotation of the Arabidopsis genome (Cheng et al., 2017) using the
523 MASCOT search engine (Perkins et al., 1999). Experimental background proteins were

524 subtracted based on 40 TAP experiments performed on wild-type cultures and cultures
525 accumulating GSRhino-TAP-tagged GUS, RFP, and GFP fusion proteins (Van Leene et al.,
526 2010).

527

528 **BiFC assays in *Nicotiana benthamiana* leaves and confocal microscopy**

529 To obtain translational fusions for the BiFC assays, the pGEM-T Easy221 vector harboring the
530 full-length *ICU11*, *CP2*, *TRB1*, *TRB2*, *TRB3*, *CLF*, *LHP1*, and *SWN* coding sequences,
531 including their stop codons, were individually recombined with the pSITE-nEYFP-C1 or pSITE-
532 cEYFP-C1 vectors (Martin et al., 2009). The nEYFP-UBP12 and nEYFP-UBP13 constructs
533 were kindly provided by Dr. Claudia Köhler (Max Planck Institute, Postdam, Germany)
534 Derkacheva et al., 2016). The BiFC constructs (Supplemental Table S5) were transformed into
535 Agrobacterium (*Agrobacterium tumefaciens*) strain GV3101 (C58C1 Rif^R) cells, which were the
536 grown in suspension as previously described (Derkacheva et al., 2016; Goodin et al., 2002).
537 Briefly, the cells were grown overnight and resuspended in infiltration medium (10 mM MgCl₂,
538 150 µg/ml acetosyringone, and 10 mM MES-KOH, pH 5.6) to a final optimal density (OD₆₀₀) ≤
539 1. After 3 h at room temperature, the Agrobacterium cell suspension was used to infiltrate the
540 leaf abaxial surface of three- to five-week-old *Nicotiana benthamiana* plants. Leaf tissue
541 samples were water-mounted for confocal visualization 48 h after infiltration.

542 Confocal microscopy was performed with a Nikon D-Eclipse C1 confocal microscope
543 equipped with a Nikon DS-Ri1 camera and processed with the operator software EZ-C1
544 (Nikon, Tokyo, Japan). YFP was excited at 488 nm with an argon ion laser, and the emission
545 signal was collected between 520 nm and 582 nm. The nuclei of the infiltrated leaves were
546 stained with a 0.2 µg ml⁻¹ 4',6-diamidino-2-phenylindole (DAPI) solution (Sony Biotechnology,
547 San José, CA, USA). DAPI was excited at 408 nm with a diode laser, and detected with a
548 450/35 nm filter.

549

550 **RNA-seq analyses**

551 Total RNA was isolated from 100 mg of pooled aerial tissues from Col-0, *icu11-5*, *cp2-1*, *icu11-*
552 *5* *cp2-1*, or *emf2-3* seedlings, collected 10 das, and Col-0 inflorescences, collected 40 das,
553 using TRIzol (Thermo Fisher Scientific). The RNA quality of the samples was checked with a
554 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and its RNA integrity number
555 (RIN) was always ≥ 6.8. More than 10 µg of RNA per sample was sent to Novogene
556 (Cambridge, UK) for library preparation and massive sequencing on an Illumina Novaseq 6000
557 (Illumina, San Diego, CA, USA).

558 Raw reads were pre-processed using fastp (v.0.21.0; Chen et al., 2018) with default
559 parameters for read trimming, adapter removal, and low-quality read filtering. Pre-processed
560 reads were then aligned to the TAIR10 reference genome (Lamesch et al., 2012) using HISAT2

561 (v.2.2.0; Kim et al., 2019), with argument “—dta-cufflinks” for downstream compatibility
562 (Supplemental Table S6). Cufflinks (v.2.2.1; Trapnell et al., 2012) was then used for transcript
563 assembly using the TAIR10 structural annotation for reference, and transcripts were quantified
564 with htseq-count to generate read count files (v.0.11.5; Anders et al., 2015). Read counts were
565 normalized with DESeq2 (v.1.30.0; Love et al., 2014), which was then used to detect DEGs)
566 between the sample and control pairs using the combined criteria $|\log_2\text{fold-change}| > 1$ and
567 $p.\text{adj}$ value < 0.05 . Volcano plots were obtained with the volcano plot tool of Galaxy
568 (www.usegalaxy.org; The Galaxy Community, 2022). For principal component analysis we
569 used NetworAnalyst tool (Zhou et al., 2019).

570 Both GO and Protein Domain enrichment analyses of the DEGs were performed using
571 DAVID Bioinformatics tool (v.6.8; Huang da et al., 2009) with default parameters. Heatmaps
572 were obtained using the heatmap.2 function from the gplots R package (v.20 3.0.1) using a
573 total of 11116 genes that were misregulated in at least one of the genotypes under study.
574 Additional RNA-seq data were downloaded from the Gene Expression Omnibus
575 (<https://www.ncbi.nlm.nih.gov/geo/>) under accession number SRP056594 and from the
576 European Nucleotide Archive (<https://www.ebi.ac.uk/ena/browser/>) under accession numbers
577 ERP022017 and ERP009986. A principal component analysis and k-means clustering was
578 performed using normalized counts on the iDEP 9.1 web 133 application (Ge et al., 2018).
579 ChIP-seq data for cross analysis with RNA-seq were obtained from work published by Kim et
580 al. (2012), Li et al. (2015), Merini and Calonje (2015), Sanders et al. (2017), Shu et al. (2019),
581 Veluchamy et al. (2016), Zhou et al. (2017), and Zhou et al. (2018).

582

583 **RNA isolation, cDNA synthesis, and qPCR**

584 For the RT-qPCR, three biological replicates of seedling aerial tissues were collected 10 das
585 and immediately frozen in liquid nitrogen. Total RNA was extracted using TRIzol (Thermo
586 Fisher Scientific). The removal of contaminating DNA, cDNA synthesis, and qPCR were
587 performed as previously described (Mateo-Bonmatí et al., 2018). Each reaction was performed
588 in triplicate and the relative quantification of gene expression was performed using the $2^{-\Delta\Delta CT}$
589 method (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008) with the *ACTIN2* gene
590 (At3g18780) as a control. All PCR reactions were performed on an Applied Biosystems Step
591 One Plus System (Thermo Fisher Scientific). All PCR primers are listed in Supplemental Table
592 S4; for the mean ΔCT statistical comparisons, a Mann-Whitney *U* test was performed.

593

594 **Accession numbers**

595 Sequence data from this article can be found at The Arabidopsis Information Resource
596 (<http://www.arabidopsis.org>) under the following accession numbers: *ICU11* (At1g22950), *CP2*
597 (At3g18210), *EMF2* (AT5G51230), *SWN* (AT4g02020), *CLF* (AT2g23380), *TFL2/LHP1*

598 (At5g17690), AG (At4g18960), *SHP2* (AT2g42830), *STK* (AT4g09960), *EARLI1* (AT4g12480),
599 *PRN1* (AT3g59220), *RNS1* (AT2g02990), *TRB1* (AT1g49950), *TRB2* (AT5g67580), *TRB3*
600 (AT3g49850), *TRB4* (AT1g17520), and *TRB5* (AT1g72740). The raw RNA-seq data were
601 deposited in the Sequence Read Archive (SRA, <https://www.ncbi.nlm.nih.gov/sra>) database
602 under the following accession number: PRJNA1081349.

603 **AUTHOR CONTRIBUTIONS**

604 J.L.M. conceived and supervised the study, provided resources, and obtained funding. R.N.,
605 L.J.-V., and J.L.M. designed the methodology. R.N., L.J.-V., S.D.L, Y.F., and V.R. performed
606 the research. R.N., L.J.-V. and J.L.M. wrote the original draft. All authors reviewed and edited
607 the manuscript.

608

609 **ACKNOWLEDGMENTS**

610 The authors wish to thank C. Köhler and I. Fudal for providing constructs, M.R. Ponce and E.
611 Mateo-Bonmatí for critical reading of the manuscript, J.M. Serrano and J. Castelló for their
612 excellent technical assistance, and S. Vivo and C. Torralbo for their help in BiFC assays.
613 Research in the laboratory of J.L.M. was supported by grants from the Ministerio de Ciencia e
614 Innovación of Spain (PGC2018-093445-B-I00 and PID2021-127725NB-I00 [MCI/AEI/FEDER,
615 UE]) and the Generalitat Valenciana (CIPROM/2022/2). R.N. and L.J.-V. held predoctoral
616 fellowships from the Generalitat Valenciana (GRISOLIAP/2016/131) and the Ministerio de
617 Universidades of Spain (FPU16/03772), respectively.

618

619 **COMPETING INTERESTS**

620 The authors declare no competing interests.

621 **FIGURE LEGENDS**

622 **Figure 1.** *In vivo* interactions of ICU11 and CP2 with proteins with known epigenetic roles.
623 Bimolecular fluorescence complementation assays showing interaction between the indicated
624 proteins. Individual nuclei of *Nicotiana benthamiana* leaves co-infiltrated with the constructs
625 *nEYFP-ICU11* or *nEYFP-CP2* with *cEYFP-CLF*, *cEYFP-LHP1*, *cEYFP-TRB1*, or *cEYFP-*
626 *TRB3*. Fluorescent signals correspond to EYFP (A, D, G, J, M, P, S, V, Y, AB), DAPI (B, E, H,
627 K, N, Q, T, W, Z, AC), and their overlay (C, F, I, L, O, R, U, X, AA, AD). Scale bars, 5 μ m.
628

629 **Figure 2.** Transcriptomic profiling of *icu11-5 cp2-1* and *emf2-3* embryonic flowers. (A–E)
630 Volcano plots representing differentially expressed genes (DEGs) in *cp2-1* (A) and *icu11-5* (B)
631 seedlings; *icu11-5 cp2-1* (C) and *emf2-3* (D) embryonic flowers; and Col-0 (E) inflorescences,
632 all compared to Col-0 seedlings. Blue and red dots indicate significantly downregulated and
633 upregulated genes, respectively, with a Benjamini and Hochberg corrected *p*-value < 0.05.
634 Total RNA was extracted from three biological samples collected 10 (A–D) or 40 (E) das. (F)
635 Principal component analysis of the transcriptomic profiles showing three clusters: (1) Col-0,
636 *cp2-1*, and *icu11-5* seedlings; (2) *icu11-5 cp2-1*, and *emf2-3* embryonic flowers; and (3) Col-0
637 inflorescences. Each dot represents a biological replicate. (G) Scatterplot showing the positive
638 correlation between the relative expression levels of DEGs of the *icu11-5 cp2-1* double mutant
639 and those of the *emf2-3* single mutant, both relative to Col-0 seedlings. Log₂ values ranging
640 from –1.5 to 1.5 were not plotted. The best-fit line is shown as a red dashed line, and the *R*²
641 value is indicated.
642

643 **Figure 3.** Comparison of differential expression in the *icu11-5 cp2-1* double mutant and in
644 mutants lacking function of PRC2 core components or accessory proteins. (A–F) Venn
645 diagrams showing the overlap between upregulated (A–C) and downregulated (D–F) genes in
646 *cp2-1* and *icu11-5* seedlings and *icu11-5 cp2-1* embryonic flowers (A, D), *icu11-5* seedlings
647 and *trb1 trb2 trb3* embryonic flowers (B, E), and *icu11-5 cp2-1*, *emf2-3* and *trb1 trb2 trb3*
648 embryonic flowers and *clf-29 swn-21* callus-like seedlings (C, F). The abbreviations *trb1*, *trb2*,
649 *trb3*, and *lhp1* stand for the alleles *trb1-2*, *trb2-1*, *trb3-2*, and *lhp1-4*, respectively. (G) Heatmap
650 showing the normalized log₂ fold-change of genes misregulated in the plants studied. Genes
651 represented in red and blue are upregulated and downregulated, respectively. (H) k-means
652 transcriptional clustering of the genotypes under study. Seven clusters and normalized read
653 counts of the 3500 most variable genes were used. N is the number of genes per cluster. The
654 color scale indicates the range of normalized log₂ fold-change of the 3500 genes.
655

656 **Figure 4.** Integrated comparison of the chromatin immunoprecipitation-seq data and
657 transcriptomic profiles in *icu11-5*, *icu11-5 cp2-1*, and *emf2-3* and lists of genome-wide histone

658 mark distributions or protein targets in Col-0. (A) Overlapping fraction of upregulated and
659 downregulated genes in the indicated mutants with genes marked by H3K27me3, H2AK121ub,
660 and H36K36me3 in Col-0. (B) Overlapping fraction of upregulated and downregulated genes
661 in the indicated mutants with genes bound by the TRB1, EMF1, LHP1, CLF, and SWN proteins
662 in Col-0. Numbers indicate the enrichment factor of overlapping fractions [(number of common
663 genes × number of total Arabidopsis genes)/(number of genes in list 1 × number of genes in
664 list 2)], where enrichment factors > 1 or < 1 indicate more or less overlap than expected
665 between the two independent gene lists, respectively. Asterisks indicate a significant overlap
666 between the RNA-seq and ChIP-seq lists in a Fisher's exact test (* $P < 0.05$ and ** $P < 0.01$).
667

668 **Figure 5.** Model of the molecular role of ICU11 and CP2 and the effects of their depletion on
669 transcription and phenotype in Arabidopsis. (A) In the wild-type Col-0, ICU11 may bind to the
670 TRB1, TRB2, and TRB3 accessory proteins of PRC2, which recruit ICU11 to its target loci to
671 remove the H3K36me3 activation mark. This enables PRC2 to deposit the repressive mark
672 H3K27me3, leading to the repression of flower development genes, senescence inducers, and
673 photosynthesis repressor genes, promoting proper vegetative development. (B) In the *icu11-5*
674 mutant, CP2 can only partially compensate for the absence of ICU11 because of its lower
675 affinity for TRB proteins and its less efficient removal of H3K36me3, decreasing the PRC2
676 repressive capacity, which results in an early flowering phenotype. (C) In the *icu11-5 cp2-1*
677 double mutant, the presence of H3K36me3 at the target loci of ICU11 and CP2 impedes the
678 deposition of H3K27me3, leading to an upregulation of floral and senescence inducers and
679 photosynthetic repressors, resulting in the embryonic flower phenotype. **X**: full or partial
680 depletion of a protein. **green L**: H3K36me3 removal. **pink S**: H3K27me3 deposition. **black L**: inhibition of PRC2-
681 mediated H3K27me3 deposition. **green ↑**: transcriptional activation. **pink ↓**: transcriptional repression.
682 Scale bars indicate 2 mm.

683 **Supplemental material**

684 Supplemental Figure S1. Diagram of the protein-protein interactions of ICU11 and CP2
685 detected in tandem affinity purification (TAP)-based screens.

686 Supplemental Figure S2. Peptides from TRB proteins identified using Liquid Chromatography
687 Electrospray Ionization and Tandem Mass Spectrometry (LC-ESI-MS/MS) in ICU11 and
688 CP2 TAP-based screens.

689 Supplemental Figure S3. Controls used for the Bimolecular Fluorescence Complementation
690 (BiFC) assays.

691 Supplemental Figure S4. Validation by reverse transcription-quantitative PCR (RT-qPCR) of
692 some of the genes found to be upregulated in our RNA-seq analyses.

693 Supplemental Table S1. Selected ICU11 and CP2 interactors identified in TAP-based screens.

694 Supplemental Table S2. Number of differentially expressed genes in *cp2-1* and *icu11-5*
695 seedlings, *icu11-5 cp2-1* and *emf2-3* embryonic flowers, and Col-0 inflorescences,
696 compared to the Col-0 seedlings.

697 Supplemental Table S3. Enrichment of overlapping fractions of chromatin immunoprecipitation
698 (ChIP)-seq and transcriptomic profiles and their statistical significance.

699 Supplemental Table S4. Primer sets used in this work.

700 Supplemental Table S5. TAP and BiFC constructs.

701 Supplemental Table S6. Quality control summary of the RNA-seq analyses

702 Supplemental Data Set DS1. Protein identification in ICU11 and CP2 TAP-based screens.

703 Supplemental Data Set DS2. Differentially expressed genes in the RNA-seq analyses of *icu11-5*
704 and *cp2-1* seedlings, *icu11-5 cp2-1* and *emf2-3* embryonic flowers, and Col-0
705 inflorescences.

706 Supplemental Data Set DS3. Protein domains and biological process gene ontology terms
707 enriched among genes deregulated in *icu11-5* seedlings.

708 Supplemental Data Set DS4. Protein domains and biological process gene ontology terms
709 enriched among genes deregulated in *cp2-1* seedlings.

710 Supplemental Data Set DS5. Protein domains and biological process gene ontology terms
711 enriched among genes deregulated in *icu11-5 cp2-1* embryonic flowers.

712 Supplemental Data Set DS6. Protein domains and biological process gene ontology terms
713 enriched among genes deregulated in *emf2-3* embryonic flowers.

714 Supplemental Data Set DS7. Protein domains and biological process gene ontology terms
715 enriched among genes deregulated in Col-0 inflorescences.

716 Supplemental Data Set DS8. Biological process gene ontology enrichment analysis from k-
717 means gene clustering.

718

719

720 **REFERENCES**

721 Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ
722 separation in *Arabidopsis*: an analysis of the *cup-shaped cotyledon* mutant. *Plant Cell*
723 9:841-857.

724 Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de
725 Pouplana, L., Martínez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box
726 gene duplication occurred before the divergence of plants and animals. *Proc. Natl. Acad.*
727 *Sci. USA* 97:5328-5333.

728 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq—a Python framework to work with high-
729 throughput sequencing data. *Bioinformatics* 31:166-169.

730 Andrés-Colás, N., Zhu, Q., Takenaka, M., De Rybel, B., Weijers, D., and Van Der Straeten, D.
731 (2017). Multiple PPR protein interactions are involved in the RNA editing system in
732 *Arabidopsis* mitochondria and plastids. *Proc. Natl. Acad. Sci. USA* 114:8883-8888.

733 Aubert, D., Chen, L., Moon, Y.H., Martin, D., Castle, L.A., Yang, C.H., and Sung, Z.R. (2001).
734 EMF1, a novel protein involved in the control of shoot architecture and flowering in
735 *Arabidopsis*. *Plant Cell* 13:1865-1875.

736 Bloomer, R.H., Hutchison, C.E., Bäurle, I., Walker, J., Fang, X., Perera, P., Velanis, C.N.,
737 Gümüs, S., Spanos, C., Rappsilber, J., et al. (2020). The *Arabidopsis* epigenetic regulator
738 ICU11 as an accessory protein of Polycomb Repressive Complex 2. *Proc. Natl. Acad. Sci.*
739 *USA* 117:16660-16666.

740 Bouyer, D., Roudier, F., Heese, M., Andersen, E.D., Gey, D., Nowack, M.K., Goodrich, J.,
741 Renou, J.P., Grini, P.E., Colot, V., et al. (2011). Polycomb repressive complex 2 controls
742 the embryo-to-seedling phase transition. *PLOS Genet.* 7:e1002014.

743 Bratzel, F., López-Torrejón, G., Koch, M., del Pozo, J.C., and Calonje, M. (2010). Keeping cell
744 identity in *Arabidopsis* requires PRC1 RING-finger homologs that catalyze H2A
745 monoubiquitination. *Curr. Biol.* 20:1853-1859.

746 Calonje, M., Sanchez, R., Chen, L., and Sung, Z.R. (2008). EMBRYONIC FLOWER1
747 participates in Polycomb group-mediated AG gene silencing in *Arabidopsis*. *Plant Cell*
748 20:277-291.

749 Chanvivattana, Y., Bishopp, A., Schubert, D., Stock, C., Moon, Y.H., Sung, Z.R., and Goodrich,
750 J. (2004). Interaction of Polycomb-group proteins controlling flowering in *Arabidopsis*.
751 *Development* 131:5263-5276.

752 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ
753 preprocessor. *Bioinformatics* 34:i884-i890.

754 Cheng, C.Y., Krishnakumar, V., Chan, A.P., Thibaud-Nissen, F., Schobel, S., and Town, C.D.
755 (2017). Araport11: a complete reannotation of the *Arabidopsis thaliana* reference genome.
756 *Plant J.* 89:789-804.

757 Derkacheva, M., Liu, S., Figueiredo, D.D., Gentry, M., Mozgova, I., Nanni, P., Tang, M.,
758 Mannervik, M., Köhler, C., and Hennig, L. (2016). H2A deubiquitinases UBP12/13 are part
759 of the *Arabidopsis* polycomb group protein system. *Nat. Plants* 2:e16126.

760 Derkacheva, M., Steinbach, Y., Wildhaber, T., Mozgová, I., Mahrez, W., Nanni, P., Bischof, S.,
761 Gruijsem, W., and Hennig, L. (2013). *Arabidopsis* MSI1 connects LHP1 to PRC2
762 complexes. *EMBO J.* 32:2073-2085.

763 Diss, G., Gagnon-Arsenault, I., Dion-Coté, A.M., Vignaud, H., Ascencio, D.I., Berger, C.M.,
764 and Landry, C.R. (2017). Gene duplication can impart fragility, not robustness, in the yeast
765 protein interaction network. *Science* 355:630-634.

766 Drews, G.N., Bowman, J.L., and Meyerowitz, E.M. (1991). Negative regulation of the
767 *Arabidopsis* homeotic gene *AGAMOUS* by the *APETALA2* product. *Cell* 65:991-1002.

768 Feng, K., Hou, X.L., Xing, G.M., Liu, J.X., Duan, A.Q., Xu, Z.S., Li, M.Y., Zhuang, J., and Xiong,
769 A.S. (2020). Advances in AP2/ERF super-family transcription factors in plant. *Crit. Rev.*
770 *Biotechnol.* 40:750-776.

771 García-León, M., Iniesto, E., and Rubio, V. (2018). Tandem affinity purification of protein
772 complexes from *Arabidopsis* cell cultures. *Methods Mol. Biol.* 1794:297-309.

773 Ge, S.X., Son, E.W., and Yao, R. (2018). iDEP: an integrated web application for differential
774 expression and pathway analysis of RNA-Seq data. *BMC Bioinform.* 19:534.

775 Gendall, A.R., Levy, Y.Y., Wilson, A., and Dean, C. (2001). The *VERNALIZATION 2* gene
776 mediates the epigenetic regulation of vernalization in *Arabidopsis*. *Cell* 107:525-535.

777 Goodin, M.M., Dietzgen, R.G., Schichnes, D., Ruzin, S., and Jackson, A.O. (2002). pGD
778 vectors: versatile tools for the expression of green and red fluorescent protein fusions in
779 agroinfiltrated plant leaves. *Plant J.* 31:375-383.

780 Goodman, H.L., Kroon, J.T.M., Tomé, D.F.A., Hamilton, J.M.U., Alqarni, A.O., and Chivasa, S.
781 (2022). Extracellular ATP targets *Arabidopsis* RIBONUCLEASE 1 to suppress mycotoxin
782 stress-induced cell death. *New Phytol.* 235:1531-1542.

783 Goodrich, J., Puangsomlee, P., Martin, M., Long, D., Meyerowitz, E.M., and Coupland, G.
784 (1997). A Polycomb-group gene regulates homeotic gene expression in *Arabidopsis*. *Nature*
785 386:44-51.

786 Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., and Gagliano, W.B. (1998). Maternal
787 control of embryogenesis by *MEDEA*, a Polycomb group gene in *Arabidopsis*. *Science*
788 280:446-450.

789 Hennig, L., Taranto, P., Walser, M., Schönrock, N., and Gruijsem, W. (2003). *Arabidopsis*
790 MSI1 is required for epigenetic maintenance of reproductive development. *Development*
791 130:2555-2565.

792 Huang da, W., Sherman, B.T., and Lempicki, R.A. (2009). Bioinformatics enrichment tools:
793 paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.*
794 37:1-13.

795 Huang, Y., Jiang, L., Liu, B.Y., Tan, C.F., Chen, D.H., Shen, W.H., and Ruan, Y. (2019).
796 Evolution and conservation of polycomb repressive complex 1 core components and
797 putative associated factors in the green lineage. *BMC Genom.* 20:533.

798 Islam, M.S., Leissing, T.M., Chowdhury, R., Hopkinson, R.J., and Schofield, C.J. (2018). 2-
799 Oxoglutarate-dependent oxygenases. *Annu. Rev. Biochem.* 87:585-620.

800 Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., and Ludwikow, A. (2018). Mitogen-
801 activated protein kinase cascades in plant hormone signaling. *Front. Plant Sci.* 9:1387.

802 Jiao, H., Xie, Y., and Li, Z. (2020). Current understanding of plant Polycomb group proteins
803 and the repressive histone H3 Lysine 27 trimethylation. *Biochem. Soc. Trans.* 48:1697-
804 1706.

805 Jofuku, K.D., den Boer, B.G., Van Montagu, M., and Okamuro, J.K. (1994). Control of
806 Arabidopsis flower and seed development by the homeotic gene *APETALA2*. *Plant Cell*
807 6:1211-1225.

808 Kang, H., Zhang, C., An, Z., Shen, W.H., and Zhu, Y. (2019). AtINO80 and AtARP5 physically
809 interact and play common as well as distinct roles in regulating plant growth and
810 development. *New Phytol.* 223:336-353.

811 Kawai, Y., Ono, E., and Mizutani, M. (2014). Evolution and diversity of the 2-oxoglutarate-
812 dependent dioxygenase superfamily in plants. *Plant J.* 78:328-343.

813 Kerppola, T.K. (2006). Design and implementation of bimolecular fluorescence
814 complementation (BiFC) assays for the visualization of protein interactions in living cells.
815 *Nat. Protoc.* 1:1278-1286.

816 Kim, D., Paggi, J.M., Park, C., Bennett, C., and Salzberg, S.L. (2019). Graph-based genome
817 alignment and genotyping with HISAT2 and HISAT-genotype. *Nat. Biotechnol.* 37:907-915.

818 Kim, S.Y., Lee, J., Eshed-Williams, L., Zilberman, D., and Sung, Z.R. (2012). EMF1 and PRC2
819 cooperate to repress key regulators of Arabidopsis development. *PLOS Genet.*
820 8:e1002512.

821 Kim, S.Y., Zhu, T., and Sung, Z.R. (2010). Epigenetic regulation of gene programs by EMF1
822 and EMF2 in Arabidopsis. *Plant Physiol.* 152:516-528.

823 Klepikova, A.V., Kasianov, A.S., Gerasimov, E.S., Logacheva, M.D., and Penin, A.A. (2016).
824 A high resolution map of the *Arabidopsis thaliana* developmental transcriptome based on
825 RNA-seq profiling. *Plant J.* 88:1058-1070.

826 Köhler, C., Hennig, L., Bouveret, R., Gheyselinck, J., Grossniklaus, U., and Grussem, W.
827 (2003). *Arabidopsis* MSI1 is a component of the MEA/FIE Polycomb group complex and
828 required for seed development. *EMBO J.* 22:4804-4814.

829 Lamesch, P., Berardini, T.Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R.,
830 Dreher, K., Alexander, D.L., Garcia-Hernandez, M., et al. (2012). The *Arabidopsis*
831 Information Resource (TAIR): improved gene annotation and new tools. *Nucleic Acids Res.*
832 40:D1202-D1210.

833 Lee, W.K., and Cho, M.H. (2016). Telomere-binding protein regulates the chromosome ends
834 through the interaction with histone deacetylases in *Arabidopsis thaliana*. *Nucleic Acids*
835 *Res.* 44:4610-4624.

836 Lewis, P.H. (1947). New mutants report. *Drosoph. Inf. Serv.* 21:69.

837 Li, Y., Mukherjee, I., Thum, K.E., Tanurdzic, M., Katari, M.S., Obertello, M., Edwards, M.B.,
838 McCombie, W.R., Martienssen, R.A., and Coruzzi, G.M. (2015). The histone
839 methyltransferase SDG8 mediates the epigenetic modification of light and carbon
840 responsive genes in plants. *Genome Biol.* 16:e79.

841 Liu, H., Yu, X., Li, K., Klejnot, J., Yang, H., Lisiero, D., and Lin, C. (2008). Photoexcited CRY2
842 interacts with CIB1 to regulate transcription and floral initiation in *Arabidopsis*. *Science*
843 322:1535-1539.

844 Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-
845 time quantitative PCR and the $2^{-\Delta\Delta CT}$ method. *Methods* 25:402-408.

846 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
847 dispersion for RNA-seq data with DESeq2. *Genome Biol.* 15:550.

848 Lu, F., Li, G., Cui, X., Liu, C., Wang, X.J., and Cao, X. (2008). Comparative analysis of JmjC
849 domain-containing proteins reveals the potential histone demethylases in *Arabidopsis* and
850 rice. *J. Integr. Plant Biol.* 50:886-896.

851 Luo, M., Bilodeau, P., Koltunow, A., Dennis, E.S., Peacock, W.J., and Chaudhury, A.M. (1999).
852 Genes controlling fertilization-independent seed development in *Arabidopsis thaliana*. *Proc.*
853 *Natl. Acad. Sci. USA* 96:296-301.

854 Martignago, D., Bernardini, B., Polticelli, F., Salvi, D., Cona, A., Angelini, R., and Tavladoraki,
855 P. (2019). The four FAD-dependent histone demethylases of *Arabidopsis* are differently
856 involved in the control of flowering time. *Front. Plant Sci.* 10:e669.

857 Martin, K., Kopperud, K., Chakrabarty, R., Banerjee, R., Brooks, R., and Goodin, M.M. (2009).
858 Transient expression in *Nicotiana benthamiana* fluorescent marker lines provides enhanced
859 definition of protein localization, movement and interactions *in planta*. *Plant J.* 59:150-162.

860 Martinez, S., and Hausinger, R.P. (2015). Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-
861 dependent oxygenases. *J. Biol. Chem.* 290:20702-20711.

862 Mateo-Bonmatí, E., Esteve-Bruna, D., Juan-Vicente, L., Nadi, R., Candela, H., Lozano, F.M.,
863 Ponce, M.R., Pérez-Pérez, J.M., and Micol, J.L. (2018). *INCURVATA11* and
864 *CUPULIFORMIS2* are redundant genes that encode epigenetic machinery components in
865 *Arabidopsis*. *Plant Cell* 30:1596-1616.

866 Megel, C., Hummel, G., Lalande, S., Ubrig, E., Cognat, V., Morelle, G., Salinas-Giegé, T.,
867 Duchêne, A.M., and Maréchal-Drouard, L. (2019). Plant RNases T2, but not Dicer-like
868 proteins, are major players of tRNA-derived fragments biogenesis. *Nucleic Acids Res.*
869 47:941-952.

870 Merini, W., and Calonje, M. (2015). PRC1 is taking the lead in P_cG repression. *Plant J.* 83:110-
871 120.

872 Merini, W., Romero-Campero, F.J., Gomez-Zambrano, A., Zhou, Y., Turck, F., and Calonje,
873 M. (2017). The *Arabidopsis* Polycomb repressive complex 1 (PRC1) components AtBMI1A,
874 B, and C impact gene networks throughout all stages of plant development. *Plant Physiol.*
875 173:627-641.

876 Miura, A., Nakamura, M., Inagaki, S., Kobayashi, A., Saze, H., and Kakutani, T. (2009). An
877 *Arabidopsis* jmjC domain protein protects transcribed genes from DNA methylation at CHG
878 sites. *EMBO J.* 28:1078-1086.

879 Moon, Y.H., Chen, L., Pan, R.L., Chang, H.S., Zhu, T., Maffeo, D.M., and Sung, Z.R. (2003).
880 *EMF* genes maintain vegetative development by repressing the flower program in
881 *Arabidopsis*. *Plant Cell* 15:681-693.

882 Mozgova, I., and Hennig, L. (2015). The Polycomb group protein regulatory network. *Annu.*
883 *Rev. Plant Biol.* 66:269-296.

884 Mulligan, G.J., Wong, J., and Jacks, T. (1998). p130 is dispensable in peripheral T
885 lymphocytes: evidence for functional compensation by p107 and pRB. *Mol. Cell. Biol.*
886 18:206-220.

887 Nadi, R., Juan-Vicente, L., Mateo-Bonmatí, E., and Micol, J.L. (2023). The unequal functional
888 redundancy of *Arabidopsis INCURVATA11* and *CUPULIFORMIS2* is not dependent on
889 genetic background. *Front. Plant Sci.*

890 Nadi, R., Mateo-Bonmatí, E., Juan-Vicente, L., and Micol, J.L. (2018). The 2OGD superfamily:
891 emerging functions in plant epigenetics and hormone metabolism. *Mol. Plant* 11:1222-1224.

892 Ning, Y.Q., Ma, Z.Y., Huang, H.W., Mo, H., Zhao, T.T., Li, L., Cai, T., Chen, S., Ma, L., and
893 He, X.J. (2015). Two novel NAC transcription factors regulate gene expression and
894 flowering time by associating with the histone demethylase JMJ14. *Nucleic Acids Res.*
895 43:1469-1484.

896 Ohad, N., Yadegari, R., Margossian, L., Hannon, M., Michaeli, D., Harada, J.J., Goldberg,
897 R.B., and Fischer, R.L. (1999). Mutations in *FIE*, a WD Polycomb group gene, allow
898 endosperm development without fertilization. *Plant Cell* 11:407-415.

899 Okamuro, J.K., Caster, B., Villarroel, R., Van Montagu, M., and Jofuku, K.D. (1997). The AP2
900 domain of *APETALA2* defines a large new family of DNA binding proteins in *Arabidopsis*.
901 *Proc. Natl. Acad. Sci. USA* 94:7076-7081.

902 Orozco-Nunnelly, D.A., Muhammad, D., Mezzich, R., Lee, B.S., Jayathilaka, L., Kaufman, L.S.,
903 and Warpeha, K.M. (2014). Pirin1 (PRN1) is a multifunctional protein that regulates
904 quercetin, and impacts specific light and UV responses in the seed-to-seedling transition of
905 *Arabidopsis thaliana*. PLOS One 9:e93371.

906 Pazhouhandeh, M., Molinier, J., Berr, A., and Genschik, P. (2011). MSI4/FVE interacts with
907 CUL4-DDB1 and a PRC2-like complex to control epigenetic regulation of flowering time in
908 *Arabidopsis*. Proc. Natl. Acad. Sci. USA 108:3430-3435.

909 Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999). Probability-based protein
910 identification by searching sequence databases using mass spectrometry data.
911 Electrophoresis 20:3551-3567.

912 Petrella, R., Caselli, F., Roig-Villanova, I., Vignati, V., Chiara, M., Ezquer, I., Tadini, L., Kater,
913 M.M., and Gregis, V. (2020). BPC transcription factors and a Polycomb Group protein
914 confine the expression of the ovule identity gene *SEEDSTICK* in *Arabidopsis*. Plant J.
915 102:582-599.

916 Plotnikov, A., Zehorai, E., Procaccia, S., and Seger, R. (2011). The MAPK cascades: signaling
917 components, nuclear roles and mechanisms of nuclear translocation. Biochim. Biophys.
918 Acta 1813:1619-1633.

919 Ponce, M.R., Quesada, V., and Micol, J.L. (1998). Rapid discrimination of sequences flanking
920 and within T-DNA insertions in the *Arabidopsis* genome. Plant J. 14:497-501.

921 Qin, N., Xu, D., Li, J., and Deng, X.W. (2020). COP9 signalosome: discovery, conservation,
922 activity, and function. J. Integr. Plant Biol. 62:90-103.

923 Quesada, V., Ponce, M.R., and Micol, J.L. (2000). Genetic analysis of salt-tolerant mutants in
924 *Arabidopsis thaliana*. Genetics 154:421-436.

925 Ramirez-Prado, J.S., Latrasse, D., Rodriguez-Granados, N.Y., Huang, Y., Manza-Mianza, D.,
926 Brik-Chaouche, R., Jaouannet, M., Citerne, S., Bendahmane, A., Hirt, H., et al. (2019). The
927 Polycomb protein LHP1 regulates *Arabidopsis thaliana* stress responses through the
928 repression of the MYC2-dependent branch of immunity. Plant J. 100:1118-1131.

929 Roszak, P., and Köhler, C. (2011). Polycomb group proteins are required to couple seed coat
930 initiation to fertilization. Proc. Natl. Acad. Sci. USA 108:20826-20831.

931 Sanchez-Pulido, L., Devos, D., Sung, Z.R., and Calonje, M. (2008). RAWUL: a new ubiquitin-
932 like domain in PRC1 Ring finger proteins that unveils putative plant and worm PRC1
933 orthologs. BMC Genom. 9:308.

934 Sanders, D., Qian, S., Fieweger, R., Lu, L., Dowell, J.A., Denu, J.M., and Zhong, X. (2017).
935 Histone lysine-to-methionine mutations reduce histone methylation and cause
936 developmental pleiotropy. Plant Physiol. 173:2243-2252.

937 Saze, H., Shiraishi, A., Miura, A., and Kakutani, T. (2008). Control of genomic DNA methylation
938 by a jmjC domain-containing protein in *Arabidopsis thaliana*. Science 319:462-465.

939 Schmittgen, T.D., and Livak, K.J. (2008). Analyzing real-time PCR data by the comparative C_T
940 method. *Nat. Protoc.* 3:1101-1108.

941 Schubert, D., Primavesi, L., Bishopp, A., Roberts, G., Doonan, J., Jenuwein, T., and Goodrich,
942 J. (2006). Silencing by plant Polycomb-group genes requires dispersed trimethylation of
943 histone H3 at lysine 27. *EMBO J.* 25:4638-4649.

944 Shi, Y., Zhang, X., Xu, Z.Y., Li, L., Zhang, C., Schläppi, M., and Xu, Z.Q. (2011). Influence of
945 EARLI1-like genes on flowering time and lignin synthesis of *Arabidopsis thaliana*. *Plant Biol.*
946 13:731-739.

947 Shu, J., Chen, C., Thapa, R.K., Bian, S., Nguyen, V., Yu, K., Yuan, Z.C., Liu, J., Kohalmi, S.E.,
948 Li, C., et al. (2019). Genome-wide occupancy of histone H3K27 methyltransferases CURLY
949 LEAF and SWINGER in *Arabidopsis* seedlings. *Plant Direct* 3:e00100.

950 Singh, V., Roy, S., Singh, D., and Nandi, A.K. (2014). *Arabidopsis FLOWERING LOCUS D*
951 influences systemic-acquired-resistance-induced expression and histone modifications of
952 *WRKY* genes. *J. Biosci.* 39:119-126.

953 Spedaletti, V., Polticelli, F., Capodaglio, V., Schininà, M.E., Stano, P., Federico, R., and
954 Tavladoraki, P. (2008). Characterization of a lysine-specific histone demethylase from
955 *Arabidopsis thaliana*. *Biochemistry* 47:4936-4947.

956 Sung, Z.R., Belachew, A., Shunong, B., and Bertrand-Garcia, R. (1992). *EMF*, an *Arabidopsis*
957 gene required for vegetative shoot development. *Science* 258:1645-1647.

958 Tan, L.M., Zhang, C.J., Hou, X.M., Shao, C.R., Lu, Y.J., Zhou, J.X., Li, Y.Q., Li, L., Chen, S.,
959 and He, X.J. (2018). The PEAT protein complexes are required for histone deacetylation
960 and heterochromatin silencing. *EMBO J.* 37:e98770.

961 The-Galaxy-Community. (2022). The Galaxy platform for accessible, reproducible and
962 collaborative biomedical analyses: 2022 update. *Nucleic Acids Res.* 50:W345-W351.

963 Tian, Y., Zheng, H., Zhang, F., Wang, S., Ji, X., Xu, C., He, Y., and Ding, Y. (2019). PRC2
964 recruitment and H3K27me3 deposition at *FLC* require FCA binding of COOLAIR. *Sci. Adv.*
965 5:eaau7246.

966 Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D.R., Pimentel, H., Salzberg,
967 S.L., Rinn, J.L., and Pachter, L. (2012). Differential gene and transcript expression analysis
968 of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* 7:562-578.

969 Turck, F., Roudier, F., Farrona, S., Martin-Magniette, M.L., Guillaume, E., Buisine, N., Gagnot,
970 S., Martienssen, R.A., Coupland, G., and Colot, V. (2007). *Arabidopsis TFL2/LHP1*
971 specifically associates with genes marked by trimethylation of histone H3 lysine 27. *PLOS*
972 *Genet.* 3:e86.

973 Van Leene, J., Eeckhout, D., Cannoot, B., De Winne, N., Persiau, G., Van De Slijke, E.,
974 Vercruyse, L., Dedecker, M., Verkest, A., Vandepoele, K., et al. (2015). An improved

975 toolbox to unravel the plant cellular machinery by tandem affinity purification of *Arabidopsis*
976 protein complexes. *Nat. Protoc.* 10:169-187.

977 Van Leene, J., Hollunder, J., Eeckhout, D., Persiau, G., Van De Slijke, E., Stals, H., Van
978 Isterdael, G., Verkest, A., Neirynck, S., Buffel, Y., et al. (2010). Targeted interactomics
979 reveals a complex core cell cycle machinery in *Arabidopsis thaliana*. *Mol. Syst. Biol.* 6:397.

980 Veluchamy, A., Jégu, T., Ariel, F., Latrasse, D., Mariappan, K.G., Kim, S.K., Crespi, M., Hirt,
981 H., Bergounioux, C., Raynaud, C., et al. (2016). LHP1 regulates H3K27me3 spreading and
982 shapes the three-dimensional conformation of the *Arabidopsis* genome. *PLOS One*
983 11:e0158936.

984 Wang, D., Tyson, M.D., Jackson, S.S., and Yadegari, R. (2006). Partially redundant functions
985 of two SET-domain polycomb-group proteins in controlling initiation of seed development in
986 *Arabidopsis*. *Proc. Natl. Acad. Sci. USA* 103:13244-13249.

987 Wang, H., Liu, C., Cheng, J., Liu, J., Zhang, L., He, C., Shen, W.H., Jin, H., Xu, L., and Zhang,
988 Y. (2016). *Arabidopsis* flower and embryo developmental genes are repressed in seedlings
989 by different combinations of Polycomb group proteins in association with distinct sets of cis-
990 regulatory elements. *PLOS Genet.* 12:e1005771.

991 Wang, M., Zhong, Z., Gallego-Bartolomé, J., Feng, S., Shih, Y.H., Liu, M., Zhou, J., Richey,
992 J.C., Ng, C., Jami-Alahmadi, Y., et al. (2023). *Arabidopsis* TRB proteins function in
993 H3K4me3 demethylation by recruiting JMJ14. *Nat. Commun.* 14:1736.

994 Wang, X., Feng, S., Nakayama, N., Crosby, W.L., Irish, V., Deng, X.W., and Wei, N. (2003).
995 The COP9 signalosome interacts with SCF^{UFO} and participates in *Arabidopsis* flower
996 development. *Plant Cell* 15:1071-1082.

997 Wang, X., Kang, D., Feng, S., Serino, G., Schwechheimer, C., and Wei, N. (2002). CSN1 N-
998 terminal-dependent activity is required for *Arabidopsis* development but not for
999 Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9
1000 signalosome. *Mol. Biol. Cell* 13:646-655.

1001 Wang, Y., He, Y., Su, C., Zentella, R., Sun, T.P., and Wang, L. (2020). Nuclear localized O-
1002 fucosyltransferase SPY facilitates PRR5 proteolysis to fine-tune the pace of *Arabidopsis*
1003 circadian clock. *Mol. Plant* 13:446-458.

1004 Whittaker, C., and Dean, C. (2017). The *FLC* locus: a platform for discoveries in epigenetics
1005 and adaptation. *Annu. Rev. Cell. Dev. Biol.* 33:555-575.

1006 Wu, P., Peng, M., Li, Z., Yuan, N., Hu, Q., Foster, C., Saski, C., Wu, G., Sun, D., and Luo, H.
1007 (2018). DRMY1, a Myb-Like protein, regulates cell expansion and seed production in
1008 *Arabidopsis thaliana*. *Plant Cell Physiol.* 60:285-302.

1009 Xiao, J., and Wagner, D. (2015). Polycomb repression in the regulation of growth and
1010 development in *Arabidopsis*. *Curr. Opin. Plant Biol.* 23:15-24.

1011 Yang, C., Bratzel, F., Hohmann, N., Koch, M., Turck, F., and Calonje, M. (2013). VAL- and
1012 AtBMI1-mediated H2Aub initiate the switch from embryonic to postgerminative growth in
1013 *Arabidopsis*. *Curr. Biol.* 23:1324-1329.

1014 Yang, C., Yin, L., Xie, F., Ma, M., Huang, S., Zeng, Y., Shen, W.H., Dong, A., and Li, L. (2020).
1015 AtINO80 represses photomorphogenesis by modulating nucleosome density and H2A.Z
1016 incorporation in light-related genes. *Proc. Natl. Acad. Sci. USA* 117:33679-33688.

1017 Yang, C.H., Chen, L.J., and Sung, Z.R. (1995). Genetic regulation of shoot development in
1018 *Arabidopsis*: role of the *EMF* genes. *Dev. Biol.* 169:421-435.

1019 Yang, H., Howard, M., and Dean, C. (2014). Antagonistic roles for H3K36me3 and H3K27me3
1020 in the cold-induced epigenetic switch at *Arabidopsis FLC*. *Curr. Biol.* 24:1793-1797.

1021 Yanhui, C., Xiaoyuan, Y., Kun, H., Meihua, L., Jigang, L., Zhaofeng, G., Zhiqiang, L., Yunfei,
1022 Z., Xiaoxiao, W., Xiaoming, Q., et al. (2006). The MYB transcription factor superfamily of
1023 *Arabidopsis*: expression analysis and phylogenetic comparison with the rice MYB family.
1024 *Plant Mol. Biol.* 60:107-124.

1025 Yoshida, N., Yanai, Y., Chen, L., Kato, Y., Hiratsuka, J., Miwa, T., Sung, Z.R., and Takahashi,
1026 S. (2001). EMBRYONIC FLOWER2, a novel Polycomb group protein homolog, mediates
1027 shoot development and flowering in *Arabidopsis*. *Plant Cell* 13:2471-2481.

1028 Zemach, A., Li, Y., Ben-Meir, H., Oliva, M., Mosquna, A., Kiss, V., Avivi, Y., Ohad, N., and
1029 Grafi, G. (2006). Different domains control the localization and mobility of LIKE
1030 HETEROCHROMATIN PROTEIN1 in *Arabidopsis* nuclei. *Plant Cell* 18:133-145.

1031 Zhang, C., Cao, L., Rong, L., An, Z., Zhou, W., Ma, J., Shen, W.H., Zhu, Y., and Dong, A.
1032 (2015). The chromatin-remodeling factor AtINO80 plays crucial roles in genome stability
1033 maintenance and in plant development. *Plant J.* 82:655-668.

1034 Zhang, L., Wang, L., Yang, Y., Cui, J., Chang, F., Wang, Y., and Ma, H. (2014). Analysis of
1035 *Arabidopsis* floral transcriptome: detection of new florally expressed genes and expansion
1036 of Brassicaceae-specific gene families. *Front. Plant Sci.* 5:802.

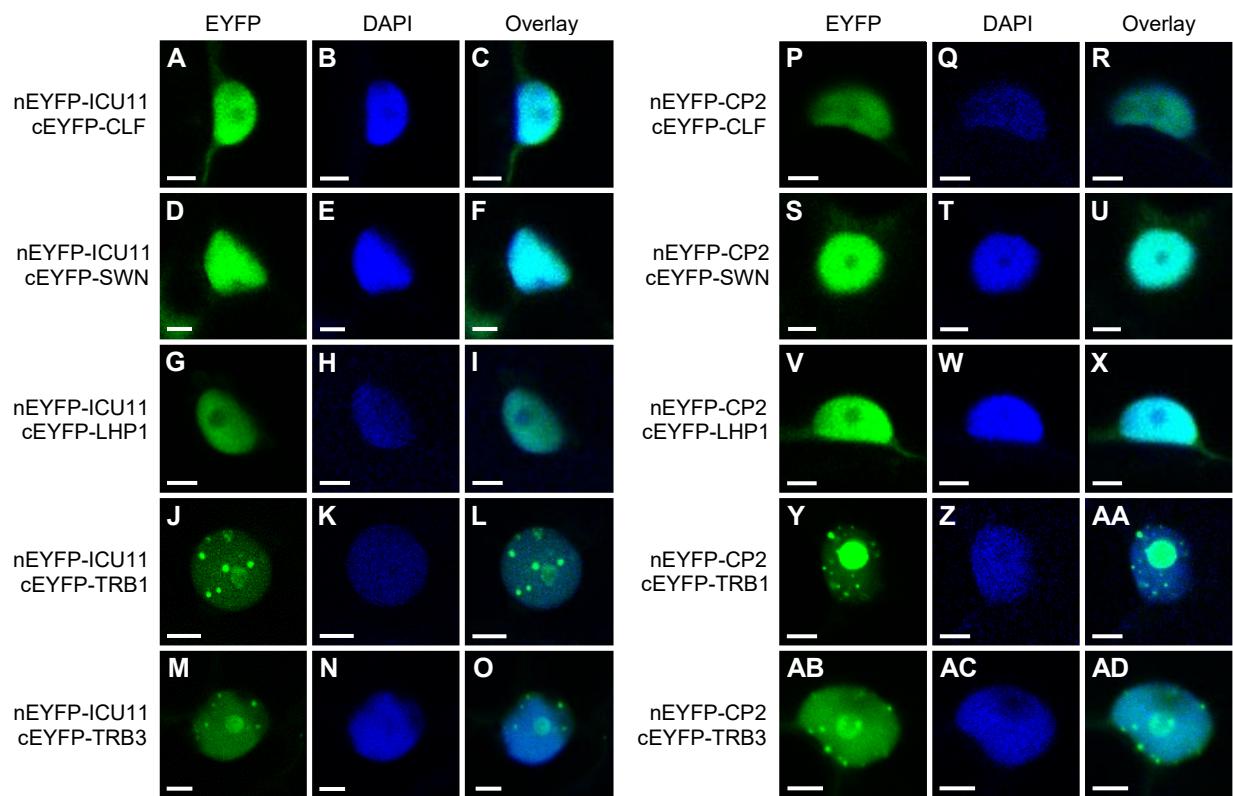
1037 Zhang, X., Germann, S., Blus, B.J., Khorasanizadeh, S., Gaudin, V., and Jacobsen, S.E.
1038 (2007). The *Arabidopsis* LHP1 protein colocalizes with histone H3 Lys27 trimethylation. *Nat.*
1039 *Struct. Mol. Biol.* 14:869-871.

1040 Zhang, Y., Cao, G., Qu, L.J., and Gu, H. (2009). Characterization of *Arabidopsis* MYB
1041 transcription factor gene *AtMYB17* and its possible regulation by LEAFY and AGL15. *J.*
1042 *Genet. Genom.* 36:99-107.

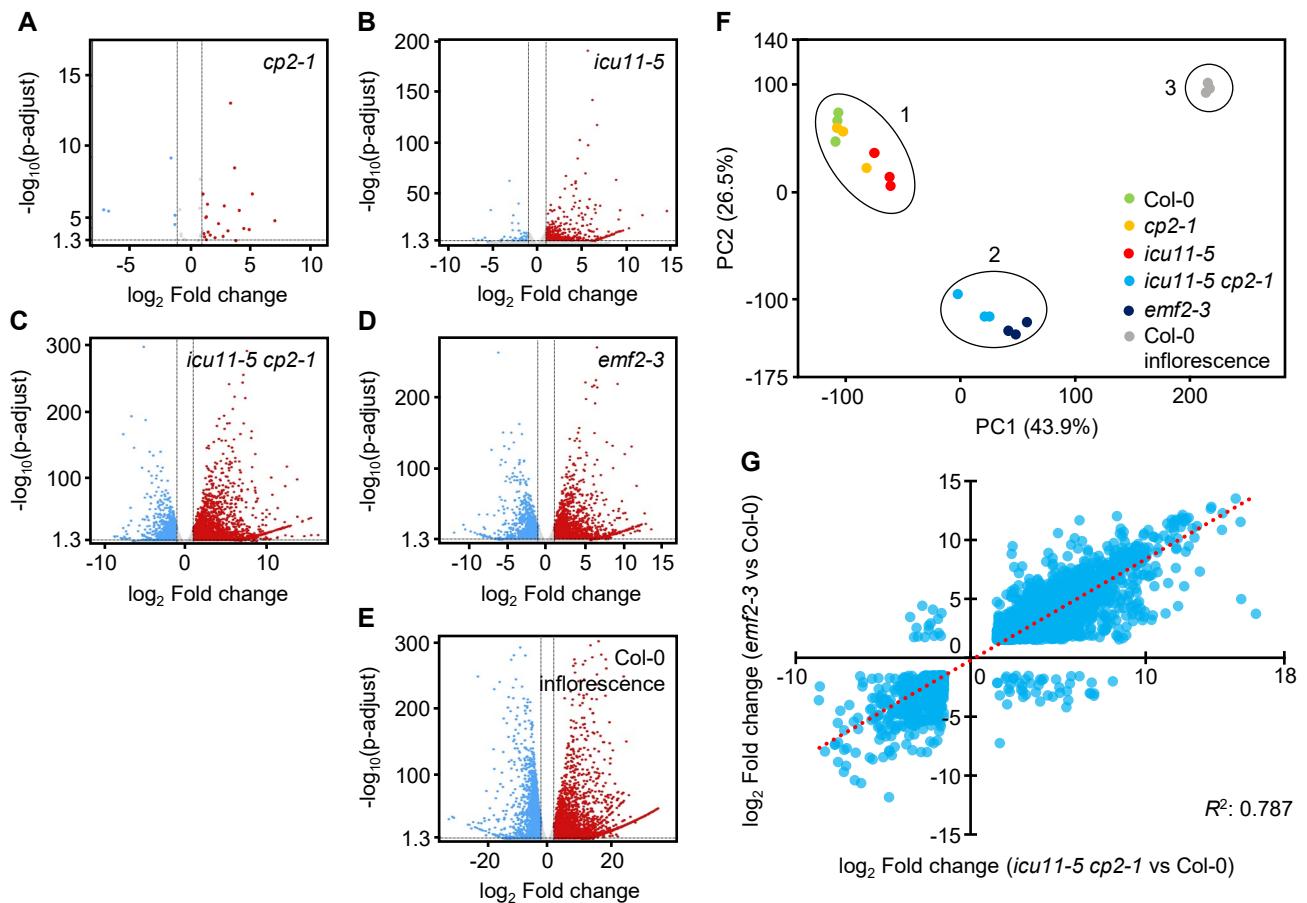
1043 Zhou, G., Soufan, O., Ewald, J., Hancock, R.E.W., Basu, N., and Xia, J. (2019).
1044 NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling
1045 and meta-analysis. *Nucleic Acids Res.* 47:W234-W241.

1046 Zhou, Y., Hartwig, B., James, G.V., Schneeberger, K., and Turck, F. (2016). Complementary
1047 activities of TELOMERE REPEAT BINDING proteins and Polycomb Group complexes in
1048 transcriptional regulation of target genes. *Plant Cell* 28:87-101.

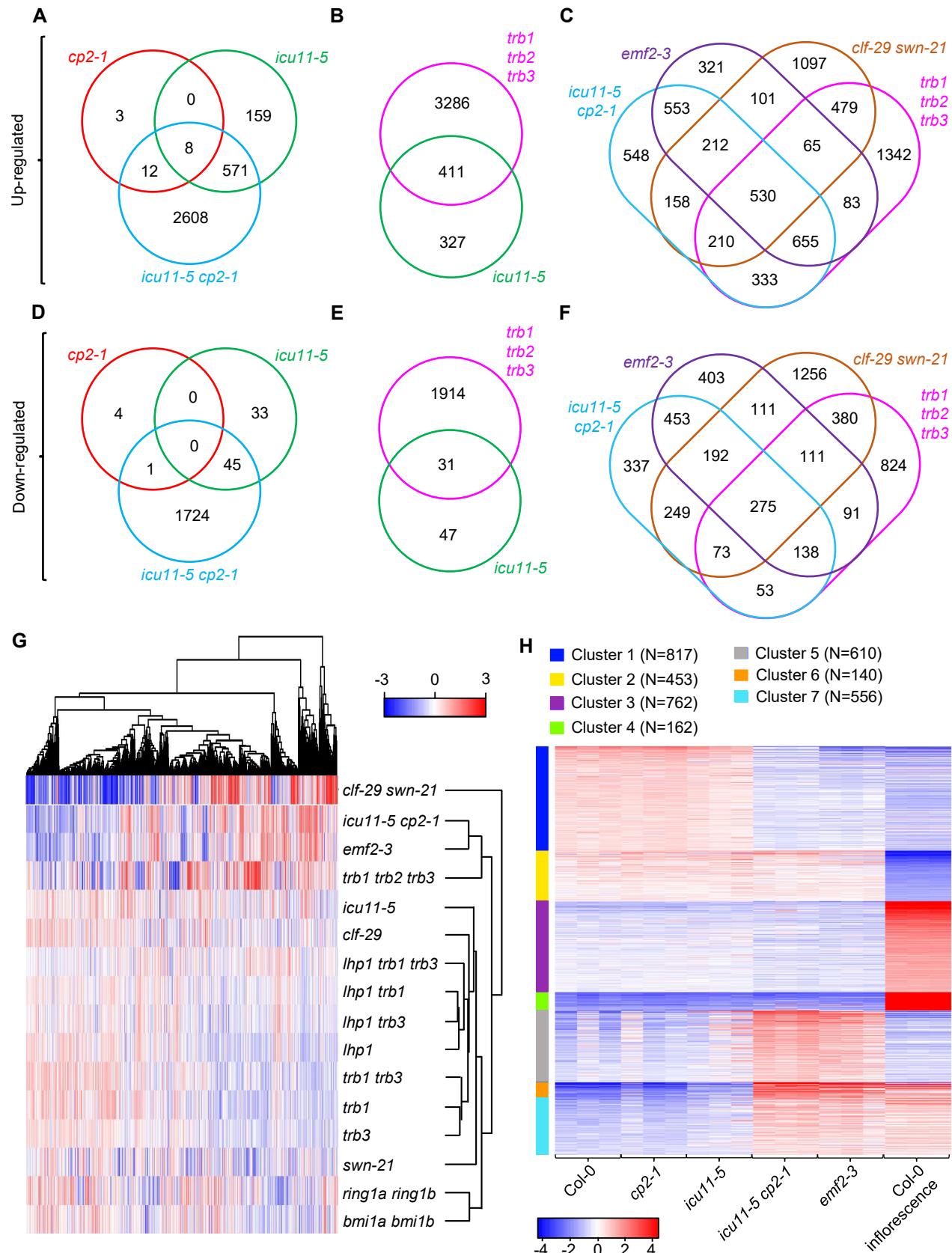
1049 Zhou, Y., Romero-Campero, F.J., Gómez-Zambrano, A., Turck, F., and Calonje, M. (2017).
1050 H2A monoubiquitination in *Arabidopsis thaliana* is generally independent of LHP1 and
1051 PRC2 activity. *Genome Biol.* 18:e69.

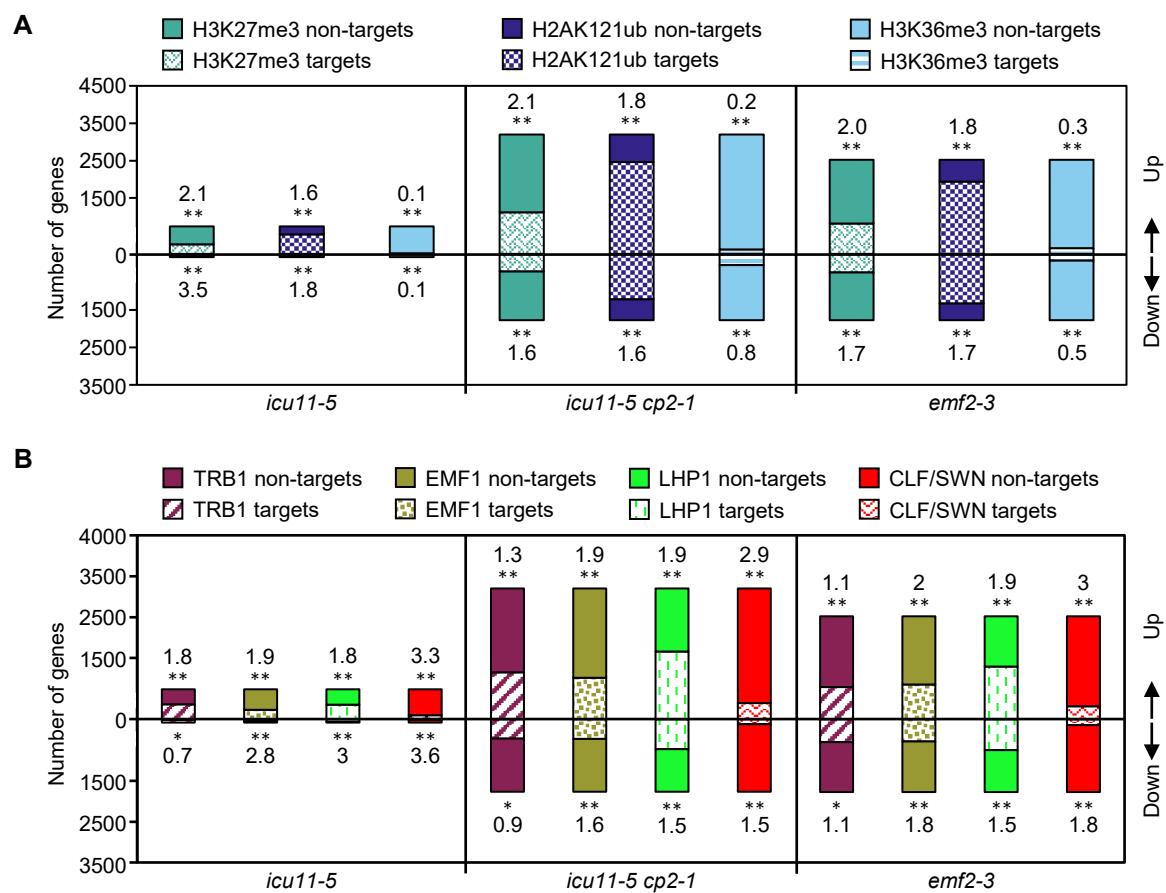

1052 Zhou, Y., Wang, Y., Krause, K., Yang, T., Dongus, J.A., Zhang, Y., and Turck, F. (2018).
1053 Telobox motifs recruit CLF/SWN-PRC2 for H3K27me3 deposition via TRB factors in
1054 *Arabidopsis*. *Nat. Genet.* 50:638-644.

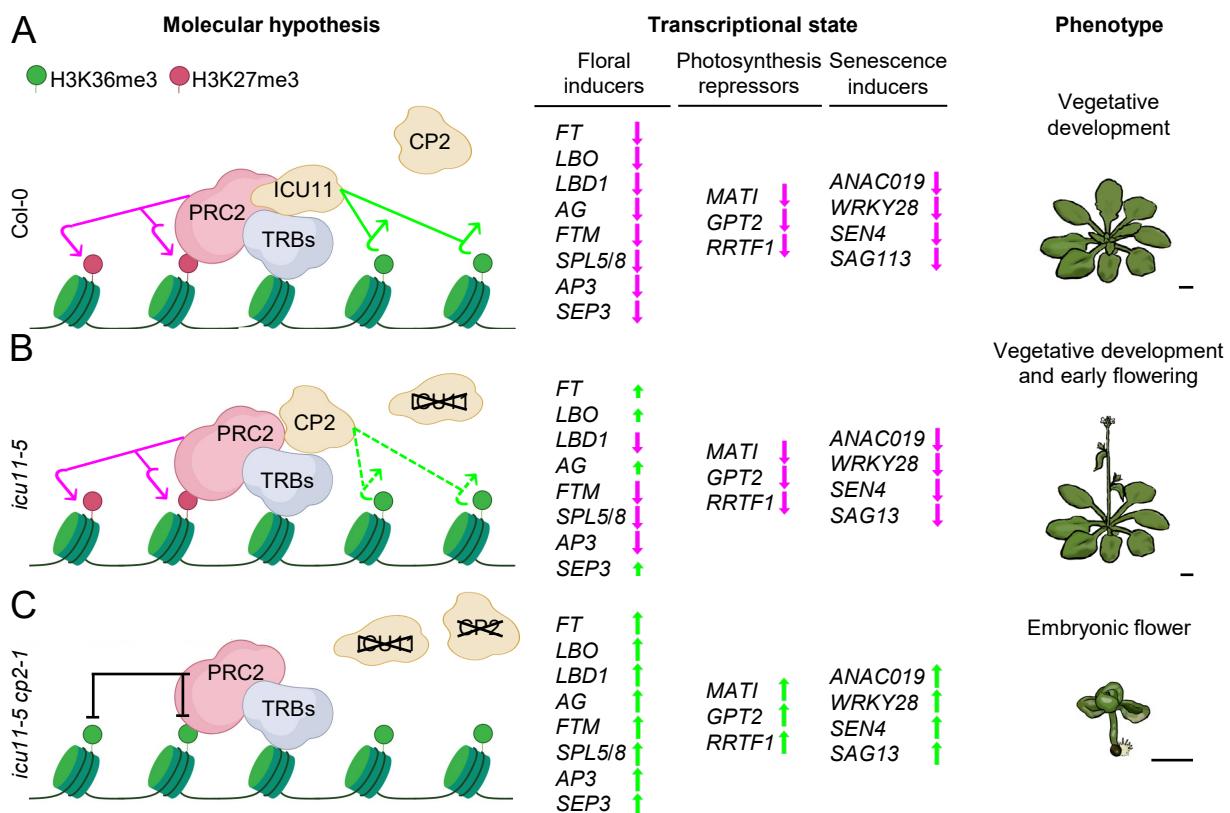
1055 Zhu, M., Chen, W., Mirabet, V., Hong, L., Bovio, S., Strauss, S., Schwarz, E.M., Tsugawa, S.,
1056 Wang, Z., Smith, R.S., et al. (2020). Robust organ size requires robust timing of initiation
1057 orchestrated by focused auxin and cytokinin signalling. *Nat. Plants* 6:686-698.


1058

1059


Nadi *et al.*, Figure 1


Nadi *et al.*, Figure 2


Nadi *et al.*, Figure 3

Nadi *et al.*, Figure 4

Nadi et al., Figure 5

