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ABSTRACT

Polycomb Repressive Complex 2 (PRC2) catalyzes the trimethylation of lysine 27 of histone
H3 (H3K27me3) and plays a key role in epigenetic repression of gene expression in plants
and animals. PRC2 core components have all been identified in Arabidopsis thaliana, with an
expanding list of accessory proteins, some of which facilitate the recruitment of PRC2 to
specific targets. INCURVATA11 (ICU11) is a 2-oxoglutarate and Fe?*-dependent dioxygenase
that was previously shown to be a likely PRC2 accessory protein. In Tandem Affinity
Purification (TAP)-based screens for interacting partners of ICU11 and its redundant paralog
CUPULIFORMIS2 (CP2), we discovered that ICU11 interacts with four PRC2 core
components, including EMBRYONIC FLOWER 2 (EMF2), and with the accessory proteins
EMF1, TELOMERE REPEAT BINDING 1 (TRB1), TRB2, and TRB3. CP2 did not interact with
PRC2 core components, nor with TRB1, TRB2, or TRB3, but did interact with TRB4 and TRB5.
Both ICU11 and CP2 interacted with the nuclear proteins NAC DOMAIN CONTAINING
PROTEIN 50 (NACO050), NAC052 and COP9 SIGNALOSOME SUBUNIT 1 (CSN1).
Bimolecular Fluorescence Complementation (BiFC) assays revealed that ICU11 and CP2 both
interact with the PRC2 core components CURLY LEAF and SWINGER, and the accessory
proteins LIKE HETEROCHROMATIN PROTEIN 1, TRB1, and TRB3. ICU11 and CP2 did not
interact with each other. Beyond their phenotypes, transcriptomic profiles revealed strong
similarities between emf2-3 and the double mutant icu17-5 ¢p2-1, as well as with mutants in
PRC2 core components. A significant proportion of the genes mis-regulated in icu11-5 cp2-1
are known to harbor H3K27me3 repressive marks in the wild type. Our results provide further
evidence that ICU11 acts as a PRC2 accessory protein, and strongly suggest that CP2 plays

a similar role.
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INTRODUCTION

The first gene encoding a Polycomb group (PcG) protein was discovered by the
characterization of a mutation in the fruit fly Drosophila melanogaster (Lewis, 1947). PcG
proteins are highly conserved among eukaryotes and epigenetically repress the expression of
genes controlling growth, development, and environmental adaptation (Jiao et al., 2020; Xiao
and Wagner, 2015). PcG proteins form part of two heteromultimeric Polycomb Repressive
Complexes (PRCs), which perform different epigenetic activities: PRC1 is a histone H2A
ubiquitin ligase, whereas PRC2 is a histone H3 lysine 27 (H3K27) methyltransferase (Bratzel
et al., 2010).

Plant PRCs function in many critical developmental stages and events, such as the
transition from embryo to seedling (Bouyer et al., 2011), gametophyte and seed development
(Roszak and Kohler, 2011), and vernalization and flowering induction (Pazhouhandeh et al.,
2011; Tian et al., 2019; Whittaker and Dean, 2017). In Arabidopsis (Arabidopsis thaliana),
PRC2 comprises eight core components: CURLY LEAF (CLF: Goodrich et al., 1997),
SWINGER (SWN; Chanvivattana et al., 2004), MEDEA (MEA; Grossniklaus et al., 1998),
FERTILIZATION INDEPENDENT SEED 2 (FIS2; Luo et al., 1999), EMBRYONIC FLOWER 2
(EMF2; Yoshida et al, 2001), VERNALIZATION2 (VRN2; Gendall et al., 2001),
FERTILIZATION-INDEPENDENT ENDOSPERM (FIE; Ohad et al., 1999), and MULTICOPY
SUPRESSOR OF IRA (inhibitory regulator of the RAS-cAMP pathway) 1 (MSI1; Hennig et al.,
2003; Kdhler et al., 2003). The Arabidopsis PRC1 core components include three B Lymphoma
Mo-MLV Insertion Region 1 (BMI1) homologs (BMI1A, BMI1B, and BMI1C) and two RING
FINGER proteins (RING1A and RING1B) (Sanchez-Pulido et al., 2008).

Accessory proteins facilitate the recruitment of PRC1 and PRC2 to specific chromatin
regions; for example, LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) and the plant-specific
protein EMBRYONIC FLOWER 1 (EMF1) interact with each other and with PRC1 and PRC2
core components (Bratzel et al., 2010; Calonje et al., 2008; Derkacheva et al., 2013; Mozgova
and Hennig, 2015). LHP1 contributes to the maintenance of the tri-methylated H3K27
(H3K27me3) chromatin repressive state through the continuous recruitment of PRC2 to
regions enriched with the H3K27me3 mark (Ramirez-Prado et al., 2019; Turck et al., 2007;
Zhang et al., 2007). EMF1 contributes to H3K27me3 deposition at a subgroup of PRC2 target
genes, and is also required for histone H2A monoubiquitination by PRC1 (Kim et al., 2012).

Lack of vegetative development and the formation of flower-like organs immediately
after germination—the so-called embryonic flowers—is a conspicuous phenotype that was first
observed in emf1 mutants (Aubert et al., 2001; Sung et al., 1992; Yang et al., 1995; Yoshida
et al., 2001). Embryonic flowers are also produced by the telomere repeat binding1-2 (trb1-2)
trb2-1 trb3-2 triple mutant (Yang et al., 2013; Zhou et al., 2018). Arabidopsis TRB1, TRB2, and

TRB3 bind to telomeric repeat DNA sequences to maintain chromosome ends (Klepikova et
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86 al., 2016; Lee and Cho, 2016; Nadi et al., 2023; Schubert et al., 2006), and are thought to
87  recruit the PRC2 complex to certain genes for H3K27me3 deposition (Zhou et al., 2018).
88 The 2-oxoglutarate and Fe(ll)-dependent dioxygenase (20GD, also called 20DD)
89 domain characterizes the second largest protein superfamily in the plant kingdom (Martinez
90 and Hausinger, 2015) and is represented by about 150 genes in Arabidopsis (Kawai et al.,
91 2014; Nadietal., 2018). 20GD proteins catalyze oxidative reactions using 2-oxoglutarate (also
92  called a-ketoglutarate) and molecular oxygen as co-substrates, and Fe?* as a cofactor (Islam
93 et al., 2018). Phylogenetic analyses of plant 20GDs grouped them into the DOXA, DOXB,
94  DOXC, and JUMONUJI (JMJ) protein classes, with demonstrated functions that include DNA
95 and RNA demethylation, collagen hydroxylation, a diverse range of metabolic processes, and
96 histone demethylation, respectively (Islam et al., 2018; Kawai et al., 2014). Two Arabidopsis
97 DOXB-type 20GDs, INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2), are redundant
98 components of the epigenetic machinery (Mateo-Bonmati et al., 2018; Nadi et al., 2023).
99  Whereas icu11 mutants exhibit a mild morphological phenotype consisting of hyponastic
100 leaves and early flowering, and cp2 mutants are phenotypically wild type, icu11 cp2 double
101  mutants skip vegetative development and develop embryonic flowers immediately after
102  germination, culminating in plant death 20—40 days after stratification (Mateo-Bonmati et al.,
103  2018; Nadi et al., 2023).
104 Based on co-immunoprecipitation (co-IP) analyses, ICU11 was proposed to be a PRC2
105  accessory protein, probably involved in H3K36me3 demethylation at the FLOWERING LOCUS
106 C (FLC) floral repressor gene (Bloomer et al., 2020). Here, we provide further evidence for
107 ICU11 as a PRC2 accessory protein through experimental approaches complementary to co-
108 IP, including an in vitro tandem affinity purification (TAP)-based screen and in vivo
109  heterologous bimolecular fluorescence complementation (BiFC) assays. We also used these
110 approaches to identify several interacting partners of CP2, some of which are PRC2 core
111 components or accessory proteins. Furthermore, using RNA sequencing (RNA-seq), we
112  identified many genes that are upregulated in the lethal embryonic flowers of the icu11-5 cp2-
113 1 double mutant and involved in flower development, as previously shown by microarray
114  analysis in the emf2-3 single mutant (Kim et al., 2010). Taken together, our results confirm that

115 ICU11 is a PRC2 accessory protein and strongly suggest that CP2 also plays this role.
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116 RESULTS

117  ICU11 interacts with PRC2 core components and accessory proteins in a TAP-based
118  screen

119  Toidentify interactors of ICU11 and CP2, we carried out a TAP-based screen followed by liquid
120 chromatography electrospray ionization and tandem mass spectrometry (LC-ESI-MS/MS).
121  Specifically, we used C-terminal translational fusions of ICU11 and CP2 to the GSR" tag,
122  consisting of protein G, a streptavidin-binding peptide, and rhinovirus 3C protease cleavage
123  sites. We transformed PSB-D Arabidopsis cell cultures with Agrobacterium tumefaciens
124  carrying the aforehead mentioned translational fusions. In line with previous results obtained
125 using co-IP assays followed by tandem mass spectrometry (Bloomer et al., 2020), we
126  determined that ICU11 interacts with the PRC2 core components EMF2, FIE, SWN, and MSI1,
127  as well as the PRC2 accessory proteins EMF1, TRB1, TRB2, and TRB3 (Supplemental Figure
128  S1, Supplemental Table S1 and Supplemental Dataset DS1). TRB1, TRB2, and TRB3 are
129  components of the PWWPs-EPCRs-ARIDs-TRBs (PEAT) complexes that recruit PRC2 to
130 telobox-related motifs present at telomeres (Tan et al., 2018; Zhou et al., 2016; Zhou et al.,
131  2018). We also identified MSI1 and SWN as interactors of ICU11 in one of our TAP-based
132  replicates (Supplemental Dataset DS1). In contrast to Bloomer et al. (2020), we did not identify
133  CLF or LHP1 as ICU11 interactors.

134 Among the best-represented interactors of ICU11, we also noticed three paralogous
135 proteins, which are predicted to be nuclear: the AT5G66000 hypothetical protein and the
136 AT3G17460 and AT4G35510 uncharacterized proteins with a PHD finger domain. AT5G66000
137  was previously detected as an interactor of EMF1, CLF, and ICU11 in the co-IP assays
138 performed by Bloomer et al. (2020), in which these authors also detected AT3G17460 as an
139 ICU11 interactor, and AT4G35510 as an interactor of CLF but not ICU11.

140

141 CP2 interacts with TRB4, TRBS5, and other nuclear proteins in a TAP-based screen

142  We also performed a TAP-based screen to identify CP2 interactors, from which we detected
143  no PRC2 core component. CP2 strongly interacted with TRB4 and TRB5 (Supplemental Figure
144  S1 and Supplemental Table S1), two poorly characterized members of the TRB family;
145  however, their TRB1, TRB2, and TRB3 paralogs were not detected as CP2 interactors. We
146  excluded any possible ambiguity in the interactions of ICU11 and CP2 with the TRB proteins
147 by checking that the peptides identified from each TRB were protein-specific, the only
148  exception being one peptide whose sequence matches an identical region in TRB2 and TRB3
149  (Supplemental Figure S3). Other nuclear proteins identified as interactors of CP2 but not of
150 ICU11 were DEVELOPMENT RELATED MYB-LIKE1 (DRMY1) and DRMY PARALOG 1 (DP1;
151 Supplemental Figure S1 and Supplemental Table S1), which belong to the single repeat MYB

152  family of transcription factors. Whereas the dp7 mutant is indistinguishable from the wild type,
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153  drmy1 loss-of-function mutants exhibit pleotropic defects in root, vegetative, and floral
154  development, but not in flowering time (Wu et al., 2018; Yanhui et al., 2006; Zhu et al., 2020).
155  Another interactor of CP2 but not of ICU11 was INOSITOL REQUIRING 80 (INOS8O;
156  Supplemental Figure S1 and Supplemental Table S1), a nuclear chromatin remodeling factor
157 conserved among eukaryotes. Depletion of INO80 represses photomorphogenesis and
158 causes multiple developmental defects including reduced plant size, late flowering, abnormal
159  shape of reproductive organs, reduced pollen grain number per anther, and smaller siliques
160 (Kang et al., 2019; Yang et al., 2020; Zhang et al., 2015).

161 Another CP2 interactor we identified was the JMJ-type 20GD protein INCREASE IN
162 BONSAI METHYLATION 1 (IBM1; Supplemental Figure S1 and Supplemental Table S1), a
163  known H3K9me2/1 demethylase (Miura et al., 2009). Several ibm1 alleles perturb leaf and
164  flower morphogenesis and reduce fertility. The depletion of IBM1 increases H3K9me marks
165 and DNA methylation in the CHG and CHH genomic contexts (Saze et al., 2008).

166

167  Nuclear proteins that interact with both ICU11 and CP2 in TAP-based screens

168 Our TAP assays also revealed nuclear proteins that interact with both ICU11 and CP2
169  (Supplemental Figure S1, Supplemental Table S1 and Supplemental Dataset DS1). Two of
170  these were the paralogous transcription factors NAC050 and NAC052, which associate with
171  the histone demethylase JMJ14 in the negative regulation of flowering through the removal of
172  the H3K4me3 mark at flowering regulator genes such as FLC (Ning et al., 2015). Neither
173  NACO050 nor NACO052 was identified as an ICU11 interactor by Bloomer et al. (2020). By
174  contrast, JMJ14 was identified as an ICU11 interactor by Bloomer et al. (2020) but was not
175  detected in our TAP assays.

176 We also identified COP9 SIGNALOSOME SUBUNIT 1 (CSN1), also named FUSCA 6
177  (FUS6), a member of the CONSTITUTIVE PHOTOMORPHOGENESIS 9 (COP9) signalosome
178  complex, which maintains skotomorphogenesis by repressing photomorphogenesis (Qin et al.,
179  2020; Wang et al., 2002), and is required for the proper development of floral organs (Wang
180 etal., 2003). CSN1 was not detected by Bloomer et al. (2020). Neither of our two TAP-based
181  screens revealed any interaction between ICU11 and CP2, despite their shared interactors.
182

183 ICU11 and CP2 interact with PRC2 core components and accessory proteins in BiFC
184  assays

185  To obtain complementary evidence for the results of our TAP-based screens, we performed
186 heterologous BiFC assays through the transient transformation of Nicotiana benthamiana
187 leaves (Kerppola, 2006; Martin et al., 2009). The co-infiltration of such leaves with constructs
188  encoding the N-terminal half of enhanced yellow fluorescence protein (EYFP) fused to ICU11
189  (nEYFP-ICU11) and the C-terminal half of EYFP fused to CLF (cEYFP-CLF), SWN (cEYFP-
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190 SWN), or LHP1 (cEYFP-LHP1) all produced strong nuclear EYFP signals (Figure 1A-I), which
191 is consistent with the known nucleoplasmic colocalization of ICU11 (Mateo-Bonmati et al.,
192  2018), CLF (Schubert et al., 2006), SWN (Wang et al., 2006), and LHP1 (Zemach et al., 2006).
193  We established that nEYFP-CP2 interacts with cEYFP-CLF, cEYFP-SWN, and cEYFP-LHP1
194  (Figure 1P-X). All co-infiltrations of nEYFP-ICU11 or nEYFP-CP2 with cEYFP-TRB1 or
195 cEYFP-TRB3 resulted in strong EYFP signals (Figure 1J—O, Y—AD), consistent with the known
196  subnuclear localization of TRB1 and TRB3 (Zhou et al., 2016). As a positive control, both
197  coinfiltrations of cEYFP-LHP1 with nEYFP-UBP12 and nEYFP-UBP13 rendered strong
198 nuclear signals, as previously described (Supplemental Figure S3A-F; Derkacheva et al.,
199  2016). The absence of interaction between ICU11 and CP2 was confirmed by coinfiltration of
200 Nicotiana benthamiana leaves with nEYFP-ICU11 and cEYFP-CP2 (Supplemental Figure
201  S3G-l). nEYFP-ICU11 and nEYFP-CP2 were used as negative controls (Supplemental Figure
202 S30-Q).

203

204  The transcriptomic profile of the icu11-5 cp2-1 double mutant resemble that of the emf2-
205 3 single mutant

206  We previously used both RNA-seq and reverse transcription-quantitative PCR (RT-gPCR) to
207  show that the icu77-1 mutant, in the Arabidopsis S96 genetic background, transcriptionally
208 misregulates hundreds of genes (Mateo-Bonmati et al., 2018). As /ICU717 and CP2 encode
209 putative PRC2 accessory proteins and the morphological phenotype of their double mutant
210 combinations (namely, embryonic flowers) resembles that of the emf! and emf2 single
211 mutants, we compared the transcriptome of the icu171-5 c¢p2-1 double mutant with that of the
212  PRC2 strong loss-of-function mutant emf2-3. We used clustered regularly interspaced short
213  palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated mutagenesis
214  to obtain the icu11-5 and icu11-6 alleles of /ICU771 in a Col-0 genetic background to avoid
215  possible differences in gene expression due to the genetic background (Nadi et al., 2023).
216 We performed RNA-seq analyses of the Col-0, icu171-5 and cp2-1 seedlings, and the
217  icu11-5 cp2-1 and emf2-3 embryonic flowers, which were all collected 10 days after
218  stratification (das); Col-0 inflorescences were also collected 40 das for RNA-seq (Figure 2,
219  Supplemental Table S2 and Supplemental Dataset DS2). We only identified 23 upregulated
220 genes and 5 downregulated genes in the ¢p2-1 mutant relative to Col-0; the morphological
221 phenotype of this mutant is indistinguishable from the wild type. We also identified 738
222  upregulated genes and 78 downregulated genes in the icu171-5 mutant, whose morphological
223  phenotype is relatively weak. By contrast, the number of de-regulated genes in the icu11-5
224  cp2-1 and emf2-3 embryonic flowers was similar: these plants showed 3199 upregulated
225 genes and 1770 downregulated genes, and 2520 upregulated genes and 1774 downregulated

226  genes, respectively, when compared to Col-0 seedlings. Moreover, the Col-0 inflorescences
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227  showed the expected strong transcriptomic differences when compared to Col-0 seedlings,
228  with 5431 upregulated genes and 3084 downregulated genes, in agreement with similar data
229  previously published (Klepikova et al., 2016).

230 Genes encoding MADS-box transcription factors, such as AGAMOUS (AG) and
231 SEEDSTICK (STK), are flower organ identity genes repressed by PRC2 during the vegetative
232  stage (Petrella et al., 2020; Schubert et al., 2006). In the present study, AG, SHATTERPROOF
233 2 (SHP2), and STK were found upregulated in in icu11-5 seedlings, icu11-5 cp2-1 and emf2-
234 3 embryonic flowers, and Col-0 inflorescences, but not in cp2-1 seedlings, which we confirmed
235 using RT-gPCR. Among the genes upregulated in cp2-1 seedlings, we found EARLY
236 ARABIDOPSIS INDUCED 1 (EARLIT), which encodes a proline-rich family protein involved in
237  lignin biosynthesis and flowering time control (Shi et al., 2011); PIRIN 1 (PRN1), a cupin-fold
238  protein involved in seed germination, development, and the response to abscisic acid and light
239  (Orozco-Nunnelly et al., 2014); and RIBONUCLEASE 1 (RNS1), a protein that functions in cell
240 death and the generation of tRNA-derived fragments, which are involved in the regulation of
241 gene expression, RNA degradation, and the inhibition of protein synthesis (Goodman et al.,
242  2022; Megel et al., 2019) (Supplemental Figure S4).

243 A principal component analysis identified different patterns of transcriptional
244  misregulation, with three main clusters: one formed by the seedlings of Col-0, cp2-1, and to a
245  certain extent icu11-5; another one consisting of the icu11-5 c¢p2-1 and emf2-3 embryonic
246  flowers; and the last one representing the transcriptome of the Col-0 inflorescence (Figure 2F).
247  The transcriptomes of icu11-5 cp2-1 and emf2-3 were similar (R? = 0.787; Figure 2G).

248 A protein domain enrichment analysis revealed that icu11-5 seedlings, icu11-5 cp2-1
249  and emf2-3 embryonic flowers and Col-0 inflorescences share an upregulation of genes in the
250 Mitogen-Activated Protein Kinase (MAPK) cascade, an important conserved mechanism in
251  eukaryotes that triggers the intracellular transduction response to a range of developmental
252  and environmental signals (Jagodzik et al., 2018; Plotnikov et al., 2011; Supplemental
253  Datasets DS3 to DS7). The icu11-5 cp2-1 and emf2-3 transcriptomes also had similar Gene
254  Ontology (GO) enrichment of biological processes profiles, among the most significant of which
255 for the upregulated genes included response to phytohormones, abiotic stresses, and
256 transcriptional regulation (Supplemental Datasets DS5 and DS7). We also observed that most
257  enriched GO terms in the downregulated genes in the icu11-5 cp2-1 and emf2-3 embryonic
258 flowers and the Col-0 inflorescence are related to photosynthesis, chloroplast organization and
259  biosynthesis, and sucrose biosynthesis (Supplemental Datasets DS5 and DS7).

260 Regarding the protein domain enrichment analysis, the genes upregulated in icu171-5
261  were enriched in those encoding proteins harboring the keratin-like (K-box) and MADS-box
262 domains (Supplemental Dataset DS3), which are associated with the regulation of flowering

263 time (Alvarez-Buylla et al., 2000). The same categories were also enriched in the upregulated
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264  genes of icu11-5 cp2-1 and emf2-3 embryonic flowers, and Col-0 inflorescences, which also
265 encompassed 13 other categories, including Non Apical Meristem (NAM), a FAD-binding
266  domain, and WRKY domains, which are also related to the regulation of flowering (Aida et al.,
267 1997; Liu et al., 2008; Martignago et al., 2019; Singh et al., 2014; Spedaletti et al., 2008). The
268 genes upregulated in icu11-5 cp2-1 and emf2-3 embryonic flowers were significantly enriched
269 in genes encoding transcription factors containing the APETALA2/ETHYLENE-RESPONSIVE
270 ELEMENT BINDING FACTOR (AP2/ERF) domain (Drews et al., 1991; Feng et al., 2020;
271 Okamuro et al., 1997; Supplemental Datasets DS5-DS7).

272

273  The transcriptomic profile of icu11-5 cp2-1 resembles that of mutants affected in genes
274  encoding PRC2 core components or accessory proteins

275  Venn diagrams of the Differentially Expressed Genes (DEGs) of icu17-5 and cp2-1 seedlings
276  and icu11-5 cp2-1 embryonic flowers, all compared with Col-0 seedlings, showed no overlap
277  between the genes downregulated in icu7171-5 and cp2-1, and only eight genes were
278  upregulated in both icu11-5 and cp2-1. We also found that 78% and 58% of the genes
279  upregulated and downregulated in icu11-5, respectively, are coregulated in the icu?11-5 cp2-1
280  double mutant (Figure 3A, D).

281 We conducted comparative analyses of the published transcriptomic profiles of mutants
282  carrying mutant alleles of genes encoding PRC2 core components or accessory proteins,
283  which exhibit morphological phenotypes ranging from wild type to callus-like, as is the case for
284  clf-29 swn-21 (Wang et al., 2016; Yang et al., 2013). The trb1-2 trb2-1 trb3-2 triple mutant
285  exhibits an embryonic flower phenotype (Zhou et al., 2018); we determined that 56% of the
286 411 upregulated genes and 40% of the 31 downregulated genes in icu711-5 are similarly
287  upregulated or downregulated in trb1-2 trb2-1 trb3-2 (Figure 3B, E). The morphological
288 phenotypes of trb1-2 trb2-1 trb3-2, emf2-3, and icu11-5 cp2-1 are similar, and their
289 transcriptomic profiles included 530 and 275 genes that are similarly upregulated or
290 downregulated, respectively. Only 548 (17%) and 337 (19%) genes were exclusively
291 upregulated and downregulated, respectively, in icu11-5 cp2-1 but not in emf2-3, clf29 swn-
292 21, ortrb1-2 trb2-1 trb3-2 (Figure 3C, F).

293 Hierarchical clustering of the icu11-5 and icu11-5 cp2-1 transcriptomic profiles and
294  those of mutants affected in genes encoding PRC2 core components and accessory
295 components, as well as PRC1 core components, revealed that icu?17-5 cp2-1 showed a high
296 transcriptomic similarity to emf2-3, and to a lesser extent with trb1-2 trb2-1 trb3-2. The icu11-
297 5 mutant clustered with the mutans affected in PcG genes with milder morphological
298  phenotypes, such as clf-29 (Figure 3G).

299 To ascertain which set of the genes misregulated in icu11-5 c¢p2-1 contributes to its

300 embryonic flower phenotype, we performed k-clustering with the 3500 most variably expressed
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301 genes and a k value of 7 (Figure 3H). Clusters 2, 3, and 4 harbored 453, 762, and 162 genes,
302 respectively, for which the Col-0 inflorescence presented significantly different expression
303 levels compared to the remaining samples. Cluster 2 genes were repressed in Col-0
304 inflorescences, suggesting that these genes are important for vegetative development. On the
305 contrary, 924 genes from clusters 3 and 4 were highly expressed in Col-0 inflorescences,
306  suggesting a role in reproductive development instead. We identified 817 genes from cluster
307 1 (downregulated) and 556 genes from cluster 7 (upregulated) as being coregulated in the
308 icu11-5cp2-1 and emf2-3 embryonic flowers and Col-0 inflorescences in comparison to Col-0
309 seedlings. Moreover, cluster 5 contained 610 genes that are highly expressed in icu11-5 cp2-
310 1 and emf2-3 but not in the remaining samples (Figure 3H). The embryonic flower phenotype
311 oficu11-5 cp2-1 and emf2-3 is therefore likely to be a direct consequence of the misregulation
312 of genes composing clusters 1, 5, and 7. Cluster 6 comprised 140 genes that are
313  downregulated in Col-0 and cp2-1 seedlings, moderately downregulated in icu17-5 seedlings,
314 and upregulated in icu11-5 cp2-1 and emf2-3 embryonic flowers, as well as in Col-0
315 inflorescences (Figure 3H).

316 GO and protein domain enrichment analyses of each k-cluster revealed that the
317  categories enriched in cluster 5 are related to responses to different stimuli, regulation of
318  metabolic processes, and regulation of transcription, being mainly represented by WRKY,
319  NAC, and the Ethylene Responsive Factor (ERF) transcription factors. In cluster 6, only the
320 positive regulation of transcription mediated by RNA polymerase |l category was enriched,
321  represented by 10 MADS-box genes (Supplemental Data Set 8B). In cluster 1, we observed
322  enrichment in processes related to photosynthesis, while cluster 7 included more enriched
323  categories related to responses to biotic and abiotic stresses. In conclusion, our RNA-seq
324  analyses provide evidence of the substantial alteration of transcript levels in the icu11-5 cp2-1
325  double mutant compared to the profiles of the icu?7-5 and ¢cp2-1 single mutants. Additionally,
326  the transcriptomic profile of icu11-5 cp2-1 resembles that of mutants affected in genes
327  encoding the PRC2 core components and accessory proteins, in particular the emf2-3 mutant.
328 Finally, some of the misregulated genes (clusters 1 and 7) in the icu11-5 cp2-1 embryonic
329 flowers are expressed as they are in the wild-type reproductive organs of Col-0 inflorescences.
330

331  Genes misregulated in the icu11-5 cp2-1 double mutant are enriched in PRC2 targets
332 and genes marked with H3K27me3

333  Aprevious report suggested that ICU11 is a H3K36me3 demethylase, based on the substantial
334  decrease of the H3K27me3 repressive mark seen in the icu11-3 mutant (Bloomer et al., 2020).
335  We performed a comparative analysis of the genes misregulated in icu11-5, icu11-5 cp2-1,
336 and emf2-3 with genes known to be marked by H3K27me3, H2AK121ub, and H3K36me3 in
337  Col-0 by chromatin immunoprecipitation (ChlP)-seq published data, which are deposited by
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PRC2, PRC1 and SET DOMAIN-CONTAINING GROUP 8 (SDG8), respectively (Li et al.,
2015; Merini et al., 2017; Sanders et al., 2017; Yang et al., 2014; Zhou et al., 2017). We
determined that the genes marked with H3K27me3 and H2AK121ub in Col-0 are significantly
overrepresented among the DEGs of icu171-5, icu11-5 cp2-1, and emf2-3; genes marked with
H3K36me3 in Col-0 were underrepresented among the DEGs of these mutants (Figure 4A and
Supplemental Table S3). Genes individually targeted by the TRB1, EMF1, and LHP1
accessory proteins of PRC2 and by both CLF and SWN (Kim et al., 2012; Shu et al., 2019;
Veluchamy et al., 2016; Zhou et al., 2018) were significantly enriched among the genes
misregulated in icu11-5, icu11-5 cp2-1, and emf2-3. The TRB1 targets, however, were
underrepresented among the downregulated genes in icu171-5 and icu11-5 cp2-1. Taken
together, these data suggest that most genes misregulated in the icu11-5 ¢p2-1 double mutant

are direct targets of PRC2 or its accessory proteins.
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350 DISCUSSION

351 The TAP-and BiFC-based protein-protein interaction profiles of ICU11 and CP2 partially
352  overlap, pointing to their roles as PRC2 accessory proteins

353 We previously showed that ICUT1 and CP2 are close paralogs whose encoded proteins
354  behave as components of the epigenetic machinery of Arabidopsis, which display unequal
355  functional redundancy (Mateo-Bonmati et al., 2018; Nadi et al., 2023). A co-IP analysis
356 indicated that ICU11 is a PRC2 accessory protein (Bloomer et al., 2020). Very recently, both
357 ICU11 and CP2 were shown by co-IP followed by mass spectrometry to interact with the PRC2
358  accessory proteins TRB1, TRB2 and TRB3, although this result was not discussed by the
359  authors (Wang et al., 2023).

360 Here, we aimed to define the ICU11 and CP2 interactomes and their potential overlap
361  in order to ascertain their epigenetic activities. We confirmed the physical interactions between
362 ICU11 and the core components and accessory proteins of PRC2, through experimental
363  approaches that are complementary to co-IP: TAP-based screens, and heterologous BiFC-
364 based assays. Through these techniques, we also provide evidence that CP2 is likely to play
365 arole as a PRC2 accessory protein, as ICU11 appears to do.

366 Our TAP-based screens revealed different protein-protein interaction profiles for ICU11
367 and CP2, despite their unequal functional redundancy; however, in our BiFC assays, ICU11
368 and CP2 showed similar in vivo interaction profiles. Other examples of partially or completely
369  divergent results obtained from different methods of studying protein-protein interactions have
370 been published for Arabidopsis. One of these examples is given by the pentatricopeptide
371  repeat proteins SLOW GROWTH 2 (SLO2) and MITOCHONDRIAL EDITING FACTOR 57
372  (MEF57), which appeared to interact in mitochondria based on a BiFC assay, but did not
373 interact using co-IP assays (Andrés-Colas et al., 2017). The Arabidopsis circadian clock
374  regulators SPINDLY (SPY) and PSEUDO-RESPONSE REGULATOR 5 (PRR5) interacted in
375 co-IP followed by mass spectrometry, as well as in co-IP followed by the identification of
376 interactors by Western Blot and BiFC assays, but not in yeast two-hybrid (Y2H) assays; in
377  addition interaction between SPY and GIGANTEA (Gl) was detected using Y2H but not by co-
378 |IP either followed by mass spectrometry or Western Blot (Wang et al., 2020).

379 Our results indicate that CP2 can bind to TRBs and other proteins related to PRC2, and
380  suggest that CP2 has the potential to bind to ICU11 interactors with less affinity than ICU11.
381 A similar observation has been made in budding yeast (Saccharomyces cerevisiae), in a
382 protein fragment complementation assay that was performed for 56 pairs of redundant
383  paralogs. For 22 such pairs, one paralog had weaker detectable interactions than the other
384  because of lower abundance or affinity; when the latter was lost, the former compensated for
385 its function by binding to the same partners (Diss et al., 2017). It is of note that for

386 compensating pairs, there was no detectable change in the level of expression of the functional
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387 paralog when the other was deleted. The same appears to hold for CP2 in an icu11
388 background, as CP2 is not upregulated in the jcu?7-5 mutant (this work) or in icu11-1 (Mateo-
389 Bonmati et al., 2018). Another example is provided in human T cells by the retinoblastoma-
390 associated protein p130, which binds to EARLY 2 FACTOR (E2F) transcription factors to
391  control cell proliferation by gene repression. When p130 is depleted, its paralogous p107 gains
392 new interactions with E2F proteins to compensate for the absence of p130 (Mulligan et al.,
393  1998).

394

395 In addition to their morphological phenotypes, the molecular phenotypes of the icu11-
396 5 cp2-1 and emf2-3 embryonic flowers are similar

397  Our RNA-seq analyses revealed that about 21% of Arabidopsis genes were significantly
398 misregulated in the icu11-5 cp2-1 lethal embryonic flowers. Alongside its synergistic
399  morphological phenotype, the icu11-5 cp2-1 double mutant also had six times more
400 misregulated genes than the icu171-5 single mutant, overlapping to a large extent with
401 misregulated genes in mutants affected in the PcG genes with strongly aberrant phenotypes,
402  such as the emf2-3 embryonic flowers and the clf-29 swn-21 callus-like seedlings (Wang et
403 al., 2016). Like in the emf1 and emf2 single mutants, in which many genes related to
404  photosynthesis are repressed (Moon et al., 2003), ICU11 and CP2 appear to be involved in
405 the positive regulation of photosynthesis, photosystem Il assembly, the response to light
406  stimulus, and auxin biosynthesis and signaling. Except for the latter, the downregulation of
407  these genes in icu11-5 cp2-1 and emf2-3 embryonic flowers is also shown in wild-type Col-0
408 inflorescences (Kim et al., 2010; Moon et al., 2003).

409 During vegetative growth, ICU11 and/or CP2 seem to negatively regulate hundreds of
410 genes to ensure the proper repression of genes that induce flowering, the formation of flower
411 organs, the response to phytohormones, and abiotic stress. Genes encoding homeobox,
412 MADS-box, and MYB, AP2/ERF and NAM/NAC domain transcription factors were enriched
413  among the icu11-5 cp2-1 upregulated DEGs. These genes were also highly expressed in Col-
414 0 inflorescence meristems, where they play a crucial role in floral meristem development
415  (Jofuku et al., 1994; Zhang et al., 2014; Zhang et al., 2009). Our k-mean clustering analysis of
416 the most differentially regulated genes allowed the identification of a set of 1573 genes
417  (clusters 1, 6, and 7 in Figure 3) that are expressed similarly in the icu11-5 cp2-1 and emf2-3
418  embryonic flowers and Col-0 inflorescences. Another set encompassed 1377 genes (clusters
419 2, 3, and 4) that are exclusively differentially expressed in Col-0 inflorescences. Finally, a set
420 of 610 genes (cluster 5) comprised those highly upregulated only in icu11-5 cp2-1 and emf2-
421 3, and slightly upregulated in the icu11-5 single mutant seedlings. This last set of genes was
422  characterized by GO enrichment related to the responses to chemicals, oxygen-containing

423  compounds, drugs, chitin and inorganic substances and stimuli, the regulation of metabolic
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424  and biosynthetic processes, with 54 genes involved in regulation of transcription. Our results
425  explain the embryonic flower phenotypes of icu11-5 cp2-1 and emf2-3, given that there are
426 696 and 817 common up- and down-regulated genes with the wild-type inflorescence,
427  respectively (clusters 1, 6, and 7), but also their failure to form a proper inflorescence, as
428  expected from the 1377 genes that behave differently in the Col-0 inflorescences (clusters 2,
429 3, and 5). In conclusion, the similarity of not only the morphological but also the molecular
430 phenotypes of icu11-5 cp2-1 and emf2-3 provides further support for the hypothesis that both
431  ICU11 and CP2 are PRC2 accessory proteins.

432

433  Our interactomic and transcriptomic data suggest that CP2 can replace ICU11

434  Bloomer et al. (2020) proposed that ICU11 is a H3K36me3 demethylase. The depletion of a
435 protein involved in the removal of an activating mark is expected to yield predominantly
436  upregulated genes, which is in line with the pattern of misregulation detected here. This pattern
437 has also been observed for lack-of-function alleles of the JMJ17 and JMJ14 genes, whose
438 encoded proteins remove the H3K4me1/2/3 activating marks (Huang et al., 2019; Ning et al.,
439  2015). The H3K36me3 mark antagonizes the deposition of H3K27me3 by PRC2 (Yang et al.,
440 2014), which may explain the requirement of ICU11 for the deposition of the latter mark at the
441  FLC locus by PRC2 during vernalization (Bloomer et al., 2020). It is therefore reasonable to
442  assume that the transcriptomic profile of icu11-5 ¢p2-1 is similar to that of a strong PcG mutant,
443  such as emf2-3, because PRC2 cannot deposit H3K27me3 when the H3K36me3 mark cannot
444  be removed.

445 Our comparison of the transcriptional misregulation of icu11-5, icu11-5 cp2-1 and
446  emf2-3 with published ChIP-seq data reveals that genes marked by H3K27me3 and
447  H2AK121ub or targeted by PRC2 core components and accessory proteins are
448  overrepresented among the genes misregulated in these three mutants; the morphological and
449 transcriptomic alterations observed for these genotypes are likely to be due to defective PRC2
450 repression on a substantial set of genes. If ICU11 and CP2 targets are not marked with
451 H3K36me3 in Col-0, this would explain the underrepresentation of H3K36me3 marked genes
452  among the differentially expressed genes in icu11-5 and icu11-5 cp2-1.

453 We propose that ICU11 interacts with PRC2 core and accessory proteins, some of
454  which recruit ICU11 to their target genes, so ICU11 can demethylate H3K36me3 and PRC2
455  can deposit H3K27me3 afterwards (Figure 5A). In the icu11 mutants, although CP2 has less
456  affinity for PRC2 core and accessory proteins, it can substitute ICU11 and demethylate
457  H3K36me3 (Figure 5B). In the icu11-5 cp2-1 double mutant, the H3K36me3 mark cannot be
458 removed, leading to an impairment of PRC2 repression, resulting in the characteristic
459  embryonic flower phenotype (Figure 5C). Since this does not explain the wild-type function of

460 CP2, further research will be required to assess the specific function of CP2.
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461

462 TRB and NAC proteins may recruit both ICU11 and CP2

463 ICU11 was previously described as a putative H3K36me3 demethylase, required for the
464  removal of H3K36me3 during vernalization to allow the deposition of H3K27me3 (Bloomer et
465  al., 2020). The interaction of both ICU11 and CP2 with TRB1, TRB2, and TRB3 suggests that
466 these TRB proteins may recruit ICU11 and CP2 to their chromatin targets (Zhou et al., 2018).
467  This hypothesis is reinforced by the similar embryonic flower phenotypes and transcriptomic
468  profiles of the icu11 cp2 double mutants and the trb7-2 trb2-1 trb3-2 triple mutant.

469 The Arabidopsis genome encodes 21 20GD proteins of the JMJ class, some of which
470 are known to be involved in histone demethylation (Lu et al., 2008; Nadi et al., 2018). The
471  H3K4 demethylase JMJ14 interacts with the NAC050 and NACO052 transcription factors
472  through its phenylalanine/tyrosine-rich C-terminal (FYRC) domain, and plays an essential role
473  in controlling flowering time (Ning et al., 2015). Here, we showed that ICU11 and CP2 also
474  interact with NAC050 and NACO052, even though unlike JMJ14, ICU11 and CP2 do not have
475 FYRC or FYRN domains. It is of note that neither NACO50 nor NAC052 were identified as
476  ICU11 interactors by Bloomer et al. (2020), although JMJ14 was. NAC050 and/or NAC052
477  might recruit ICU11 and CP2 to their targets.

478 We also found three paralogous nuclear proteins that were not previously described as
479  ICU11 interactors: At5g66000, At3g17460 and AT4G35510. At3g17460 and At4g35510 have
480 a PHD domain. Bloomer et al. (2020) showed that the protein encoded by At5g66000 interacts
481  with ICU11, EMF1 and CLF, that At3g17460 interacts with ICU11 and that At4g335510
482 interacts with CLF. We also showed that CP2 interacts with DRMY1 and DP1. Given that both
483 ICU11 and CP2 lack any known DNA- or chromatin-binding domain, our results indicate they
484  interact with proteins that may mediate their interaction with DNA or chromatin. Taken together,
485  our interactome and transcriptome data confirm that ICU11 is a PRC2 accessory protein, and

486  strongly suggest that CP2 also does this role for the correct deposition of H3K27me3 by PRC2.
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487 METHODS

488 Plant materials, culture conditions, and crosses

489 The Nottingham Arabidopsis Stock Center (NASC) provided seeds for the wild-type
490  Arabidopsis thaliana (L.) Heynh. accession Columbia-0 (Col-0, N1092), and the mutants cp2-
491 1 (N861581, in the Col-0 genetic background) and emf2-3 (N16240, in Col-0). The icu11-5 (in
492  Col-0) single mutant was obtained using CRISPR/Cas9 mutagenesis and was described
493  previously by Nadi et al. (2023). The presence and position of all mutations were confirmed by
494 PCR amplification using gene-specific primers and, if required, Sanger sequencing
495  (Supplemental Table S4).

496 Unless otherwise stated, plants were grown under sterile conditions in 150-mm Petri
497  plates containing 100 ml half-strength Murashige and Skoog (MS) agar medium with 1% (w/v)
498  sucrose at 20°C = 1°C, 60-70% relative humidity, and continuous illumination at ~75 pmol m-
499 2571, as previously described (Ponce et al., 1998). The crosses were performed as previously
500 described (Quesada et al., 2000). Unless otherwise stated, all plants studied in this work were
501  homozygous for the indicated mutations.

502

503 Gene constructs

504  All inserts were PCR amplified using Phusion High Fidelity Polymerase (Thermo Fisher
505  Scientific, Waltham, MA, USA), primers containing attB sites at their 5’ ends (Supplemental
506 Table S4), and Col-0 complementary DNA (cDNA) as a template. The PCR products were
507  purified using an lllustra GFX PCR and Gel Band Purification Kit (Cytiva, Marlborough, MA,
508 USA) and then cloned into the pGEM-T Easy221 vector and transferred to Escherichia coli
509 DHb5a cells, as previously described (Mateo-Bonmati et al., 2018).

510

511  Tandem affinity purification assays

512  To obtain the GSRhino-TAP-tagged ICU11 or CP2 fusions (Supplemental Table S5), the
513 pGEM-T Easy221 vector harboring the ICU71 or CP2 full-length coding sequences without
514  their stop codons, together with the vectors pEN-L4-2-R1 and pEN-R2-GSrhinotag-L3, were
515  recombined into the pKCTAP destination vector, as previously described (Van Leene et al.,
516  2015). PSB-D Arabidopsis cell suspension cultures were transformed with Agrobacterium
517  tumefaciens cells carrying the constructs and the TAP purification of the GSRhino-TAP-tagged
518 ICU11 and CP2 fusions was performed as previously described (Garcia-Ledn et al., 2018; Van
519 Leene et al., 2015). Two independent TAP assays were performed for each fusion protein.
520 Proteins were identified using nano liquid chromatography—mass spectrometry (LC-MS)/MS
521  at the Centro Nacional de Biotecnologia (CNB, Madrid). Tandem mass spectra were searched
522  against the Araport11 annotation of the Arabidopsis genome (Cheng et al., 2017) using the
523 MASCOT search engine (Perkins et al., 1999). Experimental background proteins were

16


https://doi.org/10.1101/2024.03.15.585069
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.15.585069; this version posted March 15, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

524  subtracted based on 40 TAP experiments performed on wild-type cultures and cultures
525 accumulating GSRhino-TAP-tagged GUS, RFP, and GFP fusion proteins (Van Leene et al.,
526  2010).

527

528 BIFC assays in Nicotiana benthamiana leaves and confocal microscopy

529  To obtain translational fusions for the BiFC assays, the pGEM-T Easy221 vector harboring the
530 full-length ICU11, CP2, TRB1, TRB2, TRB3, CLF, LHP1, and SWN coding sequences,
531 including their stop codons, were individually recombined with the pSITE-nEYFP-C1 or pSITE-
532  cEYFP-C1 vectors (Martin et al., 2009). The nEYFP-UBP12 and nEYFP-UBP13 constructs
533 were kindly provided by Dr. Claudia Kdhler (Max Planck Institute, Postdam, Germany)
534  Derkacheva et al., 2016). The BiFC constructs (Supplemental Table S5) were transformed into
535  Agrobacterium (Agrobacterium tumefaciens) strain GV3101 (C58C1 Rif?) cells, which were the
536  grown in suspension as previously described (Derkacheva et al., 2016; Goodin et al., 2002).
537  Briefly, the cells were grown overnight and resuspended in infiltration medium (10 mM MgCl.,
538 150 pg/ml acetosyringone, and 10 mM MES-KOH, pH 5.6) to a final optimal density (ODeoo) <
539 1. After 3 h at room temperature, the Agrobacterium cell suspension was used to infiltrate the
540 leaf abaxial surface of three- to five-week-old Nicotiana benthamiana plants. Leaf tissue
541  samples were water-mounted for confocal visualization 48 h after infiltration.

542 Confocal microscopy was performed with a Nikon D-Eclipse C1 confocal microscope
543  equipped with a Nikon DS-Ri1 camera and processed with the operator software EZ-C1
544  (Nikon, Tokyo, Japan). YFP was excited at 488 nm with an argon ion laser, and the emission
545  signal was collected between 520 nm and 582 nm. The nuclei of the infiltrated leaves were
546  stained with a 0.2 ug ml~" 4',6-diamidino-2-phenylindole (DAPI) solution (Sony Biotechnology,
547  San José, CA, USA). DAPI was excited at 408 nm with a diode laser, and detected with a
548  450/35 nm filter.

549

550 RNA-seq analyses

551 Total RNA was isolated from 100 mg of pooled aerial tissues from Col-0, icu11-5, cp2-1, icu11-
552 5 cp2-1, or emf2-3 seedlings, collected 10 das, and Col-0 inflorescences, collected 40 das,
553  using TRIzol (Thermo Fisher Scientific). The RNA quality of the samples was checked with a
554 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA), and its RNA integrity number
555 (RIN) was always = 6.8. More than 10 yg of RNA per sample was sent to Novogene
556  (Cambridge, UK) for library preparation and massive sequencing on an lllumina Novaseq 6000
557  (lllumina, San Diego, CA, USA).

558 Raw reads were pre-processed using fastp (v.0.21.0; Chen et al., 2018) with default
559  parameters for read trimming, adapter removal, and low-quality read filtering. Pre-processed

560 reads were then aligned to the TAIR10 reference genome (Lamesch et al., 2012) using HISAT2
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561 (v.2.2.0; Kim et al., 2019), with argument “—dta-cufflinks” for downstream compatibility
562  (Supplemental Table S6). Cufflinks (v.2.2.1; Trapnell et al., 2012) was then used for transcript
563 assembly using the TAIR10 structural annotation for reference, and transcripts were quantified
564  with htseq-count to generate read count files (v.0.11.5; Anders et al., 2015). Read counts were
565 normalized with DESeq2 (v.1.30.0; Love et al., 2014), which was then used to detect DEGs)
566  between the sample and control pairs using the combined criteria |log2-fold-change| > 1 and
567 p.adj value < 0.05. Volcano plots were obtained with the volcano plot tool of Galaxy
568  (www.usegalaxy.org; The Galaxy Community, 2022). For principal component analysis we
569  used NetworAnalyst tool (Zhou et al., 2019).

570 Both GO and Protein Domain enrichment analyses of the DEGs were performed using
571  DAVID Bioinformatics tool (v.6.8; Huang da et al., 2009) with default parameters. Heatmaps
572  were obtained using the heatmap.2 function from the gplots R package (v.20 3.0.1) using a
573 total of 11116 genes that were misregulated in at least one of the genotypes under study.
574  Additional RNA-seq data were downloaded from the Gene Expression Omnibus
575  (https://www.ncbi.nlm.nih.gov/geo/) under accession number SRP056594 and from the
576  European Nucleotide Archive (https://www.ebi.ac.uk/ena/browser/) under accession numbers
577 ERP022017 and ERP009986. A principal component analysis and k-means clustering was
578  performed using normalized counts on the iDEP 9.1 web 133 application (Ge et al., 2018).
579  ChlIP-seq data for cross analysis with RNA-seq were obtained from work published by Kim et
580 al. (2012), Li et al. (2015), Merini and Calonje (2015), Sanders et al. (2017), Shu et al. (2019),
581  Veluchamy et al. (2016), Zhou et al. (2017), and Zhou et al. (2018).

582

583 RNA isolation, cDNA synthesis, and qPCR

584  For the RT-qPCR, three biological replicates of seedling aerial tissues were collected 10 das
585 and immediately frozen in liquid nitrogen. Total RNA was extracted using TRIzol (Thermo
586  Fisher Scientific). The removal of contaminating DNA, cDNA synthesis, and qPCR were
587  performed as previously described (Mateo-Bonmati et al., 2018). Each reaction was performed

588 in triplicate and the relative quantification of gene expression was performed using the 2-24Ct

589 method (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008) with the ACTIN2 gene
590 (At3g18780) as a control. All PCR reactions were performed on an Applied Biosystems Step
591  One Plus System (Thermo Fisher Scientific). All PCR primers are listed in Supplemental Table
592  S4; for the mean ACT statistical comparisons, a Mann-Whitney U test was performed.

593

594  Accession numbers

595  Sequence data from this article can be found at The Arabidopsis Information Resource
596  (http://www.arabidopsis.org) under the following accession numbers: ICU711 (At1g22950), CP2
597  (At3g18210), EMF2 (AT5G51230), SWN (AT4g02020), CLF (AT2g23380), TFL2/LHP1
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598  (At5g17690), AG (At4g18960), SHP2 (AT2g42830), STK (AT4g09960), EARLI1 (AT4g12480),
599  PRNT1 (AT3g59220), RNS1 (AT2g02990), TRB1 (AT1g49950), TRB2 (AT5g67580), TRB3
600 (AT3g49850), TRB4 (AT1g17520), and TRB5 (AT1g72740). The raw RNA-seq data were
601  deposited in the Sequence Read Archive (SRA, https://www.ncbi.nim.nih.gov/sra) database
602  under the following accession number: PRINA1081349.
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621 FIGURE LEGENDS

622  Figure 1. In vivo interactions of ICU11 and CP2 with proteins with known epigenetic roles.
623  Bimolecular fluorescence complementation assays showing interaction between the indicated
624  proteins. Individual nuclei of Nicotiana benthamiana leaves co-infiltrated with the constructs
625 nEYFP-ICU11 or nEYFP-CP2 with cEYFP-CLF, cEYFP-LHP1, cEYFP-TRB1, or cEYFP-
626 TRB3. Fluorescent signals correspond to EYFP (A, D, G, J, M, P, S, V, Y, AB), DAPI (B, E, H,
627 K,N,Q, T, W, Z, AC), and their overlay (C, F, I, L, O, R, U, X, AA, AD). Scale bars, 5 um.
628

629 Figure 2. Transcriptomic profiling of icu11-5 ¢p2-1 and emf2-3 embryonic flowers. (A-E)
630 Volcano plots representing differentially expressed genes (DEGs) in cp2-1 (A) and icu11-5 (B)
631  seedlings; icu11-5 cp2-1 (C) and emf2-3 (D) embryonic flowers; and Col-0 (E) inflorescences,
632 all compared to Col-0 seedlings. Blue and red dots indicate significantly downregulated and
633  upregulated genes, respectively, with a Benjamini and Hochberg corrected p-value < 0.05.
634  Total RNA was extracted from three biological samples collected 10 (A-D) or 40 (E) das. (F)
635 Principal component analysis of the transcriptomic profiles showing three clusters: (1) Col-0,
636 cp2-1, and icu11-5 seedlings; (2) icu11-5 cp2-1, and emf2-3 embryonic flowers; and (3) Col-0
637 inflorescences. Each dot represents a biological replicate. (G) Scatterplot showing the positive
638 correlation between the relative expression levels of DEGs of the icu17-5 cp2-1 double mutant
639 and those of the emf2-3 single mutant, both relative to Col-0 seedlings. Log, values ranging
640 from —1.5 to 1.5 were not plotted. The best-fit line is shown as a red dashed line, and the R?
641  value is indicated.

642

643 Figure 3. Comparison of differential expression in the icu11-5 c¢p2-1 double mutant and in
644  mutants lacking function of PRC2 core components or accessory proteins. (A—F) Venn
645  diagrams showing the overlap between upregulated (A—C) and downregulated (D—F) genes in
646 cp2-1 and icu11-5 seedlings and icu11-5 cp2-1 embryonic flowers (A, D), icu11-5 seedlings
647 and trb1 trb2 trb3 embryonic flowers (B, E), and icu11-5 cp2-1, emf2-3 and trb1 trb2 trb3
648 embryonic flowers and clf-29 swn-21 callus-like seedlings (C, F). The abbreviations trb1, trb2,
649  trb3, and Ihp1 stand for the alleles trb1-2, trb2-1, trb3-2, and Ihp1-4, respectively. (G) Heatmap
650 showing the normalized log: fold-change of genes misregulated in the plants studied. Genes
651 represented in red and blue are upregulated and downregulated, respectively. (H) k-means
652 transcriptional clustering of the genotypes under study. Seven clusters and normalized read
653  counts of the 3500 most variable genes were used. N is the number of genes per cluster. The
654  color scale indicates the range of normalized log. fold-change of the 3500 genes.

655

656 Figure 4. Integrated comparison of the chromatin immunoprecipitation-seq data and

657  transcriptomic profiles in icu11-5, icu11-5 cp2-1, and emf2-3 and lists of genome-wide histone
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658 mark distributions or protein targets in Col-0. (A) Overlapping fraction of upregulated and
659 downregulated genes in the indicated mutants with genes marked by H3K27me3, H2AK121ub,
660 and H36K36me3 in Col-0. (B) Overlapping fraction of upregulated and downregulated genes
661 in the indicated mutants with genes bound by the TRB1, EMF1, LHP1, CLF, and SWN proteins
662 in Col-0. Numbers indicate the enrichment factor of overlapping fractions [(number of common
663 genes x number of total Arabidopsis genes)/(number of genes in list 1 x number of genes in
664 list 2)], where enrichment factors > 1 or < 1 indicate more or less overlap than expected
665 between the two independent gene lists, respectively. Asterisks indicate a significant overlap
666 between the RNA-seq and ChlP-seq lists in a Fisher’'s exact test (*P < 0.05 and **P < 0.01).
667

668  Figure 5. Model of the molecular role of ICU11 and CP2 and the effects of their depletion on
669 transcription and phenotype in Arabidopsis. (A) In the wild-type Col-0, ICU11 may bind to the
670 TRB1, TRB2, and TRB3 accessory proteins of PRC2, which recruit ICU11 to its target loci to
671 remove the H3K36me3 activation mark. This enables PRC2 to deposit the repressive mark
672 H3K27me3, leading to the repression of flower development genes, senescence inducers, and
673  photosynthesis repressor genes, promoting proper vegetative development. (B) In the icu11-5
674 mutant, CP2 can only partially compensate for the absence of ICU11 because of its lower
675  affinity for TRB proteins and its less efficient removal of H3K36me3, decreasing the PRC2
676  repressive capacity, which results in an early flowering phenotype. (C) In the icu11-5 cp2-1
677  double mutant, the presence of H3K36me3 at the target loci of ICU11 and CP2 impedes the
678  deposition of H3K27me3, leading to an upregulation of floral and senescence inducers and
679 photosynthetic repressors, resulting in the embryonic flower phenotype. X: full or partial
680  depletion of a protein. /: H3K36me3 removal. <: H3K27me3 deposition. L inhibition of PRC2-
681 mediated H3K27me3 deposition. 1: transcriptional activation. !: transcriptional repression.

682  Scale bars indicate 2 mm.
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683  Supplemental material

684  Supplemental Figure S1. Diagram of the protein-protein interactions of ICU11 and CP2

685 detected in tandem affinity purification (TAP)-based screens.

686  Supplemental Figure S2. Peptides from TRB proteins identified using Liquid Chromatography
687 Electrospray lonization and Tandem Mass Spectrometry (LC-ESI-MS/MS) in ICU11 and
688 CP2 TAP-based screens.

689  Supplemental Figure S3. Controls used for the Bimolecular Fluorescence Complementation
690 (BiFC) assays.

691  Supplemental Figure S4. Validation by reverse transcription-quantitative PCR (RT-gPCR) of
692 some of the genes found to be upregulated in our RNA-seq analyses.

693  Supplemental Table S1. Selected ICU11 and CP2 interactors identified in TAP-based screens.
694  Supplemental Table S2. Number of differentially expressed genes in cp2-1 and icu11-5
695 seedlings, icu11-5 cp2-1 and emf2-3 embryonic flowers, and Col-0 inflorescences,
696 compared to the Col-0 seedlings.

697  Supplemental Table S3. Enrichment of overlapping fractions of chromatin immunoprecipitation
698 (ChlP)-seq and transcriptomic profiles and their statistical significance.

699  Supplemental Table S4. Primer sets used in this work.

700  Supplemental Table S5. TAP and BiFC constructs.

701 Supplemental Table S6. Quality control summary of the RNA-seq analyses

702  Supplemental Data Set DS1. Protein identification in ICU11 and CP2 TAP-based screens.
703  Supplemental Data Set DS2. Differentially expressed genes in the RNA-seq analyses of icu11-
704 5 and cp2-1 seedlings, icu11-5 cp2-1 and emf2-3 embryonic flowers, and Col-0
705 inflorescences.

706  Supplemental Data Set DS3. Protein domains and biological process gene ontology terms
707 enriched among genes deregulated in icu11-5 seedlings.

708  Supplemental Data Set DS4. Protein domains and biological process gene ontology terms
709 enriched among genes deregulated in cp2-1 seedlings.

710  Supplemental Data Set DS5. Protein domains and biological process gene ontology terms
711 enriched among genes deregulated in icu11-5 cp2-1 embryonic flowers.

712  Supplemental Data Set DS6. Protein domains and biological process gene ontology terms
713 enriched among genes deregulated in emf2-3 embryonic flowers.

714  Supplemental Data Set DS7. Protein domains and biological process gene ontology terms
715 enriched among genes deregulated in Col-0 inflorescences.

716  Supplemental Data Set DS8. Biological process gene ontology enrichment analysis from k-
717 means gene clustering.

718

719
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