
MetaDIA: A Novel Database Reduction Strategy for DIA Human Gut Metaproteomics 1 

Abstract 2 

Background: Microbiomes, especially within the gut, are complex and may comprise hundreds 3 

of species. The identification of peptides in metaproteomics presents a significant challenge, as 4 

it involves matching peptides to mass spectra within an enormous search space for complex 5 

and unknown samples. This poses difficulties for both the accuracy and the speed of 6 

identification. Specifically, analysis of data-independent acquisition (DIA) datasets has relied on 7 

libraries constructed from prior data-dependent acquisition (DDA) results. This approach 8 

requires running the samples in DDA mode to construct a library from the identified results, 9 

which can then be used for the DIA data. However, this method is resource-intensive, consumes 10 

samples, and limits identification to peptides previously identified by DDA. These limitations 11 

restrict the application of DIA in metaproteomics research. 12 

Results: We introduced a novel strategy to reduce the search space by utilizing species 13 

abundance and functional abundance information from the microbiome to score each peptide 14 

and prioritize those most likely to be detected. Employing this strategy, we have developed and 15 

optimized a workflow called MetaDIA for analysis of microbiome DIA data, which operates 16 

independently of DDA assistance. Our method demonstrated strong consistency with the 17 

traditional DDA-based library approach at both protein and functional levels. 18 

Conclusion: Our approach successfully created a smaller, yet sufficient database for DIA data 19 

search requirements in metaproteomics, showing high consistency with results from the 20 

conventional DDA-based library. We believe this method can facilitate the application of DIA in 21 

metaproteomics. 22 

Key: Metaproteomics, Human gut microbiome, DIA, DDA-free, diaPASEF  23 
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Introduction  24 

The microbiome encompasses a diverse array of microorganisms residing in different 25 

organisms, ecosystems, and environmental settings such as the human body, animals, plants, 26 

soil, water bodies, and various ecological niches[1, 2]. Metaproteomics serves as a tool for 27 

understanding the roles of proteins within these microbial communities[3]. Mass spectrometry-28 

based proteomics aims to study all proteins in a sample. However, applying these techniques to 29 

the microbiome is challenged by its complexity. Without prior knowledge of the microbes present 30 

in a sample, metaproteomics relies on searching mass spectra against a large database, 31 

making the task of matching peptides and spectra notably challenging. Employing an iterative 32 

search strategy significantly reduces the search complexity in which the final search is against a 33 

database generated from previous searching results [4, 5]. The iterative strategy has been 34 

successfully used but only for the data acquired by data-dependent acquisition (DDA) mode[6, 35 

7], Unfortunately, in DDA mode, only the most abundant precursor ions are selected for further 36 

inquiry, and lower abundant ones are overlooked[8].  37 

In contrast, data-independent acquisition (DIA) uses a set of precursor isolation windows to 38 

collect all the fragments ions indiscriminately[9]. It has shown remarkable robustness, sensitivity, 39 

and reproducibility with fewer missing values[10]. DIA can be coupled with microLC enabling 40 

high-throughput analysis[11]. This makes it particularly suitable for conducting large-scale 41 

analyses. The DIA-PASEF[12] method integrates ion mobility separation with the DIA workflow, 42 

adding a fourth dimension of analyzing ion mobility to the traditional three-dimensional data set. 43 

This not only enriches the structural information of analytes but also enhances ion utilization 44 

efficiency leveraging the linear relation between ion mobility and mass-to-charge ratio. Another 45 

improvement in mass spectrometer scanning speed enables the utilization of smaller isolation 46 

windows in DIA, termed as narrow-window DIA[13]. This approach achieves comprehensive 47 

peptide precursor coverage and high quantitative precision and accuracy. In bioinformatics, the 48 
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development of prediction software for peptide properties (theoretically predicted spectrum[14, 49 

15], retention times[16-18]) enables the querying of DIA datasets without dependence on 50 

libraries generated by DDA. Those predicted libraries even showed better performance than the 51 

measured libraries[19]. Moreover, DIA-specific searching software such as DIA-NN[20, 21], 52 

MaxDIA[22], and Spectronaut have shown reliable results for the identification and quantification 53 

of peptides. The above advantages make DIA increasingly popular in proteomics. However, it is 54 

noteworthy that the benefits conferred by these techniques have not yet been fully extended to 55 

the field of metaproteomics. The main reason is that the inherent complexity of DIA data 56 

requires a much more constrained searching space compared with DDA data. To date, only a 57 

few metaproteomics studies have been done, and they were all compelled to use a spectral 58 

library derived from DDA data[23-25]. The DDA-derived method involves creating a spectral 59 

library from DDA runs for each sample, which is then used to interpret complex mass spectra 60 

from subsequent analyses. This approach requires multiple sample aliquots, extensive mass 61 

spectrometry resources and is limited to detecting peptides previously identified by DDA. 62 

Gladiator[26] uses DIA-Umpire[27] to assemble pseudo-DDA spectra from DIA data for 63 

microbiome samples. The method does not require a DDA-based spectral library for its 64 

operation, however, it still relies on spectrum-centric algorithms and does not fully exploit the 65 

potential advantages of DIA data. 66 

Therefore, to leverage the benefits of DIA in metaproteomics, the searching space needs to be 67 

further reduced. In the previous DDA iterative strategy[7, 28], the high-abundant proteins (HAP) 68 

were used for the first search to infer the species that exist in the sample then all the proteins 69 

belonging to those species were then used for the subsequent search.  However, this database 70 

remains overly extensive when compared to the number of identified peptides. Since the 71 

abundance of species within the microbiome shows significant disparity[29], the species 72 

identified should not be considered equally. The same applies to proteins and peptides. Proteins 73 
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with high abundance and peptides with high detectability[30] or shared among various species 74 

are more likely to be detected. Here we report on a DIA workflow for metaproteomics, called 75 

MetaDIA, that relies on an annotated peptide database. This database comprises peptides that 76 

are anticipated to be detected, leveraging information on species abundance and protein 77 

abundance to score each peptide. We conducted a proof-of-concept experiment on human gut 78 

microbiome data generated by diaPASEF mode[23]. The peptide identification number and 79 

quantitative results obtained through our peptide library are comparable to those from the DDA-80 

based library. Moreover, the species and functional information obtained from both methods are 81 

highly consistent. 82 

 83 

Materials and methods  84 

Reference peptide sequence with detectability score for human gut microbiome 85 

The Unified Human Gastrointestinal Protein (UHGP) catalog, encompassing 4744 assembled 86 

genomes from the human gut microbiome, served as the reference database for this study[31]. 87 

Within this catalog, each protein sequence is uniquely associated with a distinct genome and is 88 

accompanied by detailed taxonomic and functional annotations. The detectability of peptides 89 

derived from these protein sequences was predicted using DeepDetect[30], a deep learning 90 

algorithm specifically designed for this purpose. This process involved in silico digestion of the 91 

protein sequences and subsequent assignment of a detectability score to each resultant peptide. 92 

Consequently, the peptide sequence reference database was enhanced by annotating each 93 

peptide with three key pieces of information: the genome identifier, the protein identifier, and the 94 

peptide's detectability score. Please note that the database is structured on an identifier-centric 95 

organization. This means that peptides with identical sequences may be present within the 96 
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database; however, as long as they are not from same genome and protein, they are 97 

distinguished by unique identifiers. 98 

Generation of FuncTax score 99 

Firstly, identified peptides by MetaPep[32] are mapped to the UHGP database to establish 100 

peptide-genome associations. Subsequently, a greedy algorithm is employed to identify the 101 

minimal set of genomes that encompasses all peptide sequences, effectively reducing the 102 

complexity of the dataset. Following this, the intensity of each peptide is aggregated to infer 103 

genome abundance. The relative genome abundance will be used as the taxonomic score. To 104 

address the assignment of shared peptides, a razor strategy is adopted, analogous to the 105 

MaxQuant approach for protein inference[33]. Specifically, when a peptide is found in multiple 106 

genomes, it is attributed to the genome with the greater number of associated peptides. 107 

However, this typically results in approximately 1,000 genomes remaining, with many containing 108 

only a single peptide. The number substantially larger than that is found in a typical human gut 109 

microbiome which is around 200[29]. So, we only choose the most abundant species for 110 

subsequent analysis. The selection of species for consideration is further explored in the 111 

optimization section of the study. 112 

For the functional score, we constructed a fixed table from the MetaPep project [32]. While 113 

building the database Metapep, the peptide identification was performed by the software 114 

MetaLab MAG[7],  which provides quantifications of protein abundance. Those proteins are well 115 

annotated. Subsequently, the relative abundance of each Clusters of Orthologous Groups (COG) 116 

accession was computed. Samples comprising fewer than 1000 COG accessions were 117 

considered to be of low quality and consequently were omitted from the analysis. A total of 118 

1,031 high-quality samples were retained for further evaluation. The mean of non-zero relative 119 

abundance of the COG accessions was then determined across these 1,031 samples, 120 

establishing a metric referred to the functional score. 121 
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The FuncTax score was obtained by multiplying two scores. In the case of peptides with the 122 

same sequence, their FuncTax scores were combined to give higher priority to shared peptides; 123 

the highest detectability score among them was utilized to ensure the inclusion of all possible 124 

peptides. 125 

Taxonomic and functional analysis 126 

The taxonomic analysis is similar to the generation of genomic abundance score.  The identified 127 

peptides are mapped to a database to establish peptide-genome associations. The database 128 

contains only the top 50 genomes. In our workflow, the peptide database was filtered out from 129 

the top 50 genomes. So, all the identified peptides were from the top genomes and thus can be 130 

used for the taxonomic analysis (the peptides added from MetaPep may not be used). In the 131 

DDA-based method, the peptide identified by the DDA library can be annotated to over 1,000 132 

genomes even after using the greedy algorithm described above (method: generation of 133 

FuncTax score). However, we found that the top 50 genomes accounted for 79%-90% of 134 

peptides and 87%-92% of peptide intensity (Supplementary Figure 1). To simplify the 135 

comparison between the two methods, we discarded the small number of peptides that cannot 136 

be annotated to the top 50 genomes. Similarly, the razor strategy is used to process peptides 137 

shared by multiple genomes. Finally, the intensity of each peptide is aggregated to infer genome 138 

abundance. 139 

For functional analysis, a protein abundance was firstly generated using the same strategy as 140 

taxonomic analysis. The proteins in the UHGP database have been extensively annotated thus 141 

the protein abundance can be further interpreted into functional abundance. 142 

Deepdetect software configuration  143 
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Protein digestion was simulated using Trypsin with the following parameters: a maximum of two 144 

missed cleavages, and peptide lengths ranging from 7 to 50 amino acids. Default settings were 145 

applied for all other parameters.  146 

DIA software configuration  147 

DIA-NN (version 1.8.1) was used to process all the DIA data in this study. Maximum mass 148 

accuracy tolerances were set to 10�ppm for both MS1 and MS2 spectra. The --relaxed-prot-inf 149 

option was used for library-free searching. The --no-maxlfq option was used to disable the 150 

normalization for the quantification benchmark experiment. All other settings were left default. 151 

The precursor matrix containing the peptide information was used for taxonomic and functional 152 

analysis. 153 

Metaproteomic datasets 154 

The dataset used for optimizing workflow is sourced from a published study and shared by the 155 

authors[23]. The dataset for evaluating accuracy is from in-house samples. Blautia 156 

hydrogenotrophica (DSM 101114; Leibniz Institute DSMZ- German collection of microorganisms 157 

and cell cultures) was cultured in LB broth. The human stool was collected from a healthy adult 158 

volunteer at the University of Ottawa, Ottawa, ON, CAN. The protocol (# 20160585-01H) was 159 

approved by Ottawa Health Science Network Research Ethics. The protein extraction and 160 

digestion were performed as described previously[34]. Peptide concentrations were measured 161 

using Thermo Scientific Pierce Quantitative Colorimetric Peptide Assays according to the 162 

manufacturer’s directions.  163 

The in-house samples were then analysed using an UltiMate 3000 RSLCnano system (Thermo 164 

Fisher Scientific, USA) coupled to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher 165 

Scientific, USA). Peptides were loaded onto a tip column (75 μm inner diameter ×15 cm) packed 166 

with reverse phase beads (3 μm/120 Å ReproSil-Pur C18 resin, Dr. Maisch HPLC GmbH). A 60 167 
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min gradient of 5 to 35% (v/v) from buffer A (0.1% (v/v) formic acid) to B (0.1% (v/v) formic acid 168 

with 80% (v/v) acetonitrile) at a flow rate of 300 μL/min was used. The mass spectrometer was 169 

in data-independent mode covering the mass range of 380–980 m/z with 10�m/z isolation 170 

windows. � 171 

Availability of the pipeline 172 

The whole pipeline is available for use at https://github.com/northomics/MetaDIA 173 

 174 

Result 175 

MetaDIA Workflow overview: Taxonomy- and function-guided construction of peptide 176 

database for metaproteomics 177 

Here we propose a new workflow for DIA based metaproteomics called MetaDIA. MetaDIA is a 178 

multistep workflow that systematically reduces the search space for DIA searching. At its basis, 179 

it relies on a combination of taxonomic abundance, functional abundance as a proxy of protein 180 

levels, and peptide detectability ultimately enabling DIA searching without the need for DDA 181 

results. Briefly, in the first step, we created a new database of peptides, called MetaPepDetec, 182 

obtained by in silico digestion and detectability prediction of the Unified Human Gastrointestinal 183 

Protein (UHGP, 4744 genomes) database into peptides[30, 31]. Then each peptide is annotated 184 

with a FuncTax score (Figure 1). Both the FuncTax and the detectability scores are used to 185 

reduce the peptide database.  186 

The FuncTax scores for each peptide in the MetaPepDetec are calculated using information 187 

from the MetaPep database [32]. MetaPep is a core peptide database compiling peptides 188 

previously identified in the published human gut metaproteomics studies. The information from 189 

MetaPep was used to create a static table of COG relative functional abundances and a 190 
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sample-specific table of taxonomic relative abundances (method). We noted that despite 191 

significant differences in the species composition of gut bacteria among different individuals, 192 

their functions are remarkably similar[35]. Therefore, functional abundance hierarchy 193 

information could act to estimate the likelihood of a protein being observed. We analyzed the 194 

search results used to construct the MetaPep database which contains 2,134 raw files and 415 195 

individuals[32] (Method). The functional ranking among various samples exhibits a strong 196 

correlation (Supplementary Figure 2a and 2b). We observed a stable pattern in the functional 197 

hierarchy of human gut bacteria: abundant functions consistently remain high, while scarce 198 

functions persistently stay low across all samples (Supplementary Figure 2c and Supplementary 199 

File 1). The sample-specific table of taxonomic relative abundances was generated by 200 

searching the DIA data against MetaPep[32]. The identified peptides and their quantitation were 201 

used to create the table (Method). The FuncTax score for each peptide is calculated by 202 

multiplying the taxonomic score for its taxonomic annotation and the functional score of its 203 

functional annotation. For peptides with identical sequences, their FuncTax scores were 204 

aggregated thereby leading to shared peptides having a higher ranking. 205 

In the last step, sample-specific reduced peptide database is generated by filtering 206 

MetaPepDetec using the FuncTax score and the detectability score (Figure 1). The final search 207 

of the DIA data is done against the reduced peptide database. To validate the efficiency of our 208 

peptide ranking method, peptides were sorted by FuncTax score and partitioned into equal-209 

sized subsets based on their percentile rank (e.g., top 0-5%, 5-10%, ..., 35-40%). Each subset 210 

was subjected to database searching with uniform parameters. We observed a decline in the 211 

number of peptides identified as the percentile ranking of the subsets decreased (Figure 2). The 212 

decreasing trend suggested our ranking method effectively prioritizes peptides with a higher 213 

probability of detection. 214 

Optimized MetaDIA parameters reduces the database size 215 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.585104doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585104
http://creativecommons.org/licenses/by-nc-nd/4.0/


We explored whether the number of microbes in the reduced peptide database, the threshold 216 

for FuncTax score and the threshold for detectability score influenced the identification of 217 

peptides. We explored the impacts of the parameters using the DIA data from 10 different 218 

human gut microbiome samples previously reported[23] (Supplementary File 2, sample 219 

information).  220 

In particular, we first tested effect of the number of microbes (genomes) ranging from 50 to 150 221 

and FuncTax score ranging from top 1% to 40% (Figure 3). We keep the detectability threshold 222 

at the top 40% in this experiment which is suggested by the author of Deepdetect[30].  223 

Interestingly, no mater how many genomes we choose, the size of the reduced peptide 224 

database had the strongest effect on the number of identified peptides. The identification 225 

number plateaued once the reduced peptide database size reached around 1.6 million entries 226 

(Figure 3a and 3b, Supplementary Figure 3 and 4), corresponding to a FuncTax score threshold 227 

of 40% for 50 genomes, 20% for 100 genomes and 15% for 150 genomes respectively. We 228 

compared the three different reduced peptide databases, which led to consistent peptide 229 

identification results (Figure 2c and 2d, Supplementary Figure 5 and 6). In our previous studies, 230 

we observed that low-abundance species were underrepresented[8]. In this context, we chose 231 

to focus on the top 50 genomes to prioritize high-abundance genomes. It is important to note 232 

that this cut-off is a variable parameter that can be adjusted according to the specific objectives 233 

of different studies. 234 

Subsequently, we explored whether the detectability threshold impacted the number of peptides 235 

identified. While the recommended threshold by the author of Deepdetect is 40%, we explored 236 

thresholds ranging from 40% to 10%. We observed that a threshold of 25% was the point at 237 

which the number of identifications began to decrease significantly (Figure 4a). However, both 238 

the database size and the search time decreased substantially (Figure 4b). Comparing the 239 

identification results at thresholds of 25% and 40%, we found a substantial overlap (Figure 4c). 240 
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Therefore, we selected a 25% threshold for detectability. Based on this analysis, we proceeded 241 

with peptides ranking in the top 40% by FuncTax score and the top 25% by detectability. Given 242 

that these two scores are entirely uncorrelated, applying both filters effectively reduced the 243 

database to one-tenth of its original size (25% times 40%, Supplementary Figure 7). After 244 

applying these optimized parameters, approximately 1 million peptide sequences remain in the 245 

reduced database. 246 

MetaDIA maintains accuracy in DIA peptide identification 247 

We next explored whether the enrichment of high abundant and highly detectable peptides in 248 

our reduced database impacted the accuracy of peptide identification when applying the false 249 

discovery rate strategy. To evaluate this, we conducted a benchmark experiment using three 250 

samples: a human gut microbiome sample (A), a Blautia hydrogenotrophica sample (C), and a 251 

50:50 mixed sample of the two (B) (Figure 5a). Blautia hydrogenotrophica was selected due to 252 

its absence in the microbiome sample used here and its minimal peptide overlap with the 253 

microbiome sample. Each sample was subjected to triplicate DIA measurements. Sample A and 254 

B were analyzed using the reduced peptide database generated by our workflow with optimized 255 

parameters of top 40% FuncTax score and top 25% detectability score, whereas sample B and 256 

C were searched against species-specific protein databases derived from NCBI (Genome 257 

assembly ASM15797v1). In the first search against the peptide database, 32,624 unique 258 

peptides were identified. Of these, 1,952 peptides also present in the Blautia hydrogenotrophica 259 

database were excluded. Further, peptides unique to each sample were removed, leaving 260 

27,830 peptides identified in both sample A and B. Ideally, the peptide abundance ratio between 261 

samples A and B should approximate 2. In the second search, 14,821 unique peptides were 262 

identified. Among these, 10,995 peptides were unique to the Blautia hydrogenotrophica 263 

database and were found in both samples B and C. The expected ratio between samples B and 264 

C should be around 0.5. We found whether using a protein database or a peptide database, the 265 
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ratios of peptides identified in both searches closely aligned with the expected values (Figure 266 

5b). This suggests that the employment of our reduced peptide database does not significantly 267 

affect the accuracy of peptide identification, thereby supporting its use in peptide identification 268 

workflows with a controlled FDR.  269 

MetaDIA yields consistent peptide and protein identification results with DDA based 270 

strategies. 271 

We next evaluated whether MetaDIA performed similarly to a conventional DDA-based library 272 

for DIA data analysis. The DIA data and corresponding DDA-based library were obtained from a 273 

published study[23]. We found that the MetaDIA provided identification numbers comparable to 274 

those obtained through the DDA-based library (Figure 6a). Notably, in certain instances, such as 275 

with samples 8 and 9, the MetaDIA surpassed DDA library in the number of identifications. The 276 

initial step in our workflow involves searching the raw data against MetaPep, which leverages 277 

the results from an open search strategy, thereby encompassing modified peptides not included 278 

in the original database. Subsequent integration of peptides identified by MetaPep into a refined 279 

peptide database resulted in a marked increase in identification rates (Figure 6a).  280 

Over 50% of peptides identified from the DDA-based library were also identified by MetaDIA 281 

(Figure 6b and Supplementary Figure 8). The divergence in unique identifications between the 282 

two methods may be attributed to inherent differences between DDA acquisition and DIA 283 

acquisition. Upon examining the quantification results of those peptides found by both methods, 284 

we observed a significant consistency in the outcomes, with a Pearson coefficient above 0.9 285 

(Figure 6d and Supplementary Figure 9). It is worth noting that the fragment ions used for 286 

quantification in the DDA-based library correspond to actual DDA acquisitions. In contrast, 287 

MetaDIA uses theoretical spectra that are predicted from peptide sequences. The high degree 288 

of agreement between the quantification results underscores the reliability of the MS-Simulator 289 

algorithm which is employed by DIA-NN for spectra prediction [14].  290 
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At the protein level, our findings revealed greater consistency in identification compared to the 291 

peptide level (Figure 6c). Around 70% of proteins found by the DDA-based library can be found 292 

by MetaDIA. The overlap on protein level reinforces the reliability of the identifications and 293 

indicates that a significant subset of proteins is consistently identified by both methods despite 294 

differences at the peptide level (Supplementary Figure 10). Proteins like 295 

GYG000002545_00035 had greater sequence coverage and higher detection intensity with the 296 

DDA library, while others like MGYG000002272_00452 showed higher coverage and intensity 297 

with MetaDIA. Given that the quantification of a protein is derived from different subsets of 298 

peptides in these two methods, we observed reduced consistency of quantification in the protein 299 

level between the methods, as reflected by Pearson correlation coefficients of approximately 0.7 300 

(Figure 6e and Supplementary Figure 11). However, it is important to note that in most 301 

proteomic studies, the primary interest lies in the differential abundance of the same protein 302 

across various samples. Therefore, it is crucial that we use the same fragment ions to quantify a 303 

protein. In this regard, the inconsistencies in protein quantification between the two methods do 304 

not undermine the utility of either approach. The substantial overlap in peptide and protein 305 

identification by both methods suggests a robust cross-validation of both methods. Then we 306 

annotated the proteins using COG accessions and calculated their relative abundances. Our 307 

analysis revealed that approximately 90% of the COG accessions identified by the DDA-based 308 

method were also covered by our MetaDIA (Figure 6c). Furthermore, the Pearson correlation 309 

coefficient for the relative abundance of COG accessions exceeded 0.9, with a stronger 310 

correlation for those COG accessions that were highly abundant (Figure 6f and Supplementary 311 

Figure 12). 312 

MetaDIA provides taxonomic profiles highly similar to those obtained from searching 313 

DDA-libraries. 314 
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We verified whether both methods had a high degree of similarity in the taxonomic composition. 315 

We did comparative analysis of microbiome composition across different taxonomic levels using 316 

the result from both methods. Our findings indicate that there is a significant linear correlation 317 

between the compositions identified by both methods, with the degree of correlation 318 

strengthening at higher taxonomic levels (Figure 7a and b, Supplementary Figure 13). The two 319 

methods showed remarkably consistent taxonomic composition at the genus level with a 320 

Pearson coefficient above 0.98 across all the samples tested. Even Sample 9, which displayed 321 

the lowest correlation, demonstrated a substantial degree of consistency between the two 322 

methods. To underscore the consistency, we have provided a detailed visualization of the 323 

taxonomic composition for Sample 9 (Figure 7c and d, Supplementary Figure 14) 324 

The species compositions observed by MetaDIA in these ten samples differed significantly as 325 

expected, indicating that our database and taxonomic analysis have the capability to identify a 326 

diverse range of microbiota (Supplementary Figure 14 and Supplementary File 3: searching 327 

result). The most abundant species identified in the ten samples have been previously reported 328 

as high-abundance species in the human gut microbiome[36-40]. Except for Phocaeicola dorei 329 

which were identified as the top species in sample 2, 5 and 10, the other top species were all 330 

unique to each sample.  331 

MetaDIA is universally applicable to different types of DIA, including DIA-PASEF 332 

To further validate the versatility and applicability of our proposed metaproteomic workflow, we 333 

extended our analysis to a diverse set of 79 DIA datasets obtained from a published study[23]. 334 

This dataset encompasses samples from 62 individuals, featuring replicate injections, quality 335 

control (QC) samples, and pooled samples (Supplementary File 2: Sample information). We 336 

applied MetaDIA to this extensive dataset and compared the results with the conventional DDA-337 

based approach. Remarkably, the number of peptides identified by both methods demonstrated 338 

a close equivalence, reinforcing the robustness and universal applicability of our metaproteomic 339 
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workflow (Figure 8). Validating our method across diverse samples enhances confidence in its 340 

effectiveness and consistency, demonstrating its potential for widespread adoption in 341 

metaproteomics research. 342 

 343 

Discussion 344 

We propose a novel workflow for DIA data analysis from human gut microbiome called MetaDIA.  345 

The approach aims at prioritizing peptides with a higher likelihood of detection based on their 346 

detectability, taxonomic and functional scores.  347 

MetaDIA is entirely devoid of DDA, thereby circumventing the drawbacks of DDA-based 348 

methods. Not only does this approach save time and resources, but it also enables the creation 349 

of a tailored database for each sample. In contrast, DDA-based methods typically rely on a 350 

single pooled sample to generate a library. For instance, Gomez et al.[25] used a pooled sample 351 

to represent 12 individual mice, while Sun et al.[23] did so for a cohort of 62 individuals. 352 

However, such a pooled sample may not effectively represent every sample. In our study, the 353 

ten samples showed highly diverse taxonomic composition (Supplementary Figure 13). To 354 

increase the sampling depth for the pooled sample, Sun et al.[23] had to fractionate the pooled 355 

sample into 30 portions and Gomez et al.[25] repeatedly injected the pooled sample 10 times. 356 

Moreover, utilizing a static library to search various samples may potentially compromise the 357 

accuracy of peptide identification, as it includes peptides from the pooled samples that are 358 

absent in the specific sample under investigation.  359 

In MetaDIA, we pre-defined the range of genomes for each microbiome sample (50 genomes in 360 

this study). This approach not only enabled us to narrow the search space but also to mitigate 361 

the issues associated with protein inference that arise from common peptides. When assigning 362 

peptides to proteins, we confined our consideration to the genomes within the predefined range 363 
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rather than the entire dataset. This strategy significantly reduced the incidence of common 364 

peptides.  365 

Although MetaDIA is currently focused on the human gut microbiome, we foresee that it can be 366 

extended to other types of microbiomes, such as those in animal intestines, environmental 367 

microbiomes when using an appropriate bait database. A database similar to MetaPep could be 368 

constructed for other microbiomes. 369 

 370 

Conclusion 371 

In conclusion, we introduced a new strategy to prioritize peptides with a high probability of 372 

detection. This strategy simulates protein digestion procedures in silico and uses taxonomic and 373 

functional information to infer the peptide abundance. MetaDIA is a fully DDA-free workflow and 374 

provides a user interface to change the different parameters. We compared the performance of 375 

MetaDIA with the DDA-based library and observed a high degree of consistency. We further 376 

validated our method across a DIA-PASEF dataset with 79 samples, thereby confirming its wide 377 

applicability. We believe that our approach will help the application of DIA in metaproteomics. 378 
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 424 

Figure 1. The flowchart for the MetaDIA. All proteins in Unified Human Gastrointestinal Protein425 

(UHGP) database were firstly in silico digested into peptides. The detectability of each peptide426 

was predicated by DeepDetect algorithm. Following this prediction, each peptide was assigned427 

a functional score and a taxonomic score, derived from a predetermined functional relative428 

abundance table and a sample-specific taxonomic relative abundance table, respectively429 

(method). The FuncTax score was calculated by multiplying the two scores. For peptides with430 

identical sequence, their FuncTax scores were aggregated to prioritize shared peptides; the431 

maximum of their detectability scores was used to ensure the inclusion of all potential peptides.432 

The detectability and FuncTac scores are both used for filtering peptides. The reduced peptide433 

database was used for a second search.  434 

in 

de 

ed 

ve 

ly 

ith 

he 

s. 

de 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.585104doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585104
http://creativecommons.org/licenses/by-nc-nd/4.0/


 435 

Figure 2. The number of peptides identified from each subset. Ten samples were tested in the 436 

experiment. For constructing the peptide database, the top 100 genomes were considered; the 437 

detectability threshold was set at 40%. Each subset contains around 400,000 peptides. Peptide 438 

identification was performed by DIA-NN under same conditions. The maximum identification 439 

from the last subset was heighted in the figure.  440 
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 441 

Figure 3. Optimization for genome number and FuncTax score (Sample 1 was shown. For the442 

other samples, please see Supplementary figures). Peptides from n (50, 100, 150) genomes443 

were ranked by the FuncTax score and top x% (1-40 for 50 and 100 genomes; 1–35 for 150444 

genomes) peptides was used as database. (a) Number of identified peptides against database445 

percent. (b) Number of identified peptides against database size. The inflection point has been446 

highlighted with a red box. (c) The overlap of the reduced peptide database and (d) identified447 

peptide when taking top 40% peptides for 50 genomes, top 20% for 100 genomes and top 15%448 
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for 150 genomes as database. Peptide identification was performed by DIA-NN under same449 

conditions. 450 

 451 

Figure 4. Optimization for detectability threshold. (a) The number of peptides identified and (b)452 

the searching time under detectability threshold from 10% to 40%. (c) The overlap of peptides453 

identified by top 25% and top 40% of the database. Peptide identification was performed by454 

DIA-NN under same conditions. 455 

e 

b) 

es 

by 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.585104doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585104
http://creativecommons.org/licenses/by-nc-nd/4.0/


456 

Figure 5. Benchmark experiment for peptide identification. (a) The experimental design. Each457 

sample was subjected to triple-run measurements (b) Log-transformed ratios are plotted as a458 

function of peptide intensity for n = 27,830 (green) microbiome peptides and n = 10,995 (purple)459 

Blautia hydrogenotrophica peptides. The point density for ratio was plotted at right. Dashed lines460 

indicate the expected ratio. Peptide identification was performed by DIA-NN under same461 

conditions. The intensities derived from various charge states of the same peptide were462 

aggregated. 463 
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 464 

Figure 6. Comparison between the DDA-based method and DDA-free method. (a) The peptide465 

identified by each method. (b) The overlap of peptide identified in sample 1 by each method. (c)466 

Coverage of peptides, proteins and cog accessions identified by DDA-based method with those467 

found using DDA-free method. The intensity correlation of the overlapped peptides (d), proteins468 

(e) and COG accessions in sample 1. The dashed line indicates y = x. For DDA-based method,469 

the peptides identified as derived from human proteins are removed.  470 
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 471 

Figure 7. Comparison of the taxonomic composition between the DDA-based method and DDA-472 

free method. Pearson correlation (a) and Bray-Curtis distance (b) analysis between DDA-based473 

method and DDA-free method on different taxonomic levels from Phylum to Species. The474 

relative taxonomic abundance was used for the analysis. In the correlation analysis, taxonomic475 

categories that were unique to one method were imputed with a value of zero. The taxonomic476 

composition (Phylum to Family) of sample 9 derived from DDA-based method (c) and DDA-free477 

method (d). 478 
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 479 

Figure 8. Number of peptides identified by both methods with mean value from 79 diaPASEF480 

samples. For DDA-based method, the peptides identified as derived from human proteins are481 

removed.  482 

 483 

Supplementary Figure 1. Cumulative contribution of identified peptides (a) and intensity (b).484 

Figure were plotted against the number of genomes. Genomes are ordered by decreasing485 

peptide count. 486 
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 487 

Supplementary Figure 2. The functional correlation across samples in MetaPep. The Pearson488 

coefficient (a) and Spearman coefficient (b) on COG accessions. Sample pairs from same489 

project are likely from the same individuals and plotted in different groups. The average p value490 

are plotted above each groups. (c) The distribution of relative abundance of COG accession491 

across samples in MetaPep. The legends shows the rank and name of COG accessions. COG492 

accessions present in more than 95% of the samples were retained. A total of 750 COG493 

accessions remained and were subsequently sorted based on their functional abundance494 
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scores. Five COG accessions were selected for density plot at evenly spaced intervals from this495 

ordered list.  496 

 497 

Supplementary Figure 3. Optimization for genome number and FuncTax score (Sample 2-10).498 

Number of identified peptides against database percent. Peptides from n (50, 100, 150)499 

genomes were ranked by the FuncTax score and top x% (1-40 for 50 and 100 genomes; 1–35500 

for 150 genomes) peptides was used as database. Peptide identification was performed by DIA-501 

NN under same conditions.  502 
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 503 

Supplementary Figure 4. Optimization for genome number and FuncTax score (Sample 2-10).504 

Number of identified peptides against database size. The inflection point has been highlighted505 

with a red box. Peptides from n (50, 100, 150) genomes were ranked by the FuncTax score and506 

top x% (1-40 for 50 and 100 genomes; 1–35 for 150 genomes) peptides was used as database.507 

Peptide identification was performed by DIA-NN under same conditions.  508 
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 509 

Supplementary Figure 5. Optimization for genome number and FuncTax score (Sample 2-10).510 

The overlap of reduced peptide database when taking top 40% peptides for 50 genomes, top 20511 

for 100 genomes and top 15% for 150 genomes as database.  512 
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 513 

Supplementary Figure 6. Optimization for genome number and FuncTax score (Sample 2-10).514 

The overlap of identified peptide when taking top 40% peptides for 50 genomes, top 20% for515 

100 genomes and top 15% for 150 genomes as database. Peptide identification was performed516 

by DIA-NN under same conditions. 517 
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 518 

Supplementary Figure 7. The distribution of detectability score and FuncTax score (Sample 1,519 

top 50 genomes). The dotted blue line shows the cutoff for detectability (top 25%) and FuncTax520 

(top 40%).  521 
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 522 

Supplementary Figure 8. The overlap of peptide identified by each DDA-based method and 523 

DDA-free method (Sample 2-10) 524 
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 525 

Supplementary Figure 9. The intensity correlation of the overlapped peptides found by both526 

DDA-based and DDA-free method (Sample 2-10). The dashed line indicates y = x. For DDA-527 

based method, the peptides identified as derived from human proteins are removed.  528 
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 529 

Supplementary Figure 10. The sequence coverage of representative proteins that exhibit the530 

largest relative difference in intensity DDA-based and DDA-free method. 531 

he 
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 532 

Supplementary Figure 11. The intensity correlation of the overlapped proteins found by both533 

DDA-based and DDA-free method (Sample 2-10). The dashed line indicates y = x.  534 

 535 

Supplementary Figure 12. The intensity correlation of the overlapped COG accessions found536 

by both DDA-based and DDA-free method (Sample 2-10). The dashed line indicates y = x.  537 
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 538 

Supplementary Figure 13. Correlation analysis between DDA-based method and DDA-free539 

method on different taxonomic levels from Species to Phylum. The relative abundance was540 

used for the analysis. Taxonomic categories that were unique to one method were imputed with541 

a value of zero. 542 

 543 

Supplementary Figure 14. Comparative Taxonomic Composition of the Microbiome at Levels544 

from Phylum to Species. (a) DDA-Based. (b) DDA-Free. 545 
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 546 

Supplementary Figure 15. UpSet plot illustrating the overlap in genomes identified by the 547 

DDA-free method across ten microbiome samples. The top 40 intersections were plotted. 548 
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