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MetaDIA: A Novel Database Reduction Strategy for DIA Human Gut Metaproteomics

Abstract

Background: Microbiomes, especially within the gut, are complex and may comprise hundreds
of species. The identification of peptides in metaproteomics presents a significant challenge, as
it involves matching peptides to mass spectra within an enormous search space for complex
and unknown samples. This poses difficulties for both the accuracy and the speed of
identification. Specifically, analysis of data-independent acquisition (DIA) datasets has relied on
libraries constructed from prior data-dependent acquisition (DDA) results. This approach
requires running the samples in DDA mode to construct a library from the identified results,
which can then be used for the DIA data. However, this method is resource-intensive, consumes
samples, and limits identification to peptides previously identified by DDA. These limitations

restrict the application of DIA in metaproteomics research.

Results: We introduced a novel strategy to reduce the search space by utilizing species
abundance and functional abundance information from the microbiome to score each peptide
and prioritize those most likely to be detected. Employing this strategy, we have developed and
optimized a workflow called MetaDIA for analysis of microbiome DIA data, which operates
independently of DDA assistance. Our method demonstrated strong consistency with the

traditional DDA-based library approach at both protein and functional levels.

Conclusion: Our approach successfully created a smaller, yet sufficient database for DIA data
search requirements in metaproteomics, showing high consistency with results from the
conventional DDA-based library. We believe this method can facilitate the application of DIA in

metaproteomics.

Key: Metaproteomics, Human gut microbiome, DIA, DDA-free, diaPASEF
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Introduction

The microbiome encompasses a diverse array of microorganisms residing in different
organisms, ecosystems, and environmental settings such as the human body, animals, plants,
soil, water bodies, and various ecological niches[l, 2]. Metaproteomics serves as a tool for
understanding the roles of proteins within these microbial communities[3]. Mass spectrometry-
based proteomics aims to study all proteins in a sample. However, applying these techniques to
the microbiome is challenged by its complexity. Without prior knowledge of the microbes present
in a sample, metaproteomics relies on searching mass spectra against a large database,
making the task of matching peptides and spectra notably challenging. Employing an iterative
search strategy significantly reduces the search complexity in which the final search is against a
database generated from previous searching results [4, 5]. The iterative strategy has been
successfully used but only for the data acquired by data-dependent acquisition (DDA) mode][6,
7], Unfortunately, in DDA mode, only the most abundant precursor ions are selected for further

inquiry, and lower abundant ones are overlooked[8].

In contrast, data-independent acquisition (DIA) uses a set of precursor isolation windows to
collect all the fragments ions indiscriminately[9]. It has shown remarkable robustness, sensitivity,
and reproducibility with fewer missing values[10]. DIA can be coupled with microLC enabling
high-throughput analysis[11]. This makes it particularly suitable for conducting large-scale
analyses. The DIA-PASEF[12] method integrates ion mobility separation with the DIA workflow,
adding a fourth dimension of analyzing ion mobility to the traditional three-dimensional data set.
This not only enriches the structural information of analytes but also enhances ion utilization
efficiency leveraging the linear relation between ion mobility and mass-to-charge ratio. Another
improvement in mass spectrometer scanning speed enables the utilization of smaller isolation
windows in DIA, termed as narrow-window DIA[13]. This approach achieves comprehensive

peptide precursor coverage and high quantitative precision and accuracy. In bioinformatics, the
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development of prediction software for peptide properties (theoretically predicted spectrum[14,
15], retention times[16-18]) enables the querying of DIA datasets without dependence on
libraries generated by DDA. Those predicted libraries even showed better performance than the
measured libraries[19]. Moreover, DIA-specific searching software such as DIA-NN[20, 21],
MaxDIA[22], and Spectronaut have shown reliable results for the identification and quantification
of peptides. The above advantages make DIA increasingly popular in proteomics. However, it is
noteworthy that the benefits conferred by these techniques have not yet been fully extended to
the field of metaproteomics. The main reason is that the inherent complexity of DIA data
requires a much more constrained searching space compared with DDA data. To date, only a
few metaproteomics studies have been done, and they were all compelled to use a spectral
library derived from DDA data[23-25]. The DDA-derived method involves creating a spectral
library from DDA runs for each sample, which is then used to interpret complex mass spectra
from subsequent analyses. This approach requires multiple sample aliquots, extensive mass
spectrometry resources and is limited to detecting peptides previously identified by DDA.
Gladiator[26] uses DIA-Umpire[27] to assemble pseudo-DDA spectra from DIA data for
microbiome samples. The method does not require a DDA-based spectral library for its
operation, however, it still relies on spectrum-centric algorithms and does not fully exploit the

potential advantages of DIA data.

Therefore, to leverage the benefits of DIA in metaproteomics, the searching space needs to be
further reduced. In the previous DDA iterative strategy[7, 28], the high-abundant proteins (HAP)
were used for the first search to infer the species that exist in the sample then all the proteins
belonging to those species were then used for the subsequent search. However, this database
remains overly extensive when compared to the number of identified peptides. Since the
abundance of species within the microbiome shows significant disparity[29], the species

identified should not be considered equally. The same applies to proteins and peptides. Proteins
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with high abundance and peptides with high detectability[30] or shared among various species
are more likely to be detected. Here we report on a DIA workflow for metaproteomics, called
MetaDIA, that relies on an annotated peptide database. This database comprises peptides that
are anticipated to be detected, leveraging information on species abundance and protein
abundance to score each peptide. We conducted a proof-of-concept experiment on human gut
microbiome data generated by diaPASEF mode[23]. The peptide identification number and
guantitative results obtained through our peptide library are comparable to those from the DDA-
based library. Moreover, the species and functional information obtained from both methods are

highly consistent.

Materials and methods

Reference peptide sequence with detectability score for human gut microbiome

The Unified Human Gastrointestinal Protein (UHGP) catalog, encompassing 4744 assembled
genomes from the human gut microbiome, served as the reference database for this study[31].
Within this catalog, each protein sequence is uniquely associated with a distinct genome and is
accompanied by detailed taxonomic and functional annotations. The detectability of peptides
derived from these protein sequences was predicted using DeepDetect[30], a deep learning
algorithm specifically designed for this purpose. This process involved in silico digestion of the
protein sequences and subsequent assignment of a detectability score to each resultant peptide.
Consequently, the peptide sequence reference database was enhanced by annotating each
peptide with three key pieces of information: the genome identifier, the protein identifier, and the
peptide's detectability score. Please note that the database is structured on an identifier-centric

organization. This means that peptides with identical sequences may be present within the
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97 database; however, as long as they are not from same genome and protein, they are

98  distinguished by unique identifiers.

99 Generation of FuncTax score

100  Firstly, identified peptides by MetaPep[32] are mapped to the UHGP database to establish
101  peptide-genome associations. Subsequently, a greedy algorithm is employed to identify the
102  minimal set of genomes that encompasses all peptide sequences, effectively reducing the
103  complexity of the dataset. Following this, the intensity of each peptide is aggregated to infer
104 genome abundance. The relative genome abundance will be used as the taxonomic score. To
105 address the assignment of shared peptides, a razor strategy is adopted, analogous to the
106  MaxQuant approach for protein inference[33]. Specifically, when a peptide is found in multiple
107 genomes, it is attributed to the genome with the greater number of associated peptides.
108  However, this typically results in approximately 1,000 genomes remaining, with many containing
109  only a single peptide. The number substantially larger than that is found in a typical human gut
110  microbiome which is around 200[29]. So, we only choose the most abundant species for
111  subsequent analysis. The selection of species for consideration is further explored in the

112 optimization section of the study.

113  For the functional score, we constructed a fixed table from the MetaPep project [32]. While
114  building the database Metapep, the peptide identification was performed by the software
115  MetalLab MAG[7], which provides quantifications of protein abundance. Those proteins are well
116  annotated. Subsequently, the relative abundance of each Clusters of Orthologous Groups (COG)
117  accession was computed. Samples comprising fewer than 1000 COG accessions were
118 considered to be of low quality and consequently were omitted from the analysis. A total of
119 1,031 high-quality samples were retained for further evaluation. The mean of non-zero relative
120 abundance of the COG accessions was then determined across these 1,031 samples,

121  establishing a metric referred to the functional score.
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122  The FuncTax score was obtained by multiplying two scores. In the case of peptides with the
123  same sequence, their FuncTax scores were combined to give higher priority to shared peptides;
124  the highest detectability score among them was utilized to ensure the inclusion of all possible

125  peptides.

126  Taxonomic and functional analysis

127  The taxonomic analysis is similar to the generation of genomic abundance score. The identified
128  peptides are mapped to a database to establish peptide-genome associations. The database
129  contains only the top 50 genomes. In our workflow, the peptide database was filtered out from
130 the top 50 genomes. So, all the identified peptides were from the top genomes and thus can be
131 used for the taxonomic analysis (the peptides added from MetaPep may not be used). In the
132 DDA-based method, the peptide identified by the DDA library can be annotated to over 1,000
133 genomes even after using the greedy algorithm described above (method: generation of
134  FuncTax score). However, we found that the top 50 genomes accounted for 79%-90% of
135  peptides and 87%-92% of peptide intensity (Supplementary Figure 1). To simplify the
136  comparison between the two methods, we discarded the small number of peptides that cannot
137  be annotated to the top 50 genomes. Similarly, the razor strategy is used to process peptides
138  shared by multiple genomes. Finally, the intensity of each peptide is aggregated to infer genome

139 abundance.

140  For functional analysis, a protein abundance was firstly generated using the same strategy as
141  taxonomic analysis. The proteins in the UHGP database have been extensively annotated thus

142  the protein abundance can be further interpreted into functional abundance.

143  Deepdetect software configuration
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144  Protein digestion was simulated using Trypsin with the following parameters: a maximum of two
145  missed cleavages, and peptide lengths ranging from 7 to 50 amino acids. Default settings were

146  applied for all other parameters.
147 DIA software configuration

148  DIA-NN (version 1.8.1) was used to process all the DIA data in this study. Maximum mass
149  accuracy tolerances were set to 100 1ppm for both MS1 and MS2 spectra. The --relaxed-prot-inf
150 option was used for library-free searching. The --no-maxlfg option was used to disable the
151 normalization for the quantification benchmark experiment. All other settings were left default.
152  The precursor matrix containing the peptide information was used for taxonomic and functional

153  analysis.
154  Metaproteomic datasets

155  The dataset used for optimizing workflow is sourced from a published study and shared by the
156  authors[23]. The dataset for evaluating accuracy is from in-house samples. Blautia
157  hydrogenotrophica (DSM 101114; Leibniz Institute DSMZ- German collection of microorganisms
158 and cell cultures) was cultured in LB broth. The human stool was collected from a healthy adult
159  volunteer at the University of Ottawa, Ottawa, ON, CAN. The protocol (# 20160585-01H) was
160 approved by Ottawa Health Science Network Research Ethics. The protein extraction and
161  digestion were performed as described previously[34]. Peptide concentrations were measured
162 using Thermo Scientific Pierce Quantitative Colorimetric Peptide Assays according to the

163 manufacturer’s directions.

164  The in-house samples were then analysed using an UltiMate 3000 RSLCnano system (Thermo
165  Fisher Scientific, USA) coupled to an Orbitrap Exploris 480 mass spectrometer (Thermo Fisher
166  Scientific, USA). Peptides were loaded onto a tip column (75 pm inner diameter x15 cm) packed

167  with reverse phase beads (3 pm/120 A ReproSil-Pur C18 resin, Dr. Maisch HPLC GmbH). A 60
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168  min gradient of 5 to 35% (v/v) from buffer A (0.1% (v/v) formic acid) to B (0.1% (v/v) formic acid
169  with 80% (v/v) acetonitrile) at a flow rate of 300 pL/min was used. The mass spectrometer was
170  in data-independent mode covering the mass range of 380-980 m/z with 100m/z isolation

171 windows. [

172 Availability of the pipeline

173 The whole pipeline is available for use at https://github.com/northomics/MetaDIA

174

175 Result

176  MetaDIA Workflow overview: Taxonomy- and function-guided construction of peptide

177  database for metaproteomics

178  Here we propose a new workflow for DIA based metaproteomics called MetaDIA. MetaDIA is a
179  multistep workflow that systematically reduces the search space for DIA searching. At its basis,
180 it relies on a combination of taxonomic abundance, functional abundance as a proxy of protein
181 levels, and peptide detectability ultimately enabling DIA searching without the need for DDA
182  results. Briefly, in the first step, we created a new database of peptides, called MetaPepDetec,
183  obtained by in silico digestion and detectability prediction of the Unified Human Gastrointestinal
184  Protein (UHGP, 4744 genomes) database into peptides[30, 31]. Then each peptide is annotated
185  with a FuncTax score (Figure 1). Both the FuncTax and the detectability scores are used to

186  reduce the peptide database.

187 The FuncTax scores for each peptide in the MetaPepDetec are calculated using information
188 from the MetaPep database [32]. MetaPep is a core peptide database compiling peptides
189  previously identified in the published human gut metaproteomics studies. The information from

190 MetaPep was used to create a static table of COG relative functional abundances and a
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191  sample-specific table of taxonomic relative abundances (method). We noted that despite
192  significant differences in the species composition of gut bacteria among different individuals,
193 their functions are remarkably similar[35]. Therefore, functional abundance hierarchy
194  information could act to estimate the likelihood of a protein being observed. We analyzed the
195  search results used to construct the MetaPep database which contains 2,134 raw files and 415
196 individuals[32] (Method). The functional ranking among various samples exhibits a strong
197  correlation (Supplementary Figure 2a and 2b). We observed a stable pattern in the functional
198  hierarchy of human gut bacteria: abundant functions consistently remain high, while scarce
199  functions persistently stay low across all samples (Supplementary Figure 2c and Supplementary
200 File 1). The sample-specific table of taxonomic relative abundances was generated by
201  searching the DIA data against MetaPep[32]. The identified peptides and their quantitation were
202 used to create the table (Method). The FuncTax score for each peptide is calculated by
203  multiplying the taxonomic score for its taxonomic annotation and the functional score of its
204  functional annotation. For peptides with identical sequences, their FuncTax scores were

205  aggregated thereby leading to shared peptides having a higher ranking.

206 In the last step, sample-specific reduced peptide database is generated by filtering
207  MetaPepDetec using the FuncTax score and the detectability score (Figure 1). The final search
208 of the DIA data is done against the reduced peptide database. To validate the efficiency of our
209 peptide ranking method, peptides were sorted by FuncTax score and partitioned into equal-
210  sized subsets based on their percentile rank (e.g., top 0-5%, 5-10%, ..., 35-40%). Each subset
211  was subjected to database searching with uniform parameters. We observed a decline in the
212 number of peptides identified as the percentile ranking of the subsets decreased (Figure 2). The
213 decreasing trend suggested our ranking method effectively prioritizes peptides with a higher

214 probability of detection.

215  Optimized MetaDIA parameters reduces the database size
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216 We explored whether the number of microbes in the reduced peptide database, the threshold
217  for FuncTax score and the threshold for detectability score influenced the identification of
218  peptides. We explored the impacts of the parameters using the DIA data from 10 different
219  human gut microbiome samples previously reported[23] (Supplementary File 2, sample

220  information).

221 In particular, we first tested effect of the number of microbes (genomes) ranging from 50 to 150
222  and FuncTax score ranging from top 1% to 40% (Figure 3). We keep the detectability threshold
223  at the top 40% in this experiment which is suggested by the author of Deepdetect[30].
224  Interestingly, no mater how many genomes we choose, the size of the reduced peptide
225 database had the strongest effect on the number of identified peptides. The identification
226  number plateaued once the reduced peptide database size reached around 1.6 million entries
227  (Figure 3a and 3b, Supplementary Figure 3 and 4), corresponding to a FuncTax score threshold
228  of 40% for 50 genomes, 20% for 100 genomes and 15% for 150 genomes respectively. We
229 compared the three different reduced peptide databases, which led to consistent peptide
230 identification results (Figure 2c and 2d, Supplementary Figure 5 and 6). In our previous studies,
231  we observed that low-abundance species were underrepresented[8]. In this context, we chose
232 to focus on the top 50 genomes to prioritize high-abundance genomes. It is important to note
233 that this cut-off is a variable parameter that can be adjusted according to the specific objectives

234  of different studies.

235  Subsequently, we explored whether the detectability threshold impacted the number of peptides
236  identified. While the recommended threshold by the author of Deepdetect is 40%, we explored
237  thresholds ranging from 40% to 10%. We observed that a threshold of 25% was the point at
238  which the number of identifications began to decrease significantly (Figure 4a). However, both
239  the database size and the search time decreased substantially (Figure 4b). Comparing the

240 identification results at thresholds of 25% and 40%, we found a substantial overlap (Figure 4c).
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241  Therefore, we selected a 25% threshold for detectability. Based on this analysis, we proceeded
242 with peptides ranking in the top 40% by FuncTax score and the top 25% by detectability. Given
243  that these two scores are entirely uncorrelated, applying both filters effectively reduced the
244  database to one-tenth of its original size (25% times 40%, Supplementary Figure 7). After
245  applying these optimized parameters, approximately 1 million peptide sequences remain in the

246 reduced database.

247  MetaDIA maintains accuracy in DIA peptide identification

248  We next explored whether the enrichment of high abundant and highly detectable peptides in
249  our reduced database impacted the accuracy of peptide identification when applying the false
250 discovery rate strategy. To evaluate this, we conducted a benchmark experiment using three
251  samples: a human gut microbiome sample (A), a Blautia hydrogenotrophica sample (C), and a
252 50:50 mixed sample of the two (B) (Figure 5a). Blautia hydrogenotrophica was selected due to
253  its absence in the microbiome sample used here and its minimal peptide overlap with the
254  microbiome sample. Each sample was subjected to triplicate DIA measurements. Sample A and
255 B were analyzed using the reduced peptide database generated by our workflow with optimized
256  parameters of top 40% FuncTax score and top 25% detectability score, whereas sample B and
257 C were searched against species-specific protein databases derived from NCBI (Genome
258 assembly ASM15797vl). In the first search against the peptide database, 32,624 unique
259  peptides were identified. Of these, 1,952 peptides also present in the Blautia hydrogenotrophica
260 database were excluded. Further, peptides unique to each sample were removed, leaving
261 27,830 peptides identified in both sample A and B. Ideally, the peptide abundance ratio between
262  samples A and B should approximate 2. In the second search, 14,821 unique peptides were
263  identified. Among these, 10,995 peptides were unique to the Blautia hydrogenotrophica
264  database and were found in both samples B and C. The expected ratio between samples B and

265  C should be around 0.5. We found whether using a protein database or a peptide database, the
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266  ratios of peptides identified in both searches closely aligned with the expected values (Figure
267  5b). This suggests that the employment of our reduced peptide database does not significantly
268  affect the accuracy of peptide identification, thereby supporting its use in peptide identification

269 workflows with a controlled FDR.

270  MetaDIA yields consistent peptide and protein identification results with DDA based

271  strategies.

272  We next evaluated whether MetaDIA performed similarly to a conventional DDA-based library
273  for DIA data analysis. The DIA data and corresponding DDA-based library were obtained from a
274 published study[23]. We found that the MetaDIA provided identification numbers comparable to
275  those obtained through the DDA-based library (Figure 6a). Notably, in certain instances, such as
276 with samples 8 and 9, the MetaDIA surpassed DDA library in the number of identifications. The
277  initial step in our workflow involves searching the raw data against MetaPep, which leverages
278  the results from an open search strategy, thereby encompassing modified peptides not included
279  in the original database. Subsequent integration of peptides identified by MetaPep into a refined

280  peptide database resulted in a marked increase in identification rates (Figure 6a).

281  Over 50% of peptides identified from the DDA-based library were also identified by MetaDIA
282  (Figure 6b and Supplementary Figure 8). The divergence in unique identifications between the
283 two methods may be attributed to inherent differences between DDA acquisition and DIA
284  acquisition. Upon examining the quantification results of those peptides found by both methods,
285  we observed a significant consistency in the outcomes, with a Pearson coefficient above 0.9
286  (Figure 6d and Supplementary Figure 9). It is worth noting that the fragment ions used for
287  quantification in the DDA-based library correspond to actual DDA acquisitions. In contrast,
288  MetaDIA uses theoretical spectra that are predicted from peptide sequences. The high degree
289  of agreement between the quantification results underscores the reliability of the MS-Simulator

290  algorithm which is employed by DIA-NN for spectra prediction [14].
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291 At the protein level, our findings revealed greater consistency in identification compared to the
292  peptide level (Figure 6¢). Around 70% of proteins found by the DDA-based library can be found
293 by MetaDIA. The overlap on protein level reinforces the reliability of the identifications and
294  indicates that a significant subset of proteins is consistently identified by both methods despite
295 differences at the peptide level (Supplementary Figure 10). Proteins like
296  GYGO000002545_00035 had greater sequence coverage and higher detection intensity with the
297 DDA library, while others like MGYG000002272_00452 showed higher coverage and intensity
298  with MetaDIA. Given that the quantification of a protein is derived from different subsets of
299  peptides in these two methods, we observed reduced consistency of quantification in the protein
300 level between the methods, as reflected by Pearson correlation coefficients of approximately 0.7
301 (Figure 6e and Supplementary Figure 11). However, it is important to note that in most
302 proteomic studies, the primary interest lies in the differential abundance of the same protein
303  across various samples. Therefore, it is crucial that we use the same fragment ions to quantify a
304 protein. In this regard, the inconsistencies in protein quantification between the two methods do
305 not undermine the utility of either approach. The substantial overlap in peptide and protein
306 identification by both methods suggests a robust cross-validation of both methods. Then we
307 annotated the proteins using COG accessions and calculated their relative abundances. Our
308 analysis revealed that approximately 90% of the COG accessions identified by the DDA-based
309 method were also covered by our MetaDIA (Figure 6c). Furthermore, the Pearson correlation
310 coefficient for the relative abundance of COG accessions exceeded 0.9, with a stronger
311  correlation for those COG accessions that were highly abundant (Figure 6f and Supplementary

312  Figure 12).

313  MetaDIA provides taxonomic profiles highly similar to those obtained from searching

314 DDA-libraries.
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315  We verified whether both methods had a high degree of similarity in the taxonomic compaosition.
316  We did comparative analysis of microbiome composition across different taxonomic levels using
317  the result from both methods. Our findings indicate that there is a significant linear correlation
318 between the compositions identified by both methods, with the degree of correlation
319  strengthening at higher taxonomic levels (Figure 7a and b, Supplementary Figure 13). The two
320 methods showed remarkably consistent taxonomic composition at the genus level with a
321  Pearson coefficient above 0.98 across all the samples tested. Even Sample 9, which displayed
322  the lowest correlation, demonstrated a substantial degree of consistency between the two
323  methods. To underscore the consistency, we have provided a detailed visualization of the

324  taxonomic composition for Sample 9 (Figure 7c and d, Supplementary Figure 14)

325  The species compositions observed by MetaDIA in these ten samples differed significantly as
326  expected, indicating that our database and taxonomic analysis have the capability to identify a
327  diverse range of microbiota (Supplementary Figure 14 and Supplementary File 3: searching
328  result). The most abundant species identified in the ten samples have been previously reported
329  as high-abundance species in the human gut microbiome[36-40]. Except for Phocaeicola dorei
330 which were identified as the top species in sample 2, 5 and 10, the other top species were all

331  unique to each sample.

332  MetaDIA is universally applicable to different types of DIA, including DIA-PASEF

333  To further validate the versatility and applicability of our proposed metaproteomic workflow, we
334  extended our analysis to a diverse set of 79 DIA datasets obtained from a published study[23].
335 This dataset encompasses samples from 62 individuals, featuring replicate injections, quality
336  control (QC) samples, and pooled samples (Supplementary File 2: Sample information). We
337 applied MetaDIA to this extensive dataset and compared the results with the conventional DDA-
338 based approach. Remarkably, the number of peptides identified by both methods demonstrated

339  a close equivalence, reinforcing the robustness and universal applicability of our metaproteomic
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340  workflow (Figure 8). Validating our method across diverse samples enhances confidence in its
341  effectiveness and consistency, demonstrating its potential for widespread adoption in

342  metaproteomics research.

343

344 Discussion

345  We propose a novel workflow for DIA data analysis from human gut microbiome called MetaDIA.
346  The approach aims at prioritizing peptides with a higher likelihood of detection based on their

347 detectability, taxonomic and functional scores.

348 MetaDIA is entirely devoid of DDA, thereby circumventing the drawbacks of DDA-based
349  methods. Not only does this approach save time and resources, but it also enables the creation
350 of a tailored database for each sample. In contrast, DDA-based methods typically rely on a
351  single pooled sample to generate a library. For instance, Gomez et al.[25] used a pooled sample
352  to represent 12 individual mice, while Sun et al.[23] did so for a cohort of 62 individuals.
353  However, such a pooled sample may not effectively represent every sample. In our study, the
354 ten samples showed highly diverse taxonomic composition (Supplementary Figure 13). To
355 increase the sampling depth for the pooled sample, Sun et al.[23] had to fractionate the pooled
356 sample into 30 portions and Gomez et al.[25] repeatedly injected the pooled sample 10 times.
357  Moreover, utilizing a static library to search various samples may potentially compromise the
358 accuracy of peptide identification, as it includes peptides from the pooled samples that are

359 absent in the specific sample under investigation.

360 In MetaDIA, we pre-defined the range of genomes for each microbiome sample (50 genomes in
361  this study). This approach not only enabled us to narrow the search space but also to mitigate
362  the issues associated with protein inference that arise from common peptides. When assigning

363  peptides to proteins, we confined our consideration to the genomes within the predefined range
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364 rather than the entire dataset. This strategy significantly reduced the incidence of common

365 peptides.

366  Although MetaDIA is currently focused on the human gut microbiome, we foresee that it can be
367 extended to other types of microbiomes, such as those in animal intestines, environmental
368  microbiomes when using an appropriate bait database. A database similar to MetaPep could be

369 constructed for other microbiomes.

370

3717 Conclusion

372 In conclusion, we introduced a new strategy to prioritize peptides with a high probability of
373  detection. This strategy simulates protein digestion procedures in silico and uses taxonomic and
374  functional information to infer the peptide abundance. MetaDIA is a fully DDA-free workflow and
375 provides a user interface to change the different parameters. We compared the performance of
376  MetaDIA with the DDA-based library and observed a high degree of consistency. We further
377  validated our method across a DIA-PASEF dataset with 79 samples, thereby confirming its wide

378  applicability. We believe that our approach will help the application of DIA in metaproteomics.

379
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425  Figure 1. The flowchart for the MetaDIA. All proteins in Unified Human Gastrointestinal Protein
426  (UHGP) database were firstly in silico digested into peptides. The detectability of each peptide
427  was predicated by DeepDetect algorithm. Following this prediction, each peptide was assigned
428 a functional score and a taxonomic score, derived from a predetermined functional relative
429 abundance table and a sample-specific taxonomic relative abundance table, respectively
430  (method). The FuncTax score was calculated by multiplying the two scores. For peptides with
431 identical sequence, their FuncTax scores were aggregated to prioritize shared peptides; the
432  maximum of their detectability scores was used to ensure the inclusion of all potential peptides.
433  The detectability and FuncTac scores are both used for filtering peptides. The reduced peptide

434 database was used for a second search.
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Figure 2. The number of peptides identified from each subset. Ten samples were tested in the
experiment. For constructing the peptide database, the top 100 genomes were considered; the
detectability threshold was set at 40%. Each subset contains around 400,000 peptides. Peptide
identification was performed by DIA-NN under same conditions. The maximum identification

from the last subset was heighted in the figure.
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442  Figure 3. Optimization for genome number and FuncTax score (Sample 1 was shown. For the
443 other samples, please see Supplementary figures). Peptides from n (50, 100, 150) genomes
444  were ranked by the FuncTax score and top x% (1-40 for 50 and 100 genomes; 1-35 for 150
445  genomes) peptides was used as database. (a) Number of identified peptides against database
446  percent. (b) Number of identified peptides against database size. The inflection point has been
447  highlighted with a red box. (c) The overlap of the reduced peptide database and (d) identified

448  peptide when taking top 40% peptides for 50 genomes, top 20% for 100 genomes and top 15%
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449  for 150 genomes as database. Peptide identification was performed by DIA-NN under same

450 conditions.
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452  Figure 4. Optimization for detectability threshold. (a) The number of peptides identified and (b)
453  the searching time under detectability threshold from 10% to 40%. (c) The overlap of peptides
454  identified by top 25% and top 40% of the database. Peptide identification was performed by

455 DIA-NN under same conditions.
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Figure 5. Benchmark experiment for peptide identification. (a) The experimental design. Each
sample was subjected to triple-run measurements (b) Log-transformed ratios are plotted as a
function of peptide intensity for n = 27,830 (green) microbiome peptides and n = 10,995 (purple)
Blautia hydrogenotrophica peptides. The point density for ratio was plotted at right. Dashed lines
indicate the expected ratio. Peptide identification was performed by DIA-NN under same
conditions. The intensities derived from various charge states of the same peptide were

aggregated.
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the peptides identified as derived from human proteins are removed.
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472  Figure 7. Comparison of the taxonomic composition between the DDA-based method and DDA-
473  free method. Pearson correlation (a) and Bray-Curtis distance (b) analysis between DDA-based
474  method and DDA-free method on different taxonomic levels from Phylum to Species. The
475  relative taxonomic abundance was used for the analysis. In the correlation analysis, taxonomic
476  categories that were unique to one method were imputed with a value of zero. The taxonomic
477  composition (Phylum to Family) of sample 9 derived from DDA-based method (c) and DDA-free

478  method (d).
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488  Supplementary Figure 2. The functional correlation across samples in MetaPep. The Pearson
489  coefficient (a) and Spearman coefficient (b) on COG accessions. Sample pairs from same
490  project are likely from the same individuals and plotted in different groups. The average p value
491  are plotted above each groups. (c) The distribution of relative abundance of COG accession
492  across samples in MetaPep. The legends shows the rank and name of COG accessions. COG
493  accessions present in more than 95% of the samples were retained. A total of 750 COG

494  accessions remained and were subsequently sorted based on their functional abundance
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495  scores. Five COG accessions were selected for density plot at evenly spaced intervals from this

496 ordered list.
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498  Supplementary Figure 3. Optimization for genome number and FuncTax score (Sample 2-10).
499 Number of identified peptides against database percent. Peptides from n (50, 100, 150)
500 genomes were ranked by the FuncTax score and top x% (1-40 for 50 and 100 genomes; 1-35
501 for 150 genomes) peptides was used as database. Peptide identification was performed by DIA-

502 NN under same conditions.
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504  Supplementary Figure 4. Optimization for genome number and FuncTax score (Sample 2-10).
505 Number of identified peptides against database size. The inflection point has been highlighted
506  with a red box. Peptides from n (50, 100, 150) genomes were ranked by the FuncTax score and
507  top x% (1-40 for 50 and 100 genomes; 1-35 for 150 genomes) peptides was used as database.
508 Peptide identification was performed by DIA-NN under same conditions.
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Supplementary Figure 5. Optimization for genome number and FuncTax score (Sample 2-10).

The overlap of reduced peptide database when taking top 40% peptides for 50 genomes, top 20%

for 100 genomes and top 15% for 150 genomes as database.
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Supplementary Figure 6. Optimization for genome number and FuncTax score (Sample 2-10).
The overlap of identified peptide when taking top 40% peptides for 50 genomes, top 20% for
100 genomes and top 15% for 150 genomes as database. Peptide identification was performed

by DIA-NN under same conditions.


https://doi.org/10.1101/2024.03.14.585104
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.585104; this version posted March 16, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

0.3

Density

0.1

0.0

7.6

5.0
FuncTax (40%): 1.6 x 107

'
"
i

25

1.00 1.00

0.75

Detectability
o
3

0.25

0.25

3

e B 2.00

-7.5 -5.0 25 0 5 1] 15 20
518 FuncTax score (log10) Density

519 Supplementary Figure 7. The distribution of detectability score and FuncTax score (Sample 1,
520 top 50 genomes). The dotted blue line shows the cutoff for detectability (top 25%) and FuncTax

521  (top 40%).
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523  Supplementary Figure 8. The overlap of peptide identified by each DDA-based method and

524  DDA-free method (Sample 2-10)
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526  Supplementary Figure 9. The intensity correlation of the overlapped peptides found by both
527 DDA-based and DDA-free method (Sample 2-10). The dashed line indicates y = x. For DDA-

528 based method, the peptides identified as derived from human proteins are removed.
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530 Supplementary Figure 10. The sequence coverage of representative proteins that exhibit the

531 largest relative difference in intensity DDA-based and DDA-free method.
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538

539  Supplementary Figure 13. Correlation analysis between DDA-based method and DDA-free
540 method on different taxonomic levels from Species to Phylum. The relative abundance was
541  used for the analysis. Taxonomic categories that were unigue to one method were imputed with

542  avalue of zero.

543

544  Supplementary Figure 14. Comparative Taxonomic Composition of the Microbiome at Levels

545  from Phylum to Species. (a) DDA-Based. (b) DDA-Free.
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Supplementary Figure 15. UpSet plot illustrating the overlap in genomes identified by the

DDA-free method across ten microbiome samples. The top 40 intersections were plotted.
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