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Abstract12

Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a13

robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow un-14

covering cell-state-specific responses to perturbations, a crucial aspect in unraveling the intricate15

molecular mechanisms governing cellular behavior and potentially discovering novel regulatory16

pathways and therapeutic targets. However, prevailing computational methods predominantly17

focus on predicting average cellular responses, disregarding the inherent response heterogeneity18

associated with cell state diversity. In this study, we present CellCap, a deep generative model de-19

signed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse20

dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into21

a set of transcriptional response programs. These programs are then utilized by each pertur-22

bation condition and each cell at varying degrees. The incorporation of specific model design23

choices, such as dot-product cross-attention between cell states and response programs, along24

with a linearly-decoded latent space, underlay the interpretation power of CellCap. We evaluate25

CellCap’s model interpretability through multiple simulated scenarios and apply it to two real26

single-cell perturbation datasets. These datasets feature either heterogeneous cellular populations27

or a complex experimental setup. Our results demonstrate that CellCap successfully uncovers the28

relationship between cell state and perturbation response, unveiling novel insights overlooked in29

previous analyses. The model’s interpretability, coupled with its effectiveness in capturing hetero-30

geneous responses, positions CellCap as a valuable tool for advancing our understanding of cellular31

behaviors in the context of perturbation experiments.32

1 Main33

High-throughput single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding34

of cellular and molecular biology [1–3]. Combining scRNA-seq with perturbation experiments has35

further expanded our ability to explore the way cells behave in different conditions. Technologi-36

cal innovations like Perturb-seq [4] and CROP-seq [5] use CRISPR to introduce genetic changes37

or perturb gene expression levels in cells, and they enable systematic screening at large scale.38

Single-cell perturbation datasets generated using these technologies are promising approaches for39

discovering comprehensive maps of gene regulatory networks in complex cellular systems [6]. Such40

1

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.585078doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585078
http://creativecommons.org/licenses/by-nd/4.0/


an understanding of gene networks could substantially boost drug discovery efforts [7]. As the41

number of large-scale single-cell perturbation datasets grows, so does the challenge of modeling42

and interpreting perturbation responses at the single-cell level.43

The most straightforward approach to single-cell perturbation data analysis is one aimed at un-44

covering bulk effects, where expression data from perturbed cells are aggregated and compared to45

the aggregate of untreated control cells. In practice, addressing cellular heterogeneity (both at the46

level of cell types and cell states) and batch effects requires complicated data preprocessing steps,47

including batch effect correction and cell type identification [8]. This rudimentary approach suffers48

from a number of fundamental shortcomings: (1) The choice on the data preprocessing procedure49

often lead to changes in biological conclusions; (2) Cell type identification and data stratification50

often requires imposing arbitrary thresholds (in particular, in experiments dealing with cells on a51

differentiation trajectory); (3) Bulk analysis testing overlooks potentially valuable information en-52

coded in cell-state heterogeneity, such as cell-state-specific responses; (4) The standard differential53

expression analysis does not immediately reveal commonalities and contrasts between the mecha-54

nism of action of different perturbations, which requires further statistical modeling. It is therefore55

desirable to address these shortcomings within a robust end-to-end computational framework.56

In recent years, several machine learning approaches have made progress toward improving57

upon simple differential expression testing. The computational framework MIMOSCA assumes58

an additive model of perturbational responses and analyzes perturbation experiments within a59

regularized linear regression framework [4]. The computational framework Augur adapts a random60

forest classifier to prioritize the cell type on which a certain perturbation has primary impact. Once61

this cell type is identified, a differential expression test can be performed in this cell type context to62

reveal the perturbation effects [9]. While these approaches recover certain aspects of the underlying63

biology, it is likely that more complex cellular behaviors are not captured by simple linear models.64

Deep learning models have also been explored as a means to uncover the nonlinear complexity65

in single-cell perturbation data. For example, scGen uses a deep generative model to predict66

the impact of one perturbation on a new cell population [10], and GEARS takes advantage of67

prior biological knowledge to model nonlinear gene interactions and nonlinearities in response68

to multiple perturbations [11]. Though both scGen and GEARS show promise in predicting69

nonlinear synergistic effects between multiple perturbations, they do not explicitly model the ways70

in which cell type or cell state generate the nonlinear perturbation response. The Compositional71

Perturbation Autoencoder (CPA) model, a follow-up to scGen, decomposes the perturbed gene72

expression profiles into a cell state latent representation in which perturbation, batch, and other73

effects are all modeled as vector translations [12]. This enables CPA to predict cell-state-specific74

perturbation responses. Alternatively, PerturbNet encodes perturbation and cell state into two75

separate latent representations via two different encoding neural networks, and it connects the76

perturbation representation and cell state representation through a third neural network [13].77

These designs allow CPA and PerturbNet to uncover the correspondence between cell state and78

perturbation response. However, the nonlinear deep neural network decoders involved in the79

models above do not readily lend themselves to succinct interpretation. Thus, these methods80

primarily focus on the task of predicting unseen perturbation responses rather than understanding81

and interpreting the perturbation responses measured by the dataset at hand.82

Here we propose CellCap, a linearly-decoded variational autoencoder for modeling single-cell83

perturbation data. CellCap builds upon the foundation laid by the CPA model but differs in84

several key ways including its primary objective: while CPA aims to predict the responses of85

unseen perturbations and in combinations, CellCap instead focuses on dissecting and interpreting86

cellular responses in terms of a learned sparse dictionary of transcriptional response programs.87

CellCap combines a nonlinear encoder with a linear decoder. The linear decoder lends the model88

interpretability by allowing translating all latent space quantities to the gene expression space,89

while the nonlinear encoder aims to uncover the basal (pre-perturbation) cell state from perturbed90

cell states. In order to capture the complexity of cell-state-specific responses, CellCap moves the91

nonlinear computations into the latent space algebra, using multi-head dot-product attention to92

capture the correspondence between the state of individual cells and their perturbation response.93

These response amplitudes then act on a sparse dictionary of transcriptional response programs to94
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generate the data. We demonstrate the interpretability and model identifiability of CellCap with95

both simulated and real single-cell perturbation data.96

2 Results97

2.1 CellCap’s key concepts98

CellCap is fundamentally a variational autoencoder (VAE) that encodes the observed gene count99

matrix xng into and out of a K-dimensional latent space. What distinguishes CellCap from a stan-100

dard VAE, however, is the additional structure imposed on the making of latent representations.101

As a first step, the CellCap encoder projects the observed gene count matrix xng into a “basal102

state” z
(basal)
nk ∈ RK using a multi-layer neural network (Fig. 1a). Here n and g are cell and gene103

indices respectively, and k is the dimension of the latent space. The latent space modifications104

arising from fixed effect covariates ∆z
(cov)
nk and perturbations ∆z

(pert)
nk are then added to z

(basal)
nk105

to produce the complete and “recomposed” cell latent representation znk. The linear fixed effects106

modeled by ∆z
(cov)
nk serve to regress out sources of variability that are not the object of study, for107

example batch or donor identity. The complete latent representation znk is then transformed back108

into gene expression space via a linear decoder and is matched with the observed gene expres-109

sion matrix xng (loss Lreconstruction) [14, 15]. Since the relationship between observed data and110

the basal state can be highly complex and nonlinear (e.g. the observed data could correspond to111

treated cells whereas the basal state would correspond to the inferred state of the same cells prior112

to treatment), we use an expressive deep neural network to amortize the inference of the basal113

state z
(basal)
nk from xng. At the same time, we use a linear decoder to maintain interpretability of114

the latent space [16].115

The “basal state” is a concept proposed in the CPA model by Lotfollahi et al. [12] and is116

understood as an intermediate latent space vector that captures only the intrinsic and unmodeled117

cell state variation. Throughout this manuscript, the terms “cell state” and “basal state” are118

used interchangeably. Importantly, z
(basal)
nk ought not to contain information related to perturba-119

tion and other known covariates such as batch or donor identity. To obtain such a basal state120

representation, we simultaneously train the encoder network and adversarial classifier networks to121

strip perturbation and known covariate information out of the basal latent space, similar to the122

approach taken by the CPA model (loss Ladversarial).123

We formulate modeling the effect of perturbations as a “dictionary learning” problem. We124

assume that the applied perturbations can induce up to Q transcriptional “response programs”.125

The response programs can be collected as a matrix wqk ∈ (−1, 1) interval, with Q rows, with126

each row representing a distinct response program. All cells share statistical power to estimate127

wqk, though individual programs can be used by different cells and perturbations with different128

amplitudes (Fig. 1a). Explicitly, we assume ∆z
(pert)
nk =

∑Q
q=1 hnq wqk, where the hnq represents129

the to-be-inferred usage amplitude of response program q by cell n.130

Our use of low-complexity building blocks for the sake of interpretability, namely a linearly-131

decoded latent space and dictionary learning, necessitates invoking an element of nonlinearity to132

allow modeling complex data distributions beyond the reach of linear models. In our formulation,133

we introduce this nonlinearity in the computation of the variational posterior distribution of hnq,134

which is one of the key methodological contributions of our work. We construct hnq in the form135

of “scaled dot-product attention” [17] between the basal cell state z
(basal)
nk and perturbation design136

matrix Pnp ∈ {0, 1}. The perturbations are associated with a set of learned “perturbation key”137

vectors κpq (or equivalently, a 3-dimensional tensor κpqk). The key vectors, which live in the same138

K-dimensional space as the basal states (see Eqn. 3), determine the amplitude of cell-state-specific139

response program q in cell n as βnq = softmax
q

(κpq ·z(basal)n ). Illustrated in Fig. 1a, the entries of βnq140

denote the normalized attention weights between cells and response programs. In the terminology141

of scaled dot-product attention, the the basal state serves as “query”, the perturbation keys serve142

as “key”, and finally the “value” is vnq =
∑

pHpq Pnp, which is intuitively the linear action of Hpq143
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Figure 1: Key concepts underlying the CellCap model and its interpretable workflow. (a) A
linearly decoded VAE is the backbone of CellCap, which encodes the perturbed single-cell data

into basal state z(basal) and reconstructs z
(basal)
nk + ∆z

(pert)
nk + ∆z

(cov)
nk back to the observed gene

expression count matrix xng via a linear decoder. (b) Graphical presentations of individual
components of CellCap. (c-f) Various downstream applications of CellCap. (c) Understanding
the relationship between bulk and cell-state-specific perturbation effects; (d) Interpretability of
the transcriptional response programs with a linear decoder; (e) Uncovering characteristics of cell
states that respond to each transcriptional program; (f) Uncovering cell-state-dependent response
amplitude to each response program.
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on the Pnp. Here, Hpq is another learnable weight matrix, with the interpretation of the usage of144

response program q by perturbation p at an aggregate level. Ultimately, the program usage is given145

as hnq = βnq vnq and can be interpreted as the cell-state-specific amplitude of response program146

q in cell n after being treated with perturbation p. In practice, as in Ref. [17], we also found147

it beneficial to leverage multiple attention heads to distribute the inference of response program148

usages to specialized attention heads (see Methods).149

We remark that the learned dictionary of response programs wqk are reused across perturba-150

tions, leading to improved interpretability of the output and an understanding of the relatedness151

between perturbations. CellCap uses sparse Bayesian learning (SBL), in the form of “automatic152

relevance determination” [18], as a mechanism to learn as few response programs (<= Q) as are153

necessary to explain the data (loss LARD). The total loss function of CellCap balances this learn-154

ing objective with the reconstruction loss and the adversarial loss (Fig. 1a). A formal definition of155

the generative and inference process is provided in the Methods section, as well as hyperparameter156

setup for balancing these learning objectives.157

The CellCap model lends itself to interpretability by design (Fig. 1b). Here, we outline a few158

biological questions that can be answered using CellCap. First, CellCap reveals whether different159

perturbations elicit similar cellular responses (Fig. 1c). General relationships between pertur-160

bations are captured by Hpq, the usage of each learned response program by each perturbation.161

CellCap enables researchers to ask the same question under a specific cell-state context by exam-162

ining hnq, which is a combination of Hpq and βnq, the cell-state-dependent attention outputs that163

describe the response amplitude of each response program in each perturbed cell. This enables a164

finer-grained understanding of relationships among perturbations while going beyond bulk effects165

and leveraging the single-cell resolution of the data. Next, CellCap defines the transcriptional re-166

sponse programs activated in a single-cell perturbation experiment (Fig. 1d). Instead of an overall167

effect for each perturbation, CellCap discovers individual transcriptional response programs in the168

form of wqk. Since these programs live in the same latent space as cell states, we can use the linear169

decoder to translate these latent-space response programs to gene expression space, where each170

program can be understood in terms of gene expression patterns.171

The key advantage of CellCap is its ability to model the correspondence between basal cell172

states and perturbation responses (Fig. 1e). This correspondence is critical for understanding why173

cells may respond to a perturbation in a particular way. For example, the activation of cell-state-174

specific gene expression programs, which could include cell maturity or cell cycle phase among175

others, may make a specific cell population uniquely vulnerable to a perturbation and lead them176

to respond with a specific transcriptional activation. This correspondence can be uncovered by177

using the perturbation key κpqk of perturbation p in the context of response program q, to query178

which basal state z
(basal)
nk is relevant (see Methods). Finally, the attention weights βnq indicate how179

the amplitude of response program q varies across different basal cell states (Fig. 1f).180

2.2 CellCap captures cell-state dependent responses in simulated181

data182

To explore different aspects of the behavior of CellCap in a controlled fashion, we generate and183

study three simulated scenarios that contain two perturbations in each (Fig. 2a). We assume that184

the basal cell states co-vary with a hypothetical “pseudotime” to serve as a simplified model of185

cell state trajectories. We used PROSSTT [19] to generate such continuous cell states, and each186

cell was assigned a pseudotime value (see Supplementary Section S.1). In simulated scenario (1),187

each perturbation induces a single unique transcriptional response program, with the amplitude of188

the response being proportional to the cell state “pseudotime”. In simulated scenario (2), the two189

perturbations induce a single shared response program, though the cells have a stronger response190

to one perturbation than the other. Again, the cell state pseudotime modulates the amplitude191

of the responses similarly for both perturbations. In simulated scenario (3), each perturbation192

induces one shared response and one unique response. In this case, the shared response amplitude193

is correlated with the cell state pseudotime, and the unique responses are anti-correlated with the194

5

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.585078doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.585078
http://creativecommons.org/licenses/by-nd/4.0/


Figure 2: Exploring CellCap’s model identifiability using simulated data. (a) Graphical setup of
3 simulated scenarios. (b) Usage of each transcriptional response program discovered by Cell-
Cap (hnq averaged over cells). Automatic relevance determination effectively turns off response
programs that are not necessary to explain the data, in agreement with the ground truth. (c)

The linear decoder is used to directly interpret the learned basal state z
(basal)
nk and the learned

perturbation ∆z
(pert)
nk . Each dot represents the sum of all relevant genes in one cell for the indi-

cated response program, and cells are colored by perturbation condition. CellCap learns a basal
state where perturbations are indistinguishable (top panels), while learning response programs
whose expression correlates with ground truth (bottom panels). (d) Amplitudes hnq of the shared
response programs (Q5 in scenario (2) and Q1 in scenario (3)) in each perturbation condition are
presented with boxplots. (e) Visualization of per-cell response amplitudes hnq for the 3 learned
response programs in scenario (3). The leftmost Fruchterman-Reingold (FR) plots are colored
by the ground truth cell state pseudotime, whereas hnq is used to color the FR plots shown in
rightmost three columns. The pseudotime hidden variable is the ground truth covariate of the
cell state response amplitude (see Supplementary Sec. S.1 for details). Unique (shared) response
programs are expected to be correlated (anti-correlated) with the pseudotime.
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pseudotime.195

In scenario (1), we expect that CellCap should identify two response programs and that each196

response should be specific to one perturbation. Indeed, only two programs stand out after model197

training (Fig. 2b). CellCap also ascertains that there is only one relevant response program in198

scenario (2) and three in scenario (3). In scenario (2), CellCap identifies response program Q5199

as a shared program induced by both perturbations (Fig. 2b). In scenario (3), CellCap identifies200

response program Q1 as the shared program, and response programs Q3 and Q8 as the programs201

specific to perturbation 1 and perturbation 2, respectively (Fig. 2b). We also note that in all cases,202

we have allowed CellCap to learn and use up to 10 response programs. However, the ARD sparsity-203

inducing mechanism in CellCap correctly “turns off” the unnecessary transcriptional programs.204

Next, we examined whether CellCap accurately decomposed the observed gene expression into205

basal state (cell state) and response program in the latent space. To this end, we decoded the206

learned z(basal) to obtain the predicted basal gene expression matrix. Our expectation is that207

the results would be the same across all three conditions, and only exhibit the variation related to208

pseudotime and not the specific perturbations. We further decoded the complete latent state vector209

z = z(basal) + ∆z(pert) to predict a full gene expression matrix. We subtracted the predicted basal210

gene expression matrix from the full gene expression matrix to obtain the predicted perturbation-211

induced gene expression. As expected, we found the basal state expression to be indistinguishable212

among control and perturbed cells, and the expression of response programs to be perturbation-213

specific (Fig. 2c). Additionally, CellCap successfully decomposed the observed gene expression into214

basal state and response programs in scenarios (2) and (3) (Supplementary Fig. S1). Meanwhile,215

we found that CellCap accurately learns response programs that match the simulated ground truth216

(Supplementary Fig. S2).217

As mentioned earlier, the two perturbations induce a shared response program in both scenarios218

(2) and (3), with an unequal response amplitude in scenario (2) and an equal response amplitude in219

scenario (3). We found that CellCap correctly identified this difference in scenario (2) and reported220

similar response amplitudes in scenario (3) (Fig. 2d). In scenario (3), we have set up a situation in221

which the shared response program’s amplitude should be negatively correlated with the basal state222

“pseudotime”, in contrast to the unique response programs which are positively correlated with223

basal state pseudotime. The response amplitude hnq reported by CellCap in scenario (3) was highly224

correlated with ground truth (Pearson correlation coefficient 0.884 for Q3 in perturbation 1 and225

0.859 for Q8 in perturbation 2). As for the shared program, CellCap recovered a shared response226

program Q1 that captures the negative correlation with ground truth basal state, with Pearson227

correlation coefficient -0.842 in perturbation 1 and -0.846 in perturbation 2 respectively (Fig. 2e).228

In summary: (1) CellCap was able to identify shared and unique programs for two perturbations;229

(2) CellCap could distinguish different response amplitudes; and (3) CellCap learned the correct230

correspondence between basal cell state and perturbation response.231

2.3 CellCap reveals heterogeneous responses in pathogen-exposed232

human monocytes233

We next sought to demonstrate the utility and interpretability of CellCap in real single-cell pertur-234

bation data. To this end, we used CellCap to reanalyze a previously published pathogen-exposed235

human peripheral blood mononuclear cell scRNA-seq dataset. In the original report, Oelen et236

al. identified differentially expressed (DE) genes by comparing each treatment condition against237

untreated control for every major cell type [20]. They observed the largest number of DE genes238

in monocytes across different pathogen exposure conditions, and they concluded that monocytes239

are the cell type with the strongest response to pathogens. Another highlight of their analysis is240

that the interferon signaling pathway is specifically enriched at 3 hours post-exposure in mono-241

cytes and that this response pathway is common to all three pathogens. The original analysis did242

not leverage the single-cell resolution of the dataset for studying the complex and heterogeneous243

cell-state-dependent responses to pathogen exposure. Here, we show that CellCap can be utilized244

to uncover such novel insights about cellular responses at an increased granularity. The steps245

outlined below demonstrate the overall workflow other practitioners could use to leverage CellCap246
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in studying their single-cell perturbation experiments.247

First, we limited the scope of our analysis to the monocytes in the dataset, since this was248

the cell type observed to exhibit the strongest responses in the original study. We noticed that249

CellCap’s encoding of cell states from different conditions into the shared basal state z
(basal)
nk results250

in excellent mixing between the pathogen-exposed group and the untreated (UT) group (Fig. 3a).251

We recall that the basal state representation should preserve only intrinsic cell state variations and252

not the perturbations themselves. Examining the learned usage of each response program by each253

perturbation condition, we were able to paint an overall picture of the relationship between the254

6 treatment conditions by performing principal component analysis (PCA) on the perturbation255

signatures, i.e. the rows of Hpq. In particular, PC1 separated the conditions by time post exposure:256

all treatments 3 hours (3h) post pathogen exposure – C. albicans (CA), M. tuberculosis (MTB),257

and P. aeruginosa (PA) – were closely grouped in the PC space, while all 3 treatments 24 hours258

(24h) post pathogen exposure were located on the right side of the plot (Fig. 3b). Importantly,259

this indicates that the top PC of response program usage by perturbation is the time post exposure260

rather than the pathogen itself. Of note, pathogen exposure with PA was distinct from the other261

two pathogens at the 24h timepoint. We further examined hnq, the usage of each response program262

by individual cells, and averaged over the top 90 percent of cells with the highest responses to the263

treatment conditions (Fig. 3c). We observed that all 3 treatments 3h post pathogen exposure264

primarily induce two programs (Q6 and Q9) but that all treatments 24h post pathogen exposure265

induce more diverse response programs, including Q3, Q4, Q7, Q8, and Q10 (Fig. 3c). We also266

note that Q2 and Q5 were not used, i.e. they were turned off during the course of model training,267

suggesting that the experiment can be succinctly interpreted using 8 response programs.268

Having obtained a global understanding of both the heterogeneity of basal cell states within the269

monocyte population (Fig. 3a) and the relationships between different treatment conditions (Fig.270

3b and c), we next examined the way in which transcriptional response programs are activated271

in different basal states of monocytes. We started with program Q3, which is common to all 3272

treatments 24h post pathogen exposure. Response amplitudes hnq of individual cells 24 hours273

after CA exposure show that the response program Q3 is enriched in a certain sub-population274

of monocytes (Fig. 3d). We then examined the characteristics of cell states within this sub-275

population of monocytes. To this end, we used the perturbation key κpqk for response program276

Q3 at 24h post CA exposure to query the basal state z
(basal)
nk of the UT group. We assigned to277

each untreated cell a relevance score (computed using cosine similarity) to represent the likelihood278

of this cell to respond with program Q3 in the 24h post CA exposure condition given its basal279

state (Supplementary Fig. 3a). We used this relevance score to identify the corresponding basal280

expression program enriched in cells with a high relevance score (see Methods).281

The basal expression program included top upregulated genes ISG15, CCL2, ISG20, and IL7R282

(Fig. 3e left panel). We then identified the most highly responding genes in response program283

Q3 (Fig. 3e right panel). We noted a striking correspondence between basal expression of specific284

genes (Fig. 3e left) and the activation of Q3 (Fig. 3e right) in response to CA exposure at the285

24h timepoint. Gene set enrichment analysis (GSEA) indicates that the response program Q3 is286

enriched for pathways involved in Rho GTPase activation and DNA replication with FDR ≤ 0.1287

(Fig. 3f).288

Using the same approach, we identified the basal expression program which results in a high289

response of program Q6 in the 3h post CA exposure condition (Fig. 3g-i and Supplementary Fig.290

S3b). We also examined the averaged and individual expression patterns of responding genes in Q3291

and Q6 to confirm substantial perturbation changes from the untreated group (Supplementary Figs.292

S4 and S5). The primary observation is that treatments 3h post exposure induce a higher response293

of the interferon signaling pathway, and this response is enriched in non-classical monocytes with294

marker genes FCGR3A and HES4 identified in basal cell state expression. This result is consistent295

with the finding in the original report, which used a multi-step analysis (clustering, cell state296

annotation, and case-control comparison) [20]. CellCap not only automates this discovery workflow297

within a unified end-to-end model, it also uncovers novel response patterns which we briefly outline298

below.299

Additional response patterns identified by CellCap are shown in Fig. 3j and Supplementary Fig.300
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Figure 3: CellCap reveals heterogeneous responses in pathogen-exposed human monocytes. (a)
The left and right UMAPs show the embedding of the raw gene expression and CellCap-inferred
corresponding basal states, respectively. CellCap learns a basal latent space in which cells from all
perturbation conditions are well-mixed. (b) General relationship between 6 pathogen-exposure
conditions, visualizing Hpq using principal component analysis. (c) Program usages in each
condition, hnq, summed over responding cells in each perturbation group (see Supplementary
Section S.2). (d) Per-cell response amplitudes hnq of program Q3 in the 24hCA perturbation
condition. (e) Top basal marker genes and responding genes in Q3. Top up- and down-regulated
genes are shown to highlight expression patterns on both extremes. (f) GSEA for response
program Q3. Top 5 positive and top 5 negative pathways are shown. (g) Per-cell response
amplitudes of program Q6 in the 3hCA perturbation condition. (h) Top basal marker genes and
responding genes in Q6. Top up- and down-regulated genes are shown to highlight expression
patterns on both extremes. (i) GSEA for response program Q6. (j) Other major cell-state-
specific response patterns identified by CellCap. Further investigation of these patterns is shown
in Supplementary Figs. S6-S10. Abbreviations: [3hCA = 3 hours post C. albicans exposure,
24hCA = 24 hours post C. albicans exposure, GSEA = gene set enrichment analysis]
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S6. With these patterns in hand, we identified all major basal expression programs and performed301

soft annotation to assign cellular identities to different sub-populations of monocytes in the basal302

state without clustering (Supplementary Fig. S7). One salient example is the enrichment of Q8 in303

a small population of monocytes at 24h post CA exposure. We identified its corresponding basal304

expression program using the same approach as above (Supplementary Fig. S8). As mentioned305

earlier, PA pathogen exposure is distinct from the other two pathogens at the 24h timepoint. A306

possible explanation for this difference could be the enrichment of response program Q10 in one307

particular sub-population. Q3 is enriched in the same sub-population of monocytes in the all 24h308

post exposure conditions. However, cells in this sub-population show a higher response of Q10 to309

24h PA than to the other two pathogens at 24h. Averaged expression patterns of perturbed genes310

in Q3 and Q10 indicate that Q3 is a shared program across the 3 pathogens but Q10 is specific311

to PA exposure (Supplementary Fig. S9). In Q10, we identified macrophage markers like APOE,312

APOC1, and RNASE1 (Supplementary Fig. S10). This result suggests a possibility that cells in313

this sub-population of monocytes (with basal marker genes ISG15, CCL2, ISG20, and IL7R) would314

gain the potential to differentiate into macrophages after 24 hour exposure to PA. We remark that315

this nuanced finding enabled by CellCap was not part of the original report by Oelen et al. [20].316

2.4 CellCap captures complex patterns in large-scale genetic per-317

turbation data318

We next used CellCap to analyze a single-cell Perturb-seq dataset by Norman et al. [21]. The319

study used CRISPR activation to over-express transcription factors in the K562 cell line at large320

scale, including 105 single-target perturbations and 131 pairwise combinatorial perturbations. In321

CellCap, this experimental design can be readily encoded as a design matrix Pnp ∈ {0, 1} (with322

the p dimension of size 105), where
∑

p Pnp = 1 for the cells receiving single-target perturbations,323

and
∑

p Pnp = 2 for the cells receiving double-target perturbations. We initially set up a maximum324

of Q = 50 response programs for CellCap to learn. Following model training, we observed that a325

majority of programs were turned off, leaving only 10 programs shared by the 236 perturbations326

(Supplementary Fig. S11).327

We obtained averaged perturbation response signatures, defined as the learned usage of each328

response program averaged over responding cells (see Supplementary Section S.2) stratified by329

each of the 236 perturbation conditions. We performed UMAP dimensionality reduction on the330

obtained average perturbation signatures for visualization, and we clustered the signatures (Fig.331

4a). This clustering largely agrees with the findings in the original study by Norman et al. [21]332

and a reanalysis done by Roohani et al. [11]. Norman et al. clustered the perturbations using a333

pseudo-bulk approach, while Roohani et al. used their proposed deep learning method GEARS.334

We focused on 4 of these perturbation clusters for downstream investigation. Ranking the335

perturbations by their usage of response program Q29, we found that the top ranked perturbations336

primarily involve the activation of KLF1 as well as KLF1 -included combinatorial perturbations337

(Fig. 4b). We noticed that perturbations like AHR, BAK1, DUSP9, SET are ranked lower than338

their combinational perturbatins with KLF1 in response program Q29 (Fig. 4b). We wondered339

whether response program Q29 is primarily driven by activation of KLF1. We examined the340

expression of top responding genes in Q29 in perturbation conditions involving the activation of341

KLF1, AHR, BAK1, DUSP9, SET, and their pairwise combinations KLF1/AHR, KLF1/BAK1,342

KLF1/DUSP9 and KLF1/SET. We found that the top responding genes in response program343

Q29 are primarily expressed in KLF1 -activated perturbations but not in AHR, BAK1, DUSP9 -344

or SET -activated perturbations (Supplementary Fig. S12). This indicates that response program345

Q29 is mainly caused by activation of KLF1, with no or little dependence on the presence of AHR,346

BAK1, DUSP9 or SET activation.347

Activation of KLF1 has been shown to promote erythropoiesis [22, 23]. However, the analyses348

in both Norman et al. [21] and Roohani et al. [11] categorized perturbations with activation349

of KLF1 as “pro-growth”. We performed GSEA and found that response program Q29 might350

be related to metabolic processes or proteasome activation (Fig. 4c). Meanwhile, CellCap iden-351

tified lymphocytes marker genes in response program Q29. These lymphocytes markers include352
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Figure 4: CellCap captures complex relations between genetic perturbations in large screens (data
from Norman et al. [21]). (a) UMAP visualization of the relatedness of 236 perturbations obtained
from the program usages inferred by CellCap (Supplementary Section S.2). Perturbations are
colored by K-means clustering, highlighting 5 perturbation clusters. (b) Perturbations ranked
by usage of the response program Q29. Perturbations involving KLF1 activation are colored in
red while others are colored in grey. Blue dots highlight the single-target perturbations (that
lack KLF1 activation) corresponding to those red perturbations. (c) GSEA results showing
significant KEGG pathways related to response program Q29. KEGG pathways with FDR ≤ 0.1
are highlighted. Dot size and color are proportional to the size of the gene set. (d) Expression of
top responding genes in program Q43. For each perturbation, cells are ordered from the highest
Q43 response amplitude to the lowest. (e) Per-cell usage hnq of the Q43 response program are
shown on the basal state UMAP for all the perturbed cells from panel (d). (f) The basal state
UMAP of control cells showing the average z-scored expression of the top basal state marker genes
that correspond to program Q43. (g) Same basal state UMAP showing M/G1 score for control
cells. (h) Quantitative comparison of M/G1 score and Q43 response amplitude in CEBPE -
activated cells reveals a strong correlation.
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CD3G, CD80, and IL2RG (Supplementary Fig. S12). Response program Q29 also includes other353

non-specific markers. For example, TRABD2A and NMU also have high expression in lympho-354

cytess. Based on this, we hypothesize that KLF1 activation in K562 cells could serve to enhance355

lymphocytes identity.356

Both Norman et al. and Roohani et al. identified the group of perturbations that includes357

CNN1, CBL, and UBASH3B as “erythroid”. Consistent with their analyses, CellCap also identified358

that erythroid markers like HBE1, HBG1, and HBG2 are highly ranked in the response program359

Q7 shared by these perturbations (Supplementary Fig. S13). Interestingly, CellCap also revealed360

KLF1 as one of top responding genes in response program Q7, suggesting KLF1 may promote361

erythropoiesis indeed [22, 23]. Although both Norman et al. and Roohani et al. labeled the group362

of perturbations that includes FOXA1, FOXA3, and FOXL2 as “pioneer factors”, a detailed363

description of shared perturbation responses in this group is missing. Here, CellCap identified364

that this group of perturbations shares response program Q22, which includes top responding365

genes like LYZ and ID3 (Supplementary Fig. S14).366

We next focused on response program Q43, which is most strongly induced by activation367

of CEBPA, CEBPB, CEBPE, and their combinatorial perturbations. Both Norman et al. and368

Roohani et al. classified this group as granulocytes [11, 21]. CellCap identified neutrophil markers369

in Q43, including LST1 and CSF3R (Fig. 4d), showing great agreement with previous analyses.370

Weinberger et al. also reanalyzed this Perturb-seq dataset with a primary focus on this group371

of perturbations [24]. By visualizing a few neutrophil marker genes, they confirmed that only a372

certain population of cells in which CEBEB and/or SPI are activated would differentiate towards373

neutrophils. However, Weinberger et al. did not highlight the heterogeneity in response amplitudes374

at the single-cell level in the CEBPB and SPI -activated perturbations. CellCap reveals that375

this heterogeneity in per-cell response magnitude occurs in all perturbations involving CEBPA,376

CEBPB, CEBPE, and their combinations (Fig. 4d: highlighted with red boxes). Expression levels377

of genes CEBPA, CEBPB, and CEBPE (the target genes) suggest that this heterogeneity is not378

likely due to a failure to activate the target gene in these cells (Fig. 4d: top 3 rows). For example,379

the gene CEBPE is robustly activated in all perturbed cells in the CEBPE perturbation group,380

even though the cells highlighted by the red box show a much lower level of the Q43 response381

program.382

This motivated us to examine the basal cell state to understand if some intrinsic, pre-existing383

cellular variation would explain this phenomenon. We computed a cosine similarity between the384

perturbation key κpqk of CEBPA, CEBPB, CEBPE or SPI1 and the basal state zbasalnk of control385

cells, and we identified a basal program related to response program Q43. We compared the pattern386

of response amplitudes of program Q43 in perturbed cells (Fig. 4e) with the average expression387

of the related basal program in control cells (Fig. 4f), and we confirm that the patterns match.388

Regarding this related basal program, the unperturbed K562 cells with high cosine similarity389

to all 4 perturbations already present low expression of the granulocytes marker genes CSF3R,390

LST1, LGALS1, and APOC1 (Supplementary Fig. S15). This indicates the existence of or391

ongoing differentiation towards granulocyte lineage in unperturbed K562 cells. CellCap finds that392

cells which display some granulocyte markers in the basal state will continue on a path toward393

granulocyte differentiation as a response to CEBP* activation.394

CellCap also indicates that cell cycle stage is anti-correlated with Q43 response. We visualized395

cell cycle patterns in control cells (Fig. 4g and Supplementary Fig. S16) and confirmed that396

a per-cell M/G1 score shows strong anti-correlation with the magnitude of Q43 response (Fig.397

4h; with additional perturbations shown in Supplementary Fig. S17). CellCap pinpoints the cell398

cycle genes that are anti-correlated with program Q43. This anti-correlation is especially strong399

for CENPA, CENPE and CENPF, which are known marker genes for the M stage. Cells with400

lower Q43 response amplitudes tend to have higher expressions of CENPA, CENPE and CENPF401

(Supplementary Fig. S18). Weinberger et al. also found that cell cycle is a shared variation across402

conditions [24]; however, their analysis did not uncover the anti-correlation between M/G1 score403

and the transcriptional response to activation of CEBPA, CEBPB, and/or CEBPE. CellCap’s404

nuanced findings suggest a possibility that cells that already show signs of differentiation towards405

granulocytes and are not in G1/M phase would have higher response to activation of CEBPA,406
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CEBPB, and CEBPE.407

3 Discussion408

In this study, we developed the computational method CellCap for end-to-end analysis of single-409

cell perturbation experiments. CellCap models an interpretable correspondence between cell states410

and perturbation responses and enables multiple downstream applications. We demonstrated the411

utility of CellCap and the consistency of its findings using both simulated and real single-cell412

perturbation datasets. Our reanalysis of pathogen-exposed human monocytes data from Oelen et413

al. [20] uncovered novel cell-state-dependent responses following pathogen exposure. In particular,414

we found a sub-population of monocytes that exhibit macrophage differentiation potential 24415

hours after P. aeruginosa exposure, a finding that was overlooked in the original study. Our416

reanalysis of genetic perturbation data collected by Norman et al. [21] demonstrated agreement417

with previous analyses while also providing further insights into the ways in which the effects of418

genetic perturbations can be nuanced in relation to cell states.419

The methodological innovations of CellCap are to be understood in relation to the existing420

methods developed in this domain which put different degrees of emphasis on interpretability and421

prediction accuracy. One of the key concepts underlying CellCap is that each cell is endowed422

with “basal state”, an inferred pre-perturbation transcriptional state that encodes intrinsic cell423

state variation. While we have borrowed this idea from the CPA model [12], we emphasize that424

the end goal of CellCap is interpreting and decomposing single-cell perturbation responses into a425

dictionary of response programs, in contrast to predicting unseen perturbation effects accurately.426

Even though both CPA and CellCap aim to model the correspondence between basal cell state427

and perturbation response, the interpretive advantage of the CellCap model lies in the additional428

structure imposed on the latent space operations. CellCap learns this correspondence explicitly in429

the form of attention weights that signify the coupling between basal state sub-populations, learned430

response programs, and the usages of these response programs within each perturbation condition.431

While CPA has the potential to exhibit greater accuracy at predicting perturbation effects in432

unseen conditions (using high-dimensional latent spaces and nonlinear decoders), CellCap’s utility433

lies in the complementary role it plays in dissecting perturbation experiments and transforming434

observed cellular responses into biological insights.435

The computational tool contrastiveVI [24] encodes single-cell perturbation data into indepen-436

dent “shared” and “salient” latent spaces, and is another valuable method for dissecting single-cell437

perturbation data. The concepts of “shared” and “salient” representations in contrastiveVI have438

semblance to the separable basal state and perturbation representations in CellCap and CPA. One439

key difference is that contrastiveVI does not model the correspondence between the “shared” and440

“salient” components (i.e. the equivalent of CellCap’s attention structure), and as such, the model441

does not explicitly uncover the relationship between perturbation response and cell states. This442

difference was demonstrated by the results highlighted in Section 2.4 in which we reanalyzed the443

Perturb-seq data from Norman et al. [21]. CellCap was able to uncover previously unnoticed444

patterns in heterogeneous perturbation responses caused by interpretable differences in cellular445

basal state – in this case, pre-existence of granulocytes lineage and cell cycle phase. Learning the446

correspondence between basal cell state and perturbation response not only enhances interpretabil-447

ity, but also gives CellCap greater statistical power for response program discovery as opposed to448

more direct differential expression testing methods, which find transcriptional responses that are449

averaged over responding and non-responding cells.450

Unsupervised Bayesian models such as CellCap, though highly effective in extracting insights451

from new datasets, come with certain trade-offs and practical considerations. One of these chal-452

lenges involves determining appropriate hyperparameter values. For instance, the line between a453

“shared” and “unique” response program can be hard to draw in certain cases. There is a necessary454

trade-off between the model’s ability to explain the data accurately and its ability to explain the455

data concisely. Shared response programs lend interpretability to the output, but a model that456

finds additional unique responses for each perturbation can provide a better fit to the data. We457
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make this trade-off transparent and explicit in CellCap by means of a hyperparameter that controls458

the weight given to automatic relevance determination in the optimization objective function. A459

larger value will encourage CellCap to explain the data using fewer response programs, whereas460

a smaller value will encourage the model to reconstruct the data more accurately at the expense461

of learning more response programs. This trade-off is discussed in more detail in Methods 4.1.6.462

Researchers are encouraged to carefully scrutinize the hyperparameters for each dataset, making463

thoughtful choices to align with other relevant factors and the overarching objectives of the study.464

It is essential to learn a biologically meaningful basal state in both CellCap and CPA, akin to465

the“shared” representation in contrastiveVI. However, there are scenarios where inferring the basal466

state could prove challenging without gathering time courses of higher resolution. For instance, in467

a diving cell culture, perturbations could lead to the emergence of a new cell state, coupled with the468

elimination of specific cell sub-populations and/or a near-total loss of the original cell state post-469

perturbation. Along these lines, Weinberger et al. have commented that the results produced by470

constrativeVI can be misleading if the “shared” background variations are not present in perturbed471

cells [24]. Likewise, CellCap is likely to fail to correctly project perturbed cells back to the pre-472

perturbation basal state, one that matches the distribution of control cells, if the perturbed cells473

have undergone significant reprogramming or passages. The evidence for such a failure mode would474

be (1) obtaining basal state distributions that do not match the state of unperturbed control cells,475

combined with (2) the use of excessively large values for the hyperparameter γ that controls the476

alignment between basal state distributions across different conditions (see 4.1.6 in Methods). In477

such a case, downstream analyses and other CellCap inferences are questionable, and obtaining a478

finer time course could provide the most robust remedy.479

Careful consideration is essential when examining perturbation responses in diverse cell pop-480

ulations. It is generally expected that the greater the heterogeneity within the cell population,481

the more varied the perturbation responses will be. However, when conducting experiments with482

multiple cell types and seeking to understand and analyze the impact of perturbations on each cell483

type with the same level of detail, challenges may arise in choosing a single set of hyperparameter484

values. For instance, cell types that exhibit strong responses may benefit from stronger ARD reg-485

ularization to reduce the number of learned programs, but this decision may sacrifice granularity486

in modeling the effects of perturbations in less responsive cell types. In our study, we specifically487

trained CellCap on datasets featuring a single cell type, with a focus on addressing variations at488

the fine-grained resolution of cell state. It is important to note that this limitation is not unique to489

our methodology. For instance, GEARS must also be trained on a single cell type due to potential490

variations in interactions between two perturbations in different cell type contexts [11]. Including491

multiple cell types in the training of GEARS could result in compromised predictions.492

In conclusion, we offer several recommendations for the practical application of CellCap. Firstly,493

it is advisable to determine the desired resolution of variations. If the focus is on exploring hetero-494

geneous responses at the nuanced level of cell state, it is recommended to narrow down to a single495

cell type during the training of CellCap. Conversely, if the objective is to investigate more coarse-496

grained response heterogeneity at the cell type level, all cell types can be included. Secondly, it is497

crucial to ensure that the control group of cells encompasses all potential variations in the input498

cell state. This necessitates a well-designed experiment where control cells and perturbed cells499

originate from the same population, ensuring that the distribution of control cell states aligns with500

the distribution of pre-perturbation cell states for the perturbed cells. Lastly, it is important to501

acknowledge that certain hyperparameter choices, particularly the weight assigned to automatic502

relevance determination, can impact the interpretation of results. While variations in hyperpa-503

rameter values may yield slightly different outputs, they also present an opportunity for gaining504

fresh perspectives on understanding the landscape of perturbation responses. We encourage users505

to train CellCap with diverse setups and assess the model outputs using domain knowledge and506

expertise.507
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4 Methods508

4.1 The CellCap model509

CellCap is a probabilistic generative model for single-cell transcriptomics count data resulting from510

perturbation experiments, where groups of cells are subjected to different perturbation conditions.511

Perturbation responses are parameterized by linear combinations of learned “response programs”,512

which can be activated by one or more perturbations. An attention mechanism [17] is used to513

parameterize a correspondence between the “basal state” of a cell and the perturbation response514

amplitude, allowing the response to be heterogeneous at the single-cell level.515

In designing CellCap, we draw inspiration from existing approaches that model single-cell516

perturbation data by leveraging latent space arithmetics, in particular the CPA model [12], and517

reconsider some of their design choices under the lens of model identifiability and interpretability.518

We pay much attention to where the nonlinearities appear in the model. In the CPA model, a519

linear latent space algebra gives rise to a latent representation of a cell which is put through a520

nonlinear decoder. In CellCap, we instead move the nonlinearity from the decoder to the latent521

space algebra, where an interpretable attention mechanism models the correspondence between cell522

state and perturbation response. The linear decoder allows us to interpret perturbation responses523

as the sum of linear “gene expression response programs” – programs which can be unique to524

one perturbation or shared across several perturbations – and which contribute to the measured525

response in a cell-state-dependent manner.526

4.1.1 The CellCap generative process527

A formal definition of the CellCap data generative process is given below, along with a glossary of528

random variables, intermediate quantities, and the implied meaning of subscript indices of various529

tensor quantities:530

Figure 5: Probabilistic graphical model for the data generative process in CellCap. Observed data

are depicted by shaded gray circles (Pnp, Dnc, xng). Latent variables are in open circles (z
(basal)
nk ).

Diamonds are deterministic computations (βnq, vnq, hnq, ∆z
(pert)
nk , ∆z

(cov)
nk , znk). Rectangles of

different shadings represent learnable parameters, as do nodes with dots (κpqk, Hpq, yck, wqk,
Φg). NNdecoder is a single-layer decoder neural network.
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n cell ∈ 1 . . . N

g gene ∈ 1 . . . G

p perturbation ∈ 1 . . . N (pert)

q response program ∈ 1 . . . Q

c fixed effect covariates ∈ 1 . . . N (cov)

k latent space dimension ∈ 1 . . .K

κ
(i)
pqk P ×Q learnable K-dimensional vectors for each attention head i

Pnp perturbation “design matrix” indicating perturbation for each cell, values ∈ {0, 1}
Hpq learnable non-negative matrix signifying the usage of response programs per perturbation

vnq value vectors which sum the relevant response programs for each cell

Dnc N ×N (cov) fixed effect “design matrix” indicating fixed effects for each cell

yck N (cov) ×K learnable matrix (fixed effect covariates)

hnq N ×Q usage matrix of response programs

wqk Q×K learnable matrix of response programs in the latent space ∈ (−1, 1) interval

xng N ×G observed count data ∈ {0, 1, 2, ...}
ℓn library size of cell n

αq the Laplace ARD prior scale factors ∈ (0, 1) interval

Φg negative binomial overdispersion of gene g

z
(basal)
nk ∼ N (0, 1) (1)

κ
(i)
nqk =

∑
p

κ
(i)
pqk Pnp (2)

βnq = max
i

[
softmax

q

(
τ√
K

∑
k

κ
(i)
nqk z

(basal)
nk

)]
(3)

vnq =
∑
p

Hpq Pnp (4)

hnq = βnqvnq (5)

∆z
(pert)
nk =

∑
q

hnq wqk (6)

∆z
(cov)
nk =

∑
c

Dnc yck (7)

znk = z
(basal)
nk + ∆z

(cov)
nk + ∆z

(pert)
nk (8)

χng = NNdecoder(znk) (9)

ℓn =
∑
g

xng (10)

xng ∼ NegBinom(ℓnχng,Φg) (11)

z
(basal)
nk is a K-dimensional latent variable representing the “basal” (i.e. unperturbed) state of531

each cell, with a standard normal prior (Eqn. 1). The final latent representation of a cell, znk, is532

recomposed as the sum of z
(basal)
nk together with two “correction” terms: one for the perturbation533

itself, ∆z
(pert)
nk , and another for for fixed linear covariates, ∆z

(cov)
nk . The simpler of these two terms,534

∆z
(cov)
nk , is the matrix product of the covariate design matrix Dnc and the learnable linear fixed535

effects matrix yck. Linear fixed effects denoted in the design matrix Dnc can be used to effectively536
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“regress out” technical variation or other variation that is not the subject of the study, such as537

batch or donor (Eqn. 7).538

The perturbation effect, ∆z
(pert)
nk , is modeled as a sum over independent response programs wqk539

according to their usage by each cell, hnq (Eqn. 6). hnq is obtained as the product of a multi-head,540

scaled dot-product attention mechanism [17], whereby the effects of a given perturbation are made541

to depend upon the basal state of the cell. This is depicted graphically in Fig. 5. In the language542

of dot-product attention, the “keys” are κnqk, the “queries” are z
(basal)
nk , and the “values” are vnq.543

The keys are derived from the action of a learnable tensor κpqk on the perturbation design matrix544

Pnp. Here, κpqk can be thought of as a dictionary containing p × q vectors in the K-dimensional545

latent space for each attention head i. βnq represents the attention weights that quantify how much546

cell n attends to response program q (Eqn. 3). τ is a temperature hyperparameter which controls547

the sharpness of the distribution of attention weight over programs, and by default its value is 4548

so that the factor τ√
K

= 1 when K = 16, the default size of the latent space. The “value” vectors549

vnq amount to picking out the response programs for the given cell’s perturbation(s) and summing550

them (Eqn. 4).551

Much like the motivation for using multi-head attention (MHA) in natural language processing552

to capture different semantic views of the words in a given context, we interpret MHA here as553

a mechanism to capture the one-to-many correspondences between one basal state and different554

transcriptional response programs. The dot-product attention is computed separately for each555

head, and for each n and q, the highest attention score is taken across all heads (Eqn. 3). We556

deviate from the standard MHA implementation in using the max pooling operation to reduce the557

effect of multiple heads whereas the original implementation uses a linear combination.558

The learned matrix wqk can then be directly interpreted as latent-space response programs,559

which can be decoded to gene response programs via the linear decoder, i.e. NNdecoder(wqk). As560

discussed by Svensson et al., the single-layer decoder lends itself to model interpretation at the561

expense of a small increase in the reconstruction error [16].562

Finally, the complete-information latent space vector znk, the sum of basal state and pertur-563

bation response, is put through the linear decoder NNdecoder to obtain χng, the normalized gene564

expression per cell (Eqn. 9). The count data itself, xng, is sampled from a negative binomial dis-565

tribution with mean χng times the library size ℓn and with a learnable gene-specific overdispersion566

Φg (Eqn. 11) [14, 15]. As shown in Ref. [25], the zero observations in scRNA-seq data can be567

effectively accounted for by a negative binomial with appropriately tuned overdispersion without568

needing to resort to zero inflation to add artificial dropout.569

4.1.2 The CellCap variational posterior570

We fit CellCap using variational inference [26]. The posterior of CellCap’s only latent variable,

z
(basal)
nl , is approximated as:

z
(basal)
nk;µ [xng], z

(basal)
nk;σ [xng] = NNencoder(xng) (12)

z
(basal)
nk |xng ∼ N

(
z
(basal)
nk;µ [xng], z

(basal)
nk;σ [xng]

)
(13)

Here, we use a neural network to propose to parameterize the posterior distribution p(z
(basal)
nk |xng),571

as in Kingma and Welling [26]. Surmising the complexity of the task of inferring the basal state572

from expression data, we use a deep neural network to this end. We note that this particular573

inference task is not constrained to be interpretable, justifying our use of a deep neural network.574

4.1.3 Posterior regularization via adversarial classification575

As at stands, the current modeldoes not include a mechanism to ensure that the learned posterior576

distribution z
(basal)
nk |xng is indeed devoid of perturbation effects. Satisfying this condition, either577

rigorously or in approximation, is crucial for the correct behavior of CellCap and the interpretation578
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of its results: if perturbation effects, either entirely or in part, are subsumed by z
(basal)
nk , the residual579

variation that is subject to explicit modeling via ∆z
(pert)
nk , would become non-existent or diminished.580

As in the CPA model [12], we use an adversarial classification task to strip perturbation in-581

formation out of the z
(basal)
nk latent space. We use a neural network, NNclassifier, to try to predict582

whether a given perturbation p was applied in cell n, Pnp ∈ {0, 1}. This matrix Pnp is the known583

design matrix given to CellCap as an input. We do the same for each of the covariates supplied in584

the covariate design matrix Dnc. We note that the inclusion of an adversarial loss can be formally585

related to the theory of posterior regularization by interpreting the adversarial loss term as a KL586

divergence, see Ref. [27, 28].587

Unlike the CPA approach which uses a two-step minimax adversarial gradient update proce-588

dure, we apply a gradient reversal layer [29] as the first layer of our adversarial classifier, and we589

train the whole model with a single gradient update step. Due to the gradient reversal layer, the590

gradient updates that get applied to the adversarial classifier NNclassifier encourage the classifier to591

perform better classification, while at the same time, the gradients that get applied to NNencoder592

work against the classifier. This process effectively strips perturbation condition information out593

of the basal latent space.594

4.1.4 Posterior regularization via automatic relevance determination595

We additionally include a sparsity-inducing loss term as a form of automatic relevance determina-
tion (ARD) [18], inspired by the sparse Bayesian learning literature:

LARD =
∑
n,q

(
|hnq|
αq

+ log 2αq

)
. (14)

This loss can be construed as the negative log likelihood of hnq under a Laplace prior with zero596

mean and scale αq. Intuitively, αq determines the magnitude of response to program q. Performing597

maximum likelihood estimation over αq induces sparsity in a data-driven fashion: all things being598

equal, the data likelihood under the model would be higher if it were to consolidate responses into599

a few programs q with nonzero hnq by sending certain entries of αq → 0.600

We note that sparsity in the usage of response programs can be induced by placing an ARD601

prior on either hnq or wqk, and that to some extent this choice is arbitrary. So long as one of these602

variables is bounded, a shrinkage prior on the other performs model selection. In our case, we put603

the shrinkage prior on hnq and bound wqk ∈ (−1, 1) interval. This way LARD ∝ O(N) so that604

the hyperparameter γ (below) is independent of the size of the dataset, since all pieces of the loss605

function scale as O(N).606

4.1.5 The full loss function607

In CellCap, the loss function is a sum of the variational evidence lower bound (ELBO) and the
aforementioned adversarial loss, which acts as a posterior regularization to strip perturbation
information out of the basal latent space. We include tunable hyperparameters α, β, and γ on
various terms in the loss function (see below):

Lreconstruction = − log pNegBinom (xng|ℓn χng,Φg) (15)

LARD = − log pLaplace(hnq|0, αq) (16)

LKL = DKL

[
qϕ

(
z
(basal)
nk |xng

) ∣∣∣∣∣∣ p(z(basal)nk

)]
(17)

Ladversarial = −
∑
p

[
Pnp log←−qϕ(Pnp|z(basal)nk ) + (1− Pnp) log(1−←−qϕ(Pnp|z(basal)nk ))

]
(18)

L = LKL + αLreconstruction + β LARD + γ Ladversarial (19)

Here, DKL[·||·] is the Kullback-Leibler divergence, and Ladversarial is a binary cross entropy loss608

summed over all perturbations. ←−qϕ(Pnp|z(basal)nk ) is the posterior binary probability distribution for609
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Pnp ∈ {0, 1} (i.e. whether or not perturbation p was applied to cell n), conditioned on the learned610

basal cell state z
(basal)
nk . Note that the left arrow indicates the application of a gradient reversal611

layer as the first layer of the classifier network. The ϕ in qϕ(·) denotes the bundle of learnable612

parameters {NNencoder, NNclassifier}.613

4.1.6 Key model hyperparameters614

Each of the four main terms in the full loss function promotes a distinct learning objective. In order615

to provide users with the flexibility to prioritize different learning objectives as needed, we equip616

each term with a tunable coefficient as model hyperparameters. These include α ≥ 0 coefficient617

to control Lreconstruction, β ≥ 0 coefficient to control LARD, and γ ≥ 0 coefficient to control618

Ladversarial. (We note that one of the four loss terms can have its coefficient set to one without loss619

of generality, so here we have arbitrarily fixed the coefficient of LKL to one.) While the choice of620

proper hyperparameters can vary depending on the dataset, we provide rough guidelines for their621

tuning based on our interpretation of the role of different terms in the total loss function. The622

default values for these hyperparameters in CellCap are α = 2.0, β = 0.2, and γ = 1.0. However,623

we strongly advise users to explore the effects of varying these choices on their results.624

Promoting Ladversarial by increasing γ will encourage learning a well-mixed basal state represen-625

tation. Supplementary Fig. S19 shows an example illustrating how small choices of γ can impair626

the model’s ability to reach a decent fit, as illustrated by the lack of mixing in the left (γ = 0) and627

middle (γ = 0.1) columns. Insufficient mixing in the basal state implies disrupting the required628

compartmentalization of information needed for explicit modeling of ∆z(pert). As expected, we629

notice that the sought after response programs and their correct usage patterns only emerge for630

γ = 1 (right panel). We recommend users evaluate the receiver operating characteristic (ROC)631

curve of the adversarial classifier to confirm if the model has reached a well-mixed solution for the632

basal state. An acceptable fit of the basal state encoder should return adversarial classifier ROC633

curves close to the diagonal line, such that cells from different perturbations are indistinguishable.634

Promoting Lreconstruction decreases the reconstruction error in decoding the recomposed latent635

representation znk = z
(basal)
nk + ∆z

(pert)
nk + ∆z

(cov)
nk back to the original gene expression profile xng.636

Given the influence of ∆z
(pert)
nk in shaping the recomposed latent representation znk, promoting637

the reconstruction loss term additionally drives learning a better and more nuanced description638

of perturbations, often by learning additional response programs. We control the sparsity of the639

response programs via the LARD term with strength controlled by the β coefficient. Therefore, α640

and β play conflicting roles. In practice, we have noticed that choosing the appropriate α and β641

varies significantly from one dataset to another. For improved perturbation prediction, users can642

increase α while decreasing β. However, doing so may render wqk unnecessarily complicated and643

difficult to interpret. Alternatively, increasing β will result in sparser transcriptional programs, as644

demonstrated in Supplementary Fig. S20. Naturally, choosing very large values of β poses the risk645

of attaining an over-simplified fit.646

4.1.7 Key implementation details647

The CellCap model is implemented in Python on top of the scvi-tools framework for probabilistic648

modeling of single-cell data [30]. The scvi-tools framework streamlines the implementation of649

models following the setup of Kingma and Welling’s variational autoencoders for Bayesian inference650

[26] and provides much of required logic for single-cell data loading and model training, leveraging651

the PyTorch Lightning library. The reconstruction loss is evaluated by using single Monte Carlo652

posterior samples of hnq and z
(basal)
nk to compute χng in the generative model. The adversarial653

classifier is implemented as a dense neural network with 2 hidden layers and 1 output layer. Both654

hidden layers have 128 neurons, and the last layer predicts a probabilistic perturbation assignment655

matrix P pred
np ∈ (0, 1). A gradient reversal layer is inserted before the first hidden layer, for the656

purpose of adversarial training.657

In practice, we found it quite beneficial for rapid model convergence to carefully initialize the658

tensor κ
(i)
pqk to a set of representative points from z

(basal)
nk . We choose these representative points659
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using Louvain community detection to identify Q random “key” cells from the control group,660

using their initial basal states as κ
(i)
pqk for each perturbation and attention head. This ensures that661

the key vectors start out in a configuration inside the distributional support of the basal state.662

Poor initialization of κ
(i)
pqk results in vanishing gradients due to the softmax operation and slow663

convergence.664

For datasets that have extreme class imbalance, we implemented a weighted random sampler to665

balance the ratio of control and perturbed cells in each mini-batch during training. The sampling666

weight for each condition was calculated as N/(Nclasses × Nc), where N is the total number of667

samples, Nclasses is the number of classes, and Nc is the number of samples in class c. This668

calculation is implemented in sklearn.utils.class weight.compute sample weight. Training669

of CellCap is equipped with NVIDIA Tesla T4 GPU. We use the AdamW optimizer to update670

all trainable weights in the CellCap model. The initial learning rate is set to 10−3 followed by671

reductions by a factor of 0.6 after each plateau, as implemented in PyTorch’s ReduceLROnPlateau672

learning rate scheduler. We implemented early stopping, which is triggered if the loss does not673

reduce for more than 50 epochs. Otherwise, training stops after reaching the maximum number674

of epochs, which is 1000 in all cases in this study.675

The number of cells and the number of perturbations vary across single-cell perturbation676

datasets, which can influence the the total runtime of CellCap. For the real perturbation datasets677

used in this study, the total runtime ranges from 1 - 2 hours on a single Nvidia Tesla T4 GPU.678

Data Availability679

Code to simulate all three scenarios and their ready-to-use data can be found at https://680

github.com/broadinstitute/CellCap. Raw data for pathogen-exposure human monocytes is681

deposited at the European Genome-Phenome Archive (EGAS00001005376). A processed version682

is hosted at https://eqtlgen.org/sc/datasets/1m-scbloodnl.html. Raw data from Norman et683

al. is deposited at Gene Expression Omnibus (GEO), under accession number GSE133344. A pro-684

cessed version of the Norman et al. data can also be found at http://projects.sanderlab.org/685

scperturb[31].686

Code Availability687

CellCap code and quick-start tutorials are available at https://github.com/broadinstitute/688

CellCap. To reproduce major results in this study, please follow the notebooks provided in the689

CellCap GitHub repository.690
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