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Abstract

Single-cell transcriptomics, in conjunction with genetic and compound perturbations, offers a
robust approach for exploring cellular behaviors in diverse contexts. Such experiments allow un-
covering cell-state-specific responses to perturbations, a crucial aspect in unraveling the intricate
molecular mechanisms governing cellular behavior and potentially discovering novel regulatory
pathways and therapeutic targets. However, prevailing computational methods predominantly
focus on predicting average cellular responses, disregarding the inherent response heterogeneity
associated with cell state diversity. In this study, we present CellCap, a deep generative model de-
signed for the end-to-end analysis of single-cell perturbation experiments. CellCap employs sparse
dictionary learning in a latent space to deconstruct cell-state-specific perturbation responses into
a set of transcriptional response programs. These programs are then utilized by each pertur-
bation condition and each cell at varying degrees. The incorporation of specific model design
choices, such as dot-product cross-attention between cell states and response programs, along
with a linearly-decoded latent space, underlay the interpretation power of CellCap. We evaluate
CellCap’s model interpretability through multiple simulated scenarios and apply it to two real
single-cell perturbation datasets. These datasets feature either heterogeneous cellular populations
or a complex experimental setup. Our results demonstrate that CellCap successfully uncovers the
relationship between cell state and perturbation response, unveiling novel insights overlooked in
previous analyses. The model’s interpretability, coupled with its effectiveness in capturing hetero-
geneous responses, positions CellCap as a valuable tool for advancing our understanding of cellular
behaviors in the context of perturbation experiments.

1 Main

High-throughput single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding
of cellular and molecular biology [IH3]. Combining scRNA-seq with perturbation experiments has
further expanded our ability to explore the way cells behave in different conditions. Technologi-
cal innovations like Perturb-seq [4] and CROP-seq [5] use CRISPR to introduce genetic changes
or perturb gene expression levels in cells, and they enable systematic screening at large scale.
Single-cell perturbation datasets generated using these technologies are promising approaches for
discovering comprehensive maps of gene regulatory networks in complex cellular systems [6]. Such
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an understanding of gene networks could substantially boost drug discovery efforts [7]. As the
number of large-scale single-cell perturbation datasets grows, so does the challenge of modeling
and interpreting perturbation responses at the single-cell level.

The most straightforward approach to single-cell perturbation data analysis is one aimed at un-
covering bulk effects, where expression data from perturbed cells are aggregated and compared to
the aggregate of untreated control cells. In practice, addressing cellular heterogeneity (both at the
level of cell types and cell states) and batch effects requires complicated data preprocessing steps,
including batch effect correction and cell type identification [8]. This rudimentary approach suffers
from a number of fundamental shortcomings: (1) The choice on the data preprocessing procedure
often lead to changes in biological conclusions; (2) Cell type identification and data stratification
often requires imposing arbitrary thresholds (in particular, in experiments dealing with cells on a
differentiation trajectory); (3) Bulk analysis testing overlooks potentially valuable information en-
coded in cell-state heterogeneity, such as cell-state-specific responses; (4) The standard differential
expression analysis does not immediately reveal commonalities and contrasts between the mecha-
nism of action of different perturbations, which requires further statistical modeling. It is therefore
desirable to address these shortcomings within a robust end-to-end computational framework.

In recent years, several machine learning approaches have made progress toward improving
upon simple differential expression testing. The computational framework MIMOSCA assumes
an additive model of perturbational responses and analyzes perturbation experiments within a
regularized linear regression framework [4]. The computational framework Augur adapts a random
forest classifier to prioritize the cell type on which a certain perturbation has primary impact. Once
this cell type is identified, a differential expression test can be performed in this cell type context to
reveal the perturbation effects [9]. While these approaches recover certain aspects of the underlying
biology, it is likely that more complex cellular behaviors are not captured by simple linear models.

Deep learning models have also been explored as a means to uncover the nonlinear complexity
in single-cell perturbation data. For example, scGen uses a deep generative model to predict
the impact of one perturbation on a new cell population [I0], and GEARS takes advantage of
prior biological knowledge to model nonlinear gene interactions and nonlinearities in response
to multiple perturbations [I1]. Though both scGen and GEARS show promise in predicting
nonlinear synergistic effects between multiple perturbations, they do not explicitly model the ways
in which cell type or cell state generate the nonlinear perturbation response. The Compositional
Perturbation Autoencoder (CPA) model, a follow-up to scGen, decomposes the perturbed gene
expression profiles into a cell state latent representation in which perturbation, batch, and other
effects are all modeled as vector translations [I2]. This enables CPA to predict cell-state-specific
perturbation responses. Alternatively, PerturbNet encodes perturbation and cell state into two
separate latent representations via two different encoding neural networks, and it connects the
perturbation representation and cell state representation through a third neural network [13].
These designs allow CPA and PerturbNet to uncover the correspondence between cell state and
perturbation response. However, the nonlinear deep neural network decoders involved in the
models above do not readily lend themselves to succinct interpretation. Thus, these methods
primarily focus on the task of predicting unseen perturbation responses rather than understanding
and interpreting the perturbation responses measured by the dataset at hand.

Here we propose CellCap, a linearly-decoded variational autoencoder for modeling single-cell
perturbation data. CellCap builds upon the foundation laid by the CPA model but differs in
several key ways including its primary objective: while CPA aims to predict the responses of
unseen perturbations and in combinations, CellCap instead focuses on dissecting and interpreting
cellular responses in terms of a learned sparse dictionary of transcriptional response programs.
CellCap combines a nonlinear encoder with a linear decoder. The linear decoder lends the model
interpretability by allowing translating all latent space quantities to the gene expression space,
while the nonlinear encoder aims to uncover the basal (pre-perturbation) cell state from perturbed
cell states. In order to capture the complexity of cell-state-specific responses, CellCap moves the
nonlinear computations into the latent space algebra, using multi-head dot-product attention to
capture the correspondence between the state of individual cells and their perturbation response.
These response amplitudes then act on a sparse dictionary of transcriptional response programs to
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generate the data. We demonstrate the interpretability and model identifiability of CellCap with
both simulated and real single-cell perturbation data.

2 Results

2.1 CellCap’s key concepts

CellCap is fundamentally a variational autoencoder (VAE) that encodes the observed gene count
matrix z,4 into and out of a K-dimensional latent space. What distinguishes CellCap from a stan-
dard VAE, however, is the additional structure imposed on the making of latent representations.
As a first step, the CellCap encoder projects the observed gene count matrix z,4 into a “basal
state” zﬁasal) € R¥ using a multi-layer neural network (Fig. ) Here n and g are cell and gene
indices respectively, and k is the dimension of the latent space. The latent space modifications
arising from fixed effect covariates AZT(;OV) and perturbations Azg,)frt) are then added to zézasal)
to produce the complete and “recomposed” cell latent representation z,;. The linear fixed effects
modeled by Azs;fov) serve to regress out sources of variability that are not the object of study, for
example batch or donor identity. The complete latent representation z,j is then transformed back
into gene expression space via a linear decoder and is matched with the observed gene expres-
sion matrix @,y (108s Lieconstruction) 14, I5]. Since the relationship between observed data and
the basal state can be highly complex and nonlinear (e.g. the observed data could correspond to
treated cells whereas the basal state would correspond to the inferred state of the same cells prior

to treatment), we use an expressive deep neural network to amortize the inference of the basal

state zszasal) from ,4. At the same time, we use a linear decoder to maintain interpretability of

the latent space [16].

The “basal state” is a concept proposed in the CPA model by Lotfollahi et al. [12] and is
understood as an intermediate latent space vector that captures only the intrinsic and unmodeled
cell state variation. Throughout this manuscript, the terms “cell state” and “basal state” are
used interchangeably. Importantly, zﬁasal) ought not to contain information related to perturba-
tion and other known covariates such as batch or donor identity. To obtain such a basal state
representation, we simultaneously train the encoder network and adversarial classifier networks to
strip perturbation and known covariate information out of the basal latent space, similar to the
approach taken by the CPA model (loss Z,dversarial)-

We formulate modeling the effect of perturbations as a “dictionary learning” problem. We
assume that the applied perturbations can induce up to ) transcriptional “response programs”.
The response programs can be collected as a matrix wg, € (—1,1) interval, with @ rows, with
each row representing a distinct response program. All cells share statistical power to estimate

wyk, though individual programs can be used by different cells and perturbations with different

amplitudes (Fig. ) Explicitly, we assume Azﬁert) = Zqul hnq Wqk, where the hpq represents

the to-be-inferred usage amplitude of response program ¢ by cell n.

Our use of low-complexity building blocks for the sake of interpretability, namely a linearly-
decoded latent space and dictionary learning, necessitates invoking an element of nonlinearity to
allow modeling complex data distributions beyond the reach of linear models. In our formulation,
we introduce this nonlinearity in the computation of the variational posterior distribution of hy,

which is one of the key methodological contributions of our work. We construct h,, in the form

of “scaled dot-product attention” [I7] between the basal cell state zfl}zasal) and perturbation design

matrix P, € {0,1}. The perturbations are associated with a set of learned “perturbation key”
vectors K, (or equivalently, a 3-dimensional tensor k). The key vectors, which live in the same

K-dimensional space as the basal states (see Eqn. , determine the amplitude of cell-state-specific

response program ¢ in cell n as 8,4 = softmax(l-@pq-zq(lbasal) ). Illustrated in Fig. (1, the entries of 3,4
q

denote the normalized attention weights between cells and response programs. In the terminology
of scaled dot-product attention, the the basal state serves as “query”, the perturbation keys serve
as “key”, and finally the “value” is v,q = Zp H,q Py, which is intuitively the linear action of Hp,
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Figure 1: Key concepts underlying the CellCap model and its interpretable workflow. (a) A
linearly decoded VAE is the backbone of CellCap, which encodes the perturbed single-cell data
into basal state z(P25a) and reconstructs z(basal) + Az (pert) + Azgckov) back to the observed gene
expression count matrix x,q via a linear decoder. ( ) Graphical presentations of individual
components of CellCap. (c-f) Various downstream applications of CellCap. (c¢) Understanding
the relationship between bulk and cell-state-specific perturbation effects; (d) Interpretability of
the transcriptional response programs with a linear decoder; (e) Uncovering characteristics of cell
states that respond to each transcriptional program; (f) Uncovering cell-state-dependent response
amplitude to each response program.
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on the P,,. Here, H,, is another learnable weight matrix, with the interpretation of the usage of
response program ¢ by perturbation p at an aggregate level. Ultimately, the program usage is given
as Nnpg = Bnqvng and can be interpreted as the cell-state-specific amplitude of response program
g in cell n after being treated with perturbation p. In practice, as in Ref. [I7], we also found
it beneficial to leverage multiple attention heads to distribute the inference of response program
usages to specialized attention heads (see Methods).

We remark that the learned dictionary of response programs wgy are reused across perturba-
tions, leading to improved interpretability of the output and an understanding of the relatedness
between perturbations. CellCap uses sparse Bayesian learning (SBL), in the form of “automatic
relevance determination” [I§], as a mechanism to learn as few response programs (<= @) as are
necessary to explain the data (loss ZArp). The total loss function of CellCap balances this learn-
ing objective with the reconstruction loss and the adversarial loss (Fig. ) A formal definition of
the generative and inference process is provided in the Methods section, as well as hyperparameter
setup for balancing these learning objectives.

The CellCap model lends itself to interpretability by design (Fig. [Ip). Here, we outline a few
biological questions that can be answered using CellCap. First, CellCap reveals whether different
perturbations elicit similar cellular responses (Fig. ) General relationships between pertur-
bations are captured by H,,, the usage of each learned response program by each perturbation.
CellCap enables researchers to ask the same question under a specific cell-state context by exam-
ining hy,q, which is a combination of Hy, and 3,4, the cell-state-dependent attention outputs that
describe the response amplitude of each response program in each perturbed cell. This enables a
finer-grained understanding of relationships among perturbations while going beyond bulk effects
and leveraging the single-cell resolution of the data. Next, CellCap defines the transcriptional re-
sponse programs activated in a single-cell perturbation experiment (Fig. ) Instead of an overall
effect for each perturbation, CellCap discovers individual transcriptional response programs in the
form of wyy. Since these programs live in the same latent space as cell states, we can use the linear
decoder to translate these latent-space response programs to gene expression space, where each
program can be understood in terms of gene expression patterns.

The key advantage of CellCap is its ability to model the correspondence between basal cell
states and perturbation responses (Fig. ) This correspondence is critical for understanding why
cells may respond to a perturbation in a particular way. For example, the activation of cell-state-
specific gene expression programs, which could include cell maturity or cell cycle phase among
others, may make a specific cell population uniquely vulnerable to a perturbation and lead them
to respond with a specific transcriptional activation. This correspondence can be uncovered by

using the perturbation key k4, of perturbation p in the context of response program ¢, to query

which basal state zﬁasal) is relevant (see Methods). Finally, the attention weights 3,, indicate how

the amplitude of response program g varies across different basal cell states (Fig. )

2.2 CellCap captures cell-state dependent responses in simulated
data

To explore different aspects of the behavior of CellCap in a controlled fashion, we generate and
study three simulated scenarios that contain two perturbations in each (Fig. ) We assume that
the basal cell states co-vary with a hypothetical “pseudotime” to serve as a simplified model of
cell state trajectories. We used PROSSTT [19] to generate such continuous cell states, and each
cell was assigned a pseudotime value (see Supplementary Section . In simulated scenario (1),
each perturbation induces a single unique transcriptional response program, with the amplitude of
the response being proportional to the cell state “pseudotime”. In simulated scenario (2), the two
perturbations induce a single shared response program, though the cells have a stronger response
to one perturbation than the other. Again, the cell state pseudotime modulates the amplitude
of the responses similarly for both perturbations. In simulated scenario (3), each perturbation
induces one shared response and one unique response. In this case, the shared response amplitude
is correlated with the cell state pseudotime, and the unique responses are anti-correlated with the
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Figure 2: Exploring CellCap’s model identifiability using simulated data. (a) Graphical setup of
3 simulated scenarios. (b) Usage of each transcriptional response program discovered by Cell-
Cap (hpnq averaged over cells). Automatic relevance determination effectively turns off response

programs that are not necessary to explain the data, in agreement with the ground truth. (c)

The lincar decoder is used to directly interpret the learned basal state z>***) and the learned

perturbation Azr(f,’cert). Each dot represents the sum of all relevant genes in one cell for the indi-

cated response program, and cells are colored by perturbation condition. CellCap learns a basal
state where perturbations are indistinguishable (top panels), while learning response programs
whose expression correlates with ground truth (bottom panels). (d) Amplitudes h,,4 of the shared
response programs (Q5 in scenario (2) and Q1 in scenario (3)) in each perturbation condition are
presented with boxplots. (e) Visualization of per-cell response amplitudes h,,, for the 3 learned
response programs in scenario (3). The leftmost Fruchterman-Reingold (FR) plots are colored
by the ground truth cell state pseudotime, whereas h,q is used to color the FR plots shown in
rightmost three columns. The pseudotime hidden variable is the ground truth covariate of the
cell state response amplitude (see Supplementary Sec. for details). Unique (shared) response
programs are expected to be correlated (anti-correlated) with the pseudotime.
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pseudotime.

In scenario (1), we expect that CellCap should identify two response programs and that each
response should be specific to one perturbation. Indeed, only two programs stand out after model
training (Fig. ) CellCap also ascertains that there is only one relevant response program in
scenario (2) and three in scenario (3). In scenario (2), CellCap identifies response program Q5
as a shared program induced by both perturbations (Fig. 2b). In scenario (3), CellCap identifies
response program ()1 as the shared program, and response programs (3 and (8 as the programs
specific to perturbation 1 and perturbation 2, respectively (Fig. ) We also note that in all cases,
we have allowed CellCap to learn and use up to 10 response programs. However, the ARD sparsity-
inducing mechanism in CellCap correctly “turns off” the unnecessary transcriptional programs.

Next, we examined whether CellCap accurately decomposed the observed gene expression into
basal state (cell state) and response program in the latent space. To this end, we decoded the
learned z("»a) to obtain the predicted basal gene expression matrix. Our expectation is that
the results would be the same across all three conditions, and only exhibit the variation related to
pseudotime and not the specific perturbations. We further decoded the complete latent state vector
z = z(P3al) L Az(pert) 6 predict a full gene expression matrix. We subtracted the predicted basal
gene expression matrix from the full gene expression matrix to obtain the predicted perturbation-
induced gene expression. As expected, we found the basal state expression to be indistinguishable
among control and perturbed cells, and the expression of response programs to be perturbation-
specific (Fig. ) Additionally, CellCap successfully decomposed the observed gene expression into
basal state and response programs in scenarios (2) and (3) (Supplementary Fig. §1)). Meanwhile,
we found that CellCap accurately learns response programs that match the simulated ground truth
(Supplementary Fig. §2).

As mentioned earlier, the two perturbations induce a shared response program in both scenarios
(2) and (3), with an unequal response amplitude in scenario (2) and an equal response amplitude in
scenario (3). We found that CellCap correctly identified this difference in scenario (2) and reported
similar response amplitudes in scenario (3) (Fig. [2d). In scenario (3), we have set up a situation in
which the shared response program’s amplitude should be negatively correlated with the basal state
“pseudotime”, in contrast to the unique response programs which are positively correlated with
basal state pseudotime. The response amplitude Ay, reported by CellCap in scenario (3) was highly
correlated with ground truth (Pearson correlation coefficient 0.884 for Q3 in perturbation 1 and
0.859 for Q8 in perturbation 2). As for the shared program, CellCap recovered a shared response
program Q1 that captures the negative correlation with ground truth basal state, with Pearson
correlation coefficient -0.842 in perturbation 1 and -0.846 in perturbation 2 respectively (Fig. [2).
In summary: (1) CellCap was able to identify shared and unique programs for two perturbations;
(2) CellCap could distinguish different response amplitudes; and (3) CellCap learned the correct
correspondence between basal cell state and perturbation response.

2.3 CellCap reveals heterogeneous responses in pathogen-exposed
human monocytes

We next sought to demonstrate the utility and interpretability of CellCap in real single-cell pertur-
bation data. To this end, we used CellCap to reanalyze a previously published pathogen-exposed
human peripheral blood mononuclear cell scRNA-seq dataset. In the original report, Oelen et
al. identified differentially expressed (DE) genes by comparing each treatment condition against
untreated control for every major cell type [20]. They observed the largest number of DE genes
in monocytes across different pathogen exposure conditions, and they concluded that monocytes
are the cell type with the strongest response to pathogens. Another highlight of their analysis is
that the interferon signaling pathway is specifically enriched at 3 hours post-exposure in mono-
cytes and that this response pathway is common to all three pathogens. The original analysis did
not leverage the single-cell resolution of the dataset for studying the complex and heterogeneous
cell-state-dependent responses to pathogen exposure. Here, we show that CellCap can be utilized
to uncover such novel insights about cellular responses at an increased granularity. The steps
outlined below demonstrate the overall workflow other practitioners could use to leverage CellCap
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in studying their single-cell perturbation experiments.

First, we limited the scope of our analysis to the monocytes in the dataset, since this was
the cell type observed to exhibit the strongest responses in the original study. We noticed that
CellCap’s encoding of cell states from different conditions into the shared basal state zfﬁfsal) results
in excellent mixing between the pathogen-exposed group and the untreated (UT) group (Fig. [3h).
We recall that the basal state representation should preserve only intrinsic cell state variations and
not the perturbations themselves. Examining the learned usage of each response program by each
perturbation condition, we were able to paint an overall picture of the relationship between the
6 treatment conditions by performing principal component analysis (PCA) on the perturbation
signatures, i.e. the rows of Hp,. In particular, PC1 separated the conditions by time post exposure:
all treatments 3 hours (3h) post pathogen exposure — C. albicans (CA), M. tuberculosis (MTB),
and P. aeruginosa (PA) — were closely grouped in the PC space, while all 3 treatments 24 hours
(24h) post pathogen exposure were located on the right side of the plot (Fig. ) Importantly,
this indicates that the top PC of response program usage by perturbation is the time post exposure
rather than the pathogen itself. Of note, pathogen exposure with PA was distinct from the other
two pathogens at the 24h timepoint. We further examined h,q, the usage of each response program
by individual cells, and averaged over the top 90 percent of cells with the highest responses to the
treatment conditions (Fig. ) We observed that all 3 treatments 3h post pathogen exposure
primarily induce two programs (Q6 and Q9) but that all treatments 24h post pathogen exposure
induce more diverse response programs, including Q3, Q4, Q7, Q8, and Q10 (Fig. ) We also
note that Q2 and Q5 were not used, i.e. they were turned off during the course of model training,
suggesting that the experiment can be succinctly interpreted using 8 response programs.

Having obtained a global understanding of both the heterogeneity of basal cell states within the
monocyte population (Fig. ) and the relationships between different treatment conditions (Fig.
and c¢), we next examined the way in which transcriptional response programs are activated
in different basal states of monocytes. We started with program Q3, which is common to all 3
treatments 24h post pathogen exposure. Response amplitudes h,, of individual cells 24 hours
after CA exposure show that the response program Q3 is enriched in a certain sub-population
of monocytes (Fig. ) We then examined the characteristics of cell states within this sub-
population of monocytes. To this end, we used the perturbation key x,q; for response program
Q3 at 24h post CA exposure to query the basal state zizasal) of the UT group. We assigned to
each untreated cell a relevance score (computed using cosine similarity) to represent the likelihood
of this cell to respond with program Q3 in the 24h post CA exposure condition given its basal
state (Supplementary Fig. ) We used this relevance score to identify the corresponding basal
expression program enriched in cells with a high relevance score (see Methods).

The basal expression program included top upregulated genes ISG15, CCL2, ISG20, and IL7R
(Fig. left panel). We then identified the most highly responding genes in response program
Q3 (Fig. right panel). We noted a striking correspondence between basal expression of specific
genes (Fig. left) and the activation of Q3 (Fig. right) in response to CA exposure at the
24h timepoint. Gene set enrichment analysis (GSEA) indicates that the response program Q3 is
enriched for pathways involved in Rho GTPase activation and DNA replication with FDR < 0.1
(Fig. [Bf).

Using the same approach, we identified the basal expression program which results in a high
response of program Q6 in the 3h post CA exposure condition (Fig. —i and Supplementary Fig.
). We also examined the averaged and individual expression patterns of responding genes in Q3
and Q6 to confirm substantial perturbation changes from the untreated group (Supplementary Figs.
and . The primary observation is that treatments 3h post exposure induce a higher response
of the interferon signaling pathway, and this response is enriched in non-classical monocytes with
marker genes FCGR3A and HES) identified in basal cell state expression. This result is consistent
with the finding in the original report, which used a multi-step analysis (clustering, cell state
annotation, and case-control comparison) [20]. CellCap not only automates this discovery workflow
within a unified end-to-end model, it also uncovers novel response patterns which we briefly outline
below.

Additional response patterns identified by CellCap are shown in Fig. Bj and Supplementary Fig.
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Figure 3: CellCap reveals heterogeneous responses in pathogen-exposed human monocytes. (a)
The left and right UMAPs show the embedding of the raw gene expression and CellCap-inferred
corresponding basal states, respectively. CellCap learns a basal latent space in which cells from all
perturbation conditions are well-mixed. (b) General relationship between 6 pathogen-exposure
conditions, visualizing H,, using principal component analysis. (c) Program usages in each
condition, hyq, summed over responding cells in each perturbation group (see Supplementary
Section . (d) Per-cell response amplitudes h,, of program Q3 in the 24hCA perturbation
condition. (e) Top basal marker genes and responding genes in Q3. Top up- and down-regulated
genes are shown to highlight expression patterns on both extremes. (f) GSEA for response
program Q3. Top 5 positive and top 5 negative pathways are shown. (g) Per-cell response
amplitudes of program Q6 in the 3hCA perturbation condition. (h) Top basal marker genes and
responding genes in Q6. Top up- and down-regulated genes are shown to highlight expression
patterns on both extremes. (i) GSEA for response program Q6. (j) Other major cell-state-
specific response patterns identified by CellCap. Further investigation of these patterns is shown
in Supplementary Figs. S@} Abbreviations: [3hCA = 3 hours post C. albicans exposure,
24hCA = 24 hours post C. albicans exposure, GSEA = gene set enrichment analysis]
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S6l With these patterns in hand, we identified all major basal expression programs and performed
soft annotation to assign cellular identities to different sub-populations of monocytes in the basal
state without clustering (Supplementary Fig. . One salient example is the enrichment of Q8 in
a small population of monocytes at 24h post CA exposure. We identified its corresponding basal
expression program using the same approach as above (Supplementary Fig. . As mentioned
earlier, PA pathogen exposure is distinct from the other two pathogens at the 24h timepoint. A
possible explanation for this difference could be the enrichment of response program Q10 in one
particular sub-population. Q3 is enriched in the same sub-population of monocytes in the all 24h
post exposure conditions. However, cells in this sub-population show a higher response of Q10 to
24h PA than to the other two pathogens at 24h. Averaged expression patterns of perturbed genes
in Q3 and Q10 indicate that Q3 is a shared program across the 3 pathogens but Q10 is specific
to PA exposure (Supplementary Fig. @ In Q10, we identified macrophage markers like APOFE,
APOC1, and RNASE1 (Supplementary Fig. §10). This result suggests a possibility that cells in
this sub-population of monocytes (with basal marker genes ISG15, CCL2, ISG20, and IL7R) would
gain the potential to differentiate into macrophages after 24 hour exposure to PA. We remark that
this nuanced finding enabled by CellCap was not part of the original report by Oelen et al. [20].

2.4 CellCap captures complex patterns in large-scale genetic per-
turbation data

We next used CellCap to analyze a single-cell Perturb-seq dataset by Norman et al. [21]. The
study used CRISPR activation to over-express transcription factors in the K562 cell line at large
scale, including 105 single-target perturbations and 131 pairwise combinatorial perturbations. In
CellCap, this experimental design can be readily encoded as a design matrix P,, € {0,1} (with
the p dimension of size 105), where Zp P, =1 for the cells receiving single-target perturbations,
and Zp P,, = 2 for the cells receiving double-target perturbations. We initially set up a maximum
of (Q = 50 response programs for CellCap to learn. Following model training, we observed that a
majority of programs were turned off, leaving only 10 programs shared by the 236 perturbations
(Supplementary Fig. 11).

We obtained averaged perturbation response signatures, defined as the learned usage of each
response program averaged over responding cells (see Supplementary Section stratified by
each of the 236 perturbation conditions. We performed UMAP dimensionality reduction on the
obtained average perturbation signatures for visualization, and we clustered the signatures (Fig.
[h). This clustering largely agrees with the findings in the original study by Norman et al. [2]]
and a reanalysis done by Roohani et al. [I1I]. Norman et al. clustered the perturbations using a
pseudo-bulk approach, while Roohani et al. used their proposed deep learning method GEARS.

We focused on 4 of these perturbation clusters for downstream investigation. Ranking the
perturbations by their usage of response program Q29, we found that the top ranked perturbations
primarily involve the activation of KLF1 as well as KLF1-included combinatorial perturbations
(Fig. ) We noticed that perturbations like AHR, BAK1, DUSPY9, SET are ranked lower than
their combinational perturbatins with KLFI in response program Q29 (Fig. ) We wondered
whether response program Q29 is primarily driven by activation of KLF1. We examined the
expression of top responding genes in Q29 in perturbation conditions involving the activation of
KLF1, AHR, BAK1, DUSPY9, SET, and their pairwise combinations KLF1/AHR, KLF1/BAK]I,
KLF1/DUSP9 and KLF1/SET. We found that the top responding genes in response program
Q29 are primarily expressed in KLF'1-activated perturbations but not in AHR, BAK1, DUSP9-
or SET-activated perturbations (Supplementary Fig. . This indicates that response program
Q29 is mainly caused by activation of KLF'1, with no or little dependence on the presence of AHR,
BAK1, DUSP9 or SET activation.

Activation of KLF1 has been shown to promote erythropoiesis [22), 23]. However, the analyses
in both Norman et al. [2I] and Roohani et al. [II] categorized perturbations with activation
of KLF1 as “pro-growth”. We performed GSEA and found that response program Q29 might
be related to metabolic processes or proteasome activation (Fig. ) Meanwhile, CellCap iden-
tified lymphocytes marker genes in response program Q29. These lymphocytes markers include

10
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Figure 4: CellCap captures complex relations between genetic perturbations in large screens (data
from Norman et al. [21]). (a) UMAP visualization of the relatedness of 236 perturbations obtained
from the program usages inferred by CellCap (Supplementary Section . Perturbations are
colored by K-means clustering, highlighting 5 perturbation clusters. (b) Perturbations ranked
by usage of the response program Q29. Perturbations involving KLF1 activation are colored in
red while others are colored in grey. Blue dots highlight the single-target perturbations (that
lack KLF1 activation) corresponding to those red perturbations. (c¢) GSEA results showing
significant KEGG pathways related to response program Q29. KEGG pathways with FDR < 0.1
are highlighted. Dot size and color are proportional to the size of the gene set. (d) Expression of
top responding genes in program Q43. For each perturbation, cells are ordered from the highest
Q43 response amplitude to the lowest. (e) Per-cell usage hy,, of the Q43 response program are
shown on the basal state UMAP for all the perturbed cells from panel (d). (f) The basal state
UMAP of control cells showing the average z-scored expression of the top basal state marker genes
that correspond to program Q43. (g) Same basal state UMAP showing M/G1 score for control
cells. (h) Quantitative comparison of M/G1 score and Q43 response amplitude in CEBPE-
activated cells reveals a strong correlation.
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CD3G, CD80, and IL2RG (Supplementary Fig. . Response program Q29 also includes other
non-specific markers. For example, TRABD2A and NMU also have high expression in lympho-
cytess. Based on this, we hypothesize that KLF1 activation in K562 cells could serve to enhance
lymphocytes identity.

Both Norman et al. and Roohani et al. identified the group of perturbations that includes
CNN1, CBL,and UBASHS3B as “erythroid”. Consistent with their analyses, CellCap also identified
that erythroid markers like HBE1, HBG1, and HBG2 are highly ranked in the response program
QT shared by these perturbations (Supplementary Fig. . Interestingly, CellCap also revealed
KLF1 as one of top responding genes in response program Q7, suggesting KLF1 may promote
erythropoiesis indeed [22, 23]. Although both Norman et al. and Roohani et al. labeled the group
of perturbations that includes FOXA1, FOXAS3, and FOXL2 as “pioneer factors”, a detailed
description of shared perturbation responses in this group is missing. Here, CellCap identified
that this group of perturbations shares response program Q22, which includes top responding
genes like LYZ and ID3 (Supplementary Fig. .

We next focused on response program 43, which is most strongly induced by activation
of CEBPA, CEBPB, CEBPE, and their combinatorial perturbations. Both Norman et al. and
Roohani et al. classified this group as granulocytes [11, 21]. CellCap identified neutrophil markers
in Q43, including LST! and CSF3R (Fig. ), showing great agreement with previous analyses.
Weinberger et al. also reanalyzed this Perturb-seq dataset with a primary focus on this group
of perturbations [24]. By visualizing a few neutrophil marker genes, they confirmed that only a
certain population of cells in which CEBEB and/or SPI are activated would differentiate towards
neutrophils. However, Weinberger et al. did not highlight the heterogeneity in response amplitudes
at the single-cell level in the CEBPB and SPI-activated perturbations. CellCap reveals that
this heterogeneity in per-cell response magnitude occurs in all perturbations involving CEBPA,
CEBPB, CEBPE, and their combinations (Fig. : highlighted with red boxes). Expression levels
of genes CEBPA, CEBPB, and CEBPE (the target genes) suggest that this heterogeneity is not
likely due to a failure to activate the target gene in these cells (Fig. : top 3 rows). For example,
the gene CEBPE is robustly activated in all perturbed cells in the CEBPE perturbation group,
even though the cells highlighted by the red box show a much lower level of the Q43 response
program.

This motivated us to examine the basal cell state to understand if some intrinsic, pre-existing
cellular variation would explain this phenomenon. We computed a cosine similarity between the
perturbation key kpq, of CEBPA, CEBPB, CEBPE or SPI1 and the basal state zgzsal of control
cells, and we identified a basal program related to response program Q43. We compared the pattern
of response amplitudes of program Q43 in perturbed cells (Fig. 4p) with the average expression
of the related basal program in control cells (Fig. |4f), and we confirm that the patterns match.
Regarding this related basal program, the unperturbed K562 cells with high cosine similarity
to all 4 perturbations already present low expression of the granulocytes marker genes CSF3R,
LST1, LGALS1, and APOC1 (Supplementary Fig. . This indicates the existence of or
ongoing differentiation towards granulocyte lineage in unperturbed K562 cells. CellCap finds that
cells which display some granulocyte markers in the basal state will continue on a path toward
granulocyte differentiation as a response to CEBP* activation.

CellCap also indicates that cell cycle stage is anti-correlated with Q43 response. We visualized
cell cycle patterns in control cells (Fig. and Supplementary Fig. and confirmed that
a per-cell M/G1 score shows strong anti-correlation with the magnitude of Q43 response (Fig.
; with additional perturbations shown in Supplementary Fig. . CellCap pinpoints the cell
cycle genes that are anti-correlated with program Q43. This anti-correlation is especially strong
for CENPA, CENPE and CENPF, which are known marker genes for the M stage. Cells with
lower Q43 response amplitudes tend to have higher expressions of CENPA, CENPE and CENPF
(Supplementary Fig. . Weinberger et al. also found that cell cycle is a shared variation across
conditions [24]; however, their analysis did not uncover the anti-correlation between M/G1 score
and the transcriptional response to activation of CEBPA, CEBPB, and/or CEBPE. CellCap’s
nuanced findings suggest a possibility that cells that already show signs of differentiation towards
granulocytes and are not in G1/M phase would have higher response to activation of CEBPA,

12
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407 CEBPB, and CEBPE.

s 3 Discussion

400 In this study, we developed the computational method CellCap for end-to-end analysis of single-
410 cell perturbation experiments. CellCap models an interpretable correspondence between cell states
a1 and perturbation responses and enables multiple downstream applications. We demonstrated the
412 utility of CellCap and the consistency of its findings using both simulated and real single-cell
413 perturbation datasets. Our reanalysis of pathogen-exposed human monocytes data from Oelen et
a14 al. [20] uncovered novel cell-state-dependent responses following pathogen exposure. In particular,
415 we found a sub-population of monocytes that exhibit macrophage differentiation potential 24
416 hours after P. aeruginosa exposure, a finding that was overlooked in the original study. Our
a7 reanalysis of genetic perturbation data collected by Norman et al. [2I] demonstrated agreement
418 with previous analyses while also providing further insights into the ways in which the effects of
419 genetic perturbations can be nuanced in relation to cell states.

420 The methodological innovations of CellCap are to be understood in relation to the existing
421 methods developed in this domain which put different degrees of emphasis on interpretability and
a2 prediction accuracy. One of the key concepts underlying CellCap is that each cell is endowed
423 with “basal state”, an inferred pre-perturbation transcriptional state that encodes intrinsic cell
424 state variation. While we have borrowed this idea from the CPA model [12], we emphasize that
425 the end goal of CellCap is interpreting and decomposing single-cell perturbation responses into a
426 dictionary of response programs, in contrast to predicting unseen perturbation effects accurately.
27 Even though both CPA and CellCap aim to model the correspondence between basal cell state
428 and perturbation response, the interpretive advantage of the CellCap model lies in the additional
429 structure imposed on the latent space operations. CellCap learns this correspondence explicitly in
430 the form of attention weights that signify the coupling between basal state sub-populations, learned
431 response programs, and the usages of these response programs within each perturbation condition.
432 While CPA has the potential to exhibit greater accuracy at predicting perturbation effects in
433 unseen conditions (using high-dimensional latent spaces and nonlinear decoders), CellCap’s utility
434 lies in the complementary role it plays in dissecting perturbation experiments and transforming
435 observed cellular responses into biological insights.

436 The computational tool contrastiveVI [24] encodes single-cell perturbation data into indepen-
437 dent “shared” and “salient” latent spaces, and is another valuable method for dissecting single-cell
438 perturbation data. The concepts of “shared” and “salient” representations in contrastiveVI have
439 semblance to the separable basal state and perturbation representations in CellCap and CPA. One
440 key difference is that contrastiveVI does not model the correspondence between the “shared” and
441 “salient” components (i.e. the equivalent of CellCap’s attention structure), and as such, the model
442 does not explicitly uncover the relationship between perturbation response and cell states. This
443 difference was demonstrated by the results highlighted in Section [2.4] in which we reanalyzed the
444 Perturb-seq data from Norman et al. [21I]. CellCap was able to uncover previously unnoticed
415 patterns in heterogeneous perturbation responses caused by interpretable differences in cellular
446 basal state — in this case, pre-existence of granulocytes lineage and cell cycle phase. Learning the
447 correspondence between basal cell state and perturbation response not only enhances interpretabil-
448 ity, but also gives CellCap greater statistical power for response program discovery as opposed to
449 more direct differential expression testing methods, which find transcriptional responses that are
450 averaged over responding and non-responding cells.

451 Unsupervised Bayesian models such as CellCap, though highly effective in extracting insights
452 from new datasets, come with certain trade-offs and practical considerations. One of these chal-
453 lenges involves determining appropriate hyperparameter values. For instance, the line between a
454 “shared” and “unique” response program can be hard to draw in certain cases. There is a necessary
455 trade-off between the model’s ability to explain the data accurately and its ability to explain the
456 data concisely. Shared response programs lend interpretability to the output, but a model that

457 finds additional unique responses for each perturbation can provide a better fit to the data. We
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make this trade-off transparent and explicit in CellCap by means of a hyperparameter that controls
the weight given to automatic relevance determination in the optimization objective function. A
larger value will encourage CellCap to explain the data using fewer response programs, whereas
a smaller value will encourage the model to reconstruct the data more accurately at the expense
of learning more response programs. This trade-off is discussed in more detail in Methods [£.1.6]
Researchers are encouraged to carefully scrutinize the hyperparameters for each dataset, making
thoughtful choices to align with other relevant factors and the overarching objectives of the study.

It is essential to learn a biologically meaningful basal state in both CellCap and CPA, akin to
the“shared” representation in contrastiveVI. However, there are scenarios where inferring the basal
state could prove challenging without gathering time courses of higher resolution. For instance, in
a diving cell culture, perturbations could lead to the emergence of a new cell state, coupled with the
elimination of specific cell sub-populations and/or a near-total loss of the original cell state post-
perturbation. Along these lines, Weinberger et al. have commented that the results produced by
constrativeVI can be misleading if the “shared” background variations are not present in perturbed
cells [24]. Likewise, CellCap is likely to fail to correctly project perturbed cells back to the pre-
perturbation basal state, one that matches the distribution of control cells, if the perturbed cells
have undergone significant reprogramming or passages. The evidence for such a failure mode would
be (1) obtaining basal state distributions that do not match the state of unperturbed control cells,
combined with (2) the use of excessively large values for the hyperparameter « that controls the
alignment between basal state distributions across different conditions (see in Methods). In
such a case, downstream analyses and other CellCap inferences are questionable, and obtaining a
finer time course could provide the most robust remedy.

Careful consideration is essential when examining perturbation responses in diverse cell pop-
ulations. It is generally expected that the greater the heterogeneity within the cell population,
the more varied the perturbation responses will be. However, when conducting experiments with
multiple cell types and seeking to understand and analyze the impact of perturbations on each cell
type with the same level of detail, challenges may arise in choosing a single set of hyperparameter
values. For instance, cell types that exhibit strong responses may benefit from stronger ARD reg-
ularization to reduce the number of learned programs, but this decision may sacrifice granularity
in modeling the effects of perturbations in less responsive cell types. In our study, we specifically
trained CellCap on datasets featuring a single cell type, with a focus on addressing variations at
the fine-grained resolution of cell state. It is important to note that this limitation is not unique to
our methodology. For instance, GEARS must also be trained on a single cell type due to potential
variations in interactions between two perturbations in different cell type contexts [11]. Including
multiple cell types in the training of GEARS could result in compromised predictions.

In conclusion, we offer several recommendations for the practical application of CellCap. Firstly,
it is advisable to determine the desired resolution of variations. If the focus is on exploring hetero-
geneous responses at the nuanced level of cell state, it is recommended to narrow down to a single
cell type during the training of CellCap. Conversely, if the objective is to investigate more coarse-
grained response heterogeneity at the cell type level, all cell types can be included. Secondly, it is
crucial to ensure that the control group of cells encompasses all potential variations in the input
cell state. This necessitates a well-designed experiment where control cells and perturbed cells
originate from the same population, ensuring that the distribution of control cell states aligns with
the distribution of pre-perturbation cell states for the perturbed cells. Lastly, it is important to
acknowledge that certain hyperparameter choices, particularly the weight assigned to automatic
relevance determination, can impact the interpretation of results. While variations in hyperpa-
rameter values may yield slightly different outputs, they also present an opportunity for gaining
fresh perspectives on understanding the landscape of perturbation responses. We encourage users
to train CellCap with diverse setups and assess the model outputs using domain knowledge and
expertise.
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508 4 Methods

509 4.1 The CellCap model

510 CellCap is a probabilistic generative model for single-cell transcriptomics count data resulting from
511 perturbation experiments, where groups of cells are subjected to different perturbation conditions.
512 Perturbation responses are parameterized by linear combinations of learned “response programs”,
513 which can be activated by one or more perturbations. An attention mechanism [I7] is used to
514 parameterize a correspondence between the “basal state” of a cell and the perturbation response
515 amplitude, allowing the response to be heterogeneous at the single-cell level.

516 In designing CellCap, we draw inspiration from existing approaches that model single-cell
517 perturbation data by leveraging latent space arithmetics, in particular the CPA model [12], and
518 reconsider some of their design choices under the lens of model identifiability and interpretability.
519 We pay much attention to where the nonlinearities appear in the model. In the CPA model, a
520 linear latent space algebra gives rise to a latent representation of a cell which is put through a
521 nonlinear decoder. In CellCap, we instead move the nonlinearity from the decoder to the latent
522 space algebra, where an interpretable attention mechanism models the correspondence between cell
523 state and perturbation response. The linear decoder allows us to interpret perturbation responses
524 as the sum of linear “gene expression response programs”’ — programs which can be unique to
525 one perturbation or shared across several perturbations — and which contribute to the measured
526 response in a cell-state-dependent manner.

527 4.1.1 The CellCap generative process

528 A formal definition of the CellCap data generative process is given below, along with a glossary of
520 random variables, intermediate quantities, and the implied meaning of subscript indices of various
530 tensor quantities:

N multi-head cross-attention . response
= - attention programs
W & query weights
3 E
Z35
=) E L ..

key

design
matrices

Pq response

amplitudes

)

values

g

Azﬁw)

fixed effect covariate programs

Figure 5: Probabilistic graphical model for the data generative process in CellCap. Observed data

are depicted by shaded gray circles (Ppp, Dpe, Tng). Latent variables are in open circles (zﬁasal)).
Diamonds are deterministic computations (Bnq, Ung, Png; Azﬁert), Aszkov), Znk)- Rectangles of

different shadings represent learnable parameters, as do nodes with dots (Kpgk, Hpqs Yeks Wek,
®,). NNgecoder 15 a single-layer decoder neural network.
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n cellel... N

g geneel...G

p perturbation € 1 ... 1 (pert)

q response program € 1 ... Q)

¢ fixed effect covariates € 1 ... N(°V)

k latent space dimension € 1... K

P x @ learnable K-dimensional vectors for each attention head ¢

P,, perturbation “design matrix” indicating perturbation for each cell, values € {0,1}

Hp, learnable non-negative matrix signifying the usage of response programs per perturbation
vng value vectors which sum the relevant response programs for each cell

Dype N x N©) fixed effect “design matrix” indicating fixed effects for each cell

Yo N x K learnable matrix (fixed effect covariates)
hng N x Q usage matrix of response programs
wgr @ x K learnable matrix of response programs in the latent space € (-1, 1) interval
Tng N x G observed count data € {0,1,2,...}
£, library size of cell n
oy the Laplace ARD prior scale factors € (0,1) interval

¢ Tegative binomial overdispersion of gene g

Z;k’;asal) -~ ./\/'(07 1) (1)
“gk = Z "ﬂgq)k Pryp (2)
p

Brg = max [soft;nax (\/TE Z /ig;k zflzasal)>] (3)
k

Ung = Z Hyq Pryp (4)
P
hng = Bnqtng (5)
AZ,r(Scert) = Z hnq Wk, (6)
q
AZ7(LC,1€OV) = Z Dy Yek (7)
(&
ok = ZS;:LS&I) + AZT(lckov) + Azgl):rt) (8)
Xng = NNdecoder(znk) (9)
o= Tng (10)
g
Zng ~ NegBinom (€, xng, Pg) (11)
zq(ﬁgasal) is a K-dimensional latent variable representing the “basal” (i.e. unperturbed) state of
each cell, with a standard normal prior (Eqn. . The final latent representation of a cell, z,, is
recomposed as the sum of zfiasal) together with two “correction” terms: one for the perturbation

itself, Azﬁert), and another for for fixed linear covariates, Azflckov). The simpler of these two terms,

Azf:;cov), is the matrix product of the covariate design matrix D,. and the learnable linear fixed
effects matrix y.. Linear fixed effects denoted in the design matrix D, can be used to effectively
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“regress out” technical variation or other variation that is not the subject of the study, such as
batch or donor (Eqn. [7)).

The perturbation effect, Azﬁert), is modeled as a sum over independent response programs wgj,
according to their usage by each cell, hyq (Eqn. @ hng is obtained as the product of a multi-head,
scaled dot-product attention mechanism [I7], whereby the effects of a given perturbation are made
to depend upon the basal state of the cell. This is depicted graphically in Fig. [5| In the language
of dot-product attention, the “keys” are kpqx, the “queries” are znzasal , and the “values” are vyg.
The keys are derived from the action of a learnable tensor x,q; on the perturbation design matrix
P,;,. Here, kpg, can be thought of as a dictionary containing p x ¢ vectors in the K-dimensional
latent space for each attention head i. (3,4 represents the attention weights that quantify how much
cell n attends to response program ¢ (Eqn. . T is a temperature hyperparameter which controls
the sharpness of the distribution of attention weight over programs, and by default its value is 4
so that the factor LK =1 when K = 16, the default size of the latent space. The “value” vectors

Ung amount to picking out the response programs for the given cell’s perturbation(s) and summing
them (Eqn. 4)).

Much like the motivation for using multi-head attention (MHA) in natural language processing
to capture different semantic views of the words in a given context, we interpret MHA here as
a mechanism to capture the one-to-many correspondences between one basal state and different
transcriptional response programs. The dot-product attention is computed separately for each
head, and for each n and ¢, the highest attention score is taken across all heads (Eqn. [3). We
deviate from the standard MHA implementation in using the max pooling operation to reduce the
effect of multiple heads whereas the original implementation uses a linear combination.

The learned matrix wy;, can then be directly interpreted as latent-space response programs,
which can be decoded to gene response programs via the linear decoder, i.e. NNgecoder(Wgk). As
discussed by Svensson et al., the single-layer decoder lends itself to model interpretation at the
expense of a small increase in the reconstruction error [16].

Finally, the complete-information latent space vector z,j, the sum of basal state and pertur-
bation response, is put through the linear decoder NNgecoder to obtain x;4, the normalized gene
expression per cell (Eqn. E[) The count data itself, ,4, is sampled from a negative binomial dis-
tribution with mean ., times the library size ¢,, and with a learnable gene-specific overdispersion
@, (Eqn. [11) [14, 15]. As shown in Ref. [25], the zero observations in scRNA-seq data can be
effectively accounted for by a negative binomial with appropriately tuned overdispersion without
needing to resort to zero inflation to add artificial dropout.

4.1.2 The CellCap variational posterior
We fit CellCap using variational inference [26]. The posterior of CellCap’s only latent variable,

zgl)asal), is approximated as:
basal basal
Zflk?jj ) [fng]a Zé]j? ) [xng] = NNencoder(xng> (12)
basal basal basal
Zﬁzkasa) |Tng ~ N (zﬁkiza)[xng}v Zy(zk?ia)[xngD (13)
Here, we use a neural network to propose to parameterize the posterior distribution p(zr(;asal) | Zng)s

as in Kingma and Welling [26]. Surmising the complexity of the task of inferring the basal state
from expression data, we use a deep neural network to this end. We note that this particular
inference task is not constrained to be interpretable, justifying our use of a deep neural network.

4.1.3 Posterior regularization via adversarial classification

As at stands, the current modeldoes not include a mechanism to ensure that the learned posterior

distribution zﬁfsal) | g is indeed devoid of perturbation effects. Satisfying this condition, either

rigorously or in approximation, is crucial for the correct behavior of CellCap and the interpretation
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579 of its results: if perturbation effects, either entirely or in part, are subsumed by zézasal), the residual
580 variation that is subject to explicit modeling via Azr(iert), would become non-existent or diminished.
581 As in the CPA model [12], we use an adversarial classification task to strip perturbation in-
582 formation out of the zézasal) latent space. We use a neural network, NN jassifier, t0 try to predict
583 whether a given perturbation p was applied in cell n, P,, € {0,1}. This matrix P, is the known
584 design matrix given to CellCap as an input. We do the same for each of the covariates supplied in
585 the covariate design matrix D,.. We note that the inclusion of an adversarial loss can be formally
586 related to the theory of posterior regularization by interpreting the adversarial loss term as a KL
587 divergence, see Ref. [27, 28].

588 Unlike the CPA approach which uses a two-step minimax adversarial gradient update proce-
580 dure, we apply a gradient reversal layer [29] as the first layer of our adversarial classifier, and we
590 train the whole model with a single gradient update step. Due to the gradient reversal layer, the
501 gradient updates that get applied to the adversarial classifier NN jagsifier €ncOurage the classifier to
502 perform better classification, while at the same time, the gradients that get applied to NNencoder
503 work against the classifier. This process effectively strips perturbation condition information out
504 of the basal latent space.

505 4.1.4 Posterior regularization via automatic relevance determination

We additionally include a sparsity-inducing loss term as a form of automatic relevance determina-
tion (ARD) [18], inspired by the sparse Bayesian learning literature:

_ [fing] )

% = — +log 2ay | . 14

ARD nz; ( oy +log 2ay (14)
596 This loss can be construed as the negative log likelihood of h,4 under a Laplace prior with zero
597 mean and scale o. Intuitively, a, determines the magnitude of response to program ¢. Performing
598 maximum likelihood estimation over «, induces sparsity in a data-driven fashion: all things being
599 equal, the data likelihood under the model would be higher if it were to consolidate responses into
600 a few programs g with nonzero h,, by sending certain entries of oy — 0.

601 We note that sparsity in the usage of response programs can be induced by placing an ARD
602 prior on either h,q or wyi, and that to some extent this choice is arbitrary. So long as one of these
603 variables is bounded, a shrinkage prior on the other performs model selection. In our case, we put
604 the shrinkage prior on hyq and bound wg; € (—1,1) interval. This way Zxrp o O(N) so that
605 the hyperparameter v (below) is independent of the size of the dataset, since all pieces of the loss
606 function scale as O(N).

607 4.1.5 The full loss function

In CellCap, the loss function is a sum of the variational evidence lower bound (ELBO) and the
aforementioned adversarial loss, which acts as a posterior regularization to strip perturbation
information out of the basal latent space. We include tunable hyperparameters «, 3, and v on
various terms in the loss function (see below):

Zeconstruction = - IOg PNegBinom (:Ung’gn Xng> (I)g) (15)
ZARD = — logpLaplace(hnqma O‘Q) (16)
(basal) (basal)
Zir =i s (2 o ) || (1) (1
basal basal
jadversarial = - Z [Pnp lOg %(Pnp‘zikasa )) + (1 — Pnp) 10g<1 — %(Pnﬂzikasa ))) (18)
p
Z = zKL + « ﬁeconstruetion + ,8 gARD + Y gadversarial (19)
608 Here, Dk, [-||-] is the Kullback-Leibler divergence, and Zgversarial 18 @ binary cross entropy loss

609 summed over all perturbations. %(Pnp\zﬁiasal)) is the posterior binary probability distribution for
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P, € {0,1} (i.e. whether or not perturbation p was applied to cell n), conditioned on the learned
basal cell state zﬁasal). Note that the left arrow indicates the application of a gradient reversal
layer as the first layer of the classifier network. The ¢ in g4(-) denotes the bundle of learnable

parameters {NNencoder ’ NNclassiﬁer } .

4.1.6 Key model hyperparameters

Each of the four main terms in the full loss function promotes a distinct learning objective. In order
to provide users with the flexibility to prioritize different learning objectives as needed, we equip
each term with a tunable coefficient as model hyperparameters. These include « > 0 coefficient
to control Zeconstruction, 3 > 0 coefficient to control Zarp, and v > 0 coefficient to control
Ladversarial- (We note that one of the four loss terms can have its coefficient set to one without loss
of generality, so here we have arbitrarily fixed the coefficient of Zk1, to one.) While the choice of
proper hyperparameters can vary depending on the dataset, we provide rough guidelines for their
tuning based on our interpretation of the role of different terms in the total loss function. The
default values for these hyperparameters in CellCap are o = 2.0, § = 0.2, and v = 1.0. However,
we strongly advise users to explore the effects of varying these choices on their results.
Promoting -Zaqversarial Dy increasing v will encourage learning a well-mixed basal state represen-
tation. Supplementary Fig. shows an example illustrating how small choices of v can impair
the model’s ability to reach a decent fit, as illustrated by the lack of mixing in the left (v = 0) and
middle (v = 0.1) columns. Insufficient mixing in the basal state implies disrupting the required
compartmentalization of information needed for explicit modeling of Az, As expected, we
notice that the sought after response programs and their correct usage patterns only emerge for
v = 1 (right panel). We recommend users evaluate the receiver operating characteristic (ROC)
curve of the adversarial classifier to confirm if the model has reached a well-mixed solution for the
basal state. An acceptable fit of the basal state encoder should return adversarial classifier ROC
curves close to the diagonal line, such that cells from different perturbations are indistinguishable.
Promoting -Zeconstruction decreases the reconstruction error in decoding the recomposed latent

representation z,r = anasal) + Azﬁert) + AzT(leOV) back to the original gene expression profile x,,,.

Given the influence of Azﬁert) in shaping the recomposed latent representation z,x, promoting

the reconstruction loss term additionally drives learning a better and more nuanced description
of perturbations, often by learning additional response programs. We control the sparsity of the
response programs via the ‘Zarp term with strength controlled by the 5 coefficient. Therefore, «
and § play conflicting roles. In practice, we have noticed that choosing the appropriate  and (8
varies significantly from one dataset to another. For improved perturbation prediction, users can
increase o while decreasing 3. However, doing so may render wgy, unnecessarily complicated and
difficult to interpret. Alternatively, increasing § will result in sparser transcriptional programs, as
demonstrated in Supplementary Fig. Naturally, choosing very large values of 5 poses the risk
of attaining an over-simplified fit.

4.1.7 Key implementation details

The CellCap model is implemented in Python on top of the scvi-tools framework for probabilistic
modeling of single-cell data [30]. The scvi-tools framework streamlines the implementation of
models following the setup of Kingma and Welling’s variational autoencoders for Bayesian inference
[26] and provides much of required logic for single-cell data loading and model training, leveraging
the PyTorch Lightning library. The reconstruction loss is evaluated by using single Monte Carlo
posterior samples of h,, and zflzasal) to compute x4 in the generative model. The adversarial
classifier is implemented as a dense neural network with 2 hidden layers and 1 output layer. Both
hidden layers have 128 neurons, and the last layer predicts a probabilistic perturbation assignment
matrix P,%ed € (0,1). A gradient reversal layer is inserted before the first hidden layer, for the
purpose of adversarial training.

In practice, we found it quite beneficial for rapid model convergence to carefully initialize the

tensor /ﬁ;gq)k to a set of representative points from zsljfsal). We choose these representative points
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using Louvain community detection to identify () random “key” cells from the control group,
using their initial basal states as fil(;q)k for each perturbation and attention head. This ensures that
the key vectors start out in a configuration inside the distributional support of the basal state.

(%)

Poor initialization of & ;]k results in vanishing gradients due to the softmax operation and slow

convergence. !

For datasets that have extreme class imbalance, we implemented a weighted random sampler to
balance the ratio of control and perturbed cells in each mini-batch during training. The sampling
weight for each condition was calculated as N/(Nglasses X Ne¢), where N is the total number of
samples, Nasses 1S the number of classes, and N, is the number of samples in class ¢. This
calculation is implemented in sklearn.utils.class_weight.compute_sample weight. Training
of CellCap is equipped with NVIDIA Tesla T4 GPU. We use the AdamW optimizer to update
all trainable weights in the CellCap model. The initial learning rate is set to 1072 followed by
reductions by a factor of 0.6 after each plateau, as implemented in PyTorch’s ReduceLROnPlateau
learning rate scheduler. We implemented early stopping, which is triggered if the loss does not
reduce for more than 50 epochs. Otherwise, training stops after reaching the maximum number
of epochs, which is 1000 in all cases in this study.

The number of cells and the number of perturbations vary across single-cell perturbation
datasets, which can influence the the total runtime of CellCap. For the real perturbation datasets
used in this study, the total runtime ranges from 1 - 2 hours on a single Nvidia Tesla T4 GPU.

Data Availability

Code to simulate all three scenarios and their ready-to-use data can be found at https://
github.com/broadinstitute/CellCap. Raw data for pathogen-exposure human monocytes is
deposited at the European Genome-Phenome Archive (EGAS00001005376). A processed version
is hosted at https://eqtlgen.org/sc/datasets/1m-scbloodnl.html. Raw data from Norman et
al. is deposited at Gene Expression Omnibus (GEO), under accession number GSE133344. A pro-
cessed version of the Norman et al. data can also be found at http://projects.sanderlab.org/
scperturb[31].

Code Availability

CellCap code and quick-start tutorials are available at https://github.com/broadinstitute/
CellCap. To reproduce major results in this study, please follow the notebooks provided in the
CellCap GitHub repository.
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