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Abstract: 

Genome-wide association studies (GWAS) and expression analyses implicate 
noncoding regulatory regions as harboring risk factors for psychiatric disease, but 
functional characterization of these regions remains limited. We performed capture 
STARR-sequencing of over 78,000 candidate regions to identify active enhancers in 
primary human neural progenitor cells (phNPCs). We selected candidate regions by 
integrating data from NPCs, prefrontal cortex, developmental timepoints, and GWAS. 
Over 8,000 regions demonstrated enhancer activity in the phNPCs, and we linked these 
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regions to over 2,200 predicted target genes. These genes are involved in neuronal and 
psychiatric disease-associated pathways, including dopaminergic synapse, axon 
guidance, and schizophrenia. We functionally validated a subset of these enhancers 
using mutation STARR-sequencing and CRISPR deletions, demonstrating the effects of 
genetic variation on enhancer activity and enhancer deletion on gene expression. 
Overall, we identified thousands of highly active enhancers and functionally validated a 
subset of these enhancers, improving our understanding of regulatory networks 
underlying brain function and disease. 
 
MAIN TEXT 
 
Introduction 

Psychiatric disorders are among the most common illnesses in the United States, 

with over 20% of adults being afflicted (1). Additionally, 20-25% of children in the United 

States currently have, or have had in their lifetime, a serious mental illness (2). The 

causes of mental illness are complex and include both genetic and environmental 

components such as stressful life events, brain damage, or childhood neglect (3). To 

better understand the genetic contributors to psychiatric disease, hundreds of genome-

wide association studies (GWAS) have been conducted (4) to identify common genetic 

variants associated with disease. Over a thousand psychiatric disease-associated 

variants have been identified through GWAS, and the majority of these implicated 

variants occur in noncoding parts of the genome (4, 5). Additionally, studies of genome-

wide gene expression have identified hundreds of candidate genes that are differentially 

regulated in certain brain regions between case and control cohorts (6-9). Many of 

these expression level changes may have genetic or epigenetic roots in noncoding 

regulatory element activity (10-13).   

 A major goal of the PsychENCODE Consortium is to identify and characterize 

noncoding regulatory elements in the human brain, both normal and diseased, in an 

effort to understand the role of these noncoding regions. Since its first publication (14), 

the PsychENCODE Consortium has compiled an extensive online resource of data from 

postmortem human brain samples, including developing and adult brains as well as 

normal and diseased brains (https://psychencode.synapse.org/). Through a multi-omics 

approach, PsychENCODE has endeavored to develop a regulatory map of noncoding 

elements in the human brain. Following on this effort, human cell line models have been 

utilized to functionally validate noncoding regulatory elements identified through these 
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large-scale omics approaches. Towards that end, the current study utilized primary 

human neural progenitor cells (phNPCs) obtained directly from fetal brain. These 

phNPCs have been shown to closely recapitulate early stages of in vivo human fetal 

brain development, even more so than human induced pluripotent stem cell (hiPSC)-

derived NPCs or human embryonic stem cell (hESC)-derived NPCs (15, 16). These 

primary cells are a valuable model system for investigating the potential role of 

noncoding regions in brain development and function.   
 In the current study, we leveraged several PsychENCODE datasets, including 

data from the prefrontal cortex (PFC), NPC lines, and developmental timepoints to 

generate a list of putative enhancer regions to investigate using the phNPC model. 

Many of the noncoding variants implicated in psychiatric disease have been associated 

with enhancer regions (17-19), which are a specific type of noncoding regulatory 

element activating gene expression. To investigate these enhancers, we performed 

capture self-transcribing active regulatory region sequencing (CapSTARR-seq). The 

CapSTARR-seq method is a plasmid-based, in vitro approach for large-scale validation 

of enhancer regions (20). Our lab has previously applied the STARR-seq approach on a 

genome-wide scale to a number of cell lines (21), including the SH-SY5Y 

neuroblastoma cell line (https://doi.org/doi:10.17989%2FENCSR983SZZ). With a 

primary cell line like phNPCs, however, the cell counts necessary for whole-genome 

STARR-seq, usually in the hundreds of millions, are not feasible. As an alternative 

approach, CapSTARR-seq begins with a hybridization-based capture method to isolate 

candidate enhancer regions of interest from sheared genomic DNA (22). By targeting a 

more limited number of regions, CapSTARR-seq requires fewer cells and can be used 

in cell lines that are difficult to expand to very large numbers, like phNPCs.  

 In this study, we identified over 8,000 regions that demonstrated enhancer 

activity in the phNPCs. Notably, we found that these active enhancer regions were 

enriched for binding site motifs of transcription factors with high expression in the 

phNPCs and genetic variants implicated in psychiatric disease. Additionally, the target 

genes for these enhancer regions are strongly enriched for neuronal pathways. For a 

subset of these enhancer regions, we used CRISPR-based deletions to demonstrate 

the effect of the enhancers on gene expression and a mutation STARR-seq approach 
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(MutSTARR-seq) to show that introducing genetic variation in these enhancer regions 

affects their enhancer activity. 

 

Results  

Data quality 

 We used two separate panels of CapSTARR-seq to test the enhancer activity of 

over 78,000 putative enhancer regions in phNPCs (Fig. 1A-C). For the first panel, we 

targeted 22,400 regions based on ATAC-seq, DNase-seq, Hi-C, and ChIP-seq data 

from the PFC (Fig. 1A; Materials and Methods). The second panel targeted 56,215 

regions based on data from NPCs, PFC, developmental timepoints, and psychiatric 

disease-associated GWAS (Fig. 1B; Materials and Methods). Initial quality control 

revealed that our sequencing data was of high quality (Table S1), with over 94% of 

reads from each panel and replicate aligning with the genome. The rates of polymerase 

chain reaction (PCR) duplication ranged from 11.83% to 49.30% across all sequencing 

data, with the highest levels of duplication coming from the Panel 2 output data. The 

higher level of duplicates in Panel 2, particularly of barcoded duplicates, represents high 

levels of enhancer activity and indicates that our panel was well-designed. We also 

calculated “on-target” and “off-target” read percentages based on whether the reads fell 

within our initial target regions. Over 89% of our sequencing reads qualified as “on-

target” (Table S1).  

Peak calling 
 We used STARRPeaker (23) to call peaks from our dataset representing active 

enhancer regions. From the first panel, we identified 1,137 and 1,142 regions from 

replicates 1 and 2 respectively that demonstrated active enhancer activity (Table 1, 
Table S2). Of these regions, 914 overlapped, representing an r2 value of 0.72 between 

replicates (Figures 1D, 1F). For the second panel, we identified 6,202 and 6,484 

regions from replicates 1 and 2 respectively that demonstrated active enhancer activity 

(Table 1). For Panel 2, 5,698 regions overlapped between replicates 1 and 2, producing 

an r2 value of 0.93 between replicates (Figures 1E, 1G). Across both panels, we 
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identified 8,148 regions with evidence of enhancer activity in at least one replicate. A 

total of 6,612 regions (~8.4%) demonstrated strong evidence of enhancer activity in the 

phNPCs based on their replication in two separate experiments. This percentage of 

strongly enriched regions is similar to the percentage seen in previous CapSTARR-seq 

experiments in non-neuronal cell lines (~6%; (22)). 

Enrichment of transcription factor binding site motifs 
 To determine whether our active enhancer regions were enriched for 

transcription factor binding sites (TFBS), we searched for enrichment of binding motifs 

for several common transcription factors (TFs; see Materials and Methods) focusing on 

the high confidence enhancers that overlapped between the panel replicates (Table 2). 

We compared enrichment in our active enhancer regions with control regions that 

showed no enhancer activity in our CapSTARR-seq assay. In Panel 1, the top enriched 

motifs were JunB/bZip (p = 1x10-61), TP53 (p = 1x10-29), MITF (p = 1x10-21), and SOX10 

(p = 1x10-17). In Panel 2, the top enriched motifs were YY1 (p = 1x10-609), ELK1/ETS (p 

= 1x10-490), THAP11 (p = 1x10-232), SREBF2 (p = 1x10-200), and ZNF143 (p = 1x10-139). 

Several of these TFs have previous implications in pathways related to brain 

development and psychiatric disease, including glial development (SOX10; (24, 25)), 

drug addiction (JunB; (26)), and schizophrenia (SOX10, SREBF2; (27, 28)). 

 To further validate that the enriched TFBS motifs correlate with TFs that are 

highly expressed in phNPCs, we analyzed their expression in previously published 

microarray data from the phNPCs (15), taking into account similar motifs matching the 

enriched sequences. Motifs matching the same target sequence are referred to as a 

motif family. We compared microarray expression levels of the TFs from the four high-

confidence motif families in Panel 1 and the nine in Panel 2 (Table 2) with 100 randomly 

selected TFs from Lambert et al. (see Materials and Methods; (29)). In Panel 1, the 

motif-enriched TFs showed a trend towards higher expression than the randomly 

selected TFs, but this did not reach significance (p = 0.211; Figure 2, Tables S3-S5). 

The same comparison with Panel 2 showed significantly higher expression than the 

randomly selected TFs (p = 0.0052; Figure 2, Tables S3-S5). These results 

demonstrate that the TFs associated with enriched binding site motifs from our active 

enhancer regions have higher expression in phNPCs than randomly selected TFs.  
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Gene-enhancer linkage 
 From the set of 8,148 putative enhancers, we first used adult brain data (30) and 

identified 2,288 unique predicted target genes regulated by 427 TFs (Table S6; 

Materials and Methods). We used the following pathway analysis tools to identify 

biological pathways enriched within our gene set: DAVID (https://david.ncifcrf.gov/; 

(31)), Enrichr (https://maayanlab.cloud/Enrichr/; (32)), and STRING (https://string-

db.org/; (33)). These databases identified highly overlapping pathways, which is 

expected given their redundancy. Many of the most highly enriched pathways were 

related to neuronal processes, including generation of neurons, synapse organization, 

axonogenesis, axon guidance, glutamatergic synapse, dopaminergic synapse, 

GABAergic synapse, and synaptic vesicle cycle (Tables 3-4, Figure 3A-C). These 

databases also examine disease-related pathways, and many of the most highly 

enriched diseases were brain-related. Enriched disease pathways included nervous 

system disease, neurodegenerative disease, and Alzheimer’s disease (Tables 3-4, 
Figure 3D). To ensure that these pathways were not enriched as an artifact of our 

candidate enhancer selection method, we ran the same set of pathway analyses on 

randomly selected subsets of genes from our entire candidate list (see Materials and 

Methods). We found that many of the identified pathways were significantly more 

enriched for our CapSTARR-seq gene set than for randomly selected gene subsets 

(Table S7).  

 Because these predicted genes were based on data from the adult brain, we also 

explored how our putative enhancers intersected with data from the fetal brain, which 

might be more relevant to regulatory relationships in phNPCs. We examined the overlap 

between our enhancer regions and fetal expression quantitative trait loci (eQTL) from 

Wen et al. (34). We found that, of our 8,148 putative enhancers, 2,284 (28%) 

overlapped a fetal eQTL while only 404 (5%) overlapped an adult eQTL (Table S8; 

(30)). Of the 404 that overlapped an adult eQTL, 300 also overlapped a fetal eQTL 

(Table S8). Of these 300 enhancers, 135 had the same predicted target gene and the 

same direction of effect on that target gene (Table S9). Pathway analyses of this set of 

overlapping genes largely implicated immune-related pathways (Table S10) using 

DAVID. Additionally, Enrichr identified autism spectrum disorder and schizophrenia as 
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significantly enriched pathways for this gene set based on enrichment of single 

nucleotide polymorphisms (SNPs) from GWAS datasets (Fig. S1).  

  

MutSTARR-seq 

 To investigate the allelic effect of eQTLs on enhancer activity, we overlaid our 

CapSTARRseq results with eQTL data from 150 individuals with genotype and single 

nucleus RNA-seq (snRNA-seq) data intersecting the putative enhancer regions from 

adult to see if some enhancer regions were also active in adult brain (30). We selected 

47 eQTLs to interrogate through MutSTARR-seq (Table S11; see Materials and 

Methods). MutSTARR-seq employs the same techniques as STARR-seq but utilizes 

synthetic gene fragments that are generated with and without the eQTL variant, which 

permits determination of the allelic effect of the eQTL variant on predicted enhancer 

activity. Through this analysis, we identified 4 variants that significantly altered the 

enhancer activity with the presence of the alternate allele (Figure 4, Table S12). For 

each of these regions, enhancer activity was increased from the alternate allele. 

However, the only region that survived correction for multiple testing was 

chr17:45,894,107-45,894,607 (adjusted p-value = 0.005).  

 To assess the validity of this finding, we compared it with the eQTL results used 

to generate our candidate list. Because our MutSTARR-seq results showed increased 

enhancer activity with the alternate allele, we expected to see increased expression of 

the target genes in individuals with the alternate allele. The predicted target genes for 

our significant region were AC126544.2, ARL17A, ARL17B, CR936218.1, CRHR1, 

FAM215B, KANSL1-AS1, KANSL1 LRRC37A, LRRC37A2, MAPT-AS1, and MAPT. 

Notably, for almost all genes and cell types examined, the target gene showed 

increased expression in individuals with the alternate allele (Table S13). The only genes 

that had decreased expression with the alternate allele were ARL17A and MAPT-AS1. 

This implicated enhancer region on chromosome 17 and its associated target genes fall 

within the 17q21.31 locus, a region of extremely high linkage disequilibrium (LD; (35)). 

This region has been extensively linked to a number of neurodegenerative diseases, 

including Alzheimer’s disease (36), Parkinson’s disease (35, 37, 38), frontotemporal 

dementia (39) and progressive supranuclear palsy (PSP; (40, 41)). 
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Target gene expression level change after enhancer knockout (KO) 
 We chose for further functional analysis four active enhancers showing high 

enrichment in the CapSTARR-seq experiment and genetically associated with 

neuropsychiatric disorders. Ribonucleoprotein (RNP)-mediated CRISPR/Cas9 genome 

editing was used to delete candidate enhancers in phNPCs. We validated the editing by 

Sanger sequencing, which showed that cleavage occurred at the expected upstream 

and downstream CRISPR cut sites of all candidate enhancers tested (Fig. S2). 

Densitometry analysis of genotyping PCR products showed genome editing KO 

efficiency ranging from roughly 19.69% to 44.97% for the enhancers tested (Figure 5A-
D, Table S14). We then examined the relative expression level change of four nearby 

target genes: Neuronal guanine nucleotide exchange factor (NGEF), RAR related 

orphan receptor B (RORB), Pleckstrin homology domain containing O1 (PLEKHO1), 

and Target of Myb1 like 2 membrane trafficking protein (TOM1L2). Relative expression, 

measured by Taqman real-time quantitative PCR (qPCR) assay, showed that 

expression of all four target genes was diminished after enhancer KO: NGEF relative 

expression level was decreased to 0.45 (standard deviation (SD) = ± 0.01), RORB 

decreased to 0.56 (SD = ± 0.2), PLEKHO1 decreased to 0.16 (SD = ± 0.02), TOM1L2 

decreased to 0.42 (SD = ± 0.01; Figure 5A-D, right).   

 
Discussion  

Moving from computational predictions to functional evidence of gene regulatory 

activity remains an important and challenging area of modern genomics. Because there 

is substantial evidence for tissue-specific gene regulation and evidence that genetic risk 

for brain disorders resides within brain-enriched regulatory regions, maps of regulatory 

elements in brain-relevant cell types are of substantial value. In this study, we utilized a 

large-scale capture STARR-seq approach to validate putative enhancer regions and 

characterize the noncoding genomic landscape of phNPCs. We selected over 78,000 

candidate enhancer regions based on data from the PFC, NPCs, and GWAS and 

identified 8,148 regions with enhancer activity in phNPCs. Of these regions, 6,612 were 

replicated in two separate experiments, demonstrating strong evidence of enhancer 

activity.  
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 This study utilized the STARR-seq approach in a primary human neuronal cell 

line, suggesting this method may be applicable to additional human neuronal model 

systems including hiPSC- and hESC-derived neurons and neuronal organoids. The 

phNPC line is a particularly valuable model, because it very closely recapitulates the 

expression patterns and network architecture of the developing human fetal brain. Stein 

et al. (2014) found that the phNPC line had higher transcriptomic correlation with the in 

vivo human developing brain than the SH-SY5Y neuroblastoma cell line, hiPSC-derived 

NPCs, and hESC-derived NPCs (16). Our percentage of enriched regions (~8.4%) was 

much higher than that seen in whole-genome STARR-seq experiments (~0.06%; (21)) 

and similar to that seen in previous CapSTARR-seq studies in non-neuronal cell lines 

(22). Vanhille et al. (22) were the first to describe the CapSTARR-seq approach, and 

they used it to interrogate predicted regulatory regions in a mouse T-cell line. They 

tested over 7,000 regions and found ~6% of their regions were classified as strong 

enhancers, a percentage very similar to what we observed in the phNPCs. Regions that 

were not identified as active enhancers in our CapSTARR-seq assay may represent 

other types of regulatory elements, including promoters, silencers, or insulators. As 

enhancers are highly dependent on cell type and developmental timepoint, these 

regions also may be active enhancer regions in a different cell type of the PFC or at a 

different stage of development.  

We showed active enhancer regions were enriched for TFBS (Table 2), which is 

an established feature of enhancer genomic sequences (42, 43). Active enhancer 

regions from Panel 1 were enriched for binding sites for four different TF motifs, while 

Panel 2 was enriched for binding sites for nine different TF motifs. We hypothesize that 

this discrepancy is due to differences in size and candidate selection methods between 

the two panels. Panel 1 (22,400 regions) was substantially smaller than Panel 2 (56,215 

regions). Additionally, Panel 1 was selected based on data from the PFC, while Panel 2 

utilized data from PFC, NPCs, and the developing human brain. By comparing the 

TFBS present in our active enhancer regions with microarray data from the phNPC line 

(15), we found that the TFs that are enriched for binding sites within our active enhancer 

regions are also more highly expressed in the phNPCs than randomly selected TFs 

(Figure 2). This suggests that these specific TFs may play an important role in gene 
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regulation within the phNPCs, specifically at the active enhancer regions identified 

through CapSTARR-seq. These data thus provide a resource for future interrogation of 

these TFs for their role in neurogenesis and development.  

 To further support the potential role of these TFs in neuronal gene regulation, 

several of the most enriched TFs have previous implications in brain development and 

disease. Expression of JunB, which was implicated in both panels of our CapSTARR-

seq experiment, has been associated with cocaine use and addiction (26). SOX10 is 

involved in neural crest peripheral glial development (24, 25), and differential 

methylation of SOX10 has been identified in brain tissue from individuals with 

schizophrenia (27). Polymorphisms in SREBF2 also have been associated with 

schizophrenia (28). Other implicated TFs, including TP53 and YY1, are better known for 

their roles in cancer, but they have been implicated in neurodevelopment and 

psychiatric disease as well (44-48). The association of these TFs with neuronal 

development and disease provides further validation for the role of our active enhancer 

regions in important neuronal pathways.  

 To complete our understanding of enhancers, we need to link STARR-seq active 

regions with genes that these enhancers regulate. However, assigning enhancers to 

target genes remains a challenging task. To overcome this challenge, we integrated 

open chromatin data from ATAC-seq and expression profiles from RNA-seq to identify 

predicted target genes for our putative enhancers (30). We identified 2,288 unique 

predicted target genes that are regulated through 427 TFs. Following a pathway 

analysis, we found that our predicted target genes were heavily enriched for neuronally-

associated pathways such as synapse organization, axon guidance, glutamatergic 

synapse, GABAergic synapse, and dopaminergic synapse. Disease-specific databases 

showed that these target genes were enriched for brain-related diseases, including 

Alzheimer’s disease and nervous system disease. We also saw high levels of overlap 

between our predicted enhancer regions and fetal eQTLs (28%; (34)), particularly when 

compared with adult eQTLs (5%; (30)), providing additional support for the phNPC line 

being a valuable proxy for the developing fetal human brain (16). A subset of our 

enhancer regions overlapped both adult and fetal eQTL regions, and the predicted 

target genes for this subset were enriched for GWAS variants associated with autism 
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spectrum disorder and schizophrenia (Fig. S1). The enrichment of these target genes 

for neuronal pathways further supports the functionality of our putative enhancer regions 

in regulation of human brain development. Additionally, the implication of these target 

genes in brain-related diseases provides evidence that these putative enhancers may 

be involved in disease pathogenesis in both the fetal brain and the adult brain. 

 We also utilized eQTL data to assess whether eQTL variants affect the activity of 

our putative enhancers. We investigated 47 eQTL variants through MutSTARR-seq. We 

identified one variant (2.1%) that significantly affected enhancer activity, leading to an 

increase in activity observed through the STARR-seq approach. This proportion is in 

line with other studies investigating the effects of single nucleotide variants on 

regulatory activity through massively parallel reporter assays (41, 49, 50) and with 

large-scale eQTL analyses from the Genotype-Tissue Expression (GTEx) project 

demonstrating that approximately 1% of single nucleotide variants significantly affects 

gene expression (51). The enhancer containing our significant variant is located on 

chromosome 17 and is predicted to regulate 12 different genes: AC126544.2, ARL17A, 

ARL17B, CR936218.1, CRHR1, FAM215B, KANSL1-AS1, KANSL1, LRRC37A, 

LRRC37A2, MAPT-AS1, and MAPT. This region of chromosome 17 falls within the 

17q21.31 region, which is a 1.5Mb inversion region (35). This region displays extremely 

high LD, explaining why one single eQTL is predicted to regulate expression of 12 

different genes. Two major haplotypes, H1 and H2, exist in this region, with H1 being 

the more prevalent haplotype in individuals of European ancestry (~80%). The H1 

haplotype has been associated with a number of neurodegenerative diseases, including 

Alzheimer’s disease (36), Parkinson’s disease (35, 37, 38), and PSP (40, 41).  

 Our implicated enhancer in the 17q21.31 region showed increased enhancer 

activity with the eQTL variant (alternate allele), so it was important to determine if these 

target genes also showed increased expression in individuals with the alternate allele. 

Only two genes, ARL17A and MAPT-AS1, had decreased expression in the alternate 

allele case. The remaining target genes had increased expression, suggesting that 

increased enhancer activity correlates with increased expression. Interestingly, 

expression of a number of these target genes has been previously associated with 

psychiatric disease. CRHR1 encodes a corticotropin-releasing hormone (CRH) 
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receptor, a protein involved in hypothalamic-pituitary-adrenal axis-mediated response to 

stress (52). Increased expression of CRHR1 has been implicated in anxiety and major 

depressive disorder, and CRHR1 antagonists have exhibited antidepressant effects 

(53). The MAPT gene encodes the tau protein, which is associated with 

neurodegenerative disorders including Alzheimer’s disease and, most prominently, 

frontotemporal dementia (39) and PSP (40, 41). Increased expression of MAPT has 

been observed in individuals with Alzheimer’s disease (54). One of the genes that 

showed decreased expression in the eQTL analysis, MAPT-AS1, encodes an anti-

sense transcript of MAPT that negatively regulates translation of the tau protein (55). 

Decreased expression of MAPT-AS1 has also been associated with neurodegenerative 

disorders (55). The correlation of our MutSTARR-seq enhancer findings and the eQTL 

expression data further supports the validity of our findings. Further, the extensive 

implication of these target genes with psychiatric and neurodegenerative disorders 

provides insight into how variation within these enhancer regions may contribute to 

disease development and progression. 

 To further validate the functional activity of candidate enhancers, we employed a 

dual RNP-mediated CRISPR/Cas9 deletion strategy to knock out enhancer regions in 

phNPCs and measure the expression level change of the predicted target gene. Our 

DNA genotyping and Sanger sequencing validation confirmed that the pair of upstream 

and downstream RNPs can work simultaneously to induce double strand breaks 

precisely at the expected CRISPR target sequences. Repair by non-homologous end-

joining results in enhancer deletions ranging in size from 644 bp to 2,525 bp (Table 

S15), with KO editing efficiency 20% to 45% (Table S14). We observed a substantial 

decrease in expression level of these four target genes: 0.45 for NGEF, 0.56 for RORB, 

0.16 for PLEKHO1 and 0.42 for TOM1L2. This result demonstrates that these active 

enhancers do up-regulate transcription of the target gene tested. This is consistent with 

previous results of high enrichment of these enhancers in the CapSTARR-seq 

experiment revealing strong enhancer activity, which may partially explain the 

mechanism of the target gene expression knockdown phenotype observed. 

 Notably, NGEF, acting as a neuronal guanine nucleotide exchange factor, is 

highly expressed in the brain specifically in the caudate nucleus and plays a role in axon 
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guidance regulating ephrin-induced growth cone collapse and dendritic spine 

morphogenesis (56, 57). GWAS have shown association between NGEF and 

schizophrenia (58) or bipolar disorder (58, 59). RORB, a clock gene involved in 

neurogenesis, stress response, and modulation of circadian rhythms, has been found to 

have positive associations with the pediatric bipolar phenotype in the case-control 

sample (60). A GWAS study identified PLEKHO1, a gene that plays a role in the 

regulation of the actin cytoskeleton, as a significant bipolar disorder risk locus (61). 

TOM1L2, a gene encoding a protein putatively involved in intracellular protein transport, 

showed evidence of being causal in Alzheimer’s disease brain tissue. TOM1L2 has a 

proportionately higher level of connectivity with known Alzheimer’s disease genes than 

other genes in the 17p LD block, which indicated its role as a possible Alzheimer’s 

disease susceptibility gene (62). Recently, two studies using human single cell RNA seq 

and human brain protein quantitative trait locus (pQTL) data showed TOM1L2 was 

enriched in astrocytes, and higher levels of brain TOM1L2 were associated with greater 

risk of Alzheimer’s disease (63, 64). Collectively, these target genes are important 

candidates for further functional investigation in the search for the molecular basis of 

psychiatric disorders.   

 While our study identified thousands of active enhancer regions in phNPCs, this 

approach also has a few inherent limitations. STARR-seq, by design, is a plasmid-

based, ectopic approach (20). This design prevents us from investigating the activity of 

putative enhancers in their endogenous genomic context. That recognized, we did 

select our candidate enhancer regions based on endogenous functional genomic data 

(e.g., ATAC-seq, ChIP-seq) from the human brain. We also note that another very 

similar plasmid-based reporter assay also shows very high correspondence to 

endogenous gene regulatory predictions and experimental validation (41), suggesting 

that there is relatively good correspondence between these out of context assays and 

native genomic loci. Another limitation of our approach is that our Panel 1 design 

utilized data exclusively from the PFC. While this data indicates open chromatin and 

predicted active enhancer regions in the adult brain, it does not directly represent active 

enhancer regions in NPCs. We addressed this limitation in our Panel 2 design, which 

incorporated data from PFC, NPCs, and the developing human brain. As a result, we 
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increased our rate of active enhancers from ~4% in Panel 1 to ~10% in Panel 2. We 

also validated several of our active enhancers through MutSTARR-seq and CRISPR-

based approaches, but we could not conduct these validation experiments on the same 

scale as our initial STARR-seq screen. Additionally, elucidating the function of 

enhancers through the one enhancer-one target gene pair strategy utilized in our 

CRISPR experiment is limited by the fact that one enhancer can in principle act on 

multiple genes, or one gene can be regulated by multiple enhancers. Further 

experimental validations should be undertaken to achieve a comprehensive matching of 

enhancers and putative target genes, such as single cell RNA-seq (scRNA-seq) to 

reveal the whole transcriptome change after candidate enhancer KO, the establishment 

of the candidate enhancer KO mouse model, or pooled CRISPR interference (41). 

Future experiments should also aim to identify the specific TFs involved in gene 

regulation at these enhancers, potentially by utilizing our TFBS motif analysis to knock 

down specific TFs in the phNPCs and examine effects on gene expression. We are also 

currently interrogating additional variants through the MutSTARR-seq approach to 

improve our understanding of the effects of these psychiatric disease-associated 

variants on enhancer activity. Finally, while the phNPCs recapitulate many features of 

embryonic and fetal corticogenesis and development, they do not mature past the mid-

fetal stage (16). The open chromatin landscape of the phNPCs (65) also differs 

substantially from even closely related model systems like hESC-derived NPCs 

(https://www.encodeproject.org/experiments/ENCSR278FVO/; Fig. S3, Table S16), 

emphasizing the importance of cell type in enhancer studies. Similar studies should be 

conducted in models that better recapitulate later stages of brain development and the 

postnatal brain, such as brain organoids (66). 

  In this study, we identified over 8,000 regions with enhancer activity in a primary 

human neuronal progenitor line. We demonstrated that these enhancer regions were 

enriched for binding sites of TFs with high levels of expression in the phNPCs. Further, 

about 30% of these regions overlap with fetal or adult brain eQTLs, which provides a 

high-confidence group of brain enhancers. We also identified over 2,200 predicted 

target genes for these enhancer regions and showed that these target genes are 

implicated in a number of neuronal pathways and brain-related diseases. Finally, we 
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performed functional validation on a subset of these enhancer regions through 

MutSTARR-seq and CRISPR-based approaches, demonstrating that variation in these 

regions affects enhancer activity and deletion of these regions affects gene expression. 

This study provides a comprehensive dataset of active enhancer regions in phNPCs 

and provides insight into how these enhancer regions may be involved in brain 

development and function. 

 
Materials and Methods 
phNPC Cell Line Generation and Maintenance 
 The phNPC line was obtained from Dr. Daniel Geschwind’s lab at UCLA. The 

creation of this line is described in detail in Konopka et al. (15) and Stein et al. (16). 

Briefly, the phNPC line was generated using a neurosphere isolation method from 

human fetal brains at 15-18 weeks post-conception. The specific line used for this study 

was named “3C” and was derived from a female fetus of Mexican descent.  

 Following isolation, the cells were established into a monolayer cell culture and 

grown in 10cm dishes coated with 5µg/mL poly-ornithine and 5µg/mL fibronectin. The 

base media for culturing proliferating phNPCs included the following components: 

neurobasal A medium (Invitrogen), antibiotic-antimycotic (1X; Gibco), BIT 9500 serum 

substitute (10%; StemCell Technologies), GlutaMAX (1X; Invitrogen), and heparin 

(1µg/mL). The following growth factors were freshly added to the base media to create 

the final proliferation media: EGF (20pg/µL; PeproTech), FGF (20pg/µL; PeproTech), 

PDGF (20pg/µL; PeproTech), and LIF (2ng/mL; MilliporeSigma). While culturing, half of 

the media was replaced every other day until the cells were about ~80% confluent. 

Once the phNPCs were ~80% confluent, they were passaged using 0.25% trypsin-

EDTA (Gibco) to a concentration of approximately 1-1.5 million cells per 10cm dish. All 

experiments were done using cells at low passage number (passage < 20) to ensure 

cellular integrity.  
 
CapSTARR-seq Panel Design 
Panel 1  
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The first panel for CapSTARR-seq was created from a subset of enhancers 

identified in Wang et al. (67). Candidate enhancer regions were chosen using a 

matched filter process as outlined in Sethi et al. (68). Briefly, PFC samples from the 

ENCODE (69), Roadmap Epigenomics (70), and PsychENCODE projects were 

analyzed in order to annotate a set of active enhancers in the brain. These analyses led 

to the identification of about 79,000 brain-specific active enhancers (67). From this set 

of 79,000 enhancers, regions of the Roadmap PFC enhancers that overlapped with 

PsychENCODE PFC enhancers were identified as a set of high-confidence PFC 

enhancers (18,212 regions). The high-confidence PFC enhancers were regions with 

strong ATAC-seq and DNase signals, as well as strong H3K27ac signals from both the 

Roadmap PFC and PsychENCODE PFC ChIP-seq experiments. This set of high-

confidence enhancers was included as targets in the first capture panel. In addition to 

this set of high-confidence enhancers, 165 regions from the initial set of 79,000 brain-

specific enhancers were included that overlapped bipolar or schizophrenia GWAS 

variants from the GWAS catalog (71). The final group of regions added to the first panel 

included a set of 4,427 predicted enhancers from Kozlenkov et al. (72). This resulted in 

a final panel size of 22,804 regions spanning about 14Mbp of the genome (Figure 1A). 

  

Panel 2 
To design the second panel of targets for STARR-seq, we combined data from 

various data resources as well as leveraged the deep learning model DECODE (73) to 

identify targets with a high likelihood of being an active enhancer in the brain. We made 

use of existing bulk PFC ATAC-seq data from the HumanFC and BrainGVEX cohorts of 

PsychENCODE (74, 75). These peaks were processed in a way similar to cCREs as 

described in Moore et al. (76), which resulted in a total of ~350,000 candidate 

enhancers derived from PFC. Next, we used DECODE (73) to analyze data from the 

ENCODE NPC cell line, including various histone modifications (H3K27ac, H3K4me1, 

H3K4me3, H3K9ac) and DNase data, and identified a total of ~89,000 high resolution 

candidate enhancers. We intersected the results from the ENCODE DECODE analysis 

and the PFC ATAC-seq analysis, resulting in ~72,000 candidate enhancers shared by 

both datasets. Next, we further validated this group of candidate enhancers using three 
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independent data sources. Developmental enhancers from Trevino et al. (77) and de la 

Torre-Ubieta et al. (65), which represent in vivo data in developing brain, confirmed 

around ~90% overlap with the designated panel (Fig. S4). GWAS and SNPs in LD (r2 > 

0.4) were also intersected against the panel design, showing a total of 460 unique 

GWAS, and ~30,000 total linked SNPs intersecting. This high level of intersection 

suggests the candidate enhancers identified potentially cover regions of the chromatin 

relevant to regulation of genes or loci associated with brain traits and diseases, 

bolstering their selection for validation. Finally, eQTL (10, 67) and transcriptome-wide 

association study hits from fetal human brain (10, 78) were intersected with ~48% of the 

candidate panel suggesting high functional significance of the panel targets. Of the 

resulting panel of ~72,000 targets, 65,000 were new as compared to panel 1 and the 

overlapping 7,000 were removed. To compensate for this loss, we furthermore added 

around 3,600 additional targets as controls and 3,400 targets derived as top scoring 

cCREs from the Weng Lab at the University of Massachusetts Medical School (Figure 
1B). 

 

Probe Design  
Probes were designed to capture the target regions using HyperDesign software 

from Roche Sequencing Solutions (Pleasanton, CA). Our regions (human genome 

hg38) were uploaded into the software using the following settings: maximum close 

matches = 20, overhang = 30bp. The regions were consolidated, meaning any 

overlapping regions were collapsed into a single continuous candidate region. This 

consolidation resulted in a final panel size of 22,400 regions for Panel 1 and 56,215 

regions for Panel 2. The software then designed KAPA Target Enrichment Probes 

covering the inputted regions. These probes are 120bp in length and, following 

hybridization with genomic DNA, can be captured through a bead-based capture 

method. For Panel 1, the software predicted 98.5% coverage of the candidate regions. 

For Panel 2, the software predicted 99.3% coverage of the candidate regions. Missing 

coverage was due to repetitive regions that are often present in noncoding regions of 

the genome. Following selection through HyperDesign, KAPA Target Enrichment 

Probes were ordered through Roche Diagnostics. The manufacturer probe design 
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changed between Panels 1 and 2, which resulted in a slightly higher “off-target” rate in 

Panel 2 (Table S1).   

 

Input Library Generation 
 Human male genomic DNA obtained from Promega (Ref:G1471; Madison, WI) 

was used to generate the input library. Two lots of DNA were used: Lot #0000305466 

(concentration = 173ng/µL) and Lot #0000461400 (concentration = 197ng/µL). DNA 

was sheared using a Covaris (Woburn, MA) LE220 ultrasonicator with the following 

settings: peak incident power = 450, duty factor = 5%, cycles per burst = 200, treatment 

time = 120 seconds. After shearing, DNA fragments were size selected (~500bp) and 

isolated from an agarose gel with the Qiagen  (Germantown, MD) MinElute Gel 

Extraction Kit. The NEBNext Ultra End Repair/dA-tailing Module (New England Biolabs; 

Ipswich, MA) was used for end repair and A-tailing of the isolated, size-selected 

fragments. Ligation of custom adaptors was performed using the NEBNext Ultra 

Ligation Module for DNA, and the ligation products were cleaned up using 0.8X AMPure 

XP beads (Beckman Coulter; Indianapolis, IN). The custom adaptor sequences can be 

found in Table S17. They were designed using Integrated DNA Technologies (IDT; 

Coralville, IA) and produced using ion-exchange high performance liquid 

chromatography (IE-HPLC) purification. The resulting fragments were amplified using 

ligation-mediated polymerase chain reaction (LM-PCR) with Q5 Hot Start High-Fidelity 

2X Master Mix (NEB) to allow the addition of homology arms necessary for cloning. The 

LM-PCR primers can be found in Table S17 and the cycle conditions were as follows: 

98°C for 30 seconds; 10 cycles: 98°C for 10 seconds, 65°C for 30 seconds, 72°C for 30 

seconds; 72°C for 2 minutes; hold at 4°C.  

 The LM-PCR products were then hybridized to the KAPA Target Enrichment 

Probes following the KAPA HyperCap Workflow v3.0 (Roche Diagnostics). To adjust 

this protocol for our cloning purposes, the LM-PCR primers MPI_ORI_F/R (Table S17) 

were used in place of Universal Enhancing Oligos and the Post-Capture PCR Oligos. 

After hybridization, the captured genomic regions were cloned into the hSTARR-

seq_ORI vector (Addgene #99296; (79)) following linearization of the vector through 

restriction enzyme digestion using AgeI-HF (NEB) and SalI-HF (NEB). Cloning was 
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done using Gibson Assembly Master Mix (NEB) and the resulting products were 

cleaned up using SPRIselect beads (Beckman Coulter) and purified using a Slide-A-

Lyzer MINI Dialysis Device (Thermo Scientific; Waltham, MA). The purified library was 

transformed into MegaX D10 electrocompetent cells (Invitrogen; Waltham, MA) which 

were cultured in 4L of LB broth with 1X ampicillin until the culture reached an optical 

density of about 1.0. The plasmid library was isolated using a Qiagen Plasmid Plus Giga 

kit. Following isolation, the library was concentrated with an Amicon Ultra-15 Centrifugal 

Filter Unit (MilliporeSigma) and purified with a Slide-A-Lyzer MINI Dialysis Device to 

produce the final input plasmid library. This library was then amplified using Illumina 

(San Diego, CA) sequencing primers (Table S17) and cleaned up using 1.8X AMPure 

XP beads (Beckman Coulter). The input library was sequenced on one lane of an 

Illumina MiSeq at the University of Chicago Genomics Facility using MiSeq Reagent Kit 

V3 and 75bp paired-end reads. 

 

Transfection of Library and Output Library Preparation 
 The input capture library was electroporated into the phNPC line using a BTX 

(Holliston, MA) AgilePulse MAX large volume transfection system. The passage number 

and cell counts used for each capture panel were as follows:  

- Panel 1, replicate 1 = 69 million cells, passage 19 

- Panel 1, replicate 2 = 58 million cells, passage 18 

- Panel 2, replicate 1 = 92 million cells, passage 18 

- Panel 2, replicate 2 = 103 million cells, passage 18 

We transfected 10μg of the input plasmid library per million cells using BTXpress 

High Performance Electroporation Solution (100µL per 5 million cells). Two different 

sets of electroporation parameters were used. For the first replicate of Panel 1, we used 

the following parameters: first pulse = 200V amplitude, 1ms duration, 20ms interval and 

second pulse = 130V amplitude, 3ms duration, 10ms interval. We were able to modify 

the parameters to improve transfection efficiency and cell viability following the first 

replicate of Panel 1, and the new parameters were used for the remaining replicates 

and panels. The new parameters were as follows: first pulse = 220V amplitude, 1ms 

duration, 20ms interval and second pulse = 140V amplitude, 3ms duration, 10ms 
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interval. Electroporation resulted in a transfection efficiency of ~70% and a cell viability 

rate of ~40-60% post-electroporation. Transfection efficiency was determined using a 

pmaxGFP plasmid (Lonza; Basel, Switzerland), as this plasmid is similar in size to the 

hSTARR-seq_ORI vector.  
 RNA was isolated from the phNPCs 24 hours after electroporation using the 

Qiagen RNeasy Mini Kit. The Dynabeads mRNA DIRECT Purification Kit (Invitrogen) 

was used to isolate mRNA from the total RNA. The mRNA was treated with TURBO 

DNase (Invitrogen), cleaned up using the Zymo (Irvine, CA) RNA Clean and 

Concentrator kit, converted into cDNA using the SuperScript III First-Strand Synthesis 

SuperMix kit (Invitrogen), and treated with RNase A/T1 Mix (Thermo Scientific). The 

final cDNA sample was then split into 16 separate reactions for final PCR amplification 

using 16 unique Illumina indexing primers and Q5 Hot Start High-Fidelity 2X Master Mix 

(NEB). After amplifications, the reactions were pooled into a single sample, cleaned up 

using 1.8X AMPure beads (Beckman Coulter), and quantified. This output library was 

sequenced on one lane of an Illumina MiSeq at the University of Chicago Genomics 

Facility. Sequencing was performed using MiSeq Reagent Kit V3 and 75bp paired-end 

reads.  

Enhancer Peak Calling  
 Sequenced CapSTARR-seq libraries were processed using STARRPeaker v1.2, 

which includes a new feature to restrict peak calling analysis to a supplied capture panel 

(23). Both input DNA and output RNA libraries were aligned to GRCh38 reference 

genome 

(https://www.encodeproject.org/files/GRCh38_no_alt_analysis_set_GCA_000001405.1

5/) using BWA-MEM v0.7.17 (80). For alignments within each sub-reaction, we removed 

duplicates and filtered for properly aligned paired-end reads. We merged the filtered 

alignments from 16 sub-reactions to create a single BAM output file for STARRPeaker 

peak calling analysis. Default parameters were used for STARRPeaker except for the 

step size used to bin genome. 500-bp window length with a 50-bp step size was used. 

Capture region was extended by 50bp in each direction before binning. In addition to 

genomic input, three covariate tracks were utilized, namely GC-content, mappability, 

and folding energy prediction, to model the null distribution. We removed ENCODE 
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blacklist regions (ENCFF419RSJ) from the analysis. We identified putative enhancer 

regions for each capture panel and replicate. 

Transcription Factor Binding Site Analysis 
 In each panel, we intersected technical replicates and defined them as high-

confident enhancers when there was at least 20bp overlap. We used HOMER (81) and 

MEME-Suite (82) to perform motif enrichment analysis in the putative enhancers for 

each panel separately. Only those motifs that were detected by both HOMER and 

MEME-Suite were considered as true signals and used for the downstream analysis. 

We performed motif discovery in the 200bp region around the center of the enhancers. 

For HOMER, the masked version of the genomes was used. The control regions were 

defined from STARR-seq negative constructs, which are regions with no enhancer 

activity in our CapSTARR-seq assay. We used the default setting of HOMER (v4.11.1), 

which allows for zero or one occurrence per sequence. To match the enriched 

sequences to known motifs, several well-known motif databases were used by HOMER, 

including HOMER motif database and JASPAR database. The novel motif discovery in 

MEME-Suite was carried out by XSTREME (83). For XSTREME, we used synthetic 

sequences of the second Markov order as the control. We used the XSTREME web 

server with the default parameter settings of MEME-Suite web-server (v5.4.1). We 

allowed any number of occurrences per sequence. TOMTOM (84) embedded in MEME-

Suite (v5.4.1) matched the motifs to the 1,956 known motifs in the JASPAR Core 

database (85). At the end, FIMO (86) in MEME-Suite (v5.4.1) scanned the enhancer 

regions and denoted the positions of the enriched sequences. 

Transcription Factor Expression in phNPCs 

 For motifs that were enriched in the putative enhancers, we examined the 

expression level of their corresponding TFs in day 0 (pre-differentiation) phNPCs (data 

accessible at NCBI GEO database (15) accession GSE28046). For each target motif, 

we first determined its Illumina ID in Illumina HumanRef-8 v3.0 expression beadchip 

data table (data accessible at NCBI GEO database accession GPL6883), and then 

computed the expression score (log2 transformed, quantile normalized expression 

levels) of the associated TF. The expression score was averaged over the four 
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replicates. Because motif matching is a noisy process, we did not limit our analysis to 

the best match provided by HOMER. For a given enriched sequence, we considered all 

the similar motifs with a HOMER score of at least 0.85. We then averaged the 

expression scores of similar motifs. For the background dataset, we chose 100 

randomly selected TFs from Lambert et al. (29). We used t-tests to calculate p-values 

comparing expression levels of associated TFs from Panels 1 and 2 with the 

background dataset of random TFs. 

Predicted Target Genes and Pathway Analysis 

 For each of our putative enhancer regions, predicted target gene(s) were 

identified by integrating open chromatin peaks from ATAC-seq and expression profiles 

from RNA-seq (30). Specifically, ArchR was used to predict the most likely gene target 

(87). After identifying the most likely chromatin peak-to-gene linkages, open chromatin 

peaks were intersected with putative enhancers to establish high confidence enhancer-

gene linkages. Of the total 8,148 enhancers, we identified a total of 2,288 unique linked 

genes (Table S6). We utilized a number of publicly available pathway analysis tools to 

examine the list of predicted target genes associated with our enhancer regions: DAVID 

((31); https://david.ncifcrf.gov/), Enrichr ((32); https://maayanlab.cloud/Enrichr/), and 

STRING database ((33); https://string-db.org/). For each database, we inputted our list 

of predicted target genes to identify biological pathways enriched within that gene list. 

As a comparison, we also generated 10 random subsets of 2,288 genes from our entire 

candidate region list (Table S7). We inputted these random gene lists into each 

database to determine background p-values to which our CapSTARR-seq gene set 

could be compared using a one-sample t-test. 

MutSTARR-seq 
 To further validate the enhancers, we identified a subset of eQTLs identified from 

around 150 individuals with genotype and snRNA-Seq data intersecting the putative 

enhancer regions (30).  eQTLs were identified by using standard linear model 

approaches with consideration of various covariates (i.e., age, disorder, batch, etc.). 

Ranking of enhancers to be tested by MutSTARR-seq were prioritized based on the 

intersecting eQTL’s statistical significance, effect size, and cell type ubiquity to 
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maximize functional effect on the enhancer region. A total of 54 enhancers were 

selected to be mutated according to the alternate allele present in the eQTL. For each 

enhancer, we created eBlock (IDT) gene fragments with (alternate) and without 

(reference) the eQTL. Of our candidate regions, 7 did not pass complexity and quality 

control tests by IDT due to repetitive elements. Those regions were excluded from the 

candidate list, so we tested a total of 47 regions. An additional 15 regions had to be 

trimmed from either the 5’ or 3’ ends to eliminate repetitive regions to allow the 

sequence to pass quality control tests. For the trimmed regions, we ensured that the 

eQTL variant was not affected by this trimming. The remaining regions passed 

complexity and quality control tests during oligo design with IDT software. The final list 

of regions is in Table S11.   

 We constructed the input library for MutSTARR-seq by cloning these eBlock 

fragments into the linearized hSTARR-seq ORI vector using Gibson Assembly Master 

Mix (NEB). We then introduced the transformed plasmids into MegaX DH10 

electrocompetent cells (Invitrogen). Plasmids were subsequently extracted using the 

Qiagen Plasmid Plus Giga Kit. Dialysis was performed using a Slide-A-Lyzer mini 

dialysis device (Thermo Fisher), and the plasmids were concentrated using an Amicon 

spin centrifugal filter unit (Millipore Sigma). A small portion of these plasmids was also 

prepared with 32 Illumina library indexes and sent for sequencing along with the output 

library. 

 To generate the output library, a total of 25 million phNPCs (passage 17 and 18) 

were transfected with our input library using the same transfection protocol used for 

CapSTARR-seq. We performed four output replicates in total. Following transfection, 

cells were incubated for 24 hours and then RNA was isolated using the Zymo RNA 

extraction kit. Isolation of mRNA was done using the Dynabeads mRNA Direct 

Purification Kit (Invitrogen). The resulting mRNA was treated with TURBO DNase 

(Invitrogen) and subsequently purified using the Zymo RNA Clean and Concentrator kit. 

Similar to the library construction for the CapSTARR-seq experiment, mRNA transcripts 

were converted into cDNA using the SuperScript III First-Strand Synthesis SuperMix kit 

(Invitrogen) and treated with RNase A/T1 Mix (Thermo Scientific). The cDNA was then 

split into 32 portions and amplified using individual Illumina sequencing index primers. 
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Libraries were prepared for sequencing using the Illumina MiSeq Reagent Kit V3-600bp 

to generate 300bp paired-end reads. They were sequenced with a 25% PhiX spike-in 

on two lanes (2 replicates per lane) of an Illumina MiSeq at the University of Chicago 

Genomics Facility. 

 Enhancer peaks were called as described above. A Chi-squared test was used to 

test for difference in enhancer activity between the alternate and reference alleles. The 

expected value was calculated by dividing the alternate input read count by the 

reference input read count. The observed values for each replicate were calculated by 

dividing the alternate output read count by the reference output read count. The Chi-

squared statistic was calculated using these expected and observed values, and this 

statistic was used to determine the p-value for each tested eQTL.  

Candidate Selection for CRISPR/Cas9 Knockout (KO)  
 To prioritize candidate enhancers for further functional validation, we overlapped 

enriched enhancer regions from Panel 1 of CapSTARR-seq with 165 disease-

associated GWAS regions and identified 29 psychiatric disease associated active 

enhancers. The target gene of the enhancer was defined as the gene with the shortest 

distance from transcription start site (TSS) to the enhancer. Then, we overlapped these 

enhancers with the gene regulatory network from the PsychENCODE integrative paper 

(30). Four enhancers (EH37E1198822, EH37E1000386, EH37E0114246 and 

EH37E0426064) that have the same predicted target gene were selected for the further 

functional validation (Table S18).  

KO of Top Candidate Enhancers in phNPCs through Ribonucleoprotein (RNP) - 
mediated CRISPR/Cas9 Genome Editing  

Guide RNA (gRNA) Design  
For each enhancer tested, a pair of upstream and downstream gRNAs were 

designed in a 300 bp window of the 5’ and 3’ flanking regions of the enhancer with the 

IDT gRNA design algorithm (IDT). The gRNAs with on-target score > 50 and off-target 

score > 50 were chosen for custom synthesis from IDT (Table S15).  
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RNP Complex Preparation 
For each crRNA XT (or gRNA), we first prepared the crRNA XT plus shortened 

universal transactivatingRNA oligonucleotide (tracrRNA, IDT) duplex by incubating them 

at 95°C for 5 minutes in a thermocycler at equimolar concentrations (100 µM enhancer 

specific upstream or downstream crRNA XT 0.72 µl + 100 µM tracrRNA 0.72 µl), then 

keeping the duplex at room temperature for 15 minutes. 1.02 µl S.P. HiFi Cas9 

nuclease V3 (IDT) and 0.54 µl PBS were added to the duplex on ice and then incubated 

at room temperature for 20 minutes to form the RNP complex. For each enhancer KO 

electroporation reaction, we combined upstream RNP with downstream RNP at 

equimolar quantity on ice to form enhancer specific RNPs pair. 

 

Electroporation of RNPs into phNPCs  
The phNPC cell line was maintained as described above. Only cells with low 

passage number (P15 - P17) were used for the electroporation experiments with 

biological replicates (BR) design as BR1 and BR2. For the CRISPR-Cas9 protocol, we 

used the 4D-Nucleofector system and Amaxa P3 primary Cell 4D-Nucleofector X Kit S 

from Lonza. The electroporation buffer used was P3 primary cell Nucleofector Solution 

with Supplement 1 (Lonza). 2.5 X 10 5 phNPCs cells were used per electroporation 

reaction in one cuvette of the 16-well Nucleocuvette Stripe (Lonza). After trypsinization, 

cells were washed with PBS and then resuspended in 20 µl Nucleofector solution with 

1µl 100 µM Cas9 Electroporation enhancer (IDT) and 5 µl enhancer specific RNPs pair. 

The mixture of cells and RNPs was transferred to each cuvette of the 16 well 

Nucleocuvette strip and underwent the electroporation in 4D-Nucleofector X Unit with 

the program CL-133. The cells resuspended in the nucleofector solution without any 

RNPs pair added were transferred to the cuvette and underwent the electroporation 

simultaneously to serve as control. After electroporation, prewarmed recovery full media 

was added to each cuvette immediately. The cells of each electroporation reaction were 

then seeded to two corresponding wells of two Poly-ornithine/fibronectin coated 24 well 

plates. 1.25 X 10 5 cells were seeded per well. The cells were incubated in the incubator 

for 24 hours followed by DNA extraction and RNA isolation.   
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Enhancer KO Genotyping PCR  
DNA was extracted from phNPCs with the QuickExtract DNA Extraction Solution 

(Lucigen). DNA lysate was used as genotyping PCR template with Q5 Hot Start High-

Fidelity 2X Master Mix (NEB) and enhancer specific genotyping primer pair spanning 

the upstream and downstream Cas9-guide RNA cleavage sites (Table S19). The DNA 

input amount, the annealing temperature and PCR cycle numbers need to be optimized 

for each enhancer. In general, ~10 ng DNA amount was used in PCR with annealing 

temperature ranging from 66.9 to 68 ℃ and 25 to 31 PCR cycles.  

The uncleaved control wild type (WT) band and edited band after enhancer KO 

were separated by agarose gel electrophoresis prepared with SYBR Safe DNA gel stain 

(Invitrogen) in 1 X Tris/Acetic Acid/EDTA buffer (ThermoScientific). Gel images were 

obtained using a ChemiDoc MP Imaging System (Bio-Rad). The genome editing KO 

efficiency (percentage) was calculated through densitometric analysis. The DNA band 

intensities were analyzed using Image Labs software (Bio-Rad) by plotting the band 

intensities for each lane. The edited bands were cut from the gel and purified with 

QIAquick Gel Extraction Kit (Qiagen) for the Sanger sequencing (Azenta). 

 

Target Gene Expression Assay  
 RNA extraction from phNPCs and reverse transcription (RT) were performed with 

Power SYBR Green Cells-to-CT kit (Invitrogen) according to the manufacturer’s 

instructions. Each predesigned PrimeTime qPCR Probe Assay (IDT) (Table S20) for the 

target of interest was first tested to confirm an amplification efficiency between 

88%~110%.  

 The cultured cells were washed with PBS, mixed with 65 µl lysis solution 

supplemented with DNase I, and incubated at room temperature for 5 min. 6.5 µl Stop 

Solution was mixed into the lysate and incubated at room temperature for 2 min. The 

concentration of the RNA lysate was measured with NanoDrop.  

 For each 50 µl RT reaction, 1 µg RNA lysate was mixed with 25 µl 2 X SYBR RT 

buffer, 2.5 µl 20 X RT Enzyme Mix and nuclease-free water. The RT reaction was 

incubated at 37 ℃ for 60 min, then at 95 ℃ for 5 min in a thermal cycler. The cDNA was 

amplified by real time qPCR using PrimeTime Gene Expression Master Mix (IDT) and 
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the PrimeTime qPCR Probe Assay for the target of interest. Briefly, 2 µl cDNA lysate 

was mixed with 5 µl Master Mix, 0.5 µl (500 nM primers and 250 nM probes) PrimeTime 

Probe Assay, and 2.5 µl nuclease-free water. The primers and probe of reference gene 

beta-actin (ACTB) were used to normalize the cDNA loading for each reaction. For each 

sample, the 10 µl reaction was triplicated in 3 wells in a MicroAmp Optical 384-Well 

Reaction Plate (Applied Biosystems). Negative controls (no RNA or cDNA) were 

included to verify the absence of contamination. qPCR was performed using the 

QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems). Amplification was 

performed using a two stages procedure (hold stage at 95 ℃, 3 min, then 40 cycles 

PCR stage (95 ℃, 15 s, 60 ℃, 60 s with a single fluorescence measurement), and 

resultant quantification threshold cycles (CT) were calculated using the default settings 

in the QuantStudio Real Time PCR Software v1.3 (Applied Biosystems) (Tables S21-

S24). Results were analyzed using the Pfaffl mathematical model (88), with the control 

cells undergoing the electroporation simultaneously without any RNPs serving as 

calibrator. 
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Figures 

Figure 1. Panel design and quality control results. (A) and (B) show the process for 
candidate enhancer selection for Panel 1 (A) and Panel 2 (B). See Materials and 
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Methods for a complete description of candidate selection. (C) demonstrates the 
experimental workflow. Sheared genomic DNA was hybridized to probes specific for the 
candidate enhancer regions. These regions were then cloned into the STARR-seq 
plasmid and transfected into phNPCs. (D) and (E) show the fold change correlation 
between the two technical replicates for Panel 1 (D) and Panel 2 (E). Pearson r2 values 
are included on the graphs. (F) and (G) are volcano plots representing the tested 
enhancer regions. Regions that had significant peaks as determined by STARRPeaker 
are in dark blue while non-significant regions are in light blue. Abbreviations: PFC = 
prefrontal cortex; PEC = PsychENCODE Consortium; BP = bipolar disorder; SZ = 
schizophrenia; GWAS = genome-wide association study; NPC = neural progenitor cell; 
FDR = false discovery rate; FC = fold change. 
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Figure 2. Expression of TFs with enriched binding site motifs. Expression score is 
displayed on the X-axis. A higher expression score indicates a more highly expressed 
gene. For each plot, the solid line represents the median expression score while the “X” 
represents the mean expression score. Expression scores were compared using a two-
tailed t-test. The expression of motif-enriched TFs from Panel 1 did not differ 
significantly from the expression of random TFs (p = 0.211). The expression of motif-
enriched TFs from Panel 2 was significantly higher than the expression of random TFs 
(p = 0.0052).  
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Figure 3. Pathway analysis results from Enrichr. (A) and (B) depict results from the 
gene ontology (GO) knowledgebase - biological process (A) and cellular component 
(B). (C) depicts results from the KEGG database. (D) depicts results from DisGeNET 
examining gene-disease associations. The p-values for each category are included on 
the bars for each category. The asterisks (*) indicate that the adjusted p-value for that 
category is also significant (<0.05). Enrichr calculates p-values using the Fisher exact 
test and adjusted p-values using the Benjamini-Hochberg method. 
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Figure 4. MutSTARR-seq results comparing enhancer activity (log2fc) between 
the reference allele (ref) and alternate allele (alt). Box plots represent the distribution 
of activity across four technical replicates. Enhancer activity is defined by log2 fold 
change, which represents the normalized output/input ratio in log2 space. Variants that 
had a nominally significant effect on enhancer activity (p < 0.05 before multiple testing 
correction) are boxed in red. P-values were calculated using a Chi-squared test. The 
variant that survived correction for multiple testing (p-value adjusted = 0.005) is boxed in 
green. Correction for multiple testing was done using Bonferroni and Benjamini-
Hochberg methods. Abbreviations: log2fc = log2 fold change, NPC = neural progenitor 
cell, SNV = single nucleotide variant, ref = reference allele, alt = alternate allele.  
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Figure 5. CRISPR/Cas9 enhancer knockout (KO). (A-D), left: DNA agarose gel image 
of the genotyping PCR results after KO of candidate enhancers in phNPCs through 
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ribonucleoprotein (RNP)-mediated CRISPR/Cas9 genome editing. Control cells 
undergoing the same electroporation without any RNPs showed a clear strong WT 
band. For enhancer KO samples, besides the higher WT band, there is an additional 
clearly visible lower band in both BR1 and BR2 samples. The sizes of these lower 
bands are the same as the expected size of genome edited bands after enhancer KO. 
(A-D), right: TaqMan qPCR Probe assay showed diminished expression level of the 
target gene after enhancer KO. CT values from triplicates were used to calculate the 
expression of the target gene relative to control cells using the Pfaffl method. Averages 
of the BR1 and BR2 and standard deviations are shown as error bars. (A) Left: 
EH37E1198822 KO genotyping PCR result (WT band: 3375 bp, genome edited band: 
850 bp). Right: relative expression level change of the target gene NGEF after enhancer 
KO. (B) Left: EH37E1000386 genotyping PCR result (WT band: 1938 bp, genome 
edited band: 809 bp). Right: relative expression level change of the target gene RORB 
after enhancer KO. (C) Left: EH37E0114246 genotyping PCR result (WT band: 1849 
bp, genome edited band: 1205 bp). Right: relative expression level change of the target 
gene PLEKHO1 after enhancer KO. (D) Left: EH37E0426064 genotyping PCR result 
(WT band: 3069 bp, genome edited band: 2203 bp). Right: relative expression level 
change of the target gene TOM1L2 after enhancer KO. Abbreviations: Cells, +e = 
phNPCs cells without RNPs underwent the same electroporation served as control;  
NTC = PCR non template control; BR = biological replicate.  
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Tables 

 Replicate 1 Replicate 2 Overlap Pearson r2 
Value 

Panel 1 1,137 1,142 914 0.72 

Panel 2 6,202 6,484 5,698 0.93 

 
Table 1. Active enhancer regions across each CapSTARR-seq panel. Active 
enhancer regions are designated as regions with a STARRPeaker q-value ≤ 0.05. The 
overlap value indicates how many regions were designated active enhancers across 
both technical replicates of the panel. The Pearson r2 value (also depicted in Figures 
1D and 1E) demonstrates the correlation between replicates.   
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 Motif Consensus Sequence p-value % of 
targets 

% of 
background Known motif 

Panel 
1 

 
10-61 29.98% 9.36% JunB(bZip) 

 
10-29 5.22% 0.48% TP53 

 
10-21 17.72% 7.53% MITF 

 
10-17 33.01% 20.21% SOX10 

Panel 
2 

 
10-609 13.05% 0.75% YY1 

 
10-490 23.93% 4.96% ELK1(ETS) 

 
10-232 7.03% 0.73% THAP11 

 
10-200 14.56% 4.16% SREBF2 

 
10-139 7.73% 1.70% ZNF143 

 
10-95 9.46% 3.32% NRF1 

 
10-90 10.2% 3.87% JUNB(bZip) 

 
10-74 1.97% 0.16% ZBTB33 
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10-58 2.23% 0.32% TP53 

Table 2. Transcription factor binding site motifs enriched in active enhancers. The 
“% of targets” column indicates the percentage of active enhancers from our 
CapSTARR-seq assay that contain each motif. The “% of background” indicates the 
percentage of regions from our CapSTARR-seq assay that did not show enhancer 
activity and contain each motif (see Materials and Methods). The known motif column 
indicates the transcription factors known to bind to the given motif sequence. 
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Table 3. DAVID pathway analysis of predicted target genes. Table includes the top 
10 results for the GOTERM_BP_DIRECT and KEGG_PATHWAY categories and all 

Category Term Count P-Value Bejamini 
FDR 

GOTERM_BP_DIRECT Regulation of catalytic 
activity 73 1.30E-06 3.50E-03 

GOTERM_BP_DIRECT Signal transduction 192 1.80E-06 3.50E-03 

GOTERM_BP_DIRECT Nervous system 
development 78 2.20E-06 3.50E-03 

GOTERM_BP_DIRECT Intracellular signal 
transduction 83 2.40E-06 3.50E-03 

GOTERM_BP_DIRECT Axonogenesis 26 6.30E-06 7.30E-03 

GOTERM_BP_DIRECT Positive regulation of 
endocytosis 12 1.00E-05 9.70E-03 

GOTERM_BP_DIRECT Axon guidance 41 1.40E-05 1.10E-02 

GOTERM_BP_DIRECT Regulation of small GTPase 
mediated signal transduction 30 1.50E-05 1.10E-02 

GOTERM_BP_DIRECT Synapse organization 19 2.20E-05 1.40E-02 

GOTERM_BP_DIRECT Cytoskeleton-dependent 
intracellular transport 10 7.30E-05 4.20E-02 

KEGG_PATHWAY Axon guidance 43 1.50E-05 1.80E-03 

KEGG_PATHWAY Glutamatergic synapse 31 1.80E-05 1.80E-03 

KEGG_PATHWAY Endocytosis 54 1.90E-05 1.80E-03 

KEGG_PATHWAY Dopaminergic synapse 34 2.20E-05 1.80E-03 

KEGG_PATHWAY Gastric acid secretion 23 4.90E-05 3.20E-03 

KEGG_PATHWAY Tight junction 39 7.00E-05 3.30E-03 

KEGG_PATHWAY Hippo signaling pathway 37 7.00E-05 3.30E-03 

KEGG_PATHWAY Sphingolipid signaling 
pathway 30 1.10E-04 4.60E-03 

KEGG_PATHWAY GABAergic synapse 24 2.20E-04 6.40E-03 

KEGG_PATHWAY Synaptic vesicle cycle 22 2.20E-04 6.40E-03 

GAD_DISEASE_CLASS Chemdependency 525 5.90E-07 1.10E-05 

GAD_DISEASE_CLASS Psych 298 1.40E-05 1.30E-04 

GAD_DISEASE_CLASS Pharmacogenomic 391 5.00E-05 3.00E-04 

GAD_DISEASE_CLASS Neurological 387 1.10E-02 5.10E-02 

GAD_DISEASE_CLASS Cardiovascular 552 2.50E-02 9.10E-02 

GAD_DISEASE_CLASS Developmental 204 4.00E-02 1.20E-01 
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results with a p-value < 0.05 for the GAD_DISEASE_CLASS category. The “Count” 
column indicates the number of genes from our set present in that specific pathway. 
DAVID calculates p-values using the Fisher exact test and false discovery rates (FDR) 
using the Benjamini-Hochberg method. 
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Category Description # Genes FDR Value 
Diseases Central nervous system disease 191 1.70E-03 
Diseases Neurodegenerative disease 94 3.40E-03 
Diseases Nervous system disease 318 1.57E-02 

GO Biological Process Biological regulation 1630 2.55E-15 
GO Biological Process Regulation of biological process 1546 2.16E-14 
GO Biological Process Nervous system development 425 8.76E-14 
GO Biological Process Regulation of cellular process 1477 2.09E-13 

GO Biological Process Neurogenesis 309 4.29E-11 

GO Biological Process Regulation of signaling 567 5.56E-11 
GO Biological Process Regulation of cell communication 561 6.55E-11 
GO Biological Process Cellular component organization 801 4.98E-10 
GO Biological Process Generation of neurons 287 5.36E-10 

GO Biological Process Cellular component organization or 
biogenesis 823 5.57E-10 

KEGG Pathways Endocytosis 54 9.50E-03 
KEGG Pathways Axon guidance 42 9.50E-03 
KEGG Pathways Glutamatergic synapse 31 9.50E-03 
KEGG Pathways Sphingolipid signaling pathway 30 1.57E-02 
KEGG Pathways Hippo signaling pathway 36 1.57E-02 
KEGG Pathways Tight junction 37 1.57E-02 
KEGG Pathways Synaptic vesicle cycle 22 1.57E-02 
KEGG Pathways GABAergic synapse 24 1.57E-02 
KEGG Pathways Dopaminergic synapse 32 1.57E-02 
KEGG Pathways Pathogenic E. coli infection 42 1.57E-02 

Reactome Pathways Neuronal system 88 7.60E-04 

Reactome Pathways Transmission across chemical 
synapses 61 5.70E-03 

Reactome Pathways Hemostasis 110 1.34E-02 

Reactome Pathways Neurotransmitter receptors and 
postsynaptic signal transmission 47 1.68E-02 

Reactome Pathways Membrane trafficking 111 1.68E-02 
Reactome Pathways Vesicle-mediated transport 116 1.68E-02 
Reactome Pathways Nervous system development 104 1.68E-02 
Reactome Pathways Signaling by receptor tyrosine kinases 92 1.84E-02 
Reactome Pathways Integration of energy metabolism 29 3.40E-02 
Reactome Pathways Transport of small molecules 121 3.40E-02 

Table 4. STRING pathway analysis of predicted target genes. Table includes the top 
10 results for the Gene Ontology (GO) Biological Process, KEGG Pathways, and 
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Reactome Pathways categories and all results for the DISEASES category. The “# 
Genes” column indicates the number of genes from our set present in that specific 
pathway. STRING calculates false discovery rates (FDR) using the Benjamini-Hochberg 
method. 
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