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Abstract

The axial skeletal system and skeletal muscles of the vertebrates arise from somites, the blocks of
tissues flanking both sides of the neural tube. The progenitors of Somites, called the Presomitic
Mesoderm (PSM) reside at the posterior end of a developing embryo. Most of our understanding
about these two early developmental stages comes from the studies on chick and mouse, and in
the recent past, there have been a few studies on human. Here, we have analysed and compared
the RNA-sequencing data of PSM and somite tissues from Mouse and Human. The functional and
pathway enrichment analysis identified the key Hub-genes that are evolutionarily conserved in the
PSM and the somites of both the organisms that include 23 multifunctional genes likely to be
associated with different developmental disorders in humans. Our analysis revealed that NOTCH,
WNT, MAPK, BMP, Calcium, ErbB, cGMP-PKG, RAS and RAP1 signaling pathways are

conserved in both human and mouse during the development of PSM and Somites. Furthermore,
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we validated the expression of representative conserved candidates in the hESCs-derived PSM and
somite cells (NOG, BMP2, BMP7, BMP5, HES5 and MEF2C). Taken together, our study identifies
putative gene interactions and pathways that are conserved across the mouse and human genomes,

which may potentially have crucial roles in human PSM and somite development.

Introduction

Gastrulation initiates with the formation of the primitive node and the primitive streak (PS), which
allows the rearrangement of epiblast cells, eventually giving rise to the mesoderm and the
endoderm lineages. Presomitic mesoderm (PSM), the progenitors of somites that give rise to the
axial skeletal system and skeletal muscles, originates in the PS and resides in the posterior end of
a developing embryo *. The expression of the T-Box Transcription factors, Brachyury (T) 2, Tbx6
% and Mesogenin 1 (Msgn1) *° and the oscillation of clock genes involved in the segmentation
clock are the hallmarks of PSM #8. According to the regulated activity of two independent gene
regulatory networks, known as the segmentation clock and the wavefront phenomenon, the
mesenchymal PSM cells form new pairs of somites in the anterior end of the PSM "°. The
differentiation occurs from the anterior to posterior direction, while the migration of progenitor
cells occurs in the posterior to anterior direction. During this process, the pre-segmented PSM
remains in the caudal region, and the segmented PSM resides in the rostral region, dividing the
PSM into the posterior PSM and the anterior PSM respectively.

Somites pinch off from the rostral end of the PSM in response to the signaling pathways involved
in the clock and wavefront phenomenon. The mutually antagonistic activity of the FGF and the
retinoic acid (RA) signaling gradients involved in the wavefront model creates a zone of
determination where the mesenchymal PSM cells become compacted to form somitomeres 1012,
These somitomeres undergo mesenchymal to epithelial transition to form somites, with an outer
epithelial layer and an inner mesenchymal core. The exposure of various signaling pathways from
the surrounding cells induces the differentiation of the nascent somites into the ventromedial
sclerotome and the dorsolateral dermomyotome 314, The Pax1 and Pax9 positive sclerotome
differentiates into the vertebral column and intervertebral disc, where the Pax3 and Pax7 positive
dermomyotome develops into the skeletal muscle and dermis.

Here, we have analysed the in vivo-derived whole transcriptome data of human and mouse PSM

and Somites and identified the evolutionarily conserved known and putative signalling pathways
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and hub genes, that could potentially have crucial roles in the development of these cell types and
their descendants.

Results

Putative regulatory hub genes of mouse interact with the PSM markers, T and MSGN1
and are involved in the signalling pathways, Rapl, PI3K-AKT, MAPK, Hippo, RAS,
WNT

Publicly available data of PSM and somites from the mouse E8.25 embryonic stage embryos
(E-MTAB-6155) 1° was utilized to find out the hub-genes involved in the PSM and somites.
Principal Component Analysis (PCA) of the differentially regulated genes shows that, the
posterior PSM (PSM1, PSM2 and PSM3) were clustered together and segregated from the
anterior PSM (PSM4 and (PSM5) and somites (Figure 1. a). The most posterior part of the
PSM (PSM1) and the somites are the most variant in this trajectory (Figure 1. a).

We performed weighted correlation network analysis (WGCNA) with the differentially
expressed genes (DEGSs) and selected three clusters (Black cluster, Red cluster and Yellow
cluster), based on the presence of known markers of PSM and Somites in these clusters. Gene
regulatory networks (GRN) were constructed using STRING, visualized using Cytoscape and
hub-genes were identified (Figure 1. b —d, Table S1) *6-28, Hub-genes are the genes with high
connectivity or correlation in a module. Based on the expression of the hub genes, the selected
clusters were identified to represent the most posterior end of the PSM (PSM1) (black cluster:
the naive PSM cluster), the anterior-most part of the PSM (PSM5) (red cluster: the mature
PSM-Somite cluster) and the Somites (yellow cluster: the mature Somite cluster) (Figure 1. b-
e, Table S1). Chip-seq data available from the previously reported studies clearly shows that
the candidates in the identified Hub-genes interact with the PS and the PSM markers, T and
MSGN1 “1° which validates our predictions. Based on this, the pan-mesoderm marker, T °
interacts with some of the Naive PSM cluster genes (Bmp4, FbiIn2, Fgf17, Fgf8, Hhex, Msx2
and Wnt3a), the Mature PSM-somite cluster genes (Cdc25b, Epasl, Ephal, Meox1, Prkcz and
Sox18) and the mature Somite cluster genes (Cck and Foxcl) (Figure 1. c-e, Table S1). The
PSM marker, MSGN1 * interacts with several genes from the three identified Hub-gene
clusters: FbIn2, Gata4, Myl7, Thx3, Gata6 and Slitl (Naive PSM cluster), Atp8al, Epasl,
Sparc, Flt1, Dachl, Ephal, Fgfr2, Msil, Pax3, Plcb4 and Rhof (Mature PSM-Somite cluster),
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Eyal, Foxcl, Myll, Rhobtbl, Six1, Ahsg, Blnk, Fkbp5, Gucyla3, Magi3, Tbxa2r, Tubb4a,
Wnit2b (Somite cluster) (Figure 1. c-e, Table S1).3'.

The functional enrichment analysis of the identified Hub-genes shows that, these genes are
important for species-specific DNA-binding, multicellular organism development,
transcription factor activity, transcription factor complex activity, cell differentiation, etc.
(Figure 1. f, Table S1). The pathway enrichment analysis indicates the involvement of the Hub-
genes in various signaling pathways such as Rapl, PI3K-AKT, MAPK, Hippo, RAS, WNT
(Figure 1. g, Table S1), which are important for the development and further differentiation of
PSM.

T, SALL4 and LEF1 among the hub genes interacting with the PSM markers, TBX6 and
MSGNL1 and the conservation of Calcium signalling in human somite development

The whole transcriptome dataset of human PSM, somites and developed somites from human
embryos of age 4.5-5 weeks of gestation (GSE90876) 2° was used for the identification of
DEGs and Hub-genes involved in the development of human musculoskeletal progenitors. The
cluster dendrogram indicates the developmental progression of musculoskeletal progenitors
from PSM to somites and further into developed Somites (Figure 2. a).

DEGs were subjected to WGCNA clustering, and two clusters were selected (Yellow cluster
and Brown cluster), in which the known markers of PSM and somites were clustered (Figure
S2). The members of yellow and brown clusters represent the upregulated genes in PSM and
in somites respectively (Figure 2. b —d, Table S2). The Hub-genes in the yellow cluster (PSM
cluster) contains the PSM markers TBX6 and MSGN1 and important genes such as T, MESP2,
CYP26A1, HES7, WNT8A, SALL4, LEF1, etc. which are expressed or involved in the
development of mesoderm or PSM (Figure 2. ¢, Table S2) 35224 In mouse, SALL4 is
important for the maintenance of neuromesodermal progenitors and the proper development
of PSM cells 2°. The SALL4 knockout negatively effects the expression of PSM associated
genes T, Lefl, Msgn1 and Hes7 °, and our analysis shows its probable conservation in human
somitogenesis. The Hub-genes identified from the brown cluster (Somite cluster) contains
somite-associated genes such as FOXC1, MEF2C, MYOG, PAX7, etc. (References) (Figure 2.
d, Table S2).

The functional enrichment analysis shows that the PSM and Somite Hub-gene clusters are

involved in embryo development, transcription regulator activity, embryonic morphogenesis,
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species-specific DNA-binding, protein-DNA complex, structural constituent of muscles, etc.
(Figure 2. e, Table S2). The pathway enrichment analysis indicates the role of the predicted
Hub-genes in various signaling pathways such as WNT, MAPK, Calcium, Hippo, PI3K-AKT
and Rapl which have crucial roles in musculoskeletal progenitor development (Figure 2. f,
Table S2). The importance of Calcium signalling in somitogenesis has been deciphered in
Zebra fish 2627, Calcium signalling is downstream of FGF signalling 22%°, having a prime role
in PSM development 2:273%, Till date, there is no direct evidence of the involvement of Ca
signalling in mouse and human, however, the appearance of Ca signalling genes among the
hub genes shows its possible role in human and mouse somitogenesis.

Muscle development genes and the signalling pathways, NOTCH, WNT, MAPK,
Calcium, ErbB, cGMP-PKG, RAS and RAP1 are evolutionarily conserved in
somitogenesis of mouse and human

To identify the evolutionarily conserved genes involved in mouse and human musculoskeletal
progenitor development, the differentially expressed genes (DEGs) between mouse and human
were compared (Figure 3. a). A total of 1670 genes were commonly regulated in both the
organisms (Figure 3. a, Table S3). Further, the functional enrichment analysis of these 1670
genes in human and mouse databases reveals that the genes are involved in various biological
processes such as, Striated muscle tissue development (DKK1, BMP2, NOG, KLF4, BMP7,
BMP5, T, Bmp7, DII1, Nog, Bmp5, Mef2c), skeletal muscle tissue development (DLL1, DKK1,
KLF5, Mef2c, Dkk1, DII1), muscle tissue development (DKK1, BMP2, NOG, KLF4, BMP7,
BMP5, T, Bmp7, DII1, Nog, Bmp5, Mef2c), muscle organ development (DKK1, BMP2, TCF15,
Mef2c, Tcfl5, Dkk1, Nog), embryonic organ development (PAX8, MEF2C, Cdx4, Cdx2, Nog,
Bmp5, DII1, Pax8, Zic3) and anterior/posterior pattern specification (MESP2, CDX4, MSGN1,
TBX6, CDX2, BMP2, HES5, Cdx4, Cdx2, Msgnl, Thx6, T, Dkk1, Zic3, Meox1, Tcfl5, Bmp2,
Hes7, Nog) (Figure 3. a, Table S4). By analysing the list of genes under various biological
processes in mouse and human, we found that most of these genes have important roles in the
induction of PSM, somitogenesis and the maturation of somites 3134,

Pathway enrichment analysis was carried out for the commonly regulated 1670 genes and
pathway interaction network was constructed with the most significant signaling pathways that
were common for both the organisms (Figure 3. c-d, Table S4). The commonly regulated
pathways include NOTCH, WNT, MAPK, Calcium, ErbB, cGMP-PKG, RAS and RAP1
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signaling. In a developing embryo, FGF, WNT and NOTCH signaling pathways (Figure 3. c-
d) interact with T, Tbx6 and Msgnl and promotes the differentiation and maintenance of
musculoskeletal progenitor >*°-%, RAS-MAPK/ERK1/2 signaling cascade is an effector of
FGF pathway, important for early embryonic development *4°, FGF signaling is involved in
somitogenesis and is highly active in the posterior side of a developing embryo which
maintains a crosstalk with WNT and NOTCH signaling pathways to sustain the progenitor
population in the tail bud #*-*°. Transcriptome data of known and putative clock genes involved
in somitogenesis shows that the genes involved in MAPK (PDGFA, NFATC1, TGFA, DUSP4
and EFNA1), RAS (EFNAL, PDGFA, TGFA, BDNF and Foxo4), RAP-1 (EFNA1L, VAV2 and
PDGFA), WNT (NFATC1, WNT11, DKK1), NOTCH (Hes5, Hesl, DII1) signaling pathways
oscillate during somitogenesis (Figure 3. c-d, Table S4) 2. In addition to this, calcium, ErbB
and cGMP-PKG signaling pathways are important for gastrulation in embryos, differentiation
of mesodermal lineages and somitogenesis (Figure 3. c-d, Table S4) 26274649 Taken together,
from this analysis, we have identified putative genes, pathways, and pathway interaction
networks, which are probably conserved among mouse and human skeletal progenitors.
Evolutionarily conserved multifunctional genes involved in the musculoskeletal
progenitor development

Evolutionarily conserved multifunctional genes were predicted based on the functional and
pathway enrichment analysis of the common 1670 genes identified from the DEGs of mice
and humans (Figure 4. e-f, Table S5).

Multifunctional genes are the genes that are associated with more than one function and/or
signaling pathway. Such genes tend to be more conserved and associated with human disorders
%0 The identification of multifunctional genes can help us better understand the molecular and
functional organization of a cell type. From the gene enrichment analysis of the commonly
regulated evolutionarily conserved 1670 genes, 23 multifunctional genes were identified
(Figure 4. e-f, Table S5).

To validate the expression of the identified 23 multifunctional genes, human Pluripotent Stem
Cells (hPSCs) were differentiated into musculoskeletal progenitors (PS, PSM and somites)
(Figure 4. a). The hESCs-induced PS (EOMES and T: Figure S4 A), PSM (T, TBX6 and


https://doi.org/10.1101/2024.03.14.584954
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584954; this version posted March 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MSGNZ1: Figure 4. b, d, Figure S4 A) and Somites (MEOX1, MESP2, RIPPLY1 and DLL1:
Figure 4. ¢, Figure S4. B) were marked and validated by the expression of their representative
markers.

From the identified multifunctional genes, the expressions of 8 genes (ZIC3, NOG, BMP2,
BMP7, HES5, GLI1, BMP5 and MEF2C) were validated in the hPSC-derived PSM and somite
cells (Figure 4. e-g, Table S5). Hes5, Zic3, Zic2 and Foxo4 are important for mesoderm and
neural differentiation (Figure 4. e-g, Table S5) °1>4 HES5, ZIC3 and Zic2 have a crucial role
in the migration of PS cells during gastrulation and in the segmentation clock, the gene
regulatory network involved in somitogenesis (Figure 4. e-g, Table S5) 325254 MEF2C, a
member of the MEF2 transcription factor family which regulates several skeletal muscle-
specific genes is an early marker for somitogenesis (Figure 4. e-g, Table S5) . GLI1 (Figure
4. e-g, Table S5), an intracellular signaling transducer, and a transcriptional effector of the
Sonic hedgehog (Shh) signaling pathway, is expressed in the neural tube and paraxial
mesoderm in the developing embryo (Figure 4. e-g, Table S5) °6. The BMP and FGF signaling
pathways act antagonistic to each other in the developing embryo during PS formation and
BMP signaling is important for somite maturation ®’. The members of the BMP signalling,
NOG, BMP2, BMP7 and BMP5 were part of the multifunctional genes, and they were also
expressed in the hPSC-derived musculoskeletal progenitors (PS, PSM and somites) (Figure 4.
e-g, Table S5). The dysregulation of several of the identified multifunctional genes such as
GLI1, HES5, NOG, BMP2, BMP7, BMP5, MEF2C have implications in the human
musculoskeletal developmental disorders, muscular dystrophy, Osteochondrodysplasias and
Spondylocostal dysplasia (Figure 4. h, Table S5). Taken together, we have identified
evolutionarily conserved multifunctional genes that are regulated during the development of
human musculoskeletal progenitors (PS, PSM and somites), with crucial roles in development,

having possible implications for human skeletal developmental disorders.
Discussion

In post-implantation embryos, the crosstalk between several gene regulatory networks promotes
the differentiation of PSM into somites, the progenitors of the musculoskeletal tissue. The majority
of our understanding about PSM and somites comes from the studies on Zebra fish, chick and

mouse and there have been only a few studies on human. Therefore, we set out to identify the
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evolutionarily conserved genes in human PSM and Somites, by analysing and comparing the
whole transcriptome data from these two tissues of human with mouse (E 8.25) and human (4.5-
5 weeks of gestation) 1>, Here, we identified known and putative genes (hub-genes), signalling
pathways and interactions in the human musculoskeletal progenitors, PSM and somites. Finally,
our analysis led to the identification of evolutionarily conserved multifunctional genes which have
been reported to have implications in human skeletal muscle developmental disorders, such as

muscular dystrophy, Osteochondrodysplasias and Spondylocostal dysplasia (Table S5).

In the developing blastula, the crosstalk between BMP, WNT and NODAL signaling creates an
anterior—posterior gradient of NODAL and WNT signaling in the epiblast which results in the
localized expression of the pan-mesodermal marker T and the formation of PS 43861 The high
concentration of Wnt3a in the PS and the tail bud regulates the expression of Fgf8 and promotes
epithelial mesenchymal transition (EMT) in the progenitor cells 623, FGF pathway components
Fof3, Fgf4, Fgf8 and Fgfl7 are expressed in the tail bud, the mRNA of Fgf3, Fgf8 and Fgfl7
creates posterior to anterior gradient with in the PSM and Fgf4 is localized in anterior part of the
PSM 456466 The progenitor cells in the tail bud undergoes EMT and moves from the posterior to
anterior end of the embryo according to the gradient created by FGF8 and FGF4 thus helps in the
axial elongation in embryos 878, In developing embryo, WNT and FGF signaling pathway acts
antagonistic to retinoic acid (RA) pathway by inducing the expression of retinoic acid-

metabolizing (inactivating) enzyme CYP26al in the posterior PSM #6970,

WNT and FGF signaling pathways promotes the expression of paraxial mesoderm specific genes,
T, Tbx6 and Msgn1 "3, The elevated level of T in PSM cells regulates the expression of Wnt3a
and Cyp26al in the posterior end “*. WNT and FGF signaling pathway together with CYP26al
limits the concentration of RA in the posterior end and creates an anterior to posterior gradient of
RA signaling in developing embryo and helps in the migration of PSM cell towards anterior end
4569707576 The reduced activity of FGF pathway from posterior to anterior end created by the
opposing activity of RA signaling pathway negatively affects the expression of Snai genes in
anterior PSM and promotes the expression of integrins or cadherins *>7"78, During somitogenesis,
Whnt3a act upstream of Fgf8, DII1, and Ctnnbl components of FGF, NOTCH and WNT signaling
pathways respectively and also promotes the expression of negative regulators of the WNT

signaling pathway, Axin2 and Dkk1 “!. FGF and NOTCH signaling maintain their oscillations
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during somitogenesis by promotes the expression of ERK inhibitors Dusp4, Dusp6, and Spry2 and
the transcriptional repressor, Hes7 6798, The oscillatory activity of the genes involved in these
signaling pathways together creates a zone which promoter the formation the new pair of somites
called the determination front characterized by the expression of (Mesp2, Pax3, Foxcl/2, and
Meox1/2) ®. The PSM marker TBX6 together with NOTCH signaling pathway promotes the
expression of Mesp2 in the anterior side of the determination front and creates a positive and
negative regulatory loop between TBX6, MESP2 and the NOTCH ligand, DII1 108487 Pax3, the
marker of segmented mesoderm is regulated by the transcription factors MESP2 and PARAXIS
expressed in anterior PSM 8. The WNT ligands WNT3A, WNT7A and WNTS8C secreted from
the neighbouring tissues also promotes the expression of Pax3 and Pax7 in developing

dermomyotome 89,

A comparative approach was used to identify the common DEGs involved in the development of
paraxial mesoderm in mouse and human. The gene enrichment analysis indicates that the identified
genes were involved in skeletal muscle development and in the signaling pathways involved in
this process. The pathway interaction network constricted with the evolutionarily conserved genes
includes NOTCH, WNT, MAPK, Calcium, ErbB, cGMP-PKG, RAS and RAP1 Signaling
pathways shows the crosstalk between these genes during musculoskeletal development. FGF and
WNT signaling pathway collectively regulates the convergent extension (CE) or the cell
movement during gastrulation. CE helps in the body axis elongation and the morphogenesis in
developing embryos L. ErbB signaling pathway is an upstream regulator of PI3K and FGF
signaling pathway and its effector, RAS-MAPK/ERK1/2 signaling pathway “>%2. In gastrulating
embryo, ErbB signaling pathway regulates CE through MAPK and PI3K signaling pathway “°.
RAS-MAPK/ERK1/2 and protein kinase C (PKC)/Ca?* signaling pathways, the downstream
effectors of FGF signaling pathway. Sprouty and Spred, proteins which modulates the protein
kinase C (PKC)/Ca?* and RAS-MAPK/ERK1/2 signaling pathways respectively 2¢2%%, During
early gastrulation, Sprouty inhibits protein kinase C (PKC)/Ca?* signaling pathway, hence the
RAS-MAPK/ERK1/2 signaling pathway will be active and helps in cell movement in mesoderm
formation 28299, Alternatively, Spred inhibits RAS-MAPK/ERK1/2 signaling pathway during
mid to late gastrulation and turns the activity of FGF pathway through protein kinase C

(PKC)/Ca?*, which helps in the morphogenesis 2%,
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The evolutionarily conserved multifunctional genes identified to be conserved in both mouse and
human are involved in several biological, cellular, and molecular functions. Most of them are
known to be involved in the development of paraxial mesoderm and in the regulation or
regeneration of skeletal muscles and its progenitors %%, The dysregulation of these genes may
cause developmental or functional impairments of musculoskeletal system. NOTCH and
BMP/NODAL/ACTIVIN/TGF signaling pathways have crucial roles in the formation,
maintenance, and differentiation of musculoskeletal and neuronal progenitors. The abnormalities
in these signaling pathways lead to several musculoskeletal and neuromuscular impairments such
as osteochondrodysplasia, spondylocostal dysplasia, spinal and bulbar muscular atrophy, etc. °2100-
102 The identified multifunctional genes such as MEF2C, MECOM, ZIC2, GLI1, FOXO1, KLF4
are involved in the normal development and differentiation of musculoskeletal progenitors and
their developmental impairments by interacting with various signaling pathways or involved in the
transcription of lineage specific markers 12116, Taken together, the Hub-genes and multifunctional
genes identified from the musculoskeletal progenitors of mouse and human are involved in the
development and differentiation of paraxial mesoderm. Among the multifunctional genes, we have
identified 23 genes conserved between human and mouse, that are crucial for embryonic
development, interact with several signaling pathways and when dysregulated, lead to skeletal

developmental disorders.
Materials and Methods
Data collection for meta-analysis

The whole transcriptome data of PSM and somites from the mouse embryos (E 8.25) were obtained
from the ArrayExpress database '8, The gene expression of posterior to anterior PSM and
somites from four different mouse embryos (E-MTAB-6155)
(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

6155/samples/?query=presomitic+mesoderm or
https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6155) were considered for this
study (Ibarra-Soria et al., 2018). In mouse, the RNA sequencing data of PSM were obtained from
the five individual segments from the left and right sides of posterior to anterior axis within the

tail bud region °(lbarra-Soria et al., 2018). Gene expression data of human PSM and somites were
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obtained from Gene Expression Omnibus (GEO) '°. The human RNA sequencing data were
obtained from PSM, somites and developed somites from two different human embryos of age
455 weeks of gestation (GSE90876)
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90876) 2°. The Human and Mouse

whole genome and Gene transfer file (GTF) files were collected from the NCBI database.
Quality Check and Mapping of RNA seq data

FASTQC Version 0.11.5 was used to find out the GC content, total sequence length, and the base
sequence quality of each sample. Unlike the original article %°, for indexing the human genome we
used HISAT2 (Version 2.1.0) *?°. The Mapping of the indexed Mouse and Human genome was
also carried out by HISAT2. Cufflinks (Version 2.2.1) *?! used to assembles the transcripts for the
RNA-seq samples, where we have found out the FPKM (Fragments per Kilobase of exon per
million mapped fragments) for each sample.

Principle component analysis (PCA) and hierarchical clustering

Principle component analysis (PCA) was done using R package, in which the similarities and
dissimilarities between the samples and its replicates were plotted. Using FPKM values, the
hierarchical clustering analysis was conducted to show the similar gene expression status of the

samples using R packages.
Differential expression analysis

To find out the differently expressed genes involved in musculoskeletal progenitor development,
we used DESeq (Version 1.26.0). Using the raw read counts, the gene expression between samples
were identified and filtered based on P-value < 0.05 and the upregulated and downregulated genes

were filtered with a threshold of the log2 fold change >1 and <-1 respectively.
Co-expression Network Construction

Using DEGs identified from the human and mouse data sets, weighted gene co-expression network
analysis (WGCNA) with R packages (Version 1.70.3) was performed to find out the modules
cluster of genes that are highly correlated. The modules with genes clustered along with the known

markers of musculoskeletal progenitors were considered for the further analysis.
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Identification of Hub-genes and Functional Annotation

Hub-genes are the genes which shows high connectivity or correlation between the genes in the
candidate module. To identify the hub-genes, a protein-protein interaction network (PPI) was
constricted with search tool for the retrieval of interacting genes (STRING) 0122 and visualized
using Cytoscape (Version 3.8.2) 7. The hub-genes used for the PPI were selected based on “OR”
condition on Betweenness >10, closeness <0.001, and Degree >2. The functional enrichment
analysis was performed using the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) 12,

Heat map and plot construction

The expression status of each gene in each sample were represented in heatmap constricted using
Gplot (R package, Version 3.1.3). The circus plot representing the involvement of hub-genes in
various signaling pathways and the bubble plot were generated with GOplot (R package, Version
1.0.2). The bubble plot representing the functional enrichment analysis was constructed against

the genes counts and the p-values of each identified function.
Pathway interaction network construction

Functional and pathway enrichment analysis were performed for evolutionarily conserved genes
identified from mouse and human using ClusterProfiler (R package, Version 3.14.3)
(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). The representatives of
functional enrichment analysis were visualized using dotplot. The results obtained from pathway
enrichment analysis was represented as pathway interaction network using cnetplot.

Maintenance and Differentiation of human pluripotent stem cells (hPSCs):

The human embryonic stem cell (hESCs) (BJNhem19 (JNCASRe001-A)) line was procured from
Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India. The human-induced
pluripotent stem cell (hiPSCs) (D14C2) line was a kind gift from Dr. R. V. Shaji, Centre for Stem
Cell Research, (CSCR), InStem, India. hESCs and hiPSC was maintained on vitronectin (VTN)
(Gibco, A14700) in presence of Essential 8™ (E8) Medium (Gibco, A1517001). The cells were
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routinely passaged in 1:6 ratio in every 4 days using 0.5 mM EDTA (Gibco, 15575020) solution

during maintenance.

For PS induction, hESCs were exposed to CHIR99021 (CH), inhibitor of GSK-3 for 24 hours
and marked by the expression of EOMES and T (Figure 4. a, Figure S4 A). After PS induction, the
cells were exposed to CH (GSK-3p inhibitor), SB431542 (SB) (ALK 4/5/7 inhibitor) and bFGF
(C/SIF) for 4 days and detected the expression of PSM markers TBX6 and MSGN1 together with
the pan-mesodermal marker T (Figure 4. a-b, Figure S4 A). Due to C/S/F treatment for 4 days, the
expression the endoderm marker EOMES were downregulated, and the expression of pan-
mesodermal marker T remains unaffected (Figure S4. A). PSM was further differentiated to
somites using FGFR inhibitor PD173074 (PD) and WNT pathway inhibitor XAV939 (XAV) %
and confirmed by the expression of MEOX1, MESP2, RIPPLY1 and TCF15/PARAXIS (Figure 4.
a, ¢, Figure S4. B).

Real-Time PCR analysis
Total RNA was isolated using QIAzol Lysis Reagent (QIAGEN, 79306) according to
manufactures’ instruction, followed by quantification using NanoDrop Spectrophotometer
(Thermo Fisher Scientific). Reverse transcription was performed with the iScriptTM cDNA
Synthesis Kit (Bio-Rad, 1708891). Quantitative Real-Time PCR (qRT-PCR) was done using
PowerUp™ SYBR™ Green Master Mix (2X) (Applied Biosystems, A25776) with gene-specific
primers (Table S6) in a thermal cycler (Roche Light Cycler 480). Data was analysed using the
ddCt method, with the house-keeping gene, ACTB.
Data availability
All data utilized for this study are publicly available data sets from previous publications (E-
MTAB-6155, GSE90876)'>?°, The data that supports the findings of this study are available within
this manuscript and in supplementary documents.
List of Figures
Figure 1. Gene expression and regulation in the mouse PSM and somites (a) PCA of mouse
PSM from posterior to anterior axis (PSM 1 to PSM5) and somites. Hub-genes were identified
from the gene regulatory network analysis of the selected WGCNA clusters (b) Heatmap
showing the expression status of Hub-genes identified from the selected clusters (c) Naive
PSM cluster (Black (Figure S1)) (d) Mature PSM-Somites cluster (Red (Figure S1)) and (e)
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Somites cluster (Yellow (Figure S1)). Functional enrichment analysis of the Hub-genes shows
their involvement in different (f) biological, cellular and molecular functions and in (g)
signaling pathways
Figure 2. Gene expression and regulation in the human PSM and somites (a) Cluster
dendrogram of human PSM, somites and developed somites. From the Gene regulatory
network analysis of selected WGCNA clusters, Hub-genes were identified (b) Heatmap
indicating the expression status of Hub-genes identified from the selected clusters (c) PSM
cluster (Yellow (Figure S2)) (d) Somite cluster (Brown (Figure S2)). Functional enrichment
analysis of the Hub-genes shows their involvement in different (e) biological, cellular and
molecular functions and in (f) signaling pathways
Figure 3. Evolutionarily conserved gene and pathway interaction network (a) Venn diagram
of mouse and human DEGs, (b) Biological process for evolutionarily conserved genes in
human, (c) Pathway interaction network of evolutionarily conserved genes in mouse, (d)
Pathway interaction network of evolutionarily conserved genes in human
Figure 4. Evolutionarily conserved multifunctional genes and its validation using in vitro
derived musculoskeletal progenitors from hESCs (a) schematic representation of in vitro
derived musculoskeletal progenitors from hESCs (b-c) RT-qPCR of PSM and somite markers
of indicated samples. Data are Mean * s.d., n=2, (d) Immunocytochemistry image of T and
TBX6 in indicated samples, (e-f) Heatmap showing the expression status of the predicted
evolutionarily conserved multifunctional genes in (e) mouse and (f) human (g) RT-gPCR
validation of the predicted evolutionarily conserved multifunctional genes in in vitro derived
human musculoskeletal progenitors. Data are Mean * s.d., n=2, (h) Heatmap represents the
involvement of multifunctional genes in indicated developmental impairments based on their
corresponding evident score. Graphs shown in (b-c) and (g) are representatives of two
independent technical replicates.

List of supplementary tables
Table S1: Hub-genes; List of Hub-genes identified as Naive PSM cluster, Mature PSM-Somite
cluster and the Somite cluster — Include the details of GRN, pathway and functional enrichment

analysis
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Table S2: Hub-genes; List of Hub-genes identified as Naive PSM cluster, Mature PSM-Somite
cluster and the Somite cluster — Include the details of GRN, pathway and functional enrichment
analysis

Table S3: List of commonly regulated genes in Mouse and Human

Table S4: Pathway and functional enrichment analysis of commonly regulated genes in Mouse
and Human

Table S5: List of Evolutionarily conserved multifunctional genes and their involvement in
developmental impairments

Table S6: List of Primers
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