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Abstract 

The axial skeletal system and skeletal muscles of the vertebrates arise from somites, the blocks of 

tissues flanking both sides of the neural tube. The progenitors of Somites, called the Presomitic 

Mesoderm (PSM) reside at the posterior end of a developing embryo. Most of our understanding 

about these two early developmental stages comes from the studies on chick and mouse, and in 

the recent past, there have been a few studies on human. Here, we have analysed and compared 

the RNA-sequencing data of PSM and somite tissues from Mouse and Human. The functional and 

pathway enrichment analysis identified the key Hub-genes that are evolutionarily conserved in the 

PSM and the somites of both the organisms that include 23 multifunctional genes likely to be 

associated with different developmental disorders in humans. Our analysis revealed that NOTCH, 

WNT, MAPK, BMP, Calcium, ErbB, cGMP-PKG, RAS and RAP1 signaling pathways are 

conserved in both human and mouse during the development of PSM and Somites. Furthermore, 
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we validated the expression of representative conserved candidates in the hESCs-derived PSM and 

somite cells (NOG, BMP2, BMP7, BMP5, HES5 and MEF2C). Taken together, our study identifies 

putative gene interactions and pathways that are conserved across the mouse and human genomes, 

which may potentially have crucial roles in human PSM and somite development.  

 

Introduction  

Gastrulation initiates with the formation of the primitive node and the primitive streak (PS), which 

allows the rearrangement of epiblast cells, eventually giving rise to the mesoderm and the 

endoderm lineages. Presomitic mesoderm (PSM), the progenitors of somites that give rise to the 

axial skeletal system and skeletal muscles, originates in the PS and resides in the posterior end of 

a developing embryo 1. The expression of the T-Box Transcription factors, Brachyury (T) 2, Tbx6 

3 and Mesogenin 1 (Msgn1) 4,5 and the oscillation of clock genes involved in the segmentation 

clock are the hallmarks of PSM 4,6. According to the regulated activity of two independent gene 

regulatory networks, known as the segmentation clock and the wavefront phenomenon, the 

mesenchymal PSM cells form new pairs of somites in the anterior end of the PSM 7–9. The 

differentiation occurs from the anterior to posterior direction, while the migration of progenitor 

cells occurs in the posterior to anterior direction. During this process, the pre-segmented PSM 

remains in the caudal region, and the segmented PSM resides in the rostral region, dividing the 

PSM into the posterior PSM and the anterior PSM respectively. 

Somites pinch off from the rostral end of the PSM in response to the signaling pathways involved 

in the clock and wavefront phenomenon. The mutually antagonistic activity of the FGF and the 

retinoic acid (RA) signaling gradients involved in the wavefront model creates a zone of 

determination where the mesenchymal PSM cells become compacted to form somitomeres 10–12. 

These somitomeres undergo mesenchymal to epithelial transition to form somites, with an outer 

epithelial layer and an inner mesenchymal core. The exposure of various signaling pathways from 

the surrounding cells induces the differentiation of the nascent somites into the ventromedial 

sclerotome and the dorsolateral dermomyotome 13,14. The Pax1 and Pax9 positive sclerotome 

differentiates into the vertebral column and intervertebral disc, where the Pax3 and Pax7 positive 

dermomyotome develops into the skeletal muscle and dermis. 

Here, we have analysed the in vivo-derived whole transcriptome data of human and mouse PSM 

and Somites and identified the evolutionarily conserved known and putative signalling pathways 
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and hub genes, that could potentially have crucial roles in the development of these cell types and 

their descendants.  

Results  

Putative regulatory hub genes of mouse interact with the PSM markers, T and MSGN1 

and are involved in the signalling pathways, Rap1, PI3K-AKT, MAPK, Hippo, RAS, 

WNT 

Publicly available data of PSM and somites from the mouse E8.25 embryonic stage embryos 

(E-MTAB-6155) 15 was utilized to find out the hub-genes involved in the PSM and somites. 

Principal Component Analysis (PCA) of the differentially regulated genes shows that, the 

posterior PSM (PSM1, PSM2 and PSM3) were clustered together and segregated from the 

anterior PSM (PSM4 and (PSM5) and somites (Figure 1. a). The most posterior part of the 

PSM (PSM1) and the somites are the most variant in this trajectory (Figure 1. a).  

We performed weighted correlation network analysis (WGCNA) with the differentially 

expressed genes (DEGs) and selected three clusters (Black cluster, Red cluster and Yellow 

cluster), based on the presence of known markers of PSM and Somites in these clusters. Gene 

regulatory networks (GRN) were constructed using STRING, visualized using Cytoscape and 

hub-genes were identified (Figure 1. b – d, Table S1) 16–18. Hub-genes are the genes with high 

connectivity or correlation in a module. Based on the expression of the hub genes, the selected 

clusters were identified to represent the most posterior end of the PSM (PSM1) (black cluster: 

the naïve PSM cluster), the anterior-most part of the PSM (PSM5) (red cluster: the mature 

PSM-Somite cluster) and the Somites (yellow cluster: the mature Somite cluster) (Figure 1. b-

e, Table S1). Chip-seq data available from the previously reported studies clearly shows that 

the candidates in the identified Hub-genes interact with the PS and the PSM markers, T and 

MSGN1 4,19 which validates our predictions. Based on this, the pan-mesoderm marker, T 19 

interacts with some of the Naïve PSM cluster genes (Bmp4, Fbln2, Fgf17, Fgf8, Hhex, Msx2 

and Wnt3a), the Mature PSM-somite cluster genes (Cdc25b, Epas1, Epha1, Meox1, Prkcz and 

Sox18) and the mature Somite cluster genes (Cck and Foxc1) (Figure 1. c-e, Table S1). The 

PSM marker, MSGN1 4 interacts with several genes from the three identified Hub-gene 

clusters: Fbln2, Gata4, Myl7, Tbx3, Gata6 and Slit1 (Naïve PSM cluster), Atp8a1, Epas1, 

Sparc, Flt1, Dach1, Epha1, Fgfr2, Msi1, Pax3, Plcb4 and Rhof (Mature PSM-Somite cluster), 
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Eya1, Foxc1, Myl1, Rhobtb1, Six1, Ahsg, Blnk, Fkbp5, Gucy1a3, Magi3, Tbxa2r, Tubb4a, 

Wnt2b (Somite cluster) (Figure 1. c-e, Table S1).3,17. 

The functional enrichment analysis of the identified Hub-genes shows that, these genes are 

important for species-specific DNA-binding, multicellular organism development, 

transcription factor activity, transcription factor complex activity, cell differentiation, etc. 

(Figure 1. f, Table S1). The pathway enrichment analysis indicates the involvement of the Hub-

genes in various signaling pathways such as Rap1, PI3K-AKT, MAPK, Hippo, RAS, WNT 

(Figure 1. g, Table S1), which are important for the development and further differentiation of 

PSM.  

T, SALL4 and LEF1 among the hub genes interacting with the PSM markers, TBX6 and 

MSGN1 and the conservation of Calcium signalling in human somite development 

The whole transcriptome dataset of human PSM, somites and developed somites from human 

embryos of age 4.5–5 weeks of gestation (GSE90876) 20 was used for the identification of 

DEGs and Hub-genes involved in the development of human musculoskeletal progenitors. The 

cluster dendrogram indicates the developmental progression of musculoskeletal progenitors 

from PSM to somites and further into developed Somites (Figure 2. a). 

DEGs were subjected to WGCNA clustering, and two clusters were selected (Yellow cluster 

and Brown cluster), in which the known markers of PSM and somites were clustered (Figure 

S2). The members of yellow and brown clusters represent the upregulated genes in PSM and 

in somites respectively (Figure 2. b – d, Table S2). The Hub-genes in the yellow cluster (PSM 

cluster) contains the PSM markers TBX6 and MSGN1 and important genes such as T, MESP2, 

CYP26A1, HES7, WNT8A, SALL4, LEF1, etc. which are expressed or involved in the 

development of mesoderm or PSM (Figure 2. c, Table S2) 3,5,21–24. In mouse, SALL4 is 

important for the maintenance of neuromesodermal progenitors and the proper development 

of PSM cells 25. The SALL4 knockout negatively effects the expression of PSM associated 

genes T, Lef1, Msgn1 and Hes7 25, and our analysis shows its probable conservation in human 

somitogenesis. The Hub-genes identified from the brown cluster (Somite cluster) contains 

somite-associated genes such as FOXC1, MEF2C, MYOG, PAX7, etc. (References) (Figure 2. 

d, Table S2).  

The functional enrichment analysis shows that the PSM and Somite Hub-gene clusters are 

involved in embryo development, transcription regulator activity, embryonic morphogenesis, 
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species-specific DNA-binding, protein-DNA complex, structural constituent of muscles, etc. 

(Figure 2. e, Table S2). The pathway enrichment analysis indicates the role of the predicted 

Hub-genes in various signaling pathways such as WNT, MAPK, Calcium, Hippo, PI3K-AKT 

and Rap1 which have crucial roles in musculoskeletal progenitor development (Figure 2. f, 

Table S2). The importance of Calcium signalling in somitogenesis has been deciphered in 

Zebra fish 26,27. Calcium signalling is downstream of FGF signalling 28,29, having a prime role 

in PSM development 26,27,30. Till date, there is no direct evidence of the involvement of Ca 

signalling in mouse and human, however, the appearance of Ca signalling genes among the 

hub genes shows its possible role in human and mouse somitogenesis.    

Muscle development genes and the signalling pathways, NOTCH, WNT, MAPK, 

Calcium, ErbB, cGMP-PKG, RAS and RAP1 are evolutionarily conserved in 

somitogenesis of mouse and human 

To identify the evolutionarily conserved genes involved in mouse and human musculoskeletal 

progenitor development, the differentially expressed genes (DEGs) between mouse and human 

were compared (Figure 3. a).  A total of 1670 genes were commonly regulated in both the 

organisms (Figure 3. a, Table S3). Further, the functional enrichment analysis of these 1670 

genes in human and mouse databases reveals that the genes are involved in various biological 

processes such as, Striated muscle tissue development (DKK1, BMP2, NOG, KLF4, BMP7, 

BMP5, T, Bmp7, Dll1, Nog, Bmp5, Mef2c), skeletal muscle tissue development (DLL1, DKK1, 

KLF5, Mef2c, Dkk1, Dll1), muscle tissue development (DKK1, BMP2, NOG, KLF4, BMP7, 

BMP5, T, Bmp7, Dll1, Nog, Bmp5, Mef2c), muscle organ development (DKK1, BMP2, TCF15, 

Mef2c, Tcf15, Dkk1, Nog), embryonic organ development (PAX8, MEF2C, Cdx4, Cdx2, Nog, 

Bmp5, Dll1, Pax8, Zic3) and anterior/posterior pattern specification (MESP2, CDX4, MSGN1, 

TBX6, CDX2, BMP2, HES5, Cdx4, Cdx2, Msgn1, Tbx6, T, Dkk1, Zic3, Meox1, Tcf15, Bmp2, 

Hes7, Nog) (Figure 3. a, Table S4). By analysing the list of genes under various biological 

processes in mouse and human, we found that most of these genes have important roles in the 

induction of PSM, somitogenesis and the maturation of somites 31–34. 

Pathway enrichment analysis was carried out for the commonly regulated 1670 genes and 

pathway interaction network was constructed with the most significant signaling pathways that 

were common for both the organisms (Figure 3. c-d, Table S4). The commonly regulated 

pathways include NOTCH, WNT, MAPK, Calcium, ErbB, cGMP-PKG, RAS and RAP1 
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signaling. In a developing embryo, FGF, WNT and NOTCH signaling pathways (Figure 3. c-

d) interact with T, Tbx6 and Msgn1 and promotes the differentiation and maintenance of 

musculoskeletal progenitor 5,35–38. RAS-MAPK/ERK1/2 signaling cascade is an effector of 

FGF pathway, important for early embryonic development 39,40. FGF signaling is involved in 

somitogenesis and is highly active in the posterior side of a developing embryo which 

maintains a crosstalk with WNT and NOTCH signaling pathways to sustain the progenitor 

population in the tail bud 41–45. Transcriptome data of known and putative clock genes involved 

in somitogenesis shows that the genes involved in MAPK (PDGFA, NFATC1, TGFA, DUSP4 

and EFNA1), RAS (EFNA1, PDGFA, TGFA, BDNF and Foxo4), RAP-1 (EFNA1, VAV2 and 

PDGFA), WNT (NFATC1, WNT11, DKK1), NOTCH (Hes5, Hes1, Dll1) signaling pathways 

oscillate during somitogenesis (Figure 3. c-d, Table S4)  32.  In addition to this, calcium, ErbB 

and cGMP-PKG signaling pathways are important for gastrulation in embryos, differentiation 

of mesodermal lineages and somitogenesis (Figure 3. c-d, Table S4) 26,27,46–49. Taken together, 

from this analysis, we have identified putative genes, pathways, and pathway interaction 

networks, which are probably conserved among mouse and human skeletal progenitors.  

Evolutionarily conserved multifunctional genes involved in the musculoskeletal 

progenitor development  

Evolutionarily conserved multifunctional genes were predicted based on the functional and 

pathway enrichment analysis of the common 1670 genes identified from the DEGs of mice 

and humans (Figure 4. e-f, Table S5).  

 

Multifunctional genes are the genes that are associated with more than one function and/or 

signaling pathway. Such genes tend to be more conserved and associated with human disorders 

50. The identification of multifunctional genes can help us better understand the molecular and 

functional organization of a cell type. From the gene enrichment analysis of the commonly 

regulated evolutionarily conserved 1670 genes, 23 multifunctional genes were identified 

(Figure 4. e-f, Table S5).  

 

To validate the expression of the identified 23 multifunctional genes, human Pluripotent Stem 

Cells (hPSCs) were differentiated into musculoskeletal progenitors (PS, PSM and somites) 

(Figure 4. a). The hESCs-induced PS (EOMES and T: Figure S4 A), PSM (T, TBX6 and 
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MSGN1: Figure 4. b, d, Figure S4 A) and Somites (MEOX1, MESP2, RIPPLY1 and DLL1: 

Figure 4. c, Figure S4. B) were marked and validated by the expression of their representative 

markers. 

From the identified multifunctional genes, the expressions of 8 genes (ZIC3, NOG, BMP2, 

BMP7, HES5, GLI1, BMP5 and MEF2C) were validated in the hPSC-derived PSM and somite 

cells (Figure 4. e-g, Table S5). Hes5, Zic3, Zic2 and Foxo4 are important for mesoderm and 

neural differentiation (Figure 4. e-g, Table S5) 51–54. HES5, ZIC3 and Zic2 have a crucial role 

in the migration of PS cells during gastrulation and in the segmentation clock, the gene 

regulatory network involved in somitogenesis (Figure 4. e-g, Table S5) 32,52–54. MEF2C, a 

member of the MEF2 transcription factor family which regulates several skeletal muscle-

specific genes is an early marker for somitogenesis (Figure 4. e-g, Table S5) 55. GLI1 (Figure 

4. e-g, Table S5), an intracellular signaling transducer, and a transcriptional effector of the 

Sonic hedgehog (Shh) signaling pathway, is expressed in the neural tube and paraxial 

mesoderm in the developing embryo (Figure 4. e-g, Table S5) 56.  The BMP and FGF signaling 

pathways act antagonistic to each other in the developing embryo during PS formation and 

BMP signaling is important for somite maturation 57. The members of the BMP signalling, 

NOG, BMP2, BMP7 and BMP5 were part of the multifunctional genes, and they were also 

expressed in the hPSC-derived musculoskeletal progenitors (PS, PSM and somites) (Figure 4. 

e-g, Table S5). The dysregulation of several of the identified multifunctional genes such as 

GLI1, HES5, NOG, BMP2, BMP7, BMP5, MEF2C have implications in the human 

musculoskeletal developmental disorders, muscular dystrophy, Osteochondrodysplasias and 

Spondylocostal dysplasia (Figure 4. h, Table S5). Taken together, we have identified 

evolutionarily conserved multifunctional genes that are regulated during the development of 

human musculoskeletal progenitors (PS, PSM and somites), with crucial roles in development, 

having possible implications for human skeletal developmental disorders.  

Discussion  

In post-implantation embryos, the crosstalk between several gene regulatory networks promotes 

the differentiation of PSM into somites, the progenitors of the musculoskeletal tissue. The majority 

of our understanding about PSM and somites comes from the studies on Zebra fish, chick and 

mouse and there have been only a few studies on human. Therefore, we set out to identify the 
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evolutionarily conserved genes in human PSM and Somites, by analysing and comparing the 

whole transcriptome data from these two tissues of human with mouse (E 8.25) and human (4.5–

5 weeks of gestation) 15,20. Here, we identified known and putative genes (hub-genes), signalling 

pathways and interactions in the human musculoskeletal progenitors, PSM and somites. Finally, 

our analysis led to the identification of evolutionarily conserved multifunctional genes which have 

been reported to have implications in human skeletal muscle developmental disorders, such as 

muscular dystrophy, Osteochondrodysplasias and Spondylocostal dysplasia (Table S5).  

In the developing blastula, the crosstalk between BMP, WNT and NODAL signaling creates an 

anterior–posterior gradient of NODAL and WNT signaling in the epiblast which results in the 

localized expression of the pan-mesodermal marker T and the formation of PS 43,58–61. The high 

concentration of Wnt3a in the PS and the tail bud regulates the expression of Fgf8 and promotes 

epithelial mesenchymal transition (EMT) in the progenitor cells 62,63. FGF pathway components 

Fgf3, Fgf4, Fgf8 and Fgf17 are expressed in the tail bud, the mRNA of Fgf3, Fgf8 and Fgf17 

creates posterior to anterior gradient with in the PSM and Fgf4 is localized in anterior part of the 

PSM 45,64–66. The progenitor cells in the tail bud undergoes EMT and moves from the posterior to 

anterior end of the embryo according to the gradient created by FGF8 and FGF4 thus helps in the 

axial elongation in embryos 67,68. In developing embryo, WNT and FGF signaling pathway acts 

antagonistic to retinoic acid (RA) pathway by inducing the expression of retinoic acid-

metabolizing (inactivating) enzyme CYP26a1 in the posterior PSM 45,69,70.  

WNT and FGF signaling pathways promotes the expression of paraxial mesoderm specific genes, 

T, Tbx6 and Msgn1 71–73. The elevated level of T in PSM cells regulates the expression of Wnt3a 

and Cyp26a1 in the posterior end 74. WNT and FGF signaling pathway together with CYP26a1 

limits the concentration of RA in the posterior end and creates an anterior to posterior gradient of 

RA signaling in developing embryo and helps in the migration of PSM cell towards anterior end 

45,69,70,75,76. The reduced activity of FGF pathway from posterior to anterior end created by the 

opposing activity of RA signaling pathway negatively affects the expression of Snai genes in 

anterior PSM and promotes the expression of integrins or cadherins 42,77,78. During somitogenesis, 

Wnt3a act upstream of Fgf8, Dll1, and Ctnnb1 components of FGF, NOTCH and WNT signaling 

pathways respectively and also promotes the expression of negative regulators of the WNT 

signaling pathway, Axin2 and Dkk1 41. FGF and NOTCH signaling maintain their oscillations 
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during somitogenesis by promotes the expression of ERK inhibitors Dusp4, Dusp6, and Spry2 and 

the transcriptional repressor, Hes7 6,79–83. The oscillatory activity of the genes involved in these 

signaling pathways together creates a zone which promoter the formation the new pair of somites 

called the determination front characterized by the expression of (Mesp2, Pax3, Foxc1/2, and 

Meox1/2) 43. The PSM marker TBX6 together with NOTCH signaling pathway promotes the 

expression of Mesp2 in the anterior side of the determination front and creates a positive and 

negative regulatory loop between TBX6, MESP2 and the NOTCH ligand, Dll1 10,84–87. Pax3, the 

marker of segmented mesoderm is regulated by the transcription factors MESP2 and PARAXIS 

expressed in anterior PSM 88. The WNT ligands WNT3A, WNT7A and WNT8C secreted from 

the neighbouring tissues also promotes the expression of Pax3 and Pax7 in developing 

dermomyotome 89,90. 

A comparative approach was used to identify the common DEGs involved in the development of 

paraxial mesoderm in mouse and human. The gene enrichment analysis indicates that the identified 

genes were involved in skeletal muscle development and in the signaling pathways involved in 

this process. The pathway interaction network constricted with the evolutionarily conserved genes 

includes NOTCH, WNT, MAPK, Calcium, ErbB, cGMP-PKG, RAS and RAP1 Signaling 

pathways shows the crosstalk between these genes during musculoskeletal development. FGF and 

WNT signaling pathway collectively regulates the convergent extension (CE) or the cell 

movement during gastrulation. CE helps in the body axis elongation and the morphogenesis in 

developing embryos 91. ErbB signaling pathway is an upstream regulator of PI3K and FGF 

signaling pathway and its effector, RAS-MAPK/ERK1/2 signaling pathway 49,92. In gastrulating 

embryo, ErbB signaling pathway regulates CE through MAPK and PI3K signaling pathway 49. 

RAS-MAPK/ERK1/2 and protein kinase C (PKC)/Ca2+ signaling pathways, the downstream 

effectors of FGF signaling pathway. Sprouty and Spred, proteins which modulates the protein 

kinase C (PKC)/Ca2+ and RAS-MAPK/ERK1/2 signaling pathways respectively 28,29,93. During 

early gastrulation, Sprouty inhibits protein kinase C (PKC)/Ca2+ signaling pathway, hence the 

RAS-MAPK/ERK1/2 signaling pathway will be active and helps in cell movement in mesoderm 

formation 28,29,93. Alternatively, Spred inhibits RAS-MAPK/ERK1/2 signaling pathway during 

mid to late gastrulation and turns the activity of FGF pathway through protein kinase C 

(PKC)/Ca2+, which helps in the morphogenesis 28,93.  
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The evolutionarily conserved multifunctional genes identified to be conserved in both mouse and 

human are involved in several biological, cellular, and molecular functions. Most of them are 

known to be involved in the development of paraxial mesoderm and in the regulation or 

regeneration of skeletal muscles and its progenitors 94–99. The dysregulation of these genes may 

cause developmental or functional impairments of musculoskeletal system. NOTCH and 

BMP/NODAL/ACTIVIN/TGFβ signaling pathways have crucial roles in the formation, 

maintenance, and differentiation of musculoskeletal and neuronal progenitors. The abnormalities 

in these signaling pathways lead to several musculoskeletal and neuromuscular impairments such 

as osteochondrodysplasia, spondylocostal dysplasia, spinal and bulbar muscular atrophy, etc. 52,100–

102. The identified multifunctional genes such as MEF2C, MECOM, ZIC2, GLI1, FOXO1, KLF4 

are involved in the normal development and differentiation of musculoskeletal progenitors and 

their developmental impairments by interacting with various signaling pathways or involved in the 

transcription of lineage specific markers 103–116. Taken together, the Hub-genes and multifunctional 

genes identified from the musculoskeletal progenitors of mouse and human are involved in the 

development and differentiation of paraxial mesoderm. Among the multifunctional genes, we have 

identified 23 genes conserved between human and mouse, that are crucial for embryonic 

development, interact with several signaling pathways and when dysregulated, lead to skeletal 

developmental disorders. 

Materials and Methods 

Data collection for meta‑analysis 

The whole transcriptome data of PSM and somites from the mouse embryos (E 8.25) were obtained 

from the ArrayExpress database 117,118. The gene expression of posterior to anterior PSM and 

somites from four different mouse embryos (E-MTAB-6155) 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-

6155/samples/?query=presomitic+mesoderm or 

https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6155) were considered for this 

study (Ibarra-Soria et al., 2018). In mouse, the RNA sequencing data of PSM were obtained from 

the five individual segments from the left and right sides of posterior to anterior axis within the 

tail bud region 15(Ibarra-Soria et al., 2018). Gene expression data of human PSM and somites were 
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obtained from Gene Expression Omnibus (GEO) 119. The human RNA sequencing data were 

obtained from PSM, somites and developed somites from two different human embryos of age 

4.5–5 weeks of gestation (GSE90876) 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90876) 20. The Human and Mouse 

whole genome and Gene transfer file (GTF) files were collected from the NCBI database.  

Quality Check and Mapping of RNA seq data 

FASTQC Version 0.11.5 was used to find out the GC content, total sequence length, and the base 

sequence quality of each sample. Unlike the original article 20, for indexing the human genome we 

used HISAT2 (Version 2.1.0) 120. The Mapping of the indexed Mouse and Human genome was 

also carried out by HISAT2. Cufflinks (Version 2.2.1) 121 used to assembles the transcripts for the 

RNA-seq samples, where we have found out the FPKM (Fragments per Kilobase of exon per 

million mapped fragments) for each sample. 

Principle component analysis (PCA) and hierarchical clustering 

Principle component analysis (PCA) was done using R package, in which the similarities and 

dissimilarities between the samples and its replicates were plotted. Using FPKM values, the 

hierarchical clustering analysis was conducted to show the similar gene expression status of the 

samples using R packages.  

Differential expression analysis 

To find out the differently expressed genes involved in musculoskeletal progenitor development, 

we used DESeq (Version 1.26.0). Using the raw read counts, the gene expression between samples 

were identified and filtered based on P-value < 0.05 and the upregulated and downregulated genes 

were filtered with a threshold of the log2 fold change ≥1 and ≤-1 respectively. 

Co-expression Network Construction 

Using DEGs identified from the human and mouse data sets, weighted gene co-expression network 

analysis (WGCNA) with R packages (Version 1.70.3) was performed to find out the modules 

cluster of genes that are highly correlated. The modules with genes clustered along with the known 

markers of musculoskeletal progenitors were considered for the further analysis. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.14.584954doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.584954
http://creativecommons.org/licenses/by-nc-nd/4.0/


Identification of Hub-genes and Functional Annotation 

Hub-genes are the genes which shows high connectivity or correlation between the genes in the 

candidate module. To identify the hub-genes, a protein-protein interaction network (PPI) was 

constricted with search tool for the retrieval of interacting genes (STRING) 16,122 and visualized 

using Cytoscape (Version 3.8.2) 17. The hub-genes used for the PPI were selected based on “OR” 

condition on Betweenness >10, closeness <0.001, and Degree >2. The functional enrichment 

analysis was performed using the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) 123.  

Heat map and plot construction 

The expression status of each gene in each sample were represented in heatmap constricted using 

Gplot (R package, Version 3.1.3). The circus plot representing the involvement of hub-genes in 

various signaling pathways and the bubble plot were generated with GOplot (R package, Version 

1.0.2). The bubble plot representing the functional enrichment analysis was constructed against 

the genes counts and the p-values of each identified function.  

Pathway interaction network construction 

Functional and pathway enrichment analysis were performed for evolutionarily conserved genes 

identified from mouse and human using ClusterProfiler (R package, Version 3.14.3) 

(https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html). The representatives of 

functional enrichment analysis were visualized using dotplot. The results obtained from pathway 

enrichment analysis was represented as pathway interaction network using cnetplot. 

Maintenance and Differentiation of human pluripotent stem cells (hPSCs): 

The human embryonic stem cell (hESCs) (BJNhem19 (JNCASRe001-A)) line was procured from 

Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), India. The human-induced 

pluripotent stem cell (hiPSCs) (D14C2) line was a kind gift from Dr. R. V. Shaji, Centre for Stem 

Cell Research, (CSCR), InStem, India. hESCs and hiPSC was maintained on vitronectin (VTN) 

(Gibco, A14700) in presence of Essential 8™ (E8) Medium (Gibco, A1517001). The cells were 
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routinely passaged in 1:6 ratio in every 4 days using 0.5 mM EDTA (Gibco, 15575020) solution 

during maintenance.  

For PS induction, hESCs were exposed to CHIR99021 (CH), inhibitor of GSK-3β for 24 hours 

and marked by the expression of EOMES and T (Figure 4. a, Figure S4 A). After PS induction, the 

cells were exposed to CH (GSK-3β inhibitor), SB431542 (SB) (ALK 4/5/7 inhibitor) and bFGF 

(C/S/F) for 4 days and detected the expression of PSM markers TBX6 and MSGN1 together with 

the pan-mesodermal marker T (Figure 4. a-b, Figure S4 A). Due to C/S/F treatment for 4 days, the 

expression the endoderm marker EOMES were downregulated, and the expression of pan-

mesodermal marker T remains unaffected (Figure S4. A). PSM was further differentiated to 

somites using FGFR inhibitor PD173074 (PD) and WNT pathway inhibitor XAV939 (XAV) 32 

and confirmed by the expression of MEOX1, MESP2, RIPPLY1 and TCF15/PARAXIS (Figure 4. 

a, c, Figure S4. B).  

Real-Time PCR analysis 

Total RNA was isolated using QIAzol Lysis Reagent (QIAGEN, 79306) according to 

manufactures’ instruction, followed by quantification using NanoDrop Spectrophotometer 

(Thermo Fisher Scientific). Reverse transcription was performed with the iScriptTM cDNA 

Synthesis Kit (Bio-Rad, 1708891). Quantitative Real-Time PCR (qRT-PCR) was done using 

PowerUp™ SYBR™ Green Master Mix (2X) (Applied Biosystems, A25776) with gene-specific 

primers (Table S6) in a thermal cycler (Roche Light Cycler 480). Data was analysed using the 

ddCt method, with the house-keeping gene, ACTB. 

Data availability 

All data utilized for this study are publicly available data sets from previous publications (E-

MTAB-6155, GSE90876)15,20. The data that supports the findings of this study are available within 

this manuscript and in supplementary documents. 

List of Figures 

Figure 1. Gene expression and regulation in the mouse PSM and somites (a) PCA of mouse 

PSM from posterior to anterior axis (PSM 1 to PSM5) and somites. Hub-genes were identified 

from the gene regulatory network analysis of the selected WGCNA clusters (b) Heatmap 

showing the expression status of Hub-genes identified from the selected clusters (c) Naïve 

PSM cluster (Black (Figure S1)) (d) Mature PSM-Somites cluster (Red (Figure S1)) and (e) 
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Somites cluster (Yellow (Figure S1)). Functional enrichment analysis of the Hub-genes shows 

their involvement in different (f) biological, cellular and molecular functions and in (g) 

signaling pathways 

Figure 2. Gene expression and regulation in the human PSM and somites (a) Cluster 

dendrogram of human PSM, somites and developed somites. From the Gene regulatory 

network analysis of selected WGCNA clusters, Hub-genes were identified (b) Heatmap 

indicating the expression status of Hub-genes identified from the selected clusters (c) PSM 

cluster (Yellow (Figure S2)) (d) Somite cluster (Brown (Figure S2)). Functional enrichment 

analysis of the Hub-genes shows their involvement in different (e) biological, cellular and 

molecular functions and in (f) signaling pathways 

Figure 3. Evolutionarily conserved gene and pathway interaction network (a) Venn diagram 

of mouse and human DEGs, (b) Biological process for evolutionarily conserved genes in 

human, (c) Pathway interaction network of evolutionarily conserved genes in mouse, (d) 

Pathway interaction network of evolutionarily conserved genes in human 

Figure 4. Evolutionarily conserved multifunctional genes and its validation using in vitro 

derived musculoskeletal progenitors from hESCs (a) schematic representation of in vitro 

derived musculoskeletal progenitors from hESCs (b-c) RT-qPCR of PSM and somite markers 

of indicated samples. Data are Mean ± s.d., n=2, (d) Immunocytochemistry image of T and 

TBX6 in indicated samples, (e-f) Heatmap showing the expression status of the predicted 

evolutionarily conserved multifunctional genes in (e) mouse and (f) human (g) RT-qPCR 

validation of the predicted evolutionarily conserved multifunctional genes in in vitro derived 

human musculoskeletal progenitors. Data are Mean ± s.d., n=2, (h) Heatmap represents the 

involvement of multifunctional genes in indicated developmental impairments based on their 

corresponding evident score. Graphs shown in (b-c) and (g) are representatives of two 

independent technical replicates.   

List of supplementary tables 

Table S1: Hub-genes; List of Hub-genes identified as Naïve PSM cluster, Mature PSM-Somite 

cluster and the Somite cluster – Include the details of GRN, pathway and functional enrichment 

analysis 
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Table S2: Hub-genes; List of Hub-genes identified as Naïve PSM cluster, Mature PSM-Somite 

cluster and the Somite cluster – Include the details of GRN, pathway and functional enrichment 

analysis 

Table S3: List of commonly regulated genes in Mouse and Human 

Table S4: Pathway and functional enrichment analysis of commonly regulated genes in Mouse 

and Human 

Table S5: List of Evolutionarily conserved multifunctional genes and their involvement in 

developmental impairments 

Table S6: List of Primers 
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