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2 

Abstract 27 

Cancer involves dynamic changes caused by (epi)genetic alterations such as muta-28 

tions or abnormal DNA methylation patterns which occur in cancer driver genes. These 29 

driver genes are divided into oncogenes and tumor suppressors depending on their 30 

function and mechanism of action. Discovering driver genes in different cancer 31 

(sub)types is important not only for increasing current understanding of carcinogenesis 32 

but also from prognostic and therapeutic perspectives. We have previously developed 33 

a framework called Moonlight which uses a systems biology multi-omics approach for 34 

prediction of driver genes. Here, we present an important development in Moonlight2 35 

by incorporating a DNA methylation layer which provides epigenetic evidence for de-36 

regulated expression profiles of driver genes. To this end, we present a novel func-37 

tionality called Gene Methylation Analysis (GMA) which investigates abnormal DNA 38 

methylation patterns to predict driver genes. This is achieved by integrating the tool 39 

EpiMix which is designed to detect such aberrant DNA methylation patterns in a cohort 40 

of patients and further couples these patterns with gene expression changes. To 41 

showcase GMA, we applied it to three cancer (sub)types (basal-like breast cancer, 42 

lung adenocarcinoma, and thyroid carcinoma) where we discovered 33, 190, and 263 43 

epigenetically driven genes, respectively. A subset of these driver genes had prognos-44 

tic effects with expression levels significantly affecting survival of the patients. Moreo-45 

ver, a subset of the driver genes demonstrated therapeutic potential as drug targets. 46 

This study provides a framework for exploring the driving forces behind cancer and 47 

provides novel insights into the landscape of three cancer sub(types) by integrating 48 

gene expression and methylation data. Moonlight2R is available on GitHub 49 

(https://github.com/ELELAB/Moonlight2R) and BioCondcutor (https://bioconduc-50 

tor.org/packages/release/bioc/html/Moonlight2R.html). The associated case studies 51 
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presented here are available on GitHub (https://github.com/ELELAB/Moon-52 

light2_GMA_case_studies) and OSF (https://osf.io/j4n8q/).  53 

 54 

Author summary 55 

Cancer is a complex disease and a main cause of mortality worldwide. This heteroge-56 

neous disease arises due to accumulation of changes which occur in driver genes that 57 

drive cancer progression when they are altered. These driver genes are commonly 58 

divided into oncogenes, which promote cancer, and tumor suppressors, which prevent 59 

it. A major goal of cancer research is identifying these driver genes, crucial for increas-60 

ing our current understanding of cancer biology and for developing novel treatment 61 

approaches. A large number of cancer driver genes have already been identified. 62 

However, the underlying mechanisms for the alterations in these genes is challenging 63 

to predict given their context-dependent behavior and the complexity of cancer. Such 64 

explanations are the focus of this study with the aim of providing evidence of why 65 

certain genes do not function normally in cancer. Within this context, we present new 66 

functionalities to our previously developed cancer driver predictive framework, Moon-67 

light. These new functionalities integrate multiple data types to predict oncogenes and 68 

tumor suppressors in a systems-biology-oriented manner that is freely available as a 69 

R package for the community.  70 

 71 

Introduction 72 

Cancer is a complex and heterogeneous disease and a leading cause of death globally 73 

[1]. This widespread disease is categorized into multiple (sub)types and is character-74 

ized by stepwise accumulation of (epi)genetic alterations in cancer driver genes [2]. 75 
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Driver genes are classified according to their function, i.e. oncogenes (OCGs) acti-76 

vated by gain-of-function mechanisms and tumor suppressor genes (TSGs) inacti-77 

vated by loss-of-function mechanisms [3]. Recently, dual role genes also emerged 78 

which show context-dependent behavior and can act as both OCGs and TSGs in dif-79 

ferent biological contexts [4,5]. Driver genes participate in several cellular pathways 80 

conceptualized in the Hallmarks of Cancer, a collection of functional capabilities that 81 

cells gain during their transition from normal to tumor cells [6–8]. Distinct driver genes 82 

can initiate cancer development in different cancer types and even within subtypes of 83 

cancers originating from the same tissue. Thus, context-specific discovery of driver 84 

genes in light of the cancer hallmarks is essential. Numerous tools have been devel-85 

oped for prediction of driver genes based on varying computational methods which we 86 

recently reviewed [9]. Prediction of driver genes is essential for increasing current 87 

knowledge of cancer development and for analyzing and interpreting the vast amount 88 

of data in relation to the cancer phenotypes. This knowledge can be a step towards 89 

reversing these phenotypes, discovering novel drug targets, facilitating new treatment 90 

strategies, and designing precision medicine strategies [10–13]. We have contributed 91 

to this field with Moonlight which uses a multi-omics systems biology approach for 92 

prediction of driver genes [14,15].  93 

The accumulated (epi)genetic alterations in driver genes include mutations, copy num-94 

ber variations, aberrant methylation levels, and histone modifications [3,16]. While ab-95 

normal methylation patterns are recognized as cancer-causing mechanisms, they 96 

have been described to a lesser extent compared to mutations [9]. Hypomethylation 97 

and hypermethylation, respectively representing loss and gain of methylation com-98 

pared to normal conditions, have been described as activating and inactivating mech-99 
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anisms of OCGs and TSGs, respectively [17–19]. For instance, Søes et al. found pro-100 

moter hypomethylation and increased expression of putative OCG ELMO3 to be as-101 

sociated with development of non-small cell lung cancer [20].  102 

Here, we present novel functionalities to Moonlight2, expanding upon features pre-103 

sented in our previous work [15]. Specifically, we incorporate methylation evidence to 104 

Moonlight2 predicted driver genes as a source of epigenetic explanation of the dereg-105 

ulated expression of these genes. Information about methylation state is provided by 106 

EpiMix, an integrative tool for detecting aberrant DNA methylation patterns connected 107 

with expression changes in patient cohorts [21]. To showcase this new feature, we 108 

apply it to three cancer (sub)types (basal-like breast cancer, lung adenocarcinoma, 109 

and thyroid carcinoma) and discover driver genes in the context of cell proliferation 110 

and apoptosis, two well-established cancer hallmarks, and explore the prognostic and 111 

therapeutic potentials of the predicted driver genes. We apply our new method on data 112 

from The Cancer Genome Atlas (TCGA) [22,23].  113 

 114 

Design and implementation  115 

Design and implementation of new functionalities in Moon-116 

light 117 

Here, we present new functionalities to Moonlight, our framework for driver gene pre-118 

diction [14,15]. In brief, Moonlight requires a set of differentially expressed genes 119 

(DEGs) as input and is built up on two layers: a primary layer discovering putative 120 

driver genes, termed oncogenic mediators, that uses gene expression changes and 121 

information about cancer-related biological processes; and a secondary layer that cou-122 

ples mechanistic evidence to the oncogenic mediators by investigating (epi)genetic 123 
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alterations in the oncogenic mediators (namely, mechanistic indicators). From this sec-124 

ondary layer, the critical driver genes are predicted among the oncogenic mediators. 125 

We recently presented Moonlight2 with the overall goal of implementing new function-126 

alities to provide standardized and automatized solutions to the analysis of the mech-127 

anistic indicators. At first, we developed a secondary layer for mechanistic indicators 128 

based on mutational data [15].  129 

In this contribution, we tackled the challenge of adding functionalities to Moonlight2 to 130 

cover mechanistic indicators related to methylation changes. Each layer can be ap-131 

plied together or separately depending on the source of -omics data available for the 132 

samples under analysis. This new functionality is termed Gene Methylation Analysis 133 

(GMA) and should be applied following the Pattern Recognition Analysis (PRA) func-134 

tion which predicts the oncogenic mediators in the primary layer (Fig 1A). The biolog-135 

ical foundation for GMA lies within the observed roles of DNA methylation in both 136 

physiological and cancer states. Under healthy conditions, DNA methylation serves 137 

an essential regulatory role in cells by regulating expression of genes [24]. However, 138 

in cancer, DNA methylation processes are altered, where hypo- and hypermethylation 139 

can activate and inactivate OCGs and TSGs, respectively, leading to overexpression 140 

of OCGs and silencing of TSGs [17–19] (Fig 1B). 141 

GMA predicts methylation-driven driver genes by using EpiMix [21]. EpiMix models 142 

DNA methylation in patient cohorts and predicts differential methylation associated 143 

with gene expression and further allows for DNA methylation analysis of non-coding 144 

regulatory regions [21], therefore being perfectly suitable to integrate with Moonlight’s 145 

primary layer. Moreover, EpiMix is available as a R BioConductor package, which al-146 

lows for easy integration with Moonlight. A key result of EpiMix is a table which in-147 

cludes functional CpG-gene pairs containing differentially methylated CpG sites whose 148 
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DNA methylation state is associated with the expression of the corresponding genes 149 

they map to. Moreover, the methylation state (e.g. hypo- or hypermethylated) of each 150 

CpG site is reported. This table is integrated with the main output table from Moon-151 

light’s primary layer, specifically the output from PRA, which provides a list of onco-152 

genic mediators and their putative driver role (e.g. putative TSG or OCG) (Fig 1C). 153 

This integration step involves the following: for each oncogenic mediator, the number 154 

of associated CpG sites is summarized. EpiMix’s predictions of methylation state and 155 

Moonlight’s predictions of driver gene role are then compared and used to assess 156 

whether the gene’s methylation status supports the putative role (OCG or TSG) of the 157 

oncogenic mediator. These comparisons are subsequently used to define the driver 158 

genes (Fig 1D). Those oncogenic mediators with correspondence between methyla-159 

tion state and putative driver role from EpiMix and Moonlight’s primary layer are re-160 

tained as the final set of driver genes. See S1 Text for a detailed description of this 161 

comparison. 162 

As input, GMA requires i) a gene expression matrix with genes in rows and tumor and 163 

normal samples in columns, ii) a methylation matrix with CpG sites in rows and tumor 164 

and normal samples in columns which should be the same samples as in the expres-165 

sion data, iii) output of PRA from Moonlight’s primary layer, i.e. the predicted onco-166 

genic mediators and their putative driver role, and finally, iv) output of a differential 167 

expression analysis (DEA) which includes information about the DEGs. In return, GMA 168 

outputs the following: i) a list of predicted driver genes categorized into TSGs and 169 

OCGs, ii) a summary of the oncogenic mediators which includes the number of asso-170 

ciated CpG sites and evidence label, iii) a summary of various annotations found to all 171 

DEGs input to Moonlight on the gene and methylation level, and iv) raw EpiMix results 172 

corresponding to applying EpiMix on the input data independent of the GMA function.  173 
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We have also created three functions for visualizing genes and methylation states: 174 

plotGMA which visualizes the number of differentially methylated hypo-, hyper- or 175 

dual-methylated CpG sites, plotMoonlightMet which visualizes the effect of genes on 176 

biological processes estimated in Moonlight’s primary layer, and plotMetExp which 177 

calls a visualization function from EpiMix, EpiMix_PlotModel, to display gene expres-178 

sion and methylation levels of a specific gene and CpG site [21]. 179 

 180 

 181 
Fig 1. Overview of the Moonlight framework with new methylation functionality. (A) Moonlight 182 
consists of a primary layer requiring differentially expressed genes and gene expression data as input. 183 
The primary layer predicts oncogenic mediators through a series of functions called functional enrich-184 
ment analysis (FEA), gene regulatory network analysis (GRN), upstream regulator analysis (URA), and 185 
pattern recognition analysis (PRA). Moonlight’s secondary mutation layer requires mutation data as 186 
input and is carried out via the driver mutation analysis (DMA) function and similarly, Moonlight’s sec-187 
ondary methylation layer implemented in the gene methylation analysis (GMA) function requires meth-188 
ylation data as input. The secondary layer results in the final prediction of driver genes. (B) DNA meth-189 
ylation is a mechanism occurring under physiological conditions in cells which functions to regulate 190 
gene expression. However, in cancer, the DNA methylation process is altered. A loss of methylation 191 
called hypomethylation can occur which can lead to increased expression of a gene and thus an in-192 
creased amount of the resulting protein. In contrast, gain of methylation called hypermethylation can 193 
also occur which can silence gene expression and lead to decreased protein expression. These two 194 
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mechanisms can finally lead to cancer. Hypo- and hypermethylation can activate and inactivate onco-195 
genes and tumor suppressors, respectively, the biological principle that GMA is built on. (C) The outputs 196 
of EpiMix and Moonlight are integrated to predict driver genes. EpiMix outputs a table of CpG-gene 197 
pairs containing differentially methylated CpG sites whose DNA methylation state is associated with 198 
gene expression. Moonlight outputs a list of oncogenic mediators and their putative driver role as tumor 199 
suppressors or oncogenes. (D) Driver genes are defined in GMA by comparing EpiMix’s predictions of 200 
methylation state and Moonlight’s predictions of driver role in “evidence” categories. Those oncogenic 201 
mediators labeled with an “agreement” evidence are retained as the final set of predicted driver genes.    202 
 203 
 204 

Application of new functionality to three cancer (sub)types  205 
 206 
Following implementation of the new functionality, GMA, in Moonlight2, we conducted 207 

a case study applying GMA to basal-like breast cancer, lung adenocarcinoma, and 208 

thyroid carcinoma data from TCGA to discover methylation-driven driver genes. More-209 

over, we compared these predicted drivers with mutation-driven drivers by applying 210 

our previously developed secondary mutational layer called Driver Mutation Analysis 211 

(DMA) [15]. Detailed methods behind this case study are included in S2 Text.  212 

 213 

Results 214 

Case study: Prediction of driver genes with differential 215 

methylation in three different cancer types using Moon-216 

light2 217 

To showcase the new functionality in Moonlight2 and predict driver genes driven by 218 

methylation changes, we applied Moonlight2 on three cancer (sub)types: basal-like 219 

breast cancer, lung adenocarcinoma, and thyroid carcinoma. First, we performed DEA 220 

between each of these cancer tissues and corresponding normal samples as this is 221 

the input to Moonlight’s primary layer (Table 1). Following DEA, Moonlight’s primary 222 

layer predicted 159, 1228, and 1598 oncogenic mediators in these three cancer 223 
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(sub)types, respectively (Table 1). Additionally, EpiMix alone identified 9483, 10018, 224 

and 6142 functional gene-CpG pairs in these three cancer (sub)types, respectively. 225 

These functional gene-CpG pairs represent differentially methylated CpG sites whose 226 

DNA methylation state is associated with the expression of the corresponding genes 227 

they map to. The number of hits discovered individually from EpiMix and Moonlight's 228 

primary layer indicate a substantial volume of significant associations. Consequently, 229 

integrating the results from EpiMix with the oncogenic mediators identified in Moon-230 

light's primary layer, as implemented in GMA presented here, help to narrow down the 231 

most critical findings and yield the benefits of both approaches. From GMA, we found 232 

that those oncogenic mediators in basal-like breast cancer that are associated with 233 

differentially methylated CpGs include 38 hypomethylated CpGs, 165 hypermethyl-234 

ated CpGs, and 22 methylated CpGs with a dual status, meaning the CpG site was 235 

found hypomethylated in cancer tissues from some patients, while hypermethylated in 236 

other patients. Similarly, oncogenic mediators in lung adenocarcinoma that are asso-237 

ciated with differentially methylated CpGs include in total 218 hypomethylated CpGs, 238 

625 hypermethylated CpGs, and 48 dual-methylated CpGs. Finally, oncogenic medi-239 

ators in thyroid carcinoma associated with differentially methylated CpGs contain in 240 

total 945 hypomethylated CpGs, 305 hypermethylated CpGs, and 230 dual-methyl-241 

ated CpGs (Fig 2A).  242 

Across all three cancer (sub)types, the number of differentially methylated CpG sites 243 

mapped to the oncogenic mediators ranges between 0 and 28. The classifications of 244 

methylation status in the oncogenic mediators in basal-like breast cancer are shown 245 

in Fig 2B, generated with the plotGMA function. Next, we compared Moonlight’s onco-246 

genic mediators with EpiMix’ functional genes. For this, we included only those func-247 

tional genes that contained the same methylation state in all of its associated CpGs 248 
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and moreover, the dual states were excluded. In basal-like breast cancer, this com-249 

parison revealed 109 oncogenic mediators not associated with differentially methyl-250 

ated CpGs, 2754 functional genes not predicted as oncogenic mediators, 17 onco-251 

genic mediators with a “conflicting” evidence label, and 33 oncogenic mediators with 252 

an “agreement” evidence label (Fig 2C). Consequently, these 33 oncogenic mediators 253 

are retained as the final set of driver genes divided into 32 TSGs and 1 OCG (Table 254 

1). Next, we visualized the effect of these predicted driver genes in basal-like breast 255 

cancer on two well-known cancer hallmarks, apoptosis and proliferation of cells, using 256 

the function plotMoonlightMet. These effects define the basis upon which the onco-257 

genic mediators are predicted from the PRA step in Moonlight’s primary layer, demon-258 

strating that the predicted OCGs have a positive effect on proliferation of cells and a 259 

negative effect on apoptosis and vice versa for the predicted TSGs (Fig 2D). Similar 260 

overviews for lung adenocarcinoma and thyroid carcinoma are shown in S1 Fig, which 261 

resulted in a final prediction of 190 driver genes divided into 110 TSGs and 80 OCGs 262 

in lung adenocarcinoma and 263 driver genes categorized into 5 TSGs and 258 OCGs 263 

in thyroid carcinoma (Table 1). We did not discover any dual role genes across the 264 

three cancer (sub)types, i.e. genes predicted as OCGs in one of the three cancer 265 

(sub)types and as TSGs in another cancer (sub)type and vice versa.   266 

 267 

Table 1. Number of predicted DEGs, oncogenic mediators, and driver genes in three 
cancer (sub)types: basal-like breast cancer, lung adenocarcinoma, and thyroid car-
cinoma. The oncogenic mediators and driver genes predicted by Moonlight’s primary and 
secondary methylation layer, respectively, are divided into (putative) TSGs and OCGs. 

Cancer (sub)type DEGs Oncogenic media-
tors [putative 
TSGs/putative 
OCGs] 

Driver genes 
[TSGs/OCGs] 

Basal-like breast 
cancer 

4292 159 [125/34] 
 

33 [32/1] 
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Lung adenocarci-
noma 

4468 1228 [521/707] 190 [110/80] 

Thyroid carcinoma 2972 1598 [118/1480] 263 [5/258] 

Abbreviations: DEGs, differentially expressed genes; OCGs, oncogenes; TSGs, tumor 
suppressor genes.  

 268 
We then compared the predicted driver genes with the predicted oncogenic mediators 269 

in each cancer (sub)type. We quantified these comparisons in terms of overlaps with 270 

genes reported in the COSMIC Cancer Gene Census (CGC) [25]. Specifically, we 271 

computed the precision as (TP/(TP+FP))*100 and sensitivity as (TP/(TP+FN))*100. 272 

We defined the true positives (TP) as the overlap between the gene set (either the 273 

driver genes or the oncogenic mediators) and the CGC, whereas the false positives 274 

(FP) are those genes found in the gene set but are not included in CGC. In contrast, 275 

the false negatives (FN) comprise those genes reported in CGC but are not predicted 276 

in our gene set. For all three cancer (sub)types, we found that GMA had a greater 277 

precision and lower sensitivity compared to using only Moonlight’s primary layer (Fig 278 

2E). A higher precision of GMA is desirable as it indicates that the predicted driver 279 

gene sets have a higher fraction of genes from the CGC compared to the oncogenic 280 

mediator sets. On the other hand, the higher sensitivity of using only Moonlight’s pri-281 

mary layer compared to also using GMA might be attributed to the larger numbers of 282 

oncogenic mediators. A larger number of oncogenic mediators results in a larger over-283 

lap between the CGC and the oncogenic mediators, thereby lowering the number of 284 

FNs and increasing the sensitivity. In this case, prioritizing higher precision over sen-285 

sitivity is preferable since our aim is to find the most crucial driver genes among the 286 

oncogenic mediators. Thus, a higher precision indicates a greater proportion of TPs, 287 

corresponding with our objective. Next, we also evaluated the significance of associa-288 

tion between the gene sets and the CGC using a Fisher’s exact test (Table 2). We only 289 
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found the oncogenic mediator and driver gene sets from basal-like breast cancer to 290 

have a significant association with genes in the CGC (p-value = 0.000392 for the on-291 

cogenic mediators predicted using Moonlight’s primary layer and p-value = 0.00228 292 

for the driver genes predicted using GMA). However, in all three cancer (sub)types, 293 

we found the driver genes to have a higher odds ratio than the oncogenic mediators, 294 

demonstrating a greater association between the driver gene sets and the CGC com-295 

pared to the oncogenic mediators (Table 2).  296 

 297 
 298 

Table 2. Significance of association between Moonlight’s gene sets and genes from 
the Cancer Gene Census (CGC) evaluated using Fisher’s exact test in three cancer 
(sub)types: basal-like breast cancer, lung adenocarcinoma, and thyroid carcinoma. 
The gene sets from Moonlight were found using Moonlight’s primary layer and Moonlight’s 
secondary layer through the Gene Methylation Analysis (GMA) functionality. p-values and 
odds ratios from Fisher’s exact test are included.  

Cancer (sub)type Method p-value Odds ratio 

Basal-like breast 
cancer 

Moonlight’s primary 
layer 

0.000392* 2.77 

GMA 0.00228* 5.09 

Lung adenocarci-
noma 

Moonlight’s primary 
layer 

0.0764 1.28 

GMA 0.272 1.40 

Thyroid carcinoma Moonlight’s primary 
layer 

0.472 0.895 

GMA 0.215 1.39 

*p-value < 0.05. 
Abbreviations: CGC, Cancer Gene Census; GMA, Gene Methylation Analysis. 

 299 
 300 
While these results together demonstrate the added value of GMA, it is worth high-301 

lighting certain limitations. Notably, the driver genes reported in CGC are mainly based 302 

on mutation evidence. In this study, we have used abnormal DNA methylation levels 303 
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as evidence for deregulated expression of the driver genes. Hence, these methylation 304 

patterns may not be fully captured in the CGC, challenging our comparison with the 305 

CGC. However, to date, no golden standard of cancer drivers exists, and the CGC 306 

stands as the most robust and comprehensive resource available. Thus, it serves as 307 

the main reference point that the majority of studies use to evaluate their predicted 308 

driver genes and method [26–37]. To our knowledge, a similar well-curated resource 309 

of cancer driver genes driven by methylation changes does not exist. Moreover, per-310 

forming cancer type-specific comparisons would be more desirable. While the CGC 311 

reports which cancer types the driver genes are associated with, these annotations 312 

are limited in scope. Therefore, while ideal, performing such cancer type-specific com-313 

parisons do not contain enough power. Finally, the quantitative statistical measures 314 

are not taking into account that some of our predicted driver genes may be novel. 315 

Consequently, some FPs may in fact be TPs but are not included in CGC, and some 316 

FNs may not necessarily be FNs; rather, they may not represent drivers in the specific 317 

cancer (sub)type.  318 

 319 
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 320 
Fig 2. Integration of Moonlight and EpiMix for prediction of cancer driver genes. (A) Number of 321 
differentially methylated CpGs as found from EpiMix in oncogenic mediators predicted from Moonlight’s 322 
primary layer. The differentially methylated CpGs are categorized into methylation status and stratified 323 
by cancer (sub)type. (B) Heatmap showing number of differentially methylated CpGs and classifications 324 
of methylation status in the oncogenic mediators in basal-like breast cancer. The heatmap was gener-325 
ated using the plotGMA function. (C) Venn diagram comparing oncogenic mediators predicted from 326 
Moonlight’s primary layer with functional genes predicted from EpiMix in basal-like breast cancer. The 327 
functional genes are genes containing differentially methylated CpG pairs whose DNA methylation state 328 
is associated with expression of the gene. Only those functional genes that contained the same meth-329 
ylation state in all of its associated CpGs were included in this comparison, and moreover, the dual 330 
methylation states were excluded. (D) Heatmap showing the effect of the predicted driver genes in 331 
basal-like breast cancer on apoptosis and proliferation of cells. This heatmap was generated using the 332 
function plotMoonlightMet. These effects define the basis upon which the oncogenic mediators are pre-333 
dicted from the PRA step in Moonlight’s primary layer. (E) Comparison between the predicted driver 334 
genes with the predicted oncogenic mediators in all three cancer (sub)types where the driver genes 335 
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were predicted with the new functionality GMA in Moonlight’s secondary layer, and the oncogenic me-336 
diators were predicted with Moonlight’s primary layer. The comparisons were quantified in terms of 337 
overlaps with genes reported in the COSMIC Cancer Gene Census (CGC) by computing the precision 338 
and sensitivity. The precision was calculated as (TP/(TP+FP))*100 and sensitivity as 339 
(TP/(TP+FN))*100. The true positives (TP) are the overlap between the gene set (either the driver genes 340 
or the oncogenic mediators) and the CGC. The false positives (FP) are those genes found in the gene 341 
set but are not included in CGC. The false negatives (FN) comprise those genes reported in CGC but 342 
are not predicted in our gene set.   343 
 344 
 345 
To investigate biological roles of the predicted driver genes, we performed enrichment 346 

analyses (Fig 3). The predicted driver genes are involved in various signaling path-347 

ways such as KRAS signaling in basal-like breast cancer and thyroid carcinoma, 348 

mTORC1 signaling in lung adenocarcinoma, and TNF−alpha signaling via NF−kB and 349 

p53 pathway in thyroid carcinoma. Previously, TP53 and TNF signaling have been 350 

associated with the onset of cancer among epigenetically modified pathways [38]. Fur-351 

thermore, IL−6/JAK/STAT3 signaling was significantly enriched among the predicted 352 

driver genes in basal-like breast cancer (Fig 3). Basal-like breast cancers overexpress 353 

Interleukin 6 (IL-6), a pro-inflammatory cytokine, and it has been reported that p53 354 

absence triggers an IL-6 dependent epigenetic reprogramming driving breast cancer 355 

cells towards a basal-like/stem cell-like gene expression profile [39]. Additionally, epi-356 

thelial-mesenchymal transition (EMT) is a recurring enriched term, observed in both 357 

lung adenocarcinoma and thyroid carcinoma. Epigenetic regulation of EMT has previ-358 

ously been described, and DNA methylation and demethylation plays a key role in this 359 

regulation [40–43].  360 
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 361 
Fig 3. Enrichment analyses of predicted driver genes. Enrichment analysis of predicted driver genes 362 
in (A) basal-like breast cancer, (B) lung adenocarcinoma, and (C) thyroid carcinoma using the “MSigDB 363 
Hallmark 2020” database. The top 10 most significantly enriched terms (adjusted p-value < 0.05) are 364 
included. The gene ratio on the x axis is the ratio between the number of predicted driver genes that 365 
intersect with genes annotated in the given hallmark gene set and the total number of genes annotated 366 
in the respective hallmark gene set. The point sizes reflect the number of driver genes playing a role in 367 
the respective hallmark gene set.  368 
 369 
 370 
Association between expression of predicted driver genes and sur-371 

vival of cancer patients 372 

We performed survival analysis to evaluate the prognostic potential of the predicted 373 

driver genes. We first used Cox proportional hazards regression and found that the 374 

expression level of 20 of the predicted OCGs in lung adenocarcinoma had a significant 375 

effect on survival at the multivariate level when accounting for tumor stage, age of 376 

patients, and sex of patients. Similarly, expression of two of the predicted OCGs in 377 

thyroid carcinoma had a significant effect on survival. Thus, we deemed these 22 378 

OCGs as prognostic (Fig 4A). Next, we examined whether high or low expression of 379 

these prognostic genes were associated with survival of the patients. For this, we di-380 

vided the patients into high and low expression groups and assessed differences in 381 

survival through Kaplan-Meier survival analyses and log-rank tests. These analyses 382 
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revealed a significant difference in survival between patients with high and low expres-383 

sion of 18 of the 20 prognostic OCGs in lung adenocarcinoma. The two OCGs that did 384 

not show a significant difference were RPL39L and GINS2. On the other hand, we did 385 

not observe a significant difference in survival between patients with high and low ex-386 

pression of the two predicted OCGs in thyroid carcinoma. These results together indi-387 

cate a greater prognostic potential of OCGs compared to TSGs and additionally, a 388 

greater presence of prognostic OCGs in lung adenocarcinoma compared to basal-like 389 

breast cancer and thyroid carcinoma. It is, however, worth mentioning that a smaller 390 

subset of driver genes was predicted in basal-like breast cancer with only one pre-391 

dicted OCG, indicating a more limited search pool for prognostic OCGs.  392 

To highlight a few examples, multivariate Cox regression analysis identified 393 

GNPNAT1, RRM2, and SLC2A1 as prognostic OCGs in lung adenocarcinoma with 394 

hazard ratios of 1.4, 1.3, and 1.3, respectively. In all three cases, patients with high 395 

expression of the OCG had a significantly lower survival probability compared to pa-396 

tients with low expression of these OCGs (Figs 4B-D) (p-values: < 0.0001, 0.0015 and 397 

0.00055 for GNPNAT1, RRM2 and SLC2A1, respectively). This aligns with the antici-398 

pated role of OCGs which are typically upregulated in cancer, indicating a worse prog-399 

nosis.  400 

 401 
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 402 
Fig 4. Survival analysis of predicted driver genes. (A) Hazard ratios from multivariate Cox propor-403 
tional hazards regression of 20 of the predicted OCGs in lung adenocarcinoma and of two of the pre-404 
dicted OCGs in thyroid carcinoma. (B-D) Kaplan-Meier survival plots of three of the predicted OCGs in 405 
lung adenocarcinoma which were deemed prognostic from multivariate Cox regression analysis: (B) 406 
GNPNAT1, (C) RRM2, and (D) SLC2A1. Patients with expression values above and below the median 407 
expression level of the respective gene were divided into a high and low expression group, respectively. 408 
The p-values represent the significance of difference in survival between the two groups for each gene.   409 
 410 
 411 
Predicted driver genes have therapeutic potential as drug targets 412 
 413 
The potential of cancer driver genes as drug targets have previously been highlighted 414 

[44–46] and targeted therapies have been developed towards these genes. Thus, we 415 

next investigated the therapeutic potential of the predicted driver genes as drug targets 416 

by querying the Drug-Gene Interaction Database (DGIdb) [47] for driver gene-drug 417 

interactions using only cancer-specific data sources. In basal-like breast cancer, we 418 
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identified seven TSGs documented to interact with drugs in DGIdb. In lung adenocar-419 

cinoma, both OCGs and TSGs, numbering 12 each, were reported as drug targets. 420 

Finally, in thyroid carcinoma, 23 OCGs were reported as interacting with drugs (S2 421 

Fig). Across all three cancer (sub)types, the number of driver gene-drug interactions 422 

varied between one and 55. Roughly half of all predicted driver genes interacted with 423 

one drug while the other half interacted with two or more drugs (Fig 5A).  424 

Next, we examined those driver gene-drug interactions for which the interaction type 425 

was known. In basal-like breast cancer, lung adenocarcinoma, and thyroid carcinoma, 426 

we found three (all TSGs), six (three OCGs and three TSGs), and five (all OCGs) 427 

driver genes, respectively, for which the interaction type was known (Figs 5B-D). The 428 

majority of the drugs were inhibitors. The two driver genes with the most interactions 429 

were PDGFRB in basal-like breast cancer and MET in thyroid cancer. We predicted 430 

PDGFRB as a TSG in basal-like breast cancer which is annotated to interact with 16 431 

inhibitors and three drugs with antagonist or inhibitor interactions. These drugs exert 432 

inhibitory mechanisms for targeting an OCG role of PDGFRB. As the gene-drug target 433 

interactions are not specific for a certain cancer type, these results might suggest a 434 

potential dual role of PDGFRB. On the other hand, MET predicted as an OCG in thy-435 

roid cancer interacted with 19 inhibitors, in accordance with the OCG role of MET. 436 

Moreover, in lung adenocarcinoma, the predicted OCG RRM2, which we also identi-437 

fied as a prognostic gene above, interacted with one inhibitor, gemcitabine. Previously, 438 

one study investigated the mRNA expression of RRM1 and RRM2 in tumors from pa-439 

tients with lung adenocarcinoma treated with docetaxel/gemcitabine. They found low 440 

RRM2 mRNA expression to be associated with a higher response rate to treatment 441 

compared to patients with high expression [48]. Similarly, in thyroid carcinoma, we 442 

observed an interaction between ERBB3, a member of the epidermal growth factor 443 
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receptor (EGFR) family of receptor tyrosine kinases, and four inhibitors (sapitinib, pozi-444 

otinib, gefitinib, and dacomitinib). These inhibitors, all classified as tyrosine kinase in-445 

hibitors [49–56], align with ERBB3’s predicted role as an OCG. Another example is 446 

the interaction between EpCAM and solitomab in lung adenocarcinoma. EpCAM is an 447 

epithelial cell adhesion molecule which plays a role in cell proliferation, migration, and 448 

signaling and is frequently overexpressed on the cell surface of several human carci-449 

nomas [57–59]. For instance, EpCAM was recently found to be upregulated in primary 450 

lung cancer compared to normal lung tissues caused by gene amplification and pro-451 

moter hypomethylation [60]. Solitomab is a bispecific antibody binding to EpCAM and 452 

CD3 [57] which previously has shown preliminary signs of antitumor activity [61].  453 
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 454 
Fig 5. Exploration of predicted driver genes as drug targets. (A) Distribution of driver gene-drug 455 
interactions stratified by cancer type with the number of drug interactions on the x axis and number of 456 
driver genes on the y axis. (B-D) Heatmaps visualizing driver gene-drug interactions in (B) lung adeno-457 
carcinoma, (C) basal-like breast cancer, and (D) thyroid carcinoma. Only those driver gene-drug inter-458 
actions where the interaction type was known are included in the heatmaps. The type of interaction is 459 
shown in different colors. The driver genes are divided into OCGs and TSGs. 460 
 461 
 462 
Integrating the results from DMA and GMA functions of Moonlight2  463 
 464 
Next, we also applied the Moonlight2 DMA functionality [15] to the data used for the 465 

case studies above to show the potential of integrating different mechanistic indicators. 466 
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For basal-like breast cancer, DMA predicted 46 driver genes (10 OCGs and 36 TSGs), 467 

while GMA predicted 33 driver genes (32 OCGs and 1 TSG) (Figs 6A-C). For lung 468 

adenocarcinoma, DMA predicted 842 driver genes (490 OCGs and 352 TSGs), while 469 

GMA predicted 190 (80 OCGs and 110 TSGs) (Figs 6D-F). Both secondary layers 470 

predicted a larger number of driver genes in lung adenocarcinoma than basal-like 471 

breast cancer (Table 1, Fig 6). This is likely a direct consequence of Moonight’s pri-472 

mary layer, which identified a larger number of oncogenic mediators in lung adenocar-473 

cinoma than basal-like breast cancer. At the same time, DMA predicted a larger num-474 

ber of driver genes for both datasets than GMA, with a larger proportion in lung ade-475 

nocarcinoma than basal-like breast cancer (~4.5 times against ~1.4 times, respec-476 

tively). This observation aligns with previous reports suggesting that lung adenocarci-477 

noma exhibits a high mutation burden [62,63], suggesting that DMA was able to iden-478 

tify a larger number of driver mutations overall. In most cases, we found an overlap 479 

between driver genes identified by DMA and GMA, which suggests multiple mecha-480 

nisms at play. In basal-like breast cancer, 13 driver genes were predicted by both DMA 481 

and GMA, which were all TSGs (Figs 6A-C). In lung adenocarcinoma, 141 driver genes 482 

(63 OCGs and 78 TSGs) were identified by both methods (Figs 6D-F). In the case of 483 

lung adenocarcinoma, and more so than in basal-like breast cancer, the driver genes 484 

predicted by GMA were in good part also predicted by DMA. 485 

Next, we performed enrichment analysis of the DMA predicted driver genes in basal-486 

like breast cancer and lung adenocarcinoma to understand whether DMA and GMA 487 

can identify distinct or overlapping biological mechanisms. The significantly enriched 488 

terms (adjusted p-value < 0.05) among the DMA predicted driver genes in basal-like 489 

breast cancer were angiogenesis, KRAS signaling up, epithelial mesenchymal transi-490 

tion, and IL-2/STAT5 signaling (Fig 7A) while among the GMA predicted drivers they 491 
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were IL-6/JAK/STAT3 signaling, UV response dn, KRAS signaling up and adipogene-492 

sis (Fig 3A). Thus, results from both GMA and DMA were enriched in the KRAS sig-493 

naling term only. 494 

Both GMA and DMA identified NRP1 as a driver gene involved in KRAS signaling. 495 

NRP1 has been shown to be highly expressed in different cancer types [64] and to-496 

gether with FSTL1 is predicted to be driver for basal-like breast cancer by DMA. These 497 

two genes are involved in angiogenesis, one of the cancer hallmarks [65–67], which 498 

is also prognostic indicators of survival in breast cancer [68,69]. Additionally, for lung 499 

adenocarcinoma, key enriched terms for both DMA and GMA predicted driver genes 500 

included G2-M checkpoint, E2F targets and mTORC1 signaling (Figs 3B, 7B), sug-501 

gesting that the two mechanistic indicators identify at least partially overlapping bio-502 

logical processes. These processes are all important in cancer progression or metas-503 

tasis [70–73].  504 

Finally, we also performed gene enrichment analysis of the driver genes identified by 505 

both DMA and GMA. An enrichment analysis of the 141 overlapping driver genes be-506 

tween GMA and DMA in lung adenocarcinoma revealed E2F targets, G2-M checkpoint 507 

and mTORC1 signaling to again be the most significant (Fig 7C), covering a vast ma-508 

jority of the overlapping genes. A similar enrichment analysis of the 13 overlapping 509 

driver genes between GMA and DMA in basal-like breast cancer revealed no signifi-510 

cantly enriched terms.   511 
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 512 
Fig 6. Comparison of number of mutation- and methylation-driven driver genes. Venn diagram 513 
comparing (A, D) the number of driver genes, (B, E) TSGs, and (C, F) OCGs predicted by the Driver 514 
Mutation Analysis (DMA) and Gene Methylation Analysis (GMA) functions of Moonlight2 for (A-C) basal-515 
like breast cancer and (D-F) lung adenocarcinoma. 516 
 517 

 518 
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Fig 7. Enrichment analysis of predicted mutation-driven driver genes. Enrichment analysis of (A) 519 
mutation-driven driver genes predicted by Driver Mutation Analysis (DMA) in basal-like breast cancer, 520 
(B) mutation-driven driver genes predicted by Driver Mutation Analysis (DMA) in lung adenocarcinoma, 521 
and (C) driver genes predicted by both DMA and GMA in lung adenocarcinoma. The “MSigDB Hallmark 522 
2020” database was used for the enrichment analyses. The top 10 most significantly enriched terms 523 
(adjusted p-value < 0.05) are included. The gene ratio on the x axis is the ratio between the number of 524 
predicted driver genes that intersect with genes annotated in the given hallmark gene set and the total 525 
number of genes annotated in the respective hallmark gene set. The point sizes reflect the number of 526 
driver genes playing a role in the respective hallmark gene set.  527 
 528 
 529 

Availability and future directions 530 
 531 

The data that support the findings of this study are openly available in The Cancer 532 

Genome Atlas. The data used for this analysis are available at the Genomic Data 533 

Commons (https://portal.gdc.cancer.gov). GitHub and OSF repositories associated 534 

with this study are available at https://github.com/ELELAB/Moonlight2R, 535 

https://github.com/ELELAB/Moonlight2_GMA_case_studies, and https://osf.io/j4n8q/. 536 

Example data and vignette are available in the Moonlight2 R package. In the future, 537 

we envision incorporation of additional secondary -omics layers such as chromatin 538 

accessibility and copy number variation. Moreover, we would like to implement prote-539 

omics and single-cell RNA sequencing data as additional input data types. 540 
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Supporting information 791 
 792 
S1 Fig. Integration of Moonlight and EpiMix for prediction of cancer driver 793 
genes. (A) Heatmap showing number of differentially methylated CpGs and classifi-794 
cations of methylation status in the oncogenic mediators in lung adenocarcinoma. The 795 
heatmap was generated using the plotGMA function. (B) Venn diagram comparing 796 
oncogenic mediators predicted from Moonlight’s primary layer with functional genes 797 
predicted from EpiMix in lung adenocarcinoma. The functional genes are genes con-798 
taining differentially methylated CpG pairs whose DNA methylation state is associated 799 
with expression of the gene. Only those functional genes that contained the same 800 
methylation state in all of its associated CpGs were included in this comparison, and 801 
moreover, the dual methylation states were excluded. (C) Heatmap showing the effect 802 
of the predicted driver genes in lung adenocarcinoma on apoptosis and proliferation 803 
of cells. This heatmap was generated using the function plotMoonlightMet. These ef-804 
fects define the basis upon which the oncogenic mediators are predicted from the PRA 805 
step in Moonlight’s primary layer. (D) Heatmap showing number of differentially meth-806 
ylated CpGs and classifications of methylation status in the oncogenic mediators in 807 
thyroid carcinoma. The heatmap was generated using the plotGMA function. (E) Venn 808 
diagram comparing oncogenic mediators predicted from Moonlight’s primary layer with 809 
functional genes predicted from EpiMix in thyroid carcinoma. The functional genes are 810 
genes containing differentially methylated CpG pairs whose DNA methylation state is 811 
associated with expression of the gene. Only those functional genes that contained 812 
the same methylation state in all of its associated CpGs were included in this compar-813 
ison, and moreover, the dual methylation states were excluded. (F) Heatmap showing 814 
the effect of the predicted driver genes in thyroid carcinoma on apoptosis and prolifer-815 
ation of cells. This heatmap was generated using the function plotMoonlightMet. These 816 
effects define the basis upon which the oncogenic mediators are predicted from the 817 
PRA step in Moonlight’s primary layer. 818 
(PDF) 819 
 820 
S2 Fig. Number of driver gene-drug interactions. Number of driver gene-drug in-821 
teractions in (A) basal-like breast cancer, (B) lung adenocarcinoma, and (C) thyroid 822 
carcinoma found by querying DGIdb. The driver genes are stratified into OCGs and 823 
TSGs. The number of drug interactions is shown on the x axis and the driver genes 824 
are shown on the y axis.  825 
(PDF) 826 
 827 
S1 Text. Evidence integration for defining driver genes. 828 
(PDF) 829 
 830 
S2 Text. Methods of case study: Prediction of driver genes with differential 831 
methylation in basal-like breast cancer, lung adenocarcinoma, and thyroid car-832 
cinoma using Moonlight. 833 
(PDF) 834 
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