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Abstract

Cancer involves dynamic changes caused by (epi)genetic alterations such as muta-
tions or abnormal DNA methylation patterns which occur in cancer driver genes. These
driver genes are divided into oncogenes and tumor suppressors depending on their
function and mechanism of action. Discovering driver genes in different cancer
(sub)types is important not only for increasing current understanding of carcinogenesis
but also from prognostic and therapeutic perspectives. We have previously developed
a framework called Moonlight which uses a systems biology multi-omics approach for
prediction of driver genes. Here, we present an important development in Moonlight2
by incorporating a DNA methylation layer which provides epigenetic evidence for de-
regulated expression profiles of driver genes. To this end, we present a novel func-
tionality called Gene Methylation Analysis (GMA) which investigates abnormal DNA
methylation patterns to predict driver genes. This is achieved by integrating the tool
EpiMix which is designed to detect such aberrant DNA methylation patterns in a cohort
of patients and further couples these patterns with gene expression changes. To
showcase GMA, we applied it to three cancer (sub)types (basal-like breast cancer,
lung adenocarcinoma, and thyroid carcinoma) where we discovered 33, 190, and 263
epigenetically driven genes, respectively. A subset of these driver genes had prognos-
tic effects with expression levels significantly affecting survival of the patients. Moreo-
ver, a subset of the driver genes demonstrated therapeutic potential as drug targets.
This study provides a framework for exploring the driving forces behind cancer and
provides novel insights into the landscape of three cancer sub(types) by integrating
gene expression and methylation data. Moonlight2R is available on GitHub

(https://github.com/ELELAB/Moonlight2R) and BioCondcutor (https://bioconduc-

tor.org/packages/release/bioc/html/Moonlight2R.html). The associated case studies
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presented here are available on GitHub (https://github.com/ELELAB/Moon-

light2 GMA case_studies) and OSF (https://osf.io/j4n8q/).

Author summary

Cancer is a complex disease and a main cause of mortality worldwide. This heteroge-
neous disease arises due to accumulation of changes which occur in driver genes that
drive cancer progression when they are altered. These driver genes are commonly
divided into oncogenes, which promote cancer, and tumor suppressors, which prevent
it. A major goal of cancer research is identifying these driver genes, crucial for increas-
ing our current understanding of cancer biology and for developing novel treatment
approaches. A large number of cancer driver genes have already been identified.
However, the underlying mechanisms for the alterations in these genes is challenging
to predict given their context-dependent behavior and the complexity of cancer. Such
explanations are the focus of this study with the aim of providing evidence of why
certain genes do not function normally in cancer. Within this context, we present new
functionalities to our previously developed cancer driver predictive framework, Moon-
light. These new functionalities integrate multiple data types to predict oncogenes and
tumor suppressors in a systems-biology-oriented manner that is freely available as a

R package for the community.

Introduction

Cancer is a complex and heterogeneous disease and a leading cause of death globally
[1]. This widespread disease is categorized into multiple (sub)types and is character-

ized by stepwise accumulation of (epi)genetic alterations in cancer driver genes [2].
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Driver genes are classified according to their function, i.e. oncogenes (OCGs) acti-
vated by gain-of-function mechanisms and tumor suppressor genes (TSGs) inacti-
vated by loss-of-function mechanisms [3]. Recently, dual role genes also emerged
which show context-dependent behavior and can act as both OCGs and TSGs in dif-
ferent biological contexts [4,5]. Driver genes participate in several cellular pathways
conceptualized in the Hallmarks of Cancer, a collection of functional capabilities that
cells gain during their transition from normal to tumor cells [6—8]. Distinct driver genes
can initiate cancer development in different cancer types and even within subtypes of
cancers originating from the same tissue. Thus, context-specific discovery of driver
genes in light of the cancer hallmarks is essential. Numerous tools have been devel-
oped for prediction of driver genes based on varying computational methods which we
recently reviewed [9]. Prediction of driver genes is essential for increasing current
knowledge of cancer development and for analyzing and interpreting the vast amount
of data in relation to the cancer phenotypes. This knowledge can be a step towards
reversing these phenotypes, discovering novel drug targets, facilitating new treatment
strategies, and designing precision medicine strategies [10—13]. We have contributed
to this field with Moonlight which uses a multi-omics systems biology approach for
prediction of driver genes [14,15].

The accumulated (epi)genetic alterations in driver genes include mutations, copy num-
ber variations, aberrant methylation levels, and histone modifications [3,16]. While ab-
normal methylation patterns are recognized as cancer-causing mechanisms, they
have been described to a lesser extent compared to mutations [9]. Hypomethylation
and hypermethylation, respectively representing loss and gain of methylation com-

pared to normal conditions, have been described as activating and inactivating mech-
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100 anisms of OCGs and TSGs, respectively [17-19]. For instance, Sges et al. found pro-
101 moter hypomethylation and increased expression of putative OCG ELMOS3 to be as-
102  sociated with development of non-small cell lung cancer [20].

103  Here, we present novel functionalities to Moonlight2, expanding upon features pre-
104  sented in our previous work [15]. Specifically, we incorporate methylation evidence to
105 Moonlight2 predicted driver genes as a source of epigenetic explanation of the dereg-
106  ulated expression of these genes. Information about methylation state is provided by
107  EpiMix, an integrative tool for detecting aberrant DNA methylation patterns connected
108  with expression changes in patient cohorts [21]. To showcase this new feature, we
109 apply it to three cancer (sub)types (basal-like breast cancer, lung adenocarcinoma,
110 and thyroid carcinoma) and discover driver genes in the context of cell proliferation
111 and apoptosis, two well-established cancer hallmarks, and explore the prognostic and
112  therapeutic potentials of the predicted driver genes. We apply our new method on data
113  from The Cancer Genome Atlas (TCGA) [22,23].

114

115 Design and implementation

116 Design and implementation of new functionalities in Moon-

117 light

118 Here, we present new functionalities to Moonlight, our framework for driver gene pre-
119  diction [14,15]. In brief, Moonlight requires a set of differentially expressed genes
120 (DEGs) as input and is built up on two layers: a primary layer discovering putative
121  driver genes, termed oncogenic mediators, that uses gene expression changes and
122  information about cancer-related biological processes; and a secondary layer that cou-

123  ples mechanistic evidence to the oncogenic mediators by investigating (epi)genetic
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124  alterations in the oncogenic mediators (namely, mechanistic indicators). From this sec-
125 ondary layer, the critical driver genes are predicted among the oncogenic mediators.
126  We recently presented Moonlight2 with the overall goal of implementing new function-
127  alities to provide standardized and automatized solutions to the analysis of the mech-
128  anistic indicators. At first, we developed a secondary layer for mechanistic indicators
129  based on mutational data [15].

130  In this contribution, we tackled the challenge of adding functionalities to Moonlight2 to
131 cover mechanistic indicators related to methylation changes. Each layer can be ap-
132  plied together or separately depending on the source of -omics data available for the
133  samples under analysis. This new functionality is termed Gene Methylation Analysis
134  (GMA) and should be applied following the Pattern Recognition Analysis (PRA) func-
135  tion which predicts the oncogenic mediators in the primary layer (Fig 1A). The biolog-
136 ical foundation for GMA lies within the observed roles of DNA methylation in both
137  physiological and cancer states. Under healthy conditions, DNA methylation serves
138 an essential regulatory role in cells by regulating expression of genes [24]. However,
139  in cancer, DNA methylation processes are altered, where hypo- and hypermethylation
140  can activate and inactivate OCGs and TSGs, respectively, leading to overexpression
141 of OCGs and silencing of TSGs [17-19] (Fig 1B).

142  GMA predicts methylation-driven driver genes by using EpiMix [21]. EpiMix models
143  DNA methylation in patient cohorts and predicts differential methylation associated
144  with gene expression and further allows for DNA methylation analysis of non-coding
145  regulatory regions [21], therefore being perfectly suitable to integrate with Moonlight’s
146  primary layer. Moreover, EpiMix is available as a R BioConductor package, which al-
147  lows for easy integration with Moonlight. A key result of EpiMix is a table which in-

148  cludes functional CpG-gene pairs containing differentially methylated CpG sites whose
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149  DNA methylation state is associated with the expression of the corresponding genes
150 they map to. Moreover, the methylation state (e.g. hypo- or hypermethylated) of each
151  CpG site is reported. This table is integrated with the main output table from Moon-
152  light’s primary layer, specifically the output from PRA, which provides a list of onco-
153  genic mediators and their putative driver role (e.g. putative TSG or OCG) (Fig 1C).
154  This integration step involves the following: for each oncogenic mediator, the number
155  of associated CpG sites is summarized. EpiMix’s predictions of methylation state and
156  Moonlight’s predictions of driver gene role are then compared and used to assess
157  whether the gene’s methylation status supports the putative role (OCG or TSG) of the
158  oncogenic mediator. These comparisons are subsequently used to define the driver
159  genes (Fig 1D). Those oncogenic mediators with correspondence between methyla-
160 tion state and putative driver role from EpiMix and Moonlight’s primary layer are re-
161 tained as the final set of driver genes. See S1 Text for a detailed description of this
162  comparison.

163  As input, GMA requires i) a gene expression matrix with genes in rows and tumor and
164  normal samples in columns, ii) a methylation matrix with CpG sites in rows and tumor
165 and normal samples in columns which should be the same samples as in the expres-
166  sion data, iii) output of PRA from Moonlight’s primary layer, i.e. the predicted onco-
167  genic mediators and their putative driver role, and finally, iv) output of a differential
168  expression analysis (DEA) which includes information about the DEGs. In return, GMA
169  outputs the following: i) a list of predicted driver genes categorized into TSGs and
170  OCGs, ii) a summary of the oncogenic mediators which includes the number of asso-
171  ciated CpG sites and evidence label, iii) a summary of various annotations found to all
172  DEGs input to Moonlight on the gene and methylation level, and iv) raw EpiMix results

173  corresponding to applying EpiMix on the input data independent of the GMA function.
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174  We have also created three functions for visualizing genes and methylation states:
175  plotGMA which visualizes the number of differentially methylated hypo-, hyper- or
176  dual-methylated CpG sites, plotMoonlightMet which visualizes the effect of genes on
177  biological processes estimated in Moonlight’s primary layer, and plotMetExp which
178 calls a visualization function from EpiMix, EpiMix_PlotModel, to display gene expres-

179  sion and methylation levels of a specific gene and CpG site [21].

180
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182 Fig 1. Overview of the Moonlight framework with new methylation functionality. (A) Moonlight
183 consists of a primary layer requiring differentially expressed genes and gene expression data as input.
184 The primary layer predicts oncogenic mediators through a series of functions called functional enrich-
185  ment analysis (FEA), gene regulatory network analysis (GRN), upstream regulator analysis (URA), and
186  pattern recognition analysis (PRA). Moonlight's secondary mutation layer requires mutation data as
187 input and is carried out via the driver mutation analysis (DMA) function and similarly, Moonlight’s sec-
188  ondary methylation layer implemented in the gene methylation analysis (GMA) function requires meth-
189  ylation data as input. The secondary layer results in the final prediction of driver genes. (B) DNA meth-
190 ylation is a mechanism occurring under physiological conditions in cells which functions to regulate
191 gene expression. However, in cancer, the DNA methylation process is altered. A loss of methylation
192 called hypomethylation can occur which can lead to increased expression of a gene and thus an in-
193 creased amount of the resulting protein. In contrast, gain of methylation called hypermethylation can
194 also occur which can silence gene expression and lead to decreased protein expression. These two
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195 mechanisms can finally lead to cancer. Hypo- and hypermethylation can activate and inactivate onco-
196  genes and tumor suppressors, respectively, the biological principle that GMA is built on. (C) The outputs
197  of EpiMix and Moonlight are integrated to predict driver genes. EpiMix outputs a table of CpG-gene
198 pairs containing differentially methylated CpG sites whose DNA methylation state is associated with
199  gene expression. Moonlight outputs a list of oncogenic mediators and their putative driver role as tumor
200  suppressors or oncogenes. (D) Driver genes are defined in GMA by comparing EpiMix’s predictions of
201 methylation state and Moonlight’s predictions of driver role in “evidence” categories. Those oncogenic
202 mediators labeled with an “agreement” evidence are retained as the final set of predicted driver genes.

203
204

205 Application of new functionality to three cancer (sub)types

206
207  Following implementation of the new functionality, GMA, in Moonlight2, we conducted

208 a case study applying GMA to basal-like breast cancer, lung adenocarcinoma, and
209 thyroid carcinoma data from TCGA to discover methylation-driven driver genes. More-
210 over, we compared these predicted drivers with mutation-driven drivers by applying
211 our previously developed secondary mutational layer called Driver Mutation Analysis
212  (DMA) [15]. Detailed methods behind this case study are included in S2 Text.

213

214 Results

215 Case study: Prediction of driver genes with differential
216 methylation in three different cancer types using Moon-

217 light2

218 To showcase the new functionality in Moonlight2 and predict driver genes driven by
219  methylation changes, we applied Moonlight2 on three cancer (sub)types: basal-like
220 breast cancer, lung adenocarcinoma, and thyroid carcinoma. First, we performed DEA
221  between each of these cancer tissues and corresponding normal samples as this is
222 the input to Moonlight’s primary layer (Table 1). Following DEA, Moonlight’s primary

223 layer predicted 159, 1228, and 1598 oncogenic mediators in these three cancer
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224  (sub)types, respectively (Table 1). Additionally, EpiMix alone identified 9483, 10018,
225 and 6142 functional gene-CpG pairs in these three cancer (sub)types, respectively.
226  These functional gene-CpG pairs represent differentially methylated CpG sites whose
227 DNA methylation state is associated with the expression of the corresponding genes
228 they map to. The number of hits discovered individually from EpiMix and Moonlight's
229 primary layer indicate a substantial volume of significant associations. Consequently,
230 integrating the results from EpiMix with the oncogenic mediators identified in Moon-
231 light's primary layer, as implemented in GMA presented here, help to narrow down the
232  most critical findings and yield the benefits of both approaches. From GMA, we found
233 that those oncogenic mediators in basal-like breast cancer that are associated with
234  differentially methylated CpGs include 38 hypomethylated CpGs, 165 hypermethyl-
235 ated CpGs, and 22 methylated CpGs with a dual status, meaning the CpG site was
236  found hypomethylated in cancer tissues from some patients, while hypermethylated in
237 other patients. Similarly, oncogenic mediators in lung adenocarcinoma that are asso-
238 ciated with differentially methylated CpGs include in total 218 hypomethylated CpGs,
239 625 hypermethylated CpGs, and 48 dual-methylated CpGs. Finally, oncogenic medi-
240 ators in thyroid carcinoma associated with differentially methylated CpGs contain in
241 total 945 hypomethylated CpGs, 305 hypermethylated CpGs, and 230 dual-methyl-
242  ated CpGs (Fig 2A).

243  Across all three cancer (sub)types, the number of differentially methylated CpG sites
244  mapped to the oncogenic mediators ranges between 0 and 28. The classifications of
245 methylation status in the oncogenic mediators in basal-like breast cancer are shown
246 in Fig 2B, generated with the plotGMA function. Next, we compared Moonlight’s onco-
247  genic mediators with EpiMix’ functional genes. For this, we included only those func-

248 tional genes that contained the same methylation state in all of its associated CpGs

10
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249 and moreover, the dual states were excluded. In basal-like breast cancer, this com-
250 parison revealed 109 oncogenic mediators not associated with differentially methyl-
251 ated CpGs, 2754 functional genes not predicted as oncogenic mediators, 17 onco-
252  genic mediators with a “conflicting” evidence label, and 33 oncogenic mediators with
253 an “agreement” evidence label (Fig 2C). Consequently, these 33 oncogenic mediators
254  are retained as the final set of driver genes divided into 32 TSGs and 1 OCG (Table
255 1). Next, we visualized the effect of these predicted driver genes in basal-like breast
256  cancer on two well-known cancer hallmarks, apoptosis and proliferation of cells, using
257 the function plotMoonlightMet. These effects define the basis upon which the onco-
258  genic mediators are predicted from the PRA step in Moonlight’s primary layer, demon-
259  strating that the predicted OCGs have a positive effect on proliferation of cells and a
260 negative effect on apoptosis and vice versa for the predicted TSGs (Fig 2D). Similar
261  overviews for lung adenocarcinoma and thyroid carcinoma are shown in S1 Fig, which
262 resulted in a final prediction of 190 driver genes divided into 110 TSGs and 80 OCGs
263 inlung adenocarcinoma and 263 driver genes categorized into 5 TSGs and 258 OCGs
264 in thyroid carcinoma (Table 1). We did not discover any dual role genes across the
265 three cancer (sub)types, i.e. genes predicted as OCGs in one of the three cancer
266  (sub)types and as TSGs in another cancer (sub)type and vice versa.

267

Table 1. Number of predicted DEGs, oncogenic mediators, and driver genes in three
cancer (sub)types: basal-like breast cancer, lung adenocarcinoma, and thyroid car-
cinoma. The oncogenic mediators and driver genes predicted by Moonlight’s primary and
secondary methylation layer, respectively, are divided into (putative) TSGs and OCGs.

Cancer (sub)type DEGs Oncogenic media- | Driver genes
tors [putative [TSGs/OCGs]
TSGs/putative
OCGs]

Basal-like breast 4292 159 [125/34] 33 [32/1]

cancer

11
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Lung adenocarci- | 4468 1228 [521/707] 190 [110/80]
noma
Thyroid carcinoma | 2972 1598 [118/1480] 263 [5/258]

Abbreviations: DEGs, differentially expressed genes; OCGs, oncogenes; TSGs, tumor
suppressor genes.

268
269 We then compared the predicted driver genes with the predicted oncogenic mediators

270 in each cancer (sub)type. We quantified these comparisons in terms of overlaps with
271 genes reported in the COSMIC Cancer Gene Census (CGC) [25]. Specifically, we
272  computed the precision as (TP/(TP+FP))*100 and sensitivity as (TP/(TP+FN))*100.
273  We defined the true positives (TP) as the overlap between the gene set (either the
274  driver genes or the oncogenic mediators) and the CGC, whereas the false positives
275 (FP) are those genes found in the gene set but are not included in CGC. In contrast,
276 the false negatives (FN) comprise those genes reported in CGC but are not predicted
277 in our gene set. For all three cancer (sub)types, we found that GMA had a greater
278  precision and lower sensitivity compared to using only Moonlight’s primary layer (Fig
279  2E). A higher precision of GMA is desirable as it indicates that the predicted driver
280 gene sets have a higher fraction of genes from the CGC compared to the oncogenic
281 mediator sets. On the other hand, the higher sensitivity of using only Moonlight’s pri-
282  mary layer compared to also using GMA might be attributed to the larger numbers of
283  oncogenic mediators. A larger number of oncogenic mediators results in a larger over-
284 lap between the CGC and the oncogenic mediators, thereby lowering the number of
285 FNs and increasing the sensitivity. In this case, prioritizing higher precision over sen-
286  sitivity is preferable since our aim is to find the most crucial driver genes among the
287  oncogenic mediators. Thus, a higher precision indicates a greater proportion of TPs,
288 corresponding with our objective. Next, we also evaluated the significance of associa-

289 tion between the gene sets and the CGC using a Fisher’s exact test (Table 2). We only

12
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290 found the oncogenic mediator and driver gene sets from basal-like breast cancer to
291  have a significant association with genes in the CGC (p-value = 0.000392 for the on-
292  cogenic mediators predicted using Moonlight’s primary layer and p-value = 0.00228
293 for the driver genes predicted using GMA). However, in all three cancer (sub)types,
294  we found the driver genes to have a higher odds ratio than the oncogenic mediators,
295 demonstrating a greater association between the driver gene sets and the CGC com-

296 pared to the oncogenic mediators (Table 2).

297
298
Table 2. Significance of association between Moonlight’s gene sets and genes from
the Cancer Gene Census (CGC) evaluated using Fisher’s exact test in three cancer
(sub)types: basal-like breast cancer, lung adenocarcinoma, and thyroid carcinoma.
The gene sets from Moonlight were found using Moonlight’s primary layer and Moonlight’s
secondary layer through the Gene Methylation Analysis (GMA) functionality. p-values and
odds ratios from Fisher’'s exact test are included.
Cancer (sub)type Method p-value Odds ratio
Basal-like breast Moonlight’s primary | 0.000392* 2.77
cancer layer
GMA 0.00228* 5.09
Lung adenocarci- Moonlight’s primary | 0.0764 1.28
noma layer
GMA 0.272 1.40
Thyroid carcinoma | Moonlight’s primary | 0.472 0.895
layer
GMA 0.215 1.39
*p-value < 0.05.
Abbreviations: CGC, Cancer Gene Census; GMA, Gene Methylation Analysis.
299
300
301 While these results together demonstrate the added value of GMA, it is worth high-
302 lighting certain limitations. Notably, the driver genes reported in CGC are mainly based
303 on mutation evidence. In this study, we have used abnormal DNA methylation levels

13


https://doi.org/10.1101/2024.03.14.584946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584946; this version posted October 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

304 as evidence for deregulated expression of the driver genes. Hence, these methylation
305 patterns may not be fully captured in the CGC, challenging our comparison with the
306 CGC. However, to date, no golden standard of cancer drivers exists, and the CGC
307 stands as the most robust and comprehensive resource available. Thus, it serves as
308 the main reference point that the majority of studies use to evaluate their predicted
309 driver genes and method [26-37]. To our knowledge, a similar well-curated resource
310 of cancer driver genes driven by methylation changes does not exist. Moreover, per-
311 forming cancer type-specific comparisons would be more desirable. While the CGC
312  reports which cancer types the driver genes are associated with, these annotations
313 are limited in scope. Therefore, while ideal, performing such cancer type-specific com-
314  parisons do not contain enough power. Finally, the quantitative statistical measures
315 are not taking into account that some of our predicted driver genes may be novel.
316  Consequently, some FPs may in fact be TPs but are not included in CGC, and some
317  FNs may not necessarily be FNs; rather, they may not represent drivers in the specific
318 cancer (sub)type.

319

14


https://doi.org/10.1101/2024.03.14.584946
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.14.584946; this version posted October 21, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(A) (B)

o Number of differentially methylated CpGs in oncogenic mediators ~ T—— 'Oncogenic mediator
o ST TN I I N T I VI (oG 2 F

kS [l Basal 945

) L Number of dual
5 750{ Il Lung g methylated CpGs
£ Thyroid 625 =

% 500 S Number of hyper-
z s methylated CpGs
£ 305 z

£ 250 230 165 218 k] Number of hypo-
d = methylated CpGs
= 22 48 38

8,0 No methylated

E

z

CpGs

Dual methylation =~ Hypermethylation ~Hypomethylation CpGs

CpG count Oncoéenic log2FC
10

CHC
[ ] 0
(©) (D) S &
log2FC
Moonlight's EpiMix 150 _ . Total number of methylated CpGs
primary 17 0 Oncogenic mediator
layer @ Moonlight gene
§ Apoptosis Z-;core
109 33 2754 = 0
5 i
GMA 5 %
(2]
% Proliferation IOEZFC
o of cells 0
-5
PEo8PERcs88338¢ ENRER 2 -10
Bt g2 b 25288 Oncogenic mediator
: g EREE mOCG
TSG
(E) Precision and sensitivity [%] of methods stratified by cancer type
Basal-like breast cancer Lung adenocarcinoma Thyroid carcinoma
158
S
£ 103 Precision
£ i
3 - Sensitivity
55
J = N o [
320 GMA Moonlight's-primary layer GMA Moonlight‘s-primary layer GMA Moonlight's-primary layer

321 Fig 2. Integration of Moonlight and EpiMix for prediction of cancer driver genes. (A) Number of
322 differentially methylated CpGs as found from EpiMix in oncogenic mediators predicted from Moonlight's
323 primary layer. The differentially methylated CpGs are categorized into methylation status and stratified
324 by cancer (sub)type. (B) Heatmap showing number of differentially methylated CpGs and classifications
325  of methylation status in the oncogenic mediators in basal-like breast cancer. The heatmap was gener-
326  ated using the plotGMA function. (C) Venn diagram comparing oncogenic mediators predicted from
327  Moonlight's primary layer with functional genes predicted from EpiMix in basal-like breast cancer. The
328  functional genes are genes containing differentially methylated CpG pairs whose DNA methylation state
329 s associated with expression of the gene. Only those functional genes that contained the same meth-
330 ylation state in all of its associated CpGs were included in this comparison, and moreover, the dual
331 methylation states were excluded. (D) Heatmap showing the effect of the predicted driver genes in
332 basal-like breast cancer on apoptosis and proliferation of cells. This heatmap was generated using the
333 function plotMoonlightMet. These effects define the basis upon which the oncogenic mediators are pre-
334  dicted from the PRA step in Moonlight's primary layer. (E) Comparison between the predicted driver
335  genes with the predicted oncogenic mediators in all three cancer (sub)types where the driver genes
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336  were predicted with the new functionality GMA in Moonlight's secondary layer, and the oncogenic me-
337 diators were predicted with Moonlight's primary layer. The comparisons were quantified in terms of
338  overlaps with genes reported in the COSMIC Cancer Gene Census (CGC) by computing the precision
339 and sensitivity. The precision was calculated as (TP/(TP+FP))*100 and sensitivity as
340 (TP/(TP+FN))*100. The true positives (TP) are the overlap between the gene set (either the driver genes
341 or the oncogenic mediators) and the CGC. The false positives (FP) are those genes found in the gene
342  set but are not included in CGC. The false negatives (FN) comprise those genes reported in CGC but
343  are not predicted in our gene set.

344
345
346 To investigate biological roles of the predicted driver genes, we performed enrichment

347 analyses (Fig 3). The predicted driver genes are involved in various signaling path-
348 ways such as KRAS signaling in basal-like breast cancer and thyroid carcinoma,
349 mTORCH1 signaling in lung adenocarcinoma, and TNF-alpha signaling via NF-kB and
350 p53 pathway in thyroid carcinoma. Previously, TP53 and TNF signaling have been
351  associated with the onset of cancer among epigenetically modified pathways [38]. Fur-
352 thermore, IL-6/JAK/STAT3 signaling was significantly enriched among the predicted
353 driver genes in basal-like breast cancer (Fig 3). Basal-like breast cancers overexpress
354 Interleukin 6 (IL-6), a pro-inflammatory cytokine, and it has been reported that p53
355 absence triggers an IL-6 dependent epigenetic reprogramming driving breast cancer
356 cells towards a basal-like/stem cell-like gene expression profile [39]. Additionally, epi-
357 thelial-mesenchymal transition (EMT) is a recurring enriched term, observed in both
358 lung adenocarcinoma and thyroid carcinoma. Epigenetic regulation of EMT has previ-
359 ously been described, and DNA methylation and demethylation plays a key role in this

360 regulation [40—43].
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362  Fig 3. Enrichment analyses of predicted driver genes. Enrichment analysis of predicted driver genes
363  in(A) basal-like breast cancer, (B) lung adenocarcinoma, and (C) thyroid carcinoma using the “MSigDB
364  Hallmark 2020” database. The top 10 most significantly enriched terms (adjusted p-value < 0.05) are
365 included. The gene ratio on the x axis is the ratio between the number of predicted driver genes that
366 intersect with genes annotated in the given hallmark gene set and the total number of genes annotated
367 in the respective hallmark gene set. The point sizes reflect the number of driver genes playing a role in
368  the respective hallmark gene set.

369

370

371 Association between expression of predicted driver genes and sur-
372 vival of cancer patients

373  We performed survival analysis to evaluate the prognostic potential of the predicted
374  driver genes. We first used Cox proportional hazards regression and found that the
375  expression level of 20 of the predicted OCGs in lung adenocarcinoma had a significant
376 effect on survival at the multivariate level when accounting for tumor stage, age of
377 patients, and sex of patients. Similarly, expression of two of the predicted OCGs in
378 thyroid carcinoma had a significant effect on survival. Thus, we deemed these 22
379 OCGs as prognostic (Fig 4A). Next, we examined whether high or low expression of
380 these prognostic genes were associated with survival of the patients. For this, we di-
381 vided the patients into high and low expression groups and assessed differences in
382  survival through Kaplan-Meier survival analyses and log-rank tests. These analyses
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383 revealed a significant difference in survival between patients with high and low expres-
384  sion of 18 of the 20 prognostic OCGs in lung adenocarcinoma. The two OCGs that did
385 not show a significant difference were RPL39L and GINSZ2. On the other hand, we did
386 not observe a significant difference in survival between patients with high and low ex-
387 pression of the two predicted OCGs in thyroid carcinoma. These results together indi-
388 cate a greater prognostic potential of OCGs compared to TSGs and additionally, a
389 greater presence of prognostic OCGs in lung adenocarcinoma compared to basal-like
390 breast cancer and thyroid carcinoma. It is, however, worth mentioning that a smaller
391 subset of driver genes was predicted in basal-like breast cancer with only one pre-
392 dicted OCG, indicating a more limited search pool for prognostic OCGs.

393 To highlight a few examples, multivariate Cox regression analysis identified
394 GNPNAT1, RRM2, and SLC2A1 as prognostic OCGs in lung adenocarcinoma with
395 hazard ratios of 1.4, 1.3, and 1.3, respectively. In all three cases, patients with high
396 expression of the OCG had a significantly lower survival probability compared to pa-
397 tients with low expression of these OCGs (Figs 4B-D) (p-values: < 0.0001, 0.0015 and
398 0.00055 for GNPNAT1, RRM2 and SLC2A1, respectively). This aligns with the antici-
399 pated role of OCGs which are typically upregulated in cancer, indicating a worse prog-
400 nosis.

401
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Fig 4. Survival analysis of predicted driver genes. (A) Hazard ratios from multivariate Cox propor-
tional hazards regression of 20 of the predicted OCGs in lung adenocarcinoma and of two of the pre-
dicted OCGs in thyroid carcinoma. (B-D) Kaplan-Meier survival plots of three of the predicted OCGs in
lung adenocarcinoma which were deemed prognostic from multivariate Cox regression analysis: (B)
GNPNAT1, (C) RRM2, and (D) SLC2A1. Patients with expression values above and below the median
expression level of the respective gene were divided into a high and low expression group, respectively.
The p-values represent the significance of difference in survival between the two groups for each gene.

Predicted driver genes have therapeutic potential as drug targets

The potential of cancer driver genes as drug targets have previously been highlighted
[44—-46] and targeted therapies have been developed towards these genes. Thus, we
next investigated the therapeutic potential of the predicted driver genes as drug targets
by querying the Drug-Gene Interaction Database (DGldb) [47] for driver gene-drug

interactions using only cancer-specific data sources. In basal-like breast cancer, we
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419 identified seven TSGs documented to interact with drugs in DGIdb. In lung adenocar-
420 cinoma, both OCGs and TSGs, numbering 12 each, were reported as drug targets.
421  Finally, in thyroid carcinoma, 23 OCGs were reported as interacting with drugs (S2
422  Fig). Across all three cancer (sub)types, the number of driver gene-drug interactions
423 varied between one and 55. Roughly half of all predicted driver genes interacted with
424  one drug while the other half interacted with two or more drugs (Fig 5A).

425 Next, we examined those driver gene-drug interactions for which the interaction type
426  was known. In basal-like breast cancer, lung adenocarcinoma, and thyroid carcinoma,
427 we found three (all TSGs), six (three OCGs and three TSGs), and five (all OCGs)
428  driver genes, respectively, for which the interaction type was known (Figs 5B-D). The
429  majority of the drugs were inhibitors. The two driver genes with the most interactions
430 were PDGFRB in basal-like breast cancer and MET in thyroid cancer. We predicted
431 PDGFRB as a TSG in basal-like breast cancer which is annotated to interact with 16
432  inhibitors and three drugs with antagonist or inhibitor interactions. These drugs exert
433 inhibitory mechanisms for targeting an OCG role of PDGFRB. As the gene-drug target
434 interactions are not specific for a certain cancer type, these results might suggest a
435  potential dual role of PDGFRB. On the other hand, MET predicted as an OCG in thy-
436  roid cancer interacted with 19 inhibitors, in accordance with the OCG role of MET.
437  Moreover, in lung adenocarcinoma, the predicted OCG RRM2, which we also identi-
438 fied as a prognostic gene above, interacted with one inhibitor, gemcitabine. Previously,
439  one study investigated the mRNA expression of RRM1 and RRM2 in tumors from pa-
440 tients with lung adenocarcinoma treated with docetaxel/gemcitabine. They found low
441 RRM2 mRNA expression to be associated with a higher response rate to treatment
442  compared to patients with high expression [48]. Similarly, in thyroid carcinoma, we

443  observed an interaction between ERBB3, a member of the epidermal growth factor
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receptor (EGFR) family of receptor tyrosine kinases, and four inhibitors (sapitinib, pozi-
otinib, gefitinib, and dacomitinib). These inhibitors, all classified as tyrosine kinase in-
hibitors [49-56], align with ERBB3's predicted role as an OCG. Another example is
the interaction between EpCAM and solitomab in lung adenocarcinoma. EpCAM is an
epithelial cell adhesion molecule which plays a role in cell proliferation, migration, and
signaling and is frequently overexpressed on the cell surface of several human carci-
nomas [57-59]. For instance, EpCAM was recently found to be upregulated in primary
lung cancer compared to normal lung tissues caused by gene amplification and pro-
moter hypomethylation [60]. Solitomab is a bispecific antibody binding to EpCAM and

CD3 [57] which previously has shown preliminary signs of antitumor activity [61].
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Fig 5. Exploration of predicted driver genes as drug targets. (A) Distribution of driver gene-drug
interactions stratified by cancer type with the number of drug interactions on the x axis and number of
driver genes on the y axis. (B-D) Heatmaps visualizing driver gene-drug interactions in (B) lung adeno-
carcinoma, (C) basal-like breast cancer, and (D) thyroid carcinoma. Only those driver gene-drug inter-
actions where the interaction type was known are included in the heatmaps. The type of interaction is
shown in different colors. The driver genes are divided into OCGs and TSGs.

Integrating the results from DMA and GMA functions of Moonlight2

Next, we also applied the Moonlight2 DMA functionality [15] to the data used for the

case studies above to show the potential of integrating different mechanistic indicators.
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467  For basal-like breast cancer, DMA predicted 46 driver genes (10 OCGs and 36 TSGs),
468  while GMA predicted 33 driver genes (32 OCGs and 1 TSG) (Figs 6A-C). For lung
469 adenocarcinoma, DMA predicted 842 driver genes (490 OCGs and 352 TSGs), while
470 GMA predicted 190 (80 OCGs and 110 TSGs) (Figs 6D-F). Both secondary layers
471  predicted a larger number of driver genes in lung adenocarcinoma than basal-like
472  breast cancer (Table 1, Fig 6). This is likely a direct consequence of Moonight’s pri-
473  mary layer, which identified a larger number of oncogenic mediators in lung adenocar-
474  cinoma than basal-like breast cancer. At the same time, DMA predicted a larger num-
475  ber of driver genes for both datasets than GMA, with a larger proportion in lung ade-
476 nocarcinoma than basal-like breast cancer (~4.5 times against ~1.4 times, respec-
477  tively). This observation aligns with previous reports suggesting that lung adenocarci-
478 noma exhibits a high mutation burden [62,63], suggesting that DMA was able to iden-
479  tify a larger number of driver mutations overall. In most cases, we found an overlap
480 between driver genes identified by DMA and GMA, which suggests multiple mecha-
481 nisms at play. In basal-like breast cancer, 13 driver genes were predicted by both DMA
482 and GMA, which were all TSGs (Figs 6A-C). In lung adenocarcinoma, 141 driver genes
483 (63 OCGs and 78 TSGs) were identified by both methods (Figs 6D-F). In the case of
484  lung adenocarcinoma, and more so than in basal-like breast cancer, the driver genes
485  predicted by GMA were in good part also predicted by DMA.

486  Next, we performed enrichment analysis of the DMA predicted driver genes in basal-
487 like breast cancer and lung adenocarcinoma to understand whether DMA and GMA
488  can identify distinct or overlapping biological mechanisms. The significantly enriched
489 terms (adjusted p-value < 0.05) among the DMA predicted driver genes in basal-like
490 breast cancer were angiogenesis, KRAS signaling up, epithelial mesenchymal transi-

491  tion, and IL-2/STATS signaling (Fig 7A) while among the GMA predicted drivers they
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492  were IL-6/JAK/STAT3 signaling, UV response dn, KRAS signaling up and adipogene-
493  sis (Fig 3A). Thus, results from both GMA and DMA were enriched in the KRAS sig-
494  naling term only.

495 Both GMA and DMA identified NRP1 as a driver gene involved in KRAS signaling.
496  NRP1 has been shown to be highly expressed in different cancer types [64] and to-
497  gether with FSTL1 is predicted to be driver for basal-like breast cancer by DMA. These
498 two genes are involved in angiogenesis, one of the cancer hallmarks [65-67], which
499 s also prognostic indicators of survival in breast cancer [68,69]. Additionally, for lung
500 adenocarcinoma, key enriched terms for both DMA and GMA predicted driver genes
501 included G2-M checkpoint, E2F targets and mTORC1 signaling (Figs 3B, 7B), sug-
502 gesting that the two mechanistic indicators identify at least partially overlapping bio-
503 logical processes. These processes are all important in cancer progression or metas-
504 tasis [70-73].

505 Finally, we also performed gene enrichment analysis of the driver genes identified by
506 both DMA and GMA. An enrichment analysis of the 141 overlapping driver genes be-
507 tween GMA and DMA in lung adenocarcinoma revealed E2F targets, G2-M checkpoint
508 and mTORC1 signaling to again be the most significant (Fig 7C), covering a vast ma-
509 jority of the overlapping genes. A similar enrichment analysis of the 13 overlapping
510 driver genes between GMA and DMA in basal-like breast cancer revealed no signifi-

511  cantly enriched terms.
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513  Fig 6. Comparison of number of mutation- and methylation-driven driver genes. Venn diagram
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515  Mutation Analysis (DMA) and Gene Methylation Analysis (GMA) functions of Moonlight2 for (A-C) basal-
516 like breast cancer and (D-F) lung adenocarcinoma.
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519  Fig 7. Enrichment analysis of predicted mutation-driven driver genes. Enrichment analysis of (A)
520 mutation-driven driver genes predicted by Driver Mutation Analysis (DMA) in basal-like breast cancer,
521 (B) mutation-driven driver genes predicted by Driver Mutation Analysis (DMA) in lung adenocarcinoma,
522  and (C) driver genes predicted by both DMA and GMA in lung adenocarcinoma. The “MSigDB Hallmark
523  2020” database was used for the enrichment analyses. The top 10 most significantly enriched terms
524  (adjusted p-value < 0.05) are included. The gene ratio on the x axis is the ratio between the number of
525 predicted driver genes that intersect with genes annotated in the given hallmark gene set and the total
526 number of genes annotated in the respective hallmark gene set. The point sizes reflect the number of
527  driver genes playing a role in the respective hallmark gene set.

528

529

530 Availability and future directions
531

532 The data that support the findings of this study are openly available in The Cancer
533 Genome Atlas. The data used for this analysis are available at the Genomic Data

534 Commons (https://portal.gdc.cancer.gov). GitHub and OSF repositories associated

535 ~with this study are available at https:/github.com/ELELAB/Moonlight?R,

536 https://github.com/ELELAB/Moonlight2 GMA case studies, and https://osf.io/j4n8q/.

537 Example data and vignette are available in the Moonlight2 R package. In the future,
538 we envision incorporation of additional secondary -omics layers such as chromatin
539  accessibility and copy number variation. Moreover, we would like to implement prote-
540 omics and single-cell RNA sequencing data as additional input data types.
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791 Supporting information

792

793 S1 Fig. Integration of Moonlight and EpiMix for prediction of cancer driver
794 genes. (A) Heatmap showing number of differentially methylated CpGs and classifi-
795  cations of methylation status in the oncogenic mediators in lung adenocarcinoma. The
796 heatmap was generated using the plotGMA function. (B) Venn diagram comparing
797  oncogenic mediators predicted from Moonlight’s primary layer with functional genes
798  predicted from EpiMix in lung adenocarcinoma. The functional genes are genes con-
799 taining differentially methylated CpG pairs whose DNA methylation state is associated
800 with expression of the gene. Only those functional genes that contained the same
801  methylation state in all of its associated CpGs were included in this comparison, and
802 moreover, the dual methylation states were excluded. (C) Heatmap showing the effect
803 of the predicted driver genes in lung adenocarcinoma on apoptosis and proliferation
804  of cells. This heatmap was generated using the function plotMoonlightMet. These ef-
805 fects define the basis upon which the oncogenic mediators are predicted from the PRA
806 step in Moonlight’s primary layer. (D) Heatmap showing number of differentially meth-
807 ylated CpGs and classifications of methylation status in the oncogenic mediators in
808 thyroid carcinoma. The heatmap was generated using the plotGMA function. (E) Venn
809 diagram comparing oncogenic mediators predicted from Moonlight’s primary layer with
810 functional genes predicted from EpiMix in thyroid carcinoma. The functional genes are
811  genes containing differentially methylated CpG pairs whose DNA methylation state is
812  associated with expression of the gene. Only those functional genes that contained
813 the same methylation state in all of its associated CpGs were included in this compar-
814  ison, and moreover, the dual methylation states were excluded. (F) Heatmap showing
815 the effect of the predicted driver genes in thyroid carcinoma on apoptosis and prolifer-
816  ation of cells. This heatmap was generated using the function plotMoonlightMet. These
817 effects define the basis upon which the oncogenic mediators are predicted from the
818 PRA step in Moonlight’s primary layer.

819 (PDF)

820

821 S2 Fig. Number of driver gene-drug interactions. Number of driver gene-drug in-
822  teractions in (A) basal-like breast cancer, (B) lung adenocarcinoma, and (C) thyroid
823 carcinoma found by querying DGldb. The driver genes are stratified into OCGs and
824 TSGs. The number of drug interactions is shown on the x axis and the driver genes
825 are shown on the y axis.
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828 S1 Text. Evidence integration for defining driver genes.
829 (PDF)

830

831 S2 Text. Methods of case study: Prediction of driver genes with differential
832 methylation in basal-like breast cancer, lung adenocarcinoma, and thyroid car-
833 cinoma using Moonlight.

834 (PDF)
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