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Abstract 22 

Multifunctional redundancy, the extent of loss in multiple ecosystem functions with decreasing biodiversity, stands 23 

as a crucial index for evaluating ecosystem resilience to environmental changes. We aimed to refine a 24 

marker-gene-based methodology for quantifying multifunctional redundancy in prokaryotic communities. Using 25 

PICRUSt2, we predicted KEGG orthologs (KOs) for each Amplicon Sequence Variant (ASV), assessed 26 

community-wide KO richness, and validated predictions against experimentally quantified phenotypic 27 

multifunctionality. Additionally, we introduced a refined regression on ASV richness–KO richness curves, 28 

providing a reliable estimate of the power-law exponent within computational time constraints, serving as the 29 

multifunctional redundancy index. Incorporating various non-random extinction scenarios alongside a random one 30 

allowed us to quantify estimate variations between scenarios, providing conservative estimates of multifunctional 31 

redundancy. Applied to Lake Biwa and four of its inlet rivers, the refined methodology unveiled spatio-temporal 32 

variations in multifunctional redundancy. Our analysis demonstrated lower redundancy in Lake Biwa compared to 33 

rivers, aiding in prioritizing conservation targets and inferring distinct community assembly processes. Future 34 

directions include a deeper exploration of KO composition information for detailed multifunctionality 35 

quantification and the refinement of extinction scenarios. This study demonstrates the promising integration of 36 

bioinformatic functional prediction and modeling biodiversity loss, offering a valuable tool for effective ecosystem 37 

management. 38 
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 39 

Introduction 40 

Microbial diversity is pivotal for sustaining ecosystem functions across both aquatic and terrestrial environments, 41 

spanning from local to global scales (1,2). However, this critical role faces challenges posed by the risks of local 42 

extinction of microbial species (3,4) and spatial homogenization of microbial community composition (5,6). 43 

 44 

In assessing the resilience of ecosystems to environmental changes and disturbances, the extent of 45 

biodiversity loss and its subsequent impact on ecosystem functions are crucial factors (7–10). Functional 46 

redundancy, representing the degree of overlap in ecosystem functions among taxonomic units within a community, 47 

is a critical concept in addressing the latter concern. Ecosystems characterized by lower functional redundancy are 48 

more vulnerable to disturbances, highlighting the necessity for prioritized conservation efforts. 49 

 50 

Functional redundancy is originally defined as the degree of maintaining a single ecosystem function in 51 

the face of taxonomic richness loss (11–14). Various methods for quantifying functional redundancy have emerged, 52 

largely rooted in the multifunctionality concept (9,15), which addresses the simultaneous assessment of multiple 53 

ecosystem functions. In addition to simple indices utilizing taxonomic and functional diversity measures, as 54 

comprehensively reviewed by Galland et al. 2020, the relationship between taxonomic richness loss and functional 55 

richness loss is depicted through simulations of random or non-random taxonomic extinctions (17,18). The shape 56 

parameter of the resulting curve, such as the area under the curve, is subsequently employed as an index of 57 

functional redundancy (18,19). While some studies focus on the correlation between taxonomic composition 58 

dissimilarity and functional dissimilarity to infer the presence and strength of functional redundancy (20), it should 59 

be noted that this discussion primarily revolves around the linkage between taxonomic composition and functional 60 

composition. This approach is not explicitly designed to predict the loss of multiple functions due to taxonomic 61 

richness loss. 62 

 63 

Extending the shape parameter approach to microbial communities, the previous study (21) incorporated 64 

the entirety of the functional gene pools within a community as a proxy for genome-based multifunctionality. It 65 

introduced the exponent coefficient from power-law fitting on the curve of taxonomic richness and functional gene 66 

richness as an index of genomic multifunctional redundancy. In the study, Miki, Yokokawa and Matsui (2014) 67 

employed in-silico simulations with habitat-specific pseudo-communities sourced from the Microbial Genomic 68 

Database (MBGD, (22)). The study revealed that functional redundancy was considerably lower than indicated by 69 

earlier empirical studies (23). This low functional redundancy has since received support from multiple studies 70 

using different approaches (2,24,25). However, it is worth noting that quantitative comparison of multifunctional 71 

redundancy across various methods poses challenges (26), underscoring potential weaknesses in asserting 72 

unanimous support for the observed lowness in functional redundancy. 73 

 74 

Nonetheless, it is crucial to highlight the limitations of the methodology introduced by (21), which we 75 

aim to address and improve upon in this study. First of all, this earlier work presents some issues because it 76 
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concentrated on creating pseudo-communities from the Microbial Genomic Database (MBGD(22)) with a small 77 

number of naturally sampled communities. Functional overlap may be underestimated as a result of the deliberate 78 

selection of just one strain from each genus to build the pseudo-communities in order to avoid introducing 79 

phylogenetic bias. This is particularly significant when compared to natural communities that permit the 80 

cooccurrence of closely related taxonomic units, potentially biasing the estimation towards lower functional 81 

redundancy. Moreover, when applying the proposed method to marker-gene compositions from natural samples, 82 

bioinformatic tool such as PICRUSt or tax4fun (27,28) was not used to connect marker-gene information to whole 83 

genome prediction (21). Instead, the phylogenetically closest strain with whole genome information registered in 84 

the MBGD database was manually selected, which could introduce biases. Another limitation arises from the 85 

consideration of only random extinction, which might underestimate the impact compared to realistic non-random 86 

sequences of extinction. Lastly, while Ruhl et al. 2022 employed a similar power-law fitting approach with direct 87 

measurements of functional genes through both amplicon sequences and metagenomics, it revealed limitations in 88 

fitting the power-law curve. This cautions against generalizing findings based on power-law fitting in the context of 89 

assessing functional redundancy. 90 

 91 

Due to the persisting cost-ineffectiveness of metagenomic sequencings and the complexity of taxonomic 92 

assignment algorism to metagenomes (30), methods that rely only on marker-gene (16S rRNA gene) data are still 93 

important for assessing multifunctional redundancy. In light of this, our study aimed to improve the methodology 94 

originally proposed by Miki, Yokokawa and Matsui (2014). Subsequently, we applied this refined, and 95 

cost-efficient method to analyze natural samples, with the objective of quantifying variations in functional 96 

redundancy across different locations within a single watershed, encompassing both spatial and temporal scales. 97 

 98 

In our study, we focused on two key aspects to enhance the existing methodology. Firstly, for the 99 

improvement of functional prediction from marker-gene composition, we utilized PICRUSt2 (31). This approach 100 

was indirectly validated through a comparison with metabolic profiling, specifically conducted via the Ecoplate 101 

incubation experiment (32). Secondly, our study incorporated both random and non-random extinction scenarios to 102 

comprehensively estimate the range of functional redundancy. This consideration allowed us to evaluate the impact 103 

of varying extinction patterns on the estimation of functional redundancy. Furthermore, we critically assessed the 104 

fitting of power-law regression and improved the regression method to ensure robustness and reliability in our 105 

analyses. 106 

 107 

We then applied the refined methodology to various sites within a single watershed, including Lake Biwa 108 

and its four inlet rivers in Japan. Multiple samplings were conducted at each site, enabling us to investigate 109 

variations in functional redundancy across both spatial and temporal dimensions. Additionally, by pooling all 110 

samples and simulating species extinctions as a single metacommunity (33–36), we aimed to elucidate potential 111 

mechanisms contributing to the variations in multifunctional redundancy among these five sites in the single 112 

watershed. These steps are pivotal in contributing to the ongoing debate about redundancy levels, as discussed in 113 

earlier studies (2,14,37–39). Moreover, it plays a crucial role in outlining a strategy for assessing biodiversity 114 
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impact (40) and determining conservation priorities based on functional redundancy (19). 115 

 116 

Materials and methods 117 

Sample collection 118 

We collected water samples from the surface at the Ie-1 station in the north basin of Lake Biwa (35°12'58"N, 119 

135°59'55"E) on July 3, July 30, September 10, and October 17 2019, and four of the inlet rivers of Lake Biwa: 120 

Yasu River (35°02'35.5"N, 136°01'10.0"E), Hino River (35°06'09.1"N, 136°04'37.4"E), Echi River (35°11'44.0"N 121 

136°10'46.5"E), and Ane River (35°24'45.1"N, 136°16'59.0"E) on July 9, August 7, September 17, and October 15 122 

2019, respectively. We filtered 250 mL (for the river samples on July 9) or 500 mL (for all the other samples) with 123 

ϕ 0.22 μm SterivexTM cartridges (SVGV010RS, Merck Millipore Darmstadt, Germany) filled with 1 g of zirconia 124 

beads implemented (ϕ 0.5 mm, YTZ-0.5; AsOne, see Ushio 2019) for the amplicon sequencing. The variations in 125 

filtered water volumes were contingent on water sample conditions, primarily influenced by fine particles that 126 

tended to clog the filter pores. Following filtration, each filter cartridge received the addition of 1 mL of RNAlater 127 

solution. Additionally, 50 mL of unfiltered water was collected specifically for bacterial direct count and the 128 

ecosystem functioning experiment. The samples designated for both amplicon sequencing and ecosystem 129 

functioning experiments were promptly transported back to the laboratory. Throughout the transportation period (up 130 

to 6 hours), the samples were maintained at 4°C. The filter cartridges were subsequently preserved in a freezer at 131 

–20°C until DNA extraction and further processing, while the unfiltered samples were immediately utilized for 132 

ecosystem functioning experiments. 133 

 134 

Bacterial direct count 135 

Bacteria were enumerated directly under an epifluorescence microscope using the SYBR Green I staining method 136 

by Honjo et al. (2007) with some modifications. Briefly, 1 mL of the water sample was mixed with 10 µl of 137 

200-fold diluted SYBR Green I solution for bacterial staining. After staining for 10 minutes, the bacteria in the 138 

water sample were trapped onto a 0.2 µm pore-size polycarbonate membrane filter (Advantec, Japan) and then 139 

mounted on glass slides with a drop of immersion oil (Olympus, Japan). We randomly selected ten fields per filter, 140 

and in total, more than 300 bacteria were counted using an Olympus BX51 epifluorescence microscope equipped 141 

with an oil-immersion objective (UPlanFL 100×/1.30) lens at 100x magnification under blue excitation.  142 

 143 

Ecosystem functioning experiment 144 

In this study, we measured the capabilities of processing 31 organic carbon substrates as the index of 145 

multifunctionality using the Ecoplate (Biolog, Hayward, CA, USA) (21,32). The Ecoplate is a phenotypic 146 

microarray containing triplicate wells for each single carbon substrate and three control wells with no substrate. 147 

Each well also contained tetrazolium violet dye, which turned purple when the substrate within the well was 148 

catabolized. To conduct this experiment, we inoculated 100 μl of sample water into each well of an Ecoplate and 149 

conducted the incubation of all the Ecoplates in a single cooling incubator with 20°C (As One). We incubated the 150 

Ecoplates for 14 days to ensure that the color development reached saturation. Color development was measured 151 

with an optical density (OD) microplate reader (iMark, Bio-rad) set at 595 nm every day from the 0th day to the 152 
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14th day. 153 

To evaluate ecosystem functioning, the cumulative color development from 1st day to the 14th for each 154 

well of the Ecoplate was calculated for assessing the integration of the color density development curve. The 155 

resulting integrated value was normalized by dividing it by the integration period (32). Furthermore, to standardize 156 

the background turbidity and color development in relation to in situ dissolved organic carbon (DOC), the 157 

integrated value of the control well was subtracted from each integrated value of the Ecoplate. After averaging the 158 

values among triplicate wells to minimize experimental error, values for 31 different functions were obtained, 159 

which were then be used as our EF indices. 160 

To estimate the multifunctionality based on 31 EFs derived from the Ecoplate as a proxy of phenotypic 161 

ecosystem multifunctionality (MFP), threshold method (Zavaleta et al. 2010) was applied as  162 

���� ��1� ����,� 	 threshold�
��

���

 

where EFi,j represents the value for ecosystem function i in a given community of the jth observation. The threshold 163 

value corresponds to the 5% of the maximum value among 20 samples (including 7 samples that were excluded for 164 

functional gene prediction processes) for each function (Zavaleta et al. 2010). 165 

 166 

DNA extraction, PCR amplification and sequencing 167 

We employed the DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany) for DNA extraction from filter 168 

cartridges, following the protocols outlined by Miya et al. (2016) and Ushio (2019). Subsequently, the extracted 169 

DNA served as a template for the polymerase chain reaction (PCR) targeting the V4 region (~250 bp) of the 16S 170 

rRNA gene, utilizing prokaryotic universal primers (515F by Parada, Needham and Fuhrman 2016 and 806R by 171 

(45). To ensure enhanced reproducibility and consistent outcomes, we implemented a two-step PCR approach (46). 172 

During both the extraction and PCR processes, we included an extraction negative control and a PCR negative 173 

control to monitor potential contamination. Sequencing of the PCR amplicons was conducted on the Illumina 174 

Miseq platform, generating 2×300 bp paired-end reads. Additional details on the experimental procedure can be 175 

found in the Supplementary Data (Supplementary Methods). The raw sequence data have been deposited in the 176 

NCBI Sequence Read Archive under the accession number PRJNA1080231. 177 

 178 

Sequence data processing 179 

All pipelines used for processing sequence reads and generating amplicon compositions followed Ushio 2019. In 180 

brief, the raw MiSeq data were converted into FASTQ files using the bcl2fastq program provided by Illumina 181 

(bcl2fastq v2.18) without demultiplexing, and the FASTQ files were subsequently demultiplexed using Claident 182 

v0.2.2018.05.29 (http://www.claident.org, (Tanabe and Toju 2013)). Only reads that matched both the Illumina tag 183 

and primers were utilized for subsequent bioinformatic processes. The demultiplexed FASTQ files were analyzed 184 

using the Amplicon Sequence Variant (ASV) method implemented in DADA2 (v1.26.0) (47). Initially, primer 185 

removal was carried out using of the external software cutadapt v2.6 (Martin 2011). Subsequently, sequence quality 186 

filtering was performed with the DADA2::filterAndTrim() function, and error rates were determined using the 187 

DADA2::learnErrors() function, with the MAX_CONSIST option set to 20. Although the DADA2 algorithm 188 
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typically processes each sample independently, this default approach tends to remove singletons and doubletons 189 

within individual samples, thereby impeding the estimation and standardization of sampling coverage. To address 190 

this limitation, we deviated from the default setting and combined all samples for sample inference using dada (..., 191 

pool = TRUE)(49). This modification allows the preservation of ASVs that appear once or twice in each sample 192 

(i.e., local singletons or doubletons) while eliminating ASVs that appear once or twice only in the pooled samples 193 

(i.e., global singletons or doubletons). After the removal of spurious sequences by the DADA2 algorithm, 194 

paired-end reads (i.e., overlapping by at least 20 bases) were merged into ASVs. Chimeric sequences were 195 

eliminated using the DADA2::removeBimeraDenovo() function. Taxonomic assignments of ASVs were performed 196 

using the SILVA database (version 138.1) (Quast et al. 2013). Any ASVs classified as Mitochondria or Chloroplast 197 

were subsequently eliminated.  198 

The presence of ASVs in the negative controls may suggest potential contamination during the 199 

experiments (Supplemental Data). Therefore, the maximum abundance for each ASV observed in these negative 200 

controls was calculated and excluded from other samples. Note that if the resulting abundance was greater than 201 

zero, we assigned the value as normalized ASV abundance. In cases where the resulting abundance was not greater 202 

than zero, we set the normalized ASV abundance to zero. 203 

To standardize the sampling coverage of samples on each sampling date, the coverage-based approach 204 

(Chao et al. 2014) was employed. Samples with coverage lower than 90% were excluded from further processing 205 

(Table S1). Among the remaining 13 samples, the minimum sample coverage (i.e., 93.32%) was calculated, and this 206 

fixed coverage was applied to subsample the ASV abundance 100 times for each sampling date. Subsequently, the 207 

average of the 100 subsampled ASV tables was utilized to depict the prokaryotic composition of microbial 208 

communities. When estimating the abundance of each ASV (cells/mL), we used the frequency distribution of ASVs 209 

(0-1) with the total bacterial count (cells/mL).   210 

 211 

Functional gene prediction 212 

To predict functional genes, the representative sequence of ASV, along with a BIOM table that excluded ASVs 213 

classified as Mitochondria and Chloroplast, was employed in PICRUSt2 (31). The default PICRUSt2 pipeline 214 

utilized the Integrated Microbial Genomes (IMG) databased as week as KEGG database to generate KEGG 215 

Ortholog (KO) predictions for each input ASV. Each KO entry denotes an ortholog group associated with a gene 216 

product in the KEGG pathway diagram (50). Following the PICRUSt2 guidelines, ASVs with a nearest-sequenced 217 

taxon index (NSTI) score above 2 are typically considered as poor alignments with existing reference sequence in 218 

the IMG. Thus, these ASVs were removed from both KO compositional information and the averaged-rarefied 219 

ASV composition.  220 

To estimate genomic multifunctionality (MFG) of a community, we multiplied the composition vector 221 

representing the presence/absence of ASVs, derived from the averaged-rarefied ASV composition, with the matrix 222 

indicating the presence/absence of KOs. This multiplication, performed as an inner product, resulted in a 223 

community-wise KO list in vector form. Subsequently, we calculated the KO richness for each community, serving 224 

as a proxy for MFG. 225 

 226 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 16, 2024. ; https://doi.org/10.1101/2024.03.14.584931doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.584931
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

ASV-extinction simulations 227 

Setting for ASV-extinction simulations and fitting of power-law curves 228 

We simulated the ASV richness loss as a proxy of taxonomic diversity (TR) loss and its subsequent impact on the 229 

KO richness loss as a proxy of genomic multifunctionality (MFG) loss within each local community. Our first aim 230 

was to improve the power-law regression method of this relationship (MFG = cTRa) for quantifying microbial 231 

community multifunctional redundancy. The exponent a indicates the degree of MFG changes with TR, while the 232 

coefficient c represents the expected MFG with a single taxonomic unit (TR = 1). To achieve this, we first adopted 233 

the random extinction scenario, assuming a random order of ASV extinctions within a community. This scenario 234 

served as a baseline for evaluating multifunctional redundancy and also facilitated the assessment and refinement of 235 

the power-law regression method. Rather than numerically simulating sequences of randomly ordered ASV 236 

extinctions, we employed an analytical formula for the TR-MFG relationship (21). Originally designed for a species 237 

accumulation curve and its rarefaction (51), this formula allows rapid quantification of the expected KO richness 238 

across a sequence, ranging from a single ASV to the maximum ASV richness (e.g., 1, 2, …, 1000), resulting in a 239 

high-resolution TR-MFG curve. Additionally, we generated a low-resolution TR-MFG curve with an arithmetic 240 

progression of ASV richness at a consistent interval (e.g., every 5% of the maximum ASV richness). It's important 241 

to note that a low-resolution TR-MFG curve is exclusively suitable for non-random extinction scenarios, as the 242 

analytical formula is not applicable to them, and it is impractical to simulate KO richness for the entire sequence 243 

from a single ASV to the maximum ASV richness. The comparison between high- and low-resolution TR-MFG 244 

curves was expected to guide the development of a more robust methodology for evaluating multifunctional 245 

redundancy. 246 

Using linear regression on log10-transformed data (log10(MFG) = log10(c) + alog10(TR)), the regression 247 

line tends to overestimate MFG levels when TR levels are small. This tendency is also indicated in Fig. S3 of Ruhl 248 

et al. 2022, where log-transformed data, being less dense with smaller TR levels, leads to overestimation. As our 249 

focus is on the initial phases of microbial extinctions and their impacts on ecosystem multifunctionality, the bias 250 

introduced by severe extinctions (e.g., 95% reduction of the maximum ASV richness) does not significantly 251 

compromise the efficacy of the power-law regression method for assessing multifunctional redundancy. However, 252 

developing an appropriate fitting procedure is also crucial to ensure quantitative comparability between high- and 253 

low-resolution TR-MFG curves, corresponding to analytical and numerical methods. To determine the specific 254 

ranges where power-law fitting on the low-resolution curve aligns reasonably with the high-resolution curve, we 255 

conducted a comparative analysis of slope estimates across three intervals: 1) from a single ASV to the maximum 256 

ASV richness, 2) from 10% to 100% of the maximum ASV richness, and 3) from 50% to 100% of the maximum 257 

ASV richness. 258 

 259 

Non-random extinction scenarios 260 

When exploring non-random extinction scenarios, we exclusively utilized low-resolution TR-MFG curves, as the 261 

analytical formula is not applicable for them. The ASV richness range selected for the power-law regression was 262 

determined through the analysis of the random-extinction scenario. Our investigation focused on two categories of 263 

non-random extinction scenarios (Teichert et al. 2017), defining survival probability through either KO 264 
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presence/absence compositional information (four function-based scenarios: F1-F4) or abundance distribution 265 

information (four abundance-based scenarios: A1-A4). 266 

In the function-based scenarios, [F1] the generalists survival scenario assumed that survival probability is 267 

proportional to KO richness, reflecting a plausible situation where ASVs with greater genetic functional richness 268 

within a genome (i.e., generalists) are more resilient to environmental fluctuations (52). Conversely, [F2] the low 269 

maintenance survival scenario assumed that survival probability is proportional to the inverse of KO richness, 270 

attributed to the smaller maintenance cost of their genomes. [F3] The niche uniqueness advantage scenario 271 

assumed that ASVs with greater mean dissimilarities (evaluated by Sørensen dissimilarity measure) in KO 272 

composition compared to all other ASVs are more likely to survive. This notion is rooted in the theoretical 273 

proposition that ASVs functionally dissimilar to others may indicate less overlapping of niches, allowing them to 274 

escape competition (53). Conversely, [F4] the shared niche survival scenario assumed that survival probability is 275 

proportional to the inverse of the averaged dissimilarities in KO composition. While F4 may not be realized in 276 

natural environments, it was included in the scenarios to obtain pessimistic (or cautious) estimates of 277 

multifunctional redundancy. The anticipation is that scenario F4 would lead to greater impacts of ASV richness loss 278 

on MFG loss compared to other scenarios. This is because functionally unique ASVs are anticipated to go extinct 279 

first in F4, leading to a more pronounced effect on multifunctionality. 280 

For the abundance-based scenarios, [A1] the high mean abundance survival scenario assumed that 281 

survival probability is proportional to the mean abundance across sites and time points, indicating a scenario where 282 

rare ASVs go extinct first (54,55). [A2] The low abundance variation survival scenario assumed that survival 283 

probability is proportional to the inverse of the standard deviation of abundance across sites and time points, based 284 

on the rationale that more variable ASVs are more likely to go extinct (56,57). [A3] The high occurrence richness 285 

survival scenario assumed that survival probability is proportional to the number of sites and time points in which 286 

the ASVs were detected, reflecting a plausible situation where ASVs widely distributed in space and time are less 287 

likely to go extinct (58–60). [A4] The high occurrence Shannon survival scenario assumed that survival probability 288 

is proportional to the hill number (q = 1, i.e., the 1st order effective number, Chao, Chiu and Jost (2014)) of sites 289 

and time points in which the ASVs were detected. This modification of scenario A3 considers both the occurrence 290 

and the variation in abundance.   291 

 292 

Computational procedures for ASV-extinctions and multifunctional redundancy 293 

To simulate both random and nonrandom extinction scenarios numerically, we utilized the sample() function in R to 294 

generate a shuffled sequence of ASV IDs. This sequence was created with uniform (unweighted) sampling 295 

probability for random-extinction scenario or weighted sampling probability based on survival probability for 296 

non-random extinction scenarios. In simpler terms, the final element of the generated sequence corresponded to the 297 

ASV that had gone extinct first while the first element corresponded to the one that had survived until all ASVs had 298 

gone extinct. 299 

 300 

Following this sequence, we generated multiple ASV richness levels, covering from a single ASV to 301 

100% of the maximum ASV richness, with increments of 5% (1 ASV, 5%, 10%, ... up to 100%), resulting in 21 302 
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ASV richness levels. We repeated these procedures 100 times by preparing 100 randomly shuffled sequences as 303 

100 trajectories of ASV extinctions. From these 100 trajectories, we calculated the mean KO richness at each ASV 304 

richness level and fitted the power-law curve using linear regression on log10-transformed ASV richness and mean 305 

KO richness (log10(mean KO richness) = log10(c) + alog10(ASV richness)), where the fitted exponent 'a' served as 306 

the index of multifunctional redundancy. A smaller exponent a value indicated higher multifunctional redundancy.307 

  308 

Metacommunity assembly scenario 309 

Assuming each local community within the Lake Biwa watershed originated from a shared metacommunity (36), 310 

we also employed the TR-MFG curve to investigate potential mechanisms influencing variations in 311 

multifunctionality across sites and time points. More specifically, we gathered all ASVs from local communities 312 

into a common pool as the metacommunity. Subsequently, we systematically increased ASV richness in 5% 313 

increments (ranging from 5% to 100% of total ASV richness), including one smaller value (100 ASVs), with 314 

following the survival probability defined in the extinction scenarios. Although the processes of extinction and 315 

assembly may seem to be opposites, it is essential to note that both the orders of ASV extinction and assembly can 316 

be defined by the identical survival probability. As a result, the random and nonrandom extinction scenarios can 317 

also be interpreted as the random and nonrandom assembly scenarios, respectively. 318 

This iterative process was repeated 200 times under the random assembly scenario, generating TR-MFG 319 

curves. The 95% ranges of KO richness values at each ASV richness level were determined by extracting the 2.5% 320 

and 97.5% quantiles from the 200 replications. By overlaying the realized ASV richness and KO richness 321 

combinations, we identified local communities that deviated from the 95% range. Furthermore, we created TR-MFG 322 

curves and associated 95% ranges under non-random assembly scenarios (F1-F4 & A1-A4). We examined whether 323 

local communities showing deviations from random assembly scenarios aligned with specific non-random 324 

assembly scenarios, offering insights into the underlying mechanisms shaping the assembly processes of the focal 325 

communities. 326 

 327 

Computation 328 

All computation processes that are not specified in the sections above were conducted in R (version 4.2.1) 329 

(http://www.r-project.org/). Specifically, we process sequences with the ‘dada2’ package (version 1.26.0) (47). We 330 

estimated prokaryotic diversity with the ‘iNext’ package (version 3.0.0)(62). For the linear model analysis, we used 331 

lm(), glm(), and step() functions for a simple linear regression, generalized linear model with Poisson distribution, 332 

and model selection based on Akaike Information Criterion (AIC). The R notebook as a html file especially for 333 

Ecosystem functioning experiment and ASV-extinction simulations and data files for their inputs are available at 334 

https://github.com/tksmiki/biwako_redundancy.   335 

 336 

Result 337 

Basic information of ASV richness and KO richness 338 

After obtaining the sequencing results from the negative controls, which included 29 and 16 reads and 339 

corresponded to 12 and 7 ASVs for the extraction and PCR negative controls, respectively, we normalized the 340 
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results from other data sets based on these values. Subsequently, we assessed the sampling coverages of the 20 data 341 

sets by using their sequence frequency distribution. Among them, 7 data sets exhibited sampling coverages lower 342 

than 90%, leading us to exclude them from the estimation of standardized ASV richness and KO richness. The total 343 

ASV richness and KO richness for the remaining 13 data sets are represented by 3576 and 7340, respectively, with 344 

detailed information provided in Table S1 and Figure S1 for each data set. One of the datasets (S11, collected from 345 

Lake Biwa on September 10, 2019) initially comprised only 2675 reads before resampling (Table S1). Although 346 

this could introduce uncertainties into subsequent analyses, its sampling coverage was sufficiently high at 96%. 347 

Additionally, the robustness of the major statistical tests, including those associated with Figure 1 and Figure 2b, 348 

persisted even when the results from S11 were excluded. 349 

 350 

 351 

Validation and assessment of proposed methods 352 

The generalized linear model (GLM) with a Poisson distribution revealed a significant positive linear relationship 353 

between MFG and MFP (λ = 0.0004963*MFG – 0.1611650, P value for the coefficient of MFG = 1.67e-5), indicating 354 

a positive association between the two variables (Fig. 1). Utilizing the step() function to identify the best model 355 

explaining the variation in MFP with potential explanatory variables (ASV richness and MFG), we observed that 356 

only MFG remained as a significant explanatory variable. This indicated that genomic multifunctionality (MFG) is a 357 

good proxy of phenotypic multifunctionality (MFP).  358 

 359 

 The power-law fitting applied to high- and low-resolution TR-MFG curves revealed that the estimated 360 

intercepts (c) for the entire range of ASV levels (from a single ASV to the maximum ASV) were considerably 361 

larger than the expected MFG with a single ASV (Fig. 2a and Table S2), indicating a tendency for 362 

multifunctionality overestimation when TR is very low. Analyzing the estimates of the exponent (a) across three 363 

defined ranges, we found that two intervals, specifically from 10% to 100% and from 50% to 100% of the 364 

maximum ASV richness, yielded quantitatively comparable results for a between the high- and low-resolution 365 

curves. Considering these findings, we opted to utilize the range from 10% to 100% of the maximum ASV richness 366 

for numerical simulations under non-random extinction scenarios, ensuring coverage of a broader interval, provided 367 

that the estimates from the low-resolution curves remain comparable to those from the high-resolution curves 368 

(within 3% differences, Table S2). 369 

 370 

Utilizing estimates obtained from the selected ASV richness ranges (10% - 100% of the maximum ASV 371 

richness for each community) under the random extinction scenario, we identified variations in multifunctional 372 

redundancy across different sites and sampling dates. Notably, we observed a positive association between these 373 

variations and ASV richness (Fig. 2b), where a smaller exponent value indicated greater multifunctional 374 

redundancy (linear regression, adjusted R2 = 0.8838). 375 

 376 

Variations in multifunctional redundancy under non-random extinction scenarios 377 

The redundancy exponent (a) exhibited substantial variations across non-random extinction scenarios (Fig. 3, Fig. 378 
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4), although the ranking order of the exponent among sites and dates remained generally consistent between 379 

scenarios (Fig. 4a). In comparison to redundancy estimated from random-extinction scenarios, F1 and F3 380 

demonstrated higher redundancy (i.e., smaller exponent), while F2, F4, and A1 exhibited lower redundancy (i.e., 381 

greater exponent)(Fig. 4b). Notably, scenario F2, representing the low maintenance survival scenario, estimated the 382 

lowest redundancy, reflected by the highest exponent. The other scenarios did not exhibit a clear trend in 383 

redundancy estimation.  384 

 385 

Comparison of multifunctionality through community assembly from a shared metacommunity 386 

We observed that the majority of communities within the metacommunity can be explained by the random 387 

assembly scenario, as indicated by the 95% range. Nevertheless, four local communities (Biwa on 0703, 0730, and 388 

0910, and Echi on 1015) deviated from this95% range of random assembly (Fig. 5). One of them (Echi on 1015) 389 

could be explained by F1 and F3. Additionally, the deviations of two communities (Biwa on 0703 and 0730,) were 390 

explainable by scenario F2, with one of them (Biwa on0703) also aligning with scenario F4 (but at the boundary of 391 

the 95% range). One local community (Yasu on 0709) also fell into A2 (Fig. S2). One local community (Biwa on 392 

0910) did not fall into any scenarios (random, F1-F4, and A1-A4). 393 

 394 

Discussion 395 

Advancements in Methodology for Assessing Multifunctional Redundancy 396 

The primary objective of our study was to refine the methodology for assessing multifunctional redundancy, 397 

resulting in three key findings with significant implications. 398 

 399 

Firstly, the implementation of PICRUSt2 was indirectly validated through a comparison of KO richness 400 

predictions with phenotypic multifunctionality assessed by ecoplate incubations (Fig. 1). Unlike the previous study 401 

(21), our analysis covered a wide bacterial richness range (from 312 to 2715 ASVs), demonstrating the practical 402 

effectiveness of our proposed procedure starting from amplicon sequences. Model selection further revealed that 403 

KO richness serves as a superior predictor of phenotypic multifunctionality compared to ASV richness. Although 404 

direct metagenomic sequencing for validation is acknowledged, these results highlight the practical efficacy of our 405 

proposed approach for obtaining functional information from amplicon sequences. 406 

 407 

Secondly, our detailed analysis of the power-law regression method led to two crucial procedural 408 

enhancements. Firstly, we recommended setting the focal range for power-law regression as 10% to 100% of the 409 

maximum ASV richness to avoid dependence on the resolution of ASV richness. This adjustment ensures that the 410 

estimate is robust across different resolutions. Additionally, we proposed conducting low-resolution simulations 411 

(e.g., every 5% of the maximum ASV richness) due to computational efficiency, while confirming that power-law 412 

fittings on low-resolution TR-MFG curves are quantitatively equivalent to those on high-resolution curves. The 413 

power-law regression tends to overestimate MFG when ASV richness is low, limiting its utility for predicting the 414 

impacts of severe richness reduction on ecosystem multifunctionality. When predicting such impacts, we 415 

recommend directly using the results from extinction simulations instead of relying on power-law fitting estimates. 416 
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 417 

Lastly, concerning extinction scenarios, we proposed that random-extinction, generalists survival, and 418 

low maintenance survival scenarios represent the minimum requirements to cover the possible range of functional 419 

redundancy estimates (Fig. 4). The random-extinction scenario acts as the baseline, while the generalists survival 420 

and low maintenance survival scenarios provide the highest and lowest redundancy estimates (smallest and greatest 421 

exponent values), respectively, among all scenarios. This comprehensive approach ensures a thorough 422 

understanding of the potential range of functional redundancy estimates under different extinction scenarios.  423 

 424 

Comparative Analysis of Lake Biwa and Inlet Rivers: Multifunctional Redundancy Dynamics  425 

The secondary objective of our study was to apply the refined methodology to multiple systems in the Lake Biwa 426 

watershed, elucidating spatio-temporal variability in multifunctional redundancy. 427 

 428 

Three major findings emerge from our analysis: Firstly, Lake Biwa exhibited smaller bacterial richness 429 

compared to any of the four inlet rivers, irrespective of the time points (Fig. 2). One might argue that the observed 430 

lower richness in Lake Biwa could be attributed to a smaller number of sequences or lower bacterial abundance. 431 

However, the former is not supported as the sampling coverages were high enough (> 96%, as shown in Table S1). 432 

The latter is also not supported because ASV richness in rivers with comparable bacterial abundance was much 433 

greater, and temporal variations in ASV richness were much smaller than those of bacterial abundance (Fig. S3). 434 

Instead, this result aligns with the established notion that high richness is likely linked to elevated environmental 435 

and spatial heterogeneity, providing multiple niches for diverse microbes to inhabit in rivers (63). Although 436 

environmental variables were not directly measured, this hypothesis gains indirect support from the relationship 437 

between MFG and MFP (Fig 1), indicating higher functional diversity in rivers compared to lakes. 438 

 439 

Secondly, we observed a negative association between bacterial richness and the exponent of 440 

multifunctional redundancy, suggesting reduced multifunctional redundancy with a decline in bacterial richness. 441 

(Fig. 2b). As Lake Biwa exhibited smaller bacterial richness and redundancy compared to any of its inlet rivers, 442 

irrespective of the time points (Fig. 2b), it highlights a higher conservation priority for Lake Biwa compared to the 443 

four inlet rivers, at least concerning prokaryote-mediated ecosystem multifunctionality. Conversely, while it 444 

appeared that the Echi River had the lowest redundancy (greatest exponent) on July 9 and October 15, all four 445 

rivers displayed significant fluctuations in both bacterial richness and multifunctional redundancy across different 446 

time points. This complexity makes it challenging to definitively identify the river most vulnerable to disturbances 447 

and losses in bacterial taxonomic richness, affecting ecosystem multifunctionality. 448 

  449 

The challenge in prioritizing ecosystem vulnerability between four rivers (Ane, Echi, Hino, and Yasu) 450 

may stem from the non-intensive sampling design (only four time points from each river). Additionally, the lack of 451 

clear differences between these rivers could be influenced by random assembly processes, suggested by the 452 

metacommunity scenario (Fig. 5). Most bacterial communities in these rivers seemed to follow a random-assembly 453 

scenario. If true, significant differences in terms of multifunctional redundancy between these four rivers may not 454 
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exist. To confirm the presence or absence of real differences, more frequent sampling with additional time points 455 

and multiple locations within a river is necessary (64). Additionally, expanding the study to encompass a broader 456 

selection of inlet rivers is crucial, given the presence of 117 first-class inlet rivers in the Lake Biwa watershed. 457 

 458 

Finally, the results suggest that Lake Biwa was subject to different assembly processes compared to its 459 

inlet rivers (Fig. 5). While most of the rivers could be explained by random or generalist survival scenarios, Lake 460 

Biwa aligns more closely with a low maintenance survival scenario, indicating that generalists are less likely to 461 

persist. Such contrasting results may be attributed to the distinct environments of rivers and lakes (65). For example, 462 

the running water in the inlet rivers is highly dynamic and fluctuating, which would favor generalists more because 463 

they can adapt to various conditions (66–70). In contrast, pelagic water in a large lake exhibits characteristics of a 464 

more stable environment. Therefore, the high maintenance cost for multiple genes might be a challenge for species 465 

to survive in lakes, resulting in the survival of specialists with low maintenance costs. 466 

 467 

 468 

Advancing methodology: underexplored aspects and future directions 469 

In this section, we highlight three underexplored aspects of our proposed method, each serving as potential avenues 470 

for future research. 471 

 472 

Firstly, our initial expectation that the scenario F4 would lead to lower multifunctional redundancy 473 

compared to the scenario F2 was contradicted by the results (Fig. 4). While F4 assumes that ASVs with greater 474 

functional dissimilarity go extinct earlier, resulting in a greater negative impact on community-wide KO richness 475 

than F2, the opposite trend was observed. A simple linear association between the indices for F2 (inverse of KO 476 

richness) and F4 (inverse of mean dissimilarity) was not evident (Fig. S4a). One potential refinement could involve 477 

a more direct method for defining functional uniqueness, such as considering the number of unique KOs not shared 478 

with other ASVs. However, our exploration revealed only 127 ASVs with such unique KOs, and the maximum 479 

number of unique KOs per ASV was limited to 16 (not shown). This indicates that such an index may not be 480 

effective in weighting extinction probability across 3576 ASVs. In the scenario F2, we counted the number of 481 

different KOs without considering multiple copies, but an alternative approach could involve considering these 482 

copies as well. Future investigations should also explore alternative extinction scenarios capable of yielding lower 483 

multifunctional redundancy (greater exponent a) than those from F2 and F4. Conservative estimates of redundancy 484 

are crucial for assessing ecosystem vulnerability, particularly when faced with substantial uncertainty. This 485 

challenge is inherent because we primarily rely on genomic information, including PICRUSt2 predictions (as in 486 

this study) or metagenome-assembled genomes (71,72), as well as abundance distribution information, but have 487 

limited access to direct physiological information of unculturable bacteria from environmental samples. Further 488 

refinement of extinction scenarios and indices is warranted to enhance the accuracy and reliability of redundancy 489 

assessments in the face of such complexities. 490 

 491 

Second, the comparison of redundancy exponents between this study and past studies (21,29) provides 492 
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insights into the robustness of the proposed method and offers cautions for its application to other systems. The 493 

exponent (a) values estimated in Miki, Yokokawa and Matsui (2014) ranged from 0.55 to 0.75, but these may have 494 

been overestimated as they were derived from pseudo-communities containing a single strain from each genus. In 495 

natural environments, where multiple strains, OTUs, or ASVs from each genus coexist in local communities, 496 

functional overlap within communities is likely higher. When applying a power-law regression directly fitting on 497 

multiple datasets, our results yielded an exponent (a) of 0.15799 (adjusted R2 = 0.9022) (Fig. S5), comparable to 498 

the value (a = 0.1338) presented in Fig.3d of Ruhl et al. 2022. However, it is important to note that our study used 499 

KO richness as a proxy for genomic multifunctionality, while Ruhl et al. used Pfam richness. Additionally, the unit 500 

of taxonomic richness (OTUs or ASVs) also plays a crucial role, as highlighted by Ruhl et al. 2022, indicating that 501 

the estimated exponent highly depends on both the proxy of genomic multifunctionality and the taxonomic richness 502 

unit (Fig. 3 of Ruhl et al. 2022).  503 

 504 

The third aspect, while not directly aligned with the main objectives of this study, offers the potential for 505 

a more in-depth analysis of the relationship between the predicted KO composition, its richness, and the 506 

spatio-temporal distribution of each ASV in the watershed. In line with the exploration of utilizing genomic 507 

functional information for predicting bacterial occurrence patterns, as proposed by studies like Barberán et al. 508 

(2014), we also found a positive yet weak association between KO richness (indicative of functional generalization) 509 

and both mean abundance (Fig. S4b, linear regression on log10-transformed mean abundance, slope = 4.589e-04 (P 510 

< 2.0e-16), adjusted R2 = 0.04647) and the number of occurrences (Fig. S4c, linear regression, slope = 0.0020760 511 

(P < 2.0e-16), adjusted R2 = 0.0632). While KO richness of ASVs is not directly linked to their genome size, these 512 

patterns stand in contrast to observations in the surface ocean and lakes, where genome-streamlined groups tend to 513 

dominate (74–76). To maintain the simplicity of the multifunctional redundancy assessment procedure, we 514 

exclusively utilized KO richness without incorporating specific functional information for each KO. However, 515 

introducing functional details of KO composition into the procedure could yield two significant advantages: 1) 516 

refining the potential scenarios of bacterial richness loss, thereby reducing uncertainty in the estimated redundancy 517 

exponent, and 2) providing more detailed assessments of functional redundancy, such as redundancy within specific 518 

functional categories like carbon metabolism and nitrogen metabolism. In the context of this study's primary 519 

objectives, maintaining simplicity in the assessment of multifunctional redundancy was prioritized. However, for 520 

researchers willing to employ more complex procedures, exploring predictions of growth rate and interspecific 521 

interactions through metabolic network-based reverse ecology methods, such as flux balance analysis (FBA), can 522 

be a promising avenue. It's worth acknowledging that these tools are still evolving in their development (77,78). 523 

 524 

In light of these underexplored features and the current limitations in the size of amplicon sequence data, 525 

future investigations may prioritize refining our methodology, addressing potential complexities, and collecting 526 

spatially and temporally high-resolution datasets. The crucial refinement of our methodology is necessary for 527 

accurately assessing the vulnerability of ecosystem functions, particularly those mediated by microorganisms, and 528 

will contribute to the development of effective strategies for ecosystem management and conservation. 529 

 530 
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 724 

Figure 1: Positive association between MFG and MFP. GLM with Poisson distribution demonstrated the 725 

statistically positive association between genomic multifunctionality index (MFG) and phenotypic 726 

multifunctionality index (MFP) evaluated by Ecoplate incubation experiment. The line and shaded region represent 727 

the regression line and ±2σ ranges, respectively.  728 
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 729 

Figure 2: (A) Example of TR-MFG curve and its power-law regression from Lake Biwa on July 03. The points 730 

represent the analytical estimated expected KO richness for every different level of ASV richness, i.e., the 731 

high-resolution TR-MFG curve. The red, light green, and light blue solids lines (or the dashed lines) represent the 732 

power-law regression on the high-resolution curve (or the low-resolution curve) from 1 ASV to 100% maximum 733 

ASV richness, 10% to 100% maximum ASV richness, and 50% to 100% maximum ASV richness, respectively. 734 

The low-resolution curve is just a subset of the high-resolution curve. Except for the fitting from 1 ASV to 100% 735 

maximum ASV richness, low-resolution regressions showed quantitatively comparable results with high-resolution 736 

regressions. The vertical light green and light blue dashed lines represent the 10% and 50 % maximum ASV 737 

richness levels, respectively. (B) Relationship between ASV richness and multifunctional redundancy exponent 738 

from the random-extinction scenario. The negative association between ASV richness and multifunctional 739 

redundancy exponent indicates the positive association between ASV richness and the magnitude of multifunctional 740 

redundancy.  741 
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  742 

Figure 3: Examples of TR-MFG curves from all scenarios. (A) The dependence of KO richness reduction along 743 

with different ASV extinction scenarios for the community collected on July 03 from Lake Biwa. (B) The 744 

dependence of KO richness reduction along with different ASV extinction scenarios for the community collected 745 

on July 09 from Yasu river. 746 
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 747 

Figure 4: Variations in redundancy exponents between scenarios. Summary of the dependency of the redundancy 748 

exponent (a) on extinction scenarios, sites, and time points. (a) The direct comparison of the redundancy exponent; 749 

the greater exponent value represents lower multifunctional redundancy. (b) The differences between the exponent 750 

values between those from the random extinction scenario and those from eight non-random extinction scenarios. 751 

The positive (or negative) values represent the lower (or higher) multifunctional redundancy under the focal 752 

non-random extinction scenario than that under the random-extinction scenario.  753 
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 754 

Figure 5: Deviation from random-assembly from the metacommunity for function-based scenarios (F1-F4). 755 

The variations in ASV richness and KO richness between 13 communities and their relationship with the 756 

random-assembly (i.e. random-extinction) scenarios’ 95 % confidence interval from 200 repeated simulations (the 757 

range between the dashed lines) and with the 95% confidence interval (color-shaded region) of one of the four 758 

function-based nonrandom-extinction scenarios (F1-F4). Communities indicated by the solid arrows (i.e., B0703, 759 

B0730, and E1015) correspond to the communities from Lake Biwa on July 3, July 30, and from Echi river on 760 

October 15, respectively. These communities cannot be explained by random assembly processes but can be 761 

attributed to a part of the non-random assembly scenarios (F1-F4). Community indicated by dash arrow (i.e., 762 

B0910, Community from Lake Biwa on September 10) cannot be explained by any scenarios (random, F1-F4, and 763 

A1-A4). 764 
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