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HIGHLIGHTS
● Ozette Discovery provides an alternative method for data-driven annotation of granular

and homogeneous cell phenotypes in CITE-seq data using protein expression data
alone.

● Our approach inherently accommodates for batch effects, and our novel
background-normalization method improves the signal:noise ratio of these notoriously
noisy protein measurements.

● While these subpopulations are not derived from RNA profiles, they have distinct and
interpretable RNA signatures.

● We find a population of CLEC12A+CD11b+CD14- myeloid cells associated with critical
COVID-19 severity that can only be identified by their protein profiles, and identify early
expression of interferon response genes in a CD4 T cell subset as a predictor of
CLEC12A+CD11b+CD14- cell expansion.

● Performing differential expression analysis within our identified phenotypes reveals
predictors of COVID-19 severity that are not found with coarser annotations.

ABSTRACT
Technologies such as Cellular Indexing of Transcriptomes and Epitopes sequencing (CITE-seq)
and RNA Expression and Protein sequencing (REAP-seq) augment unimodal single-cell RNA
sequencing (scRNA-seq) by simultaneously measuring expression of cell-surface proteins using
antibody derived oligonucleotide tags (ADT). These protocols have been increasingly used to
resolve cellular populations that are difficult to infer from gene expression alone, and to
interrogate the relationship between gene and protein expression at a single-cell level. However,
the ADT-based protein expression component of these assays remains widely underutilized as
a primary tool to discover and annotate cell populations, in contrast to flow cytometry which has
used surface protein expression in this fashion for decades. Therefore, we hypothesized that
computational tools used for flow cytometry data analysis could be harnessed and scaled to
analyze ADT data. Here we apply Ozette Discovery™, a recently-developed method for flow
cytometry analysis, to re-analyze a large (>400,000 cells) published COVID-19 CITE-seq
dataset. Using the protein expression data alone, Ozette Discovery is able to identify granular,
robust, and interpretable cellular phenotypes in a high-throughput manner. In particular, we
identify a population of CLEC12A+CD11b+CD14- myeloid cells that are specifically expanded in
patients with critical COVID-19, and can only be resolved by their protein expression profiles.
Using the longitudinal gene expression data from this dataset, we find that early expression of
interferon response genes precedes the expansion of this subset, and that early expression of
PRF1 and GZMB within specific Ozette Discovery phenotypes provides a RNA biomarker of
critical COVID-19. In summary, Ozette Discovery demonstrates that taking a protein-centric
approach to cell phenotype annotation in CITE-seq data can achieve the potential that dual
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RNA/protein assays provide in mixed samples: instantaneous in silico flow sorting, and
unbiased RNA-seq profiling.

INTRODUCTION
Single-cell assays such as flow cytometry and single-cell RNA sequencing (scRNA-seq)
quantify the abundance of protein and mRNA, respectively, and have each been critical to
answering fundamental questions across biology. Multi-omic methods such as Cellular Indexing
of Transcriptomes and Epitopes sequencing (CITE-seq)1 and RNA Expression and Protein
sequencing (REAP-seq)2 seek to combine the advantages of flow cytometry and scRNA-seq by
measuring mRNA levels in addition to expression of cell surface proteins using antibodies
conjugated to oligonucleotide DNA barcodes. These techniques are now being used to
disentangle the complex interplay between gene and protein expression in preclinical work,
clinical trials, and large prospective cohorts3,4, including for the etiology of emerging diseases
such as COVID-195.

A critical step in the analysis of single-cell assays is identifying groups of cells that share a
common cellular phenotype. In unimodal scRNA-seq, the most common methods take an
unsupervised approach, based on reducing the dimension of the gene expression vector (e.g.
via principal component analysis) and then detecting communities of cells in this reduced
space6. These methods have the ability to discover cellular phenotypes de novo, but inherit the
disadvantage that even well-known phenotypes require annotation in some fashion, by e.g.
examining lists of genes that are differentially expressed between clusters. To address this
issue, supervised methods to cluster the expression vectors and annotate cellular phenotypes
have also been proposed7,8. These have the advantage of avoiding laborious manual annotation
of clusters, but the phenotypes one can discover are limited by the coverage and quality of the
reference dataset used to train the annotation model. Moreover, the process of recovering
clusters not present in the reference, if possible at all, is not always reliable. Supervised and
unsupervised methods both also often require extensive batch correction prior to cell phenotype
annotation to ensure that the reduced features, and therefore cell clustering, are not unduly
influenced by technical variation between batches.

Most clustering approaches for multi-omic data resemble the approaches used in unimodal
scRNA-seq, attempting to blend protein and mRNA data in some beneficial way to yield a
reduced dimensional vector that reflects expression in both modalities9. Although appealing
from a statistical standpoint, blending methods often sacrifice interpretability, as the clusters
produced reflect an amorphous combination of gene and protein expression. Furthermore, like
unimodal scRNA-seq approaches, these methods often first require complex batch correction
methods. Some methods have been developed that attempt to primarily or solely use the
antibody-derived tag (ADT) protein data, but they are less common. scGate10 performs
“hierarchical gating” on cells based on their ADT expression, sequentially examining one or two
markers at a time to partition the protein expression space into discrete cell types. However, this
method requires manual tuning per-marker to establish positive and negative thresholds, and is
limited to closed-reference classification of predefined cell types. SECANT11 emphasizes
supervised classification using previously-generated reference sets defined from ADT data, and
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similarly to scGate, requires heuristics to identify de novo cell types not present in the reference.
CITE-sort12 is an unsupervised method that clusters cells by fitting parametric statistical models
to a sequence of lower-dimensional projections of the ADT data. Although the authors illustrated
the CITE-sort method on a dataset of 16,000 cells to discover 12 phenotypes, it does not
appear to have been applied on additional larger-scale or higher-dimensional datasets since
publication. In reviewing these currently-available methods, we therefore conclude that the
multi-omic sequencing field is still lacking methods that can discover novel cell phenotypes in
large datasets in a human-interpretable manner.

In flow cytometry, although unsupervised machine learning tools have been developed13,14, the
gold-standard method of analysis remains manual hierarchical gating. Hierarchical gating
maintains its appeal due to its simplicity and interpretability, but is limited by the throughput and
lack of reproducibility between human operators. However, a recently-published method by
Greene et al.15 proposes an approach that rapidly and exhaustively annotates cell phenotypes in
single-cell protein data using the basic principles of hierarchical gating, while overcoming the
current limitations in throughput and human intervention. This method has already been used to
identify novel immune cell phenotypes in diverse disease contexts, including regulatory T cell
(Treg) phenotypes in COVID-1916 and head and neck squamous cell carcinomas17. Ozette
Technologies, a life science technology company specializing in the analysis of single-cell data,
has developed the Ozette Discovery™ platform to build upon the methodology described in
Greene et al. to provide a high-throughput and high-accuracy platform for the annotation of
cytometry data. Since both flow cytometry and ADT data are antibody-based measures of
protein expression, we hypothesized that Ozette Discovery could also be applied to ADT data to
annotate cell phenotypes in single-cell sequencing data. If successful, this approach would
enable exhaustive annotation of multi-omic data without use of predetermined reference
datasets, and the protein-centric annotations would better harmonize with known cytometry
phenotypes.

Here we demonstrate the application of Ozette Discovery to re-analyze a large (>400,000 cells)
CITE-seq dataset of peripheral blood mononuclear cells (PBMCs) from COVID-19 patients and
healthy controls. In the original publication of these data5, the authors, Liu et al., primarily
identified cellular phenotypes using unsupervised Louvain clustering on the ADT data. These
clusters, initially only identified by an integer, were annotated into biologically-meaningful
phenotypes by examination of differentially expressed markers between clusters. In some cases
this unsupervised approach was not sufficient, and the authors additionally had to perform
manual gating in order to identify rare or complex cellular populations. This approach reflects
the state-of-the-art, yet only enabled identification of 30 phenotypes across their ~400,000 cells.
In contrast, we find that Ozette Discovery, which also uses the protein expression data alone,
identifies over 100 phenotypes that are more homogeneous and interpretable than those
identified in the original publication. We also demonstrate how this homogeneity within each
phenotype is important for accurately identifying cell populations whose abundance and gene
expression profiles correlate with disease severity. Together, this work demonstrates that
protein-centric cell annotation of CITE-seq data using Ozette Discovery enables significant
progress towards achieving instantaneous flow sorting and RNA-seq profiling of mixed samples.
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RESULTS
The Ozette Discovery™ method
To demonstrate the application of Ozette Discovery to CITE-seq ADT data, we re-analyzed the
dataset presented in Liu et al., 20215. This paper used CITE-seq to profile PBMCs from healthy
donors and patients with moderate, severe, or critical COVID-19 at various points after symptom
onset in order to identify cellular hallmarks of COVID-19 severity and how these hallmarks
change over time (Fig 1A). This is one of the largest CITE-seq datasets publicly available in
terms of the number of subjects included (47), proteins profiled (188), and number of cells
sequenced (~400,000). We started with the authors’ unfiltered feature by barcode matrices
(GEO: GSE161918) and the results of their genotype-based donor demultiplexing scheme,
which was combined with sample multiplexing via hashtag oligos. We identified cell-containing
droplets18,19, demultiplexed samples using the genotype information and hashtag oligos20, and
detected doublet barcodes21,22 using publicly-available methods, and then applied common
quality control (QC) metrics (Fig 1B, methods).

CITE-seq data are notorious for having high levels of nonspecific background, which is thought
to arise largely from unbound antibody tags that are not adequately washed away after staining.
Since flow cytometry clustering methods–including Ozette Discovery–generally assume that a
clear expression threshold exists between cells that do and do not express each protein
measured, this ambient contribution makes it difficult to resolve true positive versus negative
populations23. Ideally, there should be a large margin between positive and negative events,
such that a threshold can be identified that is sensitive and specific. We found that existing
normalization approaches for CITE-seq data23 did not sufficiently improve this margin between
positive and negative populations, so we developed a generalized linear model (GLM)-based
background normalization method (see Methods: Background Normalization) that materially
improves the signal-to-noise ratio of CITE-seq ADT data (Fig 1C).

Even after this background normalization, not all markers had reliable thresholds between
positive and negative events due to limited antibody avidity or small numbers of positive cells.
Therefore, we prioritized markers that are well established PBMC lineage markers or highly
variable across the dataset to input into the Ozette Discovery algorithm (Fig 1B). We first
selected major cell lineage markers CD3, CD4, CD8, CD19, CD20, IgD, CD56, CD11b, CD11c,
CD14, and CD16, as well as differentiation markers including CD45RA, CD45RO, CD27,
HLA-DR, and CD62L. We also included the most variable marker across the dataset, CLEC12A
(also known as CLL1). CLEC12A is a C-type lectin domain family receptor known to be a
negative regulator of granulocyte and monocyte function, and has been reported as a biomarker
of COVID-19 survival24. Ozette’s Discovery algorithm determines the threshold position between
positive and negative expression for each of the selected markers, and then partitions the cells
in the dataset into unique phenotypes based on where they fall relative to these thresholds and
how frequently they are detected across samples15 (Fig 1B). Downstream analyses can then
determine how the expansion, contraction, or gene expression patterns of these annotated
cellular phenotypes are associated with biological variables of interest (Fig 5-Fig 7).
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Phenotypes identified by Ozette Discovery are granular, robust, and human-interpretable
As described above, Liu and colleagues partitioned their dataset into 30 phenotypes using a
combination of unsupervised clustering using Seurat v325 and manual gating in FlowJo.
Executing this kind of manual gating followed by using lists of differentially expressed markers to
map numbered clusters to meaningful cell types requires expert subject knowledge and a
significant time investment. In contrast, application of Ozette Discovery to the CITE-seq ADT
data presented in Liu et al. identified 170 phenotypes that are explicitly labeled by their ADT
expression profile (Fig 2A, representative phenotypes labeled). These phenotypes can be
visualized on the Ozette Discovery platform using an annotation-transformation UMAP15 (Fig
2A), which normalizes the marker expression and aligns cells from different samples so that
each phenotype localizes together in the UMAP embedding. The Ozette Discovery platform also
provides “backgating plot” visualizations to enable the direct interrogation of how each
subpopulation was identified (Fig 2B). Backgating plots are one- or two-dimensional histogram
plots showing the expression of one or two markers across all cells in a dataset, overlaid with
the expression data for a particular subpopulation and the determined thresholds between
positive and negative populations. In contrast to parsing through lists of overlapping differentially
expressed markers between clusters, we can use these backgating plots to easily visualize and
interrogate the basis of Ozette Discovery’s labels: the computationally-determined thresholds
between positive and negative populations (Fig 2B, light blue lines) can be used to verify that
the cells in each labeled population (Fig 2B, dark blue) fall confidently above or below these
thresholds relative to all cells in the dataset (Fig 2B, gray).

The Ozette Discovery platform can also be used to interrogate the distribution of marker
expression across the identified phenotypes. For example, projection of CD3, CD20, or CD11b
expression onto the Ozette UMAP shows that phenotypes identified by Ozette Discovery span
all major PBMC cell lineages (Fig 2C). We can also examine the distribution of sample- or
cell-level covariates. As is true for most biomedical experiments, the data published in Liu et al.
had to be collected in several batches. This kind of batching potentially introduces unwanted
variability in antibody staining and scRNA-seq sequencing results, and various algorithms have
been proposed to correct for such batch effects26. However, because Ozette Discovery identifies
cellular phenotypes on a per-sample basis and then combines annotations across samples, it
intrinsically accommodates shifts in the protein expression distribution between samples, and
therefore, batches. Correspondingly, Ozette Discovery phenotypes are well integrated across
batches (Fig 2D).

Analysis of this dataset required a total of approximately 1.5 hours from preprocessed data to
cell annotations, which compares favorably to the significant hands-on and computing time it
often takes to batch correct, select markers, cluster, and annotate single-cell sequencing data
using current state-of-the-art methods. We therefore find that we can use Ozette Discovery to
annotate CITE-seq data, and that our method identifies granular, robust, and
human-interpretable cell phenotypes.

Ozette Discovery identifies more accurate phenotype labels than current methods
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We next sought to compare how Ozette’s cell phenotype labels compare to the labels generated
by Liu et al. using Louvain clustering, manual gating, and expert annotation. Liu and colleagues
described 30 phenotypes across cells of the adaptive and innate immune systems, 23 of which
(Fig 3A) were found in cells that passed our QC filters (see Methods). Overlaying these
annotations onto the Ozette UMAP reveals that the authors’ phenotypes (colors) are distributed
across multiple Ozette phenotypes (clusters), indicating that Ozette Discovery achieves greater
resolution than canonical annotation methods (Fig 3B-D).

We also observed that cells from multiple different Liu et al. annotations fall into the same
Ozette annotation (Fig 3B-D), indicating some discordance between the two labeling
methods–Ozette Discovery is not simply further subdividing the authors’ annotations. To
understand the root of this disagreement, we compared backgating plots showing the ADT
expression profiles of matched cell types between the clusters provided in the original paper
and Ozette Discovery’s annotations. For example, naive CD4 T cells are often defined in
high-dimensional flow cytometry as CD4+CD45RO-CD45RA+CCR7+ 27. Liu et al. did not stain
for CCR7, so we therefore substituted CD62L as a proxy28, yielding
CD3+CD4+CD45RO-CD45RA+CD62L+ as the protein-based phenotype string for naive CD4 T
cells. We find that naive CD4 T cells as annotated in Liu et al. (Fig 3E, top) sometimes include
CD45RA- cells and CD62L- cells (Fig 3E, red arrows). In contrast, the Ozette phenotype
annotated as CD19-CD3+CD4+CD8-CD45RO-CD45RA+CD62L+ (Fig 3E, bottom) by
construction satisfies this sequence of gates. Similar irregularities were found with other cell
types, including double negative T cells (Figure 7F). We therefore conclude that Ozette
Discovery identifies more accurate and homogenous phenotypes than current unsupervised
clustering methods.

Subsequently, we assessed how our ADT-based phenotype annotations compared with the
transcriptomic profiles of the cells assigned to each phenotype. While our phenotypes are
annotated exclusively based on protein expression data, a set of biologically meaningful
phenotypes should also exhibit specific expression of expected canonical genes and pathways
at the RNA level. Considering the most abundant phenotypes for the purposes of ensuring
adequate statistical power, we generated pseudobulked gene expression data29 for each
phenotype within each sample by adding up the raw unique molecular identifier (UMI) counts for
each gene. We then performed differential gene expression analysis between each pair of
phenotypes (see “Differential Expression Testing'' in Methods). This analysis revealed that
phenotypes of the same cell lineage as annotated by Ozette Discovery using the ADT data
alone tend to also cluster together by gene expression (Fig 4A). Amongst the top differentially
expressed genes between Ozette Discovery phenotypes, we found several canonical cell
lineage markers including CD14, MS4A1, CD8A, CD3E, and NKG7 (Fig 4A, black arrows).
Genes encoding for several of the ADT-measured proteins used to define our phenotypes were
also identified as highly differentially expressed, including CD8A, CD3E, CD14, and HLA-D (Fig
4A, red arrows). Genes that are known to have discordant RNA and protein expression such as
CD41 were absent from the top differentially expressed genes (Fig 4A). When we performed the
same analysis using the Liu et al. annotations, and found that phenotypes of the same cell
lineage also tended to cluster together by gene expression, but the differences in gene
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expression between phenotypes and even cell lineages were less apparent than between
Ozette’s annotations (Fig 4B). This analysis therefore suggests that despite annotating cell
phenotypes using ADT protein expression alone, Ozette Discovery’s phenotype annotation
method also captures many salient features of cells’ gene expression profiles.

CLEC12A+CD11b+ cellular subsets are expanded in critical COVID-19 patients
The original study presented by Liu et al. identified several gene expression correlates of
COVID-19 severity across moderate, severe, and critical COVID-19 cases (Fig 1A). The authors
used the ADT data to annotate broad canonical cell types, and then focused on the gene
expression data to identify correlates of disease severity. We hypothesized that the abundance
of our ADT-defined phenotypes may also be associated with COVID-19 severity. To test this
hypothesis, we performed differential abundance testing between moderate/severe and critical
COVID-19 patients. To increase statistical power, we restricted our analysis to 109
sufficiently-abundant phenotypes and grouped all less-abundant phenotypes into a “rare”
population. This analysis revealed a striking expansion of two cell populations in critical
COVID-19 patients (Fig 5A): cells that were CLEC12A+CD11b+ or CLEC12A+CD11b+CD11c+
and negative for all other markers in the panel (Fig 5B-C). Moreover, the abundance of these
phenotypes is also attenuated in healthy controls (Fig 5B), further indicating that this expansion
is a specific hallmark of critical COVID-19 severity. While these cells express CD11b and appear
to be monocytic, they lacked surface protein expression of CD14, though CD14 transcript was
detectable (Fig 4A). Thus Ozette Discovery’s unbiased and exhaustive approach to cell
annotation using surface protein expression can uncover novel phenotypic correlates of
disease.

Identification of RNA biomarkers that correlate with expansion of CLEC12A+CD11b+ cells
Since Liu et al. measured CITE-seq profiles longitudinally in COVID-19 donors, we next
characterized the abundance of the most differentially abundant phenotype,
CLEC12A+CD11b+, over time. Plotting the frequency of the CLEC12A+CD11b+ population
versus days since symptom onset revealed that the expansion of this phenotype peaks around
20 days post-symptom onset (Fig 6A). Given this specific time period of expansion, we
hypothesized that gene expression measured at time points prior to this expansion might be
able to predict subsequent aberrant expansion of CLEC12A+CD11b+ cells. To explore this, we
conducted differential expression analysis using data from the time point that preceded the
maximum expansion of CLEC12A+CD11b+ cells for each COVID-19 ﻿patient. We first performed
this analysis in an All Cells pseudobulk, where we summed the gene expression of every cell in
every Ozette phenotype within each sample. Using this All Cells pseudobulk approach we found
over 400 genes to be differentially expressed (a subset of most significantly differentially
expressed genes is shown in Fig 6B, top row), with many related to interferon signaling (Fig 6B).
This is consistent with previous work demonstrating that changes in interferon signaling are
associated with poor COVID-19 outcomes30,31. We also found that early upregulation of IL2RA
(encoding CD25 protein) was associated with expansion of CLEC12A+CD11b+ cells (Fig 6C).
This is consistent with Liu et al.’s finding that CD25 protein levels were elevated in circulating
blood of critical COVID-19 patients at early time points in a separate COVID-19 cohort (see Liu
et al. Fig 6B).
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We then repeated this analysis, generating pseudobulked profiles within each Ozette Discovery
phenotype, in order to test for cell type-specific predictors of CLEC12A+CD11b+ expansion.
This analysis again highlighted IL2RA, which was significantly upregulated in
CD3+CD45RO+CD4+CD62L+ and CD3+CD45RO+CD4+CD62L- cells (FDR < 0.03 and FDR <
0.09, respectively), and upregulated (log fold change > 3) but not at FDR-significant levels in
five other CD3+CD4+ subsets. We additionally identified genes that were only significantly up-
or down-regulated within specific lineages and not in the All Cells pseudobulk, such as
interferon-inducible IFNGR2 (upregulated specifically in CD3+/CD45RA+/CD27+/CD4+ cells)
and IFI44 (upregulated specifically in CLEC12A+CD11b/CD11c+/CD4+/CD14+ cells) (Fig 6B-C).
This suggests that interferon signaling specifically within other cell types may be driving the
expansion of this CLEC12A+CD11b+ phenotype in critical COVID-19 patients. We therefore
conclude that phenotypes identified by Ozette Discovery elucidate disease etiology by
identifying gene expression predictors of cell type abundance.

Identification of early RNA biomarkers of COVID-19 severity
Based on the results of this approach, we next attempted to use the gene expression data from
the earliest time points sampled for each patient to identify mRNA predictors of COVID-19
severity, without regard to the expansion of any cell types. To determine the relative utility of our
Ozette Discovery phenotypes, we performed this analysis in an All Cells pseudobulk (L1), cell
lineage pseudobulk (L2), and at the level of each individual Ozette Discovery phenotype (L3)
(Fig 7A). We found that no genes were differentially expressed in the All Cells pseudobulk (L1),
and only 3 genes within the CD4 T cell lineage were differentially expressed at the L2 level (Fig
7B, left). Yet when we repeated this approach for the most granular Ozette Discovery
phenotypes, we found 131 genes differentially expressed at 10% FDR (Fig 7B, left). Strikingly,
among these 131 genes differentially expressed at early time points, we identified increased
GZMB and PRF1 gene expression in CD3+CD45RA+CD4+CD62L+ naive T cells from patients
with higher COVID-19 severity (Fig 7C, black asterisks). Critical patients expressed 5-fold higher
GZMB and 2.8-fold higher PRF1 transcript levels than severe patients (Fig 7D, top). This higher
level of GZMB and PRF1 gene expression was conserved across several distinct CD4 T cell
populations, but was only detectable at conventional FDR cutoffs in
CD3+CD45RA+CD4+CD62L+ naive T cells (Fig 7C, red box). Upregulation of GZMB and PRF1
is a hallmark of cytotoxic function, and so this gene expression pattern within putative naive
CD4 T cells may signal the early transition of these CD3+CD45RA+CD4+CD62L+ naive T cells
towards a cytotoxic state32.

We then repeated this analysis using the authors’ annotations as the L3 classifications. Again,
we found no genes differentially expressed at 10% FDR in the All Cells pseudobulk, but we did
find a total of 91 differentially expressed genes across the authors’ phenotypes (Fig 7B, right;
7E). This list also included GZMB and PRF1, but only within “DNT'' cells, which the authors do
not define in their original publication but likely refers to double negative T cells33 (Fig 7D,
bottom). However, we assessed ADT expression patterns of the authors’ DNT population using
backgating plots and found that this population had varied expression of CD4, CD8, CD45RA,
CD45RO, and CD62L (Fig 7E). Furthermore, we found that 15% of the DNT phenotype was

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.584720doi: bioRxiv preprint 

https://paperpile.com/c/Dm8d9h/Hejk
https://paperpile.com/c/Dm8d9h/gbq5
https://doi.org/10.1101/2024.03.14.584720
http://creativecommons.org/licenses/by-nd/4.0/


classified by Ozette Discovery as CD3+CD4+CD45RA+CD62L± cells (data not shown),
consistent with these phenotypes showing an upregulation of GZMB1 and PRF1 with increasing
COVID-19 severity. Interestingly, the DNT subset does form two distinct clusters adjacent to
memory CD4 T and memory CD8 T cells in the authors’ UMAPs (Fig. 3A; Liu et al Fig 2B)
suggesting that this DNT phenotype may represent an early shift towards effector function in a
mixture of T cell subsets, as opposed to a cell type that could be easily and reproducibly
isolated via flow cytometry. We therefore find that phenotypes identified by Ozette Discovery
can be used to identify cell type-specific predictors of disease severity.

CONCLUSIONS
Here we demonstrated that Ozette Discovery, which was developed to provide comprehensive
and interpretable cell phenotype annotations using protein expression in cytometry data, can be
applied to sequencing-based protein expression data derived from technologies such as
CITE-seq. Our pipeline is compatible with well-established preprocessing methods currently
used for single-cell sequencing data, but the addition of our novel background normalization
method significantly improves the signal-to-noise ratio and therefore the utility of ADT data.
Ozette Discovery also intrinsically accommodates shifts in location or scale of ADT protein
expression distributions, resulting in phenotypes that are robust to batch effects without the
need for additional batch correction methods. While both current methods and Ozette Discovery
can provide exhaustive annotations, Ozette Discovery generates phenotype labels that are
more human-interpretable in terms of their names and derivations. The net result is a set of
phenotype labels that are more granular, robust, homogeneous, and human-interpretable in a
fraction of the time, compared to current state-of-the-art annotation methods.

We harnessed the richness of these phenotypes by quantifying their abundance to identify
correlates of disease. While this is a common approach in scRNA-seq studies, it is rarely
dispositive, since the phenotypes are not sufficiently granular or interpretable. This fundamental
analysis revealed two groups of CLEC12A+CD11b+CD14- myeloid cells that were expanded
specifically in critical COVID-19 patients. The canonical monocyte marker CD14 was not
detected in these phenotypes at the protein level, despite the fact that the CD14 transcript was
detected (Fig 4A). Furthermore, the CLEC12A+CD11b+CD14+ populations were not
significantly associated with critical COVID-19. This indicates that absence of CD14 protein
expression is a key feature of the CLEC12A+CD11b+ populations associated with critical
COVID-19, underscoring the importance of interrogating both the gene and protein expression
patterns of cell phenotypes.

That is not to say that interrogation of the RNA expression patterns is not a worthwhile
analysis–the homogeneity within Ozette Discovery’s phenotype labels provide a solid foundation
for interrogating differential gene expression. This homogeneity also means that simple and
robust methods, such as pseudobulking, are appropriate to use on these data for differential
expression testing. Indeed, we were able to use pseduobulking within Ozette Discovery
phenotypes to unbiasedly elucidate early transcriptomic patterns associated with the expansion
of CLEC12A+CD11b+ cells, including increased expression of IL2RA (CD25) and
interferon-inducible genes.
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This pseudobulking approach also successfully identified early correlates of subsequent
COVID-19 severity, regardless of expansion of CLEC12A+CD11b+ cells. While there were no
genes differentially expressed across pseudobulks comprised of all cells, and very few genes
differentially expressed at the level of cell lineage, PRF1 and GZMB were positively associated
with COVID-19 severity in a specific subset of naive CD4 T cells. PRF1 and GZMB are genes
associated with T cell effector capability, and so this finding may indicate that this subset of
naive T cells are starting to transition towards a cytotoxic state. This therefore highlights how our
approach fully exploits the strengths of multi-modal data: identifying a homogeneous cell
phenotype using the ADT protein expression data, and then identifying early gene expression
changes within that cell type that may indicate its future commitment. We also note that because
our phenotype labels are not derived from gene expression data, such follow-on investigations
are far less susceptible to p-value distortion due to the “double dipping” that occurs when gene
expression data is used both to derive the cluster identity and to test for differential expression34.
Our analysis pipeline therefore fully harnesses the strength of the CITE-seq assay by using
Ozette Discovery and the ADT data to identify differentially abundant phenotypes, and then
using the paired gene expression data to identify potential mechanisms for this change.

The difficulty of translating in silico findings from sequencing experiments into follow-up
experiments has been widely recognized: often the results from a sequencing experiment fail to
replicate using alternative methods like flow cytometry. CITE-seq assays offer progress, as they
have the potential to synergize with existing protein-based cell annotations used in cytometry.
However, without careful analysis of the ADT data, one can still be led astray. Both Liu et al. and
our annotations identified specific over-expression of PRF1 and GZMB in subsets of cells at
early time points in critical COVID-19 patients. In Liu’s annotations, this over-expression was
attributed to “DNT” cells, which in our analysis were not generally double negative, but rather a
mixture of CD4+, CD8+ and CD4-CD8- T cells. It is possible that differences in data
transformation contribute to this discordance: we employed the novel background normalization
technique described here, in contrast to Liu et al.’s use of DSB23. These preprocessing
differences may alter the threshold locations between positive and negative populations, and
therefore produce discordant phenotype labels. Nevertheless, the DNT cells as annotated by
Liu et al. lacked an obvious pattern of protein expression in common lineage markers that would
allow them to be reproducibly isolated and studied. In contrast, we show that the annotations
derived from Ozette Discovery are homogeneous and definitive, and therefore readily lend
themselves to the design of a follow-up flow cytometry study.

Our study of differential expression in the Liu et al. dataset therefore suggests that a narrow
focus on gene expression in CITE-seq data poses the risk of mis-classifiying cell types and
thereby mis-attributing effects of interest. In contrast, protein-based annotations can leverage
decades of domain knowledge about the characteristics of various lineages. However, the cell
phenotypes discoverable by our method are limited to the markers included for analysis. We
credit that some antibodies commonly used in flow cytometry, such as CCR7 and antibodies for
gamma-delta T cells, remain difficult to stain for in assays such as CITE-seq at sufficient
concentrations to allow clear thresholds to be drawn without contaminating the sequencing pool
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with unbound ADT. We also credit that some cellular states, for example cell cycle phase, are
also often easier to identify via gene expression than protein expression. In these cases, the
mRNA can serve as a proxy for protein expression, and we expect that additional methodology
will soon be developed to allow this.

In total, our work illustrates that Ozette Discovery provides a rich and meaningful set of cell
phenotypes, enabling scientists to harness the advantages of both cytometry and single-cell
sequencing at once.

INQUIRIES
We welcome correspondence to contact@ozette.com.

METHODS

Data curation
Unfiltered HDF5 files were downloaded from GEO GSE161918. The original study included both
PBMC-derived cells as well as a smaller fraction of cells enriched for non-naive B and T cells by
flow sorting. We excluded the sorted cells from this analysis due to staining artifacts, possibly
due to competition between the ADT antibodies and flow sorting antibodies. R 4.1.3 and
DropletUtils 1.19.1 were used to initially identify potential cell-containing droplets. Hashtags
were resolved using demuxmix version 1.2.0, and candidate doublets identified with
scDblFinder 1.8.0. Ambient background normalization for ADT expression was performed using
custom-developed methods (see “Background normalization” below). After QC metrics on the
number of genes detected, empty droplet probability, mitochondrial fraction, doublet probability,
ADT fraction, and minimum cell count per sample were applied, 213,679 cells remained. These
cells were derived from 63 samples across 43 donors (n = 11 healthy controls, n = 3 moderate
COVID-19 patients, n = 5 severe COVID-19 patients, and n = 24 critical COVID-19 patients).
For the purpose of depicting cell annotations published in Liu et al. (Fig 3A, B, D, E, Fig 4B, Fig
7D, E, F), we used the phenotypes labeled as “WCTcourse” in the source code of Liu et al.

Background normalization

In each 10X lane, we suppose that ADT counts for each barcode and feature arise as a sum of
an ambient source, plus other (i.e. cell-bound) sources. The ADT counts in non-cell-containing
droplets are assumed to arise from only ambient sources, and are used to estimate the relative
abundance vector a=[ai] of each feature i in the ambient pool. In each cell-containing droplet, we
decompose the total sum of ADT UMIs across features into an ambient sum Na, and residual
sum Nr by regressing the observed UMI counts onto the ambient relative abundance vector a.
Then, for each cell-containing droplet and each feature i we estimate the ambient contribution in
a generalized linear model using ai as a covariate and log(Na) as an offset. The Pearson
residuals from this regression form the background-corrected expression values.

Clustering
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Background-corrected ADT expression of 17 markers was used to annotate cell types using the
Ozette Discovery platform version 4.5, and the phenotypic identity of each cell was imported
into R. 170 phenotypes were discovered.

The Ozette UMAP (Fig 2A, C, D, Fig 3B) employs an annotation transformation step
(https://github.com/flekschas-ozette/ismb-biovis-2022) before calculating the embedding. For
each expression category in a marker (i.e., negative and positive categories), the level-specific
marker expressions are winsorized to remove outliers, normalized (in each sample) to have zero
mean and unit variance, and shifted to category-specific location to ensure co-localization of
cells from the same phenotype.

Differential Abundance Testing

Phenotypes present in at least 5 samples and with a median of 1 cell across all samples (109
phenotypes) were converted into a phenotype-samples count matrix, which was used as input
into DESeq235 version 1.34.0. Cells belonging to phenotypes that did not meet these criteria
were aggregated into a “rare” catch-all category to preserve the total number of cells in each
sample, i.e. for calculating size factors. We fit a model comparing severity, encoded as a factor
(encoded as healthy, moderate/severe, critical) and adjusting for a technical batching variable
as provided in the original study. To estimate the abundance of the CLEC12A+CD11b+ cells
across time in Fig. 6A, a negative binomial gam was estimated with mgcv version 1.8.33 36. The
log total number of cells was provided as an offset and the resulting predicted counts were
converted into proportions.

Differential Expression Testing

Differential expression tests were in all cases conducted using pseudobulked gene expression
profiles. The UMI counts of each gene over each sample and phenotype were summed to yield
the L3 pseudobulked expression. Here, we required phenotypes to be present in at least 1 cell
in 5 samples, and 7 cells in the median sample. The L2 and L1 count matrices were formed
analogously by summing over combinations of phenotypes that were annotated as expressing
combinations of key lineage markers (CD3, CD4, CD8, CD11b, CD16, CD19, CD56), or all cells,
respectively.

To test for differential expression between phenotype labels (Fig 4), we normalized the
pseudobulk profile with its library-size, transformed with the hyperbolic arcsin using
scuttle::logNormCounts(..., transform = "asinh") and then found differentially
expressed genes via t-tests in scran::findMarkers. We considered the 5 genes with the
most significant p-values, as long as that gene had FDR < 0.1.

For the associations with CLEC12A+CD11b+ abundance, for each COVID-19 positive donor
sampled no later than 20 days since symptom onset (n = 23), we took a cross-sectional
snapshot of the data by taking the sample from the time point preceding maximum abundance
of CLEC12A+CD11b+ cells in that donor, or if that occurred in the first time point, then we took
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the first time point. We employed a square-root transformation of the CLEC12A+CD11b+
frequency as the independent variable in the regression and adjusted for technical batch. We
tested for differential expression within each L3 and L1 phenotype using the function
pseudobulkDGE with method=”voom” in the package scran version 1.22.1, and reported
up to 10 genes per phenotype that had FDR < 0.1 in the presented heatmap.

For the associations with severity, we encoded severity as an integer, with 2 indicating
moderate, 3 indicating severe and 4 indicating critical and used this score as a quantitative
variable, again adjusting for technical batch. We derived a cross-sectional snapshot by taking
the first time point for each donor, as long as that time point occurred before 20 days
post-symptom onset. If no samples occurred before 20 days post-symptom onset, then we
omitted that donor. We tested for differential expression within each L3, L2, and L1 phenotype
using the function pseudobulkDGE with method=”voom” in the package scran version
1.22.1, and reported up to 10 genes per phenotype that had FDR < 0.1.

DISCLOSURES

DA, MW, SP, FL, MJ and AM are employees of and hold stock and/or stock options in Ozette
Technologies. GF and EG are employees and founders of and hold stock and/or stock options in
Ozette Technologies.
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FIGURES

Figure 1: Applying Ozette Discovery to CITE-seq ADT data. A) Schematic of experimental
design presented in Liu et al. 2021. PBMC samples were collected from healthy control (HC)
subjects and patients with moderate, severe, or critical COVID-19 at various time points after
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symptom onset. These samples were profiled by CITE-seq using the 10x Genomics platform in
order to identify expression patterns associated with COVID-19 severity over time. B) Schematic
of Ozette Discovery analysis of Liu et al. 2021 CITE-seq ADT data. The inputs to the analysis
were the authors’ unfiltered feature barcode matrices, on which cell calling, doublet detection,
background normalization, and quality control were performed. Cell lineage or state markers
and highly variable markers (e.g. CLEC12A) were prioritized whereas poorly staining or
non-varying markers (e.g. CD123) were discarded, resulting in a panel of 17 markers
considered. Finally, we used Ozette Discovery to annotate cell phenotypes in the dataset based
on expression of the selected markers. Results were visualized in a UMAP where each point
represents a cell and colors indicate distinct cell phenotypes. C) 2-D histograms showing
expression of CD3 vs CD4 by CITE-seq ADT in three representative samples (columns). Top
row shows distribution of cells based on raw ADT counts of UMIs. Bottom row shows the
distribution of cells based on background-normalized ADT counts of UMIs. Axes are arcsinh
transformed with cofactor = 7. Color scheme indicates the density of cells at each point (scale at
top right of each plot).
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Figure 2: Ozette Discovery rapidly identifies granular, robust, and interpretable cell
phenotypes from ADT data. A) Annotation transformation-based UMAP embedding showing
Liu et al. data as annotated by Ozette Discovery. Clusters are colored by phenotype labels.
Phenotypes expressing CD3+CD45RO+CD27+CD4+ or CD3+CD45RO+CD27+CD4+CD62L+
and negative for all other markers are circled and labeled. These phenotypes are also

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.584720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.584720
http://creativecommons.org/licenses/by-nd/4.0/


highlighted in (B/D). B) Series of backgating plots generated by Ozette’s Discovery platform
demonstrating the distribution of all cells (gray) compared to the distribution of a selected
phenotype (dark blue), relative to the computationally-determined thresholds between negative
and positive populations for each marker (light blue lines). The color outlining each backgating
plot series matches the color circling the corresponding phenotype in (A). Axes are arcsinh
transformed with cofactor = 7. C) The same UMAP as in (A) colored by normalized ADT
expression of CD3 (left), CD20 (middle), or CD11b (right). Color scale on the far right is the
same for all plots and shows the relative expression from white (no expression) over red
(medium expression) to dark purple (highest expression). D) The same UMAP as in (A) colored
by the experimental batch.
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Figure 3: Phenotype labels generated by Ozette Discovery are more accurate than those
generated by current CITE-seq annotation methods. A) Reproductions of UMAP
embeddings presented in figure 2B of Liu et al., filtered to cells passing our QC metrics and
colored by the authors’ coarse phenotype labels. Plots show cells of the adaptive immune
system (top) and innate immune system (bottom). B) UMAP embedding generated by Ozette
Discovery colored by Liu et al. phenotype labels presented in (A). C) Magnified inset from (B).
Cells from multiple Liu et al. phenotypes (colors as in [B]) map to each Ozette phenotype
(CD3+CD4+CD45RA+CD62L- or CD3+CD4+CD45RA+CD62L+). D) Table showing counts of
cells annotated by Ozette Discovery as CD3+CD4+CD45RA+CD62L+ (left column) or
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CD3+CD4+Cd45RA+CD62L- (right column) versus their label in Liu et al. Liu et al. phenotypes
that contributed less than 25 cells to either Ozette phenotype were grouped into an “other”
category (9 phenotypes and 3 phenotypes, respectively). E) Backgating plots showing the
expression patterns of CD4 naive T cells (blue) as defined by Liu et al. (top) or Ozette Discovery
(bottom) compared to the distribution of all cells in the dataset (gray). Markers being plotted are
indicated on the axes and at the top of the corresponding column. Black boxes indicate
expected location of CD3+CD4+CD45RA+CD62L+ naive T cells, and red arrows indicate cells
with aberrant ADT expression. Density of “all cells” is indicated by shades of gray. Blue color is
not proportional to cell density. Scale is arcsinh transformed with cofactor = 7.
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Figure 4: Phenotype labels generated by Ozette Discovery better correlate with RNA
expression than current labeling methods. A) Heatmap showing up to the top 10
differentially expressed genes by logFC (rows) between cell phenotypes as defined by Ozette
Discovery (columns). Color scale shows Z score of gene expression by row. Column names are
colored according to cell lineage. Black arrows indicate canonical lineage markers and red
arrows indicate genes encoding proteins that were used to determine Ozette Discovery
phenotypes (legend in panel 4B). B) Heatmap showing up to the top 10 top differentially
expressed genes by logFC (rows) between cell phenotypes as defined in Liu et al. (columns).
Column names are colored according to cell lineage and black arrows indicate canonical
lineage markers. In both panels, rows and columns of the heatmaps are ordered by hierarchical
clustering of the euclidean distance between rows/columns using complete linkage.
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Figure 5: Identification of cell phenotypes expanded in critical COVID-19 patients. A)
Volcano plot showing differential abundance of cell phenotypes, with phenotypes
over-represented in patients with critical COVID-19 appearing to the right. Phenotypes with FDR
q-value < 0.1 are highlighted in red and labeled. “Rare” indicates a catch-all group for
low-abundance phenotypes (see Methods). B) Boxplots showing frequency (of total PBMCs) of
phenotypes that are CLEC12A+CD11b+ or CLEC12A+CD11b+CD11c+ and negative for all
other markers in the panel, stratified by COVID-19 severity. Dots represent individual samples,
and boxes plot the median and first and third quartiles. Color outlining each plot matches the
box outlining the location of that phenotype in (A). C) Backgating plots from the Ozette
Discovery dashboard as described in Fig 2B, highlighting the two phenotypes boxed in (A).
Color outlining each series of backgating plots matches the color outlining the corresponding
phenotype in (A).
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Figure 6: Changes in interferon-related gene expression precede expansion of
CLEC12A+CD11b+ phenotype. A) Days since COVID-19 symptom onset versus frequency (of
total PBMC) of CLEC12A+CD11b+ cells. Each point represents a sample, and thin lines connect
samples from the same patient. Thick lines indicate average trend by COVID-19 severity. Dots
and lines are colored by COVID-19 severity. B) Heatmap showing genes that are differentially
expressed in accordance with expansion of the CLEC12A+CD11b+ phenotype. The 10 most
significant genes by p-value and FDR < 10% within each Ozette Discovery phenotype are
shown. Empty cells represent tests that were not possible because that gene was not detected

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.14.584720doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.14.584720
http://creativecommons.org/licenses/by-nd/4.0/


in the corresponding phenotype. Genes shown in panel (C) are indicated with red arrows. C)
Plots showing expression of selected genes versus maximum frequency of CLEC12A+CD11b+
phenotype in either all cells or the indicated Ozette Discovery phenotype. ns = not significant. *
= significant at FDR < 10%.
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Figure 7: Identification of early predictors of severity. A) Schematic illustrating
pseudobulking approach used in this figure: gene expression for each cell (represented by
colored shapes) is aggregated by pseudobulking across phenotypes into L1 (all cells; coarsest),
L2 (cell lineages; intermediate), or L3 (preserving Ozette Discovery phenotypes; most granular)
levels to perform differential expression testing. B) Fraction of genes tested that are differentially
expressed between COVID-19 severity levels at early time points at either p < 0.001 (light blue
bars) or FDR < 10% (dark blue bars) in the indicated populations. Left panel shows this analysis
using Ozette Discovery phenotype labels and the right panel shows the same analysis using the
cell phenotype labels provided in Liu et al. C) Heatmaps showing the top differentially expressed
genes for L1, L2, or L3 Ozette Discovery phenotypes. Formatting is the same as for Fig 6B.
Stars indicate significant upregulation of GZMB and PRF1 in CD3+CD45RA+CD4+CD62L+
phenotype Fig 2D. Red arrows and red box indicate t-statistics for GZMB and PRF1 differential
expression. D) Plots showing expression of GZMB and PRF1 by COVID-19 severity in the
indicated Ozette Discovery phenotypes (top) or Liu et al. phenotypes (bottom). ns = not
significant. * = significant at FDR < 10%. E) Heatmap as in panel (C) showing L1 “All Cells” and
L3 Liu et al. phenotypes. F) Backgating plots showing ADT expression of cells labeled as DNT
by Liu et al. (blue) compared to all cells (gray). Formatting is the same as in Fig 2B.
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