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 23 

Abstract 24 

Motivation: Comparing large number of genomes in term of their genomic distance is 25 

becoming more and more challenging because there is an increasing number of microbial 26 

genomes deposited in public databases. Nowadays, we may need to estimate pairwise 27 

distances between millions or even billions of genomes. Few softwares can perform such 28 

comparisons efficiently. 29 

Results: Here we update the multi-threaded software BinDash by implementing several 30 

new MinHash algorithms and computational optimization (e.g. Simple Instruction Multiple 31 

Data, SIMD) for ultra-fast and accurate genome search and comparisons at trillion scale. 32 

That is, we implemented b-bit one-permutation rolling MinHash with optimal/faster 33 

densification with SIMD. Now with BinDash 2, we can perform 0.1 trillion (or ~10^11) pairs 34 

of genome comparisons in about 1.8 hours on a descent computer cluster or several 35 

hours on personal laptops, a ~50% or more improvement over original version. The ANI 36 

(average nucleotide identity) estimated by BinDash is well correlated with other accurate 37 

but much slower ANI estimators such as FastANI or alignment-based ANI. In line with the 38 

findings from comparing 90K genomes (~10^9 comparisons) via FastANI, the 85% ~ 95% 39 

ANI gap is consistent in our study of ~10^11 prokaryotic genome comparisons via 40 

BinDash2, which indicates fundamental ecological and evolutionary forces keeping 41 

species-like unit (e.g., > 95% ANI) together.  42 

Availability and implementation: BinDash is released under the Apache 2.0 license at: 43 

https://github.com/zhaoxiaofei/bindash  44 
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Contact: kostas.konstantinidis@gatech.edu 45 

Supplementary information: Supplementary data are available at Bioinformatics 46 

online. 47 

Keywords: MinHash, One Permutation Hashing, densification, SIMD, ANI 48 

 49 

Introduction 50 

MinHash, originally developed for detecting duplicate webpages (Broder, et al., 1998), 51 

turned out to be a powerful strategy when applied for genome comparisons in the 52 

pioneering work from Ondov, et al. (2016): genome kmer set Jaccard index estimated via 53 

MinHash can be accurate estimation of genomic distance or ANI via Mash equation 54 

ANI	or	(1 − Mash!) = 1 + "
#
log($∗&

"'&
)). In the original MinHash work, many hash functions 55 

are required under the locality sensitivity scheme. An alternative to k-minwise when 56 

estimating set similarity with Minwise sketches is bottom-k implementation, where we use 57 

one hash function and maintain the sketch as the keys with the k smallest hash values 58 

(Broder, 1997). However, it needs a priority queue to maintain the k smallest hash values, 59 

and this leads to a non-constant worst-case time per element (overall complexity is 60 

O(n*log(k))), which may be a problem in real-time processing of high-volume data 61 

streams. More importantly, since only one hash function was used, we are not able to 62 

encode set-similarity as an inner product of two sketch vectors. This is because the 63 

elements lose their “alignment” – that is, the key with the smallest hash value in one set 64 

might have the 10th smallest hash value in another set (Dahlgaard, et al., 2015). Or in 65 

other words, the alignment property is preserved if the same components (e.g., value at 66 
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a given position) of two different sketches are equal with a collision probability that is a 67 

monotonic function of some similarity measure, also called a locality sensitive hashing 68 

(Shrivastava, 2017). In many real-world applications, such as nearest neighbor search, 69 

this property will guarantee theoretically optimal accuracy and search recall will 70 

deteriorate significantly if not preserving LSH (Shrivastava, 2017).  Another interesting 71 

alternative is called One Permutation Hashing, which also applies only one hash function 72 

with time complexity O(n + s)). However, it has much larger variance than traditional k-73 

minwise hashing because there might be empty slots in the sketch vector after splitting 74 

the sketch into buckets. Densification, that is to fill in the empty slots with some non-empty 75 

slots, chosen with certain rules, has greatly improved the accuracy of one permutation 76 

hashing and proved to be theoretical equivalent to that of traditional k-minwise hashing.  77 

Based on one permutation hashing, original densification (Shrivastava and Li, 2014), 78 

improved densification (Shrivastava and Li, 2014) and optimal densification (Shrivastava, 79 

2017) are proposed and have all been proven to be locality sensitive theoretically. We 80 

implemented so called original densification and optimal densification in the first version 81 

of BinDash (Zhao, 2019). However, more densification strategies have been proposed 82 

since the publication of original BinDash, e.g., faster densification (Mai, et al., 2020), re-83 

randomized densification (Li, et al., 2019), bidirectional densification (Jia, et al., 2021) 84 

with even better run time behavior. Specifically, faster densification improved the worse-85 

case densification computational complexity in optimal densification from O(n + s^2) to 86 

O(n + s*log(s)) with the same average-case O(n + s) (Figure 1b and c) while re-87 

randomized densification further improves accuracy for optimal densification at the cost 88 
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of additional computation since rerun MinHash within previously empty bins after optimal 89 

densification is computationally expensive when there are many empty bins, see detailed 90 

complexity analysis for re-randomization densification (Li, et al., 2019).  BinDash 2 91 

implemented all flavors and variants of MinHash presented in Broder (1997), Li and König 92 

(2010), Li, et al. (2012), Shrivastava and Li (2014), Shrivastava and Li (2014), Shrivastava 93 

(2017) (Figure 1a and b) and Mai, et al. (2020) (Figure 1a and c)  with SIMD (see below). 94 

The implementation detail is presented in Supplementary Material. 95 

The limiting step of BinDash is popcount, which counts the number of non-zero elements 96 

in large bit vectors for estimation of collision probability (after XOR operation). However, 97 

recent algorithmic advancements in Simple Instruction Multiple Data has provided the 98 

opportunity to further speed up popcount for many instruction sets (e.g., AVX2, AVX512 99 

and SVE512) (Langarita, et al., 2023; Muła, et al., 2018). Since we use 64-bit integer type 100 

as sketch vector to store hashes from kmers, it possible to use SIMD to count the number 101 

of non-zero elements in parallel after rearranging the sketch vector in a way such that 102 

each small portion of sketch vector fill into AVX instructions (e.g., 512 bit for AVX512 or 103 

SVE512, 256 bit for AVX2) and also take care of the remaining part that does not fit for 104 

any size of sketch vectors. 105 

Genomic distance, measured via Jaccard index can be transformed into genome average 106 

nucleotide identity via the Mash equation mentioned above. However, it has been recently 107 

proved that the Poisson model assumption of sequence evolution can also be replaced 108 

by Binomial model, which give more accurate estimation of ANI for distantly related 109 

genomes (e.g., below 85% ANI) (Belbasi, et al., 2022): 𝐴𝑁𝐼	𝑜𝑟	(1 −𝑀𝑎𝑠ℎ!) = ("∗$
%&$
)
!
". We also 110 
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add this Binomial model option in BinDash2. To further improve the accuracy of BinDash 111 

2 estimated ANI when compared to alignment-based ANI, we implemented a supervised 112 

leaning step, which minimize the RMSE between BinDash 2 estimated ANI according to 113 

the RMSE equation: 𝑅𝑀𝑆𝐸 = &∑'()
* (#'$#')+

&
 where 𝑦𝑡 and 𝑦𝑡 are BinDash 2 estimated 114 

ANI and orthoANI (usearch) ANI for each pair, respectively. T is the total number of pairs 115 

of genomes in the training dataset. We use a large collection of training genomes (10,000) 116 

extracted from NCBI/RefSeq, covering ANI from 75% to 100%.  117 

Similar to the first version, for each set, BinDash2 first applies one-permutation MinHash 118 

(Li, et al., 2012), which use one predefined hash function to all elements/kmers in the set. 119 

Then, one-permutation MinHash deterministically partitions the hash value universe into 120 

a predefined maximum number B of buckets, extracts the smallest hash value in each 121 

bucket, and extracts the b lowest bits (b=14 in practise) of each smallest hash value (Li 122 

and König, 2010). These B*b bits are use as the signature of the set. Usually, a hash 123 

value v is assigned to the ⌈v/(M/B)⌉ bucket, where M is the maximum possible value for 124 

v. One-permutation MinHash may produce a bucket that contains hash values for one set 125 

but no hash values for another set, we then apply densification algorithms (Shrivastava 126 

and Li, 2014). In additional to all MinHash schemes implemented in original version 127 

(original MinHash, bottom-k MinHash and optimal densification), we then implemented 128 

faster densification in BinDash2. That is, we now implemented b-bit one-permutation 129 

rolling MinHash with optimal/faster densification with SIMD. Specifically, cyclic-130 

polynomial rolling hash based on iterated string hashing is much faster than 131 

MurMurHash3 for DNA strings as in Mash (Lemire, 2012; Lemire and Kaser, 2014). We 132 
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also added nearest neighbor search option to only report nearest genomic distance to 133 

query genomes with the consideration that the three densification schemes are all LSH, 134 

a property important for genome search and classifications, questionable for other similar 135 

softwares without LSH properties such as Mash, Dashing and Sourmash (Baker and 136 

Langmead, 2019; Brown and Irber, 2016; Ondov, et al., 2016).  137 

 138 

Evaluation 139 

We compared BinDash2 with BinDash, Mash, Dashing 1 and 2, the state-of-the-art 140 

MinHash-based bioinformatics softwares. On Dec. 22, 2023, the 315,686 assemblies of 141 

bacterial and archaea genomes in RefSeq were downloaded. The downloaded genomes 142 

consist of 412.7 GB of gzip-compressed FASTA files (~2.1 terabytes for raw fasta files).  143 

The 315,686 compressed genomes are used as input data to each software. For each 144 

software, we recorded the following: total size of the files used to represent sketches and 145 

wall-clock runtime of each command. Each software ran, with its default parameter values 146 

(other than a cutoff of 0.2 for mutation rate) with 24 threads, on a Red Hat Enterprise 147 

Linux (Intel(R) Xeon(R) Gold 6226 CPU @ 2.70GHz, supports AVX2 and AVX512 148 

instruction sets). BinDash2, dashing 1 and 2 and Mash are both composed of two 149 

commands: sketch and dist. The command sketch compute sketches based on hashing 150 

kmers from genomes. The command dist compares each sketch used as query to each 151 

sketch used as target. The total runtime of these two commands is the total runtime of 152 

the corresponding software. In all comparisons, we use sketch size 10,000 instead of the 153 

default 2000 to have accuracy at 99% ANI or above, sketch size is important for real-154 
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world genomic distance comparisons for species level ANI comparisons (e.g., 95% or 155 

99%) as shown in many places (Jain, et al., 2018). For 318,756 bacterial and archaea 156 

genomes, BinDash 2 is 47.8% faster than original BinDash, ~80 time faster than Mash, 157 

~8 and ~17 times faster than Dashing 1 (HLL) and 2 (ProbMinHash or SetSketch) 158 

respectively, for the dist command (Table S1) while for sketch, BinDash 2 is sighly slower 159 

than Dashing 1 (HLL, the fastest). However, since sketch step is always less than 20 160 

minutes for ~318K genomes, it is not a limiting step for all tools mentioned above (Table 161 

S2). In terms of sketch size stored on disk, BinDash 2 and BinDash is about 3 times 162 

smaller than Mash but larger than Dashing (Table S1). 163 

We did a theoretical analysis of RMSE for all MinHash-like and HyperLogLog-like 164 

algorithms and showed that MinHash-like algorithms are generally more accurate than 165 

HyperLogLog-like algorithms in terms of estimating Jaccard index (Table S2). We 166 

computed the true pairwise Jaccard indices of the 120 reference genomes chosen among 167 

these 318,756 genomes with ANI above 80%. The true Jaccard indices serve as ground 168 

truth and root-mean-square error (RMSE) was used to measure the accuracy of all tools. 169 

BinDash 2 remains almost the same accuracy with original BinDash, with RMSE better 170 

than both Mash and Dashing (Table S3). More importantly, BinDash 2 and Mash RMSE 171 

converges to 0 as sketch size increases in theory while for Dashing 1 and 2 172 

(HyperLogLog), there is no such guarantee (Table S2) (Flajolet, et al., 2007; Gakhov, 173 

2022).  174 

To show the real-world application of BinDash 2, we first compare the ANI from BinDash 175 

2 with orthoANI after correction: A correcting factor 𝜎 is obtained via the supervised 176 
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learning step to correct the final ANI or 1-MashD so that the final output ANI value 177 

correlates well with orthoANI (usearch) ANI (Figure 1d). Then we applied it to defining 178 

bacterial genome species boundaries by performing all versus all comparisons among 179 

~318K genomes.  We see a clear 85% to 95% ANI gap (Figure 1e), consistent with more 180 

accurate but much slower software called fastANI. We believe this consistent gap is not 181 

sampling bias or cultivation bias because many genomes deposited recently are 182 

environmental genomes obtained by metagenomics and they reject cultivation and 183 

isolation. 184 

 185 

Discussion 186 

BinDash 2 implemented the fastest densification idea called faster densification, which 187 

has the same theoretical RMSE with traditional MinHash. Overall, MinHash-like 188 

algorithms for estimation of Jaccard index are more accurate than HyperLogLog-like 189 

algorithms as implemented in Dashing 1 and Dashing 2. To further improve the accuracy 190 

of MinHash estimated Jaccard index or ANI, it is possible to explore new MinHash 191 

algorithms like re-randomized MinHash (Li, et al., 2019) and  circulant MinHash (Li and 192 

Li, 2022), which are all theoretical breakthroughs very recently. However, both algorithms 193 

achieved smaller RMSE (using same sketch size) at the expense of additional 194 

computations. For example, re-randomized MinHash requires additional MinHash step 195 

within each empty bin after running optimal densification, which can be several times 196 

slower than faster densification according to theoretical analysis (Li, et al., 2019). 197 

Circulant MinHash requires large number of random permutations for the second 198 
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permutation procedure, which is not so efficient for large number of bins in sketch vector 199 

in practice. However, we can use slightly larger sketch size in fast densification to achieve 200 

similar accuracy with re-randomized MinHash or Circulant MinHash because the running 201 

time of faster densification is not compromised due to the fact that average-case O(n + s) 202 

is not affected by sketch size s (n is always more than 100 times larger than s for genomic 203 

applications). In this regard, BinDash 2 achieved the best running time and accuracy 204 

trade-off among all MinHas-like algorithms, including newly invented ones. 205 

We have also showed that BinDash 2 can be used to perform large scale genome 206 

comparisons and help define prokaryotic genome species. Taken together, via 207 

implementing new algorithms and computational optimization, we believe BinDash 2 will 208 

be a practical alternative to similar tools and will help very large-scale microbial genome 209 

search and comparisons while maintaining accuracy for biological knowledge discovery. 210 

 211 
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 215 
Figure 1. (a) One Permutation Hashing; (b) Optimal Densification. Mapping empty bins to non-empty bins and copy 216 
values from non-empty bins to empty bins, carefully designed 2-universal hashing is required for mapping, implemented 217 
in BinDash 1; (c) Faster Densification or Reverse Optimal Densification. Mapping non-empty bins to empty bins and 218 
copy values to empty bins from non-empty bins, random hashing library can be used, e.g., murmurhash3, implemented 219 
in BinDash 2; (d) BinDash estimated ANI vs. OrthoANI for randomly selected 3,000 prokaryotic genomes after 220 
supervised learning; (e) Distribution of ANI pairs with >75% ANI for all vs. all comparisons of ~318K NCBI/RefSeq 221 
prokaryotic genomes. The histogram follows a bimodal distribution with less than 0.01% of pairs fall between ANI 85% 222 
and 95%. 223 
 224 
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Algorithm 1 Faster Densification
input: v, {h↵}
output: D(v)

1: for j 2 Nv do
2: D(v)j  vj

3: E  Ev

4: ↵ 0
5: while E 6= ; do
6: for j 2 Nv do

if g↵(j) = i 2 E then
D(v)i  vj

7:
8:
9: E  E \ {i}

10:
11: ↵ 

if E = ; then break
↵+ 1

12: return D(v)
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J * (1 − J )
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