

1 PrgE: an OB-fold protein from plasmid pCF10 with striking differences to prototypical
2 bacterial SSBs

3

4

5 Annika Breidenstein^{1,2}, Anaïs Lamy^{1,2}, Cyrielle P. J. Bader¹, Wei-Sheng Sun^{1,2}, Paulina H.
6 Wanrooij¹ and Ronnie P-A Berntsson^{1,2, #}

7

8 ¹ Department of Medical Biochemistry and Biophysics, Umeå University, SE-90187 Umeå,
9 Sweden

10 ² Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden

11

12

13 [#] Correspondence should be addressed to R.P-A.B. (email: ronnie.berntsson@umu.se)

14

15 **Abstract**

16 A major pathway for horizontal gene transfer is the transmission of DNA from donor to
17 recipient cells via plasmid-encoded Type 4 Secretion Systems (T4SS). Many conjugative
18 plasmids encode for a single-stranded DNA-binding protein (SSB) together with their T4SS.
19 Some of these SSBs have been suggested to aid in establishing the plasmid in the recipient cell,
20 but for many their function remains unclear. Here, we characterize PrgE, a proposed SSB from
21 *Enterococcus faecalis* plasmid pCF10. We show that PrgE is not essential for conjugation.
22 Structurally, it has the characteristic OB-fold of SSBs, but it has very uncharacteristic DNA-
23 binding properties. Our DNA-bound structure shows that PrgE binds ssDNA like beads on a
24 string, and this plasticity of PrgEs oligomerization is further confirmed by *in vitro* studies.
25 Unlike other SSBs, PrgE binds both double- and single-stranded DNA equally well. This shows
26 that PrgE has a quaternary assembly and DNA-binding properties that are very different from
27 the prototypical bacterial SSB, but also different from the eukaryotic SSBs.

28

29 **Introduction**

30 Horizontal gene transfer is an important way for bacteria to spread genetic information between
31 populations, for example for the propagation of antibiotic resistance or virulence genes¹.
32 Conjugation is one type of horizontal gene transfer which allows for the transfer of plasmids
33 from donor to recipient cells via Type IV Secretion Systems (T4SS)². These systems are
34 increasingly well-understood in Gram-negative bacteria, where recent cryo-EM structures
35 provide an understanding of the mating channel at a molecular level^{3,4}. In contrast, our current
36 understanding of Gram-positive T4SSs is much more limited as such detailed information is
37 not available⁵.

38

39 One of the best studied Gram-positive T4SS is from the conjugative plasmid pCF10^{6,7}. This
40 plasmid is a clinical isolate from *Enterococcus faecalis*, a commensal pathogen that often
41 causes hospital-acquired infections and is frequently multiresistant to antibiotics⁸⁻¹¹. pCF10 is
42 a pheromone inducible plasmid with a complex regulation^{12,13}. All T4SS proteins on pCF10
43 are encoded on a single operon, controlled by the P_Q promotor. This operon thus contains the
44 genes that code for i) some of the regulatory proteins, ii) the adhesin proteins that facilitate
45 mating pair formation, iii) the proteins that form the mating channel and iv) the DNA-transfer
46 and replication (Dtr) proteins, including ATPases that provide the energy for DNA transport,
47 and the relaxosome proteins PcfF and PcfG, which aid in processing the plasmid DNA prior to
48 transfer (Fig. 1)^{5,14}.

49
50 Many conjugative plasmids encode additional proteins that are not directly involved in
51 conjugation, but have various functions that confer competitive advantages to the plasmid¹⁵.
52 PrgE is a small soluble protein that is encoded roughly one third into the P_Q operon, in between
53 genes encoding for the mating channel (Fig. 1). PrgE has not been previously characterized
54 and its role in type IV secretion is therefore unknown, but it has been suggested that PrgE is a
55 single-stranded DNA-binding protein (SSB), based on its sequence homology of 37 % to a SSB
56 in a lactococcal phage^{6,16}.

57
58 SSBs are involved in all molecular mechanisms that require manipulation of single-stranded
59 (ss) DNA, such as DNA-replication, recombination, and repair and can be found in all
60 kingdoms of life¹⁷. Generally, SSBs share a structural motif, the
61 oligosaccharide/oligonucleotide-binding (OB)-fold. The motif consists of a 5-stranded beta-
62 barrel followed by a single alpha-helix. However, there is a lot of variability in the loops
63 between the beta-strands and the length of OB domains can range from 70 to 150 amino acids

64 and they often have a low primary sequence identity of 5-25 %^{18,19}. While the topology of the
65 OB-fold is well conserved, the quaternary organization of SSBs varies between the different
66 kingdoms of life. The *E. coli* SSB, which is the prototype for bacterial SSBs, forms a
67 homotetramer with two distinct DNA-binding modes, depending on salt and protein
68 concentrations. In the first binding mode, *E. coli* SSB interacts with ssDNA with only two of
69 its subunits, while the ssDNA wraps around the full tetramer in the second²⁰⁻²². In eukaryotes,
70 the prototypical SSB is replication protein A (RPA). RPA forms a heterotrimer consisting of
71 RPA70, RPA32 and RPA14, with corresponding molecular weights, with each subunit
72 containing at least one OB-fold^{23,24}. When it comes to archaea, some phyla have SSBs that
73 resemble bacterial SSBs, while others have more in common with eukaryotic RPA²⁵. Some
74 viruses rely exclusively on host SSBs, while others encode their own proteins, with a large
75 diversity of characteristics, some of which act as monomers^{26,27}. However, there is also
76 variation within the kingdoms, as many bacterial and eukaryotic species have more than one
77 type of OB-fold protein, which can vary significantly from their respective prototypes²⁷⁻³⁰.

78

79 In addition to chromosomal SSBs, many prokaryotes also carry conjugative plasmids that
80 encode SSBs^{31,32}. These are believed to contribute to plasmid maintenance, and are thought to
81 be important for protecting ssDNA during conjugation^{31,33,34}. Many plasmid SSBs can
82 complement for deficiencies in genomic SSB³². Recently, it was shown that F plasmid encoded
83 T4SS can translocate plasmid SSB into recipient cells where they function to suppress the
84 mating-induced SOS-response^{15,35}. However, it is not known whether SSBs encoded on
85 conjugative plasmids from Gram-positives are functionally analogous.

86

87 In this study, we show that PrgE plays no essential role in conjugation, but that it has very
88 unusual DNA-binding properties. Crystal structures of apo and DNA-bound PrgE show that

89 PrgE has the characteristic OB-fold of SSBs, but that it binds ssDNA in a filamentous way,
90 which is further supported by *in vitro* experiments. We also present data that shows that PrgE
91 unexpectedly binds both ssDNA and dsDNA equally well.

92

93 **Materials and methods**

94 *Cloning, plasmids and strains*

95 Strains, oligos and plasmids used in this study are listed in **Table S1**. *E. coli* strains were
96 cultured in Lysogeny Broth (LB) or Terrific Broth (TB) supplemented, when necessary, with
97 antibiotics at the following concentrations: 100 µg/mL kanamycin, 20 µg/mL gentamycin and
98 25 g/mL chloramphenicol. *E. faecalis* strains were cultured in Brain-Heart-Infusion (BHI)
99 broth or Tryptic Soy Broth without Dextrose (TSB-D) supplemented, when necessary, with
100 antibiotics at the following concentrations, 10 µg/mL chloramphenicol, 10 µg/mL tetracycline,
101 25 µg/mL fusidic acid, 20 µg/mL erythromycin.

102

103 The sequence encoding *prgE* was PCR-amplified from the pCF10 plasmid using primers
104 PrgE_FX_F and PrgE_FX_R and cloned into the intermediate vector pINIT_kan after
105 digestion by *SapI*, using the FX cloning system³⁶. It was sub-cloned into the expression vector
106 p7XC3H, which provides a C-terminal 10xHis-tag and a 3C protease cleavage site, before
107 transformation of *E. coli* ArcticExpress (DE3) cells. The sequence encoding *pcfG* was PCR-
108 amplified using the primers PcfG_F and PcfG_R and cloned into a pET24d vector after
109 digestion with *Eco3II*, which provides a N-terminal 10xHis-tag and a SUMO-tag, before
110 transformation into *E. coli* BL21 (DE3) cells.

111

112 The *E. faecalis* PrgE deleted strain, OG1RF:pCF10Δ*prgE*, was obtained by allelic exchange
113 and counter-selection using a pCJK218 plasmid³⁷, leaving the nucleotides encoding the first

114 and last five amino acids of the protein. About 800 bp of the upstream and downstream region
115 of PrgE were PCR-amplified using the primer pairs PrgE-UF-F/PrgE-UF-R and PrgE-DF-
116 F/PrgE-DF-R, respectively. The products were digested by *BamHI/SalI* for the upstream region
117 and *SalI/NcoI* for the downstream region, prior to cloning into the pCJK218 digested by
118 *BamHI/NcoI*. The resulting plasmid was used to transform *E. faecalis* OG1RF:pCF10 by
119 electroporation³⁸. The PrgE deleted transformants were obtained by switching temperature to
120 induce allelic exchange as described by Vesić and Kristich³⁷, and the gene deletion was
121 subsequently confirmed by sequencing.

122

123 *Protein production*

124 Proteins were expressed using the LEX system (Large-scale EXpression system, Epiphyte 3).
125 PrgE was transformed in *E. coli* ArcticExpress (DE3) cells and cultivated in TB medium
126 supplemented with 0.4 % glycerol. The cultures were grown at 30°C until an OD₆₀₀ of 0.8,
127 then, cooled down to 12°C before 0.4 mM IPTG was added to induce protein expression. After
128 24 h, cells were centrifuged at 4000 xg during 20 min. Pcff was produced the same way, with
129 the exception that BL21 (DE3) cells were used, and cultures were grown at 37°C before
130 lowering the temperature to 18°C prior to induction, and harvested after 20 h. PcfG was
131 produced in Origami (DE3) cells using autoinduction TB media. Cultures were grown at 37°C
132 until OD 0.6 was reached, followed by 24 h at 25°C without the addition of IPTG.

133

134 *Protein purification*

135 Cell pellets were resuspended in different lysis buffers. For PrgE this lysis buffer consisted of
136 50 mM Tris-HCl pH 8, 10 % glycerol, 500 mM NaCl, 10 mM imidazole, 0.2 mM AEBSF,
137 1 mM DTT, 1 mM MgSO₄ and 0.02 mg/mL DNase I. For Pcff the lysis buffer was 50 mM
138 HEPES pH 7.5, 500 mM NaCl, 0.2 mM AEBSF and 0.02 mg/mL DNase I. For PcfG the lysis

139 buffer was 50 mM Tris-HCl pH 8, 10 % glycerol, 500 mM NaCl, 10 mM imidazole, 0.2 mM
140 AEBSF and 0.02 mg/mL DNase I. Resuspended cells were lysed in a Cell Disruptor (Constant
141 Systems) at 25 kPsi and centrifuged at 30,000 x g for 30 min at 4°C.

142

143 PrgE-His supernatant was incubated for 1 hour at 4°C with gentle rocking with Ni-NTA resin
144 (Protino®). After incubation, the mix was transferred into a gravity flow column and washed
145 with three subsequent 20 CV washes with wash buffer (20 mM Tris-HCl pH 7.5, 5 % glycerol,
146 500 mM NaCl, 50 mM imidazole), LiCl-wash buffer (wash buffer supplemented with 2 M
147 LiCl) and wash buffer. The resin was then incubated overnight at 4°C with gentle rocking in
148 elution buffer (20 mM Tris-HCl pH 7.5, 500 mM NaCl, 5 % glycerol, 50 mM imidazole, 1 mg
149 of PreScission protease, 1 mM DTT), during which the His-tag was cleaved. The flow through,
150 as well as an additional wash with 5 CV elution buffer, was collected and concentrated using
151 Amicon Ultra Centrifugal filters with a molecular weight cutoff of 10 kDa. The protein was
152 then subjected to size exclusion chromatography (SEC) in 20 mM HEPES pH 7.5 and 300 mM
153 NaCl on a HiLoad 16/600 Superdex 200 pg column using an Äkta Purifier (Cytiva). For buffer
154 exchange before various experiments, PrgE was subjected to a second SEC using a Superose 6
155 Increase 10/300 GL column on an Äkta Pure (Cytiva).

156

157 GST-PcfF supernatant was incubated for 1 h with Glutathione resin (GE Healthcare) at 4°C
158 and subsequently washed with 50 CV wash buffer (20 mM HEPES pH 7.5, 200 mM NaCl)
159 prior to elution with 20 mM HEPES pH 7.5, 200 mM NaCl, 30 mM glutathione. The protein
160 was concentrated with Amicon Ultra Centrifugal filters with a molecular weight cutoff of 10
161 kDa prior to SEC in 20 mM HEPES pH 7.5, 200 mM NaCl on a Superdex 200 Increase 10/300
162 GL column using an Äkta Pure (Cytiva).

163

164 His-PcfG supernatant was incubated for 1 h at 4°C with pre-equilibrated HisPur™ Cobalt Resin
165 (Thermo Scientific) to three subsequent 20 CV washes with wash buffer (20 mM HEPES pH
166 7.5 5 % glycerol, 300 mM NaCl, 30 mM imidazole), LiCl-wash buffer (wash buffer
167 supplemented with 2M LiCl) and wash buffer. PcfG was then eluted in 15 CV elution buffer
168 (20 mM HEPES pH 7.5 5 % glycerol, 300 mM NaCl, 150 mM imidazole). The protein was
169 loaded onto a HiTrap Heparin HP (5 mL) column (GE Healthcare) equilibrated with Buffer A
170 (20 mM HEPES pH 7.5, 150 mM NaCl). PcfG was eluted in a salt gradient to 100 % Buffer B
171 (20 mM HEPES pH 7.5, 1000 mM NaCl).

172

173 *Crystallization and structure determination*

174 SEC purified PrgE, with a concentration of 11 mg/mL, was used for crystallization trials.
175 Crystals appeared after 2-5 days, at 20°C, using the vapor diffusion method in a condition with
176 0.2 M LiSO₄, 0.1 M K Phos Cit pH 4.2, 20 % w/v PEG 1000 in a 2:1 ratio. For the DNA-bound
177 structure, 117 µM of single-stranded poly-A 60mer was added to 6 mg/mL PrgE and mixed in
178 a 1:2 ratio with a reservoir solution containing 15 % v/v PEG 400, 50 mM MES pH 6.5, 80 mM
179 Mg acetate, 15 mM MgCl₂. Crystals were flash-frozen in liquid nitrogen without additional
180 cryo-protectant. X-ray diffraction data were collected at the ID30A-3 (apo) or ID23-1 (DNA-
181 bound) beamlines at the ESRF, France and processed using XDS³⁹. The space group of both
182 crystals was P2₁2₁2₁ and the phase problem was solved in Phenix Phaser⁴⁰ using molecular
183 replacement with an AlphaFold2⁴¹ model of PrgE where the flexible extremities of the protein
184 had been removed, generated using ColabFold version 1.5.2 using default settings⁴². The
185 asymmetric unit of the crystal contained two copies of PrgE for the apo structure. The
186 asymmetric unit of the DNA-bound protein contained three copies of the protein and a 15
187 nucleotide stretch of the single-stranded DNA. The chosen asymmetric unit thus contains only
188 a quarter of the full ssDNA that the protein was crystallized with. We chose to do so since the

189 ssDNA has continuous density throughout the crystal packing, and this greatly simplified the
190 refinement process. The structures were built in Coot⁴³ and refined at 2.7 Å using Refmac5⁴⁴
191 and obtained R_{work}/R_{free} values of 23.45 and 27.77 for the apo structure and 23.05 and 25.23
192 for the DNA-bound structure. Further refinement statistics can be found in **Table S2**. Atomic
193 coordinates and structure factors have been deposited with the Protein Data Bank with the
194 accession codes 8S4S and 8S4T for the apo and DNA-bound structures, respectively.

195

196 *SEC-MALS*

197 For analysis of the oligomeric state of PrgE, 150-300 µL of 1 mg/mL PrgE (with a theoretical
198 mass of 17 kDa) was loaded on a Superdex 200 Increase 10/300 GL column, equilibrated in
199 buffer (20 mM HEPES pH 7.5 and 300 mM NaCl) via an ÄKTA Pure (Cytiva) that was coupled
200 to a light scattering (Wyatt Treas II) and refractive index (Wyatt Optilab T-Rex) detector to
201 determine the molecular weight of the elution peak via multi-angle laser light scattering (SEC-
202 MALS). Data was analyzed using Astra software (version 7.2.2; Wyatt Technology).

203

204 *Crosslinking*

205 PrgE crosslinking experiments were performed by incubating 30 µg of protein with 2 mg of
206 disuccinimidyl suberate (DSS) in 20 mM HEPES pH 7.5 and 300 mM NaCl for 30 min at 20°C.
207 The reaction was quenched by adding 100 mM Tris/HCl pH 8.0 at least 10 min prior to analysis
208 using SDS-PAGE with Coomassie Brilliant Blue staining.

209

210 *Preparation of DNA substrates*

211 Oligonucleotides were purchased from Eurofins and are listed in **Table S1**. For double-
212 stranded substrates, one nmol of each oligonucleotide was annealed to an equimolar amount of
213 its complementary strand by denaturing at 95°C for 5 min in TE buffer (50 mM Tris-HCl pH

214 8.0, 1 mM EDTA) containing 100 mM NaCl, and allowing the reaction mixture to cool to room
215 temperature. The DNA was separated on a 15 % acrylamide gel in 0.5 × TBE (15 mM Tris,
216 44.5 mM boric acid, 1 mM EDTA), stained with 3 × GelRed (Biotium) for 30 min and
217 visualized by using ChemidocTM (Bio-Rad). The bands corresponding to double-stranded
218 molecules were excised with a clean razor blade, eluted from crushed gel slices into TE buffer
219 (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and purified by phenol-chloroform extraction and
220 isopropanol precipitation.

221

222 *Fluorescence anisotropy assay*

223 Single-stranded and double-stranded oligonucleotides of 30 nt or 60 nt with a 5' FITC label
224 were diluted to 20 nM in binding buffer (20 mM HEPES pH 7.5, 50 or 100 mM NaCl, as
225 indicated). Before use, the single-stranded oligonucleotides only were boiled for 5 min at 95°C
226 and chilled on ice. Fluorescence anisotropy reactions containing 10 nM oligonucleotide and 0
227 - 20 μM PrgE in binding buffer were pipetted in duplicates onto black shallow 384-well
228 microplates (OptiPlate-F, PerkinElmer) and incubated in the dark for 30 min at room
229 temperature. Fluorescence intensities were collected from above on a CLARIOstar[®] *Plus* plate
230 reader (BMG Labtech) with the excitation and emission wavelengths 480 nm and 520 nm,
231 respectively. Fluorescence anisotropy in millianisotropy units (mA) was calculated using
232 MARS Data analysis Software (BMG Labtech) according to Equation 1:

233
$$\text{fluorescence anisotropy} = (F_{\parallel} - F_{\perp}) / (F_{\parallel} + 2 * F_{\perp}) * 1000$$

234 where F_{\parallel} and F_{\perp} are the parallel and perpendicular emission intensity measurements corrected
235 for background (buffer). PrgE alone exhibited no fluorescence. The dissociation constant (K_d)
236 was determined by fitting data to a quadratic equation by non-linear regression analysis in
237 GraphPad Prism software (GraphPad Software, Inc., USA) using Equation 2:

238
$$Y = B_0 + (B_{max} - B_0) \times \frac{\sqrt{(D + X + K_d)^2 - (4 \times D \times X)}}{2 \times D}$$

239 where Y is the anisotropy value at protein concentration X, X is the concentration of PrgE in
240 μM , B0 and Bmax are specific anisotropy values associated with free DNA and total DNA-
241 PrgE respectively, and D is the concentration of DNA in μM .

242

243 *Pull-down experiments with relaxosome components*

244 PrgE pull-down experiments were performed in 20 mM HEPES pH 7.5 and 200 mM NaCl by
245 mixing either 2 nmol GST-PcfF or PcfG-His (baits) with 4 nmol PrgE without tag (pray) and
246 100 μl of the resin (Glutathione resin (GE Healthcare) when using PcfF and Ni-NTA
247 (Protino®) for PcfG). The proteins were incubated for 15 min at 4°C prior to collecting the
248 flow through and washing with 5 x 5 CV wash buffer and eluting with 2 x 5 CV elution buffer.
249 For GST-PcfF pull-downs, 20 mM HEPES pH 7.5 and 200 mM NaCl was used as wash buffer
250 and 20 mM HEPES pH 7.5, 200 mM NaCl and 30 mM Glutathione as elution buffer. For His-
251 PcfG pull-downs, wash buffer contained 20 mM HEPES pH 7.5, 200 mM NaCl, 30 mM
252 imidazole and elution buffer 20 mM HEPES pH 7.5, 200 mM NaCl, 500 mM imidazole. The
253 samples were analyzed on SDS-PAGE and stained with Coomassie Brilliant Blue.

254

255 *Conjugation assays*

256 Donor (OG1RF:pCF10 or OG1RF:pCF10 Δ p rgE) and recipient (OG1ES) strains were
257 inoculated with the indicated antibiotics and incubated overnight at 37°C with agitation. The
258 next day, the overnight cultures were refreshed in BHI media without antibiotics in a 1:10 ratio.
259 For conjugation assays in exponential phase, cells were directly induced to express the T4SS
260 with 5 ng/mL cCF10 for 1 h at 37°C without agitation. For conjugation assays in stationary
261 phase, cultures were first incubated for 3 h at 37°C with agitation prior to induction. Donor and
262 recipient cells were then gently mixed in a 1:10 ratio and incubated for 30 min at 37°C without
263 agitation. To disrupt the ongoing conjugation, cells were vortexed and placed on ice for 10 min.

264 A serial dilution was performed with cold media and 10 μ l of the appropriate dilutions were
265 spotted in triplicates on the top of a square BHI agar plate and placed in an upright position to
266 allow the drops to run down the plate to facilitate counting of the colonies. To select donor
267 cells, BHI agar contained 10 μ g/mL tetracycline and 25 μ g/mL fusidic acid and to select for
268 transconjugant cells, BHI agar contained 10 μ g/mL tetracycline and 20 μ g/mL erythromycin.
269 The plates were incubated for approximately 24 hours at 37°C before colonies were counted
270 and enumerated for colony forming units (CFU). Conjugation efficiency was determined as
271 CFU of transconjugant over CFU of donor (Tc's/Donors). Experiments were done in triplicates
272 and are reported with their standard deviation.

273

274 For the serial passaging, conjugation assays were performed in exponential phase as described
275 above. Three colonies of the transconjugant plates from passage 1 were picked to start new
276 overnight cultures, that were then used as donor cells for the following passage. In passage 2,
277 donor cells were therefore OG1ES:pCF10, and OG1RF without a plasmid served as recipient
278 cells. Three trans-conjugant colonies from passage 2 served as donor cells for passage 3 with
279 OG1ES as recipient cells and trans-conjugants cells from passage 3 were donors for passage 4
280 with OG1RF as recipient. Donor and transconjugant cells were selected as previously described
281 for passage 1 and 3. For passage 2 and 4, BHI agar containing 10 μ g/mL tetracycline and 20
282 μ g/mL erythromycin was used to select for donor cells and BHI agar containing 10 μ g/mL
283 tetracycline and 25 μ g/mL fusidic acid was used to select for transconjugants.

284

285 All *in vivo* data is from three biological replicates and was plotted with their standard deviation
286 using GraphPad Prism (version 10.2) (GraphPad Software). Statistical significance was
287 analyzed with One-way Anova.

288

289 **Results**

290 *PrgE is not a homolog of genome-encoded *E. faecalis* SSB*

291 We investigated how similar PrgE is to genome-encoded *E. faecalis* SSB by creating
292 AlphaFold2 models of both proteins. Genomic SSB strongly resembles typical bacterial SSBs
293 and the model aligns with *E. coli* SSB with an RMSD of 0.59 Å over 83 residues (**Fig. S1A**).
294 In contrast, the PrgE model differs significantly. It superimposes with an RMSD of 5.4 Å over
295 80 residues to the model of genome-encoded *E. faecalis* SSB, with differences in the part of
296 the beta-sheet that is involved in DNA-binding in typical bacterial SSBs (**Fig. S1B**). To
297 compare PrgE to other proteins, we performed sequence-based homology searches, which
298 yielded very little insight, besides that PrgE is thought to be an SSB. Instead we performed a
299 structural homology search using Foldseek⁴⁵. However, also using this methodology the top
300 hits were only distantly related proteins with an OB-fold, with high E-values or low TM scores
301 (**Table S3**). This indicates that the structure of PrgE is different than that of previously studied
302 SSBs.

303

304 *PrgE has an OB-fold*

305 PrgE was produced in *E. coli* and purified to homogeneity. We solved the crystal structure of
306 apo PrgE to 2.7 Å, using the AlphaFold2 model of PrgE as a template for molecular
307 replacement. The asymmetric unit contained two copies of the protein in space group P2₁2₁2₁.
308 Both copies were modeled from residue 1-130, with residues 34 and 35 missing in loop 1 of
309 chain A (**Fig. S2**). For both chains, the remaining C-terminal part (residues 131-144) is missing
310 in the density. PISA analysis shows that this dimer has an interface area of 680 Å², with 9 H-
311 bonds and 3 salt bridges. The overarching fold of the protein corresponds to an
312 oligosaccharide/oligonucleotide-binding (OB)-fold, characterized by 5 beta-strands that form
313 a beta-barrel with a 1-2-3-5-4-1 topology, which is only partially closed between strands 3 and

314 5 for PrgE (**Fig. 2A**). PrgE also has a 42 residues long region between strands 3 and 4 that
315 forms 2 alpha-helices of which the first seemingly contributes to the opening in the barrel
316 between strands 3 and 5. The apo structure overall aligns very well with the predicted
317 AalphaFold2 model of PrgE, having an RMSD of 0.48 Å over 113 residues.

318

319 We used DALI⁴⁶ and Foldseek⁴⁵ to search the Protein Data Bank (PDB) for the closest
320 structural homolog to PrgE. As with the previous searches with the AlphaFold2 model, the hits
321 had generally very low scores with E-values in Foldseek being in the 10⁻² range. The best hit
322 from DALI was the C-terminal domain with unknown function of the *E. coli* helicase RadD⁴⁷
323 (PDB: 7R7J) with a Z score of 7.1. However, there are substantial structural differences which
324 is highlighted by having an RMSD of 4.02 Å over 104 residues between the two structures
325 (**Fig. 2B**).

326

327 *PrgE oligomerizes in vitro*

328 Since the oligomerization of PrgE might be different in solution than in the crystal, we
329 investigated the oligomerization behavior of PrgE *in vitro*. We noticed that the volume at which
330 PrgE eluted on size exclusion chromatography (SEC) differed depending on the salt
331 concentration of the buffer (**Fig. 3A**), as well as the protein concentration (**Fig. 3B**). This
332 indicates that PrgE is able to oligomerize. To gain deeper insight into the oligomeric state, we
333 performed size-exclusion chromatography coupled to multi-angle light scattering (SEC-
334 MALS), with 60 µM PrgE in 300 mM NaCl conditions. The molecular mass of the elution peak
335 was 51.1 +/- 2.8 kDa, which corresponds well to a trimer (the theoretical molecular mass of
336 the PrgE monomer is 17 kDa) (**Fig. 3C**). However, all SEC traces show an asymmetric peak,
337 trailing to the right, indicating the presence of smaller oligomeric species. In addition to this,
338 gentle crosslinking of purified PrgE also captured multiple oligomeric states (**Fig. 3D**). These

339 results show that PrgE can exist in various oligomerization states *in vitro*, and that its
340 oligomerization is both salt- and protein concentration-dependent.

341

342 *PrgE binds ssDNA in a filamentous manner*

343 We also crystallized PrgE together with a single-stranded Poly-A 60-mer DNA in a molar ratio
344 of 1:3. The obtained crystallographic data was refined in space group $P2_12_12_1$ with the
345 asymmetric unit containing three copies of the protein sitting on a string of 15 ssDNA bases.
346 While there are only 15 bases in the asymmetric unit, the ssDNA shows a continuous density
347 throughout the crystal packing (**Fig. S3A**). Compared to the apo structure of PrgE, a few more
348 residues are visible at the C-terminal end (until residues 136 of 144), continuing as an alpha-
349 helix as predicted by the AlphaFold2 model. The DNA does not get wrapped around PrgE, like
350 it does with *E. coli* SSB²⁰, rather PrgE interacts with the DNA like beads on a string, with the
351 N-terminal tail of one PrgE binding to the neighboring PrgE, using interactions between polar
352 side chains (**Fig. 4A**). PISA analysis shows that the interaction areas between the PrgE subunits
353 in the DNA-bound structure are between 600-800 \AA^2 .

354

355 PrgE binds to the ssDNA between loops 1 and 4, where the beta-barrel is partially open. Each
356 subunit binds to 5 DNA bases. The binding also bends the ssDNA between the protein binding
357 sites, resulting in a kink at every 5th base. The kinks between subunit C'-A and A-B form the
358 same angle. However, the N-terminal tail of chain B bends at a smaller angle and the kink in
359 the DNA chain between subunit B-C is therefore also slightly less pronounced (**Fig. S3B**).

360

361 The different PrgE subunits bind to the ssDNA in a similar, but not identical, manner. Many
362 interactions to the phosphate backbone of the ssDNA are the same within all subunits, including
363 with residues Ser33, Gln34 and Asn37 in loop 1 that form H-bonds with the DNA backbone

364 with the 4th and 5th phosphate of each stretch of 5 bases (**Fig 4B-D**). Additional phosphate
365 binding can be found with Lys111 and Tyr110 in loop 4 in chain A and C, but not B.
366 Interestingly, this loop interacts with the phosphate of the second base of the DNA-binding
367 cassette that is primarily bound by the neighboring copy of PrgE.

368

369 In addition to hydrogen-bonding with the phosphate backbone, pi-pi interactions between the
370 aromatic rings of the DNA and two tyrosine residues are of major importance for DNA-
371 binding. Tyr110 stacks on the 5th DNA base in the binding cassette in all subunits. In contrast,
372 the orientation of Tyr62 varies. For chain A and B, Tyr62 points inwards towards the bases,
373 while it is oriented towards the DNA backbone for chain C. Accordingly, the exact orientation
374 of the first DNA base varies between the binding cassettes. In the third binding cassette in the
375 asymmetric unit, base 11 stacks on top of the following 4 bases and forms two H-bonds with
376 PrgE chain C (Asn120 and Asn66). In the other two cassettes (bound to chain A and B) this
377 base is tilted away and only forms one H-bond with Asn120. Other than these interactions with
378 the DNA bases, hydrogen-bonding with DNA bases seems to be less important, consistent with
379 the lack of sequence specificity in DNA-binding. In our structure, only Gln108 of chain B
380 interacts with Adenine 9, with the other copies of Gln108 being close to the DNA but not in
381 hydrogen bonding distance. In conclusion, PrgE binds to ssDNA with a high degree of
382 plasticity.

383

384 *PrgE quaternary structure resembles viral SSBs*

385 The overall quaternary structure of PrgE binding to ssDNA is different than that of bacterial or
386 eukaryotic SSBs, where ssDNA commonly wraps around a homotetramer in bacterial SSBs
387 (**Fig. 5A**) and eukaryotic RPA binds DNA as a heterotrimer (**Fig. 5B**). Instead, it appears more
388 similar to that of viral SSBs, which have monomers as a functional unit in DNA-binding (**Fig.**

389 **5C**). Each PrgE monomer binds fewer DNA bases (5), which are more neatly stacked on top
390 of each other, compared to other SSBs which have a larger interaction area (**Fig. 5D-F**). The
391 exact DNA-binding mechanisms share some similarities in that stacking interactions with
392 aromatic residues play an important role. However, in PrgE, the responsible residues are
393 tyrosines, while they are phenylalanines and tryptophanes for *E. coli* SSB and RPA, and the
394 viral SSB uses both tyrosines and phenylalanines.

395

396 *PrgE binds ssDNA and dsDNA with comparable affinities*

397 Given the suggested function of PrgE as a SSB, we performed binding experiments with the
398 protein on single-stranded (ssDNA) and double-stranded DNA (dsDNA) molecules of 30 or 60
399 nucleotides. The affinity of PrgE for ssDNA and dsDNA was compared by determining the
400 dissociation constant (K_d) with each by fluorescence anisotropy (**Fig. 6 & Fig. S4**). The affinity
401 of PrgE was stronger for the longer 60-mer substrate than for the 30-mer, and higher at lower
402 salt conditions (**Table 1**). Surprisingly, PrgE also bound dsDNA with K_d values within the
403 same order of magnitude (K_{ds} of $0.33 \mu\text{M}$ and $0.5 \mu\text{M}$ for 60-mer ssDNA and dsDNA,
404 respectively, in 50 mM NaCl). These experiments further confirm that the DNA-binding
405 properties of PrgE differ considerably from other SSBs.

406

407 *PrgE is not essential for conjugation*

408 Given that PrgE is a soluble protein in the T4SS operon that binds DNA, we speculated that it
409 might interact with the DNA transfer and replication proteins PcfF (accessory factor⁴⁸) and/or
410 PcfG (relaxase⁴⁹), which form the relaxosome at the origin of transfer of plasmid pCF10. We
411 therefore conducted pull-down experiments where untagged PrgE was incubated with either
412 the His-tagged PcfG (**Fig. 7A**), or the GST-tagged PcfF (**Fig. 7B**). However, neither of the
413 proteins co-eluted with PrgE, indicating that they do not strongly interact.

414

415 Since PrgE is likely not part of the relaxosome, we wanted to know if it is essential for
416 conjugation in another way. We therefore created an *E. faecalis* knockout strain
417 (OG1RF:pCF10 Δ p rgE) to explore the function of PrgE *in vivo* by comparing the conjugation
418 efficiency between mutant and wildtype. We tested conjugation both during exponential phase
419 when cells were actively dividing and in stationary phase, where cells are no longer dividing
420 and the availability of other, genome-encoded, SSBs in *E. faecalis* may be different. We
421 observed a decrease in efficiency between exponentially growing cells and cells in stationary
422 phase, but there was no significant difference between Δ p rgE and wildtype in either condition
423 (Fig. 8). We further considered whether multiple conjugative events would be needed to
424 observe an effect. We therefore passaged the plasmids several times between donor and
425 recipient cells, by using trans-conjugant cells as new donor cells. However, also here we did
426 not observe any difference within four passages between Δ p rgE and wildtype (Fig. 8). We
427 conclude that PrgE does not play an essential role in conjugation under the tested conditions.

428

429 **Discussion**

430 Many conjugative plasmids, with different incompatibility groups, encode for (at least) one
431 SSB protein, which can often complement for the genome-encoded SSB³². In conjugation,
432 SSBs have been proposed to be important for protecting plasmid ssDNA both in donor and
433 recipient cells and to evade the SOS response^{33–35,50}. However, all of the available research has
434 been done on SSBs from Gram-negative T4SS system. Here, we characterized the proposed
435 SSB PrgE from the Gram-positive conjugative plasmid pCF10.

436

437 By crystallizing PrgE, we showed that it indeed has the typical OB-fold of SSBs, but that its
438 structure has important differences when compared to other SSB proteins. PrgE has three alpha-
439 helices that are positioned differently from other SSBs, and also differs in its beta-sheet where
440 the DNA-binding regions are. The differences became even more apparent when we analyzed
441 the DNA-bound structure. Each monomer binds DNA in a way that is to be expected, relying
442 on interactions with the DNA backbone and stacking interactions with the bases to achieve
443 DNA-binding in a sequence-independent manner. However, PrgE does not bind DNA as the
444 typical bacterial SSB, which commonly form homotetramers around which they wrap the
445 ssDNA. It is also very different from how eukaryotic SSBs, like RPA, bind ssDNA as
446 heterotrimers. Instead, PrgE binds the ssDNA in a filamentous manner, like beads on a string
447 (**Fig. 4**). Between each binding site the DNA gets bent (**Fig. S3B**). Whether the exact angles
448 are due to crystal packing or are also the ones found in solution is not known. Further
449 supporting the filamentous oligomerization are the different oligomerization states that were
450 observed for PrgE in solution (**Fig. 3**). The oligomerization in the DNA-bound structure is
451 supported by the N-terminal tail of PrgE, which interacts with the neighboring monomer on
452 the DNA-bound structure (**Fig. 4**), a feature that is not found on the prototypical bacterial SSBs.

453

454 Our data from the fluorescence anisotropy experiments show a standard hyperbolic binding
455 curve, indicating that the binding is not cooperative in nature (**Fig. 6, Fig. S4**). Surprisingly,
456 we found that PrgE bound dsDNA equally well as ssDNA (**Fig. 6, Fig. S4 & Table 1**). Most
457 characterized SSBs have a high affinity and specificity for ssDNA²⁷. As an example, RPA
458 binds mixed ssDNA with affinities of 10-40 nM albeit displaying a preference to pyrimidines,
459 and with K_D values to ssDNA up to 3 orders of magnitude lower than to dsDNA⁵¹⁻⁵³. To our
460 knowledge, only one studied SSB-like protein shares PrgE's feature of binding equally well to
461 both ssDNA and dsDNA, namely one from the archaea *Nanoarchaeum equitans*⁵⁴. Given these
462 data, it is clear that PrgE is not a typical SSB, and we therefor refer to it simply as an OB-fold
463 protein.

464

465 Given these unexpected characteristics of PrgE, it is tempting to speculate about its
466 evolutionary origin. Despite being present in the middle of a T4SS operon on a bacterial
467 conjugative plasmid, PrgE does not behave at all like a bacterial SSB. No close structural
468 homologs could be identified via Dali⁴⁶ and Foldseek⁴⁵. PrgE's oligomerization behavior in
469 DNA-binding, where PrgE monomers can be added like beads on a string in a noncooperative
470 manner, is reminiscent of some viruses whose SSBs have a monomer as a functional subunit
471 that can be added on ssDNA^{26,55}. We did find similarities regarding DNA-binding affinities
472 with an archaeal SSB, which is described as resembling viral SSB-like proteins^{54,56}. Indeed,
473 the C-terminally truncated Enc34 phage SSB has been shown to bind dsDNA⁵⁷. Furthermore,
474 the Enc34 SSB was also suggested to be able to bind DNA in a filamentous manner, similar to
475 what we here observe for PrgE⁵⁷. Additionally, PrgE was originally annotated as an SSB
476 protein based on its 37 % sequence similarity to a lactococcal phage SSB¹⁶. We therefore find
477 it likely that PrgE at some point has been introduced to pCF10 via horizontal gene transfer
478 mediated by a phage.

479

480 What then is the function of PrgE for the T4SS and in conjugation? PrgE is expressed as part
481 of the P_Q operon of pCF10, surrounded by proteins that are essential for its T4SS (**Fig. 1**). This
482 means that PrgE will be produced only when transcription of the P_Q operon has been induced,
483 and its production will be quickly shut down again, just like the rest of the proteins encoded by
484 the P_Q operon¹². Our first hypothesis was that PrgE might interact with other important DNA-
485 binding components of type IV secretion, the relaxosome proteins PcfG and PcfF, as SSBs can
486 be important players for recruiting proteins to DNA^{58,59}. However, PrgE does not seem to
487 interact strongly with either of them. Secondly, we speculated that PrgE was important for
488 conjugation in other ways, potentially by protecting the conjugative ssDNA in either the donor
489 or recipient strain, or maybe by aiding the establishment of the plasmid in the recipient cells³⁴.
490 To test this, we created a knock-out of PrgE (pCF10:Δ*prgE*). However, no significant
491 differences in conjugation efficiency could be observed, neither in exponential phase nor in
492 stationary phase. It also did not affect the efficiency during multiple serial conjugation events.
493 This is in line with what was observed in previous studies on a F-plasmid, where knocking out
494 a plasmid encoded *ssb* also did not reduce mating rates³⁵. However, these experiments were
495 performed under lab conditions, and it is possible that PrgE does contribute to conjugation
496 efficiency under other, less ideal, circumstances.

497

498 Conjugative plasmids retain many proteins that are not strictly required for conjugation itself,
499 but provide various other advantages, for example competitiveness against other conjugative
500 elements or replacement of host functions that allows plasmids to use a wider host range¹⁵. One
501 potential avenue is to explore if PrgE suppresses the SOS response in recipient cells like the F-
502 plasmid SSB does³⁵. However, we deem it unlikely that PrgE has a homologous function, given
503 that F-plasmid SSB is a typical bacterial SSB that can compensate for genomic SSB

504 deficiencies^{60,61}, while PrgE is very different from *E. faecalis* SSB and has very unusual DNA-
505 binding characteristics. Understanding the exact function of PrgE remains an exciting prospect
506 for future research.

507

508 Conjugative plasmids have been studied for many decades now, ever since the R1 conjugative
509 plasmid was first isolated from a clinical isolate in 1963⁶². Genes encoding for OB-fold proteins
510 are part of these plasmids, but our understanding of their specific function within conjugation
511 remains very limited and is almost exclusively based on T4SSs from Gram-negative bacteria.
512 Here, we have shown that PrgE from the Gram-positive conjugative plasmid pCF10 behaves
513 differently to the more well-studied SSBs. It binds ssDNA by attaching PrgE monomers to the
514 DNA like beads on a string, instead of around a globular oligomer like *E. coli* SSB, and it binds
515 dsDNA equally well as ssDNA. Its oligomerization behavior and DNA-binding mechanism is
516 instead providing insight into a class of OB-fold proteins that has been very poorly
517 characterized.

518

519

520 **Acknowledgments**

521 The authors would like to thank Dr. Krishna Chaitanya Bhattiprolu, Dr. Lena Lassinantti and
522 Dr. Saba Shahzad for input on PcfG production and purification. We also thank Dr. Josy ter
523 Beek for rewarding discussions regarding the project. We acknowledge Protein Production
524 Sweden (PPS) for providing facilities and experimental support. PPS is funded by the Swedish
525 Research Council as a national research infrastructure. We acknowledge MAX IV Laboratory
526 for time on Beamline BioMax under Proposal 20180236. Research conducted at MAX IV, a
527 Swedish national user facility, is supported by the Swedish Research council under contract
528 2018-07152, the Swedish Governmental Agency for Innovation Systems under contract 2018-

529 04969, and Formas under contract 2019-02496. We also acknowledge the synchrotron ESRF
530 (France) for time at beamlines ID23 and ID30. This work was supported by grants from the
531 Swedish Research Council (2016-03599 & 2023-02423 to R.P-A.B, 2019-01874 to P.H.W.),
532 Knut and Alice Wallenberg Foundation (to each R.P-A.B and P.H.W.) and Kempestiftelsenerna
533 (SMK-1762 & SMK-1869 to R.P-A.B.)

534

535 **References**

- 536 1. Von Wintersdorff, C. J. H. *et al.* Dissemination of Antimicrobial Resistance in Microbial
537 Ecosystems through Horizontal Gene Transfer. *Front. Microbiol.* **7**, (2016).
- 538 2. Waksman, G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic
539 biology perspective. *EMBO Rep.* **20**, (2019).
- 540 3. Costa, T. R. D., Patkowski, J. B., Macé, K., Christie, P. J. & Waksman, G. Structural and
541 functional diversity of type IV secretion systems. *Nat. Rev. Microbiol.* 1–16 (2023)
542 doi:10.1038/s41579-023-00974-3.
- 543 4. Macé, K. *et al.* Cryo-EM structure of a type IV secretion system. *Nature* (2022)
544 doi:10.1038/s41586-022-04859-y.
- 545 5. Grohmann, E., Christie, P. J., Waksman, G. & Backert, S. Type IV secretion in Gram-
546 negative and Gram-positive bacteria. *Mol. Microbiol.* **107**, 455–471 (2018).
- 547 6. Hirt, H. *et al.* Characterization of the Pheromone Response of the *Enterococcus faecalis*
548 Conjugative Plasmid pCF10: Complete Sequence and Comparative Analysis of the
549 Transcriptional and Phenotypic Responses of pCF10-Containing Cells to Pheromone
550 Induction. *J. Bacteriol.* **187**, 1044–1054 (2005).
- 551 7. Dunny, G. M. & Berntsson, R. P.-A. Enterococcal Sex Pheromones: Evolutionary Pathways
552 to Complex, Two-Signal Systems. *J. Bacteriol.* **198**, 1556–1562 (2016).

- 553 8. Mikalsen, T. *et al.* Investigating the mobilome in clinically important lineages of
554 Enterococcus faecium and Enterococcus faecalis. *BMC Genomics* **16**, 282 (2015).
- 555 9. Palmer, K. L., Kos, V. N. & Gilmore, M. S. Horizontal gene transfer and the genomics of
556 enterococcal antibiotic resistance. *Curr. Opin. Microbiol.* **13**, 632–639 (2010).
- 557 10. Gilmore, M. S., Lebreton, F. & Van Schaik, W. Genomic transition of enterococci from
558 gut commensals to leading causes of multidrug-resistant hospital infection in the
559 antibiotic era. *Curr. Opin. Microbiol.* **16**, 10–16 (2013).
- 560 11. Weiner-Lastinger, L. M. *et al.* Antimicrobial-resistant pathogens associated with
561 adult healthcare-associated infections: Summary of data reported to the National
562 Healthcare Safety Network, 2015–2017. *Infect. Control Hosp. Epidemiol.* **41**, 1–18 (2020).
- 563 12. Lassinantti, L. *et al.* Enterococcal PrgU Provides Additional Regulation of Pheromone-
564 Inducible Conjugative Plasmids. *mSphere* **6**, e00264-21 (2021).
- 565 13. Kohler, V., Keller, W. & Grohmann, E. Regulation of Gram-Positive Conjugation.
566 *Front. Microbiol.* **10**, 1134 (2019).
- 567 14. Dunny, G. M. Enterococcal Sex Pheromones: Signaling, Social Behavior, and
568 Evolution. *Annu. Rev. Genet.* **47**, 457–482 (2013).
- 569 15. Cooke, M. B. & Herman, C. Conjugation's Toolkit: the Roles of Nonstructural Proteins
570 in Bacterial Sex. *J. Bacteriol.* **205**, e00438-22 (2023).
- 571 16. Desiere, F. *et al.* Comparative Genomics of Lactococcal Phages: Insight from the
572 Complete Genome Sequence of Lactococcus lactis Phage BK5-T. *Virology* **283**, 240–252
573 (2001).
- 574 17. Marceau, A. H. Functions of Single-Strand DNA-Binding Proteins in DNA Replication,
575 Recombination, and Repair. in *Single-Stranded DNA Binding Proteins* (ed. Keck, J. L.) vol.
576 922 1–21 (Humana Press, Totowa, NJ, 2012).

- 577 18. Mishra, G. & Levy, Y. Molecular determinants of the interactions between proteins
578 and ssDNA. *Proc. Natl. Acad. Sci.* **112**, 5033–5038 (2015).
- 579 19. Theobald, D. L., Mitton-Fry, R. M. & Wuttke, D. S. Nucleic Acid Recognition by OB-
580 Fold Proteins. *Annu. Rev. Biophys. Biomol. Struct.* **32**, 115–133 (2003).
- 581 20. Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. Structure of the DNA
582 binding domain of *E. coli* SSB bound to ssDNA. *Nat. Struct. Biol.* **7**, 648–652 (2000).
- 583 21. Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an
584 Organizer/Mobilizer of Genome Maintenance Complexes. *Crit. Rev. Biochem. Mol. Biol.*
585 **43**, 289–318 (2008).
- 586 22. Lohman, T. M. & Ferrari, M. E. *ESCHERICHIA COLI* SINGLE-STRANDED DNA-BINDING
587 PROTEIN: Multiple DNA-Binding Modes and Cooperativities. *Annu. Rev. Biochem.* **63**,
588 527–570 (1994).
- 589 23. Liu, T. & Huang, J. Replication protein A and more: single-stranded DNA-binding
590 proteins in eukaryotic cells. *Acta Biochim. Biophys. Sin.* **48**, 665–670 (2016).
- 591 24. Nasheuer, H. P., Meaney, A. M., Hulshoff, T., Thiele, I. & Onwubiko, N. O. Replication
592 Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in
593 Cellular DNA Metabolism. *Int. J. Mol. Sci.* **25**, 588 (2024).
- 594 25. Taib, N., Gribaldo, S. & MacNeill, S. A. Single-Stranded DNA-Binding Proteins in the
595 Archaea. in *Single Stranded DNA Binding Proteins* (ed. Oliveira, M. T.) vol. 2281 23–47
596 (Springer US, New York, NY, 2021).
- 597 26. Shokri, L., Rouzina, I. & Williams, M. C. Interaction of bacteriophage T4 and T7 single-
598 stranded DNA-binding proteins with DNA. *Phys. Biol.* **6**, 025002 (2009).

- 599 27. Oliveira, M. T. & Ciesielski, G. L. The Essential, Ubiquitous Single-Stranded DNA-
600 Binding Proteins. in *Single Stranded DNA Binding Proteins* (ed. Oliveira, M. T.) vol. 2281 1–
601 21 (Springer US, New York, NY, 2021).
602 28. Yadav, T. *et al.* Genetic recombination in *Bacillus subtilis* : a division of labor between
603 two single-strand DNA-binding proteins. *Nucleic Acids Res.* **40**, 5546–5559 (2012).
604 29. Richard, D. J. *et al.* Single-stranded DNA-binding protein hSSB1 is critical for genomic
605 stability. *Nature* **453**, 677–681 (2008).
606 30. Flynn, R. L. & Zou, L. Oligonucleotide/oligosaccharide-binding fold proteins: a
607 growing family of genome guardians. *Crit. Rev. Biochem. Mol. Biol.* **45**, 266–275 (2010).
608 31. Ruvolo, P. P., Keating, K. M., Williams, K. R. & Chase, J. W. Single-stranded DNA
609 binding proteins (SSBs) from prokaryotic transmissible plasmids. *Proteins Struct. Funct.*
610 *Bioinforma.* **9**, 120–134 (1991).
611 32. Golub, E. I. & Low, K. B. Conjugative plasmids of enteric bacteria from many different
612 incompatibility groups have similar genes for single-stranded DNA-binding proteins. *J.*
613 *Bacteriol.* **162**, 235–241 (1985).
614 33. Jones, A. L., Barth, P. T. & Wilkins, B. M. Zygotic induction of plasmid *ssb* and *psiB*
615 genes following conjugative transfer of Incl1 plasmid Colb-P9. *Mol. Microbiol.* **6**, 605–613
616 (1992).
617 34. Couturier, A. *et al.* Real-time visualisation of the intracellular dynamics of
618 conjugative plasmid transfer. *Nat. Commun.* **14**, 294 (2023).
619 35. Al Mamun, A. A. M., Kishida, K. & Christie, P. J. Protein Transfer through an F
620 Plasmid-Encoded Type IV Secretion System Suppresses the Mating-Induced SOS
621 Response. *mBio* **12**, e01629-21 (2021).

- 622 36. Geertsma, E. R. & Dutzler, R. A Versatile and Efficient High-Throughput Cloning Tool
623 for Structural Biology. *Biochemistry* **50**, 3272–3278 (2011).
- 624 37. Vesić, D. & Kristich, C. J. A Rex Family Transcriptional Repressor Influences H₂O₂
625 Accumulation by Enterococcus faecalis. *J. Bacteriol.* **195**, 1815–1824 (2013).
- 626 38. Bae, T., Kozlowicz, B. & Dunny, G. M. Two targets in pCF10 DNA for PrgX binding:
627 their role in production of Qa and prgX mRNA and in regulation of pheromone-inducible
628 conjugation¹¹Edited by M. Gottesman. *J. Mol. Biol.* **315**, 995–1007 (2002).
- 629 39. Kabsch, W. *XDS. Acta Crystallogr. D Biol. Crystallogr.* **66**, 125–132 (2010).
- 630 40. McCoy, A. J. *et al.* Phaser crystallographic software. *J. Appl. Crystallogr.* **40**, 658–674
631 (2007).
- 632 41. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*
633 **596**, 583–589 (2021).
- 634 42. Mirdita, M. *et al.* ColabFold: making protein folding accessible to all. *Nat. Methods*
635 **19**, 679–682 (2022).
- 636 43. Emsley, P. & Cowtan, K. Coot : model-building tools for molecular graphics. *Acta*
637 *Crystallogr. D Biol. Crystallogr.* **60**, 2126–2132 (2004).
- 638 44. Vagin, A. A. *et al.* REFMAC 5 dictionary: organization of prior chemical knowledge
639 and guidelines for its use. *Acta Crystallogr. D Biol. Crystallogr.* **60**, 2184–2195 (2004).
- 640 45. Van Kempen, M. *et al.* Fast and accurate protein structure search with Foldseek. *Nat.*
641 *Biotechnol.* (2023) doi:10.1038/s41587-023-01773-0.
- 642 46. Holm, L. Using Dali for Protein Structure Comparison. in *Structural Bioinformatics*
643 (ed. Gáspári, Z.) vol. 2112 29–42 (Springer US, New York, NY, 2020).

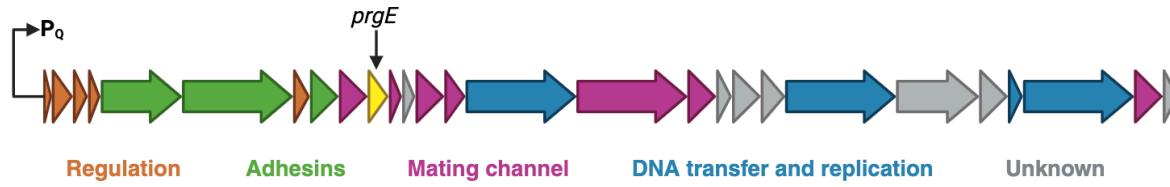
- 644 47. Osorio Garcia, M. A., Satyshur, K. A., Cox, M. M. & Keck, J. L. X-ray crystal structure of
645 the *Escherichia coli* RadD DNA repair protein bound to ADP reveals a novel zinc ribbon
646 domain. *PLOS ONE* **17**, e0266031 (2022).
- 647 48. Rehman, S. *et al.* Enterococcal PcfF Is a Ribbon-Helix-Helix Protein That Recruits the
648 Relaxase PcfG Through Binding and Bending of the oriT Sequence. *Front. Microbiol.* **10**,
649 958 (2019).
- 650 49. Chen, Y., Staddon, J. H. & Dunny, G. M. Specificity determinants of conjugative DNA
651 processing in the *Enterococcus faecalis* plasmid pCF10 and the *Lactococcus lactis* plasmid
652 pRS01. *Mol. Microbiol.* **63**, 1549–1564 (2007).
- 653 50. Howland, C. J., Rees, C. E., Barth, P. T. & Wilkins, B. M. The ssb gene of plasmid ColIb-
654 P9. *J. Bacteriol.* **171**, 2466–2473 (1989).
- 655 51. Kim, C., Snyder, R. O. & Wold, M. S. Binding Properties of Replication Protein A from
656 Human and Yeast Cells. *Mol. Cell. Biol.* **12**, 3050–3059 (1992).
- 657 52. Wold, M. S., Weinberg, D. H., Virshup, D. M., Li, J. J. & Kelly, T. J. Identification of
658 cellular proteins required for simian virus 40 DNA replication. *J. Biol. Chem.* **264**, 2801–
659 2809 (1989).
- 660 53. Brill, S. J. & Stillman, B. Yeast replication factor-A functions in the unwinding of the
661 SV40 origin of DNA replication. *Nature* **342**, 92–95 (1989).
- 662 54. Olszewski, M. *et al.* Characterization of a Single-Stranded DNA-Binding-Like Protein
663 from *Nanoarchaeum equitans*—A Nucleic Acid Binding Protein with Broad Substrate
664 Specificity. *PLOS ONE* **10**, e0126563 (2015).
- 665 55. Dekker, J. Multimerization of the adenovirus DNA-binding protein is the driving force
666 for ATP-independent DNA unwinding during strand displacement synthesis. *EMBO J.* **16**,
667 1455–1463 (1997).

- 668 56. *Single Stranded DNA Binding Proteins*. vol. 2281 (Springer US, New York, NY, 2021).
- 669 57. Cernooka, E., Rumnieks, J., Tars, K. & Kazaks, A. Structural Basis for DNA Recognition
- 670 of a Single-stranded DNA-binding Protein from Enterobacter Phage Enc34. *Sci. Rep.* **7**,
- 671 15529 (2017).
- 672 58. Antony, E. & Lohman, T. M. Dynamics of *E. coli* single stranded DNA binding (SSB)
- 673 protein-DNA complexes. *Semin. Cell Dev. Biol.* **86**, 102–111 (2019).
- 674 59. Bianco, P. R. The tale of SSB. *Prog. Biophys. Mol. Biol.* **127**, 111–118 (2017).
- 675 60. Kolodkin, A. L., Capage, M. A., Golub, E. I. & Low, K. B. F sex factor of *Escherichia coli*
- 676 K-12 codes for a single-stranded DNA binding protein. *Proc. Natl. Acad. Sci.* **80**, 4422–
- 677 4426 (1983).
- 678 61. Chase, J. W., Merrill, B. M. & Williams, K. R. F sex factor encodes a single-stranded
- 679 DNA binding protein (SSB) with extensive sequence homology to *Escherichia coli* SSB.
- 680 *Proc. Natl. Acad. Sci.* **80**, 5480–5484 (1983).
- 681 62. Datta, N. & Kontomichalou, P. Penicillinase Synthesis Controlled By Infectious R
- 682 Factors In Enterobacteriaceae. *Nature* **208**, 239–241 (1965).
- 683 63. Dunny, G., Funk, C. & Adsit, J. Direct stimulation of the transfer of antibiotic
- 684 resistance by sex pheromones in *Streptococcus faecalis*. *Plasmid* **6**, 270–278 (1981).
- 685 64. Staddon, J. H., Bryan, E. M., Manias, D. A., Chen, Y. & Dunny, G. M. Genetic
- 686 characterization of the conjugative DNA processing system of enterococcal plasmid
- 687 pCF10. *Plasmid* **56**, 102–111 (2006).
- 688 65. Antiporta, M. H. & Dunny, G. M. *ccfA*, the Genetic Determinant for the cCF10
- 689 Peptide Pheromone in *Enterococcus faecalis* OG1RF. *J. Bacteriol.* **184**, 1155–1162 (2002).
- 690
- 691

692 **Tables and Figures**

693

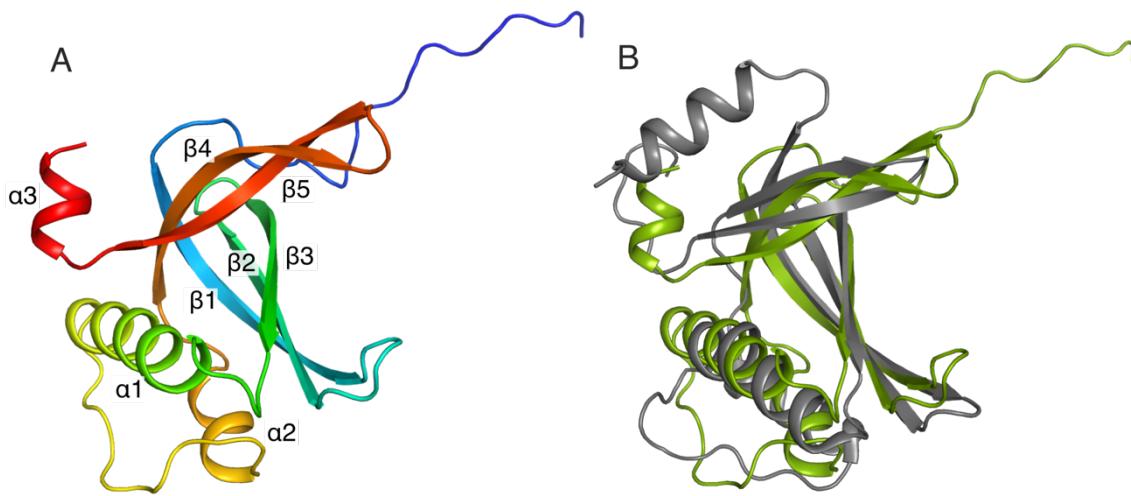
694 **Table 1** The K_d values and standard deviations ($n=3$) for PrgE binding to ssDNA or dsDNA
695 oligonucleotides in 50 mM NaCl as determined by fluorescence anisotropy.


696

$K_d \pm SD (\mu M)$	ssDNA		dsDNA	
	30 nt	60 nt	30 nt	60 nt
50 mM NaCl	1.02 ± 0.02	0.33 ± 0.02	1.96 ± 0.26	0.50 ± 0.14
100 mM NaCl	1.84 ± 0.15	0.37 ± 0.01	3.36 ± 0.28	0.95 ± 0.03

697

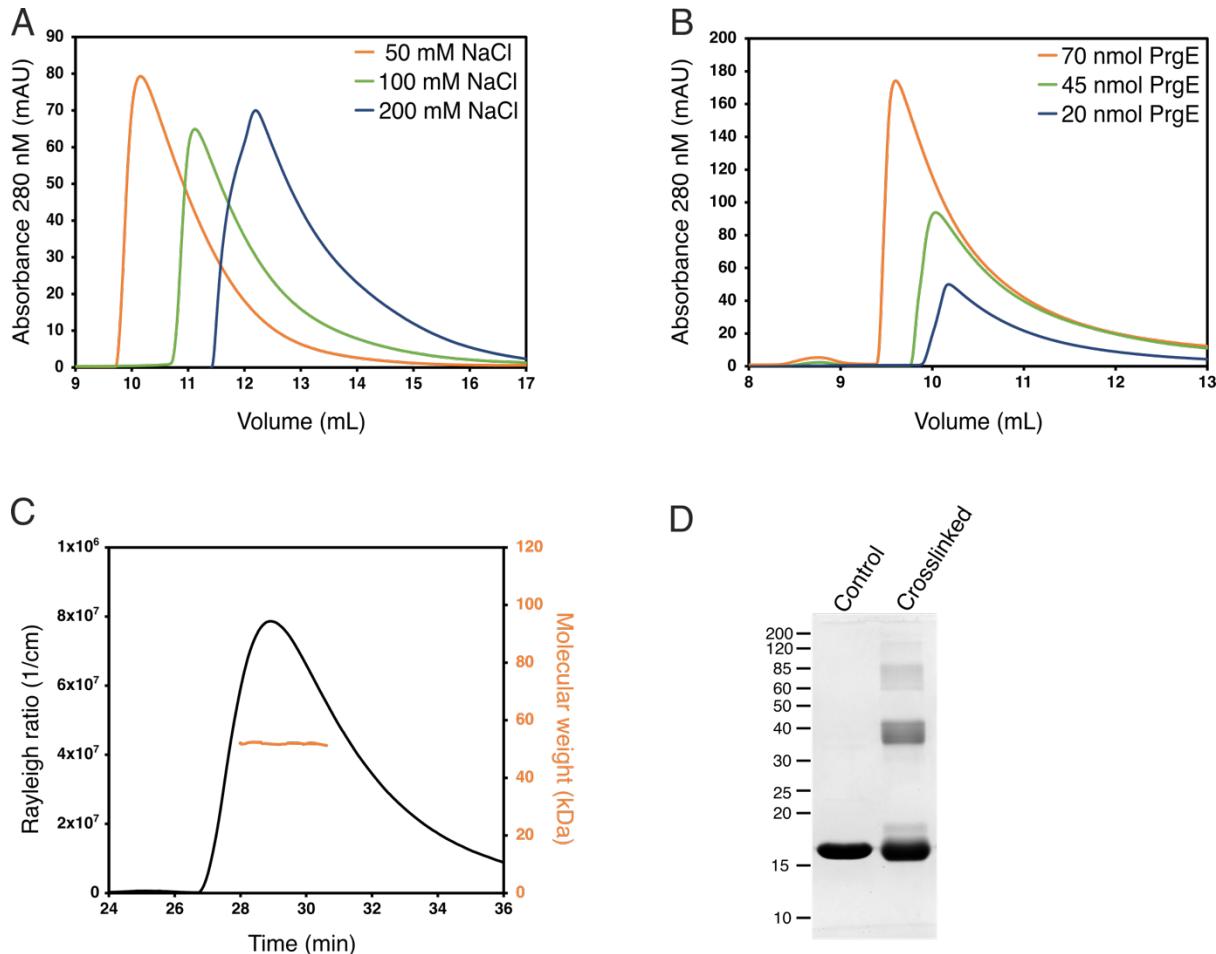
698


699

700
701

702 **Figure 1.** Schematic overview of the genes included in the P_Q operon of pCF10. Each arrow
703 represents one gene, coloured by its proposed function in the T4SS. Genes coding for
704 proteins involved in T4SS regulation are shown in orange, surface adhesins in green, mating
705 channel in purple, DNA transfer and replication (Dtr) proteins in blue, and genes of unknown
706 function in gray. The length of the arrows is approximately to scale of the corresponding
707 genes. prgE is highlighted in yellow.
708

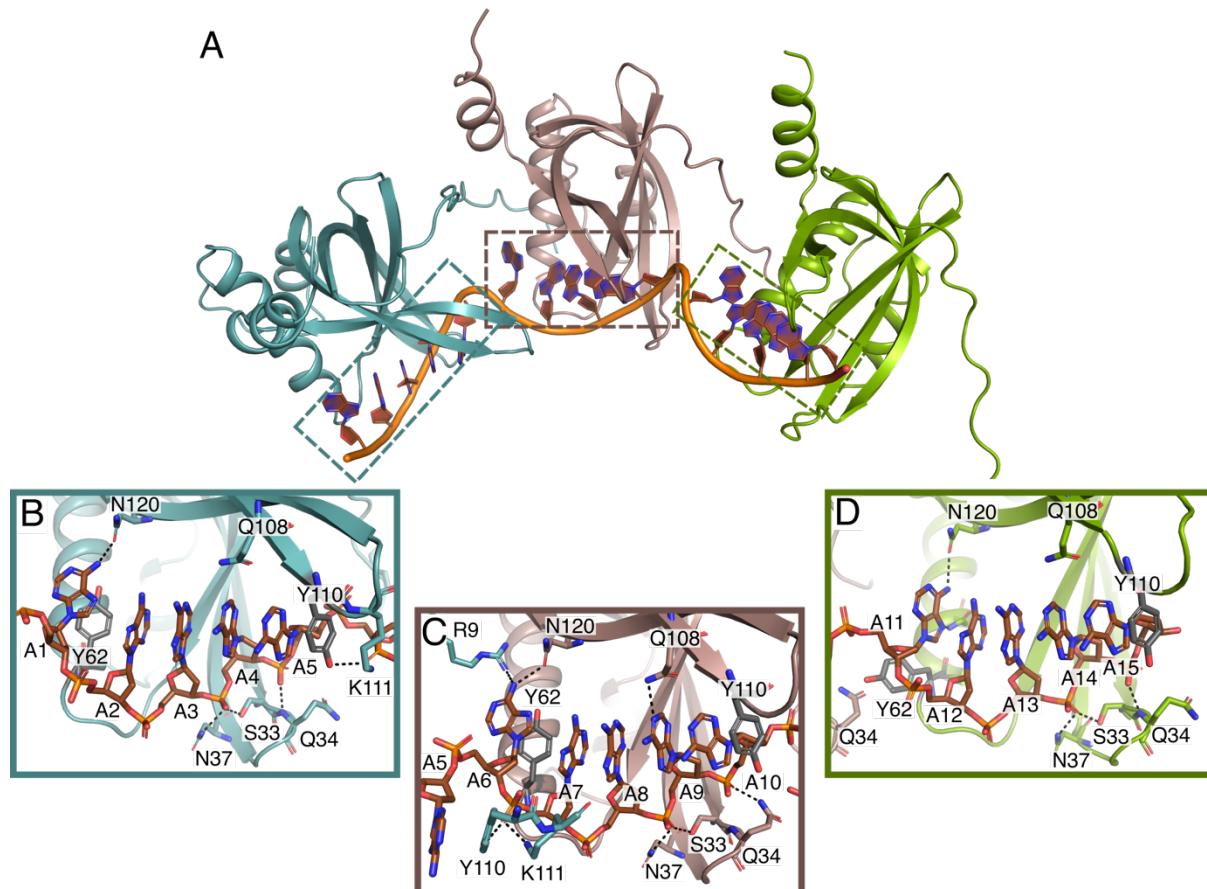
709

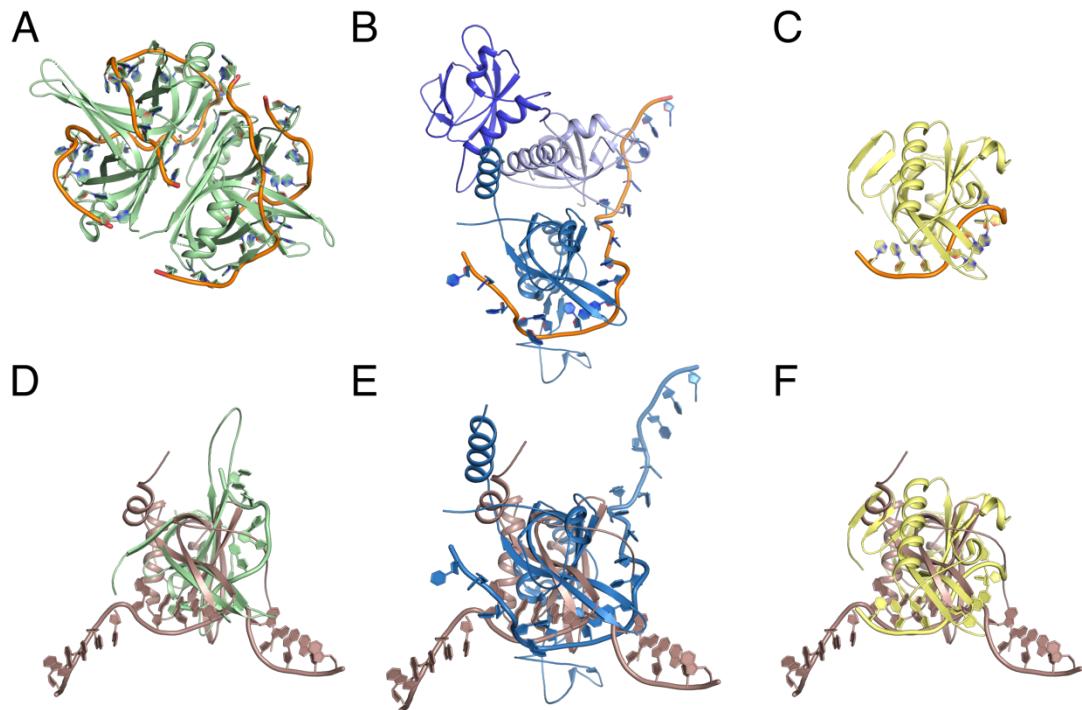


710

711

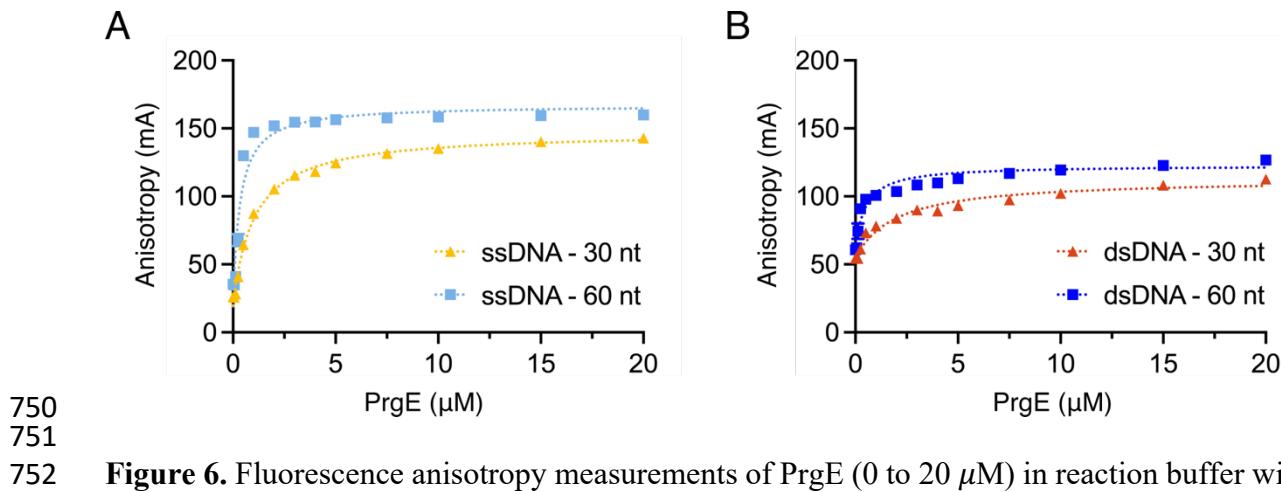
712 **Figure 2.** Apo structure of PrgE. **A)** Crystal structure of PrgE colored in rainbow colors from
713 the N-terminus (blue) to the C-terminus (red). All secondary structure elements are marked in
714 the figure. **B)** Superimposition PrgE (green) with the C-terminal domain of RadD (grey,
715 PDB: 7R7J). The beta-sheet superimposes relatively well, but there are larger differences in
716 the orientation of the alpha-helices.


717



718
719

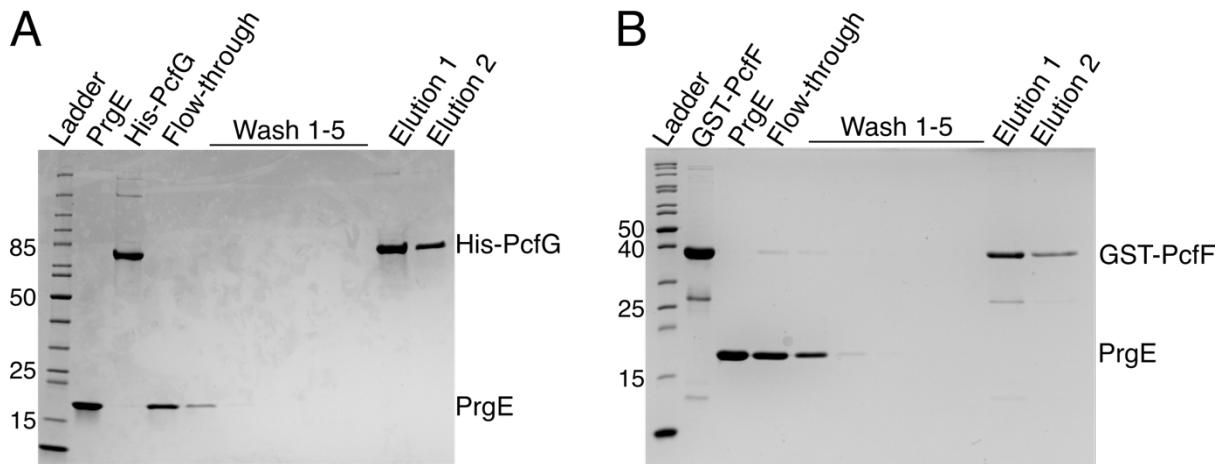
720 **Figure 3.** Oligomerization of PrgE. **A)** Size exclusion chromatogram of PrgE (on a Superose
721 6 column) shows that the elution volume, which is coupled to protein radius, depends on the
722 salt concentration. **B)** Size exclusion chromatogram of PrgE (on a Superdex 200 column), in
723 the same salt concentration but with different protein concentrations, shows that the elution
724 volume decreases with increasing protein concentration. **C)** SEC-MALS analysis of 60 μ M
725 PrgE in 300 mM NaCl. The black line, plotted on the left axis, indicates the Rayleigh ratio,
726 which is directly proportional to the intensity of the scattered light in excess of the buffer.
727 The orange line, plotted on the right axis, indicates the molecular weight of the protein
728 measured throughout the peak. The average molecular weight was 51.1 ± 2.8 kDa. **D)** SDS-
729 PAGE of PrgE, with or without crosslinking with DSS.
730


731
732

739
740

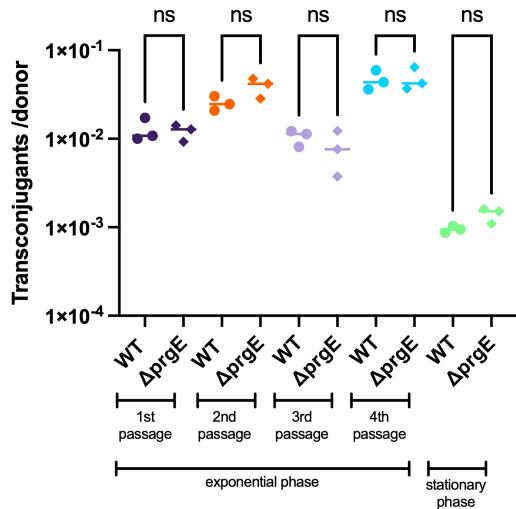
741 **Figure 5.** Comparison between PrgE and other SSBs. **A)** *E. coli* homotetrameric SSB bound
742 to ssDNA (PDB: 1EYG). **B)** Yeast heterotrimeric RPA bound to ssDNA (PDB: 6I52). **C)**
743 SSB from Enterobacter phage Enc34 (PDB: 5ODL). **D-F)** Superposition of DNA-bound PrgE
744 with the proteins shown in panels A-C. The view in panel D is rotated 45 degrees on the x-
745 axis when compared to panel A for clarity, the views in panel E-F are the same as in B-C. In
746 panel E, PrgE is aligned to chain C of RPA as it has the highest structural homology to PrgE.
747
748
749

750


751

752 **Figure 6.** Fluorescence anisotropy measurements of PrgE (0 to 20 μ M) in reaction buffer with
753 ssDNA or dsDNA in buffer containing 50 mM NaCl. **A)** PrgE binding to 30-mer (yellow) and
754 60-mer (light blue) ssDNA substrates. **B)** PrgE binding to 30-mer (orange) and 60-mer (blue)
755 dsDNA substrates. Error bars (only visible over the data point in one instance) represent the
756 standard deviation (n=3).

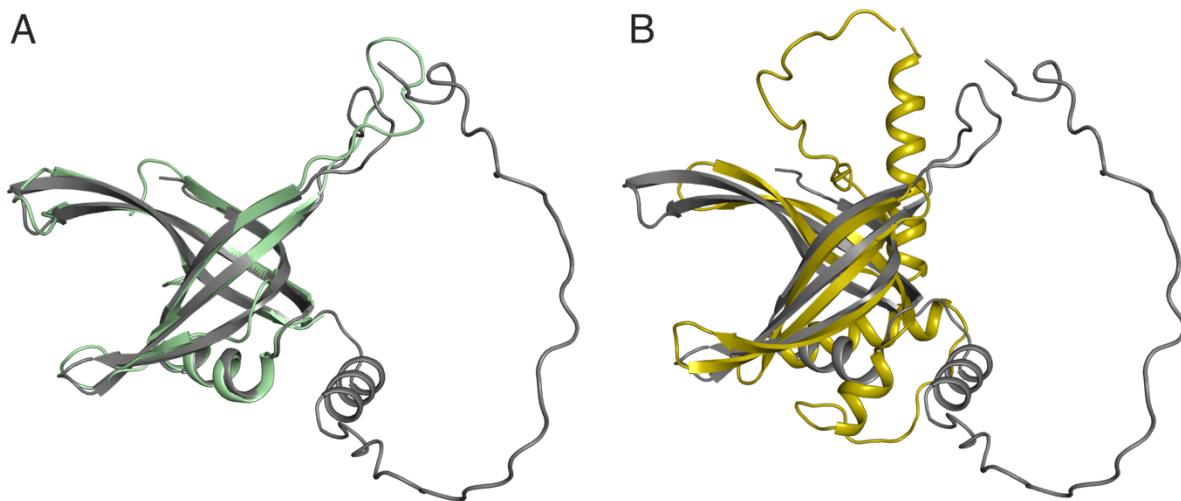
757


758

759
760

Figure 7. PrgE does not interact with the main components of the pCF10 relaxosome. **A**) Pull-down experiment with the relaxase PcfG, showing the input protein, washes and elution, in which His-PcfG (bait) was unable to pull-down PrgE (pray). **B**) Pull-down experiment in which the relaxosome accessory factor GST-PcfF (bait) was unable to pull-down PrgE (pray).

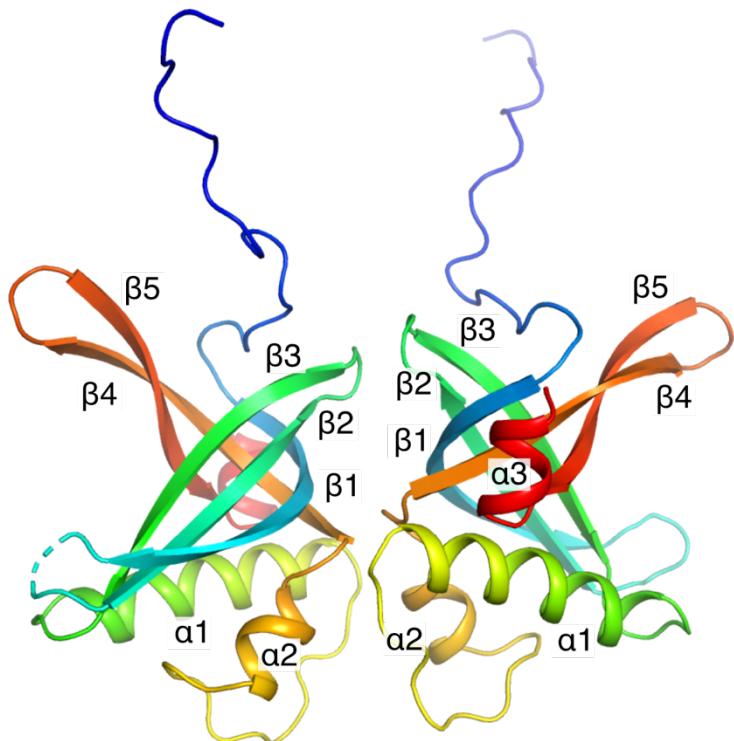
763
764
765
766
767
768



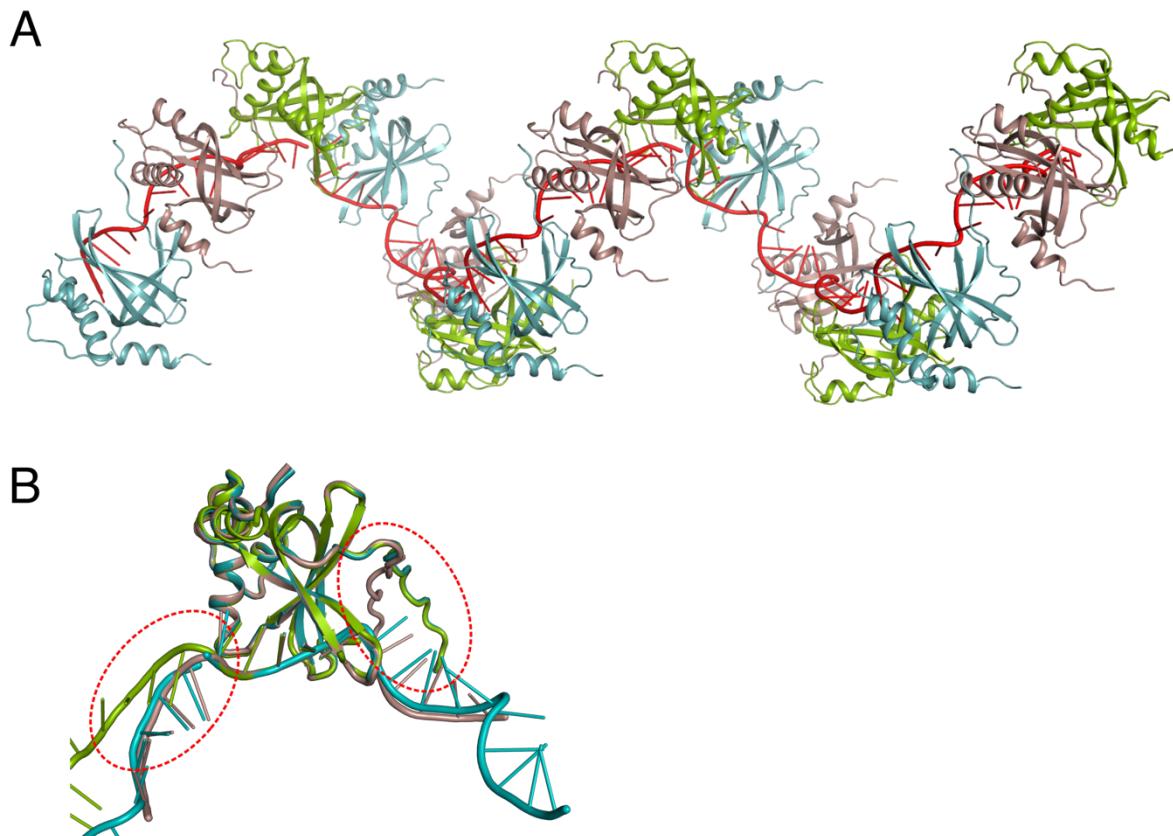
769
770
771
772
773

Figure 8. PrgE is not essential for conjugation. Conjugation rates of *E. faecalis* donor cells carrying wildtype pCF10 or pCF10 $\Delta prgE$ either in exponential growth or stationary phase. In exponential growth serial passaging was performed, where transconjugants from one passage were used as donor cells in the following passage. ns stands for not significant.

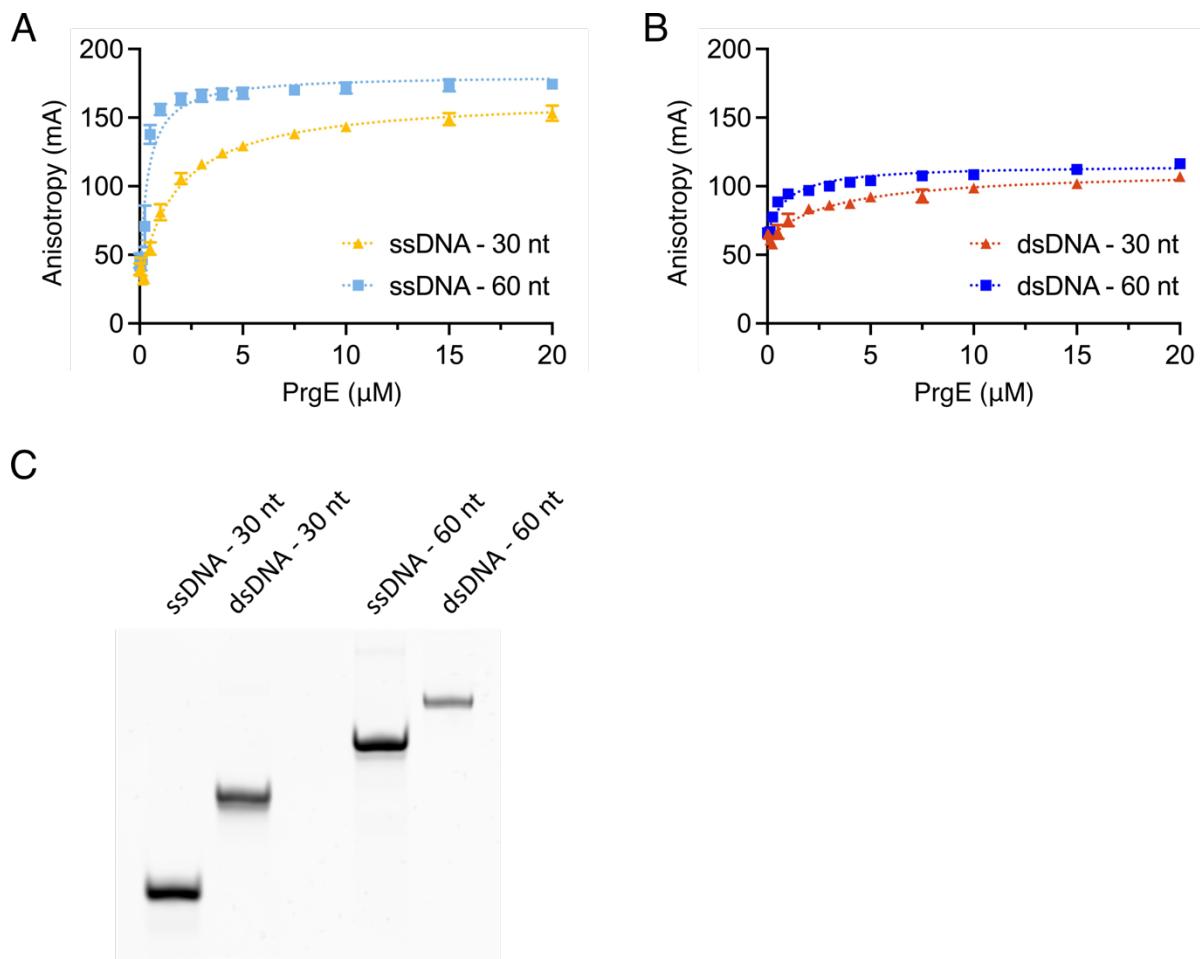
774 **Supplemental Figures**


775

776


777

778 **Figure S1.** AlphaFold2 model of PrgE differs from bacterial SSBs. **A)** Superimposition of an
779 AlphaFold2 model of genome-encoded *E. faecalis* SSB (accession code: WP_002393727,
780 grey) with *E. coli* SSB (PDB: 1EYG, green). **B)** Superimposition of AlphaFold2 models of
781 PrgE (yellow) and genome-encoded *E. faecalis* SSB (grey).



782
783
784
785
786

Figure S2. Structure of apo PrgE. Two PrgE molecules are found in the asymmetric unit of the crystal, potentially showing a dimeric form of PrgE when it is not bound to any nucleic acid.

787
788
789 **Figure S3.** ssDNA forms a continuous strand throughout the crystal packing. **A)** Structure of
790 5 asymmetric units (each containing 3 PrgE molecules, subunit A in teal, subunit B in brown
791 and subunit C in green) bound to a total of 75 DNA bases highlighted in red. **B)**
792 Superimposition of the three different chains of the PrgE structure bound to ssDNA. Red
793 circles highlight the different angle in the DNA kink in subunit C and the corresponding
794 different angle of the N-terminal tail in subunit B.
795

796
797

798 **Figure S4.** Fluorescence anisotropy measurements of PrgE (0 to 20 μ M) in reaction buffer with
799 ssDNA or dsDNA in buffer containing 100 mM NaCl. **A**) PrgE binding to 30-mer (yellow) and
800 60-mer (light blue) ssDNA substrates. **B**) PrgE binding to 30-mer (orange) and 60-mer (blue)
801 dsDNA substrates. Error bars represent the standard deviation (n=3). **C**) Native gel analysis of
802 the ssDNA and dsDNA substrates used for fluorescence anisotropy.
803

804 **Supplemental Tables**

805

806 **Table S1** Strains, plasmids and oligonucleotides used in this study.

Strain, plasmid, or oligonucleotide	Relevant features or sequences (5'-3')	References/Manufacturer
Strains (<i>E. coli</i>):		
TOP10 One Shot	Cloning host	Thermo-Fisher
ArcticExpress (DE3)	Expression host for PrgE	Agilent Technologies
Origami™ (DE3)	Expression host for PcfG	Sigma-Aldrich
BL21 (DE3)	Expression host for PcfF	New England Biolabs
Strains (<i>E. faecalis</i>):		
OG1RF	Resistant to fusidic acid	Dunny <i>et al.</i> (1981) ⁶³
OG1RF:pCF10	Resistant to fusidic acid and tetracycline	Dunny <i>et al.</i> (1981) ⁶³
OG1RF:pCF10Δ <i>prgE</i>	Resistant to fusidic acid and tetracycline	This study
OG1ES	Resistant to erythromycin	Staddon <i>et al.</i> (2006) ⁶⁴
Plasmids:		
pCJK218	Allelic exchange plasmid	Vesić and Kristic (2013) ³⁷
pCF10	Pheromone-inducible conjugative plasmid	Dunny <i>et al.</i> (1981) ⁶³
pINIT_kan	FX cloning intermediate vector	Geertsma & Dutzler (2011) ¹
P7XC3H	FX cloning expression vector with a C-terminal 10-His-tag	Geertsma & Dutzler (2011) ¹
PrgE-p7XC3H	Vector expressing PrgE with C-terminal 10-His-tag	This study
PcfG-pET24d	Vector expressing PcfG with N-terminal 10-His-tag	This study
PcfF-pGEX-6P-2	Vector expressing PcfF with N-terminal GST-tag	Rehman <i>et al.</i> (2019) ⁴⁸
Peptides		
cCF10	Sequence LVTLVFV	Antiporta & Dunny (2002) ⁶⁵
Primers		
PrgE_FX_F	ATATATGCTCTTAGTAAATATGAACGT CCATTAAAAAGAGAG	This study
PrgE_FX_R	TATATAGCTTCATGCCAATCTTCTCA GTATTGCTTCTGA	This study

PrgE-DF-R	CACACCATGGTCAATGCAATGTTAGTTA ATAGCT	This study
PrgE-DF-F	CACAGTCGACAGCAATACTGAAGAAGAT TGGT	This study
PrgE-UF-R	CACAGTCGACACGTTCATATTCATAGAA TTG	This study
PrgE-UF-F	CACAGGATCCAATTCTAATTACGTATGAG AT	This study
PcfG_F	GTAAAGGTCTCAGGTGGTATGGTGTATA CAAAACATTTGTTATT	This study
PcfG_R	GTAAAGGTCTCAAGCTTATAGTTGGGC TTAATGTCGG	This study
Oligos		
60-mer_F	[FITC]- CAGTGACAGTCTCCACGGTGAAGCAGT CGTACCTCTTGACGCATGAATAGATATAT GTTA	Eurofins
60-mer_R	TAACATATATCTATTCATGCGTCAAGAGG TACGACTGCTTCACCGTGGAGACTGTCA CTG	Eurofins
30-mer_F	[FITC]- CAGTGACAGTCTCCACGGTGAAGCAGT CGT	Eurofins
30-mer_R	ACGACTGCTTCACCGTGGAGACTGTCAC TG	Eurofins
Poly-A 60-mer	AAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAA AAAAAAA	Eurofins

808

Table S2 Data collection and refinement statistics.

Data collection summary	PrgE apo structure	PrgE DNA-bound
Resolution range	48.38 – 2.51 (2.56-2.51)	49.74 - 2.67 (2.77 - 2.67)
Space group	P 2 ₁ 2 ₁ 2 ₁	P 2 ₁ 2 ₁ 2 ₁
Cell dimensions		
a, b, c (Å)	58.175 58.17 87.099	75.776 90.043 131.848
α, β, γ (°)	90 90 90	90 90 90
Total reflections	347213 (18816)	175730 (17998)
Unique reflections	10486 (537)	26266 (2536)
Multiplicity	33.1 (35.04)	6.7 (7.0)
Completeness (%)	99.6 (100)	99.75 (99.06)
Mean I/sigma (I)	21.4 (2.39)	10.71 (0.95)
R-meas	13.9 (1.718)	0.1158 (2.067)
CC(1/2)	0.999 (0.852)	0.998 (0.628)
<hr/>		
Refinement summary		
Resolution range	48.38-2.7 (2.77-2.7)	49.74 - 2.67 (2.74 - 2.67)
R-work	0.2345 (0.327)	0.2305 (0.468)
R-free	0.2777 (0.419)	0.2523 (0.492)
Number of non-hydrogen atoms	2165	3716
protein	2135	3372
DNA		315
other ligands	11	20
solvent	19	9
RMS (bonds)	0.002	0.006
RMS (angles)	0.67	1.05
Ramachandran favored (%)	98.02	96.52
Ramachandran allowed (%)	1.98	3.48
Ramachandran outliers (%)	0.00	0.00
Average B-factor	64.0	95.76
protein	64.29	94.37
DNA		111.27
other ligands	101.09	99.49
solvent	49.62	63.43

809

Statistics for the highest-resolution shell are shown in parentheses.

810

811

812 **Table S3** Structural homology searches using Foldseek reveal low homology to other
813 characterized proteins.

Using TM-align mode				
Target (PDB code & chain)	Description	Species	Seq. Id.	TM-Score
3Q6C_O	Duf2500	<i>Klebsiella variicola</i>	7.3	0.488
5LY5_A	Arcadin-1	<i>Pyrobaculum calidifontis</i>	8.6	0.476
3RD4_A	PROOPEN03304	<i>Proteus penneri</i>	1.6	0.475
3G48_A	CsaA	<i>Bacillus anthracis</i>	6.6	0.474
7XHS_A	CipA	<i>Photorhabdus luminescens</i>	6.3	0.474

Using 3Di/AA mode				
Target	Description	Species	Seq. Id.	E-value
1XJV_A	POT1	<i>Homo sapiens</i>	14.9	9.12e-3
6I52_C	RPA	<i>Saccharomyces cerevisiae</i>	10.2	4.23e-3
3KJP_A	Pot1	<i>Homo sapiens</i>	14	1.50e-2
7R7J_B	RadD	<i>Escherichia coli</i>	8.7	1.14e-2
3U58_D	Teb1	<i>Tetrahymena thermophila</i>	8.9	1.08e-2

814