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Abstract

Population studies are crucial in understanding the complex interplay between the gut
microbiome and geographical, lifestyle, genetic, and environmental factors. However,
populations from low- and middle-income countries, which represent ~84% of the world
population, have been excluded from large-scale gut microbiome research. Here, we present
the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803
women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with
communities that range from rural and horticultural to urban informal settlements and
post-industrial, we capture population diversity that represents a far greater breadth of the
world’s population. Using shotgun metagenomic sequencing, we find that study site explains
substantially more microbial variation than disease status. We identify taxa with strong
geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides
species and gain of Bifidobacterium species in urban populations. We uncover a wealth of
prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes,
and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a
microbiome signature of HIV infection that is defined by several taxa not previously associated
with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the
largest population-representative survey of gut metagenomes of African individuals to date, and
paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides
extensive opportunity for microbiome-related discovery and research.
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Introduction

Large population studies can identify lifestyle, genetic and environmental factors that drive gut
microbiome composition. Indeed, early population studies established baseline human gut
measurements: for example, the MetaHIT study sampled from 124 Europeans catalogued
millions of bacterial proteins and identified core gut bacterial functions’, and the Human
Microbiome Project (HMP) sampled from 242 individuals from the United States, and found high
individuality of microbiome composition and conserved core metabolic pathways across
microbiomes?2. More recently, population studies have related the gut microbiome to disease and
lifestyle factors: HMP2 identified taxonomic associations with inflammatory bowel disease® and
type 2 diabetes biomarkers* in cohorts of 132 and 106 individuals, respectively, and the Dutch
Microbiome Project found a strong effect of co-housing on microbiome composition and
uncovered several associations between diet, socioeconomics, and environmental exposures
and the gut microbiome in a cohort of 8,208 individuals®. These studies and others (STable 1)
have built a strong foundation for the microbiome field. However, as these studies typically focus
on high-income populations with relatively homogeneous resource access and disease profiles,
their results often do not translate to those living in other geographic areas or regions with more
limited resource access, as well as different lifestyle practices, challenges to health and
healthcare, and environmental exposures. Additionally, the vast majority of large microbiome
studies have relied on a non-random and facility-based convenience-sampling model, which
generalizes less well to the population level than more time- and resource-intensive
cross-sectional sampling approaches. A notable exception is the FINRISK study, which has
highlighted the utility of cross-sectional sampling to study microbiome signatures of mortality risk
in a population-representative Finnish cohort®.

Despite the high diversity of lifestyle, diet, environment, disease burden, and resource access in
low- and middle-income countries (LMICs), which together are home to ~84% of the world’s
population’, people living in LMICs are extremely underrepresented in gut microbiome
research®'°. An excellent collection of targeted studies in focused LMIC communities has found
microbiome associations with infectious disease'~"3, described compositional differences
between microbiomes of specific LMIC and high-income country (HIC) populations8,
including in the context of non-communicable disease'?°, and shown that microbiome
composition can change with migration from LMICs to HICs*. However, to more
comprehensively capture global lifestyle diversity that affects gut microbiome composition, it is
necessary to study more diverse populations living in LMICs, not just those living in extremes of
lifestyle (e.g. hunter gatherers) or focused ethnic communities (e.g. the Hmong/Karen people of
Thailand). This can be accomplished by designing and executing large,
population-representative studies that encompass a range of lifestyles, geography, and disease
burden, and which collect high-quality data about these factors. Importantly, it is essential to
work within local frameworks that support representative measurements from populations,
facilitate input and leadership from local stakeholders, and clearly identify community needs?-2°.

The Africa Wits-INDEPTH Partnership for Genomic Studies (AWI-Gen)? provides a powerful
and versatile framework for broad, multi-country, population-representative and
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community-engaged microbiome research (Figure 1). Nested within the Human Heredity and
Health in Africa Consortium (H3Africa), AWI-Gen seeks to identify genomic and environmental
factors affecting the changing disease burden among older adults in six African communities in
four countries. The study is a partnership between the University of the Witwatersrand and the
International Network for the Demographic Evaluation of Populations and Their Health
(INDEPTH), a global network of health and demographic surveillance systems (HDSSs) that
monitor population health in LMICs. AWI-Gen includes five HDSSs and the Developmental
Pathways for Health Research Unit (DPHRU) in Soweto, South Africa, enabling a robust,
multicentre research platform. First, HDSSs enable random cross-sectional sampling of
individuals across their catchment areas. By contrast, most extant microbiome and genomics
data in the public sphere are based on highly non-random recruitment that relies on
convenience sampling, where self-selecting participants learn about the study through
advertisements or word-of-mouth, which is not optimal for capturing true population-level trends.
Second, each HDSS has operated among host communities for over a decade, hiring local field
workers and supporting teams that conduct extensive community engagement prior to study
approval and through study conclusion®?°. This supports improved study design, high
participant response and retention, and an assurance that study questions focus on community
needs. Finally, AWI-Gen has collected blood and urine biomarkers, captured extensive
participant data — demographic, health history, environment, and lifestyle — and genotyped all
participants on the 2.2m SNP H3Africa Custom Array®. Importantly, AWI-Gen places heavy
emphasis on genomic research capacity-building and equitable scientific collaborations.
Altogether, AWI-Gen presents a unique opportunity for microbiome research in understudied
populations and holds immense potential for associating the microbiome with a rich set of
genotype and phenotype data. The first phase of AWI-Gen was conducted from 2012 - 2017,
during which we carried out pilot microbiome projects at the Agincourt HDSS and Soweto
DPHRU in South Africa®®2. The second phase of AWI-Gen, including our microbiome study,
was conducted from 2018-2023.

Here, we present the first results from the second phase of the AWI-Gen Microbiome Project.
Our pilot studies during the first phase of AWI-Gen established study feasibility, identified
preliminary associations between the microbiome and epidemiological transition, and found
substantial microbiome novelty®'*2. In this phase, we aim to evaluate the intersection between
geographical, environmental, clinical, and gut microbiome factors in health and disease. First,
we randomly sampled 1,820 older adults from well-characterised HDSS populations in six
research centres spanning four countries in the west, east and south of Africa (Burkina Faso,
Ghana, Kenya, and South Africa). These study centres have widely different population
densities, income levels, and disease profiles, with household subsistence strategies ranging
from predominantly horticultural subsistence farming to post-industrial. Leveraging extensive
clinical and demographic data that were also collected, we identify site or geography as having
the strongest effect on microbiome variation and identify microbial taxa with different prevalence
patterns across the six sites. We assemble thousands of prokaryotic and phage genomes,
including hundreds for Treponema succinifaciens, a hallmark bacterial species previously
described as absent in industrial populations. Finally, we consider infectious diseases that are
relevant to the study communities, and find HIV-associated differences in microbiome
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composition that are consistent across various sites, but which differ from HIV-associated
differences described in studies from HICs. Altogether, this study demonstrates the importance
of investigating the gut microbiome in undersampled populations, provides a framework for
equitable microbiome research, and represents the largest population-representative profile of
African gut microbiomes to date.

Results

Study Cohort

Single stool samples were collected from each of 1,820 participants between the ages of 42 and
86 years from rural villages in Nanoro, Burkina Faso* (n=382), Navrongo, Ghana* (n=235), the
Agincourt-Bushbuckridge subdistrict in South Africa® (n=533), and Dikgale, South Africa®, in
which the HDSS is now called DIMAMO (n=203), from the township of Soweto, South Africa
(n=226), and from the Korogocho and Viwandani urban informal settlements in Nairobi, Kenya®
(n=237). Participants were selected as a cross-sectional representation of the older adults in
populations in the catchment areas of each HDSS (see Supplementary Methods). The six study
communities span rural, peri-urban, and urban areas, and therefore have in some cases drastic
differences in population density, water sanitation, access to healthcare, and disease profiles
(Table 1). Briefly, the Nanoro and Navrongo study centres are in rural regions of western Africa
where subsistence farming and cattle-keeping are dominant subsistence strategies. The
Agincourt and DIMAMO study centres both largely consist of semi-rural villages in regions of
South Africa, which are undergoing rapid epidemiological transition. Soweto is a district within
the city of Johannesburg, which under apartheid was designated as an area for black people to
live; employment in Soweto is often related to business, retail, and industry, but unemployment
among women remains above 60% *. The Nairobi study centre samples from two urban
informal settlements in Nairobi, Kenya, where population density is very high and residents have
limited access to piped water and sanitation.

The AWI-Gen Phase 2 study is a population cross-sectional study of adults aged 32-98 (99%
between 41 and 84). Pregnant women and people who had been resident for less than 10 years
were excluded. At the point of recruitment into AWI-Gen, only one person per household was
included. Inclusion criteria for the microbiome study included self-identified female sex, and
participation in the larger AWI-Gen Phase 2 study. In total, 43% of women in AWI-Gen 2 were
semi-randomly included (see Supplementary Methods). The majority of participants were
women (n = 1,803), and a small number of men (n = 17) were sampled as well. The focus on
recruitment of women was motivated by downstream interest in combining these data with a
companion AWI-Gen 2 study focused on menopause. Despite limited microbiome differences
between sexes (SFig. 1), we excluded samples from men for all site comparisons presented
below; however, given the poor representation of these populations in existing microbiome
studies, samples from men were included in the genome catalogues presented below.
Participants completed the AWI-Gen 2 questionnaire with guidance from a supervised field
worker, and donated blood, urine, and stool samples. For gut microbiome analysis, DNA was
extracted from each stool sample, followed by 2x150 base pair paired-end sequencing. We
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generated a median of 44.16M (range 27.48M to 104.79M) reads per sample, with a median of
31.20M (range 17.80M to 72.95M) reads remaining after quality control and removal of human
reads (see Methods). For an extended description of each study centre and recruitment
methodology, see the Supplementary Methods.

Gut microbiome composition of AWI-Gen 2 participants

We first characterized the overall taxonomic composition and microbial diversity in the study
populations. We performed taxonomic classification with mOTUs3*, using the GTDB-based
taxonomy*’. After clustering samples by overall microbiome composition, we observe the
primary axis of variation to capture a trade-off in relative abundance between the phyla
Bacteroidota and Firmicutes A (Figure 2ab, SFig. 2), and to correlate with the abundance of the
archaeal phylum Methanobacteriota. The second principal coordinate captured study site
differences (PCo2; Figure 2a), generally ordering the samples along a gradient corresponding
to site population densities, subsistence strategies, environments, and sociodemographic
factors. The exception to this gradient is Nairobi, Kenya, which is a dense urban site, yet falls in
the middle of the gradient. This second axis is correlated with the abundance of the phyla
Spirochaetota and Elusimicrobiota, phyla that have been described to decrease in relative
abundance with industrialization*’ (Figure 2b), as well as with the observed prokaryotic
richness.

Seeking to identify the geography, disease, and lifestyle factors that have the greatest effect on
compositional variation, we performed distance-based redundancy analysis with the available
covariates, excluding highly correlated variables (SFig. 3, see Methods). As expected, study site
explains, by far, the greatest amount of compositional variation (7.85%), followed by other
variables inherently related to the microbiome, such as recency of antibiotic use (0.79%),
recency of diarrhoea (0.59%), use of deworming medication (0.51%), or probiotics use (0.47%).
Interestingly, the only disease-related variable explaining a sizable amount of composition
variation is HIV status (0.52%) (Figure 2c), illustrating the potential of this cohort to investigate
HIV-microbiome associations. Other disease variables included arthritis, obesity, hypertension,
and others (SFig. 3).

To delve deeper into differences between study sites, we investigated microbial diversity across
sites, focusing on prokaryotes as well as phages. Prokaryotic richness was measured as the
number of species present in classification data after rarefaction, and phage richness was
measured as the number of phages annotated in assemblies from each sample (Methods).
Prokaryotic alpha diversity is significantly different between sites (Kruskal Wallis P < 2E-16;
Figure 2d), mirroring the site gradient observed for the second principal coordinate, with Nairobi
again falling out of sequence. However, bacteriophage richness does not follow this population
density gradient, even though prokaryotic and phage richness generally correlate well (Figure
2e, SFig. 4). Interestingly, phage richness seems to be fairly similar across sites, with Navrongo
and Nairobi showing significantly lower phage richness than the other sites (Figure 2f). These
findings were independent of sequencing depth and generally similar with reference-based
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phage profiling method*? (SFig. 4), hinting at unexplored factors for phage ecology.

Altogether, study site is the dominant factor explaining overall microbiome composition.
Microbiome composition and diversity follow a gradient across study sites, ordered roughly by
site differences in socio-demographic, lifestyle, and environmental factors, although Nairobi is
often an outlier. Disease and medication variables explain smaller amounts of microbiome
composition, and HIV status represents one of the largest subsequent contributors to
microbiome variation after study site. These findings support the hypothesis that study sites
represent far more than geography, including varied subsistence strategies, industrialization
levels, healthcare access, and overall adversity that together affect microbiome composition.

Hallmark taxa differ across study sites

Given the strong effect of study setting on overall microbiome composition, we next identified
the prokaryotic taxa that have distinct prevalence and relative abundance patterns between
study sites. We clustered prokaryotic species by population prevalence, defining presence in an
individual as relative abundance = 1e-04, in each study site and observe several distinct
prevalence patterns (Figure 3a, STable 2). Some species are ubiquitous across the study sites
and appear to be core members of the gut microbiome in these populations regardless of site,
such as Faecalibacterium or Blautia species, while others have prevalence patterns that are
positively or negatively correlated with the study site gradient observed previously. As expected,
sites with similar subsistence strategies and populations have highly correlated species
prevalence (e.g. Navrongo and Nanoro, 0.91; Agincourt and DIMAMO, 0.96). Two interesting
exceptions are Nairobi and Soweto, which are both industrial or post-industrial urban sites but
have a prevalence correlation of only 0.65, and Nanoro and Agincourt, which are both sites with
lower population density, but have different subsistence strategies and a prevalence correlation
of only 0.66. Critically, these poor correlations illustrate that ‘urbanization’ or ‘industrialization’,
which are commonly cited variables that impact the microbiome in prior research including our
own, cannot adequately capture the diverse lifestyle and environmental factors that exist
between different urban areas and between different rural areas.

Intrigued by the differences between urban settings and the differences between rural settings,
we next identified how many and which prokaryotic species differed most in abundance between
sites. As expected, this analysis revealed a pattern similar to the prokaryotic prevalence
correlations (Figure 3b). We observe very few differentially abundant taxa between sites with
similar characteristics (2 species differ between Agincourt and DIMAMO) and several
differentially abundant taxa between sites with distinct characteristics (Soweto and Nanoro, 290
species) (Figure 3b). We first compared differentially present taxa between Nanoro and
Soweto, which fall at two extremes of the site gradient. Species from the genera Treponema,
Dialister, Prevotella, and Cryptobacteroides are lower in Soweto, whereas species from the
genera Bacteroides, Phoecaeicola, and Bifidobacterium are lower in Nanoro (Figure 3c).
Interestingly, when comparing Nanoro to Nairobi, which like Soweto is highly urbanized and
densely populated, Bifidobacterium, Treponema, and some Cryptobacteroides species show
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similarly extreme differences between the sites, whereas Phocaeicola and Bacteroides
abundance differences are more moderate. The overall relative abundances of these taxa in
Nairobi are more comparable to those observed in DIMAMO and Agincourt than to those
observed in Soweto (Figure 3cd; SFig. 5).

These findings suggest a model for the dynamics of microbiome transition. We observe some
taxa such as Treponema are easily lost in sites practicing large-scale agriculture or industry,
whereas we observe a gradual expansion in abundance of Bacteroides and Phocaeicola
species and a gradual decrease in abundance of Prevotella species. Despite numerous reports
in other cohorts***, we do not observe Prevotella and Bacteroides to be mutually exclusive
(SFig. 5). We observe interesting taxonomic profiles in participants from Nairobi, many of whom
likely migrated to Nairobi from rural parts of Kenya®*“° into the informal settlements. The
microbiomes of individuals from Nairobi are more compositionally similar to those from
participants in DIMAMO and Agincourt (Figure 3b) compared to those in Soweto. Furthermore,
the microbiomes of individuals from Nairobi have similar abundances of Prevotella species as
participants in Nanoro, suggesting that participants from Nairobi may have retained a microbial
signature from their former rural residences. By contrast, abundances of Bifidobacterium
species are similarly high and abundances of Cryptobacteroides species are similarly low in
participants from Nairobi and Soweto, suggesting that these taxa are likely strongly influenced
by changing environments.

AWI-Gen 2 microbiomes contain substantial novelty

African gut microbes are underrepresented in public reference collections such as the Unified
Human Gastrointestinal Genome catalogue, and when present, are often sourced from relatively
isolated populations with lifestyle practices (e.g. hunting and gathering) that are not
representative of the African continent. To identify novel microbial taxa in the AWI-Gen 2 sample
collection, we performed metagenomic assembly and binned assembled contigs into
metagenome-assembled genomes (MAGSs), yielding a total of 69,539 genomes. To condense
redundant genomes and build a species set, we took all MAGs with a minimum genome
completeness of 50% and maximum genome contamination of 5%, and dereplicated the
genomes at 95% average nucleotide identity (ANI). The resulting catalogue of 2,613 MAGs
span 19 bacterial phyla (Figure 4a).

Although most gut microbiome research focuses on prokaryotic composition and prokaryotic
genomes, this sample collection also represents a likely source of viral and functional diversity.
Therefore, along with our catalogue of prokaryotic MAGs, we generated a viral genome
catalogue from all assemblies clustered at 95% ANI and a protein catalogue from all medium-
and high-quality MAGs clustered at 95% amino acid identity. We compared our prokaryotic,
viral, and protein catalogues to the current field-standard reference collections: the Unified
Human Gastrointestinal Genome (UHGG) catalogue of 4,744 prokaryotic species
representatives, the Metagenomic Gut Virus catalogue of 54,118 viral operational taxonomic
units, and the Unified Human Gastrointestinal Protein 95 (UHGP95) catalogue of 20.5 million
proteins. These comparisons revealed that the AWI-Gen 2 dataset is enriched for novel
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features, including 1,005 new prokaryotic MAGs relative to UHGG (Figure 4b), 40,135 new
viruses relative to MGV (Figure 4c), and 7.6 million new proteins relative to UHGP95 (Figure
4d). Notably, we observe that a greater portion of proteins and viruses are new to reference
collections, compared to prokaryotic genomes which are moderately well-represented. Most
individual samples yielded several novel prokaryotic and viral genomes and tens of thousands
of novel proteins relative to reference collections (SFig. 6).

Given the substantial addition of new prokaryotic genomes, viral genomes, and proteins in the
AWI-Gen 2 microbiome project, we next explored whether this sample collection has saturated
possible metagenomic discovery from these populations. We performed a rarefaction analysis,
counting the total number of prokaryotic genomes (Figure 4e), viral genomes (Figure 4f), or
proteins (Figure 4g) generated from samples randomly selected from within or across each of
the six study sites. We find that no feature has reached saturation and that the addition of new
samples continues to yield additional features, especially for proteins and viral genomes.
Critically, these results imply that additional measurement of gut microbiomes in these
communities and in other African populations will continue to reveal new microbiome diversity.

Leveraging MAG database to understand bacterial biology

The extensive AWI-Gen 2 microbial genome catalogue enables us to better understand
organismal biology, including the biology of organisms that have yet to be extensively studied
using standard microbiological techniques. One taxon of particular interest is Treponema
succinifaciens, a commensal anaerobic bacterial species in the phylum Spirochaetes that is
non-spore forming, consumes a wide range of sugars, and produces short-chain fatty acids and
succinate*®. T. succinifaciens is thought to be present in rural hunter-gatherer, pastoralist, and
agriculturalist populations, and lost in urban populations'®*'. Previous work in the first phase of
AWI-Gen identified that T. succinifaciens is indeed present in urban populations®?; however, we
do observe that T. succinifaciens prevalence is inversely correlated with population density
(Figure 3d). Despite the emerging interest in this gut commensal, T. succinifaciens dispersal
and acquisition is poorly understood.

Treponema are difficult microbes to culture*”, making metagenome-assembled genome
catalogues an invaluable resource for better understanding their biology. Only one complete
genome from a cultured T. succinifaciens is available*®, and this type strain was isolated from
the swine gut®®. Only 99 T. succinifaciens MAGs exist in UHGG, predominantly assembled from
human gut samples from populations in Madagascar, Peru, and Fiji. Our genome catalogue
includes 249 metagenome-assembled genomes for T. succinifaciens, with most genomes
originating from sites with low population density (Figure 5a). Regardless of site of origin,
genome lengths are relatively small (2.51 £ 0.18 megabases; Figure 5b), and their shared core
genome of 1,578 genes constitute the majority of each genome (69.17% + 3.93%; Figure 5¢).
Based on the knowledge that T. succinifaciens is not spore forming and decreases in
prevalence with industrialization, along with the observation that T. succinifaciens has a small
and relatively compact genome, we hypothesized that T. succinifaciens is a host-adapted
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bacterial species with limited environmental dispersal. If that is the case, we would expect that
most individuals acquire T. succinifaciens locally, and that T. succinifaciens would therefore
have a strong signature of phylogeography. Indeed, by comparing T. succinifaciens genomes
from this study to those from other studies***°, we observe that T. succinifaciens genomes
cluster by continent or country of origin (Figure 5d), a pattern which is also visible within our
catalogue alone (SFig. 7). This phylogeographic signature supports a hypothesis of local
dispersal and acquisition of T. succinifaciens, and provides one example of how
metagenome-assembled genome catalogues built from populations in understudied areas can
be used to investigate bacterial biology.

Gut microbiome associations with HIV status

Finally, we investigated the relationship between the gut microbiome and HIV status, as HIV
represents one of the biggest public health concerns in the Kenyan and South African AWI-Gen
study populations: HIV prevalence estimates in 2022 among individuals aged 15 - 49 is 17.0%
in South Africa® and 3.7% in Kenya®. Despite advances in antiretroviral therapy (ART), viral
suppression is not sufficient to control HIV-related mortality and morbidity>®, thus motivating
deeper investigation into the gut microbiome as a possible mediator. Gut microbiota and their
metabolites have been implicated in HIV-related inflammation and immune activation:
gut-associated lymphoid tissue serves as a major reservoir for HIV***° and gut microbial
metabolites can promote HIV transcription®®®’. In turn, HIV infection can diminish epithelial
barrier integrity®®, allowing for microbial translocation that promotes immune activation and
chronic inflammation®%°. Moreover, obesity has become a major problem for individuals on the
latest generation of ART such as dolutegrevir®'. Very few studies have measured associations
between the gut microbiome and HIV status in African populations'®% where baseline
microbiome composition and disease profiles are distinct from those observed in HICs.

The AWI-Gen 2 project represents a unique opportunity to understand the associations between
the microbiome and HIV in a population-representative sampling. We compared microbiome
composition between women living with HIV (people living with HIV; PLWH) and seronegative
(HIV-) women in Agincourt (PLWH n=60; HIV- n=342), Soweto (PLWH n=50; HIV- n=165), and
Nairobi (PLWH n=19; HIV- n=214) (Figure 6a). HIV status was not assessed in Nanoro and
Navrongo because of low population prevalence in those populations, and DIMAMO was
excluded for this comparative analysis, since only six individuals were found to be living with
HIV. Most PLWH are undergoing ART as standard therapy to manage their HIV infection. Our
dataset also included participants with positive HIV status, but not self-reporting as receiving
ART, possibly because they learned of their HIV diagnosis in the course of participation within
AWI-Gen 2. Due to the low number of ART-naive PLWH in our dataset, we focused our analysis
only on HIV- and ART+ PLWH participants (see SFig. 8 for comparison between ART+ and
ART- PLWH).

To first compare the microbiome of PLWH and HIV- individuals on an overall composition level,
we compared alpha and beta diversity metrics. Consistent with previous descriptions'*®®, alpha
diversity is lower in PLWH overall, and this difference is also detected within each study site
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(Figure 6b). In terms of the beta diversity, HIV status significantly varies over both principal
coordinate axes (PCo1 P=0.05, PCo2 P=1.5e-11, Wilcoxon test) but is again outweighed by site
differences (PCo1 P=6.97e-11, PCo2 P=1.12e-26, Kruskal Wallis test; Figure 6c).

To identify specific taxa that vary with HIV status, we performed differential abundance testing
with a linear mixed effect model that allowed us to account for confounders such as site,
antibiotic treatment, or recency of diarrhoea. After correcting for multiple testing, 101 prokaryotic
species showed significant differences with HIV status (g-value < 0.01, see Figure 6d and
STable 3), the majority of which seem to be lost in PLWH, agreeing with the finding of lower
prokaryotic richness in PLWH. Overall, the effect sizes generally agree across study sites, with
Nairobi exhibiting smaller effect sizes due to a lower number of PLWH. Some of the most
significantly associated (g-value < 1e-05, Figure 6d) taxa have been associated with HIV status
in other cohorts: Faecalibacterium prausnitzii is a known anti-inflammatory species and has
been negatively associated with HIV status previously®®, and the genus Fusobacterium has
well-described pro-inflammatory associations with HIV and other diseases® . Interestingly,
other taxa that are negatively associated with HIV, including Ventricola sp., Faecousia sp., and
Limivicinus sp. are poorly described and better represented in metagenomic studies focused on
livestock®. Taxa that are positively associated with HIV, including Dysosmobacter welbionis and
Megamonas funiformis, have conflicting associations with inflammatory disorders™®" and
remain poorly characterized. These results highlight the value of investigating microbiome and
disease associations in broader cohorts, as many of these highly associated taxa are not
present in studies conducted in HICs.

To explore whether microbiome composition could be used to predict HIV status, we trained
machine learning models for each site individually and for all data combined (see Methods,
Figure 6ef). These models achieved accurate distinction between HIV- and PLWH individuals in
all sites, yielding area under the receiver-operating-characteristics (AU-ROC) > 0.75 in all
cases. When transferred across sites, only the model trained on data from Agincourt maintains
high classification accuracy (see Figure 6f), which is probably the result of a larger data set
available for model fraining. In line with this hypothesis, when data from two sites were
combined in a leave-one-site-out (LOSO) validation approach, samples from the left-out site are
still accurately classified (AU-ROC = 0.87 in all cases), even when samples from Agincourt are
not used for training at all. As another test for generalization, we calibrated the model trained on
all data to an internal 5% false positive rate (FPR, see Methods) and applied it to the samples
from Nanoro, Navrongo, and DIMAMO (Figure 6g). Even though information about HIV status
in Nanoro and Navrongo are not available, we can still assess the fraction of samples predicted
to be HIV positive, which we would expect would not exceed 5% given the population HIV
prevalence in these sites and our model calibration. Indeed, the model predicts very few
samples to be HIV positive (2.4% in Nanoro, 5.1% in Navrongo), highlighting its specificity, and
correctly classifies two thirds of the HIV-positive samples from DIMAMO (Figure 6g).

Overall, we find HIV-associated microbiome differences to be consistent across study settings,
despite the strong effect of study context on overall microbiome composition. Some strongly
associated taxa have been described in the context of HIV previously, but we also identify taxa
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that have not been well-described in human gut microbiomes or in microbial associations with
disease.

Discussion

In 2007, the Human Microbiome Project set the goal of measuring the human microbiome and
understanding its contribution to disease’?. Subsequent studies have built upon this goal,
studying the relationship between the human microbiome and disease in large cohorts in HIC
such as Israel™, the Netherlands®, and Finland®. Here, seventeen years later, the AWI-Gen 2
Microbiome Project is a landmark research effort that extends these goals to additional diverse
LMIC populations in Africa. This project represents the largest cross-sectional and
population-based survey of microbiome composition in relation to human health, environment,
and disease in low- and middle-income settings, and will prove invaluable in future microbiome
discovery research.

We present the AWI-Gen 2 Microbiome Project, a collaborative research effort that has
measured the gut microbiome in a cross-sectional population sample from six African
communities across four countries. The AWI-Gen 2 study centres encompass a wide range of
environments, including rural and predominantly horticultural areas (Nanoro, Burkina Faso and
Navrongo, Ghana), rapidly transitioning rural areas (Agincourt and DIMAMO, South Africa),
urban industrial informal settlements (Viwandani and Korogocho settlements in Nairobi, Kenya),
and an urban post-industrial settlement (Soweto, South Africa). Paired with extensive participant
data, which include human genotype data, blood and urine biomarkers, disease risk outcomes,
and demographic and environmental information, the AWI-Gen 2 Microbiome Project represents
the largest research effort of its kind in LMIC settings and fills a critical gap in measuring the
relationship between the gut microbiome and diverse health, geographic, and environmental
variables. This unique study design has supported the discovery of new findings that are
unattainable in other datasets.

First, the diversity of study settings enables comparison between populations that span a wide
range of subsistence strategies and resource access. We find that study context has a strong
effect on microbiome variation, with alpha diversity and prevalence of several taxa correlating
with gradients in population density and resource access. Unexpectedly, we observe differences
between sites that have similar subsistence strategies and industrialization levels. For example,
some taxa (Bifidobacterium, Cryptobacteroides) found in microbiomes from Nairobi have
abundance levels similar to abundances in Soweto, whereas other taxa (Prevotella,
Bacteroides, Phoecaeicola) have abundances that are more typical of the four rural and
semi-rural sites. Data from the HDSSs can help us contextualize these findings: the Korogocho
and Viwandani informal settlements in Nairobi are characterized by high in- and out-migration
rates, with approximately a quarter of the population migrating into or out of the settlements
each year®’#°. Approximately 60% of residents migrated from rural areas, and 50-80% of
residents revisit their rural homes semi-regularly*®. The participants in AWI-Gen 2 have all been
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residents of their respective catchment areas for at least ten years; however, the taxonomic
signatures in microbiomes from Nairobi participants are indicative of microbiomes of
communities in transition, highlighting taxa that persist in the gut microbiome throughout urban
migration, as well as the taxa that are lost or gained during this transition. The intermediate
microbiome compositions of participants from Agincourt and DIMAMO may similarly reflect
lifestyle: these study centres capture villages that are in the midst of industrialization, and
experience high rates of circular migration to urban centres in South Africa for employment, a
legacy of former apartheid policy in South Africa’. Microbiome changes with international
immigration have been observed previously?', but here we identify compositional shifts that
likely occur as a result of within-region migration and social and epidemiological transition.
Studying these populations is critical, as the vast majority of the world’s population reside in
LMICs, and over a billion people globally are estimated to live in urban informal settlements’. It
is a common oversimplification in many microbiome studies to use industrialization or
urbanization as binary variables. Our findings instead motivate the incorporation of population
demographics, and illustrate the importance of comparing populations within LMICs.

Next, this large cohort of individuals from understudied regions enabled extensive microbial
discovery. The bacterial, viral, and protein novelty found in this study emphasizes the severe
underrepresentation of gut microbiome data from LMICs in microbiome catalogues. This MAG
collection enables investigation into microbes that are absent from reference databases due to
low prevalence in high-income countries. For example, here we identify that T. succinifaciens
has a strong phylogeographic signature, which suggests that this gut commensal is likely
acquired locally and has limited geographic dispersal. T. succinifaciens is considered a hallmark
taxon that is lost in urban individuals*'. Here and previously*’, we have found Treponema in the
guts of urban individuals, perhaps due to high rates of population-level circulatory migration
between urban and rural areas. If so, these data may suggest that T. succinifaciens is not
irreversibly lost in industrial populations, as previously described. This finding illustrates the
utility of LMIC population representation in microbial reference collections.

Finally, the population-representative enrolment in AWI-Gen supports the capture of
population-level trends and association between microbiome composition and disease. Here,
we describe the microbiome signature of HIV infection in Nairobi, Kenya and Agincourt and
Soweto, South Africa. HIV prevalence is high in South Africa and Kenya, and improved viral
load management with antiretroviral therapy is not sufficient to protect against HIV-associated
comorbidities®*. We find several taxa that are enriched in PLWH receiving ART relative to
seronegative participants across sites, including taxa that have not been well-described in the
context of HIV and inflammation. It is important to acknowledge that these microbial signatures
and enriched taxa may be due to HIV infection itself, or due to medication or other confounding
factors that were not measured. These results further support the importance of continued
microbiome research in LMICs, as existing disease associations are likely not broadly portable
and more research is necessary to disentangle the effects of HIV infection and other
confounding variables on microbiome composition.
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We emphasize that the AWI-Gen 2 Microbiome Project is not an exhaustive representation of
any country or region. As indicated herein, there is tremendous diversity within LMIC
populations, and population density alone is not a sufficient indicator of overall microbiome
composition. Rather, the microbiome field needs to improve representation of LMIC populations,
both to maximize sampling diversity when drawing microbiome associations and to ensure
portability of study findings to broader populations. Even within this study, we focus on older
adult women and specifically highlight key variables that explain the greatest amount of
microbial variation, leaving several disease and lifestyle variables open for future investigation.
Although sex differences are generally considered to have less impact on microbiome
composition than other factors”, many of these studies have been conducted in HICs and
therefore do not capture health and lifestyle differences that may exist between sexes in LMICs.
Future studies can expand the presented framework to evaluate compositional differences
between sexes and across age groups. Further studies can also incorporate microbiome
measurements that were not included here. For example, eukaryotic profiling would enable
exploration of environmental factors related to pathogenic eukaryote acquisition, or deeper
investigation into the complex relationship between eukaryote infection, immune activation, and
gut microbiome composition. Total microbial concentration quantification could overcome biases
of compositional data to shed light on whether the taxonomic shifts observed in this study are
due to blooms or losses of specific taxa, and could be used to identify whether total microbial
concentration is related to any health variables measured in this study. Future work can
leverage the extensive AWI-Gen 2 participant data and additional methods of microbial
quantification to investigate the complex interplay between the microbiome and host genetics,
environmental exposures, health status, and participant demographics.

We strove to conduct the AWI-Gen 2 Microbiome Project ethically and equitably, taking into
account recommendations for ethical research and equitable partnerships between research
groups®+#.7879  The AWI-Gen Collaborative Centre provides an effective example of these
principles. First, AWI-Gen works closely within each study community. The study hires field
workers locally through the community-embedded HDSS and DPHRU infrastructures, and study
staff host community advisory group and community discussions prior to study onset, address
community concerns as they arise, and engage upon study completion for feedback of results.
Through community discussions and population surveillance, the research team can identify
pressing health issues within each study centre and ensure that research questions focus on
community needs. The microbiome component of AWI-Gen represents a strong scientific
partnership between Stanford University in the USA and University of the Witwatersrand in
South Africa. Trainees and faculty from both research groups contributed to study design and
data analysis, and a trainee from each institution has participated in a one-year research
exchange with joint membership from both institutions. Further, the team has led three training
workshops on microbiome and bioinformatics to support strengthening of genomics research
capacity in South Africa. Altogether, this study illustrates that equitable research and impactful
science do not represent a ‘zero-sum’ tradeoff, but in fact lead to more robust research with
benefit-sharing among all stakeholders.
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The AWI-Gen 2 Microbiome Project represents a substantial contribution to measuring the
composition and diversity of human gut microbiomes from diverse populations around the globe.
The data within this study provide extensive opportunities for continued exploration, including
identifying microbiome and disease associations, measuring human genetic contributions to
microbiome composition, and defining lifestyle factors that shape microbial community
assembly. Future studies can leverage these data, along with the foundation for
community-engaged and equitable research described herein, to close the gap in global
representation in microbiome research. Moreover, there is every reason to anticipate that the
platforms established and the findings that emerge will enhance disease management, health
and wellbeing among communities living in a diversity of contexts.

Methods

Ethics approval

Human subjects research approval was obtained (University of the Witwatersrand Human
Research Ethics Committee Clearance Certificate No. M170880, M2210108), and ethics
approvals were also obtained at each study centre. Informed consent was obtained from
participants for all samples collected. Every participant was provided with an information sheet
and consent documents, either in English or translated into the local language. Participants had
opportunities to discuss concerns with the interviewer, and participants who could not read or
write had documents read aloud with a witness®’. The Stanford University Institutional Review
Board deemed that the de-identified data transferred to Stanford University do not constitute
human subjects research and thus did not require an additional ethics approval beyond the
human subjects research approval obtained at the University of the Witwatersrand.

Community engagement

Each study centre conducted pre-study engagement prior to recruitment during both AWI-Gen 1
and AWI-Gen 2, adapting to the local contexts to engage with community members and discuss
feedback and concerns related to the study. For example, in DIMAMO, South Africa, pre-study
engagement involved meeting with tribal leaders, the community advisory team, and community
representatives. In Navrongo, Ghana, the community engagement team visited chiefs and
elders of the various study communities and informed them of the proposed study, and followed
up with a community sensitization durbar prior to AWI-Gen 1 with a larger audience of chiefs,
elders, and people of the study communities. The community durbar was excluded from
AWI-Gen 2, due to the ongoing COVID-19 outbreak. In Nairobi, Kenya, the community
engagement team held several consultative meetings with members of the community advisory
committee, village elders, community health volunteers, and AWI-Gen study participants before,
during, and after the study. The village elders and community health volunteers were critical in
mobilizing study participants who could not be reached by phone. Questions from participants
were related to how blood and stool samples would be used and why the study was focused on
women. If during recruitment and sample collection there were notable health concerns (e.g.
hypertension), the participants are referred into their clinical healthcare service infrastructures.
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These mechanisms and processes varied from country to country and for sites within a country,
depending on resources and local context.

Study design and cohort selection

Inclusion criteria included prior participation in the AWI-Gen 1 study? and continued
participation in the AWI-Gen 2 study. This AWI-Gen 2 microbiome study is a companion study to
an AWI-Gen 2 menopause study, and so only participants self-identifying as female were
surveyed for the microbiome sub-study. A small number of men in Nanoro, Burkina Faso were
recruited due to a fieldwork mix-up. Given the understudied nature of these populations, we did
not fully exclude samples from men in downstream analyses; rather, samples from men were
excluded from site comparisons and disease associations, but included when cataloguing
genomic novelty. Participants were chosen semi-randomly from the overall AWI-Gen 2
participant pool, with additional measures taken to ensure a cross-section of individuals with
respect to menopause status and hypertension. See Supplementary Methods for extended
recruitment details.

In Soweto, Nairobi, and Nanoro, participants came to central locations for interviews and
biomarker collection. Participants were given stool sample collection kits that were either
collected the same day or collected from their homes or at a central location in the following
days. At the Navrongo, DIMAMO, and Agincourt study centres, participants were visited in their
homes for interviews and biomarker collection. Participants were given a stool sample collection
kit to use at their home, which was collected by fieldworkers within 24 hours.

Single stool samples from each participant were self-collected and placed in the OMNIGene
GUT OMR-200 Collection Kit by the participants (DNA Genotek). Samples were frozen at study
centres and shipped frozen to a central laboratory in Johannesburg, South Africa, where they
were thawed, aliquoted into cryovials, and stored at —-80°C. After obtaining necessary
exportation and importation permits, samples were shipped on dry ice to the United States for
downstream processing. Prior analysis was conducted to ensure that storage and shipping
conditions would not significantly affect measured microbial composition®. Participant metadata,
including age, demographic information, health history, and blood biomarkers were collected as
part of the larger AWI-Gen 2 project, with methods similar to those used in AWI-Gen 1%°.

DNA extraction and metagenomic sequencing

DNA was extracted from samples using the QlAamp PowerFecal Pro DNA Kit (QIAGEN; Cat.
No. 51804) from 300 pl of stool sample according to manufacturer’s instructions. Bead beating
was performed for ten minutes at 30 Hz, followed by rotation of the adapter and ten additional
minutes of bead beating using a TissueLyser Il (QIAGEN; Cat. No. 85300) using a 2 ml Tube
Holder Set (QIAGEN; Cat. No. 11993), and DNA extractions were eluted with C6 Elution Buffer
in a final volume of 80 pl. DNA concentration was quantified by spectrophotometer using the
DropSense 96 platform (Trinean; Cat. No. 10100096). Every extraction batch of 96 samples
included one water blank as a negative control and one mock community aliquot (Zymo
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Research; Cat. No. D6300) as a positive control. Samples were evaluated for concentration,
integrity, and purity prior to library preparation using the 5400 Fragment Analyzer System
(Agilent; Cat. No. M5312AA). Metagenomic libraries were prepared using the NEB Ultra Il kit
(NEB; Cat. No. E7645L) according to manufacturer’s instructions. Library concentration was
quantified using gPCR and fragment length distribution was analysed using a 2100 Bioanalyzer
(Agilent; Cat. No. G2939BA). Libraries were pooled and 2x150 bp reads were generated using
the NovaSeq 6000 platform (lllumina; Cat. No. 20012850).

Metagenomic read pre-processing and taxonomy profiling

Metagenomic reads were deduplicated using htstream SuperDeduper v1.3.3 with default
parameters, trimmed using TrimGalore v0.6.7 with a minimum quality score of 30 and a
minimum read length of 60. Reads aligning to version hg38 of the human genome were
removed using BWA v0.7.178". Metagenomic reads were taxonomically profiled using mOTUs
v3.0.3%2 and counts were distributed to GTDB* species using the GTDB_v207 mapping file
available as part of the mOTUs database. All samples were used for metagenome assembly
and novel feature discovery (n = 1,820). Samples from males and samples with high
percentages of human reads (percentage of human reads = 70%, n=4 samples) were excluded
from classification-based analyses and site comparisons.

Microbial diversity and site differences

To measure microbial alpha diversity, species counts were rarefied to 5,000 using the rrarefy
function available through the vegan R package v2.6-4%. Alpha diversity was measured as
prokaryotic richness (number of species with relative abundance = 1e-04 after rarefaction).
Phage richness was measured as the number of unique phages annotated in
whole-metagenome assemblies from each sample using VIBRANT v1.2.184 (without rarefaction,
see “Metagenome assembly and external dataset comparison” below). Orthogonal phage
profiling using read-based classification (see SFig. 4) was performed with Phanta v1.1.0*2 using
the combination of MGV and UHGG as the reference database. Differences between alpha
diversity metrics across sites were tested with a linear model, using the anova function from
base R to estimate the significance of the difference.

Beta-diversity was calculated on the Bray-Curtis distance using the vegdist function from
vegan® and the pco function from the labdsv R package v2.1-0%°. To assess the amount of
variance explained by covariates, distance-based redundancy analysis was performed with the
dbrda function from vegan. In an iterative manner, the covariate explaining the highest amount
of variance was added to the model formula. To reduce redundancy of highly correlated
covariates, all available covariates were transformed into numerical values (using ordinal
factors, whenever applicable) and the Pearson correlation between covariates was calculated.
In cases of highly correlated covariates (Pearson’s r = 0.8), the covariate that explained the
higher amount of variance in the prokaryotic composition was chosen for the iterative model
(SFig. 3).
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The difference between sites for individual taxa was calculated using a generalized fold
change®. In short, instead of comparing the median (the 50% quantile) between distributions,
the generalized fold change is the mean of the differences between two distributions at multiple
quantiles and can therefore resolve differences also in low-prevalence taxa. Figure 3b shows
the number of taxa for which the generalized fold change between sites exceeds the 90%
quantile of all pairwise site comparisons across all prokaryotic species.

The number of samples for these analyses (displayed in Figure 2 and 3, and associated
supplements) was distributed across the different sites as follows: Nanoro, n=382; Navrongo,
n=218; DIMAMO, n=201; Agincourt, n=532; Soweto, n=226; Nairobi, n=237.

Metagenome assembly and external dataset comparison

All samples (n = 1,820), including samples for male participants, were included in metagenomic
assembly analyses (Nanoro, n=384; Navrongo, n=235; DIMAMO, n=203; Agincourt, n=533;
Soweto, n=226; Nairobi, n=239). Metagenomic reads were assembled using megahit v1.2.9%"
and assembly quality was assessed using QUAST v5.2.0%8. Protein-coding genes were
predicted from assemblies using prodigal v2.6.3%. Metagenomic assemblies were binned into
draft genomes using MetaBAT v2.5%°, CONCOCT v1.1.0°, and MaxBin v2.2.7%?, and
subsequently dereplicated and aggregated on a per-sample basis using DAS Tool v1.1.6%. Bin
quality was assessed using CheckM v1.2.2%. To create a dereplicated genome set,
metagenome-assembled genomes were dereplicated using dRep v3.4.3%, filtering to only
include genomes with a minimum CheckM completeness of 50% and maximum CheckM
contamination of 5%. In dereplication, we implemented a primary clustering threshold (-pa) of
0.9 and secondary alignment threshold (-sa) of 0.95, requiring minimum overlap between
genomes (-nc) of 0.3, using multi-round primary clustering
(--multiround primary clustering) and greedy secondary clustering with fastANI
v1.33% (--greedy secondary clustering, --S algorithm fastANI) to reduce the
computational complexity of dereplicating a large genome set. For dereplication, cluster
representatives were chosen using scoring criteria that included a completion weight (-comw) of
1, contamination weight (-conwW) of 5, N50 weight (-N50w) of 0.5, size weight (-sizeW) of O,
and centrality weight (-centw) of 0. Genome filters and scoring were consistent with standards
used in the UHGG*. The final genome set was taxonomically classified and placed in a tree
with GTDB-tk v2.3.0% using the GTDB r214 catalogue and default parameters. Phylogenetic
trees were visualized with iTOL v6%. The dereplicated prokaryotic genome set was compared
against the UHGG v2.0.1 species representatives using dRep v3.4.3 with the same parameters
as previously stated above.

Protein-coding genes were predicted from each medium-quality and high-quality prokaryotic
genome, prior to genome dereplication, using prodigal v2.6.3 with parameters -c -p meta to
exclude partial genes. Putative proteins were clustered successively using mmseqs v14.7e284%
linclust command with alignment coverage (-c) of 0.8 in target coverage mode (--cov-mode
1) and greedy secondary clustering (--cluster-mode 2) at 100% and 95% amino acid
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identity (--min-seqg-id). The 95% identity protein set was compared against the UHGP95
v2.0.1 proteins using mmseqs v14.7e284, and proteins sharing 95% amino acid identity over
80% of the UHGG protein were considered to match the UHGP set.

Viral genomes were annotated with VIBRANT v1.2.1%* and genome quality was determined with
checkV v1.0.1'®. Viral genomes were clustered into a dereplicated set by building a database of
medium- and high-quality genomes with BLAST 2.14.0"°" and clustering genomes at a minimum
95% ANI and 85% alignment fraction using checkV supporting scripts with default parameters.
The final viral genome set was compared against the MGV v1.0'? vOTU representative phage
genomes using the same BLAST clustering approach and parameters.

Modelled accumulation of novel prokaryotic genomes, proteins, and viral genomes with
additional participant sampling was determined by randomly subsetting the full participant set or
site-specific participant sets to a range of individuals (1-1500) in a hundred iterations and
counting the number of prokaryotic genome clusters, protein clusters, or viral genome clusters
represented by the participant subset.

Treponema succinifaciens core genome determination and phylogeography analysis

We evaluated the complete set of T. succinifaciens metagenome-assembled genomes in our
genome catalogue prior to dereplication. To identify T. succinfaciens genomes, we selected all
genomes with completeness 250% and contamination <5% that fell into a secondary cluster with
genomes classified as Treponema_D succinifaciens by GTDB-tk in our dereplicated genome
catalogue (n = 249). Coding sequences were predicted with bakta v1.8.2'%. Core genes,
defined here as genes present in at least 80% of genomes, were identified with roary v3.12.0"%.

Public T. succinifaciens genomes were downloaded from the UHGG*, Carter et al.*’, and NCBI.
To build AWI-Gen specific or global phylogenetic trees, core genes were identified and
incorporated into a core gene multiple sequence alignment using roary v3.12.0' and MAFFT
v7.407'%. The core gene multiple sequence alignment was used as input to FastTree v2.1.11%,
and the resulting phylogenetic trees were visualized in iTOL v6%.

Association between microbiome features and HIV status

Participants from Agincourt, South Africa, Soweto, South Africa, and Nairobi, Kenya were
included in this analysis. Participants from DIMAMO, South Africa were excluded due to the low
number of PLWH (n=6). Participants from Nanoro, Burkina Faso and Navrongo, Ghana were
excluded as HIV status was not measured in these populations due to low national prevalence
of HIV. A total of 850 participants was included in this analysis, capturing 129 people living with
HIV (PLWH) and 721 seronegative individuals (see Table 1). The rest of the samples from those
sites were either HIV positive, but reported not to take antiretroviral therapy (n=28, n=22 in
Agincourt, n=3 in Soweto, n=3 in Nairobi), or information about ART or HIV status was missing.
Prokaryotic alpha and beta diversity were calculated as described above.
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Differential abundance analysis was performed using a linear mixed effect model implemented
in the ImerTest R package v3.1-3'7, including site, exposure to antibiotics, and self-reported
recency of diarrhoea as random effects, as those factors had shown to be related to microbiome
composition in the previous analyses. Overall effect size was estimated through the ImerTest
package as well and generalized fold change within each site was calculated as described
above.

For the machine learning analysis, we trained statistical models using the SIAMCAT R package
v2.5.0% for both all data combined and for each site separately. In short, relative abundances
were normalized using the 1og.std method in SIAMCAT. Samples were split for five-times
repeated five-fold cross-validation (20% of samples were retained for testing and not included in
model training) and for each split, an L1-regularized logistic regression model (LASSO) was
trained on the training folds, using standard parameters. Model evaluation was performed within
the cross-validation (for example, within a site) by applying each model to the respective left-out
test fold. The predictions for each sample were averaged across repeats and the area under the
receiver operating characteristics (AU-ROC) was calculated with the pROC package v1.18.2'%.
For cross-site evaluation, the external data was normalized with the recorded normalization
parameters (frozen normalization), all models from the cross-validation were applied to the
normalized data, and predictions were averaged again for AU-ROC analysis. For the
leave-one-site-out (LOSO) analysis, models were trained as described on data from two sites
combined (for example, Agincourt and Soweto) and were then applied on the data from the left
out site (Nairobi).

To test the fraction of positive prediction in other sites, we calibrated the model prediction to an
internal 5% false positive rate, that is, recorded at which prediction threshold 5% of HIV-
samples were incorrectly classified as PLWH. Then, the model trained on all data combined was
applied to the data from Nanoro, Navrongo, and DIMAMO to quantify the number of samples
that resulted in a prediction above the threshold value.

Statistical analysis

Statistical analyses were performed using R v4.1.2 using the statistical test specified in the
respective methods section. Correction for multiple hypothesis testing was performed with the
Benjamini-Hochberg procedure’® as implemented in the p.adjust function in base R. Plots
were generated in R using the following packages: ggplot2 v3.4.2"°, cowplot v1.1.1"", tidyverse
v2.0.0"2,

Data Availability

All shotgun sequence data and the dereplicated prokaryotic and viral genome sets will be
deposited in the European Nucleotide Archive upon publication. Participant phenotype data will
be deposited in the European Genome-Phenome Archive upon publication. Participant
phenotype data are under restricted access due to ethics requirements of the AWI-Gen 2 study.
Access can be obtained by request from the Human Heredity and Health in Africa Data Access
Committee at https://catalog.h3africa.org/. Source data, including classification tables, genome
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summary statistics, taxon prevalence, and differential feature tables, are available at
https://purl.stanford.edu/kq420ys8307.

Reference data used in this study are available from the Unified Human Gastrointestinal
Genome collection in the European Nucleotide Archive under project accession PRJEB33885,
the Metagenomic Gut Virus catalogue at https://portal.nersc.gov/MGV, and the Genome
Taxonomy Database at https://data.gtdb.ecogenomic.org/releases/.

Code Availability

Nextflow workflows for metagenomic preprocessing, assembly, binning, and postprocessing, as
well as the source code for analysis and figure generation are available at
https://github.com/bhattlab/AWIGen2Microbiome.
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Figure 1. Overview of the AWI-Gen 2 Microbiome study. a) Organizational chart of the AWI-Gen 2 project. The
partnership, funded by the National Institutes of Health under the umbrella of the Human Heredity and Health in
Africa consortium (H3Africa), includes five Health and Demographic Surveillance Sites (HDSSs) and the Soweto
Developmental Pathways for Health Research Unit (DPHRU). The HDSSs and DPHRU are managed by the Clinical
Research Unit of Nanoro Institut de Recherche en Sciences de la Santé (CRUN/IRSS), Navrongo Health Research
Centre (NHRC), University of Limpopo Population Health Research Centre (UoL - PHRC), University of the
Witwatersrand and the South African Medical Research Council (Wits/MRC), and African Population Health and
Research Center (APHRC). Researchers from Stanford University and the University of the Witwatersrand lead the
microbiome analysis. b) Study site locations and number of participants recruited from each site. c) Timeline of the
AWI-Gen 2 microbiome study research activities, including study administration, sample collection, and community
engagement. During both AWI-Gen phases, researchers led microbiome and bioinformatic workshops for local
researchers. Community engagement preceded sample collection at all sites, and participants with concerning
health-related results were referred to their local healthcare facilities in accordance with site-specific protocols.
Community engagement in Nairobi continued intermittently throughout sample collection to accommodate roadblocks
during the COVID-19 pandemic.
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Table 1 Study centre characteristics

Nanoro, Navrongo, DIMAMO, Agincourt, Soweto,

Burkina Faso Ghana South Africa South Africa South Africa* Nairobi, Kenya
HDSS Catchment Area, km2 594 1,675 545 420 200 6
HDSS Catchment Area
Population, thousands 63 156 36 115 1,200 s
Population density per km2 105 91 113 274 6,357 14,833

12.57N, 1.92W 23.65S, 29.65E 24.50S, 31.08E 1.25S, 36.89E

Map coordinate 12.72N, 2.31W 10.89N, 1.09W 23.90S 29.85E 24.56S 31.25E 26.24S, 27.84E 1.31S 36.87E
Altitude, m 313 196 1,250 400-600 1,632 1,790
Household size, median (IQR) 12 (7, 20) 6(5,7) 5(3,7) 5(3,7) 4(2,6) 4 (2,6)
Electricity (%) 3.9% 33.9% 98.0% 99.6% 98.2% 82.9%
Age, median (IQR) 50 (48, 53) 55 (52, 61) 53 (50, 57) 61 (54, 68) 54 (50, 58) 50 (48, 53)

Prevalence of HIV

Seronegative, n(%)

426 (80.2%)

165 (75.7%)

216 (90.4%)

Seropositive, +ART, n(%)

60 (11.3%)

50 (22.9%)

19 (8.0%)

Seropositive, -ART, n(%)

45 (8.5%)

3 (1.4%)

4 (1.7%)

* The Soweto study area is managed by the SAMRC/Wits Developmental Pathways to Health Research Unit, not an

HDSS

Household size, electricity, age, HIV, and BMI statistics are specific to the AWI-Gen 2 Microbiome Project study

populations.

For normally distributed parameters, values represent the mean +SD; for not normally distributed parameters, values

represent the median with IQR (P25, P75). Categorical variables are represented by counts and percentages.

The table above summarizes the catchment area of the sites’ surveillance area. Note that the catchment area of the
site does not always correspond exactly to administrative units for which census data is available. See the
supplementary methods for a full description of the sites and inclusion criteria.
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Figure 2. Microbial composition and diversity in the AWI-Gen 2 Microbiome cohort. a) Principal coordinate
analysis of all samples based on Bray-Curtis distance on species-level prokaryotic profiles. Study site is colour-coded
and the boxplots on the side and above show the samples per site projected onto the first and second principal
coordinate. b) The Spearman correlation coefficient (Spearman’s rho) between principal coordinate values and
relative abundance of prokaryotic phyla (and prokaryotic richness) is indicated by arrows. Phyla with an absolute
correlation coefficient higher than 0.4 for either of the two principal coordinates are highlighted in blue. ¢) The amount
of variance in the prokaryotic composition that is explained by various covariates in distance-based redundancy
analysis is shown for all covariates that explain more than 0.5% of variance (SFig. 3). d) Prokaryotic richness
(number of prokaryotic species present at =21e-04% abundance after rarefaction) per site(Kruskal-Wallis test p <
2e-16, n=1796). e) Phage richness (number of phage species clusters present in each sample, see Methods) per site
(Kruskal-Wallis test p < 2e-16, n=1796). f) Pairwise comparisons between sites in prokaryotic and phage richness.
Each tile corresponds to the results of a linear model comparing the richness between two different sites. The fill
colour indicates if the richness is higher in site A (see x-axis) compared to site B (see y-axis of the heatmap). Stars
indicate the significance (tested by ANOVA) after correction for multiple hypothesis testing using the
Benjamini-Hochberg procedure (see Methods). Above the diagonal, prokaryotic richness is compared, whereas
comparisons in phage richness are shown below the diagonal. For all boxplots, boxes denote the interquartile range
(IQR) with the median as a thick black line and the whiskers extending up to the most extreme points within 1.5-fold
IQR.
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Figure 3. Site comparison reveals patterns of lifestyle-related microbiome transition. a) The prevalence per site
is shown for all prokaryotic species with prevalence higher than 5% in at least 2 sites (n=886 species), clustered
using the Ward algorithm. Spearman correlation between sites is shown on the right. b) For the same species as in
a), the number of bacterial species that have a high generalized fold change between sites (see Methods) is indicated
by the thickness of the edge connecting two sites. ¢) The mean log10-transformed abundance of the same
prokaryotic species as in a). Species that belong to the 10 genera with the highest variance in fold change across all
sites (see Methods) are highlighted by colours. d) The log10 relative abundance of select genera are shown across
the six different study sites (sites ordered by the clustering in a). See Fig. 2 for boxplot definitions.
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Figure 4. Catalogue of novel microbial features. a) Phylogenetic tree of 2,584 de-replicated bacterial
metagenome-assembled genomes generated in this study. Outer ring indicates study site of origin, inner ring
indicates assigned GTDB phylum, and leaf points indicate genomes that are novel relative to UHGG. Total number of
novel and existing b) prokaryotic genomes, c) viral genomes, and d) prokaryotic proteins in the AWI-Gen assemblies,
relative to existing databases for each feature. Only representative genomes and proteins after feature clustering are
represented. Rarefaction curves of the number of e) prokaryotic genomes, f) viral genomes, and g) prokaryotic
proteins detected as a function of the number of individuals sampled, by study site or from the full AWI-Gen sample
set (grey). Each random subset was repeated a hundred times, and lines represent the mean feature count and
standard deviation.
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Figure 5. Features of Treponema succinifaciens metagenome-assembled genomes (MAGs). a) Number of T.
succinifaciens metagenome-assembled genomes by study site. b) Distribution of the length, in megabase pairs
(Mbp), of each T. succinifaciens MAG. MAGs from Soweto are not pictured, as Soweto samples only contained two
MAGs. c) Number of genes in each MAG that were classified as core (= 80% prevalence), shell (25 < prevalence <
80%), or cloud genes (< 25% prevalence) in the complete MAG set. d) Midpoint-rooted phylogenetic tree of T.
succinifaciens MAGs from this study (noted in pink inner ring) and public data sets (n = 513 total genomes). Middle
ring indicates the country of origin, and outer ring indicates the continent of origin. White line and asterisk indicate the
T. succinifaciens DSM 2489 type strain reference genome.
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Figure 6. Microbial composition and diversity in people living with HIV. a) Number of seronegative individuals
(HIV-) and people living with HIV (PLWH) on antiretroviral treatment included for analysis. b) Prokaryotic richness
(number of prokaryotic species present at 21e-04% abundance) by site and HIV status. Points represent individual
samples. Differences in alpha diversity for each individual site were tested with ANOVA and for all sites combined
with a linear mixed effect model accounting for site as a random effect. c) Principal coordinate analysis of all samples
based on Bray-Curtis distance on species-level prokaryotic profiles. Points represent individual samples, coloured by
study site, and PLWH are shaded. Boxplots on the side and below show the samples by HIV status projected onto
the first and second principal coordinate. d) Differentially abundant species as determined by a linear mixed effect
model accounting for confounders (see Methods). Species with g-value < 0.01 are shown and species with g-value <
1e-05 are annotated (see STable 3 for the full list). Shading indicates site-specific abundance fold change between
seronegative individuals and PLWH. e) Receiver-operating characteristic (ROC) for machine learning models trained
to distinguish HIV status on samples from each site or for all data combined. Shaded areas indicate the 95%
confidence interval and numbers indicate area under the ROC curve (AU-ROC). f) AU-ROC values for machine
learning model evaluation. Models trained on participants from each site were applied to the data from other sites and
the external predictions were evaluated via AU-ROC (see Methods). In the leave-one-site-out (LOSO) validation,
models were trained on data from two sites and validated on the left-out site (e.g. model trained on data from Soweto
and Nairobi was evaluated on data from Agincourt). g) Fraction of samples from other sites predicted to be positive
calibrated at a 5% false positive rate (indicated by dashed black line, see Methods). For DIMAMO, HIV status is
known and therefore, the false positive rate and the true positive rate can be evaluated. Note that serostatus is not
known for individuals in Nanoro and Navrongo but is expected to be below 2%. See Fig. 2 for boxplot definitions.
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