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 13 
Abstract 14 
Motivation: Multiplexed imaging and single-cell analysis are increasingly applied to investigate the tissue 15 
spatial ecosystems in cancer and other complex diseases. Accurate single-cell phenotyping based on 16 
marker combinations is a critical but challenging task due to (i) low reproducibility across experiments with 17 
manual thresholding, and, (ii)  labor-intensive ground-truth expert annotation required for learning-based 18 
methods.  19 
Results: We developed Tribus, an interactive knowledge-based classifier for multiplexed images and 20 
proteomic datasets that avoids hard-set thresholds and manual labeling. We demonstrated that Tribus 21 
recovers fine-grained cell types, matching the gold standard annotations by human experts. Additionally, 22 
Tribus can target ambiguous populations and discover phenotypically distinct cell subtypes. Through 23 
benchmarking against three similar methods in four public datasets with ground truth labels, we show that 24 
Tribus outperforms other methods in accuracy and computational efficiency, reducing runtime by an order of 25 
magnitude. Finally, we demonstrate the performance of Tribus in rapid and precise cell phenotyping with two 26 
large in-house whole-slide imaging datasets.  27 
Availability: Tribus is available at https://github.com/farkkilab/tribus as an open-source Python package.   28 
 29 
Introduction 30 
Multiplexed imaging techniques at single-cell resolution, such as tissue-based cyclic immunofluorescence (t-31 
CyCIF) (Lin et al., 2018), co-detection by indexing (CODEX) (Black et al., 2021), and multiplexed ion beam 32 
imaging by time of flight (MIBI-TOF) (Keren et al., 2019), offer significant advantages for studying tissue 33 
architecture. These techniques enable researchers to measure dozens of proteins at single-cell resolution 34 
while preserving spatial origin information in tissue sections, providing novel insights into cellular phenotypes 35 
and tissue behaviors (Spitzer & Nolan, 2016). Multiplexed images require a sequence of processes to extract 36 
single-cell measurements, including image registration, stitching, cell segmentation, and quantification 37 
(Schapiro et al., 2022). Cell phenotyping is typically the final step before downstream analyses and often 38 
serves as the bottleneck in realizing the full potential of multiplexed images. The main challenges in cell-type 39 
phenotyping from multiplexed images include reproducibility limitations and unexpected marker 40 
combinations.  41 
 42 
Classic methods for cell phenotyping such as manual gating and clustering, are reproducibility-limited. 43 
Gating (Staats et al., 2019) requires visualizing and manually setting marker expression thresholds for each 44 
marker in each sample. These hard thresholds are experiment-specific and can’t be reused across different 45 
batches. As the marker panel sizes and sample numbers increase, gating becomes time-consuming and 46 
unfeasible (Verschoor et al., 2015). Clustering algorithms, such as PhenoGraph (Levine et al., 2015), Leiden 47 
(Traag et al., 2019), and DBscan (Ester et al., 1996), have been applied for automatic data exploration (Liu 48 
et al., 2019). However, manual verification is still necessary to assign meaningful cell types to the resulting 49 
clusters. To achieve deeper profiling of cell types, over-clustering and subsequent merging of clusters is 50 
often required, a process that is both computationally intensive and time-consuming.  51 
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 52 
Several automated cell-type annotation approaches have been developed to overcome the reproducibility 53 
limits. For example, CellSighter is a supervised deep convolutional neural network-based algorithm for 54 
automatic cell phenotyping which requires expert-labeled images for training (Amitay et al., 2023). Another 55 
similar solution, MAPS is a supervised deep learning-based method that is computationally lighter than 56 
CellSighter (Shaban et al., 2024). These methods require pre-training on manually labeled datasets; 57 
however, the measured protein combinations (marker panel design) are experiment-specific, making it 58 
difficult to generate general reference populations for each cell type. In cases of unexpected marker 59 
combinations, the algorithms are required to be retrained in different scenarios.  60 
 61 
To address the above challenges, we introduce a novel cell-type caller named Tribus, which incorporates the 62 
widely used self-organizing map (SOM) (Kohonen, 1982) unsupervised clustering method with a unique 63 
scoring function to assign cell types according to prior biological knowledge. Tribus requires only a cell 64 
measurement matrix and a prior knowledge table as inputs, without the need for training on expert 65 
annotations, and enables reproducible, automatic cell phenotyping across various multiplexed imaging and 66 
proteomic datasets. Tribus enables users to easily conduct analyses, visualize results, and perform quality 67 
control through an integrated Napari widget. We validate Tribus’s accuracy on four public multiplexed 68 
imaging and suspension mass cytometry datasets. We then compare Tribus’s performance to three other 69 
similar prior knowledge-based cell-type identification approaches: ACDC (Lee et al., 2017), Astir (Geuenich 70 
et al., 2021), and Scyan (Blampey et al., 2023), and demonstrate its utility in analyzing two large in-house t-71 
CyCIF datasets. Tribus represents a novel user-friendly framework for semi-automated cell-type calling in 72 
multiplexed imaging and proteomics datasets.  73 
 74 
Methods 75 

 76 
Figure 1. Overview of Tribus architecture. Tribus processes multiplexed imaging data by using a Self-77 
Organizing Map (SOM) to cluster cells and a logic table based on panel knowledge to score and classify cell 78 
phenotypes. Results can be visualized with a Napari plugin for interactive exploration and quality control. 79 
 80 
Overview of Tribus 81 
Tribus is a hierarchical framework for cell-type assignment in multiplexed image datasets based on prior 82 
panel knowledge (Fig 1). Running Tribus requires a marker expression table and a prior knowledge-based 83 
logic table. The logic table is defined as a data matrix ����, ��� containing values ��1,0,1�, where �� refers to 84 
the cell type ��� and �� refers to the marker 
��. If a marker is present in a specific cell type, the 85 
corresponding value in the logic table is assigned 1. If a marker is supposed to be absent in a specific cell 86 
type, the value in the logic table is set to -1. A score of 0 is assigned for neutral or unknown markers. Each 87 
cell type must have at least one positive marker in the logic table (Supplementary Table 1-3).  88 
 89 
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Unsupervised clustering in Tribus 90 
Tribus uses an unsupervised self-organizing map (SOM) method for clustering based on the MiniSOM 91 
package (Vettigli, 2013/2023). SOM can represent a high-dimensional input space as a map consisting of 92 
components called "nodes". Quantization error (�) was used to evaluate the algorithm performance, 93 
calculated by determining the average distance of the sample vectors (��) to the cluster centroids (��).  94 

� � 1
� �

�

���

���� � �����	 

Quantization errors can only be compared under the same grid size (Pölzlbauer, n.d.). To determine the 95 

optimal grid size, we used the approach of Vesanto (Vesanto & Alhoniemi, 2000): � � 5√�, where � is the 96 
input data size (i.e., number of cells). The parameters of the SOM include � (the spread of the neighborhood 97 
function) and the learning rate. Those parameters can be set by users or optimized by minimizing the 98 
quantization error with the hyperparameter tuning module based on the package hyperopt (Bergstra et al., 99 
2013), where the objective function was to minimize the quantization error, and the search space for � and 100 
the learning rate ranged from 0.001 to 5.  101 
 102 
During analysis, Tribus first generates clusters/grids from the input data and then assigns each cluster to a 103 
certain cell type based on the logic table. Cell type assignment is performed hierarchically, meaning Tribus 104 
first assigns lower-level cell types followed by higher-level cell subtypes to create more precise categories. If 105 
the number of cells in the subset exceeds the user-defined threshold, Tribus will still generate clusters. 106 
Otherwise, Tribus directly calculates the scoring function for each cell type at the single-cell level. 107 
 108 
Cell type assignment by scoring functions 109 

After SOM clustering, a node matrix ���
, ��� is generated, where �� is calculated as the median expression 110 
of the marker �� in �
. We designed a scoring function based on the squared error concept, similar to the 111 
QueryStarPlot function of the FlowSOM package (Van Gassen et al., 2015). This function calculates the 112 
score �� of a certain cell type � for each node �.  113 

����
 �  1
� �

�
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where,  114 
���" � $%

���� , ����, �� � 1 ��� ���� , ����, �� � �1  

 115 
Instead of using the maximum value, the 99 percentile was chosen to make Tribus more robust to outliers. 116 
Assigning node �
 to cell type �� using: �� � &'(�&���)��
, �� . Note that the cell-type assignment process in 117 
Tribus accounts for ambiguous results. If the maximum score of a cluster falls below a certain threshold, the 118 
cluster is labeled as the "other" cell type. Similarly, if the difference between the maximum and second 119 
maximum score is smaller than a certain threshold, the cluster will be labeled as "undefined".  120 
 121 
Napari plug-in 122 
To efficiently evaluate cell-type labeling results, we developed a custom plugin integrated with the Napari 123 
(Ahlers, Jannis et al., 2023) framework. This plugin enables users to run Tribus on one sample at a time, 124 
display results simultaneously, or load previously saved data. We incorporated the ZARR format to 125 
overcome computational limitations associated with large datasets.  126 
The key functionalities of the Napari plugin include:  127 
(i) Cell-type mask visualization: The plugin sorts and displays different cell-type labels as separate layers 128 
using visually distinct colors, allowing the user to overlay them with imaging data for quality control. This 129 
function is also available in a stand-alone Jupyter Notebook.  130 
(ii) Probability score visualization: cell masks are represented as a color gradient of the probability score 131 
assigned by the algorithm. This allows the user to identify and review ambiguous cells and assess the 132 
assigned “other” and “undefined” thresholds. 133 
(iii) Marker intensity visualization: The median expression levels of the selected markers are represented 134 
through gradient shading on the segmentation mask, enabling users to visually assess the results and 135 
identify potential biases.  136 
 137 
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Methods for comparison and evaluation metrics 138 
We compared the performance of Tribus with three similar prior knowledge-based cell-type calling tools: 139 
ACDC, Astir, and Scyan. We evaluated overall cell type annotation performance by comparing the Rand 140 
Index (Rand, 1971), accuracy, weighted F1 score (Powers, 2020), and Cohen’s kappa coefficient. We also 141 
compared the Matthews correlation coefficient (MCC), given the size variability of some cell types. All the 142 
above metrics were calculated using functions provided by Scikit-learn (Pedregosa et al., 2011).  143 
 144 
Benchmarking Datasets 145 
Public datasets 146 
We chose four public suspension mass cytometry and multiplexed imaging datasets with ground truth labels 147 
to test the performance of Tribus (Table 1). The AML dataset contains single-cell proteomic profiles of 148 
human bone marrow from patients with acute myeloid leukemia (AML) and healthy adult donors (Levine et 149 
al., 2015). The "NotDebrisSinglets" cell type was excluded from the analysis. The BMMC dataset was 150 
derived from bone marrow mononuclear cells (BMMCs) (Bendall et al., 2011). According to the research, 151 
Erythroblasts, megakaryocyte platelets, and myelocytes were merged as an unknown population and 152 
removed from the analysis. All "NotGated" cells were excluded (N = 61725 cells). The ductal carcinoma in 153 
situ (DCIS) dataset containing 79 clinically annotated surgical resections (Risom et al., 2022), including 154 
normal breast tissue (N = 9, reduction mammoplasty), primary DCIS (N = 58), and invasive breast cancer 155 
(IBC) (N = 12). Cell types were merged into endothelial, epithelial, fibroblast, immune, and myoepithelial 156 
during low-plex cell phenotyping. HuBMAP is a published co-detection by indexing (CODEX) imaging 157 
dataset (Hickey et al., 2023). Only donor 004 was manually annotated and, therefore, used in this study. For 158 
low-plex cell phenotyping, cell types were merged into epithelial, stromal, lymphoid, and myeloid.  159 

In-house Datasets 160 

We generated two in-house high-grade serous ovarian cancer (HGSC) datasets using t-CyCIF. The NACT 161 
dataset contains three images: two tumor sections after neoadjuvant chemotherapy (NACT) and one 162 
treatment-naive biopsy. The NACT dataset was stained using a 36-plex antibody panel (Supplementary 163 
Table 4). The Oncosys-Ova dataset contains 21 HGSC samples stained with a 14-plex panel 164 
(Supplementary Table 5). Marker expression tables were preprocessed using log transformation, z-score 165 
normalization, 99.9 percentile outlier removal, and co-factor 5 arcsinh transformation (Hickey et al., 2021) 166 
before phenotype assignment. In the NACT dataset, 976,082 cells were annotated using a cell phenotyping 167 
logic table based on the panel design. For the Oncosys-Ova dataset, approximately 10.5M cells were 168 
annotated.  Following the ethical standards from the 1975 Declaration of Helsinki, every patient from 169 
ONCOSYS-Ova trials provided informed written consent to the collection, storage, and analysis of the 170 
samples and subsequent data. For the NACT dataset, the Mass General Brigham Institutional Review Board 171 
approved using human tissue samples. Informed consent was waived due to the use of archival samples 172 
and anonymization of the material.  173 
 174 
Results 175 
Tribus recovers fine-grained cell types as accurately as human experts 176 
To evaluate Tribus’s ability to recover canonical cellular populations, we applied it to the benchmark DCIS 177 
dataset. Tribus successfully identified all populations highlighted in the study (Supplementary Fig. 1A), and 178 
the mean marker intensities of cellular populations were similar to those of human-labeled populations (Fig. 179 
2A). One notable difference was observed in the MACS (macrophages) population, where Tribus labels 180 
displayed a lower median intensity of CD14 compared to manual gating. This discrepancy may be due to the 181 
fact that CD14 was not used for MACS identification in DCIS research, and thus CD14 was not constrained 182 
to be positive for MACS cells in the logic table. We mapped cell masks back to the original tiff images with a 183 
nine-color overlay of cell identity-related markers. The cell masks were consistent across all major cell types 184 
in Tribus labels and manual labels. False positive MACS in manual labels were corrected by Tribus (Fig 2B). 185 
When comparing manual labels and Tribus labels, UMAP visualization of all cell types from DCIS datasets 186 
showed that Tribus accurately annotated most cells (Fig. 2C). Using the manual labels as ground truth, 187 
Tribus achieved precision scores between 0.7 and 0.8, average recalls around 0.6, and F1 scores between 188 
0.6 and 0.7 across most cell types (Supplementary Fig. 1B). These results suggest that Tribus can recover 189 
and annotate fine-grained cell types with a level of accuracy comparable to human experts.  190 
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 191 
Figure 2. Tribus applied on the public DCIS dataset. (A) Heatmaps showing the mean marker intensity of 192 
manually gated cell populations and Tribus classification from the DCIS dataset are similar. (B) 193 
Representative MIBI images. The upper image is from patient 3117 (DCIS tumor) with a nine-color overlay of 194 
markers related to major cell types. Cell-type masks from the manual label and Tribus show few differences. 195 
The lower image is from patient 2307 (Normal tissue) with a six-color overlay of MACS-related markers. 196 
Compared to the MACS cell masks of manual and Tribus, some MACS cells from manual labels do not have 197 
related marker expression, which was corrected in Tribus annotation (canonical marker combinations were 198 
observed). (C) UMAP representation of manual and Tribus labels on the DCIS dataset. Cell types were 199 
color-coded based on original and Tribus annotation, the same cell type label was assigned the same color. 200 
(D) Comparing (1) undefined and other cell populations with ground truth labels, (2) undefined cellular 201 
subpopulations from Tribus annotation with relevant manual labeled cell populations. (E) Heatmaps 202 
comparing the mean marker intensity of manually gated cell populations and the ambiguous cell populations 203 
from Tribus annotation. 204 
 205 
Tribus can target ambiguous populations and discover phenotypically new subtypes 206 
One challenge for prior knowledge-based cell-type calling methods is discovering ambiguous categories that 207 
are difficult to predefine in the logic table. For example, a group of unknown cells with low intensity across all 208 
markers. The DCIS dataset provides a good example for exploring ambiguous populations, as it includes the 209 
“IMMUNEOTHER” and “OTHER” cell types in the manual gating labels. The "OTHER" cell type has low 210 
intensities across all markers, while "IMMUNEOTHER" lacks specific immune subtype marker expression.   211 
 212 
We verified that Tribus can successfully target ambiguous populations by adjusting the decision thresholds in 213 
the scoring function. We explored threshold settings and found Tribus is robust to different threshold values 214 
within a certain range (Supplementary Fig. 2A-B). We selected an undefined_threshold of 0.001 and an 215 
other_threshold of 0.04 for the analysis of the DCIS dataset. From the UMAP visualization, we observed that 216 
the same “IMMUNEOTHER” and “OTHER” clusters retained the same local structures (Fig. 2D). The marker 217 
expression heatmap demonstrates that Tribus-targeted ambiguous cell types share the same marker 218 
expression profiles as manually gated cell types (Fig. 2E). We also discovered new clusters, including 219 
undefined tumors, fibroblasts, T-cells, and DCs (Fig. 2D, Supplementary Fig. 1C). We found phenotypically 220 
new clusters of DCs, T-cells, and CD4 T cells using the mean marker expression heatmap (Fig. 2E). We 221 
observed novel marker expression combinations and cellular subtypes were validated by mapping cell 222 
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masks back to the original images. We successfully identified CD36+CD31+ fibroblasts, HER2-luminal 223 
subtypes, and undefined T-cells which exhibit higher phenotypic marker expression than typical CD4 T-cells 224 
(Supplementary Fig. 3 A-C). These findings demonstrate that Tribus is not only effective in identifying 225 
ambiguous cell populations but also capable of discovering phenotypically novel cell subtypes. We suggest 226 
that Tribus could serve as a starting point for uncovering novel cell states.  227 
 228 
Tribus outperforms other similar methods 229 
We benchmarked the performance of Tribus against three other approaches: ACDC, Scyan, and Astir. We 230 
chose these tools for benchmarking because they are all prior knowledge-based cell phenotyping methods, 231 
each designed for specific high-dimensional data types.  232 

 233 
Figure 3. (A) Performance comparison of Tribus and other similar methods on four datasets (AML, BMMC, 234 
DCIS-lowplex, DCIS, HubMAP-lowplex, HubMAP) using five metrics for each. All analyses were repeated 235 
ten times. Using standard deviation for the error bar. (B) Models running time comparison. All analyses were 236 
repeated ten times and used standard deviation as the error bar. (C) Compare Tribus performance under 237 
different logic tables for the AML dataset, using standard deviation as the error bar. Each analysis was 238 
repeated ten times. (D) Data complexity comparison over public benchmarking datasets, showing the 239 
number of cells and Pielou’s evenness index. Higher Pielou’s evenness index represents high diversity and 240 
high evenness of cell populations.  241 
 242 
For AML and BMMC datasets, we used the knowledge tables provided by ACDC and Scyan. The knowledge 243 
table was reformatted into the logic tables/YAML files accordingly for Tribus/Astir. Since no knowledge tables 244 
were available for the DCIS and HubMAP datasets, we generated them for all methods based on the panel 245 
information provided in the original study. The ACDC analysis was performed with the parameters 246 
(n_neighbor = 10, thres = 0.5) from the example scripts. The parameters for the Astir analysis were chosen 247 
(max_epochs = 1000, learning_rate = 2e-3, initial_epochs = 3) based on the tutorial provided in Colab. The 248 
parameters for Scyan analysis were chosen based on the example provided in the GitHub repository.  249 
 250 
Benchmarking experiments showed that Tribus outperformed the other methods in terms of efficiency and 251 
accuracy. Tribus outperforms Astir, ACDC, and Scyan methods across metrics on highly multiplexed imaging 252 
datasets, DCIS and HubMAP, in both high- and low-plex cell phenotyping. Tribus has comparable 253 
performance on suspension mass cytometry AML and BMMC datasets compared to ACDC and Scyan, 254 
which were designed specifically for mass cytometry datasets (Fig. 3A). On all benchmarking datasets, 255 
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Tribus exhibits a running time shorter by an order of magnitude compared to other methods (Fig. 3B). Tribus 256 
successfully identified all cell types highlighted in the four public datasets (Supplementary Fig. 4 A-D). 257 
 258 
We then explored how the structure of the logic table influenced performance. Using the AML dataset as an 259 
example, we applied Tribus analysis with (1) a logic table with only one global level and (2) a logic table that 260 
includes major cell types at the global level and sub-phenotypes (for example, CD16- and CD16+ NK cells) 261 
at the second level (Supplementary Table 1-3). We repeated the Tribus analysis ten times, calculated the 262 
average metrics, and visualized the results for each logic table configuration. When adjusting the logic table 263 
for the AML dataset, using a hierarchical logic table improved accuracy and increased the F1 score by 0.1 264 
(Fig. 3C).  265 
 266 
Finally, we calculated Pielou’s evenness index to illustrate the increasing complexity across benchmarking 267 
datasets (Fig. 3D). Tribus’s performance remained relatively good and stable from suspended single-cell 268 
bone marrow datasets to highly complex human intestine slide datasets. In summary, Tribus outperformed 269 
other similar methods in both accuracy and efficiency, particularly in highly multiplexed imaging datasets, 270 
while maintaining robust results across different cell phenotyping contexts. 271 
 272 
Tribus yields rapid and accurate cell phenotyping in large whole-slide image datasets 273 

 274 
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Figure 4. (A) Annotated barplot of the cell phenotype compositions per sample in the NACT dataset. (B) 275 
UMAP visualizes distinct cell populations colored by the major cell types in the NACT dataset. (C) UMAP 276 
visualizes distinct cell populations colored by the immune subtypes in the NACT dataset. (D) Representative 277 
tCyCIF image (sample 06) of the NACT dataset, showing the nuclei and representative tumor and immune 278 
markers. Tribus accurately identified the CD20+, CD8a+, and CD4+ populations within a Tertiary Lymphoid 279 
Structure (TLS) despite the dense organization of these sub-phenotypes. (E) The stacked barplot shows 280 
cellular proportion in all samples. (F) Stacked barplot shows various RCN proportions in samples. (G) The 281 
scatter plots show the local tissue architecture colored by cell types. (H) The Voronoi plot visualizes the 282 
structures of RCNs in the corresponding region of Figure G. 283 
 284 
We evaluated the performance of Tribus on large in-house multiplexed image datasets. For the Oncosys-285 
Ova dataset, we used a one-level logic table consistently across all 21 samples (Supplementary Fig. 5A). 286 
We applied a four-level logic table to the NACT dataset (Supplementary Fig. 5B).  287 
 288 
In the NACT dataset, Tribus successfully identified major cell phenotypes and subtypes, which we 289 
characterized based on the available marker panel (Fig. 4A). The UMAP projection showed distinct cell-type 290 
populations in the NACT dataset (Fig. 4B-C) and minimal batch effects in phenotyping analysis 291 
(Supplementary Fig. 5C). The multiplexed t-CyCIF image from sample 06 of the NACT dataset displayed 292 
nuclei and representative tumor and immune markers. Tribus accurately identified the CD20+, CD8a+, and 293 
CD4+ cell populations within a Tertiary Lymphoid Structure (TLS) despite the dense organization of these 294 
sub-phenotypes (Fig. 4D). Tribus also annotated the proliferating subpopulation of tumor cells and tumor-295 
infiltrating CD8+ cells from a dense area (Supplementary Fig. 5D), indicating that Tribus can generate 296 
accurate phenotype labels in complex tissue architectures.  297 
 298 
In the Oncosys-Ova dataset, Tribus accurately identified six cell types with substantial cellular proportion 299 
heterogeneity among samples (Fig. 4E). UMAP projections showed separated cell populations and low batch 300 
effects (Supplementary Fig. 6A). The heatmap showed canonical marker expression combinations for each 301 
identified cellular population (Supplementary Fig. 6B). We used Scimap (Nirmal & Sorger, 2024) to calculate 302 
the fractions of neighboring cell types within a radius of 100 μm, then applied k-means clustering (k=10) on 303 
the neighborhood matrix and generated eight Recurrent cellular neighborhoods (RCN) (Fig. 4F). The RCNs 304 
are distinct spatial domains within the tissue and successfully capture relevant spatial biology based on 305 
Tribus cell phenotypes (Supplementary Fig. 6C). The representative presentation of the RCNs across tissue 306 
uncovered the complex tissue architecture such as the tumor-stromal interface and tumor-infiltrating 307 
lymphocytes cells (Supplementary Fig. 6D). Tribus-based spatial analysis enabled us to map the tumor-308 
stromal interface in complex tumor-rich regions (Fig. 4G, Supplementary Fig.6D) and plot the stroma-309 
resident immune cells in a stromal-rich region (Supplementary Fig.6D). These results suggested that Tribus 310 
adapts well in the workflow of cell phenotyping on large whole-slide images and downstream spatial pattern 311 
analysis. 312 
 313 
DISCUSSION 314 
Cell-type calling is a crucial step in high-dimensional image analysis. The growing complexity and increasing 315 
number of panels in high-dimensional data necessitate the development of reproducible and automated cell-316 
type calling approaches. In this study, we developed Tribus, a semi-supervised cell-type calling analysis 317 
framework for multiplexed imaging datasets. Tribus offers advantages in efficiency, accuracy, user-318 
friendliness, and reproducibility without the need for training using manual labels.  319 
 320 
Tribus was generated as an automatic cell-type caller for high-dimensional multiplexed imaging data, 321 
incorporating biological knowledge from the panel design into the analysis. This was achieved through 322 
carefully designed scoring functions based on marker expression per grid, generated by unsupervised 323 
clustering to minimize bias. When the number of cells in the clusters was below the user-defined threshold, 324 
Tribus skipped generating the clusters and calculated scores at the single-cell level. This flexible scoring 325 
function calculation strategy enabled the discovery of rare cell types. Tribus was integrated with Napari, and 326 
a plugin was provided to enable one-click import of the cell-type identification results, significantly enhancing 327 
the simplicity of interactive quality control. This integration allows for convenient operation by users who are 328 
unfamiliar with programming.  329 
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 330 
Cell-type annotation from bioimages presents inherent challenges due to imperfect cell segmentation and 331 
collateral spillover. Expanding nuclei masks by a few pixels can enhance cytoplasmic marker visibility, as it 332 
allows better signal capture when cells express these markers. However, in dense tissue areas, this might 333 
increase spillover, highlighting the importance of the hierarchically structured logic table. Typically, mild 334 
spillover affects only part of a cell, whereas a true signal produces a more uniform expression pattern and a 335 
higher mean fluorescence intensity. Tribus was designed to account for both positive and negative 336 
components of the expected marker expression, and it also includes the option to set markers with expected 337 
false-positive expressions as neutral. Thus, careful design of the logic table and its hierarchy in Tribus can 338 
aid in cell phenotypic separation, as only a subset of cells is considered at the lower hierarchy levels during 339 
phenotype assignment.  340 
 341 
However, Tribus is not without limitations. The performance of Tribus is strongly tied to the quality of the 342 
input dataset and the prior knowledge of expected cell types in the user-defined initial logic table. To assign 343 
a uniform logic table, the samples should have even staining patterns both within and across slides. Uneven 344 
staining patterns and antibodies with suboptimal signal-to-noise ratios can significantly affect the results. For 345 
such suboptimal datasets, users can create a hierarchical logic table where major cell phenotypes with clear 346 
marker signals are separated at higher levels. This can result in more accurate labeling if distinct areas of 347 
the image are affected. Additionally, Tribus cannot identify cell types not included in the input logic table, but 348 
it can return undefined- or other-cell types for further exploration. 349 
 350 
Overall, we propose Tribus as a fast, accurate, and user-friendly cell-type identification method that can be 351 
integrated into multiplexed image analysis frameworks.   352 
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