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14  Abstract

15 Motivation: Multiplexed imaging and single-cell analysis are increasingly applied to investigate the tissue
16  spatial ecosystems in cancer and other complex diseases. Accurate single-cell phenotyping based on
17 marker combinations is a critical but challenging task due to (i) low reproducibility across experiments with
18 manual thresholding, and, (ii) labor-intensive ground-truth expert annotation required for learning-based
19 methods.

20 Results: We developed Tribus, an interactive knowledge-based classifier for multiplexed images and
21 proteomic datasets that avoids hard-set thresholds and manual labeling. We demonstrated that Tribus
22 recovers fine-grained cell types, matching the gold standard annotations by human experts. Additionally,
23  Tribus can target ambiguous populations and discover phenotypically distinct cell subtypes. Through
24 benchmarking against three similar methods in four public datasets with ground truth labels, we show that
25  Tribus outperforms other methods in accuracy and computational efficiency, reducing runtime by an order of
26  magnitude. Finally, we demonstrate the performance of Tribus in rapid and precise cell phenotyping with two
27 large in-house whole-slide imaging datasets.

28  Availability: Tribus is available at https://github.com/farkkilab/tribus as an open-source Python package.

29

30 Introduction

31 Multiplexed imaging techniques at single-cell resolution, such as tissue-based cyclic immunofluorescence (t-
32 CyCIF) (Lin et al., 2018), co-detection by indexing (CODEX) (Black et al., 2021), and multiplexed ion beam
33 imaging by time of flight (MIBI-TOF) (Keren et al., 2019), offer significant advantages for studying tissue
34  architecture. These techniques enable researchers to measure dozens of proteins at single-cell resolution
35  while preserving spatial origin information in tissue sections, providing novel insights into cellular phenotypes
36 and tissue behaviors (Spitzer & Nolan, 2016). Multiplexed images require a sequence of processes to extract
37  single-cell measurements, including image registration, stitching, cell segmentation, and quantification
38 (Schapiro et al., 2022). Cell phenotyping is typically the final step before downstream analyses and often
39  serves as the bottleneck in realizing the full potential of multiplexed images. The main challenges in cell-type
40 phenotyping from multiplexed images include reproducibility limitations and unexpected marker
41 combinations.

42

43 Classic methods for cell phenotyping such as manual gating and clustering, are reproducibility-limited.
44  Gating (Staats et al., 2019) requires visualizing and manually setting marker expression thresholds for each
45 marker in each sample. These hard thresholds are experiment-specific and can't be reused across different
46 batches. As the marker panel sizes and sample numbers increase, gating becomes time-consuming and
47 unfeasible (Verschoor et al., 2015). Clustering algorithms, such as PhenoGraph (Levine et al., 2015), Leiden
48 (Traag et al., 2019), and DBscan (Ester et al., 1996), have been applied for automatic data exploration (Liu
49 et al., 2019). However, manual verification is still necessary to assign meaningful cell types to the resulting
50 clusters. To achieve deeper profiling of cell types, over-clustering and subsequent merging of clusters is
51 often required, a process that is both computationally intensive and time-consuming.
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52

53 Several automated cell-type annotation approaches have been developed to overcome the reproducibility
54 limits. For example, CellSighter is a supervised deep convolutional neural network-based algorithm for
55 automatic cell phenotyping which requires expert-labeled images for training (Amitay et al., 2023). Another
56  similar solution, MAPS is a supervised deep learning-based method that is computationally lighter than
57 CellSighter (Shaban et al., 2024). These methods require pre-training on manually labeled datasets;
58  however, the measured protein combinations (marker panel design) are experiment-specific, making it
59 difficult to generate general reference populations for each cell type. In cases of unexpected marker
60 combinations, the algorithms are required to be retrained in different scenarios.

61

62  To address the above challenges, we introduce a novel cell-type caller named Tribus, which incorporates the
63  widely used self-organizing map (SOM) (Kohonen, 1982) unsupervised clustering method with a unique
64  scoring function to assign cell types according to prior biological knowledge. Tribus requires only a cell
65 measurement matrix and a prior knowledge table as inputs, without the need for training on expert
66 annotations, and enables reproducible, automatic cell phenotyping across various multiplexed imaging and
67 proteomic datasets. Tribus enables users to easily conduct analyses, visualize results, and perform quality
68 control through an integrated Napari widget. We validate Tribus’'s accuracy on four public multiplexed
69 imaging and suspension mass cytometry datasets. We then compare Tribus’s performance to three other
70  similar prior knowledge-based cell-type identification approaches: ACDC (Lee et al., 2017), Astir (Geuenich
71 et al., 2021), and Scyan (Blampey et al., 2023), and demonstrate its utility in analyzing two large in-house t-
72 CyCIF datasets. Tribus represents a novel user-friendly framework for semi-automated cell-type calling in
73 multiplexed imaging and proteomics datasets.

74

75 Methods
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77 Figure 1. Overview of Tribus architecture. Tribus processes multiplexed imaging data by using a Self-

78 Organizing Map (SOM) to cluster cells and a logic table based on panel knowledge to score and classify cell
79 phenotypes. Results can be visualized with a Napari plugin for interactive exploration and quality control.

80

81 Overview of Tribus

82  Tribus is a hierarchical framework for cell-type assignment in multiplexed image datasets based on prior
83 panel knowledge (Fig 1). Running Tribus requires a marker expression table and a prior knowledge-based
84 logic table. The logic table is defined as a data matrix L(cl-, mj) containing values [—1,0,1], where ¢; refers to
85 the cell type i,, and m; refers to the marker j,,. If a marker is present in a specific cell type, the
86 corresponding value in the logic table is assigned 1. If a marker is supposed to be absent in a specific cell
87  type, the value in the logic table is set to -1. A score of 0 is assigned for neutral or unknown markers. Each
88 cell type must have at least one positive marker in the logic table (Supplementary Table 1-3).

89
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90 Unsupervised clustering in Tribus

91  Tribus uses an unsupervised self-organizing map (SOM) method for clustering based on the MiniSOM
92 package (Vettigli, 2013/2023). SOM can represent a high-dimensional input space as a map consisting of
93 components called "nodes". Quantization error (Q) was used to evaluate the algorithm performance,
94  calculated by determining the average distance of the sample vectors (x7) to the cluster centroids (w").

1
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95 Quantization errors can only be compared under the same grid size (Pdlzlbauer, n.d.). To determine the
96 optimal grid size, we used the approach of Vesanto (Vesanto & Alhoniemi, 2000): G = 5vN, where N is the
97 input data size (i.e., number of cells). The parameters of the SOM include o (the spread of the neighborhood
98  function) and the learning rate. Those parameters can be set by users or optimized by minimizing the
99 guantization error with the hyperparameter tuning module based on the package hyperopt (Bergstra et al.,
100 2013), where the objective function was to minimize the quantization error, and the search space for ¢ and
101  the learning rate ranged from 0.001 to 5.
102
103 During analysis, Tribus first generates clusters/grids from the input data and then assigns each cluster to a
104  certain cell type based on the logic table. Cell type assignment is performed hierarchically, meaning Tribus
105 first assigns lower-level cell types followed by higher-level cell subtypes to create more precise categories. If
106  the number of cells in the subset exceeds the user-defined threshold, Tribus will still generate clusters.
107 Otherwise, Tribus directly calculates the scoring function for each cell type at the single-cell level.
108
109 Cell type assignment by scoring functions
110  After SOM clustering, a node matrix N(ny, v;) is generated, where v; is calculated as the median expression
111 of the marker m; in n,. We designed a scoring function based on the squared error concept, similar to the
112 QueryStarPlot function of the FlowSOM package (Van Gassen et al.,, 2015). This function calculates the
113  score s; of a certain cell type i for each node k.

si(ng) = %Z [1 —(vij - 171\1)2’]
J

114 where,

Ty, = {Poo (V) L(c;,my) = 1 min (vy)), L(c;,mj) =—1
115
116 Instead of using the maximum value, the 99 percentile was chosen to make Tribus more robust to outliers.
117 Assigning node n, to cell type c; using: ¢; = argmax,, f (ny, s;). Note that the cell-type assignment process in
118  Tribus accounts for ambiguous results. If the maximum score of a cluster falls below a certain threshold, the
119 cluster is labeled as the "other" cell type. Similarly, if the difference between the maximum and second
120 maximum score is smaller than a certain threshold, the cluster will be labeled as "undefined".
121
122 Napari plug-in
123  To efficiently evaluate cell-type labeling results, we developed a custom plugin integrated with the Napari
124  (Ahlers, Jannis et al., 2023) framework. This plugin enables users to run Tribus on one sample at a time,
125 display results simultaneously, or load previously saved data. We incorporated the ZARR format to
126 overcome computational limitations associated with large datasets.
127  The key functionalities of the Napari plugin include:
128 (i) Cell-type mask visualization: The plugin sorts and displays different cell-type labels as separate layers
129 using visually distinct colors, allowing the user to overlay them with imaging data for quality control. This
130  function is also available in a stand-alone Jupyter Notebook.
131 (i) Probability score visualization: cell masks are represented as a color gradient of the probability score
132 assigned by the algorithm. This allows the user to identify and review ambiguous cells and assess the
133 assigned “other” and “undefined” thresholds.
134  (ii) Marker intensity visualization: The median expression levels of the selected markers are represented
135 through gradient shading on the segmentation mask, enabling users to visually assess the results and
136 identify potential biases.
137
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138 Methods for comparison and evaluation metrics

139  We compared the performance of Tribus with three similar prior knowledge-based cell-type calling tools:
140  ACDC, Astir, and Scyan. We evaluated overall cell type annotation performance by comparing the Rand
141 Index (Rand, 1971), accuracy, weighted F1 score (Powers, 2020), and Cohen’s kappa coefficient. We also
142 compared the Matthews correlation coefficient (MCC), given the size variability of some cell types. All the
143 above metrics were calculated using functions provided by Scikit-learn (Pedregosa et al., 2011).

144

145 Benchmarking Datasets

146 Public datasets

147  We chose four public suspension mass cytometry and multiplexed imaging datasets with ground truth labels
148  to test the performance of Tribus (Table 1). The AML dataset contains single-cell proteomic profiles of
149 human bone marrow from patients with acute myeloid leukemia (AML) and healthy adult donors (Levine et
150 al.,, 2015). The "NotDebrisSinglets" cell type was excluded from the analysis. The BMMC dataset was
151 derived from bone marrow mononuclear cells (BMMCs) (Bendall et al., 2011). According to the research,
152 Erythroblasts, megakaryocyte platelets, and myelocytes were merged as an unknown population and
153 removed from the analysis. All "NotGated" cells were excluded (N = 61725 cells). The ductal carcinoma in
154  situ (DCIS) dataset containing 79 clinically annotated surgical resections (Risom et al., 2022), including
155 normal breast tissue (N = 9, reduction mammoplasty), primary DCIS (N = 58), and invasive breast cancer
156  (IBC) (N = 12). Cell types were merged into endothelial, epithelial, fibroblast, immune, and myoepithelial
157 during low-plex cell phenotyping. HUBMAP is a published co-detection by indexing (CODEX) imaging
158 dataset (Hickey et al., 2023). Only donor 004 was manually annotated and, therefore, used in this study. For
159 low-plex cell phenotyping, cell types were merged into epithelial, stromal, lymphoid, and myeloid.

160 In-house Datasets

161  We generated two in-house high-grade serous ovarian cancer (HGSC) datasets using t-CyCIF. The NACT
162 dataset contains three images: two tumor sections after neoadjuvant chemotherapy (NACT) and one
163  treatment-naive biopsy. The NACT dataset was stained using a 36-plex antibody panel (Supplementary
164  Table 4). The Oncosys-Ova dataset contains 21 HGSC samples stained with a 14-plex panel
165 (Supplementary Table 5). Marker expression tables were preprocessed using log transformation, z-score
166 normalization, 99.9 percentile outlier removal, and co-factor 5 arcsinh transformation (Hickey et al., 2021)
167 before phenotype assignment. In the NACT dataset, 976,082 cells were annotated using a cell phenotyping
168 logic table based on the panel design. For the Oncosys-Ova dataset, approximately 10.5M cells were
169 annotated. Following the ethical standards from the 1975 Declaration of Helsinki, every patient from
170 ONCOSYS-Ova trials provided informed written consent to the collection, storage, and analysis of the
171  samples and subsequent data. For the NACT dataset, the Mass General Brigham Institutional Review Board
172 approved using human tissue samples. Informed consent was waived due to the use of archival samples
173 and anonymization of the material.

174

175 Results

176 Tribus recovers fine-grained cell types as accurately as human experts

177  To evaluate Tribus's ability to recover canonical cellular populations, we applied it to the benchmark DCIS
178 dataset. Tribus successfully identified all populations highlighted in the study (Supplementary Fig. 1A), and
179  the mean marker intensities of cellular populations were similar to those of human-labeled populations (Fig.
180 2A). One notable difference was observed in the MACS (macrophages) population, where Tribus labels
181 displayed a lower median intensity of CD14 compared to manual gating. This discrepancy may be due to the
182  fact that CD14 was not used for MACS identification in DCIS research, and thus CD14 was not constrained
183  to be positive for MACS cells in the logic table. We mapped cell masks back to the original tiff images with a
184 nine-color overlay of cell identity-related markers. The cell masks were consistent across all major cell types
185 in Tribus labels and manual labels. False positive MACS in manual labels were corrected by Tribus (Fig 2B).
186  When comparing manual labels and Tribus labels, UMAP visualization of all cell types from DCIS datasets
187  showed that Tribus accurately annotated most cells (Fig. 2C). Using the manual labels as ground truth,
188 Tribus achieved precision scores between 0.7 and 0.8, average recalls around 0.6, and F1 scores between
189 0.6 and 0.7 across most cell types (Supplementary Fig. 1B). These results suggest that Tribus can recover
190 and annotate fine-grained cell types with a level of accuracy comparable to human experts.
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192 Figure 2. Tribus applied on the public DCIS dataset. (A) Heatmaps showing the mean marker intensity of

193 manually gated cell populations and Tribus classification from the DCIS dataset are similar. (B)
194 Representative MIBI images. The upper image is from patient 3117 (DCIS tumor) with a nine-color overlay of
195 markers related to major cell types. Cell-type masks from the manual label and Tribus show few differences.
196  The lower image is from patient 2307 (Normal tissue) with a six-color overlay of MACS-related markers.
197 Compared to the MACS cell masks of manual and Tribus, some MACS cells from manual labels do not have
198 related marker expression, which was corrected in Tribus annotation (canonical marker combinations were
199 observed). (C) UMAP representation of manual and Tribus labels on the DCIS dataset. Cell types were
200 color-coded based on original and Tribus annotation, the same cell type label was assigned the same color.
201 (D) Comparing (1) undefined and other cell populations with ground truth labels, (2) undefined cellular
202  subpopulations from Tribus annotation with relevant manual labeled cell populations. (E) Heatmaps
203 comparing the mean marker intensity of manually gated cell populations and the ambiguous cell populations
204  from Tribus annotation.

205

206  Tribus can target ambiguous populations and discover phenotypically new subtypes

207 One challenge for prior knowledge-based cell-type calling methods is discovering ambiguous categories that
208 are difficult to predefine in the logic table. For example, a group of unknown cells with low intensity across all
209 markers. The DCIS dataset provides a good example for exploring ambiguous populations, as it includes the
210  “IMMUNEOTHER” and “OTHER” cell types in the manual gating labels. The "OTHER" cell type has low
211 intensities across all markers, while "IMMUNEOTHER" lacks specific immune subtype marker expression.
212

213  We verified that Tribus can successfully target ambiguous populations by adjusting the decision thresholds in
214  the scoring function. We explored threshold settings and found Tribus is robust to different threshold values
215  within a certain range (Supplementary Fig. 2A-B). We selected an undefined_threshold of 0.001 and an
216 other_threshold of 0.04 for the analysis of the DCIS dataset. From the UMAP visualization, we observed that
217  the same “IMMUNEOTHER” and “OTHER" clusters retained the same local structures (Fig. 2D). The marker
218 expression heatmap demonstrates that Tribus-targeted ambiguous cell types share the same marker
219 expression profiles as manually gated cell types (Fig. 2E). We also discovered new clusters, including
220 undefined tumors, fibroblasts, T-cells, and DCs (Fig. 2D, Supplementary Fig. 1C). We found phenotypically
221 new clusters of DCs, T-cells, and CD4 T cells using the mean marker expression heatmap (Fig. 2E). We
222 observed novel marker expression combinations and cellular subtypes were validated by mapping cell
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223 masks back to the original images. We successfully identified CD36+CD31+ fibroblasts, HER2-luminal
224 subtypes, and undefined T-cells which exhibit higher phenotypic marker expression than typical CD4 T-cells
225 (Supplementary Fig. 3 A-C). These findings demonstrate that Tribus is not only effective in identifying
226 ambiguous cell populations but also capable of discovering phenotypically novel cell subtypes. We suggest
227  that Tribus could serve as a starting point for uncovering novel cell states.

228

229  Tribus outperforms other similar methods

230  We benchmarked the performance of Tribus against three other approaches: ACDC, Scyan, and Astir. We
231 chose these tools for benchmarking because they are all prior knowledge-based cell phenotyping methods,
232 each designed for specific high-dimensional data types.
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233 Dataset
234 Figure 3. (A) Performance comparison of Tribus and other similar methods on four datasets (AML, BMMC,

235 DCIS-lowplex, DCIS, HubMAP-lowplex, HUbMAP) using five metrics for each. All analyses were repeated
236  tentimes. Using standard deviation for the error bar. (B) Models running time comparison. All analyses were
237 repeated ten times and used standard deviation as the error bar. (C) Compare Tribus performance under
238 different logic tables for the AML dataset, using standard deviation as the error bar. Each analysis was
239 repeated ten times. (D) Data complexity comparison over public benchmarking datasets, showing the
240  number of cells and Pielou’s evenness index. Higher Pielou’s evenness index represents high diversity and
241 high evenness of cell populations.

242

243 For AML and BMMC datasets, we used the knowledge tables provided by ACDC and Scyan. The knowledge
244  table was reformatted into the logic tables/YAML files accordingly for Tribus/Astir. Since no knowledge tables
245  were available for the DCIS and HUbMAP datasets, we generated them for all methods based on the panel
246 information provided in the original study. The ACDC analysis was performed with the parameters
247 (n_neighbor = 10, thres = 0.5) from the example scripts. The parameters for the Astir analysis were chosen
248 (max_epochs = 1000, learning_rate = 2e-3, initial_epochs = 3) based on the tutorial provided in Colab. The
249 parameters for Scyan analysis were chosen based on the example provided in the GitHub repository.

250

251  Benchmarking experiments showed that Tribus outperformed the other methods in terms of efficiency and
252 accuracy. Tribus outperforms Astir, ACDC, and Scyan methods across metrics on highly multiplexed imaging
253 datasets, DCIS and HubMAP, in both high- and low-plex cell phenotyping. Tribus has comparable
254  performance on suspension mass cytometry AML and BMMC datasets compared to ACDC and Scyan,
255  which were designed specifically for mass cytometry datasets (Fig. 3A). On all benchmarking datasets,
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256  Tribus exhibits a running time shorter by an order of magnitude compared to other methods (Fig. 3B). Tribus
257  successfully identified all cell types highlighted in the four public datasets (Supplementary Fig. 4 A-D).

258

259  We then explored how the structure of the logic table influenced performance. Using the AML dataset as an
260 example, we applied Tribus analysis with (1) a logic table with only one global level and (2) a logic table that
261 includes major cell types at the global level and sub-phenotypes (for example, CD16- and CD16+ NK cells)
262 at the second level (Supplementary Table 1-3). We repeated the Tribus analysis ten times, calculated the
263 average metrics, and visualized the results for each logic table configuration. When adjusting the logic table
264  for the AML dataset, using a hierarchical logic table improved accuracy and increased the F1 score by 0.1
265  (Fig. 3C).

266

267 Finally, we calculated Pielou’s evenness index to illustrate the increasing complexity across benchmarking
268 datasets (Fig. 3D). Tribus’'s performance remained relatively good and stable from suspended single-cell
269 bone marrow datasets to highly complex human intestine slide datasets. In summary, Tribus outperformed
270 other similar methods in both accuracy and efficiency, particularly in highly multiplexed imaging datasets,
271  while maintaining robust results across different cell phenotyping contexts.

272
273  Tribus yields rapid and accurate cell phenotypmg in large whole- sllde image datasets
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275 Figure 4. (A) Annotated barplot of the cell phenotype compositions per sample in the NACT dataset. (B)

276 UMAP visualizes distinct cell populations colored by the major cell types in the NACT dataset. (C) UMAP
277  visualizes distinct cell populations colored by the immune subtypes in the NACT dataset. (D) Representative
278  tCyCIF image (sample 06) of the NACT dataset, showing the nuclei and representative tumor and immune
279 markers. Tribus accurately identified the CD20+, CD8a+, and CD4+ populations within a Tertiary Lymphoid
280 Structure (TLS) despite the dense organization of these sub-phenotypes. (E) The stacked barplot shows

281 cellular proportion in all samples. (F) Stacked barplot shows various RCN proportions in samples. (G) The
282 scatter plots show the local tissue architecture colored by cell types. (H) The Voronoi plot visualizes the

283  structures of RCNs in the corresponding region of Figure G.

284

285  We evaluated the performance of Tribus on large in-house multiplexed image datasets. For the Oncosys-
286 Ova dataset, we used a one-level logic table consistently across all 21 samples (Supplementary Fig. 5A).
287  We applied a four-level logic table to the NACT dataset (Supplementary Fig. 5B).

288

289 In the NACT dataset, Tribus successfully identified major cell phenotypes and subtypes, which we
290 characterized based on the available marker panel (Fig. 4A). The UMAP projection showed distinct cell-type
291 populations in the NACT dataset (Fig. 4B-C) and minimal batch effects in phenotyping analysis
292 (Supplementary Fig. 5C). The multiplexed t-CyCIF image from sample 06 of the NACT dataset displayed
293  nuclei and representative tumor and immune markers. Tribus accurately identified the CD20+, CD8a+, and
294  CDA4+ cell populations within a Tertiary Lymphoid Structure (TLS) despite the dense organization of these
295  sub-phenotypes (Fig. 4D). Tribus also annotated the proliferating subpopulation of tumor cells and tumor-
296 infiltrating CD8+ cells from a dense area (Supplementary Fig. 5D), indicating that Tribus can generate
297 accurate phenotype labels in complex tissue architectures.

298

299 In the Oncosys-Ova dataset, Tribus accurately identified six cell types with substantial cellular proportion
300 heterogeneity among samples (Fig. 4E). UMAP projections showed separated cell populations and low batch
301 effects (Supplementary Fig. 6A). The heatmap showed canonical marker expression combinations for each
302 identified cellular population (Supplementary Fig. 6B). We used Scimap (Nirmal & Sorger, 2024) to calculate
303 the fractions of neighboring cell types within a radius of 100 pm, then applied k-means clustering (k=10) on
304  the neighborhood matrix and generated eight Recurrent cellular neighborhoods (RCN) (Fig. 4F). The RCNs
305 are distinct spatial domains within the tissue and successfully capture relevant spatial biology based on
306  Tribus cell phenotypes (Supplementary Fig. 6C). The representative presentation of the RCNs across tissue
307 uncovered the complex tissue architecture such as the tumor-stromal interface and tumor-infiltrating
308 lymphocytes cells (Supplementary Fig. 6D). Tribus-based spatial analysis enabled us to map the tumor-
309 stromal interface in complex tumor-rich regions (Fig. 4G, Supplementary Fig.6D) and plot the stroma-
310 resident immune cells in a stromal-rich region (Supplementary Fig.6D). These results suggested that Tribus
311 adapts well in the workflow of cell phenotyping on large whole-slide images and downstream spatial pattern
312 analysis.

313

314  DISCUSSION

315 Cell-type calling is a crucial step in high-dimensional image analysis. The growing complexity and increasing
316 number of panels in high-dimensional data necessitate the development of reproducible and automated cell-
317  type calling approaches. In this study, we developed Tribus, a semi-supervised cell-type calling analysis
318 framework for multiplexed imaging datasets. Tribus offers advantages in efficiency, accuracy, user-
319 friendliness, and reproducibility without the need for training using manual labels.

320

321  Tribus was generated as an automatic cell-type caller for high-dimensional multiplexed imaging data,
322 incorporating biological knowledge from the panel design into the analysis. This was achieved through
323 carefully designed scoring functions based on marker expression per grid, generated by unsupervised
324 clustering to minimize bias. When the number of cells in the clusters was below the user-defined threshold,
325  Tribus skipped generating the clusters and calculated scores at the single-cell level. This flexible scoring
326  function calculation strategy enabled the discovery of rare cell types. Tribus was integrated with Napari, and
327 a plugin was provided to enable one-click import of the cell-type identification results, significantly enhancing
328  the simplicity of interactive quality control. This integration allows for convenient operation by users who are
329 unfamiliar with programming.


https://doi.org/10.1101/2024.03.13.584767
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.13.584767; this version posted December 4, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

330

331 Cell-type annotation from bioimages presents inherent challenges due to imperfect cell segmentation and
332 collateral spillover. Expanding nuclei masks by a few pixels can enhance cytoplasmic marker visibility, as it
333 allows better signal capture when cells express these markers. However, in dense tissue areas, this might
334 increase spillover, highlighting the importance of the hierarchically structured logic table. Typically, mild
335  spillover affects only part of a cell, whereas a true signal produces a more uniform expression pattern and a
336 higher mean fluorescence intensity. Tribus was designed to account for both positive and negative
337 components of the expected marker expression, and it also includes the option to set markers with expected
338 false-positive expressions as neutral. Thus, careful design of the logic table and its hierarchy in Tribus can
339 aid in cell phenotypic separation, as only a subset of cells is considered at the lower hierarchy levels during
340 phenotype assignment.

341

342 However, Tribus is not without limitations. The performance of Tribus is strongly tied to the quality of the
343 input dataset and the prior knowledge of expected cell types in the user-defined initial logic table. To assign
344  auniform logic table, the samples should have even staining patterns both within and across slides. Uneven
345  staining patterns and antibodies with suboptimal signal-to-noise ratios can significantly affect the results. For
346  such suboptimal datasets, users can create a hierarchical logic table where major cell phenotypes with clear
347 marker signals are separated at higher levels. This can result in more accurate labeling if distinct areas of
348 the image are affected. Additionally, Tribus cannot identify cell types not included in the input logic table, but
349 it can return undefined- or other-cell types for further exploration.

350

351 Overall, we propose Tribus as a fast, accurate, and user-friendly cell-type identification method that can be
352 integrated into multiplexed image analysis frameworks.
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