

1 **Title**

2 Pre-stimulus alpha oscillations encode stimulus-specific visual predictions

3

4 Dorottya Hetenyi¹, Joost Haarsma¹, Peter Kok¹

5 ¹Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University
6 College London, London, UK.

7

8 **Corresponding author**

9 Dorottya Hetenyi, dorottya.hetenyi.21@ucl.ac.uk

10

11 **Pages**

12 Manuscript: 28 pages

13

14 **Figures**

15 Manuscript: 5 Figures + 3 Supplemental figures

16

17 **Words (total: 3009, excl. methods + abstract)**

18 Abstract: 131

19 Introduction: 262

20 Results: 1735

21 Discussion: 1012

22 Reference: 54

23

24 **Acknowledgements**

25 This work was supported by a Wellcome/Royal Society Sir Henry Dale Fellowship [218535/Z/19/Z] and
26 a European Research Council (ERC) Starting Grant [948548] to P.K. The Wellcome Centre for Human
27 Neuroimaging is supported by core funding from the Wellcome Trust [203147/Z/16/Z].

28

29 **Conflict of interests**

30 The authors declare no conflicts of interests.

31 **Abstract**

32 Predictions of future events have a major impact on how we process sensory signals. However, it
33 remains unclear how the brain keeps predictions online in anticipation of future inputs. Here, we
34 combined magnetoencephalography (MEG) and multivariate decoding techniques to investigate the
35 content of perceptual predictions and their frequency characteristics. Participants were engaged in a
36 shape discrimination task, while auditory cues predicted which specific shape would likely appear.
37 Frequency analysis revealed significant oscillatory fluctuations of predicted shape representations in
38 the pre-stimulus window in the alpha band (10 – 11Hz). Furthermore, we found that this stimulus-
39 specific alpha power was linked to expectation effects on shape discrimination. Our findings
40 demonstrate that sensory predictions are embedded in pre-stimulus alpha oscillations and modulate
41 subsequent perceptual performance, providing a neural mechanism through which the brain deploys
42 perceptual predictions.

43 **Keywords**

44 – expectation; time-resolved multivariate approach; perceptual inference; pre-stimulus
45 oscillations; stimulus templates

46 **Introduction**

47 Predictions about how the world is structured play an integral role in perception^{1–4}. Our prior
48 knowledge forms the basis for predicting future sensory events, which are subsequently integrated
49 with sensory input to form a perceptual experience. While there is a wealth of evidence supporting
50 the idea that the brain deploys predictions to guide perception, the mechanisms through which the
51 brain keeps these predictions online remain largely unclear. One likely candidate for conveying
52 perceptual predictions are neural oscillations^{5–8}.

53 Alpha rhythms (8 – 12Hz) are the predominant oscillations in the awake human brain⁹, yet their
54 functional role is controversial^{10,11}. The amplitude and phase of these ongoing oscillations is known to
55 influence performance in visual tasks^{12–19}, and have been found to vary with experimental
56 manipulations that target stimulus predictability. Specifically, pre-stimulus alpha oscillations have a
57 similar topography to post-stimulus responses, implying a shared neural substrate in the processing
58 of pre-existing information and external stimuli²⁰, and have been shown to predictively encode the
59 position of a moving stimulus²¹. However, whether these oscillations actually convey the contents of
60 perceptual predictions remains unknown.

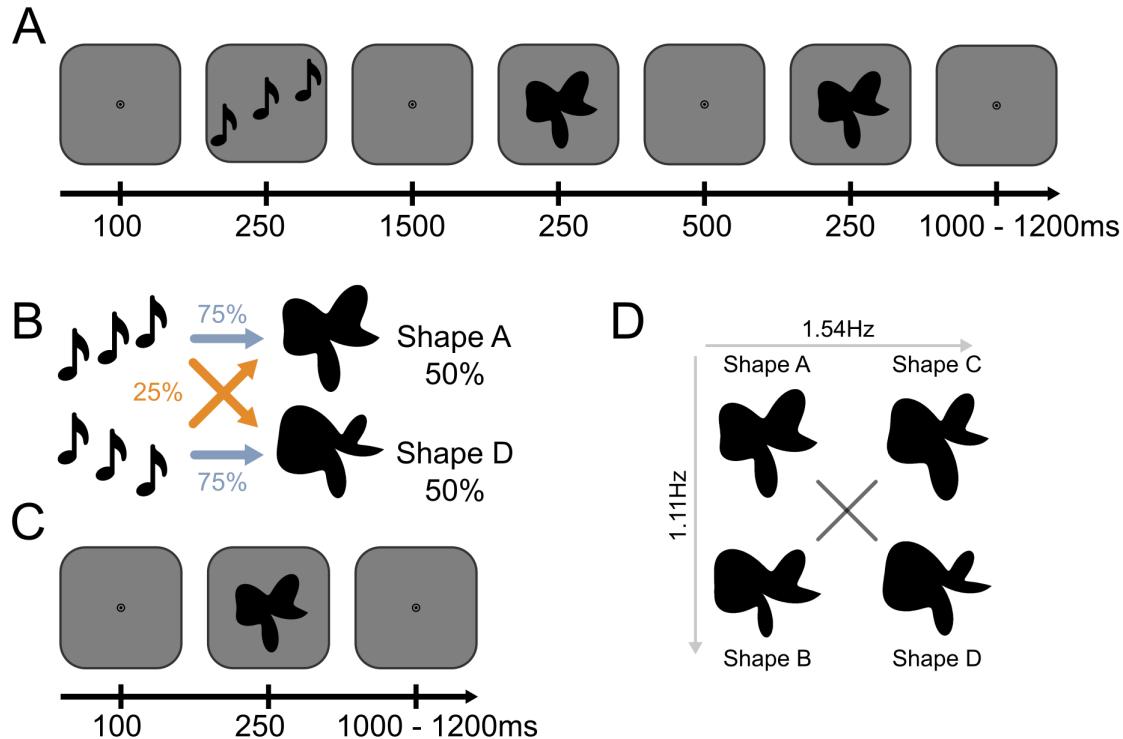
61 To test this hypothesis, we employed magnetoencephalography (MEG) combined with multivariate
62 decoding to resolve visual representations with millisecond resolution, and characterise the temporal
63 and frequency characteristics^{22,23} of sensory predictions. Participants were engaged in a shape
64 discrimination task where auditory cues predicted the identity of upcoming abstract shapes. We
65 identified the neural representations of cued sensory predictions prior to stimulus onset and tested
66 whether these sensory predictions had an oscillatory nature, as well as whether the power of such
67 predictive oscillations modulated perceptual performance.

68 **Results**

69 **Prediction templates oscillate at alpha frequencies**

70 To test whether perceptual predictions are conveyed by oscillations, thirty-two participants
71 performed a challenging visual shape discrimination task (Fig. 1A) while auditory cues predicted the
72 most likely upcoming shape (shape A or D) on 75% of the trials (Fig. 1B). The shape discrimination task
73 was orthogonal to the prediction manipulation (i.e., the cue did not convey any information about
74 whether the two shapes would be identical or different).

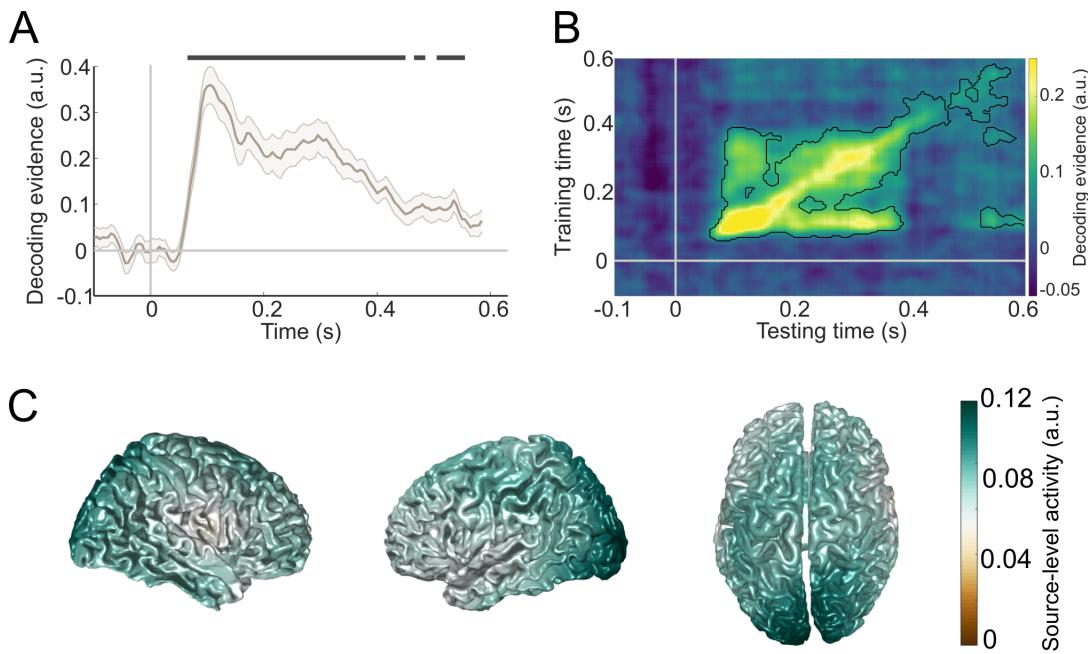
75 First, we identified shape-specific neural signals using a linear discriminant analysis²⁴ (LDA) during
76 separate shape localiser runs (Fig. 1C). Localiser runs consisted of the presentation of four abstract.



77 **Fig. 1: Experimental paradigm.** **A:** During prediction runs, an auditory cue preceded the presentation
78 of two consecutive shape stimuli. On each trial, the second shape was either identical to the first or
79 slightly warped with respect to the first along an orthogonal dimension, and participants' task was to
80 report whether the two shapes were the same or different. **B:** The auditory cue (rising vs. falling tones)
81 predicted whether the first shape on that trial would be shape A or shape D. The cue was valid on 75%
82 of trials, whereas in the other 25% of (invalid) trials the unpredicted shape was presented. **C:** During
83 shape localiser runs no predictive auditory cues were presented and participants performed a fixation
84 diming task. **D:** Four different shapes were presented in the localiser runs, appearing with equal (25%)
85 likelihood. Only shape A and D were presented in the prediction runs. The amplitudes of two RFCs
86 (1.11, and 1.54Hz components) were varied in order to create a two-dimensional shape space, such
87 that shape A vs. D discrimination was orthogonal to shape B vs. C discrimination.

88 shapes (Fig. 1D), which were designed to lie on two orthogonal axes of perceptual and neural
89 discriminability (shape A vs. D and shape B vs. C, respectively; see Methods). To test whether the LDA
90 was able to uncover neural representations of the presented shapes, we trained and tested a shape A
91 vs. D decoder within the localiser runs in a cross-validated manner (-100 to 600ms, relative to stimulus
92 onset). We found that the decoder was highly accurate at discriminating the shapes based on the MEG
93 signal. The presented shapes were successfully decoded from 65ms to 450ms ($p < 0.001$), 465 to
94 485ms ($p = 0.005$) and 505ms to 550ms ($p = 0.001$), peaking at 105ms (Fig. 2A-B). Thus, we could
95 decode abstract shapes during the localiser runs. For all subsequent analyses, decoding traces were
96 averaged over a training window of 70 to 200ms, during which shape decoding peaked (Fig. 2A).

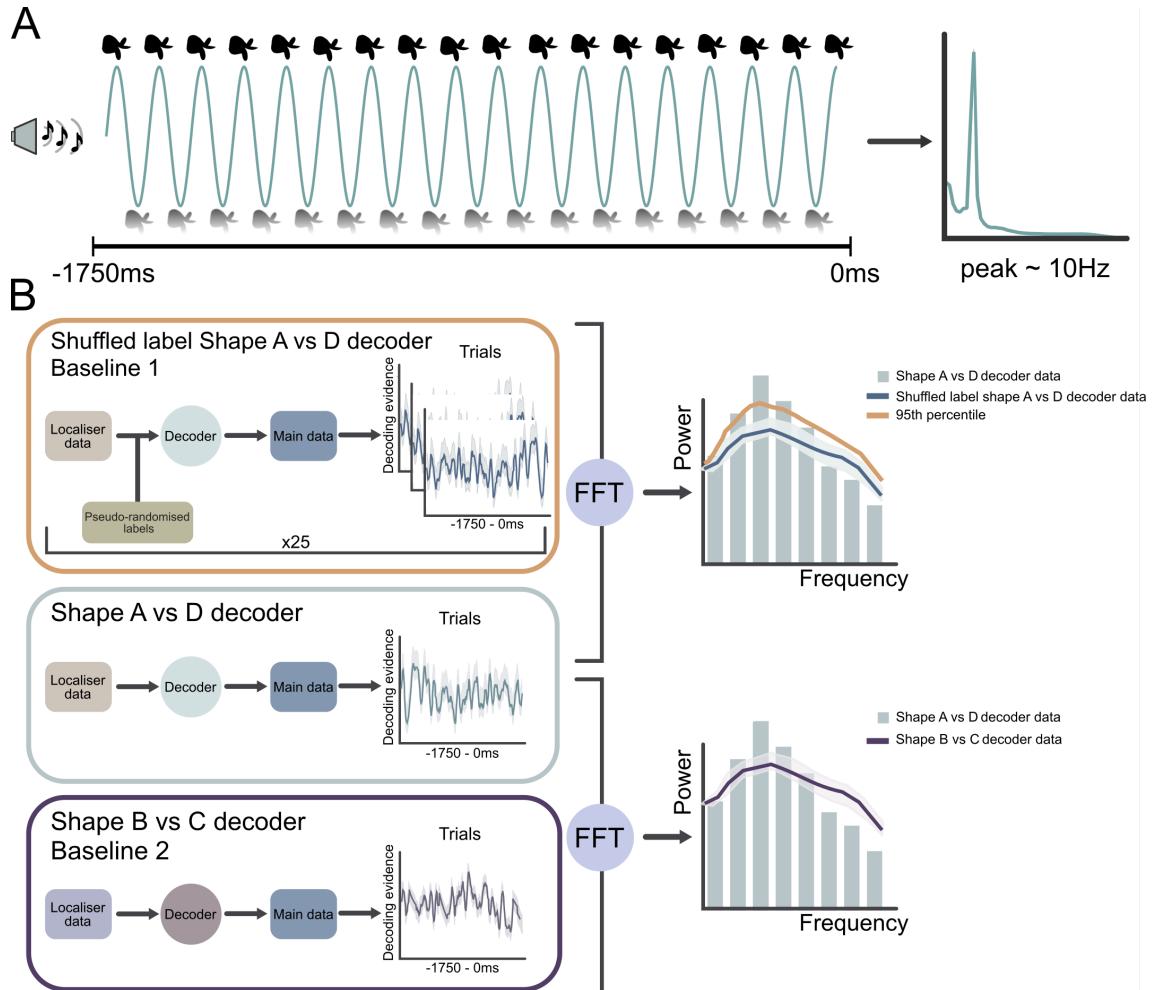
97 To reveal the cortical sources contributing to these shape representations, we performed source
98 localisation analyses using an linearly constrained minimum variance (LCMV) beamformer²⁵ where
99 calculating the difference of the source-localised ERF between shape A and D reflects the contributing
100 brain areas²⁶. This revealed strong signals in the occipital lobe, predominantly over the visual cortices
101 (Fig. 2C), in line with the hypothesised sensory nature of these representations.



102 **Fig. 2: Localiser shape decoding results.** **A:** Time course of shape A vs. D decoding. Shapes were
103 successfully decoded from 65ms to 450ms ($p < 0.001$), 465 to 485ms ($p = 0.005$) and 505ms to 550ms
104 ($p = 0.001$), peak at 105ms. Shaded regions indicate SEM. **B:** Temporal generalisation matrix of shape
105 A vs. D decoding, obtained by training decoders on each time point and testing all decoders on all time
106 points. Solid black lines indicate significant clusters ($p < 0.05$); solid grey lines indicate stimulus onset
107 ($t = 0$ s). **C:** Source localisation of shape A vs. D discrimination during the localiser, training time window
108 of 70 to 200ms post-stimulus, indicating strong occipital activity.

109 Next, we used this decoder trained on the localiser to test whether the predictive auditory cues
110 induced oscillatory representations of the predicted abstract shapes (Fig. 3A). To establish the
111 specificity of the neural signals induced by predictions, we created two separate baseline
112 measurements. First, we shuffled the shape labels before training the decoder (N=25 permutations
113 per participant) in order to create a bootstrapped baseline (Baseline 1, Fig. 3B - top). Second, we
114 trained a decoder to distinguish two shapes which were presented in the localiser runs, but not in the
115 main experiment runs (shapes B and C; Fig. 1D). This discrimination was orthogonal to shape A vs. D
116 discrimination, which was confirmed via an absence of generalisation between the two decoders (Fig.
117 S1). The shape B vs. C decoder thus provides a highly specific baseline (Baseline 2, Fig. 3B - bottom),

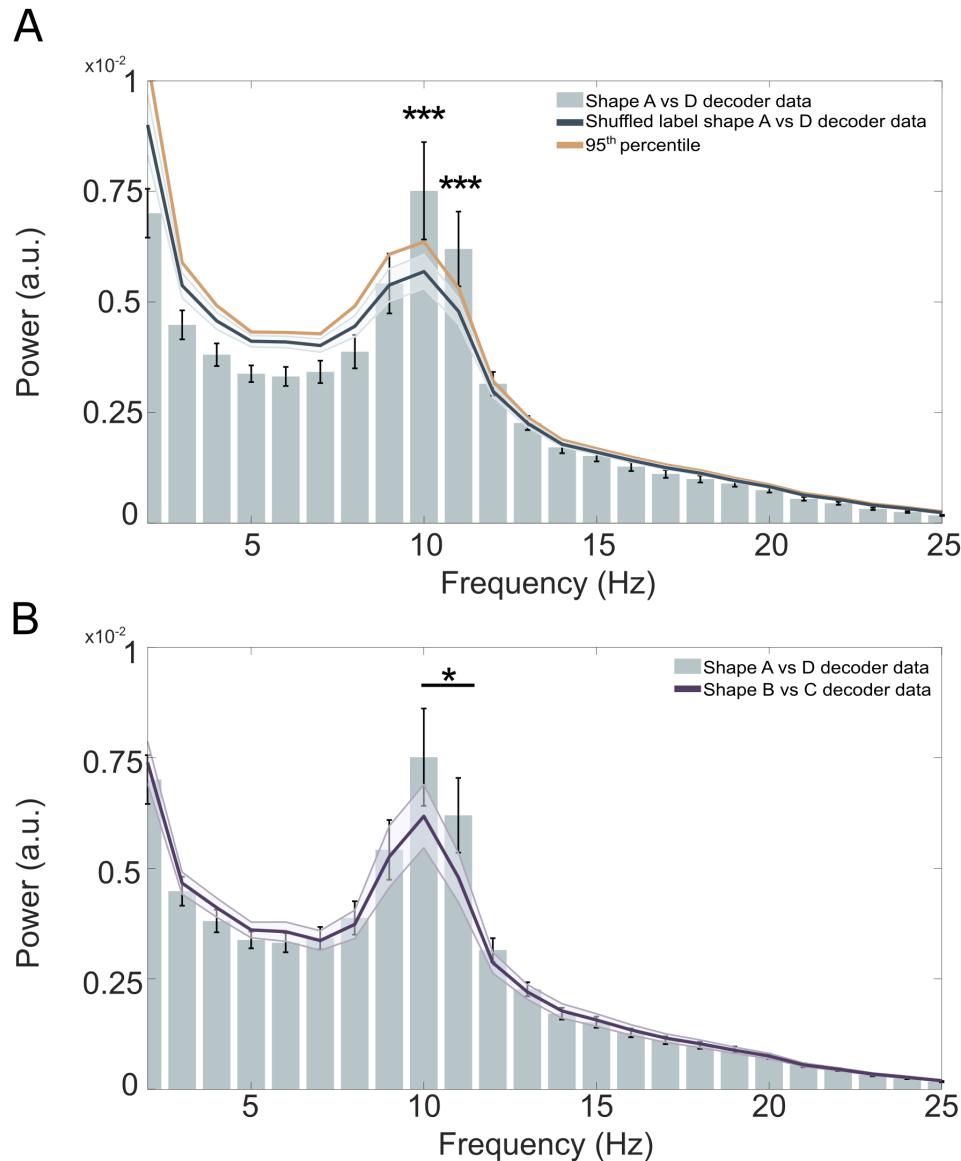
118 since it was trained to pick up neural representations of highly similar but orthogonal shapes to those
119 that were predicted by the auditory cues.



120 **Fig. 3: Shape prediction frequency analysis pipeline. A:** Schematic of the hypothesis: cue-induced
121 predictions oscillate in the alpha frequency band (~10Hz) in the interval between predictive cue and
122 stimulus onset (-1750 to 0ms). **B:** A decoder was trained to discriminate between shapes A and D in
123 the localiser runs. This decoder was applied to the pre-stimulus time window in prediction runs (-1750
124 to 0ms). Trial-based pre-stimulus decoding time series were subjected to FFT. The resulting power
125 spectrum was compared to the 95th percentile of an empirical null distribution generated by
126 bootstrapping decoders trained with pseudo-randomised labels (Baseline 1, top), as well as to a
127 decoder trained on shapes only presented in the localiser (shapes B and C) (Baseline 2, bottom).

128 Shape decoders were trained on the localiser (70 to 200ms post-stimulus) and applied to the pre-
129 stimulus prediction time window (-1750 to 0ms) in a time-resolved manner (sliding window of 28ms,
130 steps of 5ms). We applied Fast-Fourier Transformation (FFT) on a single trial basis to examine the
131 frequency attributes of the resulting pre-stimulus decoding time series (Fig. 3B). This analysis revealed
132 that the decoded predictions oscillated at low frequencies, predominantly in the alpha frequency band
133 (10 – 12Hz) (Fig. 4A). We identified significant power differences between the shape A vs. D decoding
134 data and Baseline 1, specifically at 10Hz and 11Hz, exceeding the 95th percentile of the empirical null

135 distribution (both $p < 0.001$). It is important to note that the baseline was based on the exact same
136 pre-stimulus data, the only difference lies in the shuffling of the shape labels for the training of the
137 decoder. There was also a noticeable difference in the power of very low frequencies (2 – 7Hz) when
138 comparing the shape A vs. D decoder data to Baseline 1 data. The nature of this power difference
139 currently is not fully understood and requires further investigation. However, similar patterns have
140 been observed in previous research²².



141 **Fig. 4: Auditory cue-induced prediction templates fluctuate at alpha frequencies. A:** The power
142 spectrum of pre-stimulus (-1750 to 0ms) shape decoding shows significant deviations from an
143 empirical null distribution at 10Hz and 11Hz (**p < 0.001). The baseline power spectrum (dark blue
144 line) was obtained by bootstrapping (n = 1000) shuffled label decoding data (n = 25 per participant).
145 Mean and shaded regions indicate SD. Solid orange line indicates the 95th percentile of the null
146 distribution. Error bars indicate SEM. **B:** Pre-stimulus (-1750 to 0ms) MEG data shows significantly
147 higher 10 – 11Hz power for shape A vs. D decoding than for shape B vs. C decoding (*p < 0.05). Bars
148 indicate power of shape A vs. D decoding; dark purple line indicates power of B vs. C decoding (applied
149 to identical pre-stimulus prediction data). Shaded regions and error bars indicate SEM.

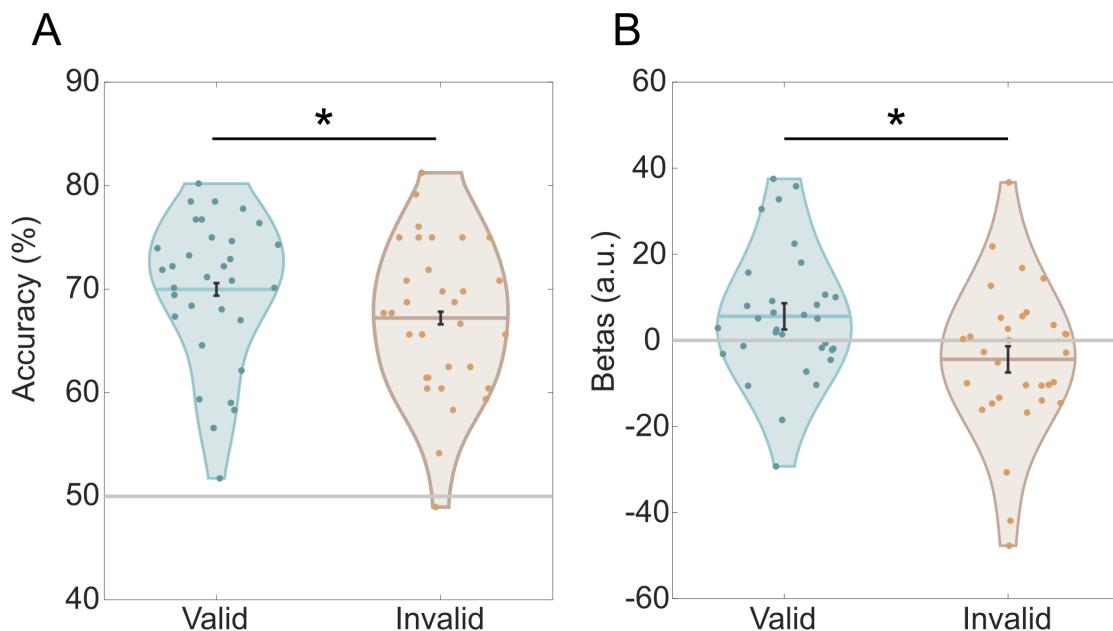
150 For further validation, we also compared the shape A vs. D decoding power spectrum to the spectrum
151 of shape B vs. C decoding (Baseline 2). Based on our initial findings, here we averaged over the 10 and
152 11Hz frequency bins of the two spectra. This analysis revealed significantly higher alpha power for
153 shape A vs. D decoding than for shape B vs. C decoding in the pre-stimulus window (paired one-sided
154 t-test, $p = 0.024$, $t(31) = 2.067$) (Fig. 4B). As before, it is important to note that the two spectra were
155 based on the exact same pre-stimulus MEG data, the only difference lies in which shapes the decoders
156 were trained to discriminate. If the pre-stimulus alpha fluctuations reflected more generic shape
157 representations, this comparison would yield no significant differences. Therefore, the difference
158 between these two decoding spectra demonstrates that these signals were highly specific to the
159 shapes predicted by the auditory cues. It is important to note that the shape decoders were trained
160 on signals evoked by task-irrelevant shapes during the localiser, ruling out contributions of explicit
161 decision-making signals. These alpha power effects were also present in a control analysis designed
162 to remove non-rhythmic signals, confirming the oscillatory nature of the decoded predictions (Fig. S2).
163 In sum, both analyses revealed that visual predictions induced by auditory cues led to neural
164 representations of the predicted shapes fluctuating at an alpha rhythm prior to stimulus onset.

165 **Predictive cues lead to improved shape discrimination accuracy**

166 In addition to neural representations, we tested whether the predictive cues affected behavioural
167 performance. As a reminder, participants were required to indicate whether two abstract shapes
168 presented in succession were the same or different. It should be noted that any effects of the
169 predictive cues on performance are not trivial, given that the shape discrimination task was
170 orthogonal to the prediction manipulation (i.e., the cues predicted the identity of the first shape, but
171 did not inform participants whether the two shapes would be identical or different). Still, valid
172 predictive cues might improve performance indirectly by enhancing processing of the initial shape,
173 facilitating discrimination of the subsequent shape^{27,28}. Vice versa, invalid cues might perturb
174 performance by impeding the processing of the initial shape. In line with this, shape discrimination
175 accuracy was significantly influenced by whether the auditory cue correctly predicted the identity of
176 the first shape (accuracy valid = $70\% \pm 1.2\%$ and accuracy invalid = $67\% \pm 1.3\%$, mean \pm SEM; $t(31) =$
177 3.215 , $p = 0.003$; Fig. 5A). There was no difference in reaction times (valid = $614\text{ms} \pm 1.3\%$ and invalid
178 = $615\text{ms} \pm 1.3\%$, mean \pm SEM; $p = 0.626$, $t(31) = -0.492$). Together, this suggests that valid predictions
179 facilitated shape processing, enabling improved discrimination performance.

180 **Oscillatory power of predicted shape representations modulates behavioural expectation effects**

181 If the strength of perceptual predictions indeed modulates perceptual discrimination, there should be
182 an opposite relationship between stimulus-specific pre-stimulus oscillations and behavioural
183 performance on valid and invalid trials. To test this hypothesis, we performed a logistic regression
184 analysis predicting behavioural accuracy from stimulus-specific oscillatory power in the alpha
185 frequency range (9 – 12Hz), separately on valid and invalid trials. In line with previous literature
186 relating oscillatory power to behavioural outcome^{8,29,30}, we limited the time window of interest to -
187 500ms to 0 pre-stimulus, since prediction signals immediately preceding stimulus onset are most likely
188 to impact perceptual performance²⁸. This analysis revealed a significant difference between valid and
189 invalid prediction trials (paired t-test, $p = 0.026$, $t(31) = 2.332$), with a numerically positive relationship
190 between pre-stimulus shape-specific alpha power and performance on valid trials, and a numerically
191 negative relationship on invalid trials (Fig. 5B). Note that the individual parameter estimates for valid
192 and invalid trials were not significantly different from zero, while the difference between the two was.



193 **Fig. 5: Oscillatory power of predicted shape representations modulate behavioural accuracy. A:**
194 Participants were able to discriminate the two presented shapes more accurately when the auditory
195 cue validly predicted the identity of the first shape (* $p < 0.05$). Dots represent individual participants,
196 error bars indicate within-participant SEM^{31,32}. **B:** Output of the logistic regression (betas) between
197 the power of pre-stimulus decoding (-500 to 0ms), averaged over 9 – 12Hz frequency bins, and
198 discrimination performance, separately for valid and invalid prediction trials (* $p < 0.05$). Dots
199 represent individual participants; error bars indicate within-participant SEM.

200 This likely reflects the fact that the individual conditions also contain non-specific trial-by-trial variance
201 in alpha power and behavioural performance (e.g. due to fluctuations in alertness) that are subtracted

202 out in the valid vs. invalid comparison. Importantly, the differential relationship between alpha power
203 and behaviour dependent on prediction validity rules out any non-specific explanations of our results,
204 and demonstrates a strong link between neural and behavioural effects of prediction. In short, pre-
205 stimulus content-specific alpha oscillations modulated subsequent shape discrimination accuracy,
206 such that the difference in accuracy between validly and invalidly predicted shapes was greater when
207 pre-stimulus alpha power was higher.

208 **Stimulus predictions are driven by relatively late sensory representations**

209 In an exploratory analysis, we investigated whether perceptual predictions in the alpha band reflected
210 early or late visual representations, by dividing the training time period (70 – 200ms) into two separate
211 windows, centring around the first (105ms) and second peak (175ms) of the localiser decoding results,
212 respectively (Fig. 2A). These two distinct time windows also appeared to form two distinct clusters (90
213 – 120ms and 160 – 190ms) in the temporal generalisation matrix, with reduced cross-decoding
214 between the two clusters suggesting qualitatively different representations (Fig. S1A). For the early
215 training window (90 – 120ms), frequency analysis of the pre-stimulus decoding time series revealed
216 no power differences in the alpha band (10Hz: $p = 0.128$; 11Hz: $p = 0.062$) between the shape A vs. D
217 decoding data and an empirical null distribution (Fig. S3A). Logistic regression analyses also indicated
218 no meaningful relationship between alpha power and behaviour on valid and invalid prediction trials
219 ($p = 0.165$, $t(31) = 1.423$; Fig. S3B) for this training window. However, training the decoder on the later
220 time window (160 – 190ms) revealed significantly higher pre-stimulus alpha power (10Hz: $p = 0.003$;
221 11Hz: $p = 0.008$) in the shape A vs. D decoding data compared to a null distribution (Fig. S3D). Logistic
222 regression also revealed a robust difference in the relationship between pre-stimulus shape-specific
223 alpha power and performance on valid and invalid trials ($p = 0.002$, $t(31) = 3.359$, Fig. S3E). Lastly,
224 there was a significant difference in the average power in the 10 and 11Hz frequency bins of pre-
225 stimulus shape A vs. D decoding between the early and late training time windows ($p = 0.0103$, $t(31)$
226 = -2.7313). This is striking since these power spectra were calculated on the exact same MEG pre-
227 stimulus data, the only difference was the localiser time window (90 – 120ms vs. 160 – 190ms) on
228 which the decoder was trained. In sum, oscillating predictions seem to reflect relatively late sensory
229 representations (160 – 190ms), rather than early feedforward-sweep-like signals.

230 **Discussion**

231 The present study examined the mechanisms through which predictions exert their influence on
232 perception. Specifically, we tested whether the content of perceptual predictions was represented in
233 oscillations, and whether the power of this representation modulated performance on a visual

234 discrimination task. To this end, we used multivariate decoding of MEG data to obtain the frequency
235 spectrum of predicted shape representations. We revealed that predicted shape representations were
236 strongest in the alpha frequency band (10 – 11Hz) (Fig. 4A-B). Furthermore, we found that this shape-
237 specific alpha power modulated task performance, such that higher alpha power resulted in stronger
238 expectation effects on shape discrimination (Fig. 5B). Together, these findings demonstrate that
239 sensory templates of predicted visual stimuli are represented in the pre-stimulus alpha rhythm, which
240 subsequently modulate performance on a perceptual discrimination task.

241 Previous studies have hypothesised that oscillations play a critical role in conveying perceptual
242 predictions^{7,8,12,19,30}. This is largely based on indirect evidence, consisting of a range of studies finding
243 that pre-stimulus alpha oscillations modulate performance on perceptual discrimination tasks^{12,15,16,29}.
244 Further, there is a second body of evidence that links experimental manipulations regarding stimulus
245 predictability to the power of low frequency oscillatory activities^{8,20,21}. Finally, a recent study has
246 demonstrated a link between pre-stimulus high alpha/low beta power and the occurrence of high
247 confidence false percepts³³. However, the key hypothesis that neural oscillations actually convey the
248 contents of perceptual predictions has remained largely untested. In the current study, we present
249 evidence that the content of predicted shapes is represented in pre-stimulus alpha oscillations,
250 providing direct support that perceptual predictions are indeed conveyed through neural oscillations.

251 While the role of pre-stimulus alpha oscillations has been extensively studied, it remains controversial.
252 Previous studies have reported alpha oscillations typically being stronger when visual stimuli are not
253 present, or actively not-attended^{10,34,35}. This has led to the hypothesis that alpha is predominantly an
254 inhibitory rhythm. However, our results demonstrate that alpha oscillations are not solely inhibitory,
255 but play an active role in conveying prior knowledge. The link between pre-stimulus alpha power and
256 expectation effects on perception revealed in the current study suggests that whether alpha facilitates
257 or inhibits sensory processing depends on whether inputs match or mismatch current predictions.

258 Predictive processing theories of perception highlight a key role for prior predictions in guiding
259 inference in the brain^{4,36}. While there is convergent evidence that the brain contains predictive
260 signals^{8,27,37,38}, the mechanisms through which the brain deploys these predictions remains largely
261 unclear. Predictive coding has been suggested to involve rhythmic interactions between different
262 frequency band activities^{1,5}, where high frequency gamma is responsible for feedforward signalling
263 (originating predominantly from superficial layers) and alpha/beta oscillations exert top-down control
264 (feedback predictions), emerging from deep cortical layers. Indeed, animal work investigating the
265 frequency characteristics and cortical layer specificity of predictable information processing^{6,39}
266 revealed that pre-stimulus alpha power is an indicator of stimulus predictability, originating from

267 cortical layers involved in feedback signalling⁶. Our results extend these intracranial
268 electrophysiological observations by relating pre-stimulus alpha oscillations to the contents of
269 feedback signalling.

270 Exploratory analyses revealed that the oscillating prediction signals reflected relatively late sensory
271 representations (160 – 190ms localiser training window, Fig. S3D). We speculate that during this time
272 period, the sensory representations captured by the decoder reflected an integration of bottom-up
273 inputs and top-down recurrence, rather than solely the first feedforward sweep. Like the current
274 study, previous studies have also revealed top-down modulations that reflected relatively late post-
275 stimulus representations (i.e., 120 – 200ms)^{28,40}. This may explain why predictions have been shown
276 to modulate later sensory processing, while leaving the early feedforward sweep (< 80ms post-
277 stimulus) mostly untouched^{37,41}.

278 Rather than predictions being actively conveyed in an alpha rhythm, an alternative explanation of our
279 results may be that prediction signals passively ride on ongoing alpha oscillations. Alpha oscillations
280 are the most prominent frequency band in the awake human brain, especially in the visual cortex, and
281 even a non-oscillatory top-down signal arriving in visual cortex may inherit these alpha rhythms. Given
282 our finding that shape-specific alpha power has opposite effects on behaviour dependent on the
283 validity of the predictions, such a more passive explanation seems less likely. However, future research
284 is indeed needed to properly distinguish between these hypotheses.

285 In addition to alpha power, alpha phase has also commonly been reported as influencing
286 perception^{14,17–19}. Specifically, the phase of ongoing alpha oscillations has been suggested to modulate
287 perception by creating optimal and suboptimal periods visual processing through top-down control⁴².
288 Combining this with the role of predictions in perception, one might hypothesise that the brain
289 switches between sensing (bottom-up) and predicting (top-down) at opposite phases of alpha
290 oscillations. Conceptually in line with this idea, Weilnhammer et al. demonstrated that the brain
291 indeed switches between externally and internally biased perceptual modes⁴³, albeit at a slower
292 timescale. By analysing perceptual decision-making in humans and mice, this study revealed
293 fluctuations of enhanced and reduced sensitivity to external stimuli. When sensitivity was low, the
294 brain tended to depend more on perceptual history of the learnt sequences of stimulus presentation
295 (i.e., prior knowledge). Our results showing predicted stimulus content fluctuating in the alpha rhythm
296 are potentially in line with this proposal. Specifically, representations of predicted shapes would be
297 hypothesised to dominate at the alpha phase optimised for predicting, and be absent at the phase
298 optimised for bottom-up processing (Fig. 3A). Based on this, the brain may use alpha oscillations as
299 neural mechanism to balance perceiving and predicting, where not only power but also phase has a

300 crucial role to play. The current study was not optimised to test this hypothesis, since the shape
301 discrimination task was orthogonal to the prediction cues. Future work directly probing the effect of
302 predictions on subjective perception^{37,44,45} should test this hypothesis by relating alpha phase to
303 expectation effects on perception.

304 Many prominent and influential theoretical frameworks have long speculated on the role of neural
305 oscillations in perception^{10,11,19}. Here we shed light on this by showing that alpha oscillations convey
306 perceptual predictions, and modulate subsequent perceptual performance. These findings enrich
307 current models of perceptual inference in the human brain by revealing the neural mechanisms
308 through which predictions are kept online in order to guide perception.

309 **Methods**

310 **Participants**

311 Sixty-two healthy right-handed participants (43 female) with normal or corrected-to-normal vision
312 and no history of neurological disorders took part in the behavioural experiment. This experiment
313 served as a pre-assessment process to familiarise the participants with the task and select only those
314 whose average performance accuracy on the challenging shape discrimination task was above 70%
315 across the four runs. Thirty-nine participants (28 female) met the performance inclusion criteria and
316 participated in the MEG experiment. Seven participants were excluded from subsequent analyses due
317 to excessive head movement (N=5) or not completing the full experiment (N=2), leaving thirty-two
318 participants (23 female, age 26 ± 5 years, mean ± SD) for the MEG analysis.

319 **Stimuli**

320 The experiment employed the same design as Kok & Turk-Browne⁴⁶, wherein participants
321 discriminated between two consecutively presented shapes which were preceded by a predictive
322 auditory cue. Each predictive cue was composed of three pure tones (440, 554, and 659Hz; 80ms per
323 tones; 5ms intervals), played with rising or falling pitch, with a total duration of 250ms. Visual stimuli
324 were generated using MATLAB (The MathWorks Inc., version 2021b) and Psychophysics Toolbox⁴⁷.
325 The visual stimuli consisted of complex abstract shapes defined by radial frequency components
326 (RFCs)⁴⁸. To define the contours of the stimuli, seven RFCs (0.55Hz, 1.11Hz, 4.94Hz, 3.39Hz, 1.54Hz,
327 3.18Hz, 0.57Hz) were used which were based on a subset of stimuli from Op de Beeck et al.'s work⁴⁹;
328 see their Fig. 1A). The amplitudes of two RFCs (1.11Hz, and 1.54Hz components) were varied to create
329 a two-dimensional shape space. Specifically, four shapes were created such that discrimination
330 between shapes A (amplitude of 1.11Hz = 8; 1.54Hz = 8) and D (amplitude of 1.11Hz = 26; 1.54Hz = 26)

331 was orthogonal to discrimination between shapes B (amplitude of 1.11Hz = 8; 1.54Hz = 26) and C
332 (amplitude of 1.11Hz = 26; 1.54Hz = 8) (Fig. 1D). Additionally, RFC-based warping was used to generate
333 moderately distorted versions of the two main experiment shapes (shape A and D, Fig. 1D) for the
334 benefit of the shape discrimination task. This warp to define the shape was achieved by modulating a
335 different RFC's amplitude (3.18Hz) than the two used (1.11Hz and 1.54Hz) to define the shape space.
336 This modulation could be either positive or negative (counterbalanced over conditions) and was
337 orthogonal to the shape space used for the two main experiment shapes, and therefore to the cue
338 predictions as well. The visual stimuli were displayed on a rear-projection screen using a projector
339 (1024 x 768 resolution, 60 Hz refresh rate) against a uniform grey background.

340 **Behavioural experiment**

341 The study had two parts, a behavioural training and screening experiment, and an MEG experiment
342 for those who passed the behavioural screening. In both parts, participants were engaged in a shape
343 discrimination task. Each trial started with a fixation bullseye (diameter, 0.7°) for 100ms, followed by
344 the presentation of two consecutive shape stimuli each for 250ms, and separated by a 500ms blank
345 screen containing only a fixation bullseye (Fig. 1A). On each trial, the second shape was the same as
346 the first or slightly warped. The modulation was either positive or negative, and the size of the
347 modulation was determined by an adaptive staircasing procedure⁵⁰, updated after each trial, in order
348 to make the task challenging. Participants were instructed to report whether the two presented
349 shapes were identical or different. After the response interval ended (750ms after disappearance of
350 the second shape), the fixation bullseye was replaced by a single dot, signalling the end of the trial
351 while still prompting participants to fixate. On each trial, one of the four shapes (A, B, C or D; Fig. 1D)
352 was presented, in a counterbalanced (i.e., non-predictable) manner. Participants performed four runs
353 (360 trials in total) of the shape discrimination task, maximum one week prior to the MEG session.

354 **MEG experiment**

355 The MEG experiment started with two localiser runs, containing the same four abstract shapes as in
356 the behavioural task. To ensure participants were engaged, they performed a fixation dimming task
357 (10% of total trials, ~24 of 248 trials per run). Each trial began with a fixation bullseye (visual angle:
358 0.7°) displayed for 100ms, followed by one of the four shapes presentation for 250ms. Following the
359 stimulus presentation, the fixation bullseye reappeared and remained on the screen for a period
360 between 1000 and 1200ms. In 10% of the trials, fixation bullseye dimmed for 150ms and participants
361 had been instructed to press a button when this occurred. By using identical stimulus durations, these
362 runs were designed to be as similar as possible in terms of stimulus presentation to the main

363 experiment. During the localisers, participants correctly detected $95.3 \pm 0.7\%$ (mean \pm SEM) of fixation
364 dimming events and incorrectly pressed the button on $4.9 \pm 2.2\%$ of trials, suggesting that participants
365 were successfully engaged by the fixation task.

366 Following the localiser runs, participants performed 8 main task runs (2x training runs, 6x prediction
367 runs), 64 trials per run, in total 512 trials. During the prediction runs, an auditory cue (falling vs. rising
368 tones, 250ms) was presented 100ms after trial onset. Following a 1500ms interval, two consecutive
369 shape stimuli were displayed (each for 250ms) and, separated by a 500ms blank screen (Fig. 1A). The cue
370 was valid on 75% of trials, whereas on the other 25% of trials the unpredicted shape would be
371 presented (Fig. 1B). For instance, if the cue was a falling auditory tone, it might lead to shape A in 75%
372 of cases and shape D in the other 25% of cases. Note that shapes B and C were never presented in the
373 prediction runs. The contingencies between cues and shapes were flipped halfway through the
374 experiment, and the order was counterbalanced over subjects. Prior to the first prediction run, and
375 after the cue reversal halfway through, participants were trained on the cue–shape associations
376 during training runs in the MEG and explicitly informed about the cue contingencies. In the training
377 runs, the auditory cue was 100% predictive of the identity of the first shape.

379 **Pre-processing**

380 Whole-head neural recordings were obtained using a 273-channel MEG system with axial
381 gradiometers (CTF Systems) at a rate of 600Hz located in a magnetically shielded room. Throughout
382 the experiment, head position was monitored online and corrected if necessary using three fiducial
383 coils that were placed on the nasion, right and left preauricular. If participants moved their head more
384 than 5mm from the starting position, they were repositioned after each run. Eye movements were
385 recorded using an EyeLink 1000 infrared tracker (SR Research Ltd.). The recorded eye-tracker data
386 were used to identify eye-blink related artefacts in the MEG signal. Auditory tones were delivered
387 using earplugs (Etymotic Research Inc.). A photodiode was placed at the bottom left corner of the
388 screen to measure visual stimulus presentation latencies. The photodiode signal was used to realign
389 the MEG signal with stimulus onset.

390 The data were pre-processed offline using FieldTrip⁵¹. The variance (collapsed over channels and time)
391 was calculated for each trial in order to identify artefacts. Trials with large variances were
392 subsequently selected for manual inspection and removed if they contained excessive and irregular
393 artefacts. Next, independent component analysis was used to further remove cardiac and eye
394 movements related artefacts. The independent components were correlated to the eye tracking signal

395 to identify potentially contaminating components for each participant, and inspected manually before
396 removal. For the main analyses, data were high-pass filtered using a two-pass Butterworth filter with
397 a filter order of five and a frequency cut-off of 0.1Hz. Notch filters were also applied at 50, 100, and
398 150Hz to remove line noise and its harmonics. No detrending was applied for any analysis. Finally,
399 main task data were baseline corrected on the interval of -200 to 0ms relative to auditory cue onset,
400 and localiser data were baseline corrected on the interval of -200 to 0ms relative to shape onset.

401 **Decoding analysis**

402 To reveal the representational content of neural activity, a decoding analysis was applied. We used an
403 LDA decoder²⁴, which described how activity at the sensor-level varied as a function of a
404 discriminability index. Unlike conventional LDA which separates data into discrete categories, our
405 customised decoder calculated the distances of each test sample to the hyperplane, treating these
406 distances as discriminant evidences. Thereby, we obtained a continuous measure of which shape was
407 encoded in the neural signals, providing finer resolution in analysing the neural representations. The
408 decoding analysis was performed in a time-resolved manner by applying it sequentially at each time
409 point, in steps of 5ms and averaging over a 28ms time window centred at that specific time point.
410 Thereby, the decoder effectively down-sampled the data (from 600Hz original sampling rate) to
411 200Hz.

412 To test how effective the decoder was at revealing neural patterns, it was first trained and tested on
413 shape A and D trials (between -100 and 600ms relative to stimulus onset) from the localiser runs, using
414 a leave-one-block-out approach. Analogously, a shape B vs. C decoder was tested on shape B and C
415 trials. To further validate the analysis, we tested the shape A vs. D decoder on the shape B and C trials,
416 and the shape B vs. C decoder on shape A and D trials (Fig. S1). We expected significant decoding
417 within shape categories (e.g. training and testing on shape A vs. D), but not across shape categories
418 (i.e., training on shape A and D and testing on shape B and C, and vice versa).

419 Localiser decoding results were analysed using non-parametric cluster-based permutation tests. The
420 data were represented as 2D matrices of decoding performance, with training time on one axis and
421 testing time on the other. The statistical analysis focused on identifying significant 2D clusters in these
422 matrices. To do so, univariate t-statistics were calculated for the entire matrix. Elements that were
423 considered neighbours, i.e., directly adjacent in cardinal or diagonal directions, were collected into
424 separate positive and negative clusters if they passed a threshold corresponding to a p-value of 0.001
425 (two-tailed). The significance of the clusters was assessed by summing the t-values within each cluster
426 to obtain cluster-level test statistics. These test statistics were then compared to a null distribution,

427 which was created by randomly shuffling the observed data 10,000 times. A cluster was considered
428 significant if its resulting p-value was less than 0.05 (two-tailed).

429 In order to reveal predicted shape representations, the decoder was trained on shape A vs. D localiser
430 trials (70 – 200ms), and subsequently tested on the pre-stimulus window (-1750 to 0ms relative to
431 shape onset) during the prediction runs. To address label imbalances resulting from trial rejections
432 during pre-processing, random resampling was applied to the training sets, ensuring an equal number
433 of each decoded classes (shapes) for every participant. Furthermore, we repeated the same procedure
434 for each participant using a control decoder trained on shapes B vs. C localiser trials, i.e. shapes which
435 were not presented during the prediction runs. This results of applying this control decoder to the pre-
436 stimulus prediction window served as a baseline (Baseline 2, Fig. 3B - bottom) in further analyses. It is
437 important to highlight that the shape B vs. C discrimination was orthogonal to shape A vs. D
438 discrimination.

439 Frequency analysis of pre-stimulus decoding time series

440 Our primary aim was to test whether the decoded neural representations of predictions had
441 oscillatory dynamics. Therefore, we adapted the analysis approach of Kerrén et al.²², investigating the
442 frequency characteristics of decoder time series using FFT. This analysis was applied to pre-stimulus
443 decoding time courses (-1750ms until 0ms relative to stimulus onset), based on the averaged decoder
444 training time window of 70 – 200ms. We chose this training time window based on the results of
445 localiser decoding. In an exploratory analysis, we repeated the analysis for two shorter training time
446 windows (90 – 120ms and 160 – 190ms), centred around the first (105ms) and second peak (175ms)
447 of localiser shape decoding (Fig. 2A-B) to distinguish effects of earlier and later representations. These
448 time windows were chosen since they appeared to form distinct clusters in the localiser decoding
449 temporal generalisation matrix, with reduced cross-decoding between the two clusters suggesting
450 qualitatively different representations (Fig. S1A). For each participant, each trial of the pre-stimulus
451 decoded time series was tapered with a Hann window covering the whole time period (-1750 to 0ms),
452 and then subjected to the FFT. In a control analysis, we used Fitting Oscillations and One-Over-F
453 (FOOOF, as implemented in the Fieldtrip toolbox⁵²), which separates rhythmic activity from concurrent
454 power-spectral 1/f modulations in electrophysiological data, to validate the oscillatory nature of the
455 predictive representations.

456 To assess the reliability of our results, we created an empirical baseline using decoders with randomly
457 shuffled shape labels (Baseline 1, Fig. 3B - top). The labels of the two shapes (shape A and D) were
458 shuffled pseudo-randomly before training the decoder, 25 times per participant. Therefore, each
459 participant yielded 25 permuted datasets. The analysis parameters for the baseline decoding were

460 identical to the non-shuffled decoder, i.e. identical spectral analysis was performed for each of the 25
461 datasets per participant. We generated an empirical null distribution using bootstrapping of the
462 permuted datasets ($n = 1000$)⁵³, and compared this to the frequency analysis results of the non-
463 shuffled shape A vs. D decoder data²². Frequency bins with higher power than the empirical null
464 distribution (exceeding the 95th percentile) were considered significant. To further validate the
465 findings, we also conducted the identical frequency analysis (same analytical parameters) using shape
466 B vs. C decoding time series as an additional baseline (Baseline 2, Fig. 3B - bottom).

467 **Relating behavioural and neural effects**

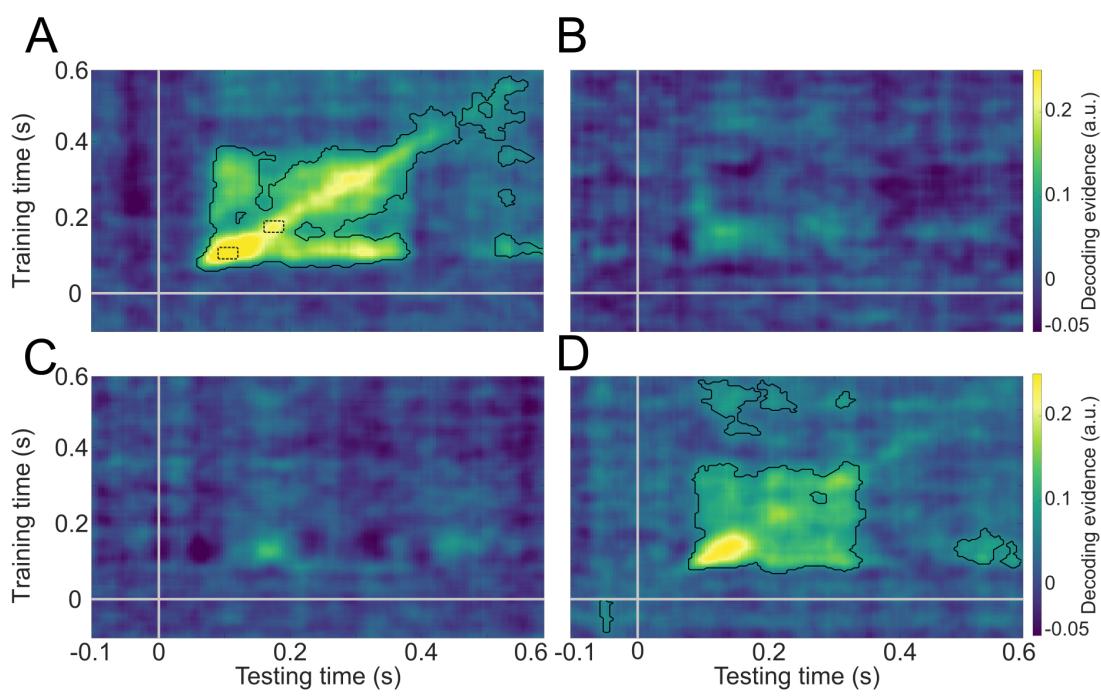
468 To investigate whether there was a relationship between stimulus-specific pre-stimulus alpha power
469 and shape discrimination performance, we performed a logistic regression analysis separately for valid
470 and invalid prediction trials. Based on the existing literature relating pre-stimulus oscillatory power
471 and phase to behavioural performance^{8,29,30}, we limited the pre-stimulus decoding time series to -
472 500ms to 0ms relative to stimulus onset. To be able to accurately estimate pre-stimulus alpha power,
473 yet be as close as possible to stimulus onset, we used a 500ms Hann window over the -500ms to 0ms
474 time window, resulting in ~2Hz frequency resolution (alpha frequency bins: 9.375Hz, 10.937Hz,
475 12.500Hz). Separately for valid and invalid prediction trials, trial-based power estimates of the pre-
476 stimulus (-500ms to 0ms) alpha activity were averaged over for the three alpha frequency bins. We
477 balanced the trial numbers by randomly choosing a subset of trials from the conditions with higher
478 trial counts (i.e., valid). The dependent variable of the model was the behavioural outcome (correct
479 or incorrect response), sorted separately again for valid and invalid predictions. The model parameter
480 estimates (i.e., beta values) served as an indication of an underlying link between stimulus-specific
481 alpha power and behavioural performance. The valid and invalid condition beta values were
482 statistically compared using a paired t-test.

483 **Source localisation of shape decoding**

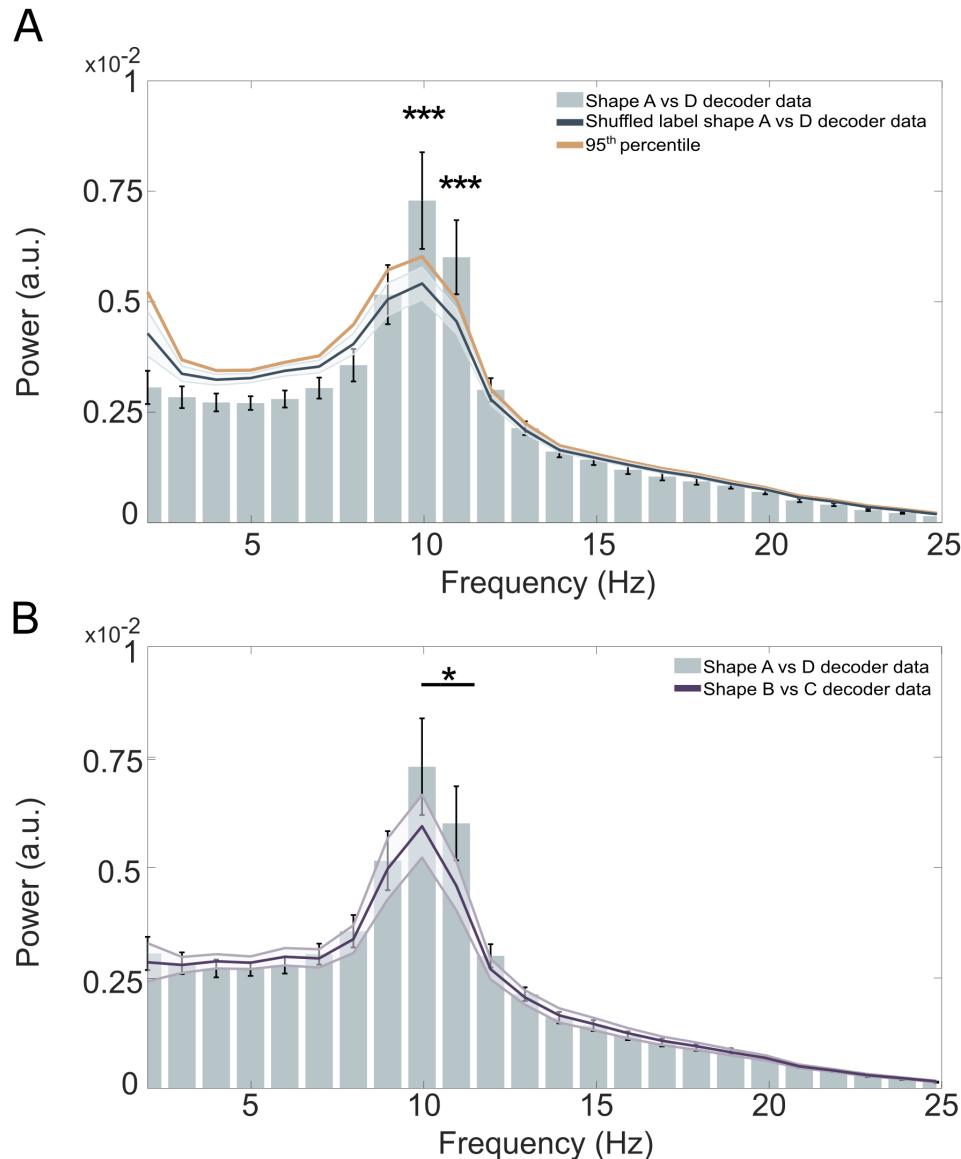
484 To visualise the underlying neural sources during decoding, we applied source localisation analyses
485 using an LCMV beamformer²⁵. The spatial distribution of the underlying signal during classification in
486 LDA is primarily influenced by the magnetic field difference between the two experimental conditions.
487 Therefore, one can visualise the source of a decoder by estimating the sources of the two different
488 conditions, and compute the difference²⁶. Based on previous studies demonstrating that the
489 anatomical specificity gain of using subject-specific anatomical images is negligible⁵⁴, we did not
490 collect individual anatomical MRI scans for our subjects. We followed a group-based template
491 approach using a template MRI (in MNI space) in combination with a single shell head model and a

492 standard volumetric grid (8mm resolution), as present in the Fieldtrip toolbox. Participants' individual
493 fiducials were used to generate a participant-specific forward model in MNI space. The spatial filter
494 was computed for the time window of interest (70 – 200ms, decoder training window) in the averaged
495 data, which was subsequently applied separately to the two conditions of interest (valid and invalid
496 prediction trials). For shape A vs. D decoding a percentage absolute signal change was computed in
497 source space, to determine which source signals were involved in discriminating between shape A and
498 D without making assumptions about the sign of the dipole.

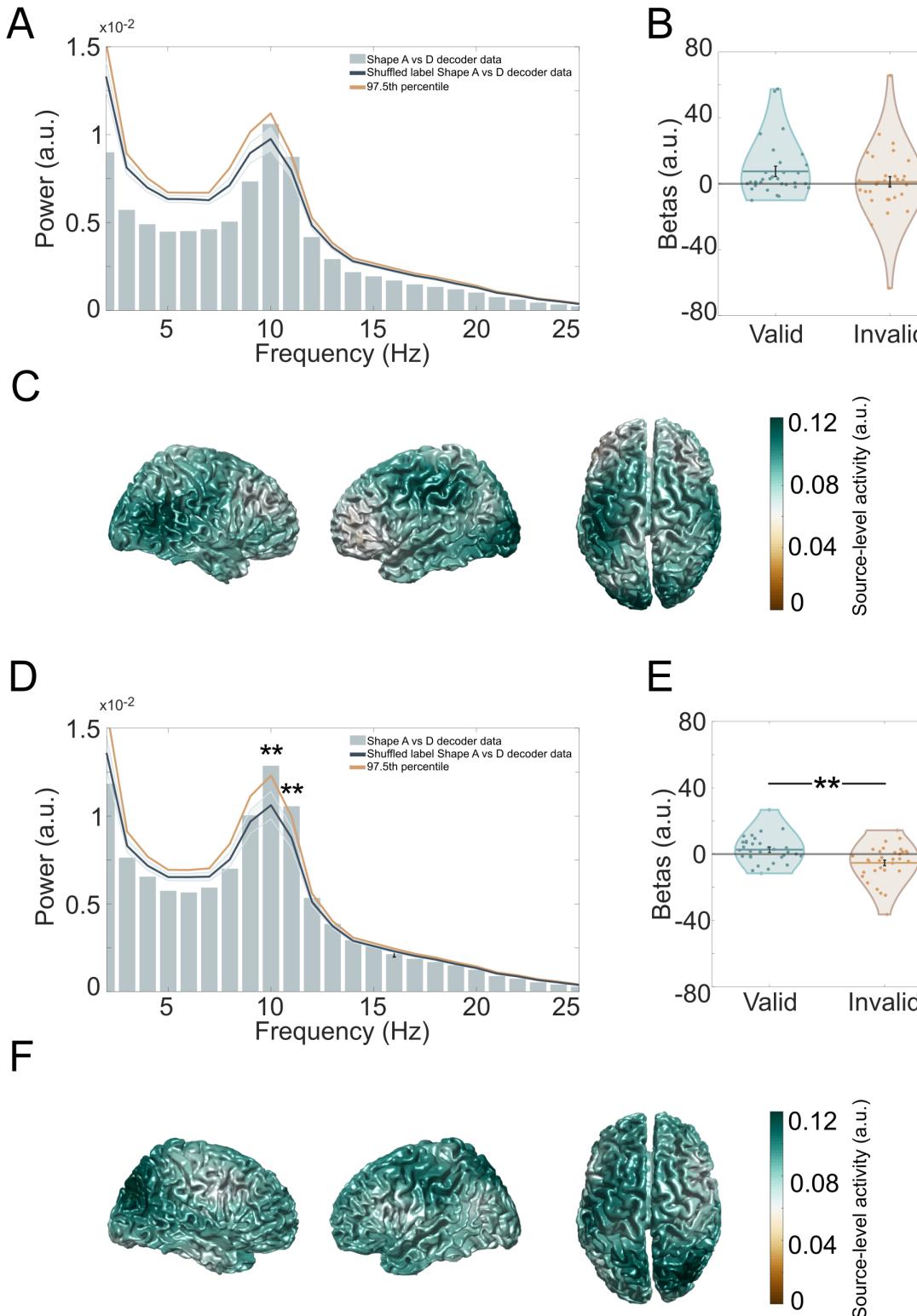
499 **Supplemental figures**



500 **Fig. S1: Localiser temporal generalisation of shape A vs. D and shape B vs. C decoders.** **A:** Shape A vs.
501 502 503 504 505 506 507 D decoder, trained and tested (-100 to 600ms) on the two target shapes (Shape A and D) which
appeared both in the localiser and the prediction runs. Dashed rectangles indicate clusters used in
exploratory early vs. late analysis (90 – 120ms and 160 – 190ms, respectively). **B:** Shape B vs. C decoder
tested on Shape A and D trials. No significant clusters were identified. **C:** Shape A vs. D decoder tested
on Shape B and C trials. No significant clusters were identified. **D:** Shape B vs. C decoder, trained and
tested on Shapes B and C. Solid black lines indicate significant clusters ($p < 0.05$). Solid grey lines at
0ms indicate stimulus onset.



508 **Fig. S2: Prediction templates fluctuate at alpha frequencies – 1/f noise removed.** **A:** Significant power
509 differences at 10Hz and 11Hz between Shape A vs. D decoding data and Baseline 1 after the
510 subtraction of 1/f noise (**p < 0 .001). This further demonstrates that the stimulus-specific alpha
511 signals likely reflect oscillations. The baseline power spectrum (dark blue line) was obtained by
512 bootstrapping (n = 1000) the randomly shuffled label decoding data (n = 25 per participant). Mean
513 and shaded regions indicate SD. Solid orange line indicates the 95th percentile of the generated
514 baseline distribution. Error bars indicate SEM. **B:** Pre-stimulus (-1750 to 0ms) MEG data after 1/f
515 removal shows significantly higher 10 – 11Hz power for shape A vs. D decoding than for shape B vs. C
516 decoding (*p = 0.022, t(31) = 2.107). Dark purple line indicates the power spectrum of B vs. C decoder
517 (tested on the identical pre-stimulus main experiment prediction data (as shape A and D). Mean and
518 shaded regions indicate SEM. Error bars indicate SEM.



519 **Fig. S3: Late sensory representations drive stimulus predictions.** **A:** Power spectrum of the -1750 to
 520 0ms prediction time window shape A vs. D decoding, trained on the 90 to 120ms post-stimulus
 521 localiser window. No significant distinctions between the shape A vs. D decoding data and an empirical
 522 null distribution at 10Hz and 11Hz. Mean and shaded regions indicate SD. Dark solid orange line
 523 indicates the 97.5th percentile of the null distribution, implementing a one-sided test at $p < 0.05$ while
 524 correcting for the two time windows tested here. **B:** Output of the logistic regression (betas) between
 525 the power of pre-stimulus decoding time window of -500 to 0ms, averaged over 9 – 12Hz frequency

526 bins, and discrimination performance, separately for valid and invalid prediction trials. No significant
527 difference between valid and invalid prediction betas. Dots represent individual participant; error bars
528 reflect within-participant SEM. **C:** The difference in source localisation for shape A and D during the
529 localiser training time window of 90 – 120ms post-stimulus. **D:** Power spectrum of the -1750 to 0ms
530 prediction time window shape A vs. D decoding, trained on the 160 to 190ms post-stimulus localiser
531 window. Statistically significant difference from an empirical null distribution at 10Hz and 11 Hz (**p<
532 0.01). The baseline power spectrum (dark blue line) was calculated as before. Mean and shaded
533 regions indicate SD. Solid orange line indicates the 97.5th percentile of the baseline distribution. **E:**
534 Logistic regression between pre-stimulus decoding power (-500 to 0ms, averaged over 9 – 12Hz
535 frequency bins) and discrimination performance between valid and invalid prediction trials (**p <
536 0.01). Dots represents individual participants; error bars were calculated as within-participant SEM. **F:**
537 The difference in source localisation for shape A and D during the localiser training time window of
538 160 – 190ms post-stimulus.

539 **References**

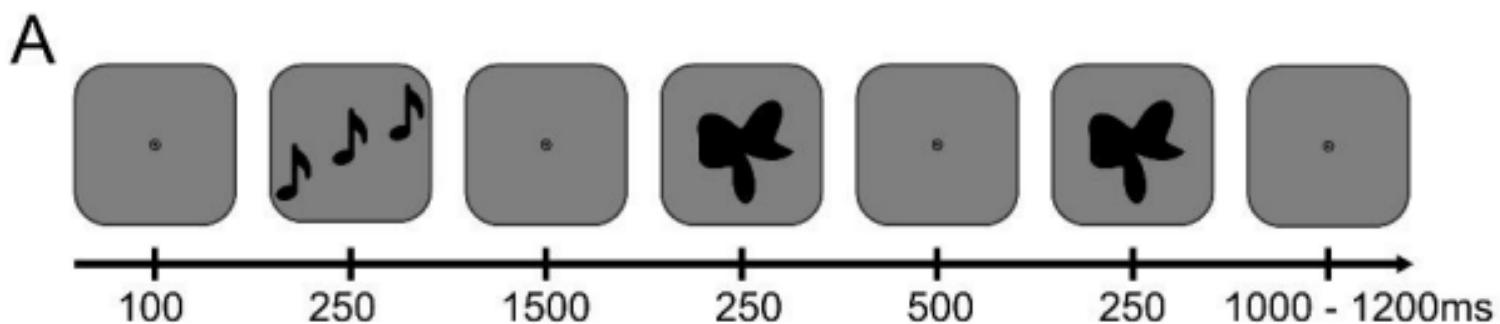
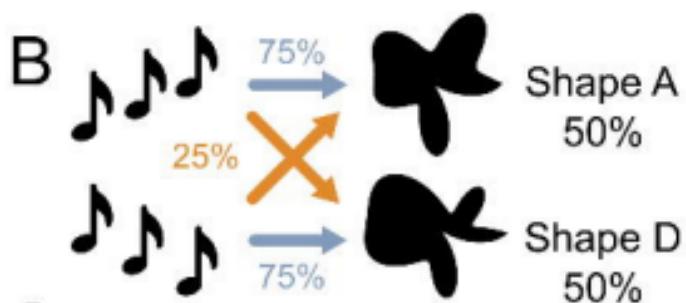
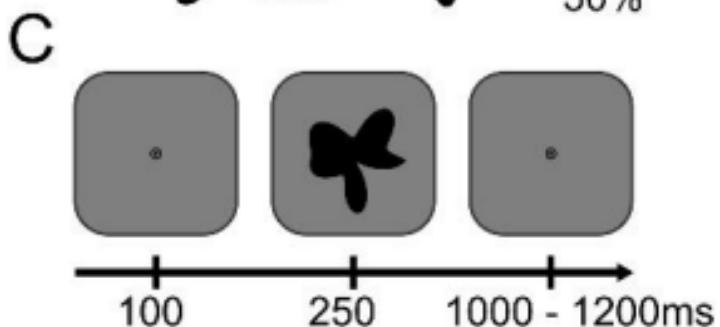
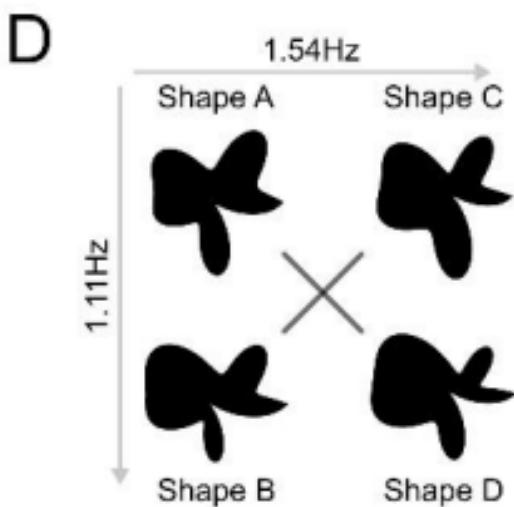
- 540 1. Bastos, A. M. *et al.* Canonical Microcircuits for Predictive Coding. *Neuron* **76**, 695–711 (2012).
- 541 2. Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science.
- 542 *Behavioral and Brain Sciences* **36**, 181–204 (2013).
- 543 3. de Lange, F. P., Heilbron, M. & Kok, P. How Do Expectations Shape Perception? *Trends in*
- 544 *Cognitive Sciences* **22**, 764–779 (2018).
- 545 4. Friston, K. The free-energy principle: a rough guide to the brain? *Trends in Cognitive Sciences* **13**,
- 546 293–301 (2009).
- 547 5. Arnal, L. H. & Giraud, A.-L. Cortical oscillations and sensory predictions. *Trends in Cognitive*
- 548 *Sciences* **16**, 390–398 (2012).
- 549 6. Bastos, A. M., Lundqvist, M., Waite, A. S., Kopell, N. & Miller, E. K. Layer and rhythm specificity
- 550 for predictive routing. *Proc. Natl. Acad. Sci. U.S.A.* **117**, 31459–31469 (2020).
- 551 7. Auksztulewicz, R., Friston, K. J. & Nobre, A. C. Task relevance modulates the behavioural and
- 552 neural effects of sensory predictions. *PLoS Biol* **15**, e2003143 (2017).
- 553 8. Mayer, A., Schwiedrzik, C. M., Wibral, M., Singer, W. & Melloni, L. Expecting to See a Letter:
- 554 Alpha Oscillations as Carriers of Top-Down Sensory Predictions. *Cereb. Cortex* **26**, 3146–3160
- 555 (2016).
- 556 9. Berger, H. Über das Elektrenkephalogramm des Menschen. *Archiv f. Psychiatrie* **87**, 527–570
- 557 (1929).
- 558 10. Jensen, O. & Mazaheri, A. Shaping Functional Architecture by Oscillatory Alpha Activity: Gating
- 559 by Inhibition. *Frontiers in Human Neuroscience* **4**, (2010).
- 560 11. Klimesch, W., Sauseng, P. & Hanslmayr, S. EEG alpha oscillations: The inhibition–timing
- 561 hypothesis. *Brain Research Reviews* **53**, 63–88 (2007).
- 562 12. Ergenoglu, T. *et al.* Alpha rhythm of the EEG modulates visual detection performance in humans.
- 563 *Cognitive Brain Research* **20**, 376–383 (2004).

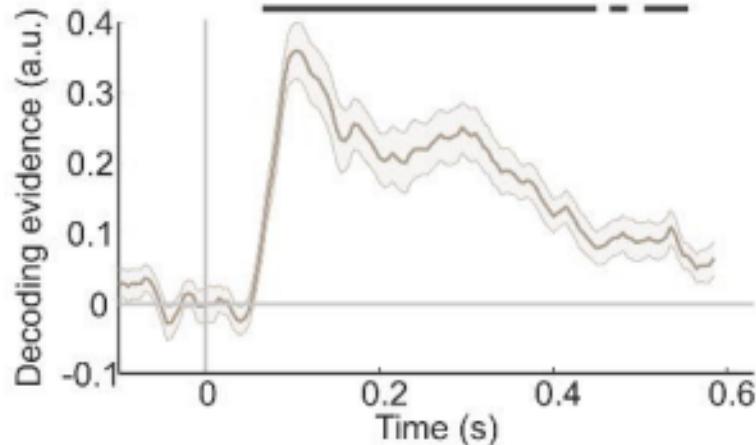
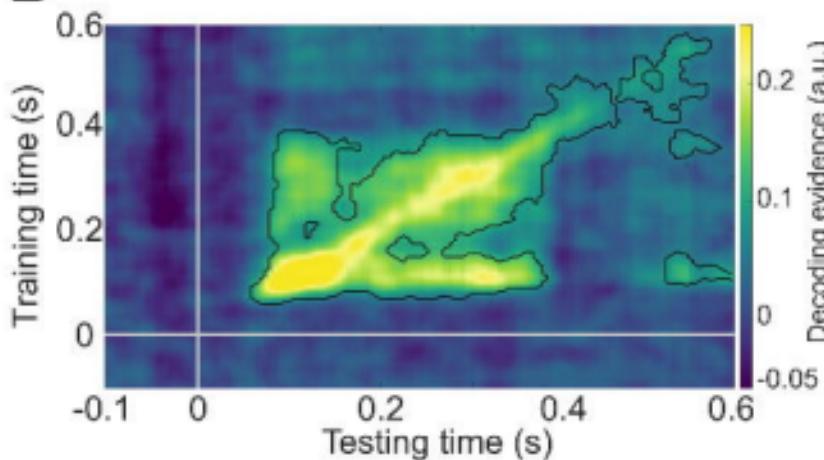
- 564 13. Hanslmayr, S., Volberg, G., Wimber, M., Dalal, S. S. & Greenlee, M. W. Prestimulus Oscillatory
565 Phase at 7 Hz Gates Cortical Information Flow and Visual Perception. *Current Biology* **23**, 2273–
566 2278 (2013).
- 567 14. Iemi, L. *et al.* Multiple mechanisms link prestimulus neural oscillations to sensory responses.
568 *eLife* **8**, e43620 (2019).
- 569 15. Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M. & Ro, T. To See or Not to See:
570 Prestimulus α Phase Predicts Visual Awareness. *J. Neurosci.* **29**, 2725–2732 (2009).
- 571 16. van Dijk, H., Schoffelen, J.-M., Oostenveld, R. & Jensen, O. Prestimulus Oscillatory Activity in the
572 Alpha Band Predicts Visual Discrimination Ability. *J. Neurosci.* **28**, 1816–1823 (2008).
- 573 17. Busch, N. A., Dubois, J. & VanRullen, R. The Phase of Ongoing EEG Oscillations Predicts Visual
574 Perception. *Journal of Neuroscience* **29**, 7869–7876 (2009).
- 575 18. Dugué, L., Marque, P. & VanRullen, R. The Phase of Ongoing Oscillations Mediates the Causal
576 Relation between Brain Excitation and Visual Perception. *J. Neurosci.* **31**, 11889–11893 (2011).
- 577 19. VanRullen, R., Busch, N. A., Drewes, J. & Dubois, J. Ongoing EEG Phase as a Trial-by-Trial
578 Predictor of Perceptual and Attentional Variability. *Front. Psychology* **2**, (2011).
- 579 20. Shen, L. *et al.* Prior knowledge employs pre-stimulus alpha-band oscillations and persistent post-
580 stimulus neural templates for conscious perception. *J. Neurosci.* JN-RM-0263-23 (2023)
581 doi:10.1523/JNEUROSCI.0263-23.2023.
- 582 21. Turner, W., Blom, T. & Hogendoorn, H. Visual Information Is Predictively Encoded in Occipital
583 Alpha/Low-Beta Oscillations. *J. Neurosci.* **43**, 5537–5545 (2023).
- 584 22. Kerrén, C., Linde-Domingo, J., Hanslmayr, S. & Wimber, M. An optimal oscillatory phase for
585 pattern reactivation during memory retrieval. *Current Biology* **28**, 3383–3392 (2018).
- 586 23. Kerrén, C., van Bree, S., Griffiths, B. J. & Wimber, M. Phase separation of competing memories
587 along the human hippocampal theta rhythm. *bioRxiv* 2022.05.07.490872 (2022)
588 doi:10.1101/2022.05.07.490872.

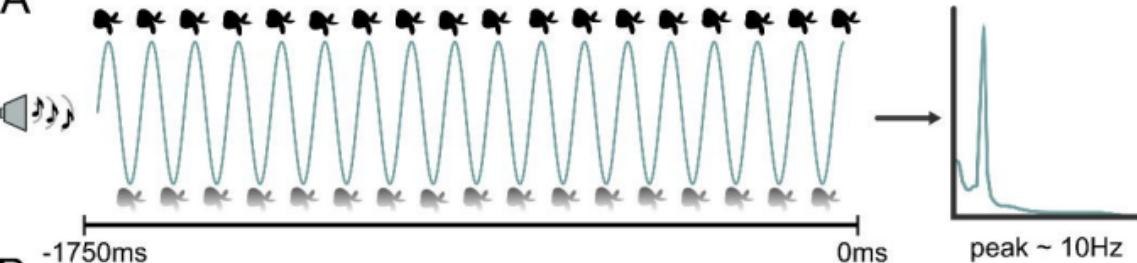
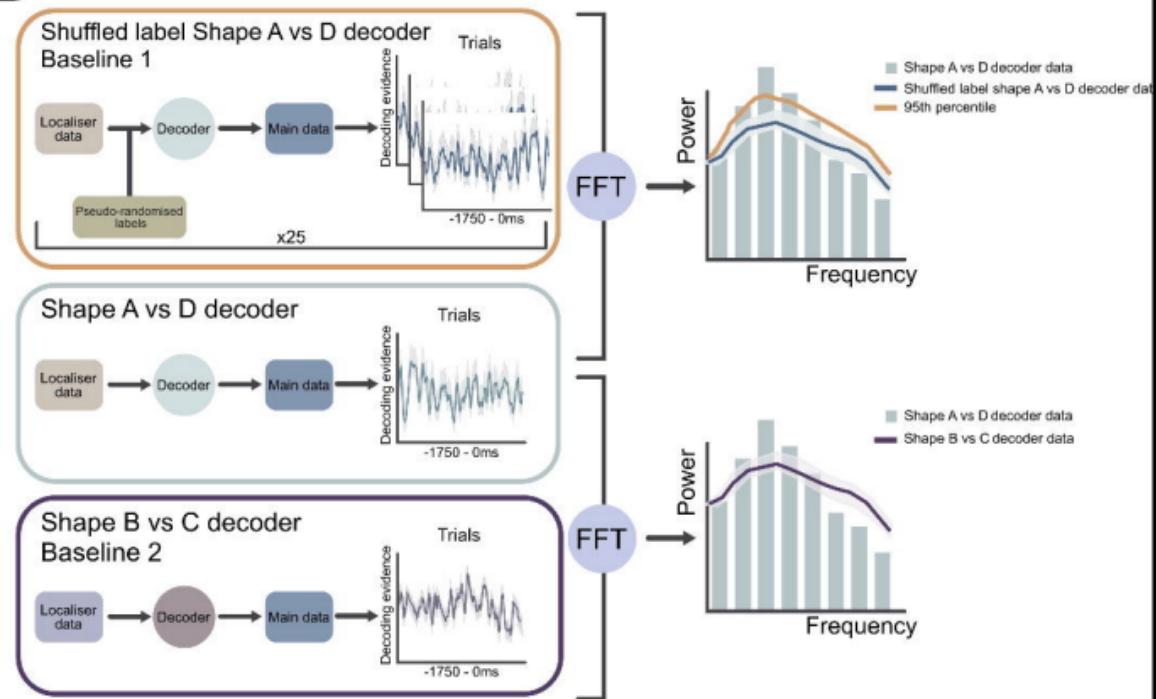
- 589 24. Mostert, P., Kok, P. & de Lange, F. P. Dissociating sensory from decision processes in human
590 perceptual decision making. *Sci Rep* **5**, 18253 (2016).
- 591 25. Van Veen, B. D., Van Drongelen, W., Yuchtman, M. & Suzuki, A. Localization of brain electrical
592 activity via linearly constrained minimum variance spatial filtering. *IEEE Trans. Biomed. Eng.* **44**,
593 867–880 (1997).
- 594 26. Haufe, S. *et al.* On the interpretation of weight vectors of linear models in multivariate
595 neuroimaging. *NeuroImage* **87**, 96–110 (2014).
- 596 27. Kok, P., Jehee, J. F. M. & de Lange, F. P. Less Is More: Expectation Sharpens Representations in
597 the Primary Visual Cortex. *Neuron* **75**, 265–270 (2012).
- 598 28. Kok, P., Mostert, P. & Lange, F. P. de. Prior expectations induce prestimulus sensory templates.
599 *Proceedings of the National Academy of Sciences* **114**, 10473–10478 (2017).
- 600 29. Hanslmayr, S. *et al.* Prestimulus oscillations predict visual perception performance between and
601 within subjects. *NeuroImage* **37**, 1465–1473 (2007).
- 602 30. Samaha, J., Boutonnet, B., Postle, B. R. & Lupyan, G. Effects of meaningfulness on perception:
603 Alpha-band oscillations carry perceptual expectations and influence early visual responses. *Sci
604 Rep* **8**, 6606 (2018).
- 605 31. Morey, R. D. Confidence intervals from normalized data: A correction to Cousineau (2005).
606 *Tutorials in Quantitative Methods for Psychology* **4**, 61–64 (2008).
- 607 32. Cousineau, D. Confidence intervals in within-subject designs: A simpler solution to Loftus and
608 Masson’s method. *Tutorials in quantitative methods for psychology* **1**, 42–45 (2005).
- 609 33. Haarsma, J., Hetenyi, D. & Kok, P. Shared and diverging neural dynamics underlying false and
610 veridical perception. *bioRxiv* 2023–11 (2023).
- 611 34. Mathewson, K. E. *et al.* Pulsed Out of Awareness: EEG Alpha Oscillations Represent a Pulsed-
612 Inhibition of Ongoing Cortical Processing. *Front. Psychology* **2**, (2011).
- 613 35. Bonnefond, M. & Jensen, O. Alpha Oscillations Serve to Protect Working Memory Maintenance
614 against Anticipated Distractors. *Current Biology* **22**, 1969–1974 (2012).

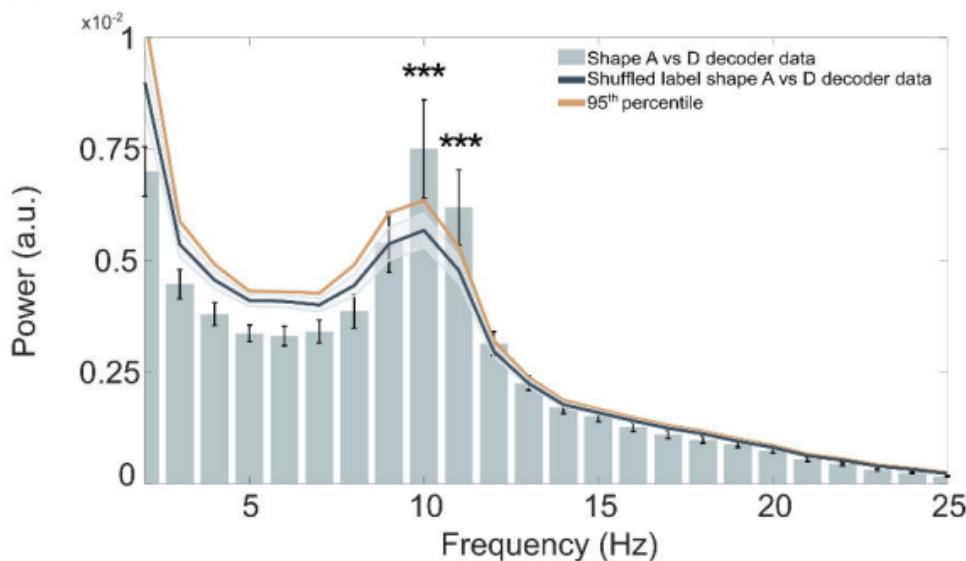
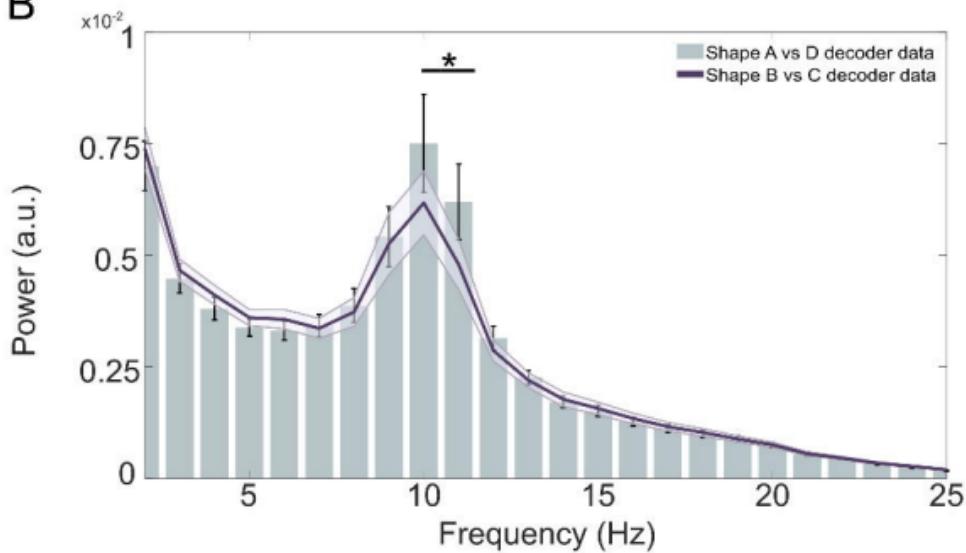
- 615 36. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a functional interpretation of
616 some extra-classical receptive-field effects. *Nat Neurosci* **2**, 79–87 (1999).
- 617 37. Aitken, F., Turner, G. & Kok, P. Prior Expectations of Motion Direction Modulate Early Sensory
618 Processing. *J. Neurosci.* **40**, 6389–6397 (2020).
- 619 38. Haarsma, J., Deveci, N., Corbin, N., Callaghan, M. F. & Kok, P. Expectation Cues and False
620 Percepts Generate Stimulus-Specific Activity in Distinct Layers of the Early Visual Cortex. *J.*
621 *Neurosci.* **43**, 7946–7957 (2023).
- 622 39. Bastos, A. M. *et al.* Visual Areas Exert Feedforward and Feedback Influences through Distinct
623 Frequency Channels. *Neuron* **85**, 390–401 (2015).
- 624 40. Dijkstra, N., Mostert, P., Lange, F. P. de, Bosch, S. & van Gerven, M. A. Differential temporal
625 dynamics during visual imagery and perception. *eLife* **7**, e33904 (2018).
- 626 41. Alilović, J., Timmermans, B., Reteig, L. C., van Gaal, S. & Slagter, H. A. No Evidence that
627 Predictions and Attention Modulate the First Feedforward Sweep of Cortical Information
628 Processing. *Cerebral Cortex* **29**, 2261–2278 (2019).
- 629 42. Samaha, J., Bauer, P., Cimaroli, S. & Postle, B. R. Top-down control of the phase of alpha-band
630 oscillations as a mechanism for temporal prediction. *Proc. Natl. Acad. Sci. U.S.A.* **112**, 8439–8444
631 (2015).
- 632 43. Weilnhammer, V., Stuke, H., Standvoss, K. & Sterzer, P. Sensory processing in humans and mice
633 fluctuates between external and internal modes. *PLoS Biol* **21**, e3002410 (2023).
- 634 44. Kok, P., Brouwer, G. J., van Gerven, M. A. J. & de Lange, F. P. Prior Expectations Bias Sensory
635 Representations in Visual Cortex. *Journal of Neuroscience* **33**, 16275–16284 (2013).
- 636 45. Chalk, M., Seitz, A. R. & Series, P. Rapidly learned stimulus expectations alter perception of
637 motion. *Journal of Vision* **10**, 2–2 (2010).
- 638 46. Kok, P. & Turk-Browne, N. B. Associative Prediction of Visual Shape in the Hippocampus. *The*
639 *Journal of Neuroscience* (2018) doi:10.1523/jneurosci.0163-18.2018.
- 640 47. Brainard, D. H. The psychophysics toolbox. *Spatial vision* **10**, 433–436 (1997).

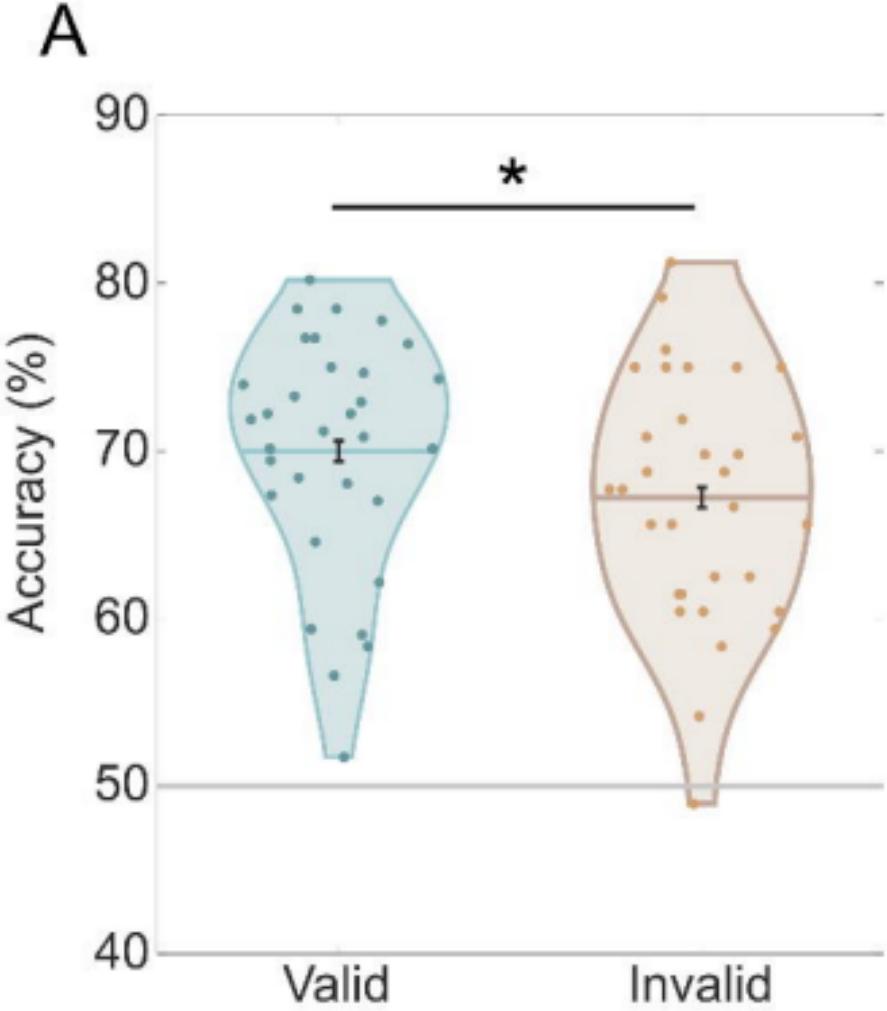
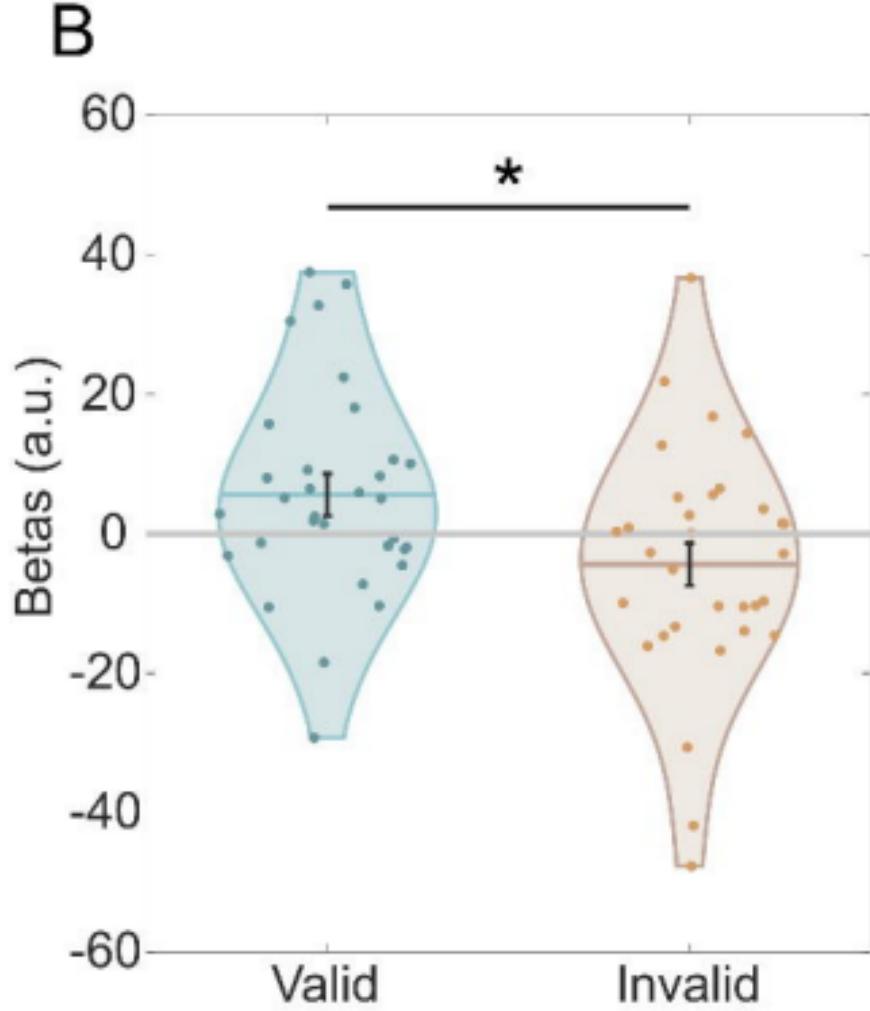
- 641 48. Zahn, C. T. & Roskies, R. Z. Fourier Descriptors for Plane Closed Curves. *IEEE Transactions on*
642 *Computers* **C-21**, 269–281 (1972).
- 643 49. Op de Beeck, H., Wagemans, J. & Vogels, R. Inferotemporal neurons represent low-dimensional
644 configurations of parameterized shapes. *Nat Neurosci* **4**, 1244–1252 (2001).
- 645 50. Watson, A. B. & Pelli, D. G. Quest: A Bayesian adaptive psychometric method. *Perception &*
646 *Psychophysics* **33**, 113–120 (1983).
- 647 51. Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: Open Source Software for
648 Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. *Computational*
649 *Intelligence and Neuroscience* **2011**, 1–9 (2011).
- 650 52. Donoghue, T. *et al.* Parameterizing neural power spectra into periodic and aperiodic
651 components. *Nat Neurosci* **23**, 1655–1665 (2020).
- 652 53. Stelzer, J., Chen, Y. & Turner, R. Statistical inference and multiple testing correction in
653 classification-based multi-voxel pattern analysis (MVPA): Random permutations and cluster size
654 control. *NeuroImage* **65**, 69–82 (2013).
- 655 54. Holliday, I. E., Barnes, G. R., Hillebrand, A. & Singh, K. D. Accuracy and applications of group MEG
656 studies using cortical source locations estimated from participants' scalp surfaces. *Human Brain*
657 *Mapping* **20**, 142–147 (2003).

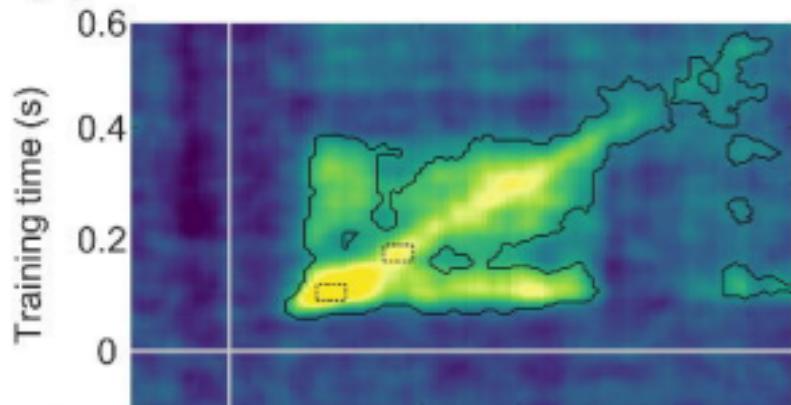
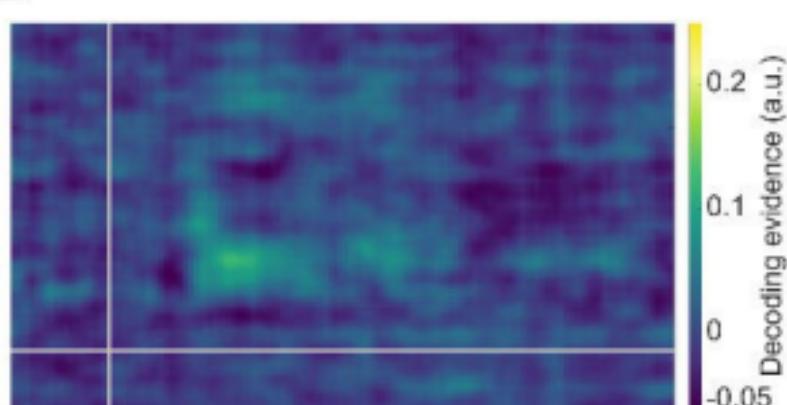
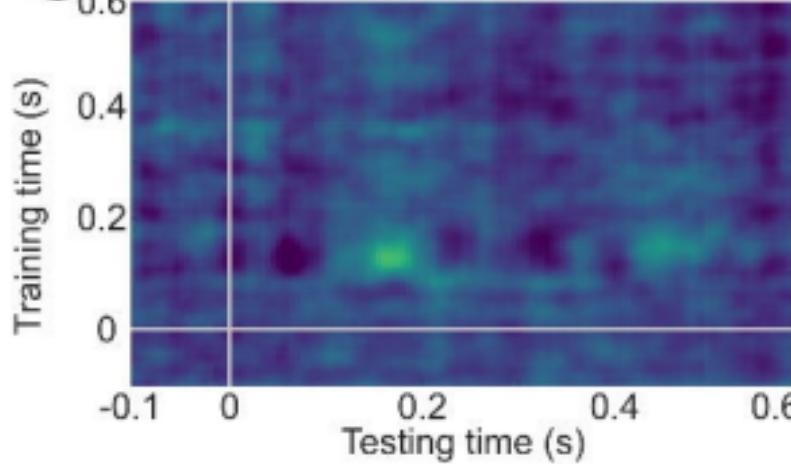
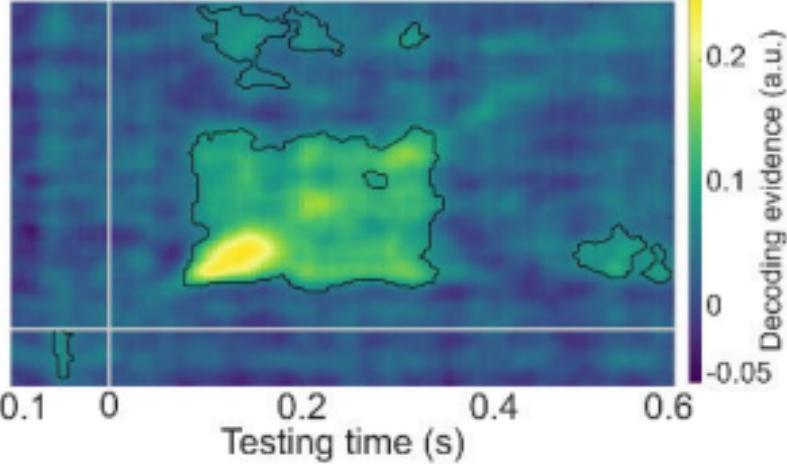


A**B****C**

A**B**

A**B**

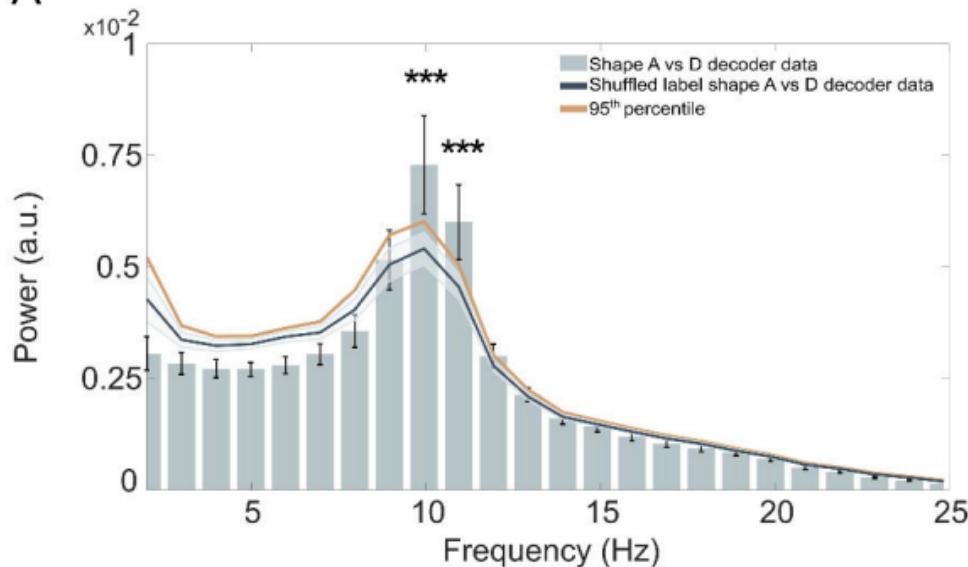


A**B****C****D**

Decoding evidence (a.u.)

Decoding evidence (a.u.)

A



B

