
1 
 

Title 1 

Pre-stimulus alpha oscillations encode stimulus-specific visual predictions  2 

 3 

Dorottya Hetenyi1, Joost Haarsma1, Peter Kok1 4 

1Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University 5 
College London, London, UK.  6 

 7 

Corresponding author 8 

Dorottya Hetenyi, dorottya.hetenyi.21@ucl.ac.uk 9 

 10 

Pages 11 

Manuscript: 28 pages 12 

 13 

Figures 14 

Manuscript: 5 Figures + 3 Supplemental figures 15 

 16 

Words (total: 3009, excl. methods + abstract) 17 

Abstract: 131  18 
Introduction: 262 19 
Results: 1735  20 
Discussion: 1012 21 

Reference: 54 22 

 23 

Acknowledgements 24 

This work was supported by a Wellcome/Royal Society Sir Henry Dale Fellowship [218535/Z/19/Z] and 25 
a European Research Council (ERC) Starting Grant [948548] to P.K. The Wellcome Centre for Human 26 
Neuroimaging is supported by core funding from the Wellcome Trust [203147/Z/16/Z].  27 

 28 

Conflict of interests 29 

The authors declare no conflicts of interests.   30 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.13.584593doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.13.584593
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 31 

Predictions of future events have a major impact on how we process sensory signals. However, it 32 

remains unclear how the brain keeps predictions online in anticipation of future inputs. Here, we 33 

combined magnetoencephalography (MEG) and multivariate decoding techniques to investigate the 34 

content of perceptual predictions and their frequency characteristics. Participants were engaged in a 35 

shape discrimination task, while auditory cues predicted which specific shape would likely appear. 36 

Frequency analysis revealed significant oscillatory fluctuations of predicted shape representations in 37 

the pre-stimulus window in the alpha band (10 – 11Hz). Furthermore, we found that this stimulus-38 

specific alpha power was linked to expectation effects on shape discrimination. Our findings 39 

demonstrate that sensory predictions are embedded in pre-stimulus alpha oscillations and modulate 40 

subsequent perceptual performance, providing a neural mechanism through which the brain deploys 41 

perceptual predictions. 42 

Keywords 43 

‒ expectation; time-resolved multivariate approach; perceptual inference; pre-stimulus 44 

oscillations; stimulus templates   45 
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Introduction  46 

Predictions about how the world is structured play an integral role in perception1–4. Our prior 47 

knowledge forms the basis for predicting future sensory events, which are subsequently integrated 48 

with sensory input to form a perceptual experience. While there is a wealth of evidence supporting 49 

the idea that the brain deploys predictions to guide perception, the mechanisms through which the 50 

brain keeps these predictions online remain largely unclear. One likely candidate for conveying 51 

perceptual predictions are neural oscillations5–8.  52 

Alpha rhythms (8 – 12Hz) are the predominant oscillations in the awake human brain9, yet their 53 

functional role is controversial10,11. The amplitude and phase of these ongoing oscillations is known to 54 

influence performance in visual tasks12–19, and have been found to vary with experimental 55 

manipulations that target stimulus predictability. Specifically, pre-stimulus alpha oscillations have a 56 

similar topography to post-stimulus responses, implying a shared neural substrate in the processing 57 

of pre-existing information and external stimuli20, and have been shown to predictively encode the 58 

position of a moving stimulus21. However, whether these oscillations actually convey the contents of 59 

perceptual predictions remains unknown.  60 

To test this hypothesis, we employed magnetoencephalography (MEG) combined with multivariate 61 

decoding to resolve visual representations with millisecond resolution, and characterise the temporal 62 

and frequency characteristics22,23 of sensory predictions. Participants were engaged in a shape 63 

discrimination task where auditory cues predicted the identity of upcoming abstract shapes. We 64 

identified the neural representations of cued sensory predictions prior to stimulus onset and tested 65 

whether these sensory predictions had an oscillatory nature, as well as whether the power of such 66 

predictive oscillations modulated perceptual performance.  67 

Results 68 

Prediction templates oscillate at alpha frequencies 69 

To test whether perceptual predictions are conveyed by oscillations, thirty-two participants 70 

performed a challenging visual shape discrimination task (Fig. 1A) while auditory cues predicted the 71 

most likely upcoming shape (shape A or D) on 75% of the trials (Fig. 1B). The shape discrimination task 72 

was orthogonal to the prediction manipulation (i.e., the cue did not convey any information about 73 

whether the two shapes would be identical or different).  74 

First, we identified shape-specific neural signals using a linear discriminant analysis24 (LDA) during 75 

separate shape localiser runs (Fig. 1C). Localiser runs consisted of the presentation of four abstract. 76 
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Fig. 1: Experimental paradigm. A: During prediction runs, an auditory cue preceded the presentation 77 

of two consecutive shape stimuli. On each trial, the second shape was either identical to the first or 78 

slightly warped with respect to the first along an orthogonal dimension, and participants’ task was to 79 

report whether the two shapes were the same or different. B: The auditory cue (rising vs. falling tones) 80 

predicted whether the first shape on that trial would be shape A or shape D. The cue was valid on 75% 81 

of trials, whereas in the other 25% of (invalid) trials the unpredicted shape was presented. C: During 82 

shape localiser runs no predictive auditory cues were presented and participants performed a fixation 83 

diming task. D: Four different shapes were presented in the localiser runs, appearing with equal (25%) 84 

likelihood. Only shape A and D were presented in the prediction runs. The amplitudes of two RFCs 85 

(1.11, and 1.54Hz components) were varied in order to create a two-dimensional shape space, such 86 

that shape A vs. D discrimination was orthogonal to shape B vs. C discrimination.  87 

shapes (Fig. 1D), which were designed to lie on two orthogonal axes of perceptual and neural 88 

discriminability (shape A vs. D and shape B vs. C, respectively; see Methods). To test whether the LDA 89 

was able to uncover neural representations of the presented shapes, we trained and tested a shape A 90 

vs. D decoder within the localiser runs in a cross-validated manner (-100 to 600ms, relative to stimulus 91 

onset). We found that the decoder was highly accurate at discriminating the shapes based on the MEG 92 

signal. The presented shapes were successfully decoded from 65ms to 450ms (p < 0.001), 465 to 93 

485ms (p = 0.005) and 505ms to 550ms (p = 0.001), peaking at 105ms (Fig. 2A-B). Thus, we could 94 

decode abstract shapes during the localiser runs. For all subsequent analyses, decoding traces were 95 

averaged over a training window of 70 to 200ms, during which shape decoding peaked (Fig. 2A). 96 
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To reveal the cortical sources contributing to these shape representations, we performed source 97 

localisation analyses using an linearly constrained minimum variance (LCMV) beamformer25 where 98 

calculating the difference of the source-localised ERF between shape A and D reflects the contributing 99 

brain areas26. This revealed strong signals in the occipital lobe, predominantly over the visual cortices 100 

(Fig. 2C), in line with the hypothesised sensory nature of these representations. 101 

Fig. 2: Localiser shape decoding results. A: Time course of shape A vs. D decoding. Shapes were 102 
successfully decoded from 65ms to 450ms (p < 0.001), 465 to 485ms (p = 0.005) and 505ms to 550ms 103 
(p = 0.001), peak at 105ms. Shaded regions indicate SEM. B: Temporal generalisation matrix of shape 104 
A vs. D decoding, obtained by training decoders on each time point and testing all decoders on all time 105 
points. Solid black lines indicate significant clusters (p < 0.05); solid grey lines indicate stimulus onset 106 
(t = 0s). C: Source localisation of shape A vs. D discrimination during the localiser, training time window 107 
of 70 to 200ms post-stimulus, indicating strong occipital activity. 108 

Next, we used this decoder trained on the localiser to test whether the predictive auditory cues 109 

induced oscillatory representations of the predicted abstract shapes (Fig. 3A). To establish the 110 

specificity of the neural signals induced by predictions, we created two separate baseline 111 

measurements. First, we shuffled the shape labels before training the decoder (N=25 permutations 112 

per participant) in order to create a bootstrapped baseline (Baseline 1, Fig. 3B - top). Second, we 113 

trained a decoder to distinguish two shapes which were presented in the localiser runs, but not in the 114 

main experiment runs (shapes B and C; Fig. 1D). This discrimination was orthogonal to shape A vs. D 115 

discrimination, which was confirmed via an absence of generalisation between the two decoders (Fig. 116 

S1). The shape B vs. C decoder thus provides a highly specific baseline (Baseline 2, Fig. 3B - bottom), 117 
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since it was trained to pick up neural representations of highly similar but orthogonal shapes to those 118 

that were predicted by the auditory cues. 119 

Fig. 3: Shape prediction frequency analysis pipeline. A: Schematic of the hypothesis: cue-induced 120 
predictions oscillate in the alpha frequency band (~10Hz) in the interval between predictive cue and 121 
stimulus onset (-1750 to 0ms). B: A decoder was trained to discriminate between shapes A and D in 122 
the localiser runs. This decoder was applied to the pre-stimulus time window in prediction runs (-1750 123 
to 0ms). Trial-based pre-stimulus decoding time series were subjected to FFT. The resulting power 124 
spectrum was compared to the 95th percentile of an empirical null distribution generated by 125 
bootstrapping decoders trained with pseudo-randomised labels (Baseline 1, top), as well as to a 126 
decoder trained on shapes only presented in the localiser (shapes B and C) (Baseline 2, bottom).  127 

Shape decoders were trained on the localiser (70 to 200ms post-stimulus) and applied to the pre-128 

stimulus prediction time window (-1750 to 0ms) in a time-resolved manner (sliding window of 28ms, 129 

steps of 5ms). We applied Fast-Fourier Transformation (FFT) on a single trial basis to examine the 130 

frequency attributes of the resulting pre-stimulus decoding time series (Fig. 3B). This analysis revealed 131 

that the decoded predictions oscillated at low frequencies, predominantly in the alpha frequency band 132 

(10 – 12Hz) (Fig. 4A). We identified significant power differences between the shape A vs. D decoding 133 

data and Baseline 1, specifically at 10Hz and 11Hz, exceeding the 95th percentile of the empirical null 134 
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distribution (both p < 0.001). It is important to note that the baseline was based on the exact same 135 

pre-stimulus data, the only difference lies in the shuffling of the shape labels for the training of the 136 

decoder. There was also a noticeable difference in the power of very low frequencies (2 – 7Hz) when 137 

comparing the shape A vs. D decoder data to Baseline 1 data. The nature of this power difference 138 

currently is not fully understood and requires further investigation. However, similar patterns have 139 

been observed in previous research22.  140 

Fig. 4: Auditory cue-induced prediction templates fluctuate at alpha frequencies. A: The power 141 
spectrum of pre-stimulus (-1750 to 0ms) shape decoding shows significant deviations from an 142 
empirical null distribution at 10Hz and 11Hz (***p < 0.001). The baseline power spectrum (dark blue 143 
line) was obtained by bootstrapping (n = 1000) shuffled label decoding data (n = 25 per participant). 144 
Mean and shaded regions indicate SD. Solid orange line indicates the 95th percentile of the null 145 
distribution. Error bars indicate SEM. B: Pre-stimulus (-1750 to 0ms) MEG data shows significantly 146 
higher 10 – 11Hz power for shape A vs. D decoding than for shape B vs. C decoding (*p < 0.05). Bars 147 
indicate power of shape A vs. D decoding; dark purple line indicates power of B vs. C decoding (applied 148 
to identical pre-stimulus prediction data). Shaded regions and error bars indicate SEM. 149 
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For further validation, we also compared the shape A vs. D decoding power spectrum to the spectrum 150 

of shape B vs. C decoding (Baseline 2). Based on our initial findings, here we averaged over the 10 and 151 

11Hz frequency bins of the two spectra. This analysis revealed significantly higher alpha power for 152 

shape A vs. D decoding than for shape B vs. C decoding in the pre-stimulus window (paired one-sided 153 

t-test, p = 0.024, t(31) = 2.067) (Fig. 4B). As before, it is important to note that the two spectra were 154 

based on the exact same pre-stimulus MEG data, the only difference lies in which shapes the decoders 155 

were trained to discriminate. If the pre-stimulus alpha fluctuations reflected more generic shape 156 

representations, this comparison would yield no significant differences. Therefore, the difference 157 

between these two decoding spectra demonstrates that these signals were highly specific to the 158 

shapes predicted by the auditory cues. It is important to note that the shape decoders were trained 159 

on signals evoked by task-irrelevant shapes during the localiser, ruling out contributions of explicit 160 

decision-making signals. These alpha power effects were also present in a control analysis designed 161 

to remove non-rhythmic signals, confirming the oscillatory nature of the decoded predictions (Fig. S2). 162 

In sum, both analyses revealed that visual predictions induced by auditory cues led to neural 163 

representations of the predicted shapes fluctuating at an alpha rhythm prior to stimulus onset. 164 

Predictive cues lead to improved shape discrimination accuracy 165 

In addition to neural representations, we tested whether the predictive cues affected behavioural 166 

performance. As a reminder, participants were required to indicate whether two abstract shapes 167 

presented in succession were the same or different. It should be noted that any effects of the 168 

predictive cues on performance are not trivial, given that the shape discrimination task was 169 

orthogonal to the prediction manipulation (i.e., the cues predicted the identity of the first shape, but 170 

did not inform participants whether the two shapes would be identical or different). Still, valid 171 

predictive cues might improve performance indirectly by enhancing processing of the initial shape, 172 

facilitating discrimination of the subsequent shape27,28. Vice versa, invalid cues might perturb 173 

performance by impeding the processing of the initial shape. In line with this, shape discrimination 174 

accuracy was significantly influenced by whether the auditory cue correctly predicted the identity of 175 

the first shape (accuracy valid = 70% ± 1.2% and accuracy invalid = 67% ± 1.3%, mean ± SEM; t(31) = 176 

3.215, p = 0.003; Fig. 5A). There was no difference in reaction times (valid = 614ms ± 1.3% and invalid 177 

= 615ms ± 1.3%, mean ± SEM; p = 0.626, t(31) = -0.492). Together, this suggests that valid predictions 178 

facilitated shape processing, enabling improved discrimination performance.  179 
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Oscillatory power of predicted shape representations modulates behavioural expectation effects 180 

If the strength of perceptual predictions indeed modulates perceptual discrimination, there should be 181 

an opposite relationship between stimulus-specific pre-stimulus oscillations and behavioural 182 

performance on valid and invalid trials. To test this hypothesis, we performed a logistic regression 183 

analysis predicting behavioural accuracy from stimulus-specific oscillatory power in the alpha 184 

frequency range (9 – 12Hz), separately on valid and invalid trials. In line with previous literature 185 

relating oscillatory power to behavioural outcome8,29,30, we limited the time window of interest to -186 

500ms to 0 pre-stimulus, since prediction signals immediately preceding stimulus onset are most likely 187 

to impact perceptual performance28.  This analysis revealed a significant difference between valid and 188 

invalid prediction trials (paired t-test, p = 0.026, t(31) = 2.332), with a numerically positive relationship 189 

between pre-stimulus shape-specific alpha power and performance on valid trials, and a numerically 190 

negative relationship on invalid trials (Fig. 5B). Note that the individual parameter estimates for valid 191 

and invalid trials were not significantly different from zero, while the difference between the two was.  192 

Fig. 5: Oscillatory power of predicted shape representations modulate behavioural accuracy. A: 193 
Participants were able to discriminate the two presented shapes more accurately when the auditory 194 
cue validly predicted the identity of the first shape (*p < 0.05). Dots represent individual participants, 195 
error bars indicate within-participant SEM31,32. B: Output of the logistic regression (betas) between 196 
the power of pre-stimulus decoding (-500 to 0ms), averaged over 9 – 12Hz frequency bins, and 197 
discrimination performance, separately for valid and invalid prediction trials (*p < 0.05). Dots 198 
represent individual participants; error bars indicate within-participant SEM. 199 

This likely reflects the fact that the individual conditions also contain non-specific trial-by-trial variance 200 

in alpha power and behavioural performance (e.g. due to fluctuations in alertness) that are subtracted 201 
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out in the valid vs. invalid comparison. Importantly, the differential relationship between alpha power 202 

and behaviour dependent on prediction validity rules out any non-specific explanations of our results, 203 

and demonstrates a strong link between neural and behavioural effects of prediction. In short, pre-204 

stimulus content-specific alpha oscillations modulated subsequent shape discrimination accuracy, 205 

such that the difference in accuracy between validly and invalidly predicted shapes was greater when 206 

pre-stimulus alpha power was higher. 207 

Stimulus predictions are driven by relatively late sensory representations 208 

In an exploratory analysis, we investigated whether perceptual predictions in the alpha band reflected 209 

early or late visual representations, by dividing the training time period (70 – 200ms) into two separate 210 

windows, centring around the first (105ms) and second peak (175ms) of the localiser decoding results, 211 

respectively (Fig. 2A). These two distinct time windows also appeared to form two distinct clusters (90 212 

– 120ms and 160 – 190ms) in the temporal generalisation matrix, with reduced cross-decoding 213 

between the two clusters suggesting qualitatively different representations (Fig. S1A). For the early 214 

training window (90 – 120ms), frequency analysis of the pre-stimulus decoding time series revealed 215 

no power differences in the alpha band (10Hz: p = 0.128; 11Hz: p = 0.062) between the shape A vs. D 216 

decoding data and an empirical null distribution (Fig. S3A). Logistic regression analyses also indicated 217 

no meaningful relationship between alpha power and behaviour on valid and invalid prediction trials 218 

(p = 0.165, t(31) = 1.423; Fig. S3B) for this training window. However, training the decoder on the later 219 

time window (160 – 190ms) revealed significantly higher pre-stimulus alpha power (10Hz: p = 0.003; 220 

11Hz: p = 0.008) in the shape A vs. D decoding data compared to a null distribution (Fig. S3D). Logistic 221 

regression also revealed a robust difference in the relationship between pre-stimulus shape-specific 222 

alpha power and performance on valid and invalid trials (p = 0.002, t(31) = 3.359, Fig. S3E). Lastly, 223 

there was a significant difference in the average power in the 10 and 11Hz frequency bins of pre-224 

stimulus shape A vs. D decoding between the early and late training time windows (p = 0.0103, t(31) 225 

= -2.7313). This is striking since these power spectra were calculated on the exact same MEG pre-226 

stimulus data, the only difference was the localiser time window (90 – 120ms vs. 160 – 190ms) on 227 

which the decoder was trained. In sum, oscillating predictions seem to reflect relatively late sensory 228 

representations (160 – 190ms), rather than early feedforward-sweep-like signals.  229 

Discussion 230 

The present study examined the mechanisms through which predictions exert their influence on 231 

perception. Specifically, we tested whether the content of perceptual predictions was represented in 232 

oscillations, and whether the power of this representation modulated performance on a visual 233 
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discrimination task. To this end, we used multivariate decoding of MEG data to obtain the frequency 234 

spectrum of predicted shape representations. We revealed that predicted shape representations were 235 

strongest in the alpha frequency band (10 – 11Hz) (Fig. 4A-B). Furthermore, we found that this shape-236 

specific alpha power modulated task performance, such that higher alpha power resulted in stronger 237 

expectation effects on shape discrimination (Fig. 5B). Together, these findings demonstrate that 238 

sensory templates of predicted visual stimuli are represented in the pre-stimulus alpha rhythm, which 239 

subsequently modulate performance on a perceptual discrimination task.  240 

Previous studies have hypothesised that oscillations play a critical role in conveying perceptual 241 

predictions7,8,12,19,30. This is largely based on indirect evidence, consisting of a range of studies finding 242 

that pre-stimulus alpha oscillations modulate performance on perceptual discrimination tasks12,15,16,29. 243 

Further, there is a second body of evidence that links experimental manipulations regarding stimulus 244 

predictability to the power of low frequency oscillatory activities8,20,21. Finally, a recent study has 245 

demonstrated a link between pre-stimulus high alpha/low beta power and the occurrence of high 246 

confidence false percepts33. However, the key hypothesis that neural oscillations actually convey the 247 

contents of perceptual predictions has remained largely untested. In the current study, we present 248 

evidence that the content of predicted shapes is represented in pre-stimulus alpha oscillations, 249 

providing direct support that perceptual predictions are indeed conveyed through neural oscillations. 250 

While the role of pre-stimulus alpha oscillations has been extensively studied, it remains controversial. 251 

Previous studies have reported alpha oscillations typically being stronger when visual stimuli are not 252 

present, or actively not-attended10,34,35. This has led to the hypothesis that alpha is predominantly an 253 

inhibitory rhythm. However, our results demonstrate that alpha oscillations are not solely inhibitory, 254 

but play an active role in conveying prior knowledge. The link between pre-stimulus alpha power and 255 

expectation effects on perception revealed in the current study suggests that whether alpha facilitates 256 

or inhibits sensory processing depends on whether inputs match or mismatch current predictions.  257 

Predictive processing theories of perception highlight a key role for prior predictions in guiding 258 

inference in the brain4,36. While there is convergent evidence that the brain contains predictive 259 

signals8,27,37,38, the mechanisms through which the brain deploys these predictions remains largely 260 

unclear. Predictive coding has been suggested to involve rhythmic interactions between different 261 

frequency band activities1,5, where high frequency gamma is responsible for feedforward signalling 262 

(originating predominantly from superficial layers) and alpha/beta oscillations exert top-down control 263 

(feedback predictions), emerging from deep cortical layers. Indeed, animal work investigating the 264 

frequency characteristics and cortical layer specificity of predictable information processing6,39 265 

revealed that pre-stimulus alpha power is an indicator of stimulus predictability, originating from 266 
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cortical layers involved in feedback signalling6. Our results extend these intracranial 267 

electrophysiological observations by relating pre-stimulus alpha oscillations to the contents of 268 

feedback signalling.  269 

Exploratory analyses revealed that the oscillating prediction signals reflected relatively late sensory 270 

representations (160 – 190ms localiser training window, Fig. S3D). We speculate that during this time 271 

period, the sensory representations captured by the decoder reflected an integration of bottom-up 272 

inputs and top-down recurrence, rather than solely the first feedforward sweep. Like the current 273 

study, previous studies have also revealed top-down modulations that reflected relatively late post-274 

stimulus representations (i.e., 120 – 200ms)28,40. This may explain why predictions have been shown 275 

to modulate later sensory processing, while leaving the early feedforward sweep (< 80ms post-276 

stimulus) mostly  untouched37,41. 277 

Rather than predictions being actively conveyed in an alpha rhythm, an alternative explanation of our 278 

results may be that prediction signals passively ride on ongoing alpha oscillations. Alpha oscillations 279 

are the most prominent frequency band in the awake human brain, especially in the visual cortex, and 280 

even a non-oscillatory top-down signal arriving in visual cortex may inherit these alpha rhythms. Given 281 

our finding that shape-specific alpha power has opposite effects on behaviour dependent on the 282 

validity of the predictions, such a more passive explanation seems less likely. However, future research 283 

is indeed needed to properly distinguish between these hypotheses.  284 

In addition to alpha power, alpha phase has also commonly been reported as influencing 285 

perception14,17–19. Specifically, the phase of ongoing alpha oscillations has been suggested to modulate 286 

perception by creating optimal and suboptimal periods visual processing through top-down control42. 287 

Combining this with the role of predictions in perception, one might hypothesise that the brain 288 

switches between sensing (bottom-up) and predicting (top-down) at opposite phases of alpha 289 

oscillations. Conceptually in line with this idea, Weilnhammer et al. demonstrated that the brain 290 

indeed switches between externally and internally biased perceptual modes43, albeit at a slower 291 

timescale. By analysing perceptual decision-making in humans and mice, this study revealed 292 

fluctuations of enhanced and reduced sensitivity to external stimuli. When sensitivity was low, the 293 

brain tended to depend more on perceptual history of the learnt sequences of stimulus presentation 294 

(i.e., prior knowledge). Our results showing predicted stimulus content fluctuating in the alpha rhythm 295 

are potentially in line with this proposal. Specifically, representations of predicted shapes would be 296 

hypothesised to dominate at the alpha phase optimised for predicting, and be absent at the phase 297 

optimised for bottom-up processing (Fig. 3A). Based on this, the brain may use alpha oscillations as 298 

neural mechanism to balance perceiving and predicting, where not only power but also phase has a 299 
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crucial role to play. The current study was not optimised to test this hypothesis, since the shape 300 

discrimination task was orthogonal to the prediction cues. Future work directly probing the effect of 301 

predictions on subjective perception37,44,45 should test this hypothesis by relating alpha phase to 302 

expectation effects on perception. 303 

Many prominent and influential theoretical frameworks have long speculated on the role of neural 304 

oscillations in perception10,11,19. Here we shed light on this by showing that alpha oscillations convey 305 

perceptual predictions, and modulate subsequent perceptual performance. These findings enrich 306 

current models of perceptual inference in the human brain by revealing the neural mechanisms 307 

through which predictions are kept online in order to guide perception. 308 

Methods 309 

Participants 310 

Sixty-two healthy right-handed participants (43 female) with normal or corrected-to-normal vision 311 

and no history of neurological disorders took part in the behavioural experiment. This experiment 312 

served as a pre-assessment process to familiarise the participants with the task and select only those 313 

whose average performance accuracy on the challenging shape discrimination task was above 70% 314 

across the four runs. Thirty-nine participants (28 female) met the performance inclusion criteria and 315 

participated in the MEG experiment. Seven participants were excluded from subsequent analyses due 316 

to excessive head movement (N=5) or not completing the full experiment (N=2), leaving thirty-two 317 

participants (23 female, age 26 ± 5 years, mean ± SD)  for the MEG analysis. 318 

Stimuli 319 

The experiment employed the same design as Kok & Turk-Browne46, wherein participants 320 

discriminated between two consecutively presented shapes which were preceded by a predictive 321 

auditory cue. Each predictive cue was composed of three pure tones (440, 554, and 659Hz; 80ms per 322 

tones; 5ms intervals), played with rising or falling pitch, with a total duration of 250ms. Visual stimuli 323 

were generated using MATLAB (The MathWorks Inc., version 2021b) and Psychophysics Toolbox47. 324 

The visual stimuli consisted of complex abstract shapes defined by radial frequency components 325 

(RFCs)48. To define the contours of the stimuli, seven RFCs (0.55Hz, 1.11Hz, 4.94Hz, 3.39Hz, 1.54Hz, 326 

3.18Hz, 0.57Hz) were used which were based on a subset of stimuli from Op de Beeck et al.'s work49; 327 

see their Fig. 1A). The amplitudes of two RFCs (1.11Hz, and 1.54Hz components) were varied to create 328 

a two-dimensional shape space. Specifically, four shapes were created such that discrimination 329 

between shapes A (amplitude of 1.11Hz = 8; 1.54Hz = 8) and D (amplitude of 1.11Hz = 26; 1.54Hz = 26) 330 
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was orthogonal to discrimination between shapes B (amplitude of 1.11Hz = 8; 1.54Hz = 26) and C 331 

(amplitude of 1.11Hz = 26; 1.54Hz = 8) (Fig. 1D). Additionally, RFC-based warping was used to generate 332 

moderately distorted versions of the two main experiment shapes (shape A and D, Fig. 1D) for the 333 

benefit of the shape discrimination task. This warp to define the shape was achieved by modulating a 334 

different RFC’s amplitude (3.18Hz) than the two used (1.11Hz and 1.54Hz) to define the shape space. 335 

This modulation could be either positive or negative (counterbalanced over conditions) and was 336 

orthogonal to the shape space used for the two main experiment shapes, and therefore to the cue 337 

predictions as well. The visual stimuli were displayed on a rear-projection screen using a projector 338 

(1024 x 768 resolution, 60 Hz refresh rate) against a uniform grey background. 339 

Behavioural experiment 340 

The study had two parts, a behavioural training and screening experiment, and an MEG experiment 341 

for those who passed the behavioural screening. In both parts, participants were engaged in a shape 342 

discrimination task. Each trial started with a fixation bullseye (diameter, 0.7°) for 100ms, followed by 343 

the presentation of two consecutive shape stimuli each for 250ms, and separated by a 500ms blank 344 

screen containing only a fixation bullseye (Fig. 1A). On each trial, the second shape was the same as 345 

the first or slightly warped. The modulation was either positive or negative, and the size of the 346 

modulation was determined by an adaptive staircasing procedure50, updated after each trial, in order 347 

to make the task challenging. Participants were instructed to report whether the two presented 348 

shapes were identical or different. After the response interval ended (750ms after disappearance of 349 

the second shape), the fixation bullseye was replaced by a single dot, signalling the end of the trial 350 

while still prompting participants to fixate. On each trial, one of the four shapes (A, B, C or D; Fig. 1D) 351 

was presented, in a counterbalanced (i.e., non-predictable) manner. Participants performed four runs 352 

(360 trials in total) of the shape discrimination task, maximum one week prior to the MEG session. 353 

MEG experiment  354 

The MEG experiment started with two localiser runs, containing the same four abstract shapes as in 355 

the behavioural task. To ensure participants were engaged, they performed a fixation dimming task 356 

(10% of total trials, ~24 of 248 trials per run). Each trial began with a fixation bullseye (visual angle: 357 

0.7°) displayed for 100ms, followed by one of the four shapes presentation for 250ms. Following the 358 

stimulus presentation, the fixation bullseye reappeared and remained on the screen for a period 359 

between 1000 and 1200ms. In 10% of the trials, fixation bullseye dimmed for 150ms and participants 360 

had been instructed to press a button when this occurred. By using identical stimulus durations, these 361 

runs were designed to be as similar as possible in terms of stimulus presentation to the main 362 
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experiment. During the localisers, participants correctly detected 95.3 ± 0.7% (mean ± SEM) of fixation 363 

dimming events and incorrectly pressed the button on 4.9 ± 2.2% of trials, suggesting that participants 364 

were successfully engaged by the fixation task. 365 

Following the localiser runs, participants performed 8 main task runs (2x training runs, 6x prediction 366 

runs), 64 trials per run, in total 512 trials. During the prediction runs, an auditory cue (falling vs. rising 367 

tones, 250ms) was presented 100ms after trial onset. Following a 1500ms interval, two consecutive 368 

shape stimuli were displayed (each for 250ms) and, separated by a 500ms blank screen (Fig. 1A). The 369 

auditory cue predicted whether the first shape presented on that trial would be shape A or D. The cue 370 

was valid on 75% of trials, whereas on the other 25% of trials the unpredicted shape would be 371 

presented (Fig. 1B). For instance, if the cue was a falling auditory tone, it might lead to shape A in 75% 372 

of cases and shape D in the other 25% of cases. Note that shapes B and C were never presented in the 373 

prediction runs. The contingencies between cues and shapes were flipped halfway through the 374 

experiment, and the order was counterbalanced over subjects. Prior to the first prediction run, and 375 

after the cue reversal halfway through, participants were trained on the cue–shape associations 376 

during training runs in the MEG and explicitly informed about the cue contingencies. In the training 377 

runs, the auditory cue was 100% predictive of the identity of the first shape. 378 

Pre-processing 379 

Whole-head neural recordings were obtained using a 273-channel MEG system with axial 380 

gradiometers (CTF Systems) at a rate of 600Hz located in a magnetically shielded room. Throughout 381 

the experiment, head position was monitored online and corrected if necessary using three fiducial 382 

coils that were placed on the nasion, right and left preauricular. If participants moved their head more 383 

than 5mm from the starting position, they were repositioned after each run. Eye movements were 384 

recorded using an EyeLink 1000 infrared tracker (SR Research Ltd.). The recorded eye-tracker data 385 

were used to identify eye-blink related artefacts in the MEG signal. Auditory tones were delivered 386 

using earplugs (Etymotic Research Inc.). A photodiode was placed at the bottom left corner of the 387 

screen to measure visual stimulus presentation latencies. The photodiode signal was used to realign 388 

the MEG signal with stimulus onset. 389 

The data were pre-processed offline using FieldTrip 51. The variance (collapsed over channels and time) 390 

was calculated for each trial in order to identify artefacts. Trials with large variances were 391 

subsequently selected for manual inspection and removed if they contained excessive and irregular 392 

artefacts. Next, independent component analysis was used to further remove cardiac and eye 393 

movements related artefacts. The independent components were correlated to the eye tracking signal 394 
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to identify potentially contaminating components for each participant, and inspected manually before 395 

removal. For the main analyses, data were high-pass filtered using a two-pass Butterworth filter with 396 

a filter order of five and a frequency cut-off of 0.1Hz. Notch filters were also applied at 50, 100, and 397 

150Hz to remove line noise and its harmonics. No detrending was applied for any analysis. Finally, 398 

main task data were baseline corrected on the interval of −200 to 0ms relative to auditory cue onset, 399 

and  localiser data were baseline corrected on the interval of −200 to 0ms relative to shape onset.  400 

Decoding analysis 401 

To reveal the representational content of neural activity, a decoding analysis was applied. We used an 402 

LDA decoder24, which described how activity at the sensor-level varied as a function of a 403 

discriminability index. Unlike conventional LDA which separates data into discrete categories, our 404 

customised decoder calculated the distances of each test sample to the hyperplane, treating these 405 

distances as discriminant evidences. Thereby, we obtained a continuous measure of which shape was 406 

encoded in the neural signals, providing finer resolution in analysing the neural representations. The 407 

decoding analysis was performed in a time-resolved manner by applying it sequentially at each time 408 

point, in steps of 5ms and averaging over a 28ms time window centred at that specific time point. 409 

Thereby, the decoder effectively down-sampled the data (from 600Hz original sampling rate) to 410 

200Hz.  411 

To test how effective the decoder was at revealing neural patterns, it was first trained and tested on 412 

shape A and D trials (between -100 and 600ms relative to stimulus onset) from the localiser runs, using 413 

a leave-one-block-out approach. Analogously, a shape B vs. C decoder was tested on shape B and C 414 

trials. To further validate the analysis, we tested the shape A vs. D decoder on the shape B and C trials, 415 

and the shape B vs. C decoder on shape A and D trials (Fig. S1). We expected significant decoding 416 

within shape categories (e.g. training and testing on shape A vs. D), but not across shape categories 417 

(i.e., training on shape A and D and testing on shape B and C, and vice versa). 418 

Localiser decoding results were analysed using non-parametric cluster-based permutation tests. The 419 

data were represented as 2D matrices of decoding performance, with training time on one axis and 420 

testing time on the other. The statistical analysis focused on identifying significant 2D clusters in these 421 

matrices. To do so, univariate t-statistics were calculated for the entire matrix. Elements that were 422 

considered neighbours, i.e., directly adjacent in cardinal or diagonal directions, were collected into 423 

separate positive and negative clusters if they passed a threshold corresponding to a p-value of 0.001 424 

(two-tailed). The significance of the clusters was assessed by summing the t-values within each cluster 425 

to obtain cluster-level test statistics. These test statistics were then compared to a null distribution, 426 
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which was created by randomly shuffling the observed data 10,000 times. A cluster was considered 427 

significant if its resulting p-value was less than 0.05 (two-tailed). 428 

In order to reveal predicted shape representations, the decoder was trained on shape A vs. D localiser 429 

trials (70 – 200ms), and subsequently tested on the pre-stimulus window (-1750 to 0ms relative to 430 

shape onset) during the prediction runs. To address label imbalances resulting from trial rejections 431 

during pre-processing, random resampling was applied to the training sets, ensuring an equal number 432 

of each decoded classes (shapes) for every participant. Furthermore, we repeated the same procedure 433 

for each participant using a control decoder trained on shapes B vs. C localiser trials, i.e. shapes which 434 

were not presented during the prediction runs. This results of applying this control decoder to the pre-435 

stimulus prediction window served as a baseline (Baseline 2, Fig. 3B - bottom) in further analyses. It is 436 

important to highlight that the shape B vs. C discrimination was orthogonal to shape A vs. D 437 

discrimination. 438 

Frequency analysis of pre-stimulus decoding time series 439 

Our primary aim was to test whether the decoded neural representations of predictions had 440 

oscillatory dynamics. Therefore, we adapted the analysis approach of Kerrén et al.22, investigating the 441 

frequency characteristics of decoder time series using FFT. This analysis was applied to pre-stimulus 442 

decoding time courses (-1750ms until 0ms relative to stimulus onset), based on the averaged decoder 443 

training time window of 70 – 200ms. We chose this training time window based on the results of 444 

localiser decoding. In an exploratory analysis, we repeated the analysis for two shorter training time 445 

windows (90 – 120ms and 160 – 190ms), centred around the first (105ms) and second peak (175ms) 446 

of localiser shape decoding (Fig. 2A-B) to distinguish effects of earlier and later representations. These 447 

time windows were chosen since they appeared to form distinct clusters in the localiser decoding 448 

temporal generalisation matrix, with reduced cross-decoding between the two clusters suggesting 449 

qualitatively different representations (Fig. S1A). For each participant, each trial of the pre-stimulus 450 

decoded time series was tapered with a Hann window covering the whole time period (-1750 to 0ms), 451 

and then subjected to the FFT. In a control analysis, we used Fitting Oscillations and One-Over-F 452 

(FOOOF, as implemented in the Fieldtrip toolbox52), which separates rhythmic activity from concurrent 453 

power-spectral 1/f modulations in electrophysiological data, to validate the oscillatory nature of the 454 

predictive representations.  455 

To assess the reliability of our results, we created an empirical baseline using decoders with randomly 456 

shuffled shape labels (Baseline 1, Fig. 3B - top). The labels of the two shapes (shape A and D) were 457 

shuffled pseudo-randomly before training the decoder, 25 times per participant. Therefore, each 458 

participant yielded 25 permuted datasets. The analysis parameters for the baseline decoding were 459 
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identical to the non-shuffled decoder, i.e. identical spectral analysis was performed for each of the 25 460 

datasets per participant. We generated an empirical null distribution using bootstrapping of the 461 

permuted datasets (n = 1000)53, and compared this to the frequency analysis results of the non-462 

shuffled shape A vs. D decoder data22. Frequency bins with higher power than the empirical null 463 

distribution (exceeding the 95th percentile) were considered significant. To further validate the 464 

findings, we also conducted the identical frequency analysis (same analytical parameters) using shape 465 

B vs. C decoding time series as an additional baseline (Baseline 2, Fig. 3B - bottom). 466 

Relating behavioural and neural effects  467 

To investigate whether there was a relationship between stimulus-specific pre-stimulus alpha power 468 

and shape discrimination performance, we performed a logistic regression analysis separately for valid 469 

and invalid prediction trials. Based on the existing literature relating pre-stimulus oscillatory power 470 

and phase to behavioural performance8,29,30, we limited the pre-stimulus decoding time series to -471 

500ms to 0ms relative to stimulus onset. To be able to accurately estimate pre-stimulus alpha power, 472 

yet be as close as possible to stimulus onset, we used a 500ms Hann window over the -500ms to 0ms 473 

time window, resulting in ~2Hz frequency resolution (alpha frequency bins: 9.375Hz, 10.937Hz, 474 

12.500Hz). Separately for valid and invalid prediction trials, trial-based power estimates of the pre-475 

stimulus (-500ms to 0ms) alpha activity were averaged over for the three alpha frequency bins. We 476 

balanced the trial numbers by randomly choosing a subset of trials from the conditions with higher 477 

trial counts (i.e., valid). The dependent variable of the model was the behavioural outcome (correct 478 

or incorrect response), sorted separately again for valid and invalid predictions. The model parameter 479 

estimates (i.e., beta values) served as an indication of an underlying link between stimulus-specific 480 

alpha power and behavioural performance. The valid and invalid condition beta values were 481 

statistically compared using a paired t-test.  482 

Source localisation of shape decoding 483 

To visualise the underlying neural sources during decoding, we applied source localisation analyses 484 

using an LCMV beamformer25. The spatial distribution of the underlying signal during classification in 485 

LDA is primarily influenced by the magnetic field difference between the two experimental conditions. 486 

Therefore, one can visualise the source of a decoder by estimating the sources of the two different 487 

conditions, and compute the difference26. Based on previous studies demonstrating that the 488 

anatomical specificity gain of using subject-specific anatomical images is negligible54, we did not 489 

collect individual anatomical MRI scans for our subjects. We followed a group-based template 490 

approach using a template MRI (in MNI space) in combination with a single shell head model and a 491 
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standard volumetric grid (8mm resolution), as present in the Fieldtrip toolbox. Participants’ individual 492 

fiducials were used to generate a participant-specific forward model in MNI space. The spatial filter 493 

was computed for the time window of interest (70 – 200ms, decoder training window) in the averaged 494 

data, which was subsequently applied separately to the two conditions of interest (valid and invalid 495 

prediction trials). For shape A vs. D decoding a percentage absolute signal change was computed in 496 

source space, to determine which source signals were involved in discriminating between shape A and 497 

D without making assumptions about the sign of the dipole.  498 
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Supplemental figures 499 

Fig. S1: Localiser temporal generalisation of shape A vs. D and shape B vs. C decoders. A: Shape A vs. 500 
D decoder, trained and tested (-100 to 600ms) on the two target shapes (Shape A and D) which 501 
appeared both in the localiser and the prediction runs. Dashed rectangles indicate clusters used in 502 
exploratory early vs. late analysis (90 – 120ms and 160 – 190ms, respectively). B: Shape B vs. C decoder 503 
tested on Shape A and D trials. No significant clusters were identified. C: Shape A vs. D decoder tested 504 
on Shape B and C trials. No significant clusters were identified. D: Shape B vs. C decoder, trained and 505 
tested on Shapes B and C. Solid black lines indicate significant clusters (p < 0.05). Solid grey lines at 506 
0ms indicate stimulus onset.  507 
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Fig. S2: Prediction templates fluctuate at alpha frequencies – 1/f noise removed. A: Significant power 508 
differences at 10Hz and 11Hz between Shape A vs. D decoding data and Baseline 1 after the 509 
subtraction of 1/f noise (***p < 0 .001). This further demonstrates that the stimulus-specific alpha 510 
signals likely reflect oscillations. The baseline power spectrum (dark blue line) was obtained by 511 
bootstrapping (n = 1000) the randomly shuffled label decoding data (n = 25 per participant). Mean 512 
and shaded regions indicate SD. Solid orange line indicates the 95th percentile of the generated 513 
baseline distribution. Error bars indicate SEM. B:  Pre-stimulus (-1750 to 0ms) MEG data after 1/f 514 
removal shows significantly higher 10 – 11Hz power for shape A vs. D decoding than for shape B vs. C 515 
decoding (*p = 0.022, t(31) = 2.107). Dark purple line indicates the power spectrum of B vs. C decoder 516 
(tested on the identical pre-stimulus main experiment prediction data (as shape A and D). Mean and 517 
shaded regions indicate SEM. Error bars indicate SEM.  518 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.13.584593doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.13.584593
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

Fig. S3: Late sensory representations drive stimulus predictions. A: Power spectrum of the -1750 to 519 
0ms prediction time window shape A vs. D decoding, trained on the 90 to 120ms post-stimulus 520 
localiser window. No significant distinctions between the shape A vs. D decoding data and an empirical 521 
null distribution at 10Hz and 11Hz. Mean and shaded regions indicate SD. Dark solid orange line 522 
indicates the 97.5th percentile of the null distribution, implementing a one-sided test at p < 0.05 while 523 
correcting for the two time windows tested here. B: Output of the logistic regression (betas) between 524 
the power of pre-stimulus decoding time window of -500 to 0ms, averaged over 9 – 12Hz frequency 525 
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bins, and discrimination performance, separately for valid and invalid prediction trials. No significant 526 
difference between valid and invalid prediction betas. Dots represent individual participant; error bars 527 
reflect within-participant SEM. C: The difference in source localisation for shape A and D during the 528 
localiser training time window of 90 – 120ms post-stimulus. D: Power spectrum of the -1750 to 0ms 529 
prediction time window shape A vs. D decoding, trained on the 160 to 190ms post-stimulus localiser 530 
window. Statistically significant difference from an empirical null distribution at 10Hz and 11 Hz (**p< 531 
0.01). The baseline power spectrum (dark blue line) was calculated as before. Mean and shaded 532 
regions indicate SD. Solid orange line indicates the 97.5th percentile of the baseline distribution. E: 533 
Logistic regression between pre-stimulus decoding power (-500 to 0ms, averaged over 9 – 12Hz 534 
frequency bins) and discrimination performance between valid and invalid prediction trials (**p < 535 
0.01). Dots represents individual participants; error bars were calculated as within-participant SEM. F: 536 
The difference in source localisation for shape A and D during the localiser training time window of 537 
160 – 190ms post-stimulus.  538 
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