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Abstract

Predictions of future events have a major impact on how we process sensory signals. However, it
remains unclear how the brain keeps predictions online in anticipation of future inputs. Here, we
combined magnetoencephalography (MEG) and multivariate decoding techniques to investigate the
content of perceptual predictions and their frequency characteristics. Participants were engaged in a
shape discrimination task, while auditory cues predicted which specific shape would likely appear.
Frequency analysis revealed significant oscillatory fluctuations of predicted shape representations in
the pre-stimulus window in the alpha band (10 — 11Hz). Furthermore, we found that this stimulus-
specific alpha power was linked to expectation effects on shape discrimination. Our findings
demonstrate that sensory predictions are embedded in pre-stimulus alpha oscillations and modulate
subsequent perceptual performance, providing a neural mechanism through which the brain deploys

perceptual predictions.

Keywords

— expectation; time-resolved multivariate approach; perceptual inference; pre-stimulus

oscillations; stimulus templates
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Introduction

Predictions about how the world is structured play an integral role in perception®™. Our prior
knowledge forms the basis for predicting future sensory events, which are subsequently integrated
with sensory input to form a perceptual experience. While there is a wealth of evidence supporting
the idea that the brain deploys predictions to guide perception, the mechanisms through which the
brain keeps these predictions online remain largely unclear. One likely candidate for conveying

perceptual predictions are neural oscillations>.

Alpha rhythms (8 — 12Hz) are the predominant oscillations in the awake human brain®, yet their
functional role is controversial’®!!, The amplitude and phase of these ongoing oscillations is known to

influence performance in visual tasks'?™°,

and have been found to vary with experimental
manipulations that target stimulus predictability. Specifically, pre-stimulus alpha oscillations have a
similar topography to post-stimulus responses, implying a shared neural substrate in the processing
of pre-existing information and external stimuli?®, and have been shown to predictively encode the
position of a moving stimulus?. However, whether these oscillations actually convey the contents of

perceptual predictions remains unknown.

To test this hypothesis, we employed magnetoencephalography (MEG) combined with multivariate
decoding to resolve visual representations with millisecond resolution, and characterise the temporal

and frequency characteristics?%%

of sensory predictions. Participants were engaged in a shape
discrimination task where auditory cues predicted the identity of upcoming abstract shapes. We
identified the neural representations of cued sensory predictions prior to stimulus onset and tested
whether these sensory predictions had an oscillatory nature, as well as whether the power of such

predictive oscillations modulated perceptual performance.

Results
Prediction templates oscillate at alpha frequencies

To test whether perceptual predictions are conveyed by oscillations, thirty-two participants
performed a challenging visual shape discrimination task (Fig. 1A) while auditory cues predicted the
most likely upcoming shape (shape A or D) on 75% of the trials (Fig. 1B). The shape discrimination task
was orthogonal to the prediction manipulation (i.e., the cue did not convey any information about

whether the two shapes would be identical or different).

First, we identified shape-specific neural signals using a linear discriminant analysis** (LDA) during

separate shape localiser runs (Fig. 1C). Localiser runs consisted of the presentation of four abstract.
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Fig. 1: Experimental paradigm. A: During prediction runs, an auditory cue preceded the presentation
of two consecutive shape stimuli. On each trial, the second shape was either identical to the first or
slightly warped with respect to the first along an orthogonal dimension, and participants’ task was to
report whether the two shapes were the same or different. B: The auditory cue (rising vs. falling tones)
predicted whether the first shape on that trial would be shape A or shape D. The cue was valid on 75%
of trials, whereas in the other 25% of (invalid) trials the unpredicted shape was presented. C: During
shape localiser runs no predictive auditory cues were presented and participants performed a fixation
diming task. D: Four different shapes were presented in the localiser runs, appearing with equal (25%)
likelihood. Only shape A and D were presented in the prediction runs. The amplitudes of two RFCs
(1.11, and 1.54Hz components) were varied in order to create a two-dimensional shape space, such

that shape A vs. D discrimination was orthogonal to shape B vs. C discrimination.

shapes (Fig. 1D), which were designed to lie on two orthogonal axes of perceptual and neural
discriminability (shape A vs. D and shape B vs. C, respectively; see Methods). To test whether the LDA
was able to uncover neural representations of the presented shapes, we trained and tested a shape A
vs. D decoder within the localiser runs in a cross-validated manner (-100 to 600ms, relative to stimulus
onset). We found that the decoder was highly accurate at discriminating the shapes based on the MEG
signal. The presented shapes were successfully decoded from 65ms to 450ms (p < 0.001), 465 to
485ms (p = 0.005) and 505ms to 550ms (p = 0.001), peaking at 105ms (Fig. 2A-B). Thus, we could
decode abstract shapes during the localiser runs. For all subsequent analyses, decoding traces were

averaged over a training window of 70 to 200ms, during which shape decoding peaked (Fig. 2A).
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97 To reveal the cortical sources contributing to these shape representations, we performed source
98 localisation analyses using an linearly constrained minimum variance (LCMV) beamformer® where
99 calculating the difference of the source-localised ERF between shape A and D reflects the contributing
100 brain areas?®. This revealed strong signals in the occipital lobe, predominantly over the visual cortices

101 (Fig. 2C), in line with the hypothesised sensory nature of these representations.
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102 Fig. 2: Localiser shape decoding results. A: Time course of shape A vs. D decoding. Shapes were
103  successfully decoded from 65ms to 450ms (p < 0.001), 465 to 485ms (p = 0.005) and 505ms to 550ms
104 (p =0.001), peak at 105ms. Shaded regions indicate SEM. B: Temporal generalisation matrix of shape
105  Avs. D decoding, obtained by training decoders on each time point and testing all decoders on all time
106 points. Solid black lines indicate significant clusters (p < 0.05); solid grey lines indicate stimulus onset
107 (t=0s). C: Source localisation of shape A vs. D discrimination during the localiser, training time window
108  of 70 to 200ms post-stimulus, indicating strong occipital activity.

109 Next, we used this decoder trained on the localiser to test whether the predictive auditory cues
110 induced oscillatory representations of the predicted abstract shapes (Fig. 3A). To establish the
111 specificity of the neural signals induced by predictions, we created two separate baseline
112  measurements. First, we shuffled the shape labels before training the decoder (N=25 permutations
113 per participant) in order to create a bootstrapped baseline (Baseline 1, Fig. 3B - top). Second, we
114  trained a decoder to distinguish two shapes which were presented in the localiser runs, but not in the
115 main experiment runs (shapes B and C; Fig. 1D). This discrimination was orthogonal to shape A vs. D
116  discrimination, which was confirmed via an absence of generalisation between the two decoders (Fig.

117  S1). The shape B vs. C decoder thus provides a highly specific baseline (Baseline 2, Fig. 3B - bottom),
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118 since it was trained to pick up neural representations of highly similar but orthogonal shapes to those

119  that were predicted by the auditory cues.
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120 Fig. 3: Shape prediction frequency analysis pipeline. A: Schematic of the hypothesis: cue-induced
121 predictions oscillate in the alpha frequency band (~¥10Hz) in the interval between predictive cue and
122 stimulus onset (-1750 to Oms). B: A decoder was trained to discriminate between shapes A and D in
123  thelocaliser runs. This decoder was applied to the pre-stimulus time window in prediction runs (-1750
124  to Oms). Trial-based pre-stimulus decoding time series were subjected to FFT. The resulting power
125 spectrum was compared to the 95" percentile of an empirical null distribution generated by
126 bootstrapping decoders trained with pseudo-randomised labels (Baseline 1, top), as well as to a
127  decoder trained on shapes only presented in the localiser (shapes B and C) (Baseline 2, bottom).

128 Shape decoders were trained on the localiser (70 to 200ms post-stimulus) and applied to the pre-
129 stimulus prediction time window (-1750 to Oms) in a time-resolved manner (sliding window of 28ms,
130 steps of 5ms). We applied Fast-Fourier Transformation (FFT) on a single trial basis to examine the
131  frequency attributes of the resulting pre-stimulus decoding time series (Fig. 3B). This analysis revealed
132  thatthe decoded predictions oscillated at low frequencies, predominantly in the alpha frequency band
133  (10-12Hz) (Fig. 4A). We identified significant power differences between the shape A vs. D decoding

134  data and Baseline 1, specifically at 10Hz and 11Hz, exceeding the 95 percentile of the empirical null
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135 distribution (both p < 0.001). It is important to note that the baseline was based on the exact same
136 pre-stimulus data, the only difference lies in the shuffling of the shape labels for the training of the
137 decoder. There was also a noticeable difference in the power of very low frequencies (2 — 7Hz) when
138 comparing the shape A vs. D decoder data to Baseline 1 data. The nature of this power difference
139 currently is not fully understood and requires further investigation. However, similar patterns have

140  been observed in previous research?2.
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141 Fig. 4: Auditory cue-induced prediction templates fluctuate at alpha frequencies. A: The power
142 spectrum of pre-stimulus (-1750 to Oms) shape decoding shows significant deviations from an
143 empirical null distribution at 10Hz and 11Hz (***p < 0.001). The baseline power spectrum (dark blue
144  line) was obtained by bootstrapping (n = 1000) shuffled label decoding data (n = 25 per participant).
145 Mean and shaded regions indicate SD. Solid orange line indicates the 95" percentile of the null
146  distribution. Error bars indicate SEM. B: Pre-stimulus (-1750 to Oms) MEG data shows significantly
147 higher 10 — 11Hz power for shape A vs. D decoding than for shape B vs. C decoding (*p < 0.05). Bars
148 indicate power of shape A vs. D decoding; dark purple line indicates power of B vs. C decoding (applied
149  to identical pre-stimulus prediction data). Shaded regions and error bars indicate SEM.
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150 For further validation, we also compared the shape A vs. D decoding power spectrum to the spectrum
151 of shape B vs. C decoding (Baseline 2). Based on our initial findings, here we averaged over the 10 and
152 11Hz frequency bins of the two spectra. This analysis revealed significantly higher alpha power for
153 shape A vs. D decoding than for shape B vs. C decoding in the pre-stimulus window (paired one-sided
154  t-test, p = 0.024, t(31) = 2.067) (Fig. 4B). As before, it is important to note that the two spectra were
155 based on the exact same pre-stimulus MEG data, the only difference lies in which shapes the decoders
156  were trained to discriminate. If the pre-stimulus alpha fluctuations reflected more generic shape
157 representations, this comparison would yield no significant differences. Therefore, the difference
158 between these two decoding spectra demonstrates that these signals were highly specific to the
159 shapes predicted by the auditory cues. It is important to note that the shape decoders were trained
160  on signals evoked by task-irrelevant shapes during the localiser, ruling out contributions of explicit
161 decision-making signals. These alpha power effects were also present in a control analysis designed
162  toremove non-rhythmic signals, confirming the oscillatory nature of the decoded predictions (Fig. S2).
163 In sum, both analyses revealed that visual predictions induced by auditory cues led to neural

164 representations of the predicted shapes fluctuating at an alpha rhythm prior to stimulus onset.

165 Predictive cues lead to improved shape discrimination accuracy

166 In addition to neural representations, we tested whether the predictive cues affected behavioural
167 performance. As a reminder, participants were required to indicate whether two abstract shapes
168 presented in succession were the same or different. It should be noted that any effects of the
169 predictive cues on performance are not trivial, given that the shape discrimination task was
170  orthogonal to the prediction manipulation (i.e., the cues predicted the identity of the first shape, but
171 did not inform participants whether the two shapes would be identical or different). Still, valid
172 predictive cues might improve performance indirectly by enhancing processing of the initial shape,

173 facilitating discrimination of the subsequent shape?’%

. Vice versa, invalid cues might perturb
174 performance by impeding the processing of the initial shape. In line with this, shape discrimination
175 accuracy was significantly influenced by whether the auditory cue correctly predicted the identity of
176  the first shape (accuracy valid = 70% + 1.2% and accuracy invalid = 67% + 1.3%, mean + SEM; t(31) =
177 3.215, p = 0.003; Fig. 5A). There was no difference in reaction times (valid = 614ms + 1.3% and invalid
178 =615ms + 1.3%, mean + SEM; p = 0.626, t(31) = -0.492). Together, this suggests that valid predictions

179  facilitated shape processing, enabling improved discrimination performance.
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Oscillatory power of predicted shape representations modulates behavioural expectation effects

If the strength of perceptual predictions indeed modulates perceptual discrimination, there should be
an opposite relationship between stimulus-specific pre-stimulus oscillations and behavioural
performance on valid and invalid trials. To test this hypothesis, we performed a logistic regression
analysis predicting behavioural accuracy from stimulus-specific oscillatory power in the alpha
frequency range (9 — 12Hz), separately on valid and invalid trials. In line with previous literature

82930 we limited the time window of interest to -

relating oscillatory power to behavioural outcome
500ms to 0 pre-stimulus, since prediction signals immediately preceding stimulus onset are most likely
to impact perceptual performance?®. This analysis revealed a significant difference between valid and
invalid prediction trials (paired t-test, p = 0.026, t(31) = 2.332), with a numerically positive relationship
between pre-stimulus shape-specific alpha power and performance on valid trials, and a numerically

negative relationship on invalid trials (Fig. 5B). Note that the individual parameter estimates for valid

and invalid trials were not significantly different from zero, while the difference between the two was.
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Fig. 5: Oscillatory power of predicted shape representations modulate behavioural accuracy. A:
Participants were able to discriminate the two presented shapes more accurately when the auditory
cue validly predicted the identity of the first shape (*p < 0.05). Dots represent individual participants,
error bars indicate within-participant SEM3%32, B: Output of the logistic regression (betas) between
the power of pre-stimulus decoding (-500 to Oms), averaged over 9 — 12Hz frequency bins, and
discrimination performance, separately for valid and invalid prediction trials (*p < 0.05). Dots
represent individual participants; error bars indicate within-participant SEM.

This likely reflects the fact that the individual conditions also contain non-specific trial-by-trial variance

in alpha power and behavioural performance (e.g. due to fluctuations in alertness) that are subtracted
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202 out in the valid vs. invalid comparison. Importantly, the differential relationship between alpha power
203 and behaviour dependent on prediction validity rules out any non-specific explanations of our results,
204  and demonstrates a strong link between neural and behavioural effects of prediction. In short, pre-
205 stimulus content-specific alpha oscillations modulated subsequent shape discrimination accuracy,
206  such that the difference in accuracy between validly and invalidly predicted shapes was greater when

207 pre-stimulus alpha power was higher.

208 Stimulus predictions are driven by relatively late sensory representations

209 In an exploratory analysis, we investigated whether perceptual predictions in the alpha band reflected
210  earlyorlate visual representations, by dividing the training time period (70— 200ms) into two separate
211 windows, centring around the first (105ms) and second peak (175ms) of the localiser decoding results,
212 respectively (Fig. 2A). These two distinct time windows also appeared to form two distinct clusters (90
213 - 120ms and 160 — 190ms) in the temporal generalisation matrix, with reduced cross-decoding
214 between the two clusters suggesting qualitatively different representations (Fig. S1A). For the early
215  training window (90 — 120ms), frequency analysis of the pre-stimulus decoding time series revealed
216 no power differences in the alpha band (10Hz: p = 0.128; 11Hz: p = 0.062) between the shape A vs. D
217 decoding data and an empirical null distribution (Fig. S3A). Logistic regression analyses also indicated
218 no meaningful relationship between alpha power and behaviour on valid and invalid prediction trials
219  (p=0.165, t(31) = 1.423; Fig. S3B) for this training window. However, training the decoder on the later
220  time window (160 — 190ms) revealed significantly higher pre-stimulus alpha power (10Hz: p = 0.003;
221 11Hz: p = 0.008) in the shape A vs. D decoding data compared to a null distribution (Fig. S3D). Logistic
222 regression also revealed a robust difference in the relationship between pre-stimulus shape-specific
223 alpha power and performance on valid and invalid trials (p = 0.002, t(31) = 3.359, Fig. S3E). Lastly,
224  there was a significant difference in the average power in the 10 and 11Hz frequency bins of pre-
225 stimulus shape A vs. D decoding between the early and late training time windows (p = 0.0103, t(31)
226  =-2.7313). This is striking since these power spectra were calculated on the exact same MEG pre-
227 stimulus data, the only difference was the localiser time window (90 — 120ms vs. 160 — 190ms) on
228  which the decoder was trained. In sum, oscillating predictions seem to reflect relatively late sensory

229 representations (160 — 190ms), rather than early feedforward-sweep-like signals.

230 Discussion

231  The present study examined the mechanisms through which predictions exert their influence on
232 perception. Specifically, we tested whether the content of perceptual predictions was represented in

233 oscillations, and whether the power of this representation modulated performance on a visual

10
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234 discrimination task. To this end, we used multivariate decoding of MEG data to obtain the frequency
235 spectrum of predicted shape representations. We revealed that predicted shape representations were
236  strongest in the alpha frequency band (10 — 11Hz) (Fig. 4A-B). Furthermore, we found that this shape-
237 specific alpha power modulated task performance, such that higher alpha power resulted in stronger
238 expectation effects on shape discrimination (Fig. 5B). Together, these findings demonstrate that
239 sensory templates of predicted visual stimuli are represented in the pre-stimulus alpha rhythm, which

240  subsequently modulate performance on a perceptual discrimination task.

241 Previous studies have hypothesised that oscillations play a critical role in conveying perceptual
242 predictions”®121930 This is largely based on indirect evidence, consisting of a range of studies finding
243 that pre-stimulus alpha oscillations modulate performance on perceptual discrimination tasks!%>16:2°,
244 Further, there is a second body of evidence that links experimental manipulations regarding stimulus
245  predictability to the power of low frequency oscillatory activities®?%%, Finally, a recent study has
246  demonstrated a link between pre-stimulus high alpha/low beta power and the occurrence of high
247 confidence false percepts®. However, the key hypothesis that neural oscillations actually convey the
248 contents of perceptual predictions has remained largely untested. In the current study, we present

249 evidence that the content of predicted shapes is represented in pre-stimulus alpha oscillations,

250 providing direct support that perceptual predictions are indeed conveyed through neural oscillations.

251  While the role of pre-stimulus alpha oscillations has been extensively studied, it remains controversial.
252 Previous studies have reported alpha oscillations typically being stronger when visual stimuli are not
253 present, or actively not-attended!®3*3, This has led to the hypothesis that alpha is predominantly an
254 inhibitory rhythm. However, our results demonstrate that alpha oscillations are not solely inhibitory,
255 but play an active role in conveying prior knowledge. The link between pre-stimulus alpha power and
256  expectation effects on perception revealed in the current study suggests that whether alpha facilitates

257 or inhibits sensory processing depends on whether inputs match or mismatch current predictions.

258 Predictive processing theories of perception highlight a key role for prior predictions in guiding
259 inference in the brain*3¢. While there is convergent evidence that the brain contains predictive
260  signals®?73738 the mechanisms through which the brain deploys these predictions remains largely
261 unclear. Predictive coding has been suggested to involve rhythmic interactions between different
262  frequency band activities”, where high frequency gamma is responsible for feedforward signalling
263 (originating predominantly from superficial layers) and alpha/beta oscillations exert top-down control
264 (feedback predictions), emerging from deep cortical layers. Indeed, animal work investigating the
265 frequency characteristics and cortical layer specificity of predictable information processing®*

266 revealed that pre-stimulus alpha power is an indicator of stimulus predictability, originating from

11
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267 cortical layers involved in feedback signalling®. Our results extend these intracranial
268 electrophysiological observations by relating pre-stimulus alpha oscillations to the contents of

269  feedback signalling.

270 Exploratory analyses revealed that the oscillating prediction signals reflected relatively late sensory
271 representations (160 — 190ms localiser training window, Fig. S3D). We speculate that during this time
272 period, the sensory representations captured by the decoder reflected an integration of bottom-up
273 inputs and top-down recurrence, rather than solely the first feedforward sweep. Like the current
274  study, previous studies have also revealed top-down modulations that reflected relatively late post-
275 stimulus representations (i.e., 120 — 200ms)?®°. This may explain why predictions have been shown
276  to modulate later sensory processing, while leaving the early feedforward sweep (< 80ms post-

277  stimulus) mostly untouched®”4,

278 Rather than predictions being actively conveyed in an alpha rhythm, an alternative explanation of our
279 results may be that prediction signals passively ride on ongoing alpha oscillations. Alpha oscillations
280  are the most prominent frequency band in the awake human brain, especially in the visual cortex, and
281 even a non-oscillatory top-down signal arriving in visual cortex may inherit these alpha rhythms. Given
282 our finding that shape-specific alpha power has opposite effects on behaviour dependent on the
283  validity of the predictions, such a more passive explanation seems less likely. However, future research

284 is indeed needed to properly distinguish between these hypotheses.

285 In addition to alpha power, alpha phase has also commonly been reported as influencing
286  perception*17"1° Specifically, the phase of ongoing alpha oscillations has been suggested to modulate
287 perception by creating optimal and suboptimal periods visual processing through top-down control*2.
288 Combining this with the role of predictions in perception, one might hypothesise that the brain
289  switches between sensing (bottom-up) and predicting (top-down) at opposite phases of alpha
290  oscillations. Conceptually in line with this idea, Weilnhammer et al. demonstrated that the brain
291 indeed switches between externally and internally biased perceptual modes®, albeit at a slower
292  timescale. By analysing perceptual decision-making in humans and mice, this study revealed
293  fluctuations of enhanced and reduced sensitivity to external stimuli. When sensitivity was low, the
294 brain tended to depend more on perceptual history of the learnt sequences of stimulus presentation
295 (i.e., prior knowledge). Our results showing predicted stimulus content fluctuating in the alpha rhythm
296  are potentially in line with this proposal. Specifically, representations of predicted shapes would be
297 hypothesised to dominate at the alpha phase optimised for predicting, and be absent at the phase

298 optimised for bottom-up processing (Fig. 3A). Based on this, the brain may use alpha oscillations as

299 neural mechanism to balance perceiving and predicting, where not only power but also phase has a
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300 crucial role to play. The current study was not optimised to test this hypothesis, since the shape
301 discrimination task was orthogonal to the prediction cues. Future work directly probing the effect of

37,44,45

302 predictions on subjective perception should test this hypothesis by relating alpha phase to

303 expectation effects on perception.

304 Many prominent and influential theoretical frameworks have long speculated on the role of neural
305 oscillations in perception'®!1°, Here we shed light on this by showing that alpha oscillations convey
306 perceptual predictions, and modulate subsequent perceptual performance. These findings enrich
307 current models of perceptual inference in the human brain by revealing the neural mechanisms

308 through which predictions are kept online in order to guide perception.

309 Methods

310 Participants

311 Sixty-two healthy right-handed participants (43 female) with normal or corrected-to-normal vision
312 and no history of neurological disorders took part in the behavioural experiment. This experiment
313 served as a pre-assessment process to familiarise the participants with the task and select only those
314  whose average performance accuracy on the challenging shape discrimination task was above 70%
315 across the four runs. Thirty-nine participants (28 female) met the performance inclusion criteria and
316 participated in the MEG experiment. Seven participants were excluded from subsequent analyses due
317  to excessive head movement (N=5) or not completing the full experiment (N=2), leaving thirty-two

318 participants (23 female, age 26 + 5 years, mean = SD) for the MEG analysis.

319 Stimuli

320 The experiment employed the same design as Kok & Turk-Browne*®, wherein participants
321 discriminated between two consecutively presented shapes which were preceded by a predictive
322 auditory cue. Each predictive cue was composed of three pure tones (440, 554, and 659Hz; 80ms per
323  tones; 5ms intervals), played with rising or falling pitch, with a total duration of 250ms. Visual stimuli
324  were generated using MATLAB (The MathWorks Inc., version 2021b) and Psychophysics Toolbox*.
325  The visual stimuli consisted of complex abstract shapes defined by radial frequency components
326 (RFCs)*8. To define the contours of the stimuli, seven RFCs (0.55Hz, 1.11Hz, 4.94Hz, 3.39Hz, 1.54Hz,
327 3.18Hz, 0.57Hz) were used which were based on a subset of stimuli from Op de Beeck et al.'s work*;
328 see their Fig. 1A). The amplitudes of two RFCs (1.11Hz, and 1.54Hz components) were varied to create
329 a two-dimensional shape space. Specifically, four shapes were created such that discrimination

330  between shapes A (amplitude of 1.11Hz = 8; 1.54Hz = 8) and D (amplitude of 1.11Hz = 26; 1.54Hz = 26)
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331  was orthogonal to discrimination between shapes B (amplitude of 1.11Hz = 8; 1.54Hz = 26) and C
332  (amplitude of 1.11Hz = 26; 1.54Hz = 8) (Fig. 1D). Additionally, RFC-based warping was used to generate
333 moderately distorted versions of the two main experiment shapes (shape A and D, Fig. 1D) for the
334 benefit of the shape discrimination task. This warp to define the shape was achieved by modulating a
335  different RFC's amplitude (3.18Hz) than the two used (1.11Hz and 1.54Hz) to define the shape space.
336  This modulation could be either positive or negative (counterbalanced over conditions) and was
337 orthogonal to the shape space used for the two main experiment shapes, and therefore to the cue
338 predictions as well. The visual stimuli were displayed on a rear-projection screen using a projector

339 (1024 x 768 resolution, 60 Hz refresh rate) against a uniform grey background.

340 Behavioural experiment

341  The study had two parts, a behavioural training and screening experiment, and an MEG experiment
342  for those who passed the behavioural screening. In both parts, participants were engaged in a shape
343 discrimination task. Each trial started with a fixation bullseye (diameter, 0.7°) for 100ms, followed by
344  the presentation of two consecutive shape stimuli each for 250ms, and separated by a 500ms blank
345 screen containing only a fixation bullseye (Fig. 1A). On each trial, the second shape was the same as
346  the first or slightly warped. The modulation was either positive or negative, and the size of the
347 modulation was determined by an adaptive staircasing procedure®, updated after each trial, in order
348 to make the task challenging. Participants were instructed to report whether the two presented
349 shapes were identical or different. After the response interval ended (750ms after disappearance of
350 the second shape), the fixation bullseye was replaced by a single dot, signalling the end of the trial
351  while still prompting participants to fixate. On each trial, one of the four shapes (A, B, C or D; Fig. 1D)
352  was presented, in a counterbalanced (i.e., non-predictable) manner. Participants performed four runs

353 (360 trials in total) of the shape discrimination task, maximum one week prior to the MEG session.

354 MEG experiment

355 The MEG experiment started with two localiser runs, containing the same four abstract shapes as in
356 the behavioural task. To ensure participants were engaged, they performed a fixation dimming task
357 (10% of total trials, ~24 of 248 trials per run). Each trial began with a fixation bullseye (visual angle:
358 0.7°) displayed for 100ms, followed by one of the four shapes presentation for 250ms. Following the
359 stimulus presentation, the fixation bullseye reappeared and remained on the screen for a period
360 between 1000 and 1200ms. In 10% of the trials, fixation bullseye dimmed for 150ms and participants
361 had been instructed to press a button when this occurred. By using identical stimulus durations, these

362 runs were designed to be as similar as possible in terms of stimulus presentation to the main
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363 experiment. During the localisers, participants correctly detected 95.3 + 0.7% (mean + SEM) of fixation
364  dimming events and incorrectly pressed the button on 4.9 £ 2.2% of trials, suggesting that participants

365  were successfully engaged by the fixation task.

366 Following the localiser runs, participants performed 8 main task runs (2x training runs, 6x prediction
367 runs), 64 trials per run, in total 512 trials. During the prediction runs, an auditory cue (falling vs. rising
368  tones, 250ms) was presented 100ms after trial onset. Following a 1500ms interval, two consecutive
369  shape stimuli were displayed (each for 250ms) and, separated by a 500ms blank screen (Fig. 1A). The
370  auditory cue predicted whether the first shape presented on that trial would be shape A or D. The cue
371  was valid on 75% of trials, whereas on the other 25% of trials the unpredicted shape would be
372 presented (Fig. 1B). For instance, if the cue was a falling auditory tone, it might lead to shape A in 75%
373 of cases and shape D in the other 25% of cases. Note that shapes B and C were never presented in the
374 prediction runs. The contingencies between cues and shapes were flipped halfway through the
375 experiment, and the order was counterbalanced over subjects. Prior to the first prediction run, and
376  after the cue reversal halfway through, participants were trained on the cue—shape associations
377 during training runs in the MEG and explicitly informed about the cue contingencies. In the training

378 runs, the auditory cue was 100% predictive of the identity of the first shape.

379  Pre-processing

380 Whole-head neural recordings were obtained using a 273-channel MEG system with axial
381  gradiometers (CTF Systems) at a rate of 600Hz located in a magnetically shielded room. Throughout
382  the experiment, head position was monitored online and corrected if necessary using three fiducial
383 coils that were placed on the nasion, right and left preauricular. If participants moved their head more
384  than 5mm from the starting position, they were repositioned after each run. Eye movements were
385 recorded using an Eyelink 1000 infrared tracker (SR Research Ltd.). The recorded eye-tracker data
386  were used to identify eye-blink related artefacts in the MEG signal. Auditory tones were delivered
387 using earplugs (Etymotic Research Inc.). A photodiode was placed at the bottom left corner of the
388 screen to measure visual stimulus presentation latencies. The photodiode signal was used to realign

389  the MEG signal with stimulus onset.

390 The data were pre-processed offline using FieldTrip 1. The variance (collapsed over channels and time)
391 was calculated for each trial in order to identify artefacts. Trials with large variances were
392 subsequently selected for manual inspection and removed if they contained excessive and irregular
393 artefacts. Next, independent component analysis was used to further remove cardiac and eye

394 movements related artefacts. The independent components were correlated to the eye tracking signal
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395  toidentify potentially contaminating components for each participant, and inspected manually before
396 removal. For the main analyses, data were high-pass filtered using a two-pass Butterworth filter with
397 a filter order of five and a frequency cut-off of 0.1Hz. Notch filters were also applied at 50, 100, and
398 150Hz to remove line noise and its harmonics. No detrending was applied for any analysis. Finally,
399 main task data were baseline corrected on the interval of -200 to Oms relative to auditory cue onset,

400 and localiser data were baseline corrected on the interval of 200 to Oms relative to shape onset.

401 Decoding analysis

402  Toreveal the representational content of neural activity, a decoding analysis was applied. We used an
403 LDA decoder?, which described how activity at the sensor-level varied as a function of a
404  discriminability index. Unlike conventional LDA which separates data into discrete categories, our
405 customised decoder calculated the distances of each test sample to the hyperplane, treating these
406  distances as discriminant evidences. Thereby, we obtained a continuous measure of which shape was
407 encoded in the neural signals, providing finer resolution in analysing the neural representations. The
408 decoding analysis was performed in a time-resolved manner by applying it sequentially at each time
409 point, in steps of 5ms and averaging over a 28ms time window centred at that specific time point.
410 Thereby, the decoder effectively down-sampled the data (from 600Hz original sampling rate) to
411  200Hz.

412  To test how effective the decoder was at revealing neural patterns, it was first trained and tested on
413 shape A and D trials (between -100 and 600ms relative to stimulus onset) from the localiser runs, using
414  a leave-one-block-out approach. Analogously, a shape B vs. C decoder was tested on shape B and C
415  trials. To further validate the analysis, we tested the shape A vs. D decoder on the shape B and C trials,
416  and the shape B vs. C decoder on shape A and D trials (Fig. S1). We expected significant decoding
417  within shape categories (e.g. training and testing on shape A vs. D), but not across shape categories

418 (i.e., training on shape A and D and testing on shape B and C, and vice versa).

419 Localiser decoding results were analysed using non-parametric cluster-based permutation tests. The
420  data were represented as 2D matrices of decoding performance, with training time on one axis and
421  testing time on the other. The statistical analysis focused on identifying significant 2D clusters in these
422 matrices. To do so, univariate t-statistics were calculated for the entire matrix. Elements that were
423 considered neighbours, i.e., directly adjacent in cardinal or diagonal directions, were collected into
424  separate positive and negative clusters if they passed a threshold corresponding to a p-value of 0.001
425 (two-tailed). The significance of the clusters was assessed by summing the t-values within each cluster

426  to obtain cluster-level test statistics. These test statistics were then compared to a null distribution,
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427  which was created by randomly shuffling the observed data 10,000 times. A cluster was considered

428 significant if its resulting p-value was less than 0.05 (two-tailed).

429 In order to reveal predicted shape representations, the decoder was trained on shape A vs. D localiser
430  trials (70 — 200ms), and subsequently tested on the pre-stimulus window (-1750 to Oms relative to
431 shape onset) during the prediction runs. To address label imbalances resulting from trial rejections
432 during pre-processing, random resampling was applied to the training sets, ensuring an equal number
433 of each decoded classes (shapes) for every participant. Furthermore, we repeated the same procedure
434  for each participant using a control decoder trained on shapes B vs. C localiser trials, i.e. shapes which
435  were not presented during the prediction runs. This results of applying this control decoder to the pre-
436  stimulus prediction window served as a baseline (Baseline 2, Fig. 3B - bottom) in further analyses. It is
437 important to highlight that the shape B vs. C discrimination was orthogonal to shape A vs. D

438 discrimination.

439  Frequency analysis of pre-stimulus decoding time series

440  Our primary aim was to test whether the decoded neural representations of predictions had

441 oscillatory dynamics. Therefore, we adapted the analysis approach of Kerrén et al.?2

, investigating the
442  frequency characteristics of decoder time series using FFT. This analysis was applied to pre-stimulus
443 decoding time courses (-1750ms until Oms relative to stimulus onset), based on the averaged decoder
444  training time window of 70 — 200ms. We chose this training time window based on the results of
445 localiser decoding. In an exploratory analysis, we repeated the analysis for two shorter training time
446  windows (90 — 120ms and 160 — 190ms), centred around the first (105ms) and second peak (175ms)
447 of localiser shape decoding (Fig. 2A-B) to distinguish effects of earlier and later representations. These
448  time windows were chosen since they appeared to form distinct clusters in the localiser decoding
449  temporal generalisation matrix, with reduced cross-decoding between the two clusters suggesting
450  qualitatively different representations (Fig. S1A). For each participant, each trial of the pre-stimulus
451 decoded time series was tapered with a Hann window covering the whole time period (-1750 to Oms),
452 and then subjected to the FFT. In a control analysis, we used Fitting Oscillations and One-Over-F
453 (FOOOF, as implemented in the Fieldtrip toolbox>?), which separates rhythmic activity from concurrent

454 power-spectral 1/f modulations in electrophysiological data, to validate the oscillatory nature of the

455 predictive representations.

456  To assess the reliability of our results, we created an empirical baseline using decoders with randomly
457  shuffled shape labels (Baseline 1, Fig. 3B - top). The labels of the two shapes (shape A and D) were
458 shuffled pseudo-randomly before training the decoder, 25 times per participant. Therefore, each

459 participant yielded 25 permuted datasets. The analysis parameters for the baseline decoding were
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460 identical to the non-shuffled decoder, i.e. identical spectral analysis was performed for each of the 25
461 datasets per participant. We generated an empirical null distribution using bootstrapping of the
462 permuted datasets (n = 1000)*, and compared this to the frequency analysis results of the non-
463 shuffled shape A vs. D decoder data??. Frequency bins with higher power than the empirical null
464  distribution (exceeding the 95™ percentile) were considered significant. To further validate the
465 findings, we also conducted the identical frequency analysis (same analytical parameters) using shape

466 B vs. C decoding time series as an additional baseline (Baseline 2, Fig. 3B - bottom).

467  Relating behavioural and neural effects

468  To investigate whether there was a relationship between stimulus-specific pre-stimulus alpha power
469 and shape discrimination performance, we performed a logistic regression analysis separately for valid
470  and invalid prediction trials. Based on the existing literature relating pre-stimulus oscillatory power
471  and phase to behavioural performance®?3°, we limited the pre-stimulus decoding time series to -
472 500ms to Oms relative to stimulus onset. To be able to accurately estimate pre-stimulus alpha power,
473  vyet be as close as possible to stimulus onset, we used a 500ms Hann window over the -500ms to Oms
474  time window, resulting in ~2Hz frequency resolution (alpha frequency bins: 9.375Hz, 10.937Hz,
475 12.500Hz). Separately for valid and invalid prediction trials, trial-based power estimates of the pre-
476  stimulus (-500ms to Oms) alpha activity were averaged over for the three alpha frequency bins. We
477 balanced the trial numbers by randomly choosing a subset of trials from the conditions with higher
478  trial counts (i.e., valid). The dependent variable of the model was the behavioural outcome (correct
479 or incorrect response), sorted separately again for valid and invalid predictions. The model parameter
480  estimates (i.e., beta values) served as an indication of an underlying link between stimulus-specific
481 alpha power and behavioural performance. The valid and invalid condition beta values were

482 statistically compared using a paired t-test.

483  Source localisation of shape decoding

484  To visualise the underlying neural sources during decoding, we applied source localisation analyses
485 using an LCMV beamformer®. The spatial distribution of the underlying signal during classification in
486 LDA is primarily influenced by the magnetic field difference between the two experimental conditions.
487  Therefore, one can visualise the source of a decoder by estimating the sources of the two different
488 conditions, and compute the difference?®. Based on previous studies demonstrating that the
489 anatomical specificity gain of using subject-specific anatomical images is negligible®*, we did not
490  collect individual anatomical MRI scans for our subjects. We followed a group-based template

491 approach using a template MRI (in MNI space) in combination with a single shell head model and a

18


https://doi.org/10.1101/2024.03.13.584593
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.13.584593; this version posted March 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

492 standard volumetric grid (8mm resolution), as present in the Fieldtrip toolbox. Participants’ individual
493  fiducials were used to generate a participant-specific forward model in MNI space. The spatial filter
494  was computed for the time window of interest (70 — 200ms, decoder training window) in the averaged
495 data, which was subsequently applied separately to the two conditions of interest (valid and invalid
496 prediction trials). For shape A vs. D decoding a percentage absolute signal change was computed in
497 source space, to determine which source signals were involved in discriminating between shape A and

498 D without making assumptions about the sign of the dipole.
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500 Fig. S1: Localiser temporal generalisation of shape A vs. D and shape B vs. C decoders. A: Shape A vs.
501 D decoder, trained and tested (-100 to 600ms) on the two target shapes (Shape A and D) which
502 appeared both in the localiser and the prediction runs. Dashed rectangles indicate clusters used in
503 exploratory early vs. late analysis (90 — 120ms and 160 — 190ms, respectively). B: Shape B vs. C decoder
504  tested on Shape A and D trials. No significant clusters were identified. C: Shape A vs. D decoder tested
505 on Shape B and C trials. No significant clusters were identified. D: Shape B vs. C decoder, trained and
506  tested on Shapes B and C. Solid black lines indicate significant clusters (p < 0.05). Solid grey lines at
507  Oms indicate stimulus onset.
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Fig. S2: Prediction templates fluctuate at alpha frequencies — 1/f noise removed. A: Significant power
differences at 10Hz and 11Hz between Shape A vs. D decoding data and Baseline 1 after the
subtraction of 1/f noise (***p < 0 .001). This further demonstrates that the stimulus-specific alpha
signals likely reflect oscillations. The baseline power spectrum (dark blue line) was obtained by
bootstrapping (n = 1000) the randomly shuffled label decoding data (n = 25 per participant). Mean
and shaded regions indicate SD. Solid orange line indicates the 95™ percentile of the generated
baseline distribution. Error bars indicate SEM. B: Pre-stimulus (-1750 to Oms) MEG data after 1/f
removal shows significantly higher 10 — 11Hz power for shape A vs. D decoding than for shape B vs. C
decoding (*p =0.022, t(31) = 2.107). Dark purple line indicates the power spectrum of B vs. C decoder
(tested on the identical pre-stimulus main experiment prediction data (as shape A and D). Mean and
shaded regions indicate SEM. Error bars indicate SEM.
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519  Fig. S3: Late sensory representations drive stimulus predictions. A: Power spectrum of the -1750 to
520 Oms prediction time window shape A vs. D decoding, trained on the 90 to 120ms post-stimulus
521 localiser window. No significant distinctions between the shape A vs. D decoding data and an empirical
522 null distribution at 10Hz and 11Hz. Mean and shaded regions indicate SD. Dark solid orange line
523 indicates the 97.5" percentile of the null distribution, implementing a one-sided test at p < 0.05 while
524  correcting for the two time windows tested here. B: Output of the logistic regression (betas) between
525  the power of pre-stimulus decoding time window of -500 to Oms, averaged over 9 — 12Hz frequency
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526 bins, and discrimination performance, separately for valid and invalid prediction trials. No significant
527 difference between valid and invalid prediction betas. Dots represent individual participant; error bars
528 reflect within-participant SEM. C: The difference in source localisation for shape A and D during the
529 localiser training time window of 90 — 120ms post-stimulus. D: Power spectrum of the -1750 to Oms
530 prediction time window shape A vs. D decoding, trained on the 160 to 190ms post-stimulus localiser
531  window. Statistically significant difference from an empirical null distribution at 10Hz and 11 Hz (**p<
532 0.01). The baseline power spectrum (dark blue line) was calculated as before. Mean and shaded
533 regions indicate SD. Solid orange line indicates the 97.5" percentile of the baseline distribution. E:
534 Logistic regression between pre-stimulus decoding power (-500 to Oms, averaged over 9 — 12Hz
535  frequency bins) and discrimination performance between valid and invalid prediction trials (**p <
536  0.01). Dots represents individual participants; error bars were calculated as within-participant SEM. F:
537  The difference in source localisation for shape A and D during the localiser training time window of
538 160 — 190ms post-stimulus.
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