

Bacterial RNA promotes proteostasis through inter-tissue communication in *C. elegans*

Authors: Emmanouil Kyriakakis^{1*}, Chiara Medde¹, Danilo Ritz¹, Geoffrey Fucile^{1, 2},
Alexander Schmidt¹ and Anne Spang^{1*}

Affiliations:

¹Biozentrum, University of Basel, Basel, Switzerland

² SIB Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland.

*Corresponding authors.

Emmanouil Kyriakakis, Anne Spang

Biozentrum, University of Basel

Spitalstrasse 41

4056 Basel

Switzerland

Email: emmanouil.kyriakakis@unibas.ch; anne.spang@unibas.ch

19

20 **Abstract**

21 Life expectancy has been increasing over the last decades, which is not matched by an
22 increase in healthspan. Besides genetic composition, environmental and nutritional
23 factors influence both health- and lifespan. Diet is thought to be a major factor for
24 healthy ageing. Here, we show that dietary RNA species extend healthspan in *C.*
25 *elegans*. Inherent bacterial-derived double stranded RNA reduces protein aggregation
26 in a *C. elegans* muscle proteostasis model. This beneficial effect depends on low levels
27 of systemic selective autophagy, the RNAi machinery in the germline, even when the
28 RNA is delivered through ingestion in the intestine and the integrity of muscle cells. Our
29 data suggest a requirement of inter-organ communication between the intestine, the
30 germline and muscles. Our results demonstrate that bacterial-derived RNAs elicit a
31 systemic response in *C. elegans*, which protects the animal from protein aggregation
32 during ageing. We provide evidence that low stress levels are beneficial for healthspan.

33

34

35 **One-Sentence Summary:** Bacteria-derived dietary cues and inter-tissue
36 communication promote proteostasis and fitness in *C. elegans*

37

38 **Main Text:**

39 **Introduction**

40 Humans and all living organisms rely on nutrients for growth, reproduction, movement
41 and survival, with key nutritional pathways being evolutionary conserved across
42 species. It is generally accepted that the type and concentration of nutrients influence
43 healthspan and life expectancy of eukaryotes. However, it remains unclear what
44 combination of nutrients is most beneficial. Over the years, *C. elegans* has been proven
45 to be an important and reliable model for nutrient-dependent health- and lifespan
46 studies with major discoveries being confirmed across species (1–5). The influence of
47 dietary restriction on longevity was first assessed in *C. elegans* and is now widely
48 accepted for mammals and even humans (3, 6–8). Furthermore, pioneering studies in
49 *C. elegans* have unveiled the important role of cellular protein homeostasis (or
50 proteostasis) in diseases and ageing (9–14). Since proteostasis deteriorates during
51 ageing, finding ways to safeguard or even extend proteostasis emerges as a key
52 concept to prevent, or at least ameliorate, age-associated diseases, such as
53 cardiovascular disease, neurodegenerative diseases, late-onset neuromuscular
54 disorders, sarcopenia and others. Ample scientific evidence suggests that specific
55 dietary interventions is a promising approach to maintain proteostasis and improve
56 health during ageing.

57 To answer how diet and which dietary components influence cellular and
58 organismal fitness and life expectancy in a reliable and expeditious way, we
59 investigated *C. elegans* and its bacterial diet. *C. elegans* nematodes are reared on
60 monoxenic bacterial cultures that are easy to grow and to genetically manipulate.
61 Utilizing this simple, tractable animal model, we show that a mixed diet of two *E. coli*
62 strains promotes *C. elegans* fitness. Importantly, we demonstrate that bacterially-
63 expressed ribonuclease 3 influences the accumulation of protein aggregates in *C.*
64 *elegans* body-wall muscles, *via* a cell-non autonomous mechanism involving intestinal
65 uptake of bacterial-derived RNA species, the RNAi machinery, selective autophagy and
66 proper muscle function. We also show that communication across tissues and cell
67 types, such as intestine, germline and neurons plays an important role in the regulation
68 of proteostasis in body-wall muscles. Overall, our findings suggest bacterial-derived

69 dietary cues influence organismal fitness by eliciting a protective response during stress
70 and reveal how diet-derived RNA species promote proteostasis in *C. elegans*.

71

72 **Results**

73 **A mixed bacterial diet promotes *C. elegans* fitness**

74 In the laboratory, *C. elegans* are usually reared on two different *E. coli* strains: OP50, an
75 *E. coli* B strain, and HT115, a K-12 derived strain. It was previously shown that these
76 strains differ in their metabolic and nutrient profile (15). For example, OP50 leads to
77 vitamin B12 deficiency in *C. elegans* (16, 17). We first investigated the effect of diet on
78 organismal fitness and lifespan (Fig. 1A). As previously reported, we did not observe
79 any considerable difference in lifespan between the OP50 and HT115 diets (Fig. 1B)
80 (15). However, worms fed on OP50 produced significantly higher number of progeny,
81 which also developed faster than worms on the HT115 diet (Fig. 1C, D & Fig. S1). This
82 beneficial effect came at the cost of reduced healthspan at advanced age, since a larger
83 fraction of OP50-fed worms displayed impaired movement compared to their HT115-fed
84 counterparts (Fig. 1E). These data indicate there were apparent benefits and trade-offs
85 accompanying each diet. Hence, we reasoned that a mixture of both diets could exert
86 beneficial effects. Indeed, the benefits of OP50 were still maintained even if it
87 constituted only 10% of the diet, while the fitness in older worms was improved even
88 beyond the level of feeding on HT115 alone (Fig. 1C-E, movies 1-4). Thus, bacterial
89 diets differentially affect development, reproduction and healthspan. Combining both
90 diets also combined the benefits of each individual diet and improved the healthspan of
91 *C. elegans*.

92

93 **Dietary cues protect from muscle proteotoxicity**

94 Next, we aimed to uncover how diets affect fitness and healthspan. Motility is a fitness
95 measure in *C. elegans* and is linked to the function of body-wall muscles. Polyglutamine
96 (polyQ) expansions have been used to assess cellular dysfunction in *C. elegans* body-
97 wall muscles in response to proteotoxicity (14). polyQ40-YFP aggregate formation in
98 body-wall muscles of worms can be used as a readout for proteostasis decline. Worms

99 showed numerous polyQ-aggregates early in adulthood when reared on OP50, the
100 number of which increased with age (Fig. 1F). In contrast, HT115-fed worms started to
101 form aggregates much later in adulthood and to a lesser extent (Fig. 1F). The strong
102 delay in aggregate formation in body-wall muscle cells might serve as indication for the
103 increased mobility of aged animals on HT115 diet. These differences were not due to
104 OP50's vitamin B12 deficiency (Fig. S2). As expected, polyQ24-expressing worms did
105 not show any diet-dependent aggregate formation (Fig. S3A). To corroborate the diet-
106 dependent effect on proteostasis, we expressed amyloid-beta (A β 1-42) in body-wall
107 muscle cells, which has been previously shown to lead to paralysis in worms (18).
108 Again, HT115 led to a much later onset of paralysis compared to OP50 (Fig. S3B).
109 Mixed diets also improved the fitness of polyQ40-expressing animals, as we observed
110 beneficial effects on the number of aggregates, number of progeny and development
111 (Fig. 1G-H & Fig. S4A, B). Thus, we detected diet-dependent proteostasis dysregulation
112 in body-wall muscles, and for which the polyQ40 *C. elegans* can serve as a sensor.

113

114 **Autophagy protects from diet-dependent accumulation of protein aggregates**

115 One explanation for the positive dietary effect of the HT115 bacterial diet could be the
116 upregulation of cytoprotective mechanisms, such as autophagy. Autophagy positively
117 influences health- and lifespan by removing damaged organelles and protein
118 aggregates (19). Moreover, it has been shown that autophagy inhibits the accumulation
119 of polyQ40 aggregates in *C. elegans* and protects from proteotoxicity (20). Similarly, we
120 found that knockdown of key autophagy factors increased the accumulation of polyQ40
121 aggregates on HT115 diet (Fig. 2A, B). Moreover, the offspring of mothers with
122 defective autophagy were developmentally arrested (Fig S5A), and this effect was
123 dependent on the expression of polyQ40 in muscle cells (Fig. S5B-D). It is plausible that
124 the proteotoxicity of polyQ40 in muscle cells triggers a signal under these conditions,
125 which is inherited by the offspring. Moreover, these data indicate that HT115 might
126 induce autophagy systemically, which is beneficial for the animal. To test this possibility,
127 we measured autophagy induction using *C. elegans* LC3 fused to GFP (LGG-1::GFP) in
128 hypodermal seam cells as read-out for systemic induction. Autophagy was moderately
129 but significantly induced by the HT115 diet compared to OP50 as measured by the

130 number of autophagosomes present in hypodermal seam cells (Fig 2C, D). Protein
131 aggregates are usually removed through a selective autophagy pathway termed
132 aggrephagy. To test whether HT115 might induce aggrephagy, we knocked down E3
133 ligases implicated in the ubiquitination of aggrephagy clients, PELI-1 and CHN-1, the
134 aggrephagy receptors SQST-1 (p62) and TLI-1 (Tollip/Cue) and the aggrephagy
135 adaptor WDFY-3 (Alfy) (21, 22). In all cases, we observed an increase in polyQ40
136 aggregate formation (Fig 2E, F & Fig. S5E, F), indicating that aggrephagy in *C. elegans*
137 body-wall muscle cells is activated to prevent aggregate formation. Similar results were
138 obtained in a *tl1-1* KO strain (Fig. S5G, H). TLI-1 and SQST-1 appear to have at least
139 partially overlapping functions as the combined knockdown increased aggregate
140 formation over the individual knockdowns (Fig. 2G). Our data so far indicate that the
141 HT115 bacterial diet protects from protein aggregation by inducing systemic autophagy,
142 and that the OP50 diet cannot induce the response to similar levels.

143

144 **Innate immunity pathways are not activated by OP50 or HT115 diets**

145 The positive dietary effect on proteostasis could also be due to stimulation of the innate
146 immune response in worms. Induction of innate immunity has been observed with live
147 pathogenic bacteria (23, 24). To test this possibility, we fed polyQ40 worms with UV-
148 killed OP50 and HT115. However, the diet-dependent aggregate formation remained
149 unchanged (Fig. S6A, B). We next tested whether a bacterial secreted factor could be
150 responsible for the differences between OP50 and HT115 and would induce innate
151 immunity, which was not the case as the secretome of the bacteria had no beneficial
152 effect on the worm proteostasis (Fig. S6C, D). Finally, we tested the induction of innate
153 immunity more directly with transcriptional reporters for several immunity response
154 genes. While those genes were induced by a pathogenic strain of *Pseudomonas*
155 *aeruginosa* (PA14), neither OP50 nor HT115 elicited a response under the conditions
156 tested (Fig. S7A-C). Thus, it is unlikely that the innate immune response is a prominent
157 driver of diet-dependent aggregate formation.

158

159 **Ribonuclease-dependent bacterial-RNA species promote proteostasis**

160 A key difference between OP50 and HT115, besides OP50 being a vitamin B12
161 auxotroph, is that HT115 can be used for RNA silencing experiments by feeding, while
162 OP50 cannot. HT115 lacks a functional ribonuclease 3, which recognizes dsRNA
163 species and cleaves them with high specificity to produce smaller dsRNA fragments.
164 Therefore, ectopically expressed dsRNA in HT115 is stable and can be transferred to
165 worms when they feed on the bacteria. To explore whether the presence or absence of
166 ribonuclease 3, is important for the dietary difference in proteostasis in worms, we
167 reared worms on the OP50(xu363) strain, in which *rnC* gene is mutated (25). Strikingly,
168 loss of *rnC* protected worms from polyQ40 aggregates (Fig. 3A, B). Re-introduction of
169 wild-type *rnC*, but not of two different catalytically inactive mutant versions (26, 27) into
170 OP50(xu363) or HT115 led to aggregate formation in animals, confirming the
171 detrimental effect of bacterial *rnC* on worm proteostasis (Fig. 3C, D, Fig. S8). The
172 HT115 parental strain (W3310), which still carries a functional *rnC* gene, caused
173 aggregate formation in muscle cells, validating that indeed the loss of bacterial *rnC*
174 improves *C. elegans* proteostasis (Fig. S9). Finally, we wanted to test the general
175 applicability of our findings. The *E. coli* strain Nissle 1917 is a non-pathogenic bacterial
176 strain used in the clinical setting to treat gastrointestinal conditions due to its probiotic
177 properties. We deleted *rnC* in Nissle 1917. PolyQ40 expressing worms on *rnC*-ablated
178 Nissle 1917 diet showed a significantly reduced number of aggregates in their body-wall
179 muscles compared to worms fed with WT Nissle 1917 (Fig. 3E, F). Taken together, our
180 data establish that loss of bacterial ribonuclease 3 has a positive effect on proteostasis
181 in *C. elegans* muscle cells.

182 We confirmed that similar to HT115, the loss of aggregate formation on
183 OP50(xu363) diet was also due to autophagy, and more specifically to aggrephagy (Fig.
184 S10). Moreover, mutation of *rnC* in OP50 did not negatively influence brood-size or
185 development (Fig. S11). Thus, the OP50(xu363) diet combines the advantages of the
186 OP50 and HT115 diets with respect to organismal fitness. Our data suggest that
187 bacterially-derived RNA species have a positive systemic effect on *C. elegans*
188 proteostasis. To corroborate these findings, we injected RNA from bacteria or genomic
189 DNA into the gonad of polyQ40 expressing *C. elegans*. Only bacteria-derived RNA
190 reduced aggregate formation in muscle cells (Fig. 3G). These data suggest that loss of

191 one single bacterial gene, *rnC*, provides essential RNA species through either the
192 intestine or the germline that are critical for the reduction of aggregates in *C. elegans*.

193

194 **The RNAi machinery and the germline are required for the diet-dependent**
195 **aggregate accumulation**

196 *C. elegans*, like other eukaryotes, has evolved a system to defend itself against foreign
197 RNA species, the RNAi machinery (28). Therefore, we tested whether bacterial-derived
198 RNAs act through the RNAi machinery to promote proteostasis. To that end, we
199 knocked-down key components of the RNAi pathway: the RNA transporters SID-1 and
200 SID-2 and the Argonaute proteins RDE-1 and ERGO-1 using the HT115 diet. In all
201 these cases, the number of aggregates in muscle cells was increased (Fig. 4A). A
202 similar result was obtained upon silencing of the RNA-dependent RNA polymerase
203 EGO-1, which is required for the systemic effect of RNAi in worms (Fig. 4A). These
204 results were confirmed by mutants in RNAi pathway components (Fig. 4B-F),
205 irrespective of the diet. Thus, our data provide strong evidence that bacterial-derived
206 RNA is recognized by the RNAi machinery and that this machinery is linked to the
207 reduction of polyQ40 aggregation.

208 We have shown above that administration of bacterial RNA through the intestine
209 by feeding and into the gonad by injection prevents aggregate formation in body wall
210 muscles. Therefore, we wondered whether the RNAi machinery needed to be active in
211 both tissues. PPW-1 is a germline-specific Argonaute (29). A mutant in PPW-1
212 accumulated polyQ40 aggregates in muscle cells, independent of the diet (Fig. 4F),
213 indicating that even RNA delivery into intestine requires the germline RNAi components
214 for the protective effect. However, the germline RNAi machinery was not sufficient,
215 because a *C. elegans* strain in which RNAi is only active in the germline still
216 accumulated polyQ40 aggregates (Fig. 4G). Consistent with these findings, polyQ40
217 aggregates also formed in animals, when the RNAi machinery was only active in the
218 intestine (Fig. 4H). These results suggest that a functional germline is indispensable to
219 block polyQ40 aggregate accumulation in the body-wall muscles of *C. elegans*.
220 Moreover, communication across tissues involving intestine cell, the germline and

221 muscle cells, is required for bacterially-derived RNA species to protect from protein
222 aggregates.

223 Next, we determined whether any or a specific RNA would elicit the beneficial
224 effect. If it was a specific one, this bacterial RNA would affect gene expression of a
225 selective group of genes in the animal. We performed total RNA seq and smRNA seq
226 on the three bacterial strains using both total RNA and a library enriched for small RNA
227 molecules. On the total RNA level, HT115 and OP50 are distinct with the majority of the
228 variance captured by inter-strain differences. Only a minor fraction of the total variance
229 is captured by the contrast of OP50 versus OP50(xu363) (Fig. S12A). Among the set
230 of 271 genes, which were consistently differentially expressed when contrasting HT115
231 versus OP50 and OP50(xu363) versus OP50 (Fig. S12 B), there is no significant
232 enrichment of known Gene Ontology (GO) terms at any level. However, when
233 considering the subset of 23 genes which are consistently up-regulated in HT115 and
234 OP50_xu363 compared to OP50 there are enrichments in GO biological pathways, in
235 particular related to RNA and protein metabolism (Fig S12C). RNA-Seq of the small
236 RNA library similarly yielded few differences between the genotypes (Fig. S12D). We
237 employed de novo transcriptome assembly to increase sensitivity, however among the
238 expressed contigs we identified only three which were differentially expressed between
239 OP50 and OP50(xu363) and mapped to the *C. elegans* reference genome (Table 2).
240 Administration of dsRNA based on these candidates did not affect the phenotype (Fig
241 S12E). Thus, it is unlikely that the bacterial RNA silences a gene or subset of genes
242 specifically, but rather suggests that bacterial RNA elicit a low level of a more general
243 stress response.

244

245 **Body-wall muscle contraction and sarcomere integrity alleviate accumulation of
246 aggregates**

247 Nevertheless, the dietary bacterial RNA prompted a systemic response and therefore
248 we determined the proteome of WT and polyQ40 expressing worms reared on OP50,
249 OP50(xu363) or HT115 diets. We detected diet-dependent changes in the proteomes of
250 both WT and polyQ40 expressing worms, most importantly also between OP50 and
251 OP50(xu363) (Fig. 5 A-F). We focused on the beneficial effect in our proteostasis

252 model. In total, we found 194 proteins to be significantly altered in polyQ40-expressing
253 worms grown on HT115 or OP50(xu363) compared to OP50 (Fig. S13A). GO term
254 analysis revealed an enrichment of GO terms related to sarcomere organization and
255 muscle function (Fig. S13B, Table 3). The functional protein association network
256 uncovered 12 muscle-related proteins that were clustering (Fig. S13C). These proteins
257 were not significantly altered in WT worms (Fig. 5A-F), indicating that the bacterial-
258 derived RNA can elicit a context-dependent response and increase muscle function.

259 To test this hypothesis, we performed knockout and knockdown experiments on
260 key muscle genes. Lesion of two giant sarcomeric proteins, UNC-22 (twitchin) and
261 UNC-89 (obscurin), or UNC-27 (the ortholog of troponin I) increased the number of
262 protein aggregates (Fig. 5G-I & Fig. S14A-C). Sarcomere, the basic unit of muscles,
263 contracts, following calcium influx. Disrupting calcium influx in the body-wall muscles by
264 silencing *unc-2*, *egl-19* or *cca-1*, which encode subunits of three voltage-dependent
265 calcium channels, increased the number of aggregates compared to the control (Fig. 5J
266 & Fig. S14D-F). The voltage-dependent calcium channels open, when muscle
267 membranes depolarize upon neuroendocrine stimulation. This stimulation could either
268 happen through neurotransmitter release or neuropeptide secretion and processing
269 (30–32). Mutants defective in the neurotransmitter release and acetylcholine synthesis
270 (*unc-13* and *cha-1 cho-1*), but not in neuropeptide secretion and processing (*unc-31*
271 and *egl-21*), lost the diet-dependent protective effect from polyQ40 aggregate formation
272 in muscle cells (Fig. 5K, L & Fig. S15A-F). Likewise, blocking neurotransmission
273 through mutation or silencing of the postsynaptic acetylcholine receptors UNC-38 and
274 UNC-29 caused aggregate formation independent of the diet (Fig. 5M, N & S15G). In
275 contrast, silencing acetylcholine receptors in motor or sensory neurons or the
276 homomeric ACR-16 in body-wall muscles had no effect (Fig. S15H). These results
277 provide evidence for the requirement of inter-tissue communication (Fig. S15I) to
278 maintain functional body-wall muscles and protect from protein aggregation. Moreover,
279 we find the dietary RNA mediates this protective effect by increasing the levels of key
280 proteins required for muscle function.

281

282 Discussion

283 Here, we provide evidence that atypical dietary components, in particular bacterial-
284 derived RNA species regulate proteostasis and promote organismal health in *C.*
285 *elegans*. Bacterial RNA species are taken up and processed by *C. elegans* intestinal
286 cells and the germline to promote muscle function and protect from toxic protein
287 aggregates *via* a mechanism that requires the RNAi pathway and autophagy induction.
288 For the beneficial effect, inter-organ communication of the intestine, the germline and
289 muscles is required (Fig. S16). Whether neuronal input acts in parallel or is also part of
290 this communication system remains to be determined. These results suggest that loss
291 of proteostasis is not solely an internal cellular problem but non-cell autonomous
292 mechanisms are likewise important.

293 It has been shown previously that bacteria-derived RNAs can specifically affect gene
294 expression of a subset of genes and behaviour in *C. elegans* (33, 34). In a
295 groundbreaking study, it was shown that pathogen-derived P11 sRNA is taken up by *C.*
296 *elegans* and processed through the canonical RNAi pathway, to downregulate
297 specifically the *maco-1* gene to initiate pathogen avoidance (33). The mechanism we
298 uncovered in this study is different as we did not identify any specific bacterial RNA that
299 would directly affect gene expression by acting as siRNA or by influencing transcription
300 in *C. elegans*. These findings are mirrored by the proteome analysis in *C. elegans*,
301 which did not reveal significant upregulation of major stress-responsive mechanisms nor
302 a specific protein target. A major difference between our and previous studies is that we
303 use a proteostasis model, which might already challenge the animals and therefore
304 enabling them to better and faster adapt to stressful environments. Accordingly, our
305 proteomic analyses revealed an increase in the concentration of proteins required for
306 muscle function specifically in the muscle proteostasis model and not in the WT.
307 Bacterial RNA(s) induce the expression of muscle specific genes to confer protection
308 under stress conditions, suggesting that this trans-kingdom mechanism serves as a
309 response, which is particularly beneficial during adverse and pathological conditions,
310 indicating that organ specific responses could be triggered through dietary RNA and
311 further supports the existence of broader, systemic effects. In support of this notion, we
312 found systemic induction of selective autophagy. The relationship between proteostasis
313 and autophagy is complex and context dependent. Moderate levels of autophagy are
314 considered beneficial for cellular health. In our proteostasis model, autophagy is

315 induced by the diet-derived RNA species and this is sufficient to promote proteostasis.
316 Overall, the distinct response between control and proteotoxically challenged worms
317 suggests an adaptive mechanism that depends on bacterial RNA and also the
318 homeostatic state of cells and the whole organism. We propose a model in which the
319 diet-derived RNA species would elicit a basal stress response that would prime the
320 organism to deal better with the onset of protein aggregation in our proteostasis model
321 and therefore reduces and delays aggregate formation in body-wall muscle cells. The
322 stress response remains at a low level, which we assume is sufficient to trigger
323 proteoprotective mechanisms on the cellular level and thereby reduce aggregate
324 formation. This delay in aggregate formation may be the underlying cause of the
325 increase in healthspan in our proteostasis model. The low level of stress induction is
326 supported by our findings that we did not observe any significant upregulation of
327 autophagic or other stress-response related proteins in our *C. elegans* proteomics
328 analysis when the animals were fed the different bacterial diets.

329 It has been previously shown that diet may promote proteostasis and lifespan
330 and protect from neurodegeneration in *C. elegans* (1, 2, 35, 36). The transcriptional
331 responses of *C. elegans* highly depends on the bacterial diet and different diets direct
332 unique transcriptional signatures (2, 37). In this study, we demonstrate that the
333 transcriptional changes between the OP50 and HT115 diets are not responsible for the
334 promotion of proteostasis and protection from toxic protein aggregates in *C. elegans*.
335 However, the deletion of a single bacterial gene (*rnC*) in several distinct bacterial strains
336 (OP50, HT115, Nissle1917) resulted in minimal transcriptional changes between the
337 bacterial strains but significant changes in the *C. elegans* proteostasis model. Thus, the
338 accumulation of dsRNA species that cannot be processed in the absence of
339 ribonuclease 3 (*rnC*) is sufficient for proteoprotective effects observed in *C. elegans*.

340 In this study, we move beyond the strict definition of nutrients and we identified
341 non-traditional components, such as RNA species, that promote proteostasis. Bacteria
342 do not behave solely as a nutrient source and this interspecies model may be relevant
343 in understanding the relationship between humans and their microbiome and how it
344 impacts physiology and disease.

345 In particular, in the advent of RNA as therapeutics, it is conceivable that dietary small
346 RNA will prove useful as intervention to extend healthspan in humans.

347

348 **Materials and methods**

349 **Nematode strains and growth conditions**

350 Standard rearing conditions were used for maintaining *C. elegans* strains. All
351 experiments were performed at 20°C on nematode growth media (NGMs) agar
352 supplemented with *Escherichia coli* (OP50, OP50(xu363), HT115, W3310, Nissle 1917,
353 or mixtures of OP50 and HT115) unless otherwise stated. All bacteria strains were
354 carrying the empty vector (EV) plasmid (pL4440) which served as the control for RNAi
355 experiments but also for selection purposes, unless otherwise indicated. For RNAi
356 experiments, worms were placed on NGM plates seeded with IPTG-induced
357 HT115(DE3) or OP50(xu363) bacteria transformed with the gene-specific RNAi
358 construct. OP50(xu363) is an OP50-derived RNAi-competent strain and HT115 is an
359 RNAi-competent strain which derives from W3310 strain. For *egl-19(RNAi)* experiments,
360 the bacteria cultures were diluted 10 times with the EV plasmid to minimize
361 developmental defects and sterility. Clones of interest were obtained from the Ahringer
362 RNAi bacterial library or generated in the lab. The following nematode strains were used
363 in the study: N2: wild-type Bristol isolate, AM141: rmls133 [punc-54Q40::YFP], AM138:
364 rmls130 [unc-54p::Q24::YFP], AM140: rmls132 [unc-54p::Q35::YFP], CL4176: smg-
365 1(cc546) I; dvls27[myo-3p::A-Beta (1-42)::let-851 3'UTR) + rol-6(su1006)], MAH14: daf-
366 2(e1370) III; adls2122 [lgg-1::GFP + rol-6(su1006)], RB1473: tli-1(ok1724) (6 times
367 outcrossed), VP303: rde-1(ne219) V; kbls7 [nhx-2p::rde-1 + rol-6(su1006)], NR350: rde-
368 1(ne219)V; kzls20 [hlh-1p::rde-1 + sur-5p::NLS::GFP], KP2018: egl-21(n476) IV,
369 DA509: unc-31(e928) IV, CB1091: unc-13(e1091) I, ppw-1(tm5919), DCL569: mkcSi13
370 [sun-1p::rde-1::sun-1 3'UTR + unc-119(+)] II; rde-1(mkc36) V, NL3321: sid-1(pk3321) V,
371 WM27: rde-1(ne219) V, NL3531: rde-2(pk1657) I, VC1119: dyf-2&ZK520.2(gk505) III,
372 CB193: unc-29(e193) I, CB904: unc-38(e264) I, RM1743: cha-1(md39) cho-1(tm373)
373 IV, AY101: acls101 [F35E12.5p::GFP + rol-6(su1006)], AU133: agls17 [myo-
374 2p::mCherry + irg-1p::GFP] IV, AU306: agls44 [Pirg-4::GFP::unc-54-3'UTR; Pmyo-
375 2::mCherry]. To generate double mutants, AM141 males were mated to hermaphrodites

376 carrying the mutation of interest. The presence of the respective mutations was checked
377 phenotypically or by genotyping.

378

379 **Constructs generated**

380 For the construction of *tl*-1(RNAi)** plasmid, the following primers were used: 5'-
381 TCTAGAAACCAAAACAAATACTGATCTTCCGT-3' (FW) (with XbaI restriction site) and
382 5'- ACCGGTCTCTCGGCTGCTGTCATCT-3' (RV) (with AgeI restriction site). The
383 amplified *tl*-1 genomic region was ligated into the pL4440 vector upon digestion with
384 XbaI and AgeI. For the construction of *rnC*(wt) expression plasmid, the following primers
385 were used: 5'- CCTGTGGATCCATGAACCCCATCGTAATTAATCG-3' (FW) (with
386 BamHI restriction site) and 5'- CCTGTCAGCTGTCATTCCAGCTCCAGTTTTTC-3'
387 (RV) (with PvuII restriction site). The amplified *rnC* region was ligated into the pL4440
388 vector upon BamHI and PvuII digestion which leave only the one T7 promoter. For the
389 construction of *rnC*(E117D) expression plasmid, the following primers were used: 5'-
390 CCTGTGGATCCATGAACCCCATCGTAATTAATCG-3' (FW) (with BamHI restriction
391 site) and 5'-TAATGCATCGACGGTGTGGCGA-3' (RV) and also the 5'-
392 CCTGTCAGCTGTCATTCCAGCTCCAGTTTTTC-3' (RV) (with PvuII restriction site)
393 and 5'-TCGATGCATTAATTGGTGGCGTATT-3'. The two amplified regions were
394 combined by fusion PCR using the following primers:
395 CCTGTGGATCCATGAACCCCATCGTAATTAATCG-3' (FW) (with BamHI restriction
396 site) and 5'- CCTGTCAGCTGTCATTCCAGCTCCAGTTTTTC-3' (RV) (with PvuII
397 restriction site). The amplified *rnC* region carrying the E117D point mutation was ligated
398 into the pL4440 vector upon BamHI and PvuII digestion which leave only the one T7
399 promoter. For the construction of *rnC*(E117K) expression plasmid the same strategy
400 was followed, the following primers were used: 5'-
401 CCTGTGGATCCATGAACCCCATCGTAATTAATCG-3' (FW) (with BamHI restriction
402 site) and 5'- TAATGCTTGACGGTGTGGCGA-3' (RV) and the 5'-
403 CCTGTCAGCTGTCATTCCAGCTCCAGTTTTTC-3' (RV) (with PvuII restriction site)
404 and 5'- TCAAAGCATTAAATTGGTGGCGTATT-3'. For the construction of plasmids
405 containing the sequences of the three expressed contigs which are differentially
406 expressed between OP50 and OP50(xu363) that were identified from the RNA seq**

407 analysis, the following primers were used: (For hit 1) 5'-
408 ctgcattcACCCCATCGTAATTATCGG-3' (FW) and 5'-
409 ctgcattcTATTTTAAAGTGATGATAAAAGGC-3' (RV), (for hit 2) 5'-
410 ctgcattcTTTAGCGTTATATCTGAAGG-3' (FW) and 5'-
411 ctgcattcCTTATGATGATGTGCTTAAA-3' (RV), (for hit 3) 5'-
412 ctggattcTCAGCGCAATTGATAGGC-3' (FW) and 5'-
413 ctggattcGTTTTTCGCCCATTTAG-3' (FW), all containing EcoRI restriction site at
414 the 5'. The amplified bacterial regions were ligated into the pL4440 vector upon
415 digestion with EcoRI. These plasmids were used to generate dsRNA which were used
416 to test their efficiency to modulate aggregate accumulation.

417

418 **Lifespan assays**

419 Lifespan assays were performed at 20°C. Synchronous animal populations were
420 generated by bleaching (hypochlorite treatment) gravid adult animals of the desired
421 strain. Eggs were then placed on NGM plates with the different bacterial diets, until the
422 L4 larval stage when they were again placed on the same diets. Their progeny was
423 grown until the L4 larval stage and then transferred to fresh plates in groups of 20-25
424 worms per plate for a total of 100-120 individuals per condition (day 0 of adulthood).
425 Animals were transferred to freshly-made RNAi plates every 2 days until the 12th day of
426 adulthood and every 3 days until the end of the experiment. Animals were transferred to
427 fresh plates every 2-3 days thereafter and examined every day for touch-provoked
428 movement and pharyngeal pumping, until death. Worms that died owing to internally
429 hatched eggs, an extruded gonad or desiccation due to crawling on the edge of the
430 plates were censored and incorporated as such into the data set. Each survival assay
431 was repeated at least twice and figures represent typical assays. Survival curves were
432 created using the product-limit method of Kaplan and Meier.

433

434 **Brood size determination**

435 Synchronous animal populations were generated by bleaching (hypochlorite treatment)
436 of gravid adult animals. Eggs were then placed on NGM plates with the different

437 bacterial diets and were grown on the same diet for at least two generations. Ten L4
438 worms were picked and placed into separate NGM plates containing the corresponding
439 diet. After the first 36h worms were moved daily to fresh plates until no more eggs were
440 laid. The number of progeny was scored in each plate and statistical analyses were
441 performed using Sidak's multiple comparisons tests following one-way ANOVA. Total or
442 daily brood sizes are reported. Each brood size determination assay was repeated four
443 times.

444

445 **Developmental rates**

446 Synchronous animal populations were generated by bleaching (hypochlorite treatment)
447 of gravid adult animals. Eggs were then placed on NGM plates with the different
448 bacterial diets and were grown on the same diet for at least two generations. Each time,
449 L4 worms were used to obtain synchronous worm populations. Approximately 12 2-day
450 old worms were used for egg laying for 2-3h on fresh plates. The adult worms were
451 removed and the number of eggs was determined. When approximately 50% of the
452 worms started reaching the L4/adult stage, we counted the total number of progeny that
453 reached the L4/adult stage (for different strains different time point was used due to
454 developmental differences between strains). We performed statistical analyses using
455 Sidak's multiple comparisons tests following one-way ANOVA. The assay was repeated
456 at least three times.

457

458 **Analysis of polyQ protein aggregation**

459 For the analysis of polyglutamine aggregation in body wall muscle cells, we used the
460 AM141 (polyQ40) and AM138 (polyQ24) strains. Synchronous animal populations were
461 generated by bleaching (hypochlorite treatment) of gravid adult animals. Eggs were
462 placed on NGM plates with the different bacterial diets and were grown on the same
463 diet for at least two generations. L4 worms were used to obtain synchronous worm
464 populations. Same age adult worms were collected, immobilized with levamisole before
465 mounting on coverslips for microscopic examination with a Zeiss Axioplan 2

466 epifluorescence microscope. Protein aggregates in whole animals were quantified with
467 the help of ImageJ software.

468

469 **Motility assay**

470 Synchronous nematodes were grown normally on NGM media plates containing the
471 different diets for at least 2 generations. When worms reached 17-20-days old, they
472 were gently touched with an eyebrow. Worms not responding to touch were considered
473 dead and were excluded from the analysis. Worms responding to touch but did not
474 move were scored as paralysed and the percentage of paralysed worms per condition
475 was evaluated. Each analysis was performed three times.

476

477 **Paralysis assay**

478 To assay β -amyloid toxicity we used the CL4176 temperature sensitive strain that
479 expresses β -amyloid in the body-wall muscle of *C. elegans*, leading to paralysis.
480 Synchronous animal populations were generated by bleaching (hypochlorite treatment)
481 gravid adult animals. Eggs were placed on NGM plates with the different bacterial diets
482 at 15°C. At L4 stage 12 animals were transferred to fresh plates for two days. Then, egg
483 laying was performed for approximately 3-4h. The mothers were removed and the
484 plates containing only the eggs were placed back at 15°C for 48h, at which point the
485 plates were shifted at 23°C. Approximately 24h later and for every 1-2h paralysis was
486 scored. Percentage of paralyzed animals per conditions is plotted against the time since
487 temperature shifting. Each analysis was repeated at least three times.

488

489 **Supernatant isolation and supplementation**

490 Overnight OP50 and HT115 bacterial cultures (6 ml) were centrifuged for 10 min at 16,
491 000 rcf at 4°C. Bacterial supernatants were centrifuged for another 5 min and sterile-
492 filtered using 0.2 μ m filters. One ml of each supernatant (or LB medium as control) was
493 used to overlay NGM media plates. The pellets were once washed with LB medium (5
494 ml), resuspended in 0.5 ml cold LB medium and spotted onto NGM media plates (100

495 μ l). Plates were exposed to UV light for 20 min to kill the bacteria. Worms were reared
496 on these plates for two generations and polyQ40::YFP protein aggregate were
497 monitored.

498

499 **Methylcobalamin supplementation**

500 The bacterial growth media was supplemented with exogenous methylcobalamin
501 (Sigma), a vitamin B12 analog, to a final concentration of 25 μ g/ml. OP50 bacteria were
502 grown for two hours at 37 degrees, and spotted onto NGM media plates. Worms were
503 reared on these plates for two generations and polyQ40::YFP protein aggregates were
504 monitored at 2-day old adults.

505

506 **Autophagy**

507 Autophagy was measured in hypodermal seam cells of L4 worms according to
508 guidelines (38). Autophagosome number was assessed by using the GFP::LGG-1
509 reporter strain MAH14 grown on OP50 and HT115 bacterial diets for at least two
510 generations. Approximately 20-30 L4-staged animals were collected, anaesthetized with
511 0.1% sodium azide and mounted on agarose pads for microscopic observation. The
512 number of the GFP::LGG-1 positive autophagic puncta was quantified.

513

514 ***rnc* knockout in Nissle 1917**

515 *E. coli* Nissle 1917 *rnc* knock-out strain was created by Red/ET recombination. The
516 protocol was adapted from Datsenko and Wanner (39). Wild-type Nissle 1917 strain
517 was cultured in LB overnight at 37°C, 200 rpm. The next day, the kanamycin-resistant
518 pKD4 cassette was amplified by PCR using the following primers 5'-
519 CATCGTAATTAAATCGGCTTCAACGGAAGCTGGGCTACACTTGTAGGCTGGAGCTG
520 CTTCG-3' and 5'-
521 CTGACCTGGCAGTGGATAGTAAATTCTGATCGTGCCTATGGGAATTAGCCATG
522 GTCC-3'. The primers contain overhangs corresponding to the neighboring sequences
523 of the *rnc* gene. In parallel, the pKD46 plasmid was transformed into wild-type Nissle

524 1917 by electroporation. The next day, the PCR product was transformed into Nissle
525 1917 by electroporation. Adding 1 mM L-arabinose induced the λ recombinase
526 expressed from the pKD46 plasmid, which lead to the exchange of the *rnc* gene with the
527 pKD4 cassette at the corresponding overhangs. Clones of Nissle 1917, where the *rnc*
528 gene was knocked-out and replaced by the kanamycin-resistant pKD4 cassette were
529 picked after kanamycin selection. Knock-out was further confirmed by PCR using the
530 following primers 5'-CTGAAGCGAATCTGGTCGGT-3' and 5'-
531 CACTTGTTCACCGCGAGGA-3'.

532

533 **Bacterial RNA isolation**

534 A colony of HT115 bacteria were inoculated in LB medium and grown overnight at 37°C
535 in a shaking incubator. Next day 0.5 ml of the overnight culture were inoculated in 10 ml
536 medium containing Tryptone (0.25%), NaCl (0.3%), Cholesterol (5 μ g/ml), CaCl₂ (1mM),
537 MgSO₄ (1mM), KPO₄ (25mM), Ampicillin (100 μ g/ml), Nystatin (100U/ml), and grown
538 overnight at 23°C in a shaking incubator. Bacterial pellets were obtained after 3 min
539 centrifugation at 1,500 rcf. RNA was isolated from the pellets using the Quick-RNA
540 Fungal/Bacterial Kit from Zymo Research and stored at -20°C till use.

541

542 **Total RNAseq**

543 Ribosomal RNA depletion was performed on 300ng *E. coli* total RNA using NEBNext
544 rRNA Depletion Kit Bacteria, (Cat#E7850L, NEB, Ipswich, MA, USA). Following elution
545 in 8 μ l water, 1 μ l of eluate for monitoring the depletion of ribosomal RNA on TapeStation
546 instrument (Agilent Technologies, Santa Clara, CA, USA) using the High Sensitivity
547 RNA ScreenTape (Agilent, Cat# 5067-5579), 6 μ l of eluate were then mixed with
548 Fragment, Prime Finish Mix provided in the TruSeq Stranded Total RNA Library Prep
549 Gold Kit (Cat# 20020599, Illumina, San Diego, CA, USA) used for completing library
550 preparation, in conjunction with the TruSeq RNA UD Indexes (Cat# 20022371, Illumina).
551 15 cycles of PCR were performed. Libraries were quality-checked on the Fragment
552 Analyzer (Agilent Technologies, Santa Clara, CA, USA) using the Standard Sensitivity
553 NGS Fragment Analysis Kit (Cat# DNF-473, Agilent Technologies) revealing good

554 quality of libraries (average concentration was 72 ± 46 nmol/L and average library size
555 was 317 ± 37 base pairs). Samples were pooled to equal molarity. The pool was
556 quantified by Fluorometry using the QuantiFluor ONE dsDNA System (Cat# E4871,
557 Promega, Madison, WI, USA) and sequenced Single-Reads 76 bases (in addition: 8
558 bases for index 1 and 8 bases for index 2) on NextSeq 500 using the NextSeq 500 High
559 Output Kit 75-cycles (Illumina, Cat# FC-404-1005). Flow lanes were loaded at 1.8pM.
560 1% PhiX was included in the pool. Primary data analysis was performed with the
561 Illumina RTA version 2.11.3. This Nextseq runs compiled a large number of reads (on
562 average per sample: 22.5 ± 11.7 millions pass-filter reads).

563

564 **RNAseq for small RNAs**

565 The kit QIAseq FastSelect –5S/16S/23S (Cat# 335921, Qiagen, Hilden, Germany) was
566 used for inhibiting the amplification of ribosomal RNA during library preparation which
567 was then performed from 120ng total RNA of *E. coli* total RNA using SMARTer smRNA-
568 Seq Kit for Illumina (Cat# 635029, Takara Bio, Shiga, Japan). Libraries were quality-
569 checked on the Fragment Analyzer (Agilent Technologies, Santa Clara, CA, USA) using
570 the High Sensitivity NGS Fragment Analysis Kit (Cat# DNF-474, Agilent Technologies)
571 revealing good quality of libraries (average concentration was 0.94 ± 0.22 nmol/L and
572 average library size was 191 ± 5 base pairs). Samples were pooled to equal molarity.
573 The pool was quantified by Fluorometry using the QuantiFluor ONE dsDNA System
574 (Cat# E4871, Promega, Madison, WI, USA) and sequenced Single-Reads 76 bases (in
575 addition: 8 bases for index 1 and 8 bases for index 2) on NextSeq 500 using the
576 NextSeq 500 High Output Kit 75-cycles (Illumina, Cat# FC-404-1005). Flow lanes were
577 loaded at 1.8pM. 1% PhiX was included in the pool. Primary data analysis was
578 performed with the Illumina RTA version 2.11.3. This Nextseq run compiled a large
579 number of reads (on average per sample: 24.0 ± 6.2 millions pass-filter reads).

580

581 **RNA-seq data analysis**

582 For the total RNA-Seq, reads were mapped against the Ensembl *E. coli* K12 DH10B
583 reference genome distributed by iGenomes using STAR v2.7.9 (40). Read counts were

584 summarized using the featureCounts function of Subread package v2.0.3. The matrix of
585 uniquely mapped read counts was filtered for features with at least 10 reads in at least 3
586 samples. Read normalization was computed using the blind variance stabilizing
587 transform as implemented in DESeq2 v1.40.2 (41), and used as input for clustering by
588 principal component analysis as implemented by prcomp in R v4.3.0.

589 For the short read RNA-Seq: Illumina sequencing reads were pre-processed by
590 removing the first three nucleotides and polyA trimming using CutAdapt v3.4 (42) as per
591 the manufacturer's instructions, followed by 3` quality trimming using Trimmomatic
592 v0.39 (43). Adapter trimmed reads were pooled and used as input to the Trinity de novo
593 assembly pipeline v2.11.0 (44). The short reads were then aligned against the collection
594 of contigs using Bowtie v1.2.3 (-n 1 -l 10) (45). Reads were summarized using
595 featureCounts. 4296 contigs had at least 10 reads in at least 3 samples. Uniquely
596 mapped reads for these features were considered for differential expression using the
597 Wald test as implemented in DESeq2. Significantly differentially expressed genes were
598 considered for differences across the genotype contrasts greater than 2-fold with an
599 adjusted p-value of ≤ 0.01 . BLASTn was used to identify differentially expressed
600 contigs which map to the *C. elegans* genome.

601

602 **Injections**

603 Total bacterial RNA (85 ng/ μ l), genomic DNA (70 ng/ μ l) in water, and water as vehicle
604 control were microinjected directly in the syncytium region of polyQ40-expressing *C.*
605 *elegans* germlines cultured on OP50 diets. Similarly, 100 ng/ μ l of each dsRNA
606 generated by *in vitro* transcription was used in a mixture to inject polyQ40-expressing *C.*
607 *elegans* germlines cultured on OP50 diets. In each case approximately 20 young adult
608 worms were injected. The progeny of injected worms was monitored under the
609 microscope. For each condition about 60 2-day old progeny grown on OP50 were used.
610 Injections were repeated at least 3 times.

611

612 ***In vitro* transcription of bacterial segments**

613 To synthesize dsRNA from the plasmids containing the three bacterial segments that
614 were identified to be differentially expressed between OP50 and OP50(xu363) by the
615 smRNAseq analysis we used the MEGAscript™ T7 Kit (ThermoFisher Scientific). In
616 short we prepared the template DNA by linearizing all three plasmids (digests with
617 HaeII). We obtained shorter regions that contain the DNA segments of interest in
618 between two T7 polymerases. Following the manufacturer's protocol we assembled the
619 transcription reaction and generated dsRNAs that were subsequently recovered by
620 phenol:chloroform extraction and isopropanol precipitation. The pellets were re-
621 suspended in water and frozen till the day of injection.

622

623 **Proteome analysis**

624 Synchronous N2 and AM141 worms were placed on 4 plates and left to lay
625 approximately 500 eggs. Once the worms reached the adult stage were collected in M9
626 buffer. Floating eggs were removed and the remaining adults were washed with M9 and
627 placed back in NGM plates. The next day, the 2-day old worms were washed 3 times
628 with M9 and the worm pellet was flash frozen in liquid nitrogen and stored at -80°C.
629 Worms were resuspended in 5% SDS, 10 mM Tris(2-carboxyethyl)phosphine
630 hydrochloride (TCEP), 0.1 M TEAB and lysed by sonication using a PIXUL Multi-
631 Sample Sonicator (Active Motif) with Pulse set to 50, PRF to 1, Process Time to 20 min
632 and Burst Rate to 20 Hz followed by a 10 min incubation at 95°C. Lysates were TCA
633 precipitated according to a protocol originally from Luis Sanchez
634 (https://www.its.caltech.edu/~bjorker/TCA_ppt_protocol.pdf) as follows. One volume of
635 TCA was added to every 4 volumes of sample, mixed by vortexing, incubated for 10 min
636 at 4°C followed by collection of precipitate by centrifugation for 5 min at 23,000 g.
637 Supernatant was discarded, pellets were washed twice with acetone precooled to -20°C
638 and the washed pellets were incubated open at RT for 1 min to allow residual acetone
639 to evaporate. Pellets were resuspended in 2 M Guanidinium HCl, 0.1 M Ammonium
640 bicarbonate, 5 mM Tris(2-carboxyethyl)phosphine hydrochloride solution (TCEP),
641 phosphatase inhibitors (Sigma P5726&P0044) and proteins were digested as described
642 previously (PMID:27345528). Shortly, proteins were reduced for 60 min at 37°C and
643 alkylated with 10 mM chloroacetamide for 30 min at 37°C. After diluting samples with

644 0.1 M Ammonium bicarbonate buffer to a final Guanidinium HCl concentration of 0.4 M,
645 proteins were digested by incubation with sequencing-grade modified trypsin (1/100,
646 w/w; Promega, Madison, Wisconsin) for 12 h at 37°C. After acidification using 5% TFA,
647 peptides were desalted using C18 reverse-phase spin columns (Macrospin, Harvard
648 Apparatus) according to the manufacturer's instructions, dried under vacuum and stored
649 at -20°C until further use.

650 Dried peptides were resuspended in 0.1% aqueous formic acid and subjected to LC–
651 MS/MS analysis using a Exploris 480 Mass Spectrometer fitted with an Vanquish Neo
652 (both Thermo Fisher Scientific) and a custom-made column heater set to 60°C.
653 Peptides were resolved using a RP-HPLC column (75 µm × 30 cm) packed in-house
654 with C18 resin (ReproSil-Pur C18–AQ, 1.9 µm resin; Dr. Maisch GmbH) at a flow rate of
655 0.2 µL/min. The following gradient was used for peptide separation: from 4% B to 10%
656 B over 5 min to 35% B over 45 min to 50% B over 10 min to 95% B over 1 min followed
657 by 10 min at 95% B to 5% B over 1 min followed by 4 min at 5% B. Buffer A was 0.1%
658 formic acid in water and buffer B was 80% acetonitrile, 0.1% formic acid in water.

659 The mass spectrometer was operated in DIA mode with a cycle time of 3 seconds. MS1
660 scans were acquired in the Orbitrap in centroid mode at a resolution of 120,000 FWHM
661 (at 200 m/z), a scan range from 390 to 910 m/z, normalized AGC target set to 300 %
662 and maximum ion injection time mode set to Auto. MS2 scans were acquired in the
663 Orbitrap in centroid mode at a resolution of 15,000 FWHM (at 200 m/z), precursor mass
664 range of 400 to 900, quadrupole isolation window of 12 m/z with 1 m/z window overlap,
665 a defined first mass of 120 m/z, normalized AGC target set to 3000% and a maximum
666 injection time of 22 ms. Peptides were fragmented by HCD (Higher-energy collisional
667 dissociation) with collision energy set to 28% and one microscan was acquired for each
668 spectrum.

669 The acquired raw-files were searched using the Spectronaut (Biognosys v17.4)
670 directDIA workflow against a *C. elegans* database (consisting of 26585 protein
671 sequences downloaded from Uniprot on 20220222) and 392 commonly observed
672 contaminants. Quantitative data was exported from Spectronaut and analyzed using the
673 MSstats R package v.4.7.3. (<https://doi.org/10.1093/bioinformatics/btu305>).

674

675 **GO term analysis and functional association networks**

676 GO term analysis and protein-protein interaction networks enrichments analysis were
677 performed with the use of ShinyGO (ver. 0.77) (<http://bioinformatics.sdsu.edu/go/>)
678 with 0.01 FDR cutoff and STRING (ver. 12.0) ([https://string-
679 db.org/cgi/input?sessionId=b0IIBAPfUcQa&input_page_show_search=on](https://string-db.org/cgi/input?sessionId=b0IIBAPfUcQa&input_page_show_search=on)). A q-value of
680 less than 0.05 was used to filter significant changes prior to the pathway analyses.
681 Proteins between -0.3 and +0.3 fold change (log2ratio) were excluded from the analysis.

682

683 **Statistical analysis**

684 Statistical analyses and graphs were prepared using the Prism software package
685 (version 9; GraphPad Software; <https://www.graphpad.com>). Data are reported as the
686 mean values \pm standard deviation (SD). For statistical analyses, p values were
687 calculated by unpaired Student's t-test and one-way ANOVA with multiple comparisons
688 test. The significance was determined by the p-values: * p < 0.05, ** p < 0.01, ***
689 p < 0.001 and n.s. = not significant p > 0.05.

690

691 **References and Notes**

- 692 1. A. Urrutia, V. A. García-Angulo, A. Fuentes, M. Caneo, M. Legüe, S. Urquiza, S. E.
693 Delgado, J. Ugalde, P. Burdisso, A. Calixto, Bacterially produced metabolites protect *C.*
694 *elegans* neurons from degeneration. *PLOS Biology* **18**, e3000638 (2020).
- 695 2. N. L. Stuhr, S. P. Curran, Bacterial diets differentially alter lifespan and healthspan
696 trajectories in *C. elegans*. *Commun Biol* **3**, 1–18 (2020).
- 697 3. L. Fontana, L. Partridge, Promoting health and longevity through diet: from model
698 organisms to humans. *Cell* **161**, 106–118 (2015).
- 699 4. W. Maier, B. Adilov, M. Regenass, J. Alcedo, A Neuromedin U Receptor Acts with the
700 Sensory System to Modulate Food Type-Dependent Effects on *C. elegans* Lifespan. *PLOS*
701 *Biology* **8**, e1000376 (2010).
- 702 5. E. Watson, L. T. MacNeil, A. D. Ritter, L. S. Yilmaz, A. P. Rosebrock, A. A. Caudy, A. J.
703 M. Walhout, Interspecies Systems Biology Uncovers Metabolites Affecting *C. elegans* Gene
704 Expression and Life History Traits. *Cell* **156**, 759–770 (2014).
- 705 6. W. Mair, A. Dillin, Aging and survival: the genetics of life span extension by dietary
706 restriction. *Annu Rev Biochem* **77**, 727–754 (2008).

707 7. P. Kapahi, M. Kaeberlein, M. Hansen, Dietary restriction and lifespan: Lessons from
708 invertebrate models. *Ageing Res Rev* **39**, 3–14 (2017).

709 8. E. L. Greer, A. Brunet, Different dietary restriction regimens extend lifespan by both
710 independent and overlapping genetic pathways in *C. elegans*. *Aging Cell* **8**, 113–127 (2009).

711 9. K. A. Caldwell, C. W. Willicott, G. A. Caldwell, Modeling neurodegeneration in
712 *Caenorhabditis elegans*. *Dis Model Mech* **13**, dmm046110 (2020).

713 10. W. H. Zhang, S. Koyuncu, D. Vilchez, Insights Into the Links Between Proteostasis and
714 Aging From *C. elegans*. *Front Aging* **3**, 854157 (2022).

715 11. N. Charmpilas, E. Kyriakakis, N. Tavernarakis, Small heat shock proteins in ageing and age-
716 related diseases. *Cell Stress and Chaperones* **22**, 481–492 (2017).

717 12. E. Kyriakakis, A. Princz, N. Tavernarakis, Stress responses during ageing: molecular
718 pathways regulating protein homeostasis. *Methods Mol Biol* **1292**, 215–234 (2015).

719 13. J. Labbadia, R. I. Morimoto, Proteostasis and longevity: when does aging really begin?
720 *F1000Prime Rep* **6** (2014).

721 14. J. F. Morley, H. R. Brignull, J. J. Weyers, R. I. Morimoto, The threshold for polyglutamine-
722 expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in
723 *Caenorhabditis elegans*. *Proc Natl Acad Sci U S A* **99**, 10417–10422 (2002).

724 15. K. K. Brooks, B. Liang, J. L. Watts, The Influence of Bacterial Diet on Fat Storage in *C.*
725 *elegans*. *PLOS ONE* **4**, e7545 (2009).

726 16. T. Nair, R. Chakraborty, P. Singh, S. S. Rahman, A. K. Bhaskar, S. Sengupta, A.
727 Mukhopadhyay, Adaptive capacity to dietary Vitamin B12 levels is maintained by a gene-
728 diet interaction that ensures optimal life span. *Aging Cell* **21**, e13518 (2022).

729 17. A. V. Revtovich, R. Lee, N. V. Kirienko, Interplay between mitochondria and diet mediates
730 pathogen and stress resistance in *Caenorhabditis elegans*. *PLoS Genet* **15**, e1008011 (2019).

731 18. C. D. Link, A. Taft, V. Kapulkin, K. Duke, S. Kim, Q. Fei, D. E. Wood, B. G. Sahagan,
732 Gene expression analysis in a transgenic *Caenorhabditis elegans* Alzheimer's disease model.
733 *Neurobiology of Aging* **24**, 397–413 (2003).

734 19. M. Hansen, D. C. Rubinsztein, D. W. Walker, Autophagy as a promoter of longevity:
735 insights from model organisms. *Nat Rev Mol Cell Biol* **19**, 579–593 (2018).

736 20. K. Jia, A. C. Hart, B. Levine, Autophagy Genes Protect Against Disease Caused by
737 Polyglutamine Expansion Proteins in *Caenorhabditis elegans*. *Autophagy* **3**, 21–25 (2007).

738 21. V. Kirkin, V. V. Rogov, A Diversity of Selective Autophagy Receptors Determines the
739 Specificity of the Autophagy Pathway. *Molecular Cell* **76**, 268–285 (2019).

740 22. L. Galluzzi, E. H. Baehrecke, A. Ballabio, P. Boya, J. M. Bravo-San Pedro, F. Cecconi, A.
741 M. Choi, C. T. Chu, P. Codogno, M. I. Colombo, A. M. Cuervo, J. Debnath, V. Deretic, I.
742 Dikic, E. Eskelinen, G. M. Fimia, S. Fulda, D. A. Gewirtz, D. R. Green, M. Hansen, J. W.
743 Harper, M. Jäättelä, T. Johansen, G. Juhasz, A. C. Kimmelman, C. Kraft, N. T. Ktistakis, S.
744 Kumar, B. Levine, C. Lopez-Otin, F. Madeo, S. Martens, J. Martinez, A. Melendez, N.
745 Mizushima, C. Münz, L. O. Murphy, J. M. Penninger, M. Piacentini, F. Reggiori, D. C.
746 Rubinsztein, K. M. Ryan, L. Santambrogio, L. Scorrano, A. K. Simon, H. Simon, A.
747 Simonsen, N. Tavernarakis, S. A. Tooze, T. Yoshimori, J. Yuan, Z. Yue, Q. Zhong, G.
748 Kroemer, Molecular definitions of autophagy and related processes. *EMBO J* **36**, 1811–1836
749 (2017).

750 23. C. N. Martineau, N. V. Kirienko, N. Pujol, “Chapter Ten - Innate immunity in *C. elegans*” in
751 *Current Topics in Developmental Biology*, S. Jarriault, B. Podbilewicz, Eds. (Academic
752 Press, 2021; <https://www.sciencedirect.com/science/article/pii/S007021532030140X>) vol.
753 144 of *Nematode Models of Development and Disease*, pp. 309–351.

754 24. K. J. Foster, H. K. Cheesman, P. Liu, N. D. Peterson, S. M. Anderson, R. Pukkila-Worley,
755 Innate Immunity in the *C. elegans* Intestine Is Programmed by a Neuronal Regulator of
756 AWC Olfactory Neuron Development. *Cell Reports* **31**, 107478 (2020).

757 25. R. Xiao, L. Chun, E. A. Ronan, D. I. Friedman, J. Liu, X. Z. S. Xu, RNAi interrogation of
758 dietary modulation of development, metabolism, behavior, and aging in *C. elegans*. *Cell Rep*
759 **11**, 1123–1133 (2015).

760 26. S. Dasgupta, L. Fernandez, L. Kameyama, T. Inada, Y. Nakamura, A. Pappas, D. L. Court,
761 Genetic uncoupling of the dsRNA-binding and RNA cleavage activities of the *Escherichia*
762 *coli* endoribonuclease RNase III — the effect of dsRNA binding on gene expression.
763 *Molecular Microbiology* **28**, 629–640 (1998).

764 27. W. Sun, A. W. Nicholson, Mechanism of Action of *Escherichia coli* Ribonuclease III.
765 Stringent Chemical Requirement for the Glutamic Acid 117 Side Chain and Mn²⁺ Rescue of
766 the Glu117Asp Mutant. *Biochemistry* **40**, 5102–5110 (2001).

767 28. A. Grishok, Biology and Mechanisms of Short RNAs in *Caenorhabditis elegans*. *Adv Genet*
768 **83**, 1–69 (2013).

769 29. M. Tijsterman, K. L. Okihara, K. Thijssen, R. H. A. Plasterk, PPW-1, a PAZ/PIWI Protein
770 Required for Efficient Germline RNAi, Is Defective in a Natural Isolate of *C. elegans*.
771 *Current Biology* **12**, 1535–1540 (2002).

772 30. J. M. Madison, S. Nurrish, J. M. Kaplan, UNC-13 Interaction with Syntaxin Is Required for
773 Synaptic Transmission. *Current Biology* **15**, 2236–2242 (2005).

774 31. S. Speese, M. Petrie, K. Schuske, M. Ailion, K. Ann, K. Iwasaki, E. M. Jorgensen, T. F. J.
775 Martin, UNC-31 (CAPS) Is Required for Dense-Core Vesicle But Not Synaptic Vesicle
776 Exocytosis in *Caenorhabditis elegans*. *J. Neurosci.* **27**, 6150–6162 (2007).

777 32. B. Nkambeu, J. B. Salem, S. Leonelli, F. A. Marashi, F. Beaudry, EGL-3 and EGL-21 are
778 required to trigger nocifensive response of *Caenorhabditis elegans* to noxious heat.
779 *Neuropeptides* **73**, 41–48 (2019).

780 33. R. Kaletsky, R. S. Moore, G. D. Vrla, L. R. Parsons, Z. Gitai, C. T. Murphy, *C. elegans*
781 interprets bacterial non-coding RNAs to learn pathogenic avoidance. *Nature* **586**, 445–451
782 (2020).

783 34. H. Liu, X. Wang, H.-D. Wang, J. Wu, J. Ren, L. Meng, Q. Wu, H. Dong, J. Wu, T.-Y. Kao,
784 Q. Ge, Z. Wu, C.-H. Yuh, G. Shan, *Escherichia coli* noncoding RNAs can affect gene
785 expression and physiology of *Caenorhabditis elegans*. *Nat Commun* **3**, 1073 (2012).

786 35. F. Finger, F. Ottens, A. Springhorn, T. Drexel, L. Proksch, S. Metz, L. Cochella, T. Hoppe,
787 Olfaction regulates organismal proteostasis and longevity via microRNA-dependent
788 signalling. *Nat Metab* **1**, 350–359 (2019).

789 36. M. E. Goya, F. Xue, C. Sampedro-Torres-Quevedo, S. Arnaouteli, L. Riquelme-Dominguez,
790 A. Romanowski, J. Brydon, K. L. Ball, N. R. Stanley-Wall, M. Doitsidou, Probiotic *Bacillus*
791 *subtilis* Protects against α -Synuclein Aggregation in *C. elegans*. *Cell Reports* **30**, 367–380.e7
792 (2020).

793 37. S. T. Schumacker, C. A. M. Chidester, R. A. Enke, M. R. Marcello, RNA sequencing dataset
794 characterizing transcriptomic responses to dietary changes in *Caenorhabditis elegans*. *Data
795 in Brief* **25**, 104006 (2019).

796 38. H. Zhang, J. T. Chang, B. Guo, M. Hansen, K. Jia, A. L. Kovács, C. Kumsta, L. R. Lapierre,
797 R. Legouis, L. Lin, Q. Lu, A. Meléndez, E. J. O'Rourke, K. Sato, M. Sato, X. Wang, F. Wu,
798 Guidelines for monitoring autophagy in *Caenorhabditis elegans*. *Autophagy* **11**, 9–27 (2015).

799 39. K. A. Datsenko, B. L. Wanner, One-step inactivation of chromosomal genes in *Escherichia*
800 *coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* **97**, 6640–6645 (2000).

801 40. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
802 T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15–21
803 (2013).

804 41. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for
805 RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

806 42. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads.
807 *EMBnet.journal* **17**, 10–12 (2011).

808 43. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence
809 data. *Bioinformatics* **30**, 2114–2120 (2014).

810 44. M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis,
811 L. Fan, R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind,
812 F. di Palma, B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, A. Regev, Full-

813 length transcriptome assembly from RNA-Seq data without a reference genome. *Nat*
814 *Biotechnol* **29**, 644–652 (2011).

815 45. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, Ultrafast and memory-efficient alignment
816 of short DNA sequences to the human genome. *Genome Biology* **10**, R25 (2009).

817

818 **Acknowledgments:** We thank Pascal Ankli, Jessica Arnegger, Tara Thorsen, Vanessa
819 Brullo, Sheuli Begum, Jordi Greoles Cano, Isabella Santi, Louise Larsson, Médéric
820 Diard and Dora Stetak for technical support. We also thank the Genomics Facility Basel
821 of the University of Basel and the Department of Biosystems Science and Engineering,
822 ETH Zurich for carrying out the Next-Generation Sequencing. We are grateful to Susan
823 E. Mango, Ian G. Macara and Nikolaos Charmpilas for critical reading of the manuscript.
824 Some nematode strains used in this work were provided by the *Caenorhabditis*
825 Genetics Center, which is funded by the National Center for Research Resources of the
826 National Institutes of Health and S. Mitani (National Bioresource Project) in Japan. We
827 thank Read Pukkila-Worley and Andy Fire for providing the AU306 strain and plasmid
828 vectors, respectively.

829

830 **Funding:** This work is supported by

831 Swiss National Science Foundation grant 185127 (AS)

832 Swiss National Science Foundation grant 197779 (AS)

833 The Novartis Foundation for Medical-Biological Research grant #20C179 (AS)

834 University of Basel grant FoFo 3BZ5106 (AS)

835 University of Basel

836

837 **Author contributions:**

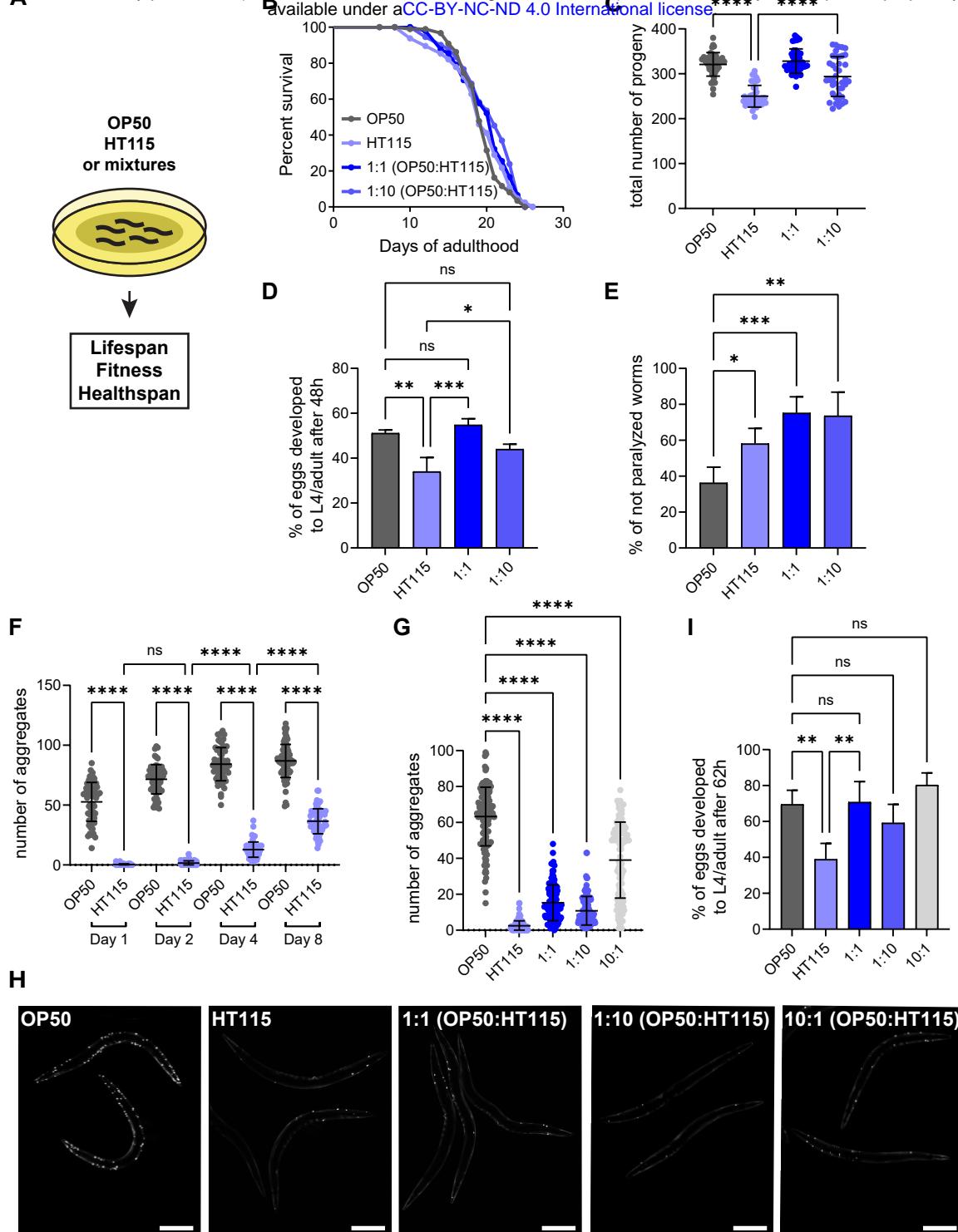
838 Conceptualization: EK, AS

839 Methodology: EK, CM, GF

840 Investigation: EK, CM, GF, DR, AS

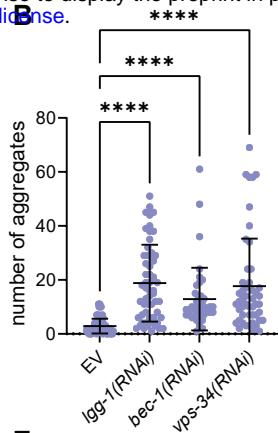
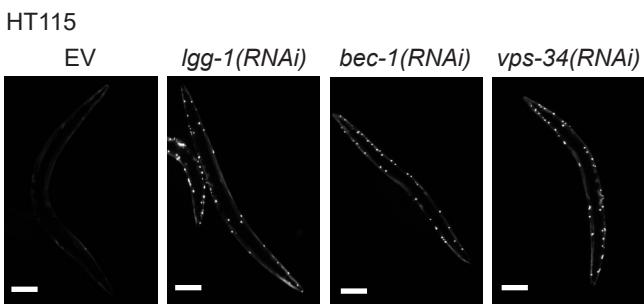
841 Visualization: EK, CM, GF

842 Funding acquisition: EK, AS


843 Supervision: EK, AS

844 Writing – original draft: EK, AS

845 Writing – review & editing: EK, AS



846

847 **Competing interests:** Authors declare no competing interests.

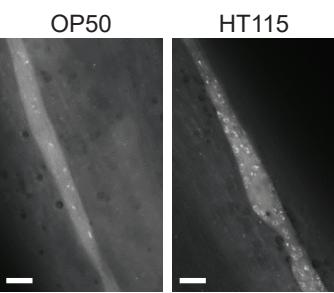
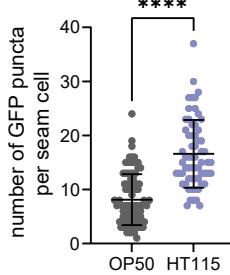
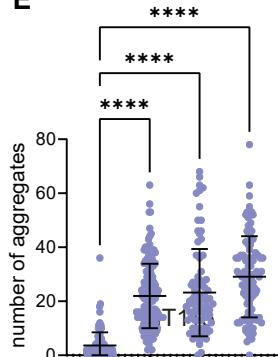
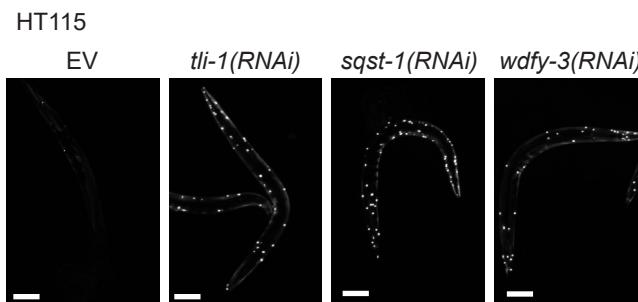
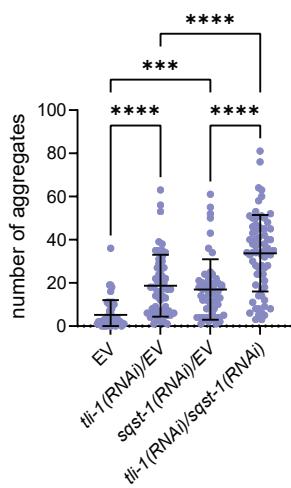


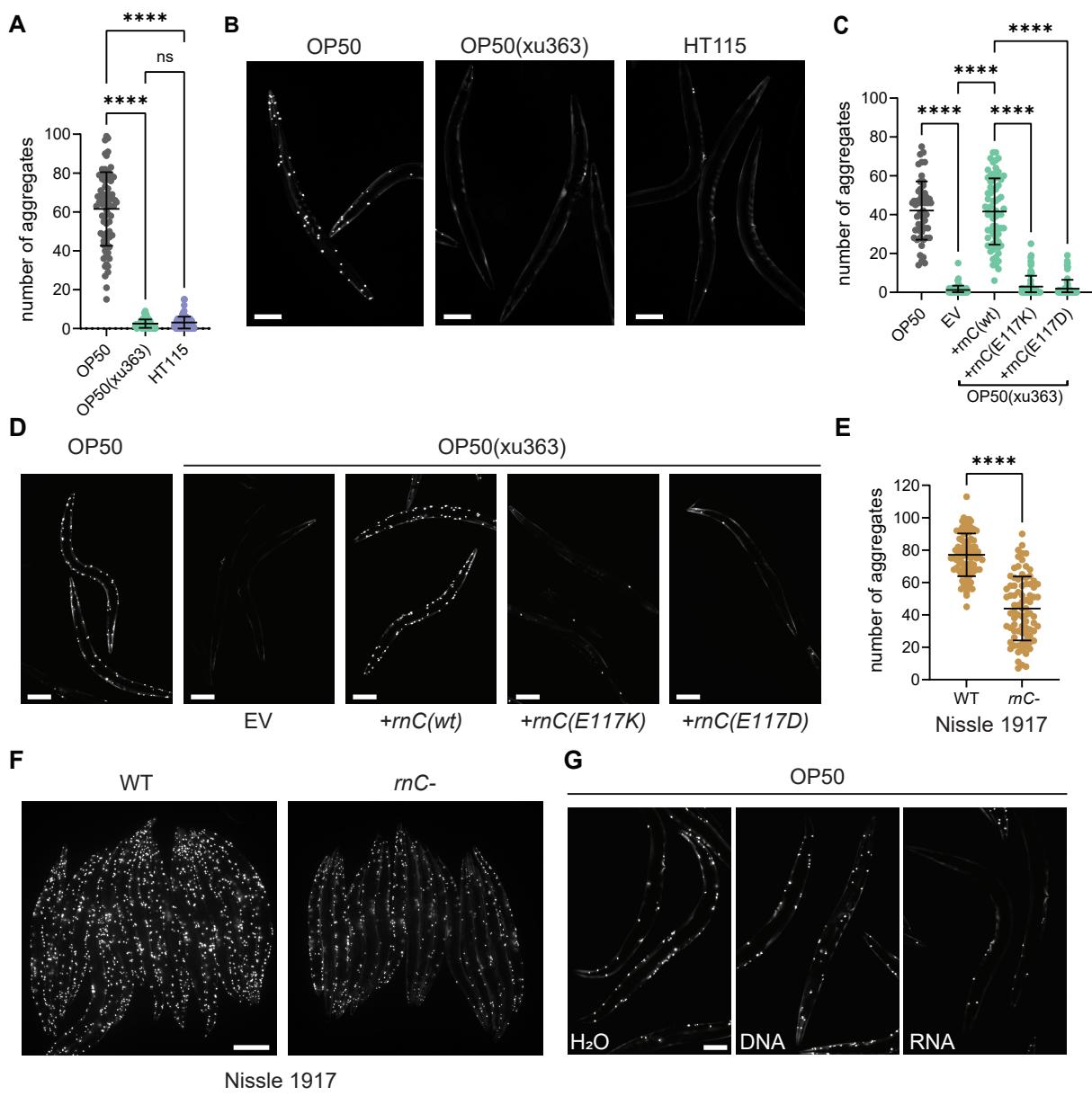
Figure 1. Dietary mixtures promote fitness and proteostasis in the body wall muscles of *C. elegans*. (A) Schematic representation of main methodology. Worms were grown on different bacteria lawns. Lifespan, fitness and healthspan assays were performed. (B) Lifespan curves of wt worms cultured on OP50, HT115 and bacterial mixtures. Bacterial mixtures of OP50 and HT115 were used in 1:1 (50% OP50 and 50% HT115) and 1:10 (10% OP50 and 90% HT115) ratios. Statistical analysis for lifespan curves was performed with the Log-rank (Mantel-Cox) test and the summary is shown in Table 1. (C) Brood size of wt worms on different bacterial lawns. The total number of progeny per worm is shown. (D) Developmental rate of wt worms on different bacterial lawns was measured as the percentage of eggs that developed into L4/adult stages 48h after egg laying. (E) Percentage of not paralyzed (18-20 days old) wt worms on different bacterial diets was assessed. Values represent mean \pm SD from three independent experiments. (F) Quantification of polyQ40::YFP fluorescent foci of worms on OP50 or HT115 diet during ageing. The number of aggregates per worm is shown. (G) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on different bacterial diets. The number of aggregates per worm is shown. (H) Representative images of 2-day old polyQ40::YFP-expressing worms on different bacterial diets. Scale bars in all panels are 200 μ m. (I) Developmental rate of polyQ40 expressing worms on different bacterial lawns was measured as the percentage of eggs that developed into L4/adult stages 62h after egg laying. Values represent mean \pm SD from at least three independent experiments. One-way ANOVA with multiple comparison test was used. ns $P > 0.05$, * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

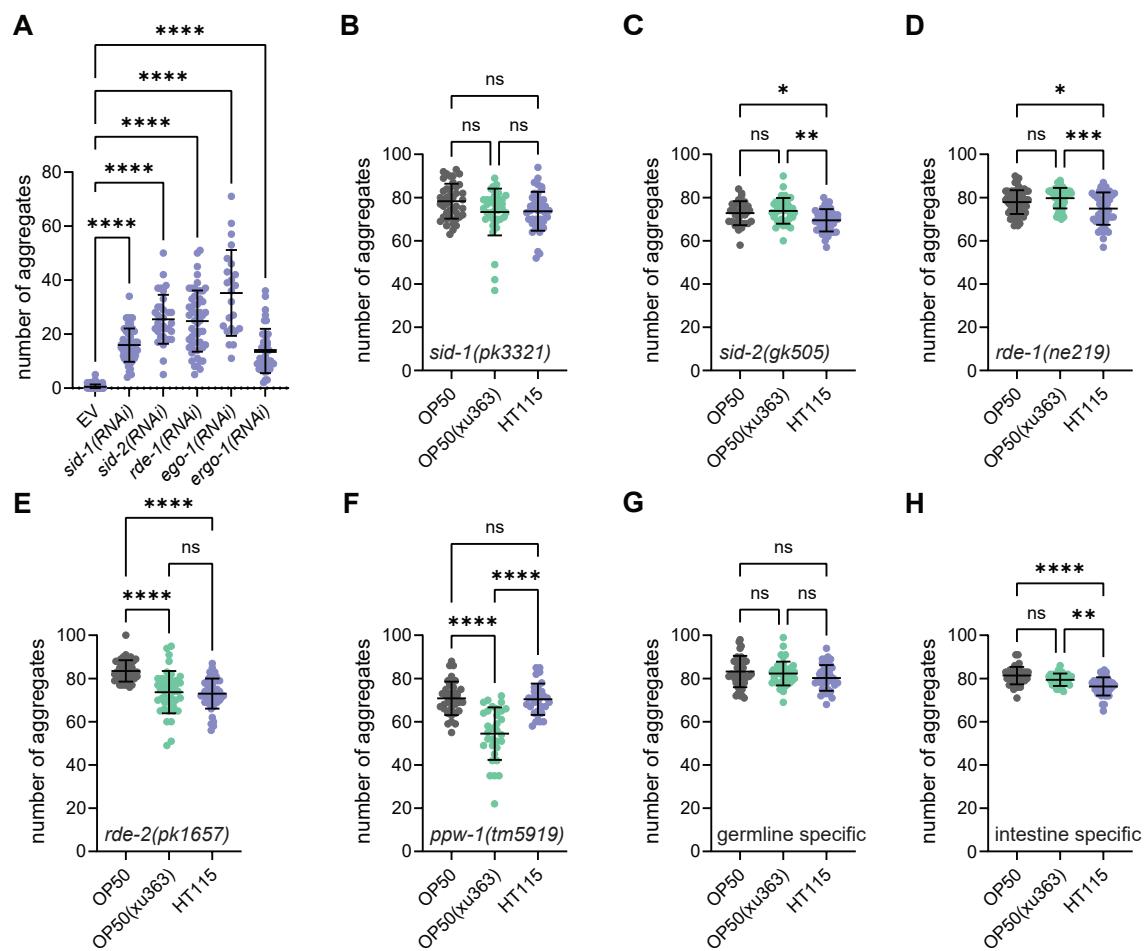

A


C


D


E


F


G

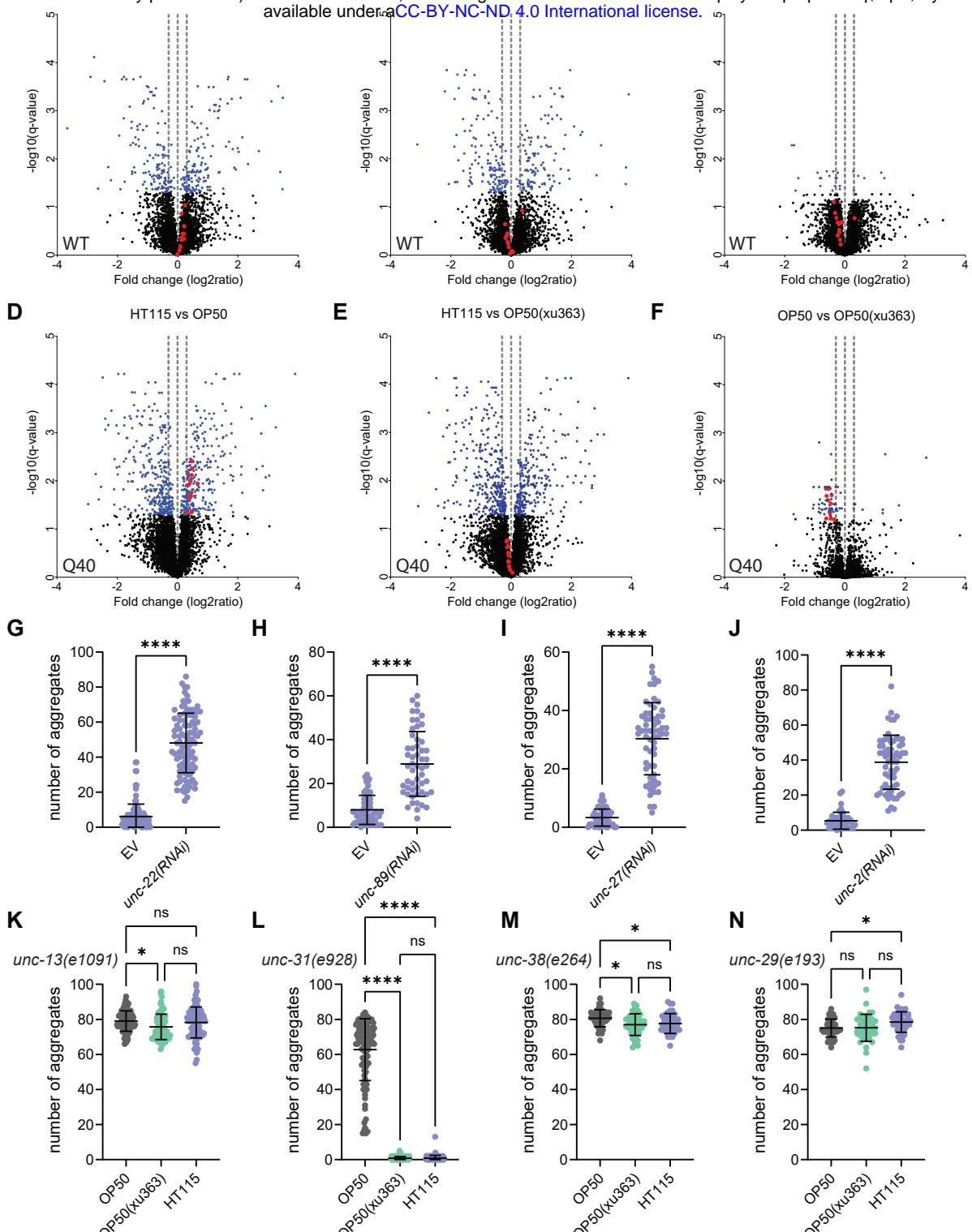

Figure 2. Autophagy protects from protein aggregation in the body wall muscles of *C. elegans*. (A) Representative images of 2-day old polyQ40::YFP-expressing worms on HT115 diet, treated with empty vector (EV), *lgg-1(RNAi)*, *bec-1(RNAi)* and *vps-34(RNAi)*. (B) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on HT115, treated with empty vector (EV), *lgg-1(RNAi)*, *bec-1(RNAi)* and *vps-34(RNAi)*. The number of aggregates per worm is shown. (C) Representative images of hypothermal seam cells, of p_{lgg-1} -GFP::LGG-1-expressing L4 animals on OP50 or HT115. Scale bar is 10 μ m (D) Quantification of GFP::LGG-1 positive puncta per seam cell of worms on OP50 and HT115. (E) Quantification of polyQ40::YFP fluorescent foci of 2-day old worm on HT115, treated EV, *tli-1(RNAi)*, *sqst-1(RNAi)* and *wdfy-3(RNAi)*. The number of aggregates per worm is shown. (F) Representative images of 2-day old polyQ40::YFP-expressing worms on HT115 diet, treated with EV, *tli-1(RNAi)*, *sqst-1(RNAi)* and *wdfy-3(RNAi)*. (G) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms treated with EV, *tli-1(RNAi)* and *sqst-1(RNAi)* diluted with equal amount of the EV and mixture of equal amounts of *tli-1(RNAi)* and *sqst-1(RNAi)*. The number of aggregates per worm is shown.

Figure 3. Ribonuclease 3-dependent bacterial-RNA species protect from polyQ40 protein aggregation. (A) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on OP50, OP50(xu363) and HT115 bacterial diets. The number of aggregates per worm is shown. Values represent mean \pm SD from three independent experiments. One-way ANOVA with multiple comparison test was used. ns $P>0.05$, **** $P<0.0001$. (B) Representative images of 2-day old polyQ40::YFP-expressing worms on OP50, OP50(xu363) and HT115 bacterial diets. Scale bar is 100 μ m. (C) Quantification of total polyQ40::YFP fluorescent foci of 2-day old worms on OP50 and OP50(xu363) containing the empty vector (EV) or expressing the wt ribonuclease 3 (+rnC(wt)) and catalytically inactive ribonuclease 3 (+rnC(E117K), +rnC(E117D)). The number of aggregates per worm is shown. Values represent mean \pm SD from three independent experiments. One-way ANOVA with multiple comparison test was used. **** $P<0.0001$. (D) Representative images of 2-day old polyQ40::YFP-expressing worms on OP50 and OP50(xu363) expressing the wt (+rnC(wt)) or catalytically dead (+rnC(E117K) or +rnC(E117D)) ribonuclease 3. EV serves as the control vector. Scale bar is 100 μ m. (E) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on wt and ribonuclease depleted (rnC-) Nissle 1917 E. coli. The number of aggregates per worm is shown. (F) Representative images of 2-day old polyQ40::YFP-expressing worms on wt and ribonuclease 3 depleted (rnC-) Nissle 1917 E. coli. Scale bar is 200 μ m. Values represent mean \pm SD from three independent experiments. Student's t-test was used. **** $P<0.0001$. (G) Representative images of 2-day old polyQ40::YFP-expressing worms on OP50 diets, descendants of worms in which their gonads were injected with water (H₂O), DNA or HT115-derived RNA. Scale bar is 100 μ m.

Figure 4. The RNAi machinery and the germline are required to protect from protein aggregation. Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on HT115, treated with empty vector (EV), *sid-1(RNAi)*, *sid-2(RNAi)*, *rde-1(RNAi)*, *ego-1(RNAi)* and *ergo-1(RNAi)*. The number of aggregates per worm is shown. (B-F) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on OP50, OP50(xu363) and HT115. The number of aggregates per worm is shown in *sid-1(pk3321)* (B), *sid-2(gk505)* (C), *rde-1(ne219)* (D), *rde-2(pk1657)* (E) and *ppw-1(tm5919)* (F) strains. (G) Germline and (H) intestine RNAi-specific mutant strains were used to quantify polyQ40::YFP fluorescent foci of 2-day old worms of OP50, OP50(xu363) and HT115. The number of aggregates per worm is shown. Values represent mean \pm SD from three independent experiments. One-way ANOVA with multiple comparison test was used. ns P>0.05, * P<0.05, ** P<0.01, *** P<0.001, **** P<0.0001.

Figure 5. Muscle function and neurotransmission protects from accumulation of protein aggregates. (A-F) Volcano plots of total quantified proteins showing significant increase or decrease content in WT (A-C) and polyQ40-expressing (D-F) strains on OP50, OP50(xu363) or HT115 bacteria. In blue are the proteins with q values less than 0.05. UNC-89, UNC-22, TTN-1, UNC-15, ATN-1, UNC-54, UNC-87, ZK1321.4, Y43F8B.1, TNT-2, CPN-3, CLIK-1 proteins from the STRING analysis are shown in red. Horizontal dotted lines are at -0.3, 0, +0.3 fold change. (G-J) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on HT115, treated with empty vector (EV), *unc-22(RNAi)* (G), *unc-89(RNAi)* (H), *unc-27(RNAi)* (I) and *unc-2(RNAi)* (J). (K-N) Quantification of polyQ40::YFP fluorescent foci of 2-day old worms on OP50, OP50(xu363) and HT115. The number of aggregates per worm is shown in *unc-13(e1091)*, *unc-31(e928)*, *unc-38(e264)* (F) and *unc-29(e193)* (G) mutant strains. Values represent mean \pm SD from three independent experiments. One-way ANOVA with multiple comparison test or Student's t-test were used. ns P>0.05, * P<0.05, **** P<0.0001. Scale bars in all panels are 100 μ m.