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Abstract

Socioeconomic status (SES) influences physical and mental health, however its relation with brain
structure is less well documented. Here, we examine the role of SES on brain structure using
Mendelian randomisation. First, we conduct a multivariate genome-wide association study of SES
using individual, household, and area-based measures of SES, with an effective sample size of
n=893,604. We identify 469 loci associated with SES and distil these loci into those that are common
across measures of SES and those specific to each indicator. Second, using an independent sample of
~35,000 we provide evidence to suggest that total brain volume is a causal factor in higher SES, and
that SES is protective against white matter hyperintensities as a proportion of intracranial volume
(WMHicv). Third, we find evidence that whilst differences in cognitive ability explain some of the
causal effect of SES on WMHicv, differences in SES still afford a protective effect against WMHicyv,
independent of that made by cognitive ability.
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Introduction

Socioeconomic status (SES) is a multi-dimensional construct influencing, and influenced by,
multiple physical, socio-cultural, and environmental factors. Differences in SES are a determining
factor of health where those from more advantaged backgrounds have a higher level of physical
health, mental health and psychiatric conditions, are less likely to receive a dementia diagnosis, and
live longer lives'™. These inequalities in physical health, and mental health are present across different
indicators of SES and have been found for occupation, income, educational attainment, and measures
of social deprivation'>”’. The communality of such findings highlights the need to examine the
influence of SES using a multifactorial approach to examine the causes and consequences of
differences in SES.

As with any other quantitative trait, such as height or weight, differences in SES have a
heritable component® meaning that genetic differences within a population will covary with
phenotypic differences. However, and unlike traits such as height or weight, such genetic differences
associated with SES are unlikely to form part of a biological pathway from gene to phenotype
directly, but are more likely the result of a phenotypic pathway, known as vertical pleiotropy®, where
a number of traits (which are themselves heritable) contribute towards differences in SES'*!2, As
such, the heritability of SES is not static, and differences between societies can result in differences in
the heritable traits that give rise to the observed differences in SES!!4,

Despite the genetically heterogeneous nature of SES, genome-wide association studies
(GWAS) examining indicators of SES such as measures of income!'!, educational attainment', and
social deprivation® have identified hundreds of associated genetic loci. These genetic indicators of
SES are also linked to physical health outcomes, indicative of a common genetic actiology between
SES and physical health®!""!5, Furthermore, psychiatric traits including schizophrenia, major
depressive disorder, and attention deficit hyperactivity disorder, as well as neurological disorders such
as Alzheimer’s disease, early-onset stroke, and intra-cerebral haemorrhage also share genetic effects
with measures of SES'. As with genetic influences that act on SES, these links between SES and
brain-related health outcomes may themselves include other phenotypes such as neuroanatomy''.

Genetic links between SES and brain morphology have been identified previously where
genes highly expressed in the brain and both neuronal and glial cells are enriched for their
associations with both income!! and educational attainment!’. Furthermore, strong genetic correlations
are found between indicators of SES and brain morphology where a genetic correlation of 7, = 0.34,
SE =0.07, P =1.2x10% has been identified between intracranial volume and educational attainment',
and loci associated with cognitive ability!® are found to be overrepresented in the associated loci from
a GWAS of income!!. These genetic links between SES and brain-based phenotypes have been
explored using Mendelian randomisation (MR) to examine the direction of causality between them.
For example, evidence of bidirectional causal effects was found between poverty (n = 668,288) and

mental illness?® using MR.
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However, the following are some fundamental gaps in our understanding of the relationship
between SES and brain structure. First, do different indicators of SES confer the different levels of
risk or is SES best captured using a single factor? Second, is there evidence for causality in the
relationship between SES and brain morphology? Third, to what extend does differences in cognitive
ability explain the relationship between SES and brain morphology?

Importantly, the use of brain morphology as an outcome in MR can allow for the risk factors
of late-life cognitive function that act on cognitive decline in adulthood to be distinguished from those
that differentiate the trajectory of cognitive growth through childhood. The importance of which is
underscored in the context of dementia which, whilst typically diagnosed using cognitive tests such as
the Mini-Mental State Examination®!, is distinguished from other neurodevelopmental disorders (such
as intellectual disability) by a progressive later-life loss of cognitive ability that affects daily life*?. As
such, risk of dementia can be seen to be composed of two components: cognitive development
influencing the level of cognitive function prior to the onset of cognitive decline and, the rate at which
decline occurs. Whilst large GWAS of cognitive decline are currently lacking, MR combined with
GWAS conducted on frank indictors of brain ageing, such as white matter hyperintensities*, can be
used to identify potentially modifiable risk factors causal in brain ageing.

In the current study, we combine multivariate analysis with MR to examine the bidirectional
effects between SES and brain morphology and to examine likely heritable traits that are captured by
measures of SES, and to identify potentially modifiable risk factors of age-related brain change
associated with cognitive development and cognitive decline. First, we perform a common-factor
model multi-variate GWAS of four indicators of SES: occupational prestige (OP, n = 279,644),
household income (HI, n = 488,233), educational attainment (EA, n =753,152), and social
deprivation (SD, n = 440,350) for an effective size of 893,604 participants. The use of these four
measures in a multivariate framework allows for the assessment of heterogeneous effects across
indicators of SES in conjunction with an investigation of common genetic effects that act on the
individual, as well as the household, and geographical area in which one resides. Thus, genetic effects
can be categorised as common across measures of SES or unique to specific indicators. Second, to
examine the bidirectional causal effects of SES on brain structure we use two-sample MR on 13 brain
imaging phenotypes sourced from an independent sample of ~36,000 UKB participants. Finally, we
examine the role of cognitive ability on the links between SES and brain morphology as one of the
heritable traits that is captured by GWAS conducted on the general factor of SES and these four

indicators.
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Results
Study design and implementation.

Genome-wide association study (GWAS) data sets were used to identify instrumental
variables for five exposures. These were four measures of SES (occupational prestige, household
income, educational attainment, and social deprivation), and one cognitive exposure (cognitive
ability). GWASs were also performed in an independent sample on thirteen MRI phenotypes (total
brain volume, TBV; grey matter volume, GM; normal appearing white matter, NAWM; white matter
hyperintensity volume, WMH; TBYV as a proportion of intracranial volume, TBVicv; GM as a
proportion of intracranial volume, GMicv; white matter volume as a proportion of intracranial
volume, WMicv; WMH as a proportion of intracranial volume, WMHicv; a general factor of brain
white matter tract fractional anisotropy, gFA; a general factor of brain white matter tract mean
diffusivity, gMD; a general factor of brain white matter tract intracellular volume fraction, glVCF; a
general factor of brain white matter tract isotropic volume fraction, gISOVF; a general factor of brain

white matter tract orientation dispersion, gOD) capturing different aspects of brain morphology.

Phenotypic and genetic structure of the four indices of socioeconomic status.

The phenotypic correlations between the four indices of SES (Supplementary Table 1) were
all significant and ranged from » = 0.062 — 0.484 (mean = 0.268, SE range = 0.00143 — 0.00185, P <
10%2). A confirmatory factor model with a single common factor fit the phenotypic data poorly (x*(2)
=8530.202, p <0.001; SRMR=0.047; CFI=0.932; RMSEA = 0.131, TLI=0.795, Figure 1 & Table
1). The common factor explained 31.373% of the phenotypic variance across each of the four indices
of SES.

Using LDSC?* on each of the GWASs conducted on the indices of SES (occupational
prestige, household income, educational attainment, and social deprivation), a significant heritable
component was captured explaining between 3.5% - 13% of trait variation (Supplementary Table 2).
LDSC intercepts were consistently close to 1 for each SES measure indicating that polygenicity,
rather than population stratification or other factors, explained the inflation in GWAS association test
statistics (Supplementary Table 2).

Strong genetic correlations between indicators of SES (mean ;= 0.761, range r, = 0.563 —
0.963, SE range = 0.011 - 0.026) were observed (Supplementary Table 3). The moderate phenotypic
correlations but large genetic correlations indicate that whilst each measure of SES captures a
different environmental component, they each draw upon similar heritable traits. This was confirmed
by extracting a general genetic factor of SES using genomic structural equation modelling (Genomic
SEM?, Figure 1 B & Table 1) where, in contrast to the phenotypic data, a single factor explained the
covariance across the genetic data sets well (y2(2) = 184.737, p = 7.67x10*!; SRMR=0.051;
CFI=0.988). The general genetic factor of SES captured on average 76.30% of the genetic variance in

each indicator of SES with the proportion being consistent across occupational prestige, household
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income, and educational attainment (>75%), with the lowest being social deprivation where the
general factor captured 49.08% (Supplementary Table 4). This general factor of SES was then
regressed onto 7,462,726 SNPs to derive genome wide associations with SES. Furthermore, to
differentiate between SNPs whose loci are relevant to a general factor of SES from those whose
patterns of association are inconsistent with a general factor, we derive genome-wide heterogeneity
statistics using Genomic SEM?. The general genetic factor of SES had a h* = 9.40% (SE = 0.20%),
and showed little evidence of inflation in test statistics due to population stratification (LDSC
intercept = 1.06, SE = 0.02). In order to attain independent groups to perform Two-sample MR a
general factor of SES was also derived by omitting participants and their relatives who contributed
MRI data. This resulted in an effective sample size of 665,662 participants. This general factor had a
highly similar factor structure as the full data set (Supplementary Table 4) and a similar heritability
(h*=11.3%, SE = 0.30%).

Table 1.

Phenotypic SES

Factor loadings

Proportion of phenotypic variation

Indicator of SES Beta SE Common % Specific %
Occupational prestige 0.737 0.003 54.4 45.6
Household Income 0.516 0.002 26.6 73.1
Educational attainment 0.646 0.002 41.7 58.3
Social deprivation 0.168 0.002 2.8 97.2

Genetic SES

Factor loadings

Proportion of genetic variation

Indicator of SES Beta SE Common % Specific % h? % SE

Occupational prestige 0.966 0.02 93.23 6.77 11.01 0.43
Household Income 0.917 0.02 84.17 15.83 6.42 0.28
Educational attainment 0.887 0.02 78.75 21.25 12.25 0.36
Social deprivation 0.701 0.02 49.08 50.92 343 0.17

Table 1. Showing the standardised factor loadings for each of the four indicators of SES in the total sample. The
direction of social deprivation was reversed so that all scores indicate a greater level of SES across the four
indicators used. The upper portion shows the phenotypic structure of SES where the bottom portion shows the
genetic structure of SES. Common and specific, by definition sum to 100%, but for the genetic structure this
indicates the proportion from common and specific sources that contribute to the total heritability. The total
heritability was derived using LDSC implemented in genomic SEM.
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Figure 1. A. Showing the phenotypic and genetic correlations between the variables used. The lower diagonal
shows the genetic correlations whereas the upper diagonal shows the phenotypic correlations. The diagonal
shows the heritability estimates. Colour and size are used to illustrate the magnitude and directions of the
correlations. Both heritability and genetic correlations were derived using LDSC implemented in Genomic
SEM. Tabulated values are shown in Supplementary Tables 1-3. Social deprivation scores were reversed to
facilitate a comparison with the other measures of SES. B. Showing the standardised phenotypic (upper) and
genetic (lower) factor solutions for the covariance structure across the four indices of SES examined in the total
sample. Social deprivation scores were again reversed .C. A miami plot of the general factor of SES. The X axis
indicates chromosome and the y axis shows the —log(10) p value of each SNP with the upper section describing
its association with the general factor of SES where the lower shows the p value for the heterogeneity Q
statistics. TBV, total brain volume; GM, grey matter volume; WMH, white matter hyperintensity volume;
TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a proportion of intracranial volume;
WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as a proportion of
intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general
factor of brain white matter tract mean diffusivity; gIlVCF, a general factor of brain white matter tract
intracellular volume fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction;
NAWM, normal appearing white matter; gOD, a general factor of brain white matter tract orientation
dispersion.
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Estimating bi-directional causal effects of SES on brain structure.

Using Steiger filtering?® followed by two-sample Mendelian randomisation (MR)?’ a higher
SES was found to be a protective factor against WMHicv (B =-0.218, SE = 0.056, P = 8.63x107,
Table 2, Supplementary Table 5, Supplementary Figures 1 & 2). The use of both MR-Egger and
MR-PRESSO did not identify any horizontal pleiotropy and no significant heterogeneity was found
(Supplementary Table 5 & Supplementary Table 6). There was very little evidence of any other
causal effects.

In the reverse direction a greater total brain volume was associated with higher SES (f =
1.56x10°, SE = 1.85x107, P = 3.19x10°'%, Table 2, Supplementary Table 5 & Supplementary
Figure 3 & 4). No horizontal pleiotropy was detected using MR-Egger or MR-PRESSO but
significant heterogeneity was found (Supplementary Table 5 & Supplementary Table 6). None of

the other structural brain measures showed evidence of being a causal factor in differences in SES.
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Table 2.

IVW Causal effect estimate

Exposure  Outcome N SNPs Beta SE P
gFA 196 0.008 0.040 0.844
gICVF 187 -0.012 0.039 0.763
gISOVF 212 -0.018 0.037 0.615
GM 184 391.502 752.483 0.603
gMD 197 -0.020 0.037 0.583
GMicv 190 344811 1491.826 0.817
SES gOD 194 0.013 0.039 0.732
TBV 177 3000.435  3624.226 0.408
TBVicv 176 -1527.839  2553.570 0.550
WMH 203 -0.073 0.039 0.060
WMHicv 204 -0.218 0.056 8.63x107°

WMicv 184 -1099.961  1618.823 0.497
NAWM 234 -1377.250  1385.082 0.320
gFA 34 0.012 0.014 0.407
gICVF 51 0.001 0.008 0.925
gISOVF 22 -0.012 0.022 0.575
GM 22 7.71x107  1.11x10°° 0.486
egMD 27 -0.004 0.014 0.767
GMicv 20 -5.22x107  4.57x107 0.253
gOD SES 23 -0.003 0.027 0.921

TBV 34 1.56x10°%  1.85x107  3.19x10°17
TBVicv 28 -4.37x107  2.78x107 0.116
WMH 15 0.008 0.016 0.596
WMHicv 17 -0.033 0.021 0.117
WMicv 28 6.39x107  6.16x107 0.299
gFA 34 0.012 0.014 0.407
gICVF 51 0.001 0.008 0.925

Table 2. Showing the inverse variance weighted bi-directional causal effect estimate of socioeconomic status on
brain structure. Abbreviations: TBYV, total brain volume; GM, grey matter volume; WMH, white matter
hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a proportion of
intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as a
proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD,
a general factor of brain white matter tract mean diffusivity; gIVCF, a general factor of brain white matter tract
intracellular volume fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction;
gOD, a general factor of brain white matter tract orientation dispersion; SES, socio-economic status; SE,
standard error; P, p-value; SNP: single nucleotide polymorphism.
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Estimating causal effects of specific indices of SES on brain structure.

Following Steiger filtering, WMHicv’s were found to be a consequence of differences in
household income, occupational prestige, and educational attainment. The direction of effect was the
same across these indicators where a lower SES was found to be a causal factor in the increase of
WMHicv.

Specifically, increases in household income and educational attainment had protective effects
on WMHicv of B =-0.376, SE=0.111, P=0.001 and B = -0.593, SE=0.128, P = 3.77x10¢
respectively (Table 3, Supplementary Table 7 & Supplementary Figures 6-8). There was no
evidence that the results were influenced by horizontal pleiotropy using either MR-Egger®® or MR-
PRESSO? (Supplementary Table 7, Supplementary Table 8), and no evidence that the instruments
were capturing heterogeneous effects.

For occupational prestige the [IVW method indicated a protective causal effect on WMHicv of
B=-0.012, SE =0.006, P =0.041 (Table 3, Supplementary Table 7 & Supplementary Figure 8-9).
However, following control for the horizontal pleiotropy identified (Egger intercept = 0.017, SE =
0.008, P =0.043), this causal estimate increased to p = -0.069, SE = 0.028, P =0.017
(Supplementary Table 7). Horizontal pleiotropy was further examined using MR-PRESSO but no
SNPs were detected as outliers (Supplementary Table 8).

The causal effect of education on WMHicv was replicated using an independent sample from
the SSGAC. The education replication data set yielded a protective effect against WMHicv of = -
0.186, SE =0.083, P =0.026, with no evidence of horizontal pleiotropy, nor was there evidence of
heterogeneous effects (Q =36.138, Q df =49, Q P = 0.914, Supplementary Table 9 &
Supplementary Table 10).

In addition to causal effects on WMHicv, educational attainment was found to have causal
effects on WMH (Table 3 & Supplementary Table 7), where [IVW regression showed an effect of 8
=-0.352, SE = 0.088, P = 6.63x107. This effect was also replicated (B = -0.140, SE = 0.056, P =
0.012) in an independent sample (Supplementary Table 9) with no evidence that it was driven by
horizontal pleiotropy (Supplementary Table 10).

Despite the lower power of the social deprivation data set both a greater TBV (B = 23273, SE
=11127, P=10.036) and gMD (B =0.202, SE = 0.097, P = 0.038) were identified as being a
consequence of a greater level of social deprivation (Table 3, Supplementary Table 7 &

Supplementary Figure 10-11). No other causal effects of SES on brain structure were identified.
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Table 3.

Exposure Outcome N SNPs  Beta SE P

Occupation gFA 40 -0.005 0.005 0.241
gICVF 40 -0.006 0.004 0.146
gISOVF 45 0.000 0.004 0.976
GM 43 124.111 76.962 0.107
gMD 42 0.006 0.004 0.128
GMicv 44 -45.480 160.771 0.777
gOD 40 -0.003 0.004 0.468
NAWM 45 -162.456 145.800 0.265
TBV 39 599.245 398.727 0.133
TBVicv 42 -291.284 299.395 0.331
WMH 44 -0.007 0.004 0.074
WMHicv 40 -0.012 0.006 0.041
WMicv 39 -298.906 174.942 0.088

Income gFA 25 -0.007 0.082 0.936
gICVF 25 0.069 0.081 0.397
gISOVF 32 0.038 0.071 0.596
GM 29 -68.955  1414.282 0.961
gMD 30 0.005 0.072 0.941
GMicv 32 1429.539  3159.872 0.651
gOD 30 -0.133 0.074 0.074
NAWM 34 252.112  2712.329 0.926
TBV 24 7893.590  7423.438 0.288
TBVicv 32 -882.009  5111.349 0.863
WMH 32 -0.129 0.074 0.082
WMHicv 29 -0.376 0.111 0.001
WMicv 29 73.043  3035.213 0.981

Education gFA 122 0.093 0.091 0.310
gICVF 119 0.018 0.090 0.844
gISOVF 129 0.079 0.086 0.357
GM 124 2896.345  1677.108 0.084
gMD 125 -0.068 0.085 0.421
GMicv 128 1760.209  3455.139 0.610
gOD 127 -0.137 0.088 0.120
NAWM 138 -4544902  3271.494 0.165
TBV 113 8677.991  8273.687 0.294
TBVicv 121 -5193.254  5715.710 0.364
WMH 131 -0.352 0.088  6.63x10°
WMHicv 127 -0.593 0.128  3.77x10°®
WMicv 118 -5929.059  3680.657 0.107

Social deprivation gFA 1 0.018 0.194 0.925
gICVF 1 -0.135 0.190 0.478
gISOVF 2 0.006 0.118 0.958
GM 3 2392.843  1920.525 0.213
gMD 3 0.202 0.097 0.038
GMicv 2 -5209.837  6602.841 0.430
gOD 2 -0.133 0.126 0.288
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NAWM 3 -927.291  3898.798 0.812
TBV 2 23273.747 11127.260 0.036
TBVicv 2 -8374.616  7500.461 0.264
WMH 2 0.167 0.162 0.302
WMHicv 2 -0.014 0.182 0.937
WMicv 3 -487.951  5232.076 0.926

Table 3. Showing the IVW causal effect estimate of each indicator of SES on brain measures. Beta weights are
unstandardized and reflect the original unit of measure. Abbreviations: TBV, total brain volume; GM, grey matter volume;
WMH, white matter hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a
proportion of intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as
a proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general
factor of brain white matter tract mean diffusivity; glVCF, a general factor of brain white matter tract intracellular volume
fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; gOD,a general factor of brain white
matter tract orientation dispersion. Note in the event that only one SNP was available a Wald ratio was used as an inverse-
variance weighted model could not be derived.

Estimating causal effects of brain structure on indices of SES.

In contrast with the causal effects of greater SES on brain imaging traits which showed
evidence of causal effects on lower white matter and white matter hyperintensity traits, the causal
effects of brain structure on measures of SES provided evidence of total brain volume causally
contributing to each indicator of SES: occupational prestige (B = 2.15x107, P =4.57x107"),
household income (B = 1.67x10°, P = 1.02x107*?), and educational attainment (§ = 6.50x107, P =
1.62x1071%), and social deprivation (B = -1.84x10", P = 3.41x10®, Table 4 & Supplementary Table
7). MR-Egger regression indicated little evidence of horizontal pleiotropy as the MR-Egger intercept
was indistinguishable from zero in each comparison (Supplementary Table 7) and MR-PRESSO did
not detect any outliers influencing the causal estimate through horizontal pleiotropy (Supplementary
Table 8 & Supplementary Figure 12-14).

The causal effects of TBV on both educational attainment (B = 1.01x10°, P = 6.14x10) and
household income (B = 1.23x10®, P = 2.16x10) were replicated in to independent samples
(Supplementary Table 9). Neither of these replications showed evidence of horizontal pleiotropy
(Supplementary Table 9) however MR-PRESSO indicated that that three SNPs were distorting the
causal estimate (Supplementary Table 10). Following their removal, the significant causal estimate
was smaller but retained statistical significance (B = 7.62x1077, P = 2.00x10™).

In addition to total brain volume both WMicv and GMicv showed evidence of causal effects
on income, and occupational prestige respectively. However, MR-PRESSO identified four SNPs
distorting the causal estimate of WMicv on household income (Supplementary Table 8) and
following their removal, little evidence of a causal effect was found. Furthermore, no effect of WMicv
on household income was identified using the [IVW method performed in our replication sample
(Supplementary Table 8) indicating that this effect was potentially driven by horizontal pleiotropy or
a false positive. Similarly the use of MR-PRESSO removed the causal estimate of GMicv on
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occupational prestige but no individual SNP contributing to horizontal pleiotropy was identified

(Supplementary Table 8).

Table 4.
Exposure QOutcome N SNPs Beta SE P
gFA Occupation 34 0.156 0.251 0.534
Income 34 -0.004 0.014 0.747
Education 34 0.007 0.007 0.314
Social deprivation 34 -0.039 0.034 0.243
gICVF Occupation 53 0.058 0.161 0.720
Income 53 0.008 0.012 0.517
Education 53 0.003 0.005 0.586
Social deprivation 53 -0.037 0.022 0.093
gISOVF Occupation 22 -0.144 0.362 0.690
Income 22 0.002 0.019 0.911
Education 22 -0.008 0.010 0.441
Social deprivation 22 -0.015 0.037 0.681
GM Occupation 22 1.12x10° 1.81x10° 0.536
Income 22 9.11x107 1.28x10%  0.477
Education 22 3.57x107 5.39x107  0.509
Social deprivation 22 5.03x107 2.29x10%  0.826
gMD Occupation 29 -0.156 0.271 0.563
Income 29 -0.016 0.020 0.420
Education 29 -0.006 0.009 0.465
Social deprivation 29 0.044 0.033 0.184
GMicv Occupation 20 -1.44x10°3 6.99x10%  0.040
Income 20 9.01x10°8 4.22x107  0.831
Education 20 -3.70x107 2.14x107  0.085
Social deprivation 20 -3.96x107 9.94x107  0.690
gOD Occupation 24 0.130 0.450 0.772
Income 24 0.014 0.034 0.668
Education 24 0.003 0.015 0.854
Social deprivation 24 -0.032 0.033 0.335
TBV Occupation 34 2.15x10° 2.97x10°%  4.57x107"3
Income 34 1.61x10° 1.64x107 1.02x102
Education 34 6.50x107 8.82x10°% 1.62x1073

Social deprivation 34 -1.84x10 3.34x107  3.41x1078
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TBVicv Occupation 29 -4.10x10° 5.38x10° 0.445
Income 29  9.76x1078 3.44x107  0.777
Education 29 -5.67x10% 1.63x107  0.727
Social deprivation 29  4.58x107 5.11x107  0.370
WMH Occupation 16 0.218 0.251 0.385
Income 16 0.014 0.018 0.422
Education 16 0.003 0.008 0.674
Social deprivation 16 0.022 0.039 0.583
WMHicv Occupation 18 -0.334 0.290 0.250
Income 18 -0.033 0.022 0.146
Education 18 -0.011 0.009 0.246
Social deprivation 18 0.067 0.035 0.055
WMicv Occupation 28 7.92x10°6 1.07x105  0.461
Income 28 1.28x10° 5.94x107  0.031
Education 28 2.76x107 3.14x107 0379
Social deprivation 28 -2.30x107 8.12x107  0.776

Table 4. Showing the IVW causal effect estimate of each indicator of brain structure on socio-economic status. Beta weights
are unstandardized and reflect the original unit of measure. Abbreviations: TBV, total brain volume; GM, grey matter
volume; WMH, white matter hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a
proportion of intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as
a proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general
factor of brain white matter tract mean diffusivity; glVCF, a general factor of brain white matter tract intracellular volume
fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; gOD, a general factor of brain white
matter tract orientation dispersion.

The role of cognitive ability in the link between SES and brain structure

Genetic associations with SES variables are unlikely to be due to the identified variant
exerting a biological effect that contributes directly to the observed differences in SES''. Rather, the
observed SNP-trait association is more likely due to the effects of vertical pleiotropy where genetic
variation contributes towards heritable traits that are themselves responsible for the differences in
SES'12, Due to the strong genetic'® and phenotypic correlations between measures of SES and
cognitive ability, as well as the finding that cognitive ability is one of the likely heritable, causal, traits

113031 e examine if

on the phenotypic pathway between genetic inheritance and income differences
the heritable traits captured by GWAS conducted on the four indices of SES show causal effects on

brain structure that can be explained by cognitive ability.

Measures of SES capture a set of heritable traits common to each indicator

First, we use the heterogeneity (Q) statistics derived using our common factor model of
socioeconomic status and the GWAS results of each individual indicator of SES to examine if SNP
effects on the indicators are better explained as SNP effects that act on a latent factor common to each

indicator of SES (Table 5). Such evidence would be consistent with the idea that a GWAS conducted
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on each indicator of SES will capture similar heritable traits. FUMA3 was used to derive independent

genomic loci in the general factor of SES and in each of the four indictors. A total of 469 independent

genomic loci were identified for the general factor of SES, and of these 98 loci showed no overlap

with any indicator of SES indicating these loci act on the genetic architecture that is shared between

each indicator. Occupational prestige, household income, educational attainment, and social

deprivation were found to have 68, 73, 491, and 10 independent loci, respectively. However, only

eight loci for occupational prestige, 13 for household income and 143 associated with educational

attainment, and four for social deprivation were independent from the general factor of SES indicating

that the bulk of the genetic effects for each of these SES traits act on the same underlying heritable

trait/s.
Table S.
Trait N N significant loci  Independent of indicators Independent of Q loci Mean 2
(P <5 x10%) of SES loci
Multivariate GWAS
General factor of SES 893,604 469 98 467 2.76
N N significantloci  Independent of indicators  Independent of general ~ Mean ¥’
(P <5 x10%) of SES loci SES loci
Heterogeneity (Q) 893,604 7 1 5 2.76
N N significant loci Independent of general Independent of Q loci Mean 2
(P <5x10% SES loci
Indicators of SES GWASs
Occupational prestige 279,644 68 8 68 1.67
Household income 488,233 73 13 73 1.63
Educational attainment 753,152 491 143 485 2.77
Social deprivation 440,350 10 4 9 1.34

Table 5. Showing a summary of the general factor of SES multivariate GWAS and the univariate GWAS on

each indicator of SES.

Overlap of causal loci for cognitive ability and SES

Using MiXeR*, we examined the degree of polygenic overlap between cognitive ability with

the general factor of SES, as well as with each indicator of SES. We found that most of the loci

associated with each index of SES overlap heavily with loci associated with cognitive ability (Figure

2). The genetic relationship between cognitive ability and SES changed, modestly, depending on the

measure of SES used, and was not predicted by the genetic correlations. For example, both education

and occupational prestige showed a genetic correlation with cognitive ability of ~ r, = 0.75, however

where education had a large number of education specific causal variants (~1,500, SE = 700),

occupational prestige did not (Figure 2A). Furthermore, occupational prestige, which had a genetic

correlation with cognitive ability of a similar magnitude as educational attainment (7, = 0.60),

similarly showed no evidence of causal loci that were not also associated with differences on
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cognitive ability test scores. However, the comparison between occupational prestige and cognitive
ability did tentatively indicate that there were loci causal in cognitive ability test score differences that
were unrelated to differences in occupational prestige (Figure 2A & Supplementary Figure 15).

There was little evidence of cognitive ability loci that were not also associated with SES.

Estimating the bidirectional effects between cognitive ability and socioeconomic status.
Previous work has indicated a bi-directional causal relationship between educational

attainment with cognitive ability®*3!

and that cognitive ability is one of the causal factors in income
differences'!. Here we show a bi-directional causal relationship between the general factor of SES
with cognitive ability, and a bi-directional causal relationship between each indicator of SES with
cognitive ability (Table 6 & Supplementary Table 11). Following Steiger filtering, we find evidence
that higher cognitive ability was causally linked to having a higher level of SES using the general
factor of SES (B =0.192, SE = 0.012, P = 1.24x10->). Cognitive ability was also a causal factor in
each specific indicator of SES and was linked with a higher level of occupational prestige (f = 2.67,
SE =0.15, P =2.21x10"%), a greater level of household income (B =0.131, SE=0.011,P =
2.66x107"), a greater chance of attaining a university level education (8 = 0.077, SE = 0.004, P =
5.75x10%7), and decrease in level of deprivation in which one lives (B = -0.84, SE = 0.025, P = 0.001,
Table 6 & Supplementary Table 11). There was evidence of heterogeneity in each estimate of the
causal effects of cognitive ability on SES as indicated by significant Cochran’s Q statistics®®
(Supplementary Table 11). This heterogeneity statistic provides an indication of the variability of
the estimated effect between SNPs and can arise if the SNPs have horizontal pleiotropic effects.
However, there was little evidence that horizontal pleiotropy biased the causal estimates of cognitive
ability on SES; the MR Egger regression intercepts were close to zero and MR PRESSO indicated no
significant distortion in the causal estimate due to SNPs with a horizontal pleiotropic effect
(Supplementary Table 12, & Supplementary Figures 16-18).

Using the GWASs conducted on each SES variable, instrumental variables were identified to
examine if they captured heritable traits that were causal factors in differences in cognitive ability. We
find evidence that in addition to the causal effect on the general factor of SES (B = 1.159, SE = 0.045,
P =1.19x10"'*), increases in cognitive ability were a consequence of increases in education (B =
2.433, SE=0.129, P = 7.54x10"°), income (B = 1.103, SE=0. 116, P = 2.17x10"), and occupational
prestige (B =0.071, SE = 0.007, P = 7.93x107), whereas there was weak evidence that the heritable
traits linked to increases in social deprivation acted to reduce cognitive ability (B =-0.415, SE =
0.121, P =0.001, Supplementary Table 11). As with the causal effects of cognitive ability on SES
there was significant heterogeneity in the estimates (Supplementary Table 11) but little evidence of
bias arising due to horizontal pleiotropy indicated by the MR Egger intercepts not being significantly
different from zero and no distortion detected using MR-PRESSO (Supplementary Table 12 &
Supplementary Figures 19-21).
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Table 6.
IVW Causal effect estimate
Exposure Outcome nSNPs Beta SE P
General SES 77 0.192 0.012  1.24x103
Occupation 72 2.665 0.151 2.21x10%
Cognitive ability Income 75 0.131 0.011 2.66x107!
Income (replication) 70 0.078 0.017 3.32x10°
Education 65 0.077 0.004 5.75x10°%7
Education (replication) 58 0.123 0.012 8.53x10%
Social deprivation 79 -0.084 0.025 0.001
General SES 185 1.159 0.045 1.19x10"'%
Occupation 37 0.073 0.007  2.97x10%
Income Cognitive ability 27 1.175 0.120 9.51x102
Education 127 2.678 0.133  5.46x10™°
Education (replication) 44 0.870 0.097 2.87x10°%°
Social deprivation 3 -0.415 0.121  0.001

Table 6. Showing the bi-directional total causal effects of cognitive ability on the general factor of SES and
each of the four indicators of SES. Beta weights are unstandardized and reflect the original unit of measure.

The bidirectional causal effect of cognitive ability on brain structure

Consistent with the idea that GWASs of SES capture variance in cognitive ability, we find
evidence that cognitive ability has a protective causal effect on WHMicv (B = -0.080, SE = 0.026, P =
0.002). Furthermore, and again consistent with what was identified for measures of SES, there was
evidence to suggest a greater total brain volume resulted in a higher level of cognitive ability (B =
3.97x10%, 4.96x107, 1.28%107'%). No evidence of horizontal pleiotropy was identified using MR
Egger (Eggetintercept P = 0.492) and MR-PRESSO found no evidence of distortion in the causal
estimate following the removal of five SNPs with evidence of horizontal pleiotropy (MR-PRESSO
distortion P-value = 0.516). There was however, significant heterogeneity in the causal estimate of
TBV on cognitive ability (Q P-value = 1.85x107'°, Supplementary Tables 13-14 & Supplementary
Figures 22-24).

Direct effects of SES on brain structure

Using Multivariable MR (MVMR)** to control for the effects of cognitive ability on each of
the SES variables we examine if the causal effects of each SES variable on brain structures were
independent of cognitive ability.

When both cognitive ability and the general factor of SES were included in a single
multivariate model there was evidence that SES effects on WMHicv that were independent of
cognitive ability (total effect p =-0.218, SE = 0.056, P = 8.63x10°, direct effect p =-0.182, SE =
0.079, P =0.022).

However, for the indicators of SES, following adjustment for cognitive ability, a steep decline
of in the point estimate of the effect sizes was evident when comparing between the total and direct

effects (Figure 2B). Furthermore, beyond the effects of cognitive ability on WMHicv there were no
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direct effects of occupational prestige (total effect p =-0.069, SE = 0.028, P = 0.017, direct effect p =
-0.001, SE = 0.008, P = 0.886, 98% reduction of direct effect), household income (total effect = -
0.294, SE =0.128, P =0.021, direct effect p = -0.115, SE = 0.147, P = 0.436, 61% reduction of total
effect) or educational attainment (total effect B = -0.218, SE = 0.055, P = 7.64x107, direct effect p = -
0.128, SE =0.076, P =0.091, 41% reduction of total effect, Figure 2B).

The reduction in the causal estimate of cognitive ability on WMHicv following the inclusion
of each indicator of SES was more modest (range of reduction 15%-2%) with cognitive ability still
retaining a significant causal effect on WMHicv following the inclusion of household income (total
effect = -0.08, SE = 0.026, P = 0.002, direct effect p = -0.078, SE = 0.034, P = 0.036). Following the
inclusion of occupational prestige (direct effect B =-0.078, SE = 0.041, P = 0.057), educational
attainment (direct effect  =-0.068, SE = 0.037, P = 0.068), of the general factor of SES (direct effect
B=-0.027, SE = 0.038, P = 0.48) there was no significant effect of cognitive ability on WMHicv
(Supplementary Table 15).
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Figure 2.
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Figure 2. A. Venn diagram of cognitive ability and the four indices of SES showing the unique and shared
genetic components at the causal level. Grey illustrates the polygenic overlap between trait pairs, orange shows
the SES specific components, and blue the unique contributors to cognitive ability. Numbers indicate the
estimated quantity of causal variants in thousands with the standard error in brackets. The size of the circle
indicates the degree of polygenicity for each trait pair. B. Illustrating the total and direct effects of
socioeconomic status, occupational prestige, household income, and educational attainment. Colour represents
trait and solid shapes indicate a statistically significant causal estimate. Error bars show =+ one standard error
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Discussion

Those individuals from more advantaged socioeconomic backgrounds will typically have
fewer instances of poor physical and mental health compared to those from more deprived
backgrounds'>”7. Understanding the causes of such differences has the potential to decrease health
disparities and improve our understanding of the intricate working of societal risk factors of illnesses.
In the current study we examine the role that SES plays on brain structure by performing a
multivariate GWAS to capture sources of SES differences that effect the individual, the household,
and the area in which one lives. Our GWAS on SES was then used to derive instrumental variables to
examine the causal effect differences in SES has on brain morphology and health. The current study
contributes to our understanding of the genetic contributions to SES in at least five ways.

First, we show that whilst a common phenotypic factor explains only 31.2% of
phenotypic variation across each indicator of SES, our multivariate general genetic factor of SES
accounted for on average 76% (range =49%-93%) of the genetic variation found across occupational
prestige, household income, educational attainment, and social deprivation. Furthermore, our common
factor model showed that the same heritable traits underlie the bulk of the heritable variation in SES
across each of the indicators where, of the 469 independent genomic loci identified, only two showed
evidence of a heterogenous effect indicated by a significant Q value. This asymmetry in the variance
captured by a common phenotypic factor of SES compared with the variance captured by a common
genetic factor of SES, and the finding that the majority of loci associated with the general factor acted
on each of the four indicators of SES, implies that although each indicator captures a different
environmental component of SES, the heritable traits that give rise to these phenotypic differences are
largely the same.

The identification of this common genetic factor of SES allows for the recontextualisation
of the results of previous GWAS that have been conducted on individual indicators of SES.
Specifically, many of the loci identified in univariate GWAS of a single indicator of SES are
generalisable to SES more broadly, as they are associated with all indicators that load on the general

genetic factor of SES. For example, previous GWAS examining educational attainment'’

and
income'! have reported 3,952 and 149 loci respectively as showing an association with a specific
indicator of SES. Here, we find that 78.8% of the genetic variance of educational attainment and
84.2% of the genetic variance of income is through this general factor of SES indicating that only a
minority of the loci captured by those GWAS on specific indicators of SES will be trait specific.

Second, we find evidence that cognitive ability is one of the likely causal traits captured
by GWAS on SES. By using MiXeR3? we show that of the estimated 11,000 causal variants for
cognitive ability, 10,800 are shared with the general factor of SES with only 1,800 causal variants for
SES not shared with cognitive ability. Whilst MiXeR cannot differentiate between vertical and

horizontal pleiotropy**, across each indicator of SES there was little evidence of loci associated with

cognitive ability that were not also associated with differences in SES, consistent with the hypothesis
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that differences in cognitive ability are one of multiple heritable traits that influence differences in
SES.

By using Two-sample MR we were able to confirm that vertical pleiotropy, and not
horizontal pleiotropy, best explained the overlapping genetic architecture between cognitive ability
and SES identified using MiXeR. Higher cognitive ability was one of the causal elements of having a
greater level of the general factor of SES, a higher occupational prestige and educational attainment, a
higher household income, and living in a less deprived environment. This effect was replicated using
educational attainment and household income data sets that included participants from outside the UK
indicating these effects were not specific to the UK or to the participants of UK Biobank. These
effects were bidirectional and differences in SES were also shown to influence cognitive ability.

Third, using Two-sample MR we show that higher levels of this common factor of SES is
a consequence of a greater total brain volume and a likely causal factor in lower levels of white matter
hyperintensities (WMHicv). White matter hyperintensities are white matter lesions that, on fluid
attenuated inversion recovery (FLAIR) MRI scans, show a signal intensity that is brighter than
surrounding white matter®>. WMHs are associated with vascular risk and small vessel disease®® and
may indicate permeability in the blood brain barrier as well as axonal and myelin degeneration?’
Furthermore, increases in WMH volume are associated with cognitive decline and higher risk of
Alzheimer’s disease, as well as with lower levels of cognitive ability>®.

In the context of non-clinical community-dwelling adults, WMH volume is also a frank
marker of neurodegeneration, being of extremely low prevalence in young adulthood®. However,
lower levels of cognitive ability at age 11 are associated with greater WMH volume at age 73%
indicating that they may influence the trajectory of cognitive decline in adulthood and older age. Our
finding that SES was a likely causal factor for WMHicv indicates that lower levels of SES act as a
risk factor for the development of WMH across the adult lifespan and may, through the accumulation
of damage caused by WMH, increase the rate of cognitive decline and the likelihood of a dementia
diagnosis in older age. In contrast, our finding that TBV was a causal factor for SES and cognitive
ability may indicate that TBV (which reaches its peak in early adulthood*') is a risk factor that
influences the rate of cognitive development in childhood.

Fourth, we show using MVMR, that there are causal effects of SES on WMHicv
independent of cognitive ability. In the same way a polygenic score captures the aggregate effect of
the SNPs used in its construction*’, so each SNP in a GWAS conducted on SES will capture the
aggregate effect of each heritable trait linked to differences in SES'?. Using MVMR we were able to
remove the effect of one of these traits, cognitive ability, in order to gauge the effect of the remaining
traits captured by SES on brain morphology. In doing so we show that the direct effects of SES are
protective against WMHicv. This is consistent with the idea that the general factor of SES captures a
constellation of risk from multiple genetically influenced traits and higher levels of SES are not

protective solely due to them capturing differences in cognitive ability!®!!. These traits could be social
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health factors* or aspects of personality linked to health, such as conscientiousness, which is
phenotypically linked with lower instance of disease** and greater longevity*® and shows genetic
correlations with mental health traits such as MDD, ADHD, and schizophrenia*. Previous work
examining educational attainment, an indicator of SES, identified that differences in wellbeing,
health, and personality have been shown to make a contribution to the heritability of educational
attainment that is independent from cognitive ability'°.

Fifth, with the qualified exception of educational attainment, which showed ~15,000
causal loci not also linked to differences in cognitive ability, no evidence was found for loci
associated with indicators of SES that were not also loci associated with cognitive ability. However,
we find no evidence that these non-cognitive aspects of educational attainment*” were causally
associated with WMHicv.

Our study has limitations that should be considered when interpreting the results. First, all
samples used were from western European societies and cultures of the 21* century. The importance
of this caveat is underscored by the observation that the heritable traits that give rise to differences in
SES are unlikely to be universal and will be specific to the cultures and samples examined!*!4,
Without studies aiming to examine the heritable traits that give rise to SES and the role these play in
brain structure in other cultures, meaningful comparisons between the present study and other cultures
are unwarranted.

Second, genetic variants captured by our measures of SES are likely to have pleiotropic
effects*®. To satisfy the assumptions that the genetic association with the outcome is entirely mediated
via the exposure, we performed Steiger filtering to remove variants that are more strongly associated
with outcome than the exposure (i.e. reverse causation). Although removing invalid instrumental
variables and only keep likely vertical pleotropic instrumental variables can improve the validity of
causal effects, such data-driven selection of instrumental variables may yield over precise causal
effects, especially when the majority of instrumental variables are affected by heterogeneity.
Furthermore, in order to break the assumptions of MR it is not sufficient for the genetic variants in the
instrumental variable to have pleiotropic effects*’, rather the genetic variants must have horizontally
pleiotropic effects that are mediated through mechanisms other than those captured by SES. For
example, should genetic variants have vertically pleiotropic effects, e.g. SNP->neuron-> cognitive
ability ->education->income->health->brain structure, then our MR derived causal estimates will not
be biased. Furthermore, should the SNPs affect other phenotypes, but these phenotypes do not affect
the outcomes, then our MR estimates will not be biased. Whilst it is possible that the genetic variants
identified in our GWAS conducted on measures of SES do have horizontally pleiotropic effects, it is
unclear what mechanisms would mediate such effects (e.g. personality). In the current study we
investigate potentially pleiotropic effects using multivariable Mendelian randomization to examine
the role of cognitive ability. Future research should use multivariable Mendelian randomization to

investigate this the role of other traits that link SES to brain structure.
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Third, there is the potential that indirect genetic effects will contribute to the MR estimates™’.
Indirect genetic effects refer to one individual’s genotype influencing the outcome of another
individual’s phenotype, for example, a parent providing material resources for their offspring which
may affect SES or cognitive ability. Detecting the magnitude of potential bias resulting from dynastic
effects is challenging outside of using family-based data, and at present no such data exist.

Finally, molecular genetic studies examining traits such as cognitive ability and
socioeconomic status are prone to misunderstanding and mischaracterisation. These
mischaracterisations can include arguments based around genetic determinism where the role of the
environment is disregarded in favour of creating myths about immutable, biological differences
underlying trait variation, something incompatible with current knowledge of complex traits. In order
to communicate our research findings to a general reader in an ethical and socially responsible way,
we have provided an FAQ document in Supplementary Note 1.

Overall, this study offers new insights into the complex interactions between socioeconomic
status (SES), brain development and the risk factors underlying cognitive decline. Employing modern
analytical methods on extensive datasets, the findings significantly contribute to our comprehension
of factors that influence physical and mental health. Ultimately, these results could highlight potential

modifiable risk factors for maintaining cognitive ability in older-age.
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Methods
Samples

European samples from UK Biobank®' were retained if they had genetic information
available, sex that was consistent between self-reported and inferred using genotype, no sex
chromosome aneuploidies, not having been detected as extreme outliers of heterozygosity and
missingness, having not withdrawn consent, and having a genotyping rate greater than 0.9. This
resulted in 435,340 participants being available for analysis. European ancestry was identified from
the UK Biobank participants that self-reported as white. Principal components (PC) were derived
from the genotype data and participants were excluded if they were outside of a mean + 3 standard
deviations from the first six principal components. For our general factor of SES we used all
participants who had provided phenotypic data on at least one of our measures of SES.

For our Mendelian randomisation analysis we derived two independent samples using the
participants of UK Biobank. The brain imaging subset which consisted of 38,371 participants that had
at least one MRI phenotype, and the SES and cognitive ability group that consisted of 383,220
participants who did not have any MRI phenotype and were not genetically related to anyone in the
outcome set based on the pairwise kinship reported by UK Biobank. Ethical approval was granted by
UK Biobank and this project was conducted under UK Biobank application 10279.

Exposures and outcomes

Two-sample Mendelian randomisation (MR) was used to examine the causal effects of
cognitive ability and socioeconomic status on 13 structural brain imaging measures.

Five cognitive and socioeconomic status variables were considered from UK Biobank,
cognitive ability, income, social deprivation, occupational prestige, and educational attainment.
Income was measured at the level of the household (HI, N=327,402), which was measured in UK
Biobank using an ordinal scale of 1 — 5 corresponding to the participants level of household income
before tax (1 =< £18,000, 2 = £18,000 - £30,999, 3 = £31,000 - £51,999, 4 = £52,000 - £100,000, 5 =
>£100,000).

Social deprivation was measured using the Townsend deprivation index (TS, N=382,030).
The Townsend deprivation index is an area-based measure of SES derived using the participant’s
postcode. Townsend scores were calculated immediately prior to joining UK Biobank and are formed
from four measures: the percentage of those aged 16 or over who are unemployed, the percentage of
households who do not own a car, do not own their own home, and which are overcrowded. Scores
were multiplied by -1 when used for deriving phenotypic and genetic correlations as well as for use in

in Genomic SEM to ensure that the direction of effect was the same across each measure of SES (i.e.


https://doi.org/10.1101/2024.03.13.584410
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.13.584410; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

a greater score indicates a higher level of SES). However, for use in Mendelian randomisation the
original direction of effect is retained where a greater score indicates higher level of deprivation (i.e. a
lower level of SES).

Occupational prestige was measured using the Cambridge Social Interaction and Stratification
Scale (CAMSIS, N=242,776) and was derived using job code at visit (data field 20277) in UK
Biobank transformed using the method described by Akimova et al. (2023)%. In brief, the CAMSIS
uses the idea social stratification acts to create differential association where partners and friends are
typically selected from within the same social group. Thus, CAMSIS captures the distance between
occupations by measuring the frequency of social interactions between them.

Educational attainment (EA, N=377,477) was measured by transforming educational
qualifications found in UK Biobank to a binary variable where ‘1’ indicated that the participant had
attained a university level degree and ‘0’ indicated that they had not.

Due to the high genetic correlations between measures of SES and cognitive ability!'”!* and
the finding that cognitive ability is a likely causal variable in differences in SES in the UK!!30-!
cognitive ability was also included as an exposure variable. Cognitive ability was measured using the
verbal-numerical reasoning test (VNR, N = 183,321) in UK Biobank. This test consists of 13 (14 for
the online version of the test) multiple-choice questions (six verbal and seven numerical) which are to
be completed within a two-minute time limit. A participant’s score on each of the questions is then
summed to provide an overall measure of the participant’s level of cognitive ability. Participants
either completed the VNR test at the assessment centre at one of four time points or completed an
online version of the VNR test. If participants took the VNR at multiple time points, only the first
instance of the test was used to avoid capturing practise effects in the assessment of the participant’s
level of cognitive ability.

Brain structural and diffusion neuroimaging data were acquired, processed and QCd by the
UK Biobank team as Imaging Derived Phenotypes (IDPs) according to open access publications®*-**

and online documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Global

macrostructural outcomes of interest were: total brain volume (TBV), total brain volume as a
proportion of intracranial volume (TBVicv), total grey matter volume (GM), total grey matter volume
as a proportion of intracranial volume, (GMicv), white matter hyperintensity (WMH) volume, white
matter hyperintensity volume as a proportion of intracranial volume (WMHicv), normal-appearing
white matter volume (NAWM, total white matter volume — WMH), white matter volume as a
proportion of intracranial volume (WMicv), and five global white matter microstructural measures.
The latter were derived from twenty-seven major white matter tracts, for which five tract-averaged
white matter diffusion properties were available as IDPs (UK Biobank Category ID 135): fractional
anisotropy (FA), mean diffusivity (MD), intra-cellular volume fraction (ICVF), isotropic volume
fraction (ISOVF) and orientation dispersion (OD). We ran five PCAs of all 27 tracts; a separate model

for each of the five properties. The first unrotated component of each PCA was extracted for further
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analysis, yielding five global white matter measures (gFA, gMD, gICVF, gISOVF and gOD) which
explained 44%, 50%, 68%, 37% and 26% of the variance, respectively. Prior to analysis, participants
with the following conditions (UK Biobank field ID 20002.2) were excluded at the outset: dementia,
Parkinson’s disease, Guillain-Barré, multiple sclerosis, stroke, brain haemorrhage, brain/intracranial
abscess, cerebral aneurysm, cerebral palsy, encephalitis, epilepsy, head injury, infection of the
nervous system, ischaemic stroke, meningioma, meningitis, motor neurone disease, spina bifida,
subdural haematoma, subarachnoid haemorrhage, transient ischaemic attack, brain cancer, meningeal
cancer, other demyelinating or other chronic / neurodegenerative illness, or other neurological
injury/trauma. Outliers (>4SDs from the mean, which represented <0.1% of the data in all cases) were
then removed from all IDPs prior to analyses. As detailed above, there was no sample overlap
between the participants who provided brain imaging data and the participants who provided data

pertaining to their SES or cognitive ability.

Study design and data sets

A valid inference from MR is dependent on satisfying three assumptions: relevance, meaning
that the genetic variants must be associated with the risk factor of interest; independence, that the
there are no unmeasured confounds of the associations between genetic variants and the outcome;
exclusion restriction, that the genetic variants affect the outcome only through the effect they have on
the exposure®.

Instruments for each exposure were identified using SNPs that attained genome-wide
significance (P < 5x10®). These SNPs were then clumped using the 1000G European reference panel
and an r* = 0.001, with a 10 Mb boundary. The most significant SNP in each clump was used as an
instrumental variable. As all GWAS conducted for this study were performed on the same strand, no
palindromic SNPs were excluded from these analyses. The effect of each SNP on the exposure and on
the outcome was harmonised to ensure that the effect allele is the same across the exposure and the
outcome traits. Steiger filtering was used to ensure that the detected direction of effect (i.e. from
exposure to outcome) was correct. Non-Steiger filtered results are also available in Supplementary
Tables 16-20.

Inverse variance weighted (IVW) regression was used to examine identify putatively causal
effects. If there is only one SNP to be used as an instrumental variable, Wald ratio was used.
Sensitivity analyses were conducted using MR Egger regression and MR Pleiotropy Residual Sum
and Outlier (MR-PRESSO).

Genetic contributions to SES traits are unlikely to be due to a direct genetic effect and is
probably the result of multiple heritable traits''"'2. Furthermore, cognitive ability shows high genetic
correlations with measures of SES!'? and is likely to be one of the causal heritable traits between

genetic inheritance and differences in SES'!. We applied Multivariable Mendelian Randomisation
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(MVMR)** to examine the causal effects of SES independent of cognitive ability. For MVMR SNPs
that were genome-wide in both exposures were retained. Steiger filtering was applied for both

exposures on the outcome.

Replication data sets

Replication of significant causal effects was examined using independent GWAS data set of
educational attainment (measured as the number of years of schooling an individual has completed)'?
and household income (measured as the total annual household income prior to tax)*®. Following the
removal of the participants of UK Biobank, the sample sizes were educational attainment N= 324,162,
and household income N = 108,635 (Supplementary Table 2). The replication data set for education
showed a large significant genetic correlation of r; = 0.960, SE = 0.015, P = 0 with education in UK
Biobank, as did the two household income data sets 7, = 0.957, SE = 0.065, P = 0.

Meta analysis of income and education
Data provided by the SSGAC was used to add power to the general factor of SES as well
acting as a replication sample for educational attainment and household income and for use in
MVMR. For both meta-analyses, METAL®” was used to conduct a sample size weighted meta-
analysis from which Beta values and standard error obtained using the following equation as provided
by Zhu et al. (2016).
_ Z

d 2 X MAF x (1 — MAF) x (N + Z2)
B 1
2 X MAF x (1 — MAF) X (N + Z%)

SE

, where MAF is the minor allele frequency, N is the sample size, and Z is the test-statistics.

Genome-wide association studies

Genome-wide association studies (GWASs) were conducted in Regeine v3.1.3%°. Regeine
uses a two-step approach to account for sample relatedness and population structure. In the first step,
a whole genome regression model was fit to each trait (Exposures and outcomes) using 564,253
genotyped variants. These variants have minor allele frequency (MAF) > 0.01, call rate > 0.9, and
Hardy-Weinberg Equilibrium of HWE-p value > 10715,

In the second step, an association test was performed for each of the 13,192,861 imputed
variants using a LOCO (leave-one-chromosome out) scheme. These variants have MAF > 0.001 and
INFO > 0.8. For binary phenotypes (i.e. Educational attainment), firth logistic regression test was

performed in the second step.
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The per-chromosome LOCO genomic predictions produced in the first step were fitted in the
second step to account for sample relatedness and population structure. In addition, sex, age at
assessment, assessment centres, genotyping array, genotyping batch, and the first 40 PCs derived from
genotype data were fitted as covariates in both steps. For cognitive ability, participants’ who took the
VNR at an assessment centre were analysed together including time point (1-4) as an additional
covariate before being meta-analysed with the participants whose first instance of taking the VNR
was online. Regarding brain imagining phenotypes, three-dimensional head position along the X, Y,
and Z axis were fitted as extra covariates. For TBV height was fitted as an additional covariate and for
GM and NAWM both height and TBV were fitted. For VNR, the GWASs were performed in
participants who took test in the assessment centre, and those took online test separately, before

combining the results with an inverse variance weighted model®.

Linkage Disequilibrium Score Regression (LDSC)
Using the 1000G European reference panel LDSC?** was performed to estimate the heritability
of the exposure and outcome traits. In addition the intercept of each LDSC regression was used to

examine the GWAS association test statistics for inflation due to factors other than polygenicity.

MiXeR

MiXeR v1.3 (https://github.com/precimed/mixer) was used to examine the genetic overlap

between cognitive ability and SES traits. First, a univariate model®' was run to study the polygenicity
(i.e. number of variants) of each trait using the Z-score from GWAS summary statistics and 1000G

European LD panel. Second, a bivariate model**

was used to estimate the genetic overlap (i.e. number
of variants shared between cognitive ability and SES traits) using the parameters learned from the
univariate model. The analysis was repeated twenty times using 2 million randomly selected SNPs at
each time. The results across twenty runs were then averaged and the genetic overlap of the best

model with the lowest —log likelihood ratio was plotted (Supplementary Figure 15).

Phenotypic and genomic structural equation modelling

Phenotypic common factor of SES was derived in R using factor analysis in psych® package
on standardised occupational prestige (n = 279,644), household income (n = 488,233), educational
attainment (n = 753,152), and social deprivation (n = 440,350) phenotypes. Note that as sample
overlap is controlled for in Genomic SEM these samples sizes are larger than those used in our Two-
sample Mendelian randomisation analysis described above. Regarding genetic common factor of SES,
we used genomic structural equation modelling® to derive LDSC—based*® genetic correlations and
covariances between occupational prestige, household income, educational attainment, and social
deprivation. Next, the covariance structure between each of the four measures of SES was used to

derive a genomic structural equation model to examine their loading on a single factor of SES. This
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common factor model was ran using SNPs from each indicator of SES where MAF >0.01 and INFO >
0.9. We then performed a multivariate GWAS using genomic SEM where 7,462,726 SNPs with MAF
>0.01 and INFO >0.6 were included to derive genome-wide summary statistics describing each SNPs
association with the common factor of SES. In addition, we derived genome-wide heterogeneity (Q)
statistics describing the degree to which a given SNP is likely not acting on single latent factor of

SES.

Loci identification and overlap

For each trait, genomic risk loci were identified by FUMA? (version v1.3.6a) using 1000G
EUR reference panels. Briefly, FUMA performed two LD clumpings. The first clumping was designed
to define independent signals (genome significant SNPs at P < 5x10°*) with 7/ > 0.6. In the second
clumping, independent signals were clumped into one genomic locus if the 7 between two signals is >
0.1 or two signals are within 250kb. The SNPs clumped into each genomic locus naturally formed its
physical boundary.

We compared the positions of genomic loci between two traits locus-by-locus. We define that
a locus of trait A overlaps with trait B, if the positions of any trait B loci overlap with the position of
that trait A locus. For the general factor of SES, we define a locus is unique to general SES if that locus
does not overlap with any of the four contributing traits. For the four contributing traits of general SES,

we define a locus is unique to that trait if that locus does not overlap with general SES.


https://doi.org/10.1101/2024.03.13.584410
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.13.584410; this version posted March 19, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Data availability

Summary statistics GWASs for the general factor of socioeconomic status, social
deprivation, occupational prestige, and the discovery GWAS data set for household income, and
educational attainment will be available on GWAS catalog upon publication

(https://www.ebi.ac.uk/gwas/). The replication samples are available on request from the Social

Science Genetic Association Consortium (https://www.thessgac.org/).
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