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Abstract 

 

Socioeconomic status (SES) influences physical and mental health, however its relation with brain 

structure is less well documented. Here, we examine the role of SES on brain structure using 

Mendelian randomisation. First, we conduct a multivariate genome-wide association study of SES 

using individual, household, and area-based measures of SES, with an effective sample size of 

n=893,604. We identify 469 loci associated with SES and distil these loci into those that are common 

across measures of SES and those specific to each indicator. Second, using an independent sample of 

~35,000 we provide evidence to suggest that total brain volume is a causal factor in higher SES, and 

that SES is protective against white matter hyperintensities as a proportion of intracranial volume 

(WMHicv). Third, we find evidence that whilst differences in cognitive ability explain some of the 

causal effect of SES on WMHicv, differences in SES still afford a protective effect against WMHicv, 

independent of that made by cognitive ability. 
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Introduction 

Socioeconomic status (SES) is a multi-dimensional construct influencing, and influenced by, 

multiple physical, socio-cultural, and environmental factors. Differences in SES are a determining 

factor of health where those from more advantaged backgrounds have a higher level of physical 

health, mental health and psychiatric conditions, are less likely to receive a dementia diagnosis, and 

live longer lives1-4. These inequalities in physical health, and mental health are present across different 

indicators of SES and have been found for occupation, income, educational attainment, and measures 

of social deprivation1,5-7. The communality of such findings highlights the need to examine the 

influence of SES using a multifactorial approach to examine the causes and consequences of 

differences in SES.  

As with any other quantitative trait, such as height or weight, differences in SES have a 

heritable component8 meaning that genetic differences within a population will covary with 

phenotypic differences. However, and unlike traits such as height or weight, such genetic differences 

associated with SES are unlikely to form part of a biological pathway from gene to phenotype 

directly, but are more likely the result of a phenotypic pathway, known as vertical pleiotropy9, where 

a number of traits (which are themselves heritable) contribute towards differences in SES10-12. As 

such, the heritability of SES is not static, and differences between societies can result in differences in 

the heritable traits that give rise to the observed differences in SES13,14.  

Despite the genetically heterogeneous nature of SES, genome-wide association studies 

(GWAS) examining indicators of SES such as measures of income11, educational attainment15, and 

social deprivation8 have identified hundreds of associated genetic loci. These genetic indicators of 

SES are also linked to physical health outcomes, indicative of a common genetic aetiology between 

SES and physical health8,11,15. Furthermore, psychiatric traits including schizophrenia, major 

depressive disorder, and attention deficit hyperactivity disorder, as well as neurological disorders such 

as Alzheimer’s disease, early-onset stroke, and intra-cerebral haemorrhage also share genetic effects 

with measures of SES16. As with genetic influences that act on SES, these links between SES and 

brain-related health outcomes may themselves include other phenotypes such as neuroanatomy11.  

Genetic links between SES and brain morphology have been identified previously where 

genes highly expressed in the brain and both neuronal and glial cells are enriched for their 

associations with both income11 and educational attainment17. Furthermore, strong genetic correlations 

are found between indicators of SES and brain morphology where a genetic correlation of rg = 0.34, 

SE = 0.07, P =1.2×10-6 has been identified between intracranial volume and educational attainment18, 

and loci associated with cognitive ability19 are found to be overrepresented in the associated loci from 

a GWAS of income11. These genetic links between SES and brain-based phenotypes have been 

explored using Mendelian randomisation (MR) to examine the direction of causality between them. 

For example, evidence of bidirectional causal effects was found between poverty (n = 668,288) and 

mental illness20 using MR.  
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However, the following are some fundamental gaps in our understanding of the relationship 

between SES and brain structure. First, do different indicators of SES confer the different levels of 

risk or is SES best captured using a single factor? Second, is there evidence for causality in the 

relationship between SES and brain morphology? Third, to what extend does differences in cognitive 

ability explain the relationship between SES and brain morphology? 

Importantly, the use of brain morphology as an outcome in MR can allow for the risk factors 

of late-life cognitive function that act on cognitive decline in adulthood to be distinguished from those 

that differentiate the trajectory of cognitive growth through childhood. The importance of which is 

underscored in the context of dementia which, whilst typically diagnosed using cognitive tests such as 

the Mini-Mental State Examination21, is distinguished from other neurodevelopmental disorders (such 

as intellectual disability) by a progressive later-life loss of cognitive ability that affects daily life22. As 

such, risk of dementia can be seen to be composed of two components: cognitive development 

influencing the level of cognitive function prior to the onset of cognitive decline and, the rate at which 

decline occurs. Whilst large GWAS of cognitive decline are currently lacking, MR combined with 

GWAS conducted on frank indictors of brain ageing, such as white matter hyperintensities23, can be 

used to identify potentially modifiable risk factors causal in brain ageing.  

In the current study, we combine multivariate analysis with MR to examine the bidirectional 

effects between SES and brain morphology and to examine likely heritable traits that are captured by 

measures of SES, and to identify potentially modifiable risk factors of age-related brain change 

associated with cognitive development and cognitive decline. First, we perform a common-factor 

model multi-variate GWAS of four indicators of SES: occupational prestige (OP, n = 279,644), 

household income (HI, n = 488,233), educational attainment (EA, n = 753,152), and social 

deprivation (SD, n = 440,350) for an effective size of 893,604 participants. The use of these four 

measures in a multivariate framework allows for the assessment of heterogeneous effects across 

indicators of SES in conjunction with an investigation of common genetic effects that act on the 

individual, as well as the household, and geographical area in which one resides. Thus, genetic effects 

can be categorised as common across measures of SES or unique to specific indicators. Second, to 

examine the bidirectional causal effects of SES on brain structure we use two-sample MR on 13 brain 

imaging phenotypes sourced from an independent sample of ~36,000 UKB participants. Finally, we 

examine the role of cognitive ability on the links between SES and brain morphology as one of the 

heritable traits that is captured by GWAS conducted on the general factor of SES and these four 

indicators.  

 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.13.584410doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.13.584410
http://creativecommons.org/licenses/by/4.0/


Results 

Study design and implementation. 

Genome-wide association study (GWAS) data sets were used to identify instrumental 

variables for five exposures. These were four measures of SES (occupational prestige, household 

income, educational attainment, and social deprivation), and one cognitive exposure (cognitive 

ability). GWASs were also performed in an independent sample on thirteen MRI phenotypes (total 

brain volume, TBV; grey matter volume, GM; normal appearing white matter, NAWM; white matter 

hyperintensity volume, WMH; TBV as a proportion of intracranial volume, TBVicv; GM as a 

proportion of intracranial volume, GMicv; white matter volume as a proportion of intracranial 

volume, WMicv; WMH as a proportion of intracranial volume, WMHicv; a general factor of brain 

white matter tract fractional anisotropy, gFA; a general factor of brain white matter tract mean 

diffusivity, gMD; a general factor of brain white matter tract intracellular volume fraction, gIVCF; a 

general factor of brain white matter tract isotropic volume fraction, gISOVF; a general factor of brain 

white matter tract orientation dispersion, gOD) capturing different aspects of brain morphology. 

 

Phenotypic and genetic structure of the four indices of socioeconomic status. 

The phenotypic correlations between the four indices of SES (Supplementary Table 1) were 

all significant and ranged from r = 0.062 – 0.484 (mean = 0.268, SE range = 0.00143 – 0.00185, P < 

10-322). A confirmatory factor model with a single common factor fit the phenotypic data poorly (χ2(2) 

= 8530.202, p < 0.001; SRMR=0.047; CFI=0.932; RMSEA = 0.131, TLI=0.795, Figure 1 & Table 

1). The common factor explained 31.373% of the phenotypic variance across each of the four indices 

of SES.  

Using LDSC24 on each of the GWASs conducted on the indices of SES (occupational 

prestige, household income, educational attainment, and social deprivation), a significant heritable 

component was captured explaining between 3.5% - 13% of trait variation (Supplementary Table 2). 

LDSC intercepts were consistently close to 1 for each SES measure indicating that polygenicity, 

rather than population stratification or other factors, explained the inflation in GWAS association test 

statistics (Supplementary Table 2).   

 Strong genetic correlations between indicators of SES (mean rg = 0.761, range rg  = 0.563 – 

0.963, SE range = 0.011 - 0.026) were observed (Supplementary Table 3). The moderate phenotypic 

correlations but large genetic correlations indicate that whilst each measure of SES captures a 

different environmental component, they each draw upon similar heritable traits. This was confirmed 

by extracting a general genetic factor of SES using genomic structural equation modelling (Genomic 

SEM25, Figure 1 B & Table 1) where, in contrast to the phenotypic data, a single factor explained the 

covariance across the genetic data sets well (χ2(2) = 184.737, p = 7.67×10˗41; SRMR=0.051; 

CFI=0.988). The general genetic factor of SES captured on average 76.30% of the genetic variance in 

each indicator of SES with the proportion being consistent across occupational prestige, household 
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income, and educational attainment (>75%), with the lowest being social deprivation where the 

general factor captured 49.08% (Supplementary Table 4). This general factor of SES was then 

regressed onto 7,462,726 SNPs to derive genome wide associations with SES. Furthermore, to 

differentiate between SNPs whose loci are relevant to a general factor of SES from those whose 

patterns of association are inconsistent with a general factor, we derive genome-wide heterogeneity 

statistics using Genomic SEM25. The general genetic factor of SES had a h2 = 9.40% (SE = 0.20%), 

and showed little evidence of inflation in test statistics due to population stratification (LDSC 

intercept = 1.06, SE = 0.02). In order to attain independent groups to perform Two-sample MR a 

general factor of SES was also derived by omitting participants and their relatives who contributed 

MRI data. This resulted in an effective sample size of 665,662 participants. This general factor had a 

highly similar factor structure as the full data set (Supplementary Table 4) and a similar heritability 

(h2 = 11.3%, SE = 0.30%). 

 

 

Table 1. 

Table 1. Showing the standardised factor loadings for each of the four indicators of SES in the total sample. The 

direction of social deprivation was reversed so that all scores indicate a greater level of SES across the four 

indicators used. The upper portion shows the phenotypic structure of SES where the bottom portion shows the 

genetic structure of SES. Common and specific, by definition sum to 100%, but for the genetic structure this 

indicates the proportion from common and specific sources that contribute to the total heritability. The total 

heritability was derived using LDSC implemented in genomic SEM. 

  

Phenotypic SES  Factor loadings  Proportion of phenotypic variation 

Indicator of SES  Beta SE  Common % Specific %   

Occupational prestige  0.737 0.003  54.4 45.6   

Household Income  0.516 0.002  26.6 73.1   

Educational attainment  0.646 0.002  41.7 58.3   

Social deprivation  0.168 0.002  2.8 97.2   

Genetic SES  Factor loadings  Proportion of genetic variation 

Indicator of SES  Beta SE  Common % Specific % h2 % SE 

Occupational prestige  0.966 0.02  93.23 6.77 11.01 0.43 

Household Income  0.917 0.02  84.17 15.83 6.42 0.28 

Educational attainment  0.887 0.02  78.75 21.25 12.25 0.36 

Social deprivation  0.701 0.02  49.08 50.92 3.43 0.17 
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Figure 1. 

 

Figure 1. A. Showing the phenotypic and genetic correlations between the variables used. The lower diagonal 

shows the genetic correlations whereas the upper diagonal shows the phenotypic correlations. The diagonal 

shows the heritability estimates. Colour and size are used to illustrate the magnitude and directions of the 

correlations. Both heritability and genetic correlations were derived using LDSC implemented in Genomic 

SEM. Tabulated values are shown in Supplementary Tables 1-3. Social deprivation scores were reversed to 

facilitate a comparison with the other measures of SES. B. Showing the standardised phenotypic (upper) and 

genetic (lower) factor solutions for the covariance structure across the four indices of SES examined in the total 

sample. Social deprivation scores were again reversed .C. A miami plot of the general factor of SES. The X axis 

indicates chromosome and the y axis shows the –log(10) p value of each SNP with the upper section describing 

its association with the general factor of SES where the lower shows the p value for the heterogeneity Q 

statistics. TBV, total brain volume; GM, grey matter volume; WMH, white matter hyperintensity volume; 

TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a proportion of intracranial volume; 

WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as a proportion of 

intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general 

factor of brain white matter tract mean diffusivity; gIVCF, a general factor of brain white matter tract 

intracellular volume fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; 

NAWM, normal appearing white matter; gOD, a general factor of brain white matter tract orientation 

dispersion. 
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Estimating bi-directional causal effects of SES on brain structure.  

Using Steiger filtering26 followed by two-sample Mendelian randomisation (MR)27 a higher 

SES was found to be a protective factor against WMHicv (β = -0.218, SE = 0.056, P = 8.63×10˗5, 

Table 2, Supplementary Table 5, Supplementary Figures 1 & 2). The use of both MR-Egger and 

MR-PRESSO did not identify any horizontal pleiotropy and no significant heterogeneity was found 

(Supplementary Table 5 & Supplementary Table 6). There was very little evidence of any other 

causal effects. 

In the reverse direction a greater total brain volume was associated with higher SES (β = 

1.56×10˗6, SE = 1.85×10˗7, P = 3.19×10˗16, Table 2, Supplementary Table 5 & Supplementary 

Figure 3 & 4). No horizontal pleiotropy was detected using MR-Egger or MR-PRESSO but 

significant heterogeneity was found (Supplementary Table 5 & Supplementary Table 6). None of 

the other structural brain measures showed evidence of being a causal factor in differences in SES. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 19, 2024. ; https://doi.org/10.1101/2024.03.13.584410doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.13.584410
http://creativecommons.org/licenses/by/4.0/


Table 2. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Showing the inverse variance weighted bi-directional causal effect estimate of socioeconomic status on 

brain structure. Abbreviations: TBV, total brain volume; GM, grey matter volume; WMH, white matter 

hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a proportion of 

intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as a 

proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, 

a general factor of brain white matter tract mean diffusivity; gIVCF, a general factor of brain white matter tract 

intracellular volume fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; 

gOD, a general factor of brain white matter tract orientation dispersion; SES, socio-economic status; SE, 

standard error; P, p-value; SNP: single nucleotide polymorphism. 

 

 

 

  

  

 

    IVW Causal effect estimate 

Exposure Outcome N SNPs  Beta SE P 

 gFA 196  0.008 0.040 0.844 

 gICVF 187  -0.012 0.039 0.763 

 gISOVF 212  -0.018 0.037 0.615 

 GM 184  391.502 752.483 0.603 

 gMD 197  -0.020 0.037 0.583 

 GMicv 190  344.811 1491.826 0.817 

SES gOD 194  0.013 0.039 0.732 

 TBV 177  3000.435 3624.226 0.408 

 TBVicv 176  -1527.839 2553.570 0.550 

 WMH 203  -0.073 0.039 0.060 

 WMHicv 204  -0.218 0.056 8.63×10-5 

 WMicv 184  -1099.961 1618.823 0.497 

 NAWM 234  -1377.250 1385.082 0.320 

gFA  34  0.012 0.014 0.407 

gICVF  51  0.001 0.008 0.925 

gISOVF  22  -0.012 0.022 0.575 

GM  22  7.71×10-7 1.11×10-6 0.486 

gMD  27  -0.004 0.014 0.767 

GMicv  20  -5.22×10-7 4.57×10-7 0.253 

gOD SES 23  -0.003 0.027 0.921 

TBV  34  1.56×10-6 1.85×10-7 3.19×10-17 

TBVicv  28  -4.37×10-7 2.78×10-7 0.116 

WMH  15  0.008 0.016 0.596 

WMHicv  17  -0.033 0.021 0.117 

WMicv  28  6.39×10-7 6.16×10-7 0.299 

gFA  34  0.012 0.014 0.407 

gICVF  51  0.001 0.008 0.925 
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Estimating causal effects of specific indices of SES on brain structure.  

 Following Steiger filtering, WMHicv’s were found to be a consequence of differences in 

household income, occupational prestige, and educational attainment. The direction of effect was the 

same across these indicators where a lower SES was found to be a causal factor in the increase of 

WMHicv.  

Specifically, increases in household income and educational attainment had protective effects 

on WMHicv of β = -0.376, SE = 0.111, P = 0.001 and β = -0.593, SE = 0.128, P = 3.77×10˗6 

respectively (Table 3, Supplementary Table 7 & Supplementary Figures 6-8). There was no 

evidence that the results were influenced by horizontal pleiotropy using either MR-Egger28 or MR-

PRESSO29 (Supplementary Table 7, Supplementary Table 8), and no evidence that the instruments 

were capturing heterogeneous effects. 

For occupational prestige the IVW method indicated a protective causal effect on WMHicv of 

β = -0.012, SE = 0.006, P = 0.041 (Table 3, Supplementary Table 7 & Supplementary Figure 8-9). 

However, following control for the horizontal pleiotropy identified (Egger intercept = 0.017, SE = 

0.008, P = 0.043), this causal estimate increased to β = -0.069, SE = 0.028, P = 0.017 

(Supplementary Table 7). Horizontal pleiotropy was further examined using MR-PRESSO but no 

SNPs were detected as outliers (Supplementary Table 8). 

  The causal effect of education on WMHicv was replicated using an independent sample from 

the SSGAC. The education replication data set yielded a protective effect against WMHicv of β = -

0.186, SE = 0.083, P = 0.026, with no evidence of horizontal pleiotropy, nor was there evidence of 

heterogeneous effects (Q = 36.138, Q df = 49, Q P = 0.914, Supplementary Table 9 & 

Supplementary Table 10). 

 In addition to causal effects on WMHicv, educational attainment was found to have causal 

effects on WMH (Table 3 & Supplementary Table 7), where IVW regression showed an effect of β 

= -0.352, SE = 0.088, P = 6.63×10˗5. This effect was also replicated (β = -0.140, SE = 0.056, P = 

0.012) in an independent sample (Supplementary Table 9) with no evidence that it was driven by 

horizontal pleiotropy (Supplementary Table 10).  

 Despite the lower power of the social deprivation data set both a greater TBV (β = 23273, SE 

= 11127, P = 0.036) and gMD (β = 0.202, SE = 0.097, P = 0.038) were identified as being a 

consequence of a greater level of social deprivation (Table 3, Supplementary Table 7 & 

Supplementary Figure 10-11). No other causal effects of SES on brain structure were identified. 
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Table 3.      

Exposure Outcome N SNPs Beta SE P 

Occupation gFA 40 -0.005 0.005 0.241 

 gICVF 40 -0.006 0.004 0.146 

 gISOVF 45 0.000 0.004 0.976 

 GM 43 124.111 76.962 0.107 

 gMD 42 0.006 0.004 0.128 

 GMicv 44 -45.480 160.771 0.777 

 gOD 40 -0.003 0.004 0.468 

 NAWM 45 -162.456 145.800 0.265 

 TBV 39 599.245 398.727 0.133 

 TBVicv 42 -291.284 299.395 0.331 

 WMH 44 -0.007 0.004 0.074 

 WMHicv 40 -0.012 0.006 0.041 

 WMicv 39 -298.906 174.942 0.088 

Income gFA 25 -0.007 0.082 0.936 

 gICVF 25 0.069 0.081 0.397 

 gISOVF 32 0.038 0.071 0.596 

 GM 29 -68.955 1414.282 0.961 

 gMD 30 0.005 0.072 0.941 

 GMicv 32 1429.539 3159.872 0.651 

 gOD 30 -0.133 0.074 0.074 

 NAWM 34 252.112 2712.329 0.926 

 TBV 24 7893.590 7423.438 0.288 

 TBVicv 32 -882.009 5111.349 0.863 

 WMH 32 -0.129 0.074 0.082 

 WMHicv 29 -0.376 0.111 0.001 

 WMicv 29 73.043 3035.213 0.981 

Education gFA 122 0.093 0.091 0.310 

 gICVF 119 0.018 0.090 0.844 

 gISOVF 129 0.079 0.086 0.357 

 GM 124 2896.345 1677.108 0.084 

 gMD 125 -0.068 0.085 0.421 

 GMicv 128 1760.209 3455.139 0.610 

 gOD 127 -0.137 0.088 0.120 

 NAWM 138 -4544.902 3271.494 0.165 

 TBV 113 8677.991 8273.687 0.294 

 TBVicv 121 -5193.254 5715.710 0.364 

 WMH 131 -0.352 0.088 6.63×10˗5 

 WMHicv 127 -0.593 0.128 3.77×10˗6 

 WMicv 118 -5929.059 3680.657 0.107 

Social deprivation gFA 1 0.018 0.194 0.925 

 gICVF 1 -0.135 0.190 0.478 

 gISOVF 2 0.006 0.118 0.958 

 GM 3 2392.843 1920.525 0.213 

 gMD 3 0.202 0.097 0.038 

 GMicv 2 -5209.837 6602.841 0.430 

 gOD 2 -0.133 0.126 0.288 
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Table 3. Showing the IVW causal effect estimate of each indicator of SES on brain measures. Beta weights are 

unstandardized and reflect the original unit of measure. Abbreviations: TBV, total brain volume; GM, grey matter volume; 

WMH, white matter hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a 

proportion of intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as 

a proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general 

factor of brain white matter tract mean diffusivity; gIVCF, a general factor of brain white matter tract intracellular volume 

fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; gOD,a general factor of brain white 

matter tract orientation dispersion. Note in the event that only one SNP was available a Wald ratio was used as an inverse-

variance weighted model could not be derived.  

 

 

Estimating causal effects of brain structure on indices of SES. 

 In contrast with the causal effects of greater SES on brain imaging traits which showed 

evidence of causal effects on lower white matter and white matter hyperintensity traits, the causal 

effects of brain structure on measures of SES provided evidence of total brain volume causally 

contributing to each indicator of SES: occupational prestige (β = 2.15×10˗5, P = 4.57×10˗13), 

household income (β = 1.67×10˗6, P = 1.02×10˗22), and educational attainment (β = 6.50×10˗7, P = 

1.62×10˗13), and social deprivation (β = -1.84×10˗7, P = 3.41×10˗8, Table 4 & Supplementary Table 

7). MR-Egger regression indicated little evidence of horizontal pleiotropy as the MR-Egger intercept 

was indistinguishable from zero in each comparison (Supplementary Table 7) and MR-PRESSO did 

not detect any outliers influencing the causal estimate through horizontal pleiotropy (Supplementary 

Table 8 & Supplementary Figure 12-14).  

The causal effects of TBV on both educational attainment (β = 1.01×10˗6, P = 6.14×10˗6) and 

household income (β = 1.23×10˗6, P = 2.16×10˗6) were replicated in to independent samples 

(Supplementary Table 9). Neither of these replications showed evidence of horizontal pleiotropy 

(Supplementary Table 9) however MR-PRESSO indicated that that three SNPs were distorting the 

causal estimate (Supplementary Table 10). Following their removal, the significant causal estimate 

was smaller but retained statistical significance (β = 7.62×10˗7, P = 2.00×10˗4). 

In addition to total brain volume both WMicv and GMicv showed evidence of causal effects 

on income, and occupational prestige respectively. However, MR-PRESSO identified four SNPs 

distorting the causal estimate of WMicv on household income (Supplementary Table 8) and 

following their removal, little evidence of a causal effect was found. Furthermore, no effect of WMicv 

on household income was identified using the IVW method performed in our replication sample 

(Supplementary Table 8) indicating that this effect was potentially driven by horizontal pleiotropy or 

a false positive. Similarly the use of MR-PRESSO removed the causal estimate of GMicv on 

 NAWM 3 -927.291 3898.798 0.812 

 TBV 2 23273.747 11127.260 0.036 

 TBVicv 2 -8374.616 7500.461 0.264 

 WMH 2 0.167 0.162 0.302 

 WMHicv 2 -0.014 0.182 0.937 

 WMicv 3 -487.951 5232.076 0.926 
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occupational prestige but no individual SNP contributing to horizontal pleiotropy was identified 

(Supplementary Table 8).  

 

 

 

 

 

 

 

Table 4.       

Exposure  Outcome N SNPs Beta SE P 

gFA  Occupation 34 0.156 0.251 0.534 

  Income 34 -0.004 0.014 0.747 

  Education 34 0.007 0.007 0.314 

  Social deprivation 34 -0.039 0.034 0.243 

gICVF  Occupation 53 0.058 0.161 0.720 

  Income 53 0.008 0.012 0.517 

  Education 53 0.003 0.005 0.586 

  Social deprivation 53 -0.037 0.022 0.093 

gISOVF  Occupation 22 -0.144 0.362 0.690 

  Income 22 0.002 0.019 0.911 

  Education 22 -0.008 0.010 0.441 

  Social deprivation 22 -0.015 0.037 0.681 

GM  Occupation 22 1.12×10˗5 1.81×10˗5 0.536 

  Income 22 9.11×10˗7 1.28×10˗6 0.477 

  Education 22 3.57×10˗7 5.39×10˗7 0.509 

  Social deprivation 22 5.03×10˗7 2.29×10˗6 0.826 

gMD  Occupation 29 -0.156 0.271 0.563 

  Income 29 -0.016 0.020 0.420 

  Education 29 -0.006 0.009 0.465 

  Social deprivation 29 0.044 0.033 0.184 

GMicv  Occupation 20 -1.44×10˗5 6.99×10˗6 0.040 

  Income 20 9.01×10˗8 4.22×10˗7 0.831 

  Education 20 -3.70×10˗7 2.14×10˗7 0.085 

  Social deprivation 20 -3.96×10˗7 9.94×10˗7 0.690 

gOD  Occupation 24 0.130 0.450 0.772 

  Income 24 0.014 0.034 0.668 

  Education 24 0.003 0.015 0.854 

  Social deprivation 24 -0.032 0.033 0.335 

TBV  Occupation 34 2.15×10˗5 2.97×10˗6 4.57×10˗13 

  Income 34 1.61×10˗6 1.64×10˗7 1.02×10˗22 

  Education 34 6.50×10˗7 8.82×10˗8 1.62×10˗13 

  Social deprivation 34 -1.84×10˗6 3.34×10˗7 3.41×10˗8 
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TBVicv  Occupation 29 -4.10×10˗6 5.38×10˗6 0.445 

  Income 29 9.76×10˗8 3.44×10˗7 0.777 

  Education 29 -5.67×10˗8 1.63×10˗7 0.727 

  Social deprivation 29 4.58×10˗7 5.11×10˗7 0.370 

WMH  Occupation 16 0.218 0.251 0.385 

  Income 16 0.014 0.018 0.422 

  Education 16 0.003 0.008 0.674 

  Social deprivation 16 0.022 0.039 0.583 

WMHicv  Occupation 18 -0.334 0.290 0.250 

  Income 18 -0.033 0.022 0.146 

  Education 18 -0.011 0.009 0.246 

  Social deprivation 18 0.067 0.035 0.055 

WMicv  Occupation 28 7.92×10˗6 1.07×10˗5 0.461 

  Income 28 1.28×10˗6 5.94×10˗7 0.031 

  Education 28 2.76×10˗7 3.14×10˗7 0.379 

  Social deprivation 28 -2.30×10˗7 8.12×10˗7 0.776 

 
Table 4. Showing the IVW causal effect estimate of each indicator of brain structure on socio-economic status. Beta weights 

are unstandardized and reflect the original unit of measure. Abbreviations: TBV, total brain volume; GM, grey matter 

volume; WMH, white matter hyperintensity volume; TBVicv, TBV as a proportion of intracranial volume; GMicv, GM as a 

proportion of intracranial volume; WMicv, white matter volume as a proportion of intracranial volume; WMHicv, WMH as 

a proportion of intracranial volume; gFA, a general factor of brain white matter tract fractional anisotropy; gMD, a general 

factor of brain white matter tract mean diffusivity; gIVCF, a general factor of brain white matter tract intracellular volume 

fraction; gISOVF, a general factor of brain white matter tract isotropic volume fraction; gOD, a general factor of brain white 

matter tract orientation dispersion. 

 

 

 

The role of cognitive ability in the link between SES and brain structure 

Genetic associations with SES variables are unlikely to be due to the identified variant 

exerting a biological effect that contributes directly to the observed differences in SES11. Rather, the 

observed SNP-trait association is more likely due to the effects of vertical pleiotropy where genetic 

variation contributes towards heritable traits that are themselves responsible for the differences in 

SES11,12. Due to the strong genetic19 and phenotypic correlations between measures of SES and 

cognitive ability, as well as the finding that cognitive ability is one of the likely heritable, causal, traits 

on the phenotypic pathway between genetic inheritance and income differences11,30,31, we examine if 

the heritable traits captured by GWAS conducted on the four indices of SES show causal effects on 

brain structure that can be explained by cognitive ability. 

 

Measures of SES capture a set of heritable traits common to each indicator 

First, we use the heterogeneity (Q) statistics derived using our common factor model of 

socioeconomic status and the GWAS results of each individual indicator of SES to examine if SNP 

effects on the indicators are better explained as SNP effects that act on a latent factor common to each 

indicator of SES (Table 5). Such evidence would be consistent with the idea that a GWAS conducted 
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on each indicator of SES will capture similar heritable traits. FUMA32 was used to derive independent 

genomic loci in the general factor of SES and in each of the four indictors. A total of 469 independent 

genomic loci were identified for the general factor of SES, and of these 98 loci showed no overlap 

with any indicator of SES indicating these loci act on the genetic architecture that is shared between 

each indicator. Occupational prestige, household income, educational attainment, and social 

deprivation were found to have 68, 73, 491, and 10 independent loci, respectively. However, only 

eight loci for occupational prestige, 13 for household income and 143 associated with educational 

attainment, and four for social deprivation were independent from the general factor of SES indicating 

that the bulk of the genetic effects for each of these SES traits act on the same underlying heritable 

trait/s. 

 

 

Table 5. 

Table 5. Showing a summary of the general factor of SES multivariate GWAS and the univariate GWAS on 

each indicator of SES.  

 

 

Overlap of causal loci for cognitive ability and SES 

Using MiXeR33, we examined the degree of polygenic overlap between cognitive ability with 

the general factor of SES, as well as with each indicator of SES. We found that most of the loci 

associated with each index of SES overlap heavily with loci associated with cognitive ability (Figure 

2). The genetic relationship between cognitive ability and SES changed, modestly, depending on the 

measure of SES used, and was not predicted by the genetic correlations. For example, both education 

and occupational prestige showed a genetic correlation with cognitive ability of ~ rg = 0.75, however 

where education had a large number of education specific causal variants (~1,500, SE = 700), 

occupational prestige did not (Figure 2A). Furthermore, occupational prestige, which had a genetic 

correlation with cognitive ability of a similar magnitude as educational attainment (rg = 0.60), 

similarly showed no evidence of causal loci that were not also associated with differences on 

Trait N N significant loci 

(P < 5 ×10˗8) 

Independent of indicators 

of SES loci 

Independent of Q loci Mean χ2 

Multivariate GWAS      

General factor of SES 893,604 469 98 467 2.76 

 N N significant loci 

(P < 5 ×10˗8) 

Independent of indicators 

of SES loci 

Independent of general 

SES loci 

Mean χ2 

Heterogeneity (Q) 893,604 7 1 5 2.76 

 N N significant loci 

(P < 5 ×10˗8) 

Independent of general 

SES loci 

Independent of Q loci Mean χ2 

Indicators of SES GWASs      

Occupational prestige 279,644 68 8 68 1.67 

Household income 488,233 73 13 73 1.63 

Educational attainment 753,152 491 143 485 2.77 

Social deprivation 440,350 10 4 9 1.34 
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cognitive ability test scores. However, the comparison between occupational prestige and cognitive 

ability did tentatively indicate that there were loci causal in cognitive ability test score differences that 

were unrelated to differences in occupational prestige (Figure 2A & Supplementary Figure 15). 

There was little evidence of cognitive ability loci that were not also associated with SES. 

 

Estimating the bidirectional effects between cognitive ability and socioeconomic status. 

Previous work has indicated a bi-directional causal relationship between educational 

attainment with cognitive ability30,31 and that cognitive ability is one of the causal factors in income 

differences11. Here we show a bi-directional causal relationship between the general factor of SES 

with cognitive ability, and a bi-directional causal relationship between each indicator of SES with 

cognitive ability (Table 6 & Supplementary Table 11). Following Steiger filtering, we find evidence 

that higher cognitive ability was causally linked to having a higher level of SES using the general 

factor of SES (β =0.192, SE = 0.012, P = 1.24×10˗53). Cognitive ability was also a causal factor in 

each specific indicator of SES and was linked with a higher level of occupational prestige (β = 2.67, 

SE = 0.15, P = 2.21×10˗69), a greater level of household income (β = 0.131, SE = 0.011, P = 

2.66×10˗31), a greater chance of attaining a university level education (β = 0.077, SE = 0.004, P = 

5.75×10˗67), and decrease in level of deprivation in which one lives (β = -0.84, SE = 0.025, P = 0.001, 

Table 6 & Supplementary Table 11). There was evidence of heterogeneity in each estimate of the 

causal effects of cognitive ability on SES as indicated by significant Cochran’s Q statistics28 

(Supplementary Table 11). This heterogeneity statistic provides an indication of the variability of 

the estimated effect between SNPs and can arise if the SNPs have horizontal pleiotropic effects. 

However, there was little evidence that horizontal pleiotropy biased the causal estimates of cognitive 

ability on SES; the MR Egger regression intercepts were close to zero and MR PRESSO indicated no 

significant distortion in the causal estimate due to SNPs with a horizontal pleiotropic effect 

(Supplementary Table 12, & Supplementary Figures 16-18).  

 Using the GWASs conducted on each SES variable, instrumental variables were identified to 

examine if they captured heritable traits that were causal factors in differences in cognitive ability. We 

find evidence that in addition to the causal effect on the general factor of SES (β = 1.159, SE = 0.045, 

P = 1.19×10˗143), increases in cognitive ability were a consequence of increases in education (β = 

2.433, SE = 0.129, P = 7.54×10˗90), income (β = 1.103, SE = 0. 116, P = 2.17×10˗21), and occupational 

prestige (β = 0.071, SE = 0.007, P = 7.93×10˗27), whereas there was weak evidence that the heritable 

traits linked to increases in social deprivation acted to reduce cognitive ability (β = -0.415, SE = 

0.121, P = 0.001, Supplementary Table 11). As with the causal effects of cognitive ability on SES 

there was significant heterogeneity in the estimates (Supplementary Table 11) but little evidence of 

bias arising due to horizontal pleiotropy indicated by the MR Egger intercepts not being significantly 

different from zero and no distortion detected using MR-PRESSO (Supplementary Table 12 & 

Supplementary Figures 19-21). 
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Table 6. 

Table 6. Showing the bi-directional total causal effects of cognitive ability on the general factor of SES and 

each of the four indicators of SES. Beta weights are unstandardized and reflect the original unit of measure. 

 

The bidirectional causal effect of cognitive ability on brain structure 

Consistent with the idea that GWASs of SES capture variance in cognitive ability, we find 

evidence that cognitive ability has a protective causal effect on WHMicv (β = -0.080, SE = 0.026, P = 

0.002). Furthermore, and again consistent with what was identified for measures of SES, there was 

evidence to suggest a greater total brain volume resulted in a higher level of cognitive ability (β = 

3.97×10-6, 4.96×10-7, 1.28×10-15). No evidence of horizontal pleiotropy was identified using MR 

Egger (Eggerintercept P = 0.492) and MR-PRESSO found no evidence of distortion in the causal 

estimate following the removal of five SNPs with evidence of horizontal pleiotropy (MR-PRESSO 

distortion P-value = 0.516). There was however, significant heterogeneity in the causal estimate of 

TBV on cognitive ability (Q P-value = 1.85×10-10, Supplementary Tables 13-14 & Supplementary 

Figures 22-24).  

 

Direct effects of SES on brain structure 

Using Multivariable MR (MVMR)34 to control for the effects of cognitive ability on each of 

the SES variables we examine if the causal effects of each SES variable on brain structures were 

independent of cognitive ability. 

When both cognitive ability and the general factor of SES were included in a single 

multivariate model there was evidence that SES effects on WMHicv that were independent of 

cognitive ability (total effect β = -0.218, SE = 0.056, P = 8.63×10˗5, direct effect β = -0.182, SE = 

0.079, P = 0.022). 

However, for the indicators of SES, following adjustment for cognitive ability, a steep decline 

of in the point estimate of the effect sizes was evident when comparing between the total and direct 

effects (Figure 2B). Furthermore, beyond the effects of cognitive ability on WMHicv there were no 

    IVW Causal effect estimate 

Exposure Outcome nSNPs  Beta SE P 

 General SES 77  0.192 0.012 1.24×10˗53 

 Occupation 72  2.665 0.151 2.21×10˗69 

Cognitive ability Income 75  0.131 0.011 2.66×10˗31 

 Income (replication) 70  0.078 0.017 3.32×10˗6 

 Education 65  0.077 0.004 5.75×10˗67 

 Education (replication) 58  0.123 0.012 8.53×10˗25 

 Social deprivation 79  -0.084 0.025 0.001 

General SES  185  1.159 0.045 1.19×10˗143 

Occupation  37  0.073 0.007 2.97×10˗27 

Income Cognitive ability 27  1.175 0.120 9.51×10˗23 

Education  127  2.678 0.133 5.46×10˗90 

Education (replication)  44  0.870 0.097 2.87×10˗19 

Social deprivation  3  -0.415 0.121 0.001 
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direct effects of occupational prestige (total effect β = -0.069, SE = 0.028, P = 0.017, direct effect β = 

-0.001, SE = 0.008, P = 0.886, 98% reduction of direct effect), household income (total effect β = -

0.294, SE = 0.128, P = 0.021, direct effect β = -0.115, SE = 0.147, P = 0.436, 61% reduction of total 

effect) or educational attainment (total effect β = -0.218, SE = 0.055, P = 7.64×10˗5, direct effect β = -

0.128, SE = 0.076, P = 0.091, 41% reduction of total effect, Figure 2B). 

The reduction in the causal estimate of cognitive ability on WMHicv following the inclusion 

of each indicator of SES was more modest (range of reduction 15%-2%) with cognitive ability still 

retaining a significant causal effect on WMHicv following the inclusion of household income (total 

effect β = -0.08, SE = 0.026, P = 0.002, direct effect β = -0.078, SE = 0.034, P = 0.036). Following the 

inclusion of occupational prestige (direct effect β = -0.078, SE = 0.041, P = 0.057), educational 

attainment (direct effect β = -0.068, SE = 0.037, P = 0.068), of the general factor of SES (direct effect 

β = -0.027, SE = 0.038, P = 0.48) there was no significant effect of cognitive ability on WMHicv 

(Supplementary Table 15).  
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Figure 2. 

 

Figure 2. A. Venn diagram of cognitive ability and the four indices of SES showing the unique and shared 

genetic components at the causal level. Grey illustrates the polygenic overlap between trait pairs, orange shows 

the SES specific components, and blue the unique contributors to cognitive ability. Numbers indicate the 

estimated quantity of causal variants in thousands with the standard error in brackets. The size of the circle 

indicates the degree of polygenicity for each trait pair. B. Illustrating the total and direct effects of 

socioeconomic status, occupational prestige, household income, and educational attainment. Colour represents 

trait and solid shapes indicate a statistically significant causal estimate. Error bars show ± one standard error 
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Discussion 

 Those individuals from more advantaged socioeconomic backgrounds will typically have 

fewer instances of poor physical and mental health compared to those from more deprived 

backgrounds1,5-7. Understanding the causes of such differences has the potential to decrease health 

disparities and improve our understanding of the intricate working of societal risk factors of illnesses. 

In the current study we examine the role that SES plays on brain structure by performing a 

multivariate GWAS to capture sources of SES differences that effect the individual, the household, 

and the area in which one lives. Our GWAS on SES was then used to derive instrumental variables to 

examine the causal effect differences in SES has on brain morphology and health. The current study 

contributes to our understanding of the genetic contributions to SES in at least five ways. 

 First, we show that whilst a common phenotypic factor explains only 31.2% of 

phenotypic variation across each indicator of SES, our multivariate general genetic factor of SES 

accounted for on average 76% (range =49%-93%) of the genetic variation found across occupational 

prestige, household income, educational attainment, and social deprivation. Furthermore, our common 

factor model showed that the same heritable traits underlie the bulk of the heritable variation in SES 

across each of the indicators where, of the 469 independent genomic loci identified, only two showed 

evidence of a heterogenous effect indicated by a significant Q value. This asymmetry in the variance 

captured by a common phenotypic factor of SES compared with the variance captured by a common 

genetic factor of SES, and the finding that the majority of loci associated with the general factor acted 

on each of the four indicators of SES, implies that although each indicator captures a different 

environmental component of SES, the heritable traits that give rise to these phenotypic differences are 

largely the same.   

 The identification of this common genetic factor of SES allows for the recontextualisation 

of the results of previous GWAS that have been conducted on individual indicators of SES. 

Specifically, many of the loci identified in univariate GWAS of a single indicator of SES are 

generalisable to SES more broadly, as they are associated with all indicators that load on the general 

genetic factor of SES. For example, previous GWAS examining educational attainment17 and 

income11 have reported 3,952 and 149 loci respectively as showing an association with a specific 

indicator of SES. Here, we find that 78.8% of the genetic variance of educational attainment and 

84.2% of the genetic variance of income is through this general factor of SES indicating that only a 

minority of the loci captured by those GWAS on specific indicators of SES will be trait specific.  

 Second, we find evidence that cognitive ability is one of the likely causal traits captured 

by GWAS on SES. By using MiXeR33 we show that of the estimated 11,000 causal variants for 

cognitive ability, 10,800 are shared with the general factor of SES with only 1,800 causal variants for 

SES not shared with cognitive ability. Whilst MiXeR cannot differentiate between vertical and 

horizontal pleiotropy33, across each indicator of SES there was little evidence of loci associated with 

cognitive ability that were not also associated with differences in SES, consistent with the hypothesis 
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that differences in cognitive ability are one of multiple heritable traits that influence differences in 

SES. 

 By using Two-sample MR we were able to confirm that vertical pleiotropy, and not 

horizontal pleiotropy, best explained the overlapping genetic architecture between cognitive ability 

and SES identified using MiXeR. Higher cognitive ability was one of the causal elements of having a 

greater level of the general factor of SES, a higher occupational prestige and educational attainment, a 

higher household income, and living in a less deprived environment. This effect was replicated using 

educational attainment and household income data sets that included participants from outside the UK 

indicating these effects were not specific to the UK or to the participants of UK Biobank. These 

effects were bidirectional and differences in SES were also shown to influence cognitive ability. 

 Third, using Two-sample MR we show that higher levels of this common factor of SES is 

a consequence of a greater total brain volume and a likely causal factor in lower levels of white matter 

hyperintensities (WMHicv). White matter hyperintensities are white matter lesions that, on fluid 

attenuated inversion recovery (FLAIR) MRI scans, show a signal intensity that is brighter than 

surrounding white matter35. WMHs are associated with vascular risk and small vessel disease36 and 

may indicate permeability in the blood brain barrier as well as axonal and myelin degeneration37 

Furthermore, increases in WMH volume are associated with cognitive decline and higher risk of 

Alzheimer’s disease, as well as with lower levels of cognitive ability38.  

 In the context of non-clinical community-dwelling adults, WMH volume is also a frank 

marker of neurodegeneration, being of extremely low prevalence in young adulthood39. However, 

lower levels of cognitive ability at age 11 are associated with greater WMH volume at age 7340 

indicating that they may influence the trajectory of cognitive decline in adulthood and older age. Our 

finding that SES was a likely causal factor for WMHicv indicates that lower levels of SES act as a 

risk factor for the development of WMH across the adult lifespan and may, through the accumulation 

of damage caused by WMH, increase the rate of cognitive decline and the likelihood of a dementia 

diagnosis in older age. In contrast, our finding that TBV was a causal factor for SES and cognitive 

ability may indicate that TBV (which reaches its peak in early adulthood41) is a risk factor that 

influences the rate of cognitive development in childhood.  

  Fourth, we show using MVMR, that there are causal effects of SES on WMHicv 

independent of cognitive ability. In the same way a polygenic score captures the aggregate effect of 

the SNPs used in its construction42, so each SNP in a GWAS conducted on SES will capture the 

aggregate effect of each heritable trait linked to differences in SES12. Using MVMR we were able to 

remove the effect of one of these traits, cognitive ability, in order to gauge the effect of the remaining 

traits captured by SES on brain morphology. In doing so we show that the direct effects of SES are 

protective against WMHicv. This is consistent with the idea that the general factor of SES captures a 

constellation of risk from multiple genetically influenced traits and higher levels of SES are not 

protective solely due to them capturing differences in cognitive ability10,11. These traits could be social 
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health factors43 or aspects of personality linked to health, such as conscientiousness, which is 

phenotypically linked with lower instance of disease44 and greater longevity45 and shows genetic 

correlations with mental health traits such as MDD, ADHD, and schizophrenia46. Previous work 

examining educational attainment, an indicator of SES, identified that differences in wellbeing, 

health, and personality have been shown to make a contribution to the heritability of educational 

attainment that is independent from cognitive ability10.  

 Fifth, with the qualified exception of educational attainment, which showed ~15,000 

causal loci not also linked to differences in cognitive ability, no evidence was found for loci 

associated with indicators of SES that were not also loci associated with cognitive ability. However, 

we find no evidence that these non-cognitive aspects of educational attainment47 were causally 

associated with WMHicv. 

Our study has limitations that should be considered when interpreting the results. First, all 

samples used were from western European societies and cultures of the 21st century. The importance 

of this caveat is underscored by the observation that the heritable traits that give rise to differences in 

SES are unlikely to be universal and will be specific to the cultures and samples examined13,14. 

Without studies aiming to examine the heritable traits that give rise to SES and the role these play in 

brain structure in other cultures, meaningful comparisons between the present study and other cultures 

are unwarranted.  

Second, genetic variants captured by our measures of SES are likely to have pleiotropic 

effects48. To satisfy the assumptions that the genetic association with the outcome is entirely mediated 

via the exposure, we performed Steiger filtering to remove variants that are more strongly associated 

with outcome than the exposure (i.e. reverse causation). Although removing invalid instrumental 

variables and only keep likely vertical pleotropic instrumental variables can improve the validity of 

causal effects, such data-driven selection of instrumental variables may yield over precise causal 

effects, especially when the majority of instrumental variables are affected by heterogeneity. 

Furthermore, in order to break the assumptions of MR it is not sufficient for the genetic variants in the 

instrumental variable to have pleiotropic effects49, rather the genetic variants must have horizontally 

pleiotropic effects that are mediated through mechanisms other than those captured by SES. For 

example, should genetic variants have vertically pleiotropic effects, e.g. SNP->neuron-> cognitive 

ability ->education->income->health->brain structure, then our MR derived causal estimates will not 

be biased. Furthermore, should the SNPs affect other phenotypes, but these phenotypes do not affect 

the outcomes, then our MR estimates will not be biased. Whilst it is possible that the genetic variants 

identified in our GWAS conducted on measures of SES do have horizontally pleiotropic effects, it is 

unclear what mechanisms would mediate such effects (e.g. personality). In the current study we 

investigate potentially pleiotropic effects using multivariable Mendelian randomization to examine 

the role of cognitive ability. Future research should use multivariable Mendelian randomization to 

investigate this the role of other traits that link SES to brain structure. 
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Third, there is the potential that indirect genetic effects will contribute to the MR estimates50. 

Indirect genetic effects refer to one individual’s genotype influencing the outcome of another 

individual’s phenotype, for example, a parent providing material resources for their offspring which 

may affect SES or cognitive ability. Detecting the magnitude of potential bias resulting from dynastic 

effects is challenging outside of using family-based data, and at present no such data exist. 

Finally, molecular genetic studies examining traits such as cognitive ability and 

socioeconomic status are prone to misunderstanding and mischaracterisation. These 

mischaracterisations can include arguments based around genetic determinism where the role of the 

environment is disregarded in favour of creating myths about immutable, biological differences 

underlying trait variation, something incompatible with current knowledge of complex traits. In order 

to communicate our research findings to a general reader in an ethical and socially responsible way, 

we have provided an FAQ document in Supplementary Note 1. 

Overall, this study offers new insights into the complex interactions between socioeconomic 

status (SES), brain development and the risk factors underlying cognitive decline. Employing modern 

analytical methods on extensive datasets, the findings significantly contribute to our comprehension 

of factors that influence physical and mental health. Ultimately, these results could highlight potential 

modifiable risk factors for maintaining cognitive ability in older-age.
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Methods 

Samples 

European samples from UK Biobank51 were retained if they had genetic information 

available, sex that was consistent between self-reported and inferred using genotype, no sex 

chromosome aneuploidies, not having been detected as extreme outliers of heterozygosity and 

missingness, having not withdrawn consent, and having a genotyping rate greater than 0.9. This 

resulted in 435,340 participants being available for analysis. European ancestry was identified from 

the UK Biobank participants that self-reported as white. Principal components (PC) were derived 

from the genotype data and participants were excluded if they were outside of a mean ± 3 standard 

deviations from the first six principal components. For our general factor of SES we used all 

participants who had provided phenotypic data on at least one of our measures of SES. 

For our Mendelian randomisation analysis we derived two independent samples using the 

participants of UK Biobank. The brain imaging subset which consisted of 38,371 participants that had 

at least one MRI phenotype, and the SES and cognitive ability group that consisted of 383,220 

participants who did not have any MRI phenotype and were not genetically related to anyone in the 

outcome set based on the pairwise kinship reported by UK Biobank. Ethical approval was granted by 

UK Biobank and this project was conducted under UK Biobank application 10279. 

 

Exposures and outcomes 

Two-sample Mendelian randomisation (MR) was used to examine the causal effects of 

cognitive ability and socioeconomic status on 13 structural brain imaging measures. 

Five cognitive and socioeconomic status variables were considered from UK Biobank, 

cognitive ability, income, social deprivation, occupational prestige, and educational attainment. 

Income was measured at the level of the household (HI, N=327,402), which was measured in UK 

Biobank using an ordinal scale of 1 – 5 corresponding to the participants level of household income 

before tax (1 = < £18,000, 2 = £18,000 - £30,999, 3 = £31,000 - £51,999, 4 = £52,000 - £100,000, 5 = 

>£100,000). 

Social deprivation was measured using the Townsend deprivation index (TS, N=382,030). 

The Townsend deprivation index is an area-based measure of SES derived using the participant’s 

postcode. Townsend scores were calculated immediately prior to joining UK Biobank and are formed 

from four measures: the percentage of those aged 16 or over who are unemployed, the percentage of 

households who do not own a car, do not own their own home, and which are overcrowded. Scores 

were multiplied by -1 when used for deriving phenotypic and genetic correlations as well as for use in 

in Genomic SEM to ensure that the direction of effect was the same across each measure of SES (i.e. 
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a greater score indicates a higher level of SES). However, for use in Mendelian randomisation the 

original direction of effect is retained where a greater score indicates higher level of deprivation (i.e. a 

lower level of SES).  

Occupational prestige was measured using the Cambridge Social Interaction and Stratification 

Scale (CAMSIS, N=242,776) and was derived using job code at visit (data field 20277) in UK 

Biobank transformed using the method described by Akimova et al. (2023)52. In brief, the CAMSIS 

uses the idea social stratification acts to create differential association where partners and friends are 

typically selected from within the same social group. Thus, CAMSIS captures the distance between 

occupations by measuring the frequency of social interactions between them. 

Educational attainment (EA, N=377,477) was measured by transforming educational 

qualifications found in UK Biobank to a binary variable where ‘1’ indicated that the participant had 

attained a university level degree and ‘0’ indicated that they had not.  

Due to the high genetic correlations between measures of SES and cognitive ability17,19 and 

the finding that cognitive ability is a likely causal variable in differences in SES in the UK11,30,31 

cognitive ability was also included as an exposure variable. Cognitive ability was measured using the 

verbal-numerical reasoning test (VNR, N = 183,321) in UK Biobank. This test consists of 13 (14 for 

the online version of the test) multiple-choice questions (six verbal and seven numerical) which are to 

be completed within a two-minute time limit. A participant’s score on each of the questions is then 

summed to provide an overall measure of the participant’s level of cognitive ability. Participants 

either completed the VNR test at the assessment centre at one of four time points or completed an 

online version of the VNR test. If participants took the VNR at multiple time points, only the first 

instance of the test was used to avoid capturing practise effects in the assessment of the participant’s 

level of cognitive ability. 

Brain structural and diffusion neuroimaging data were acquired, processed and QCd by the 

UK Biobank team as Imaging Derived Phenotypes (IDPs) according to open access publications53,54 

and online documentation (https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf). Global 

macrostructural outcomes of interest were: total brain volume (TBV), total brain volume as a 

proportion of intracranial volume (TBVicv), total grey matter volume (GM), total grey matter volume 

as a proportion of intracranial volume, (GMicv), white matter hyperintensity (WMH) volume, white 

matter hyperintensity volume as a proportion of intracranial volume (WMHicv), normal-appearing 

white matter volume (NAWM, total white matter volume – WMH), white matter volume as a 

proportion of intracranial volume (WMicv), and five global white matter microstructural measures. 

The latter were derived from twenty-seven major white matter tracts, for which five tract-averaged 

white matter diffusion properties were available as IDPs (UK Biobank Category ID 135): fractional 

anisotropy (FA), mean diffusivity (MD), intra-cellular volume fraction (ICVF), isotropic volume 

fraction (ISOVF) and orientation dispersion (OD). We ran five PCAs of all 27 tracts; a separate model 

for each of the five properties. The first unrotated component of each PCA was extracted for further 
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analysis, yielding five global white matter measures (gFA, gMD, gICVF, gISOVF and gOD) which 

explained 44%, 50%, 68%, 37% and 26% of the variance, respectively. Prior to analysis, participants 

with the following conditions (UK Biobank field ID 20002.2) were excluded at the outset: dementia, 

Parkinson’s disease, Guillain-Barré, multiple sclerosis, stroke, brain haemorrhage, brain/intracranial 

abscess, cerebral aneurysm, cerebral palsy, encephalitis, epilepsy, head injury, infection of the 

nervous system, ischaemic stroke, meningioma, meningitis, motor neurone disease, spina bifida, 

subdural haematoma, subarachnoid haemorrhage, transient ischaemic attack, brain cancer, meningeal 

cancer, other demyelinating or other chronic / neurodegenerative illness, or other neurological 

injury/trauma. Outliers (>4SDs from the mean, which represented <0.1% of the data in all cases) were 

then removed from all IDPs prior to analyses. As detailed above, there was no sample overlap 

between the participants who provided brain imaging data and the participants who provided data 

pertaining to their SES or cognitive ability. 

 

Study design and data sets 

 A valid inference from MR is dependent on satisfying three assumptions: relevance, meaning 

that the genetic variants must be associated with the risk factor of interest; independence, that the 

there are no unmeasured confounds of the associations between genetic variants and the outcome; 

exclusion restriction, that the genetic variants affect the outcome only through the effect they have on 

the exposure55.  

Instruments for each exposure were identified using SNPs that attained genome-wide 

significance (P < 5×10-8). These SNPs were then clumped using the 1000G European reference panel 

and an r2 = 0.001, with a 10 Mb boundary. The most significant SNP in each clump was used as an 

instrumental variable. As all GWAS conducted for this study were performed on the same strand, no 

palindromic SNPs were excluded from these analyses. The effect of each SNP on the exposure and on 

the outcome was harmonised to ensure that the effect allele is the same across the exposure and the 

outcome traits. Steiger filtering was used to ensure that the detected direction of effect (i.e. from 

exposure to outcome) was correct. Non-Steiger filtered results are also available in Supplementary 

Tables 16-20.  

Inverse variance weighted (IVW) regression was used to examine identify putatively causal 

effects. If there is only one SNP to be used as an instrumental variable, Wald ratio was used. 

Sensitivity analyses were conducted using MR Egger regression and MR Pleiotropy Residual Sum 

and Outlier (MR-PRESSO).  

Genetic contributions to SES traits are unlikely to be due to a direct genetic effect and is 

probably the result of multiple heritable traits11,12. Furthermore, cognitive ability shows high genetic 

correlations with measures of SES19 and is likely to be one of the causal heritable traits between 

genetic inheritance and differences in SES11. We applied Multivariable Mendelian Randomisation 
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(MVMR)34 to examine the causal effects of SES independent of cognitive ability. For MVMR SNPs 

that were genome-wide in both exposures were retained. Steiger filtering was applied for both 

exposures on the outcome. 

 

Replication data sets 

Replication of significant causal effects was examined using independent GWAS data set of 

educational attainment (measured as the number of years of schooling an individual has completed)15 

and household income (measured as the total annual household income prior to tax)56. Following the 

removal of the participants of UK Biobank, the sample sizes were educational attainment N= 324,162, 

and household income N = 108,635 (Supplementary Table 2). The replication data set for education 

showed a large significant genetic correlation of rg = 0.960, SE = 0.015, P = 0 with education in UK 

Biobank, as did the two household income data sets rg = 0.957, SE = 0.065, P = 0. 

 

Meta analysis of income and education  

Data provided by the SSGAC was used to add power to the general factor of SES as well 

acting as a replication sample for educational attainment and household income and for use in 

MVMR. For both meta-analyses, METAL57 was used to conduct a sample size weighted meta-

analysis from which Beta values and standard error obtained using the following equation as provided 

by Zhu et al. (2016)58. 

𝛽 =
𝑍

√2 ×𝑀𝐴𝐹 × (1 −𝑀𝐴𝐹) × (𝑁 + 𝑍2)
 

𝑆𝐸 =
1

√2 ×𝑀𝐴𝐹 × (1 −𝑀𝐴𝐹) × (𝑁 + 𝑍2)
 

, where 𝑀𝐴𝐹 is the minor allele frequency, 𝑁 is the sample size, and 𝑍 is the test-statistics.   

  

 

Genome-wide association studies 

Genome-wide association studies (GWASs) were conducted in Regeine v3.1.359. Regeine 

uses a two-step approach to account for sample relatedness and population structure. In the first step, 

a whole genome regression model was fit to each trait (Exposures and outcomes) using 564,253 

genotyped variants. These variants have minor allele frequency (MAF) > 0.01, call rate > 0.9, and 

Hardy-Weinberg Equilibrium of HWE-p value > 10-15.  

In the second step, an association test was performed for each of the 13,192,861 imputed 

variants using a LOCO (leave-one-chromosome out) scheme. These variants have MAF > 0.001 and 

INFO > 0.8. For binary phenotypes (i.e. Educational attainment), firth logistic regression test was 

performed in the second step.  
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The per-chromosome LOCO genomic predictions produced in the first step were fitted in the 

second step to account for sample relatedness and population structure. In addition, sex, age at 

assessment, assessment centres, genotyping array, genotyping batch, and the first 40 PCs derived from 

genotype data were fitted as covariates in both steps. For cognitive ability, participants’ who took the 

VNR at an assessment centre were analysed together including time point (1-4) as an additional 

covariate before being meta-analysed with the participants whose first instance of taking the VNR 

was online. Regarding brain imagining phenotypes, three-dimensional head position along the X, Y, 

and Z axis were fitted as extra covariates. For TBV height was fitted as an additional covariate and for 

GM and NAWM both height and TBV were fitted. For VNR, the GWASs were performed in 

participants who took test in the assessment centre, and those took online test separately, before 

combining the results with an inverse variance weighted model60.  

 

Linkage Disequilibrium Score Regression (LDSC) 

Using the 1000G European reference panel LDSC24 was performed to estimate the heritability 

of the exposure and outcome traits. In addition the intercept of each LDSC regression was used to 

examine the GWAS association test statistics for inflation due to factors other than polygenicity. 

 

MiXeR 

MiXeR v1.3 (https://github.com/precimed/mixer) was used to examine the genetic overlap 

between cognitive ability and SES traits. First, a univariate model61 was run to study the polygenicity 

(i.e. number of variants) of each trait using the Z-score from GWAS summary statistics and 1000G 

European LD panel. Second, a bivariate model33 was used to estimate the genetic overlap (i.e. number 

of variants shared between cognitive ability and SES traits) using the parameters learned from the 

univariate model. The analysis was repeated twenty times using 2 million randomly selected SNPs at 

each time. The results across twenty runs were then averaged and the genetic overlap of the best 

model with the lowest –log likelihood ratio was plotted (Supplementary Figure 15).  

 

Phenotypic and genomic structural equation modelling 

Phenotypic common factor of SES was derived in R62 using factor analysis in psych63 package 

on standardised occupational prestige (n = 279,644), household income (n = 488,233), educational 

attainment (n = 753,152), and social deprivation (n = 440,350) phenotypes. Note that as sample 

overlap is controlled for in Genomic SEM these samples sizes are larger than those used in our Two-

sample Mendelian randomisation analysis described above. Regarding genetic common factor of SES, 

we used genomic structural equation modelling25 to derive LDSC—based48 genetic correlations and 

covariances between occupational prestige, household income, educational attainment, and social 

deprivation. Next, the covariance structure between each of the four measures of SES was used to 

derive a genomic structural equation model to examine their loading on a single factor of SES. This 
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common factor model was ran using SNPs from each indicator of SES where MAF >0.01 and INFO > 

0.9. We then performed a multivariate GWAS using genomic SEM where 7,462,726 SNPs with MAF 

>0.01 and INFO >0.6 were included to derive genome-wide summary statistics describing each SNPs 

association with the common factor of SES. In addition, we derived genome-wide heterogeneity (Q) 

statistics describing the degree to which a given SNP is likely not acting on single latent factor of 

SES.  

 

Loci identification and overlap 

For each trait, genomic risk loci were identified by FUMA32 (version v1.3.6a) using 1000G 

EUR reference panels. Briefly, FUMA performed two LD clumpings. The first clumping was designed 

to define independent signals (genome significant SNPs at P < 5x10-8) with r2 > 0.6. In the second 

clumping, independent signals were clumped into one genomic locus if the r2 between two signals is > 

0.1 or two signals are within 250kb. The SNPs clumped into each genomic locus naturally formed its 

physical boundary.   

We compared the positions of genomic loci between two traits locus-by-locus. We define that 

a locus of trait A overlaps with trait B, if the positions of any trait B loci overlap with the position of 

that trait A locus. For the general factor of SES, we define a locus is unique to general SES if that locus 

does not overlap with any of the four contributing traits. For the four contributing traits of general SES, 

we define a locus is unique to that trait if that locus does not overlap with general SES. 
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Data availability 

 Summary statistics GWASs for the general factor of socioeconomic status, social 

deprivation, occupational prestige, and the discovery GWAS data set for household income, and 

educational attainment will be available on GWAS catalog upon publication 

(https://www.ebi.ac.uk/gwas/). The replication samples are available on request from the Social 

Science Genetic Association Consortium (https://www.thessgac.org/). 
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