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HIGHLIGHTS 
• Characterized interkingdom association between cariogenic species of genus Neisseria 

and Candida 
• Both bacterial and fungal species are important for caries status prediction using artificial 

intelligence 
• Socioeconomic index is associated with caries status and caries-associated microbial 

markers 

SUMMARY 
Early childhood caries (ECC) is influenced by microbial and host factors, including social, 
behavioral, and oral health. In this cross-sectional study, we analyzed interkingdom dynamics in 
the dental plaque microbiome and its association with host variables. The samples collected 
from the preschool children underwent 16S rRNA and ITS1 rRNA gene sequencing. The 
questionnaire data were analyzed for social determinants of oral health. The results indicated a 
significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in 
contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis 
revealed that Candida dubliniensis was strongly correlated with both Neisseria bacilliformis and 
Prevotella veroralis in ECC. Additionally, ECC showed significant associations with host 
variables, including oral health status, age, place of residence, and mode of childbirth. This 
study provides empirical evidence associating the oral microbiome with socioeconomic and 
behavioral factors in relation to ECC, offering insights for developing targeted prevention 
strategies. 

Keywords: Early childhood caries; Oral microbiome; Machine learning; Host factors; 
interkingdom correlations 
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INTRODUCTION 
Early childhood caries (ECC) is a condition involving tooth decay in the primary dentition in 
children under 72 months of age. The prevalence of ECC is a major public health concern 
worldwide, affecting nearly half of all children globally (El Tantawi et al., 2018; Uribe et al., 2021) 
In Canada, the prevalence of ECC in some disadvantaged communities can be as high as 
98.5% (Pierce et al., 2019). This high prevalence imposes significant socioeconomic and 
psychological burdens on families and society (Bencze et al., 2021; Carvalho et al., 2018). The 
link between ECC and future caries experiences in permanent dentition highlights its importance 
as a critical factor in long-term oral health (Jordan et al., 2016; Tsai et al., 2023). Furthermore, 
ECC can increase the risk of other dental diseases, malocclusion, negative oral health related 
quality of life (OHRQoL), and nutritional status (Davidson et al., 2016; Khan et al., 2023; J. Lee 
et al., 2022; Schroth et al., 2022). 

The oral cavity is known to harbor more than 700 species of bacteria and 100 species of fungi 
(Diaz & Dongari-Bagtzoglou, 2021; Escapa et al., 2018; Peters et al., 2017). Acidogenic and 
aciduric microorganisms are crucial in the pathogenesis of dental caries and form an integral 
part of dental plaque biofilms identified in caries (Alam et al., 2000; X. Chen et al., 2020; 
Struzycka, 2014). Dysbiosis in microbial composition, characterized by an overabundance of 
acidogenic microbes, increases the risk of caries (J. Chen et al., 2021; Grier et al., 2020). 
Constant exposure to acidic conditions leads to the demineralization of tooth enamel (Marsh & 
Nyvad, 2008; Takahashi & Nyvad, 2011). This effect can be partially reversed by using fluoride, 
which alters the dental plaque microenvironment and promotes remineralization of the enamel 
(Zhang et al., 2022). Host variables, encompassing various demographic, socioeconomic, and 
behavioral factors, also influence the development of caries (Arora et al., 2011; Imes et al., 
2021; Pierce et al., 2019). Therefore, researchers are increasingly interested in investigating the 
comprehensive role of these risk factors in ECC, such as diet, fluoride exposure, limited access 
to care, and poor oral hygiene (Adler et al., 2021; Ganesh et al., 2020; Handsley-Davis et al., 
2021; Kahharova et al., 2023; Schroth et al., 2009). 

Bacteria and fungi, present on all human sites in contact with the external environment, exhibit a 
diverse range of interactions. These interactions, both symbiotic and competitive, play a crucial 
role in maintaining the microenvironment (Barbosa et al., 2016; He et al., 2017). A similar trend 
is observed in ECC-associated bacteria and fungi, where Streptococcus mutans and 
opportunistic Candida albicans can exhibit both synergistic and antagonistic behaviors in ECC 
(Lu et al., 2023). These interactions can affect the host through pathogenesis induced by 
ecological shifts (Balakrishnan et al., 2021). However, previous studies have generally limited 
their focus to interkingdom interactions at the genus level or specific microbial species (Kim et 
al., 2021; Krzyściak et al., 2017; Tu et al., 2022). Therefore, further investigations are necessary 
to enhance our understanding of interkingdom microbial signaling and their interactions with 
host risk factors in caries development. 

Using a cross-sectional design, we analyzed dental plaque samples from preschool children 
(n = 538) by advanced sequencing techniques, statistical, and machine learning analyses. The 
objectives of this study were twofold: first, to enhance our understanding of the role of social 
and behavioral variables associated with ECC, and second, to identify the interkingdom 
interactions between bacteria and fungi within the dental plaque microbiome associated with 
ECC. Our study provides a comprehensive analysis of the ECC microbiome, considering a 
broad spectrum of host variables, including socioeconomic and behavioral factors. We expect 
that our findings based on these variables will enhance the screening of young children at a 
high risk of caries and the development of informed strategies for intervention. 
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METHODOLOGY 

Participant recruitment and sample collection 
This study enrolled 553 participants, who were recruited between December 2017 and July 
2022 at the Misericordia Health Centre (MHC), Children’s Hospital Research Institute of 
Manitoba (CHRIM), and various community dental clinics in Winnipeg, Manitoba, Canada. 
Among the participants, 538 children were under the age of 72 months. Children aged > 72 
months or missing age information (n = 15) were excluded from the study. The remaining 
participants included 226 caries-free (CF) children and 312 children with ECC, implementing a 
cross-sectional study design. The dental examination was performed by experienced dentists to 
determine the CF and ECC status. From these participants, supragingival plaque samples were 
collected from all tooth surfaces (Agnello et al., 2017). Children on any antibiotic and who did 
not meet the case definition for ECC were not selected for this study (American Academy of 
Pediatric Dentistry, 2003). At MHC, the samples were collected before the scheduled surgery, 
and for other locations, the samples were obtained during standard oral examinations by a 
dentist or research staff. The participants' information was collected as metadata through a 
questionnaire completed by parents or caregivers who also provided written informed consent. 
Participant recruitment, sample collection, and information collection for this study were 
approved by the University of Manitoba’s Health Research Ethics Board (HS22388 – 
H2018:472). This study adhered to the checklist provided by the STROBE guidelines for 
conducting cross-sectional studies (Supplementary Table S1). The methodology for dental 
plaque sample collection and DNA extraction was consistent with the procedures described in 
our previous studies (de Jesus et al., 2021, 2022). To estimate the statistical power of our 
microbiome study, an online tool “micropower” was used for supragingival plaque at a 
significance level of 0.05, while maintaining other parameters at their default settings (Kelly et 
al., 2015). 

Amplicon sequencing 
Library preparation and sequencing were performed using either MiSeq or NovaSeq6000 
instruments (Illumina Inc., San Diego, CA, USA), employing paired-end (250 × 2 bp in length) 
sequencing technology at the Genome Quebec Innovation Center (Montreal, Canada), using 
amplicon sequencing targeting the V4 hypervariable region of bacterial 16S rRNA and fungal 
ITS1 (internal transcribed spacer 1) spacer DNA. Primers for the 16S rRNA V4 region were 
515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′). 
Primers targeting the ITS1 region were ITS1-30 (5′-GTCCCTGCCCTTTGTACACA-3′) and 
ITS1-217 (5′-TTTCGCTGCGTTCTTCATCG-3′) (de Jesus et al., 2020; Usyk et al., 2017). 

Sequencing data processing and taxonomic assignment 
The sequencing reads received from the sequencing center were provided as demultiplexed, 
barcode-removed, and paired-end FASTQ files. These reads were processed using QIIME2 
(version 2022.11) to create separate amplicon sequence variant (ASV) tables for 16S and ITS1 
reads (Bolyen et al., 2019). For the 16S sequencing data, quality trimming, filtering, removal of 
chimeric reads, and merging were performed using DADA2 within the QIIME2. The read 
trimming length for each sequencing batch was optimized using different combinations of 
forward and reverse reads, and the best combination was selected for final trimming. For ITS 
data, the Q2-ITSxpress QIIME2 plugin was used to trim the conserved regions around ITS1 
before applying DADA2 for merging and chimera removal (Bengtsson-Palme et al., 2013; Rivers 
et al., 2018). The Human Oral Microbiome Database (HOMD, version 15.23) and UNITE 
database, which uses dynamic clustering thresholds (version 9; QIIME release), were employed 
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for taxonomic assignment of bacterial and fungal ASVs, respectively. Separate ASV tables 
consisting of the abundance at each taxonomic level were generated for bacteria and fungi. The 
ASV tables were filtered to retain features that exhibited a minimum prevalence of 5% across all 
the samples.  

Microbiome community and network analysis 
All community analyses were performed using the phyloseq object in R package “phyloseq” 
(version 1.40.0). For alpha diversity, the Chao1, Shannon, and Simpson diversity indices were 
used. Beta diversity was calculated using the adonis2 function in the “vegan” package (version 
2.6-4). For the plotting of the most abundant species “microeco” (version 1.4.0) options were 
considered. All figures were generated in the “ggplot2” (version 3.4.3) library in R. 

To identify the differentially abundant species between CF and ECC, association analysis with a 
linear model was implemented using MaAsLin2 (version 1.14.1) in R (Mallick et al., 2021). 
MaAsLin2 is a statistical model designed to identify the associations between microbial taxa and 
clinical metadata. It employs general linear models and incorporates methods for data 
normalization and transformations to identify multivariable associations, while controlling for the 
false discovery rate. In our application of MaAsLin2, the "LM" method was utilized on center log-
ratio (CLR) transformed abundance data as the response variable and ECC status as the 
independent variable. In this analysis age, sex, and place of residence were considered as 
confounding variables along with the Benjamini-Hochberg (BH) method to control for false 
discovery rates. To further minimize the number of false positives, associations based on a q-
value (adjusted p-value) threshold of less than 0.01 were considered significant. 

For the correlation network analysis, the species identified by MaAsLin2 were used to generate 
a network plot illustrating the associations between species using the “NetCoMi” package 
(version 1.1.0) in R. First, network associations for the CF and ECC groups were obtained 
separately, employing the association measure "SPRING". Subsequently, a differential network 
was generated from these two groups using “discordant” as the differential network method. 

Classification of CF and ECC samples 
To discriminate between CF and ECC samples, machine learning (ML) classifiers were 
constructed in R using the "tidymodels" package (version 1.1.1). To perform the classification 
between CF and ECC samples, we applied commonly used ML methods (Topçuoğlu et al., 
2021; Wirbel et al., 2020). We tested five ML classifiers: LASSO logistic regression, ridge 
logistic regression, Support Vector Machine (SVM), Random Forest (RF), and LightGBM. A 
stratified 5-fold cross-validation approach with 10 repeats was employed. The features used in 
these classifiers were the CLR normalized abundance data for 16S and ITS sequences.  
For the lasso and ridge logistic regression, the 'glmnet' package was utilized for L1 and L2 
regularization, respectively, with fine-tuning of the loss-function hyperparameter. In the SVM 
model, the cost and degree hyperparameters were fine-tuned, with the other parameters set to 
their default values. For the RF model, the number of trees, the minimum node size, and the 
number of variables at each split were tuned. In the LightGBM model, the tree depth and 
learning rate were fine-tuned along with the hyperparameters used in the RF model. To ensure 
a comprehensive analysis, a grid size of 50 was used for tuning the hyperparameters in all 
selected classifiers. The performance of each method was compared using the Area Under the 
Receiver Operating Characteristic Curve (AUROC) and Precision-Recall Curve (AUPRC) 
metrics. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2024. ; https://doi.org/10.1101/2024.03.12.584708doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584708
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Analysis of socioeconomic and behavioral variables 
Demographic, lifestyle, socioeconomic, and behavioral variables were collected using a 
comprehensive questionnaire obtained from parents or caregivers at the time of participant 
recruitment. These variables will be referred to as 'host variables' and include age, sex, feeding, 
and oral hygiene habits, among others (Table 1). Residential information using the postal codes 
of the participants was utilized for rural-urban designation as well as to determine the Socio-
Economic Factor Index (SEFI) score, social deprivation score, and material deprivation score 
(Fransoo et al., 2013). These data were obtained from the Manitoba Centre for Health Policy 
(MCHP) (Metge et al., 2009). The Early Childhood Oral Health Impact Scale (ECOHIS) and 
NutriSTEP scores were determined based on responses to a standard set of questions (Pahel 
et al., 2007; Randall Simpson et al., 2008).  

To assess the number of missing entries prior to imputation, the R packages “mice” (version 
3.16.0) was used. Missing information in the data was imputed using the default methods in the 
Multiple Imputation by Chained Equations (MICE) approach for binary, categorical, and 
numerical data. The data was then checked for correlations among the variables using 
Spearman’s correlation analysis. Variables were tested for associations with ECC status using 
both multivariable and univariate approaches. In the multivariable analysis, age, sex, and place 
of residence were considered as confounding variables. 

Microbiome and socioeconomic variables 
The data was analyzed to determine the association between host variables and various 
microbiome phenotypes. For the alpha diversity index, a non-parametric Spearman correlation 
test was used. For beta diversity dissimilarities, PERMANOVA was applied using adonis2 on 
the Bray-Curtis distance with 999 permutations. The p-value for each variable was adjusted 
using the BH method. All statistical analyses were performed using R version 4.3.2 (R Core 
Team, 2023). To identify the associations between individual taxa and host variables, MaAsLin2 
was used, as described above.  

RESULTS 
Microbiome community analyses 
A total of 230 bacterial and 95 fungal species were consisted in the filtered ASV tables obtained 
from QIIME2 analysis. Based on the number of bacterial species, our sample size would 
achieve a power of 0.93 at significant level 0.05. The most abundant bacterial species identified 
in bacterial data were Haemophilus parainfluenzae, Corynebacterium matruchotii, and Lautropia 
mirabilis (Figure 1A). The alpha diversity metric, Chao1, revealed significant differences 
between CF and ECC status suggesting a higher number of total species in ECC samples, 
however, these differences were not observed in the Shannon and Simpson diversity indices. 
Chao1 diversity estimates the total number of species in a community based on the number of 
rare species, that is, species that are present in only a few individuals (Figure 1B). Upon 
comparing the beta diversity differences among the microbial communities, a significant 
difference was found between CF and ECC (Figure 1C). 

For fungi, the most common species were Candida dubliniensis, C. albicans, and Blumeria 
graminis with the former two exhibiting clear differences in their abundance between CF and 
ECC (Figure 1A). The fungal data was found to be significantly different for Chao1, Shannon, 
and diversity metrics, although the diversity was lower than the corresponding bacterial 
diversities (Figure 1B). The beta diversity in the fungal data was largely similar to the bacterial 
diversity, showing significant differences between CF and ECC (Figure 1C).  
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Interkingdom network analysis 
To study the correlation among species abundance at both intra and interkingdom levels, we 
conducted network analyses for ECC and CF samples separately. To visualize ECC-relevant 
species, we selected only those species found to be associated with ECC status using the 
MaAsLin2 model. When comparing the networks of the CF samples with those of the ECC 
samples, more positive connections were observed in the ECC samples than in the CF 
samples. Prevotella species exhibited numerous novel and strong positive associations in ECC 
samples compared to CF samples. In the differential network plot, C. dubliniensis demonstrated 
positive associations with Neisseria bacilliformis and negative associations with Streptococcus 
salivarius and Prevotella veroralis (Figure 2). Another interkingdom negative correlation in ECC 
was observed between ECC-associated C. albicans and CF-associated Corynebacterium 
durum, Cladosporium herbarum, and Lautrpia mirabilis. Species exhibiting positive correlations 
in ECC group included Selenomonas sputigena, P. veroralis, Selenomonas flueggei, Prevotella 
salivae, and Streptococcus salivarius. Additional connections involved S. sputigena, P. 
veroralis, and N. bacilliformis. A third path connecting ECC associated species and originating 
from S. sputigena encompassed Leptotrichia shahii, and Prevotella Olurum. Another distinct 
connection, not related to these species, was between S. mutans and Scardovia wiggsiae. 
Interestingly, C. albicans was positively associated with S. mutans in CF samples, this 
association was absent in ECC samples while associations between C. dubliniensis and S. 
mutans were negative in CF which shifted to no interactions in ECC. The differential network 
revealed that numerous associations between the CF and ECC samples changed from a state 
of no interaction to either positive or negative. However, it is noteworthy that we did not identify 
any instances of drastic shifts in which associations changed from a negative to positive state, 
or vice versa. Moreover, ECC associated species appeared more dynamic, exhibiting a higher 
number of both positive and negative associations than those associated with CF. 

Classification of caries status using microbiome data 
We evaluated the performance of the classification model separately for bacterial and fungal 
data, and then on the combined dataset. Among the five machine learning (ML) classifiers 
selected for the classification of CF and ECC, the RF algorithm emerged as the most effective 
for bacteria and the combined data of bacteria and fungi, achieving AUROC and AUPRC values 
of 0.92 and 0.93, respectively (Figure 3A). The performance of RF and LightGBM was 
comparable for fungi, with AUROC and AUPRC values of 0.85 and 0.89, respectively. Other 
classifiers, such as Lasso, Ridge, and SVM, displayed a performance similar to that of RF for 
bacteria; however, they did not perform as well as RF or LightGBM for fungi. Except for 
LightGBM, the overall performance of these classifiers on bacterial data was slightly better than 
that on fungal data, while the performance on combined data did not improve the results further. 
The AUPRC values remained consistent for both bacteria and combined data; however, they 
were notably higher for fungi than their respective AUROC values. Further investigation into the 
RF model, focusing on combined data for feature importance based on the "permutations" 
measure, revealed that the species identified as most significant were S. mutans and C. 
dubliniensis, with S. mutans being significantly more important than any other species 
(Figure 3B). The other top species that appeared in the RF model were N. bacilliformis, 
Prevotella denticola, C. albicans, and S. wiggsiae. 

Association of host variables with caries status 
A total of 16 host variables from 538 participants were included in the analysis. A summary of 
these variables is presented in Table 2. The ECC status, age, and sex information were not 
missing from any of the samples, on the other hand, NutriSTEP and ECOHIS scores were not 
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available in 79 and 80 entries, respectively. The distributions of these variables after using 
MICE imputation for the missing values are shown in Figure S1. Spearman correlation analysis 
revealed a 0.95 coefficient value between the material deprivation score and the SEFI score 
(Figure 4A); therefore, only the SEFI score was used in all subsequent analyses. ECC status, 
ECOHIS score, and child dental health were also correlated with a correlation coefficient of > 
0.65. A negative correlation was observed between the ECC status and urban residence. Our 
multivariable logistic regression analysis identified a strong association between ECC and other 
host variables such as child dental health, bedtime snacking, and residency status (Figure 4B). 
Of these variables, child dental health, fluoride toothpaste, vaginal birth, bedtime snacking, age, 
and ECOHIS score were positively associated with ECC, whereas social deprivation score 
exhibited a negative trend, though not statistically significant. 

Microbial diversity and host variables 
To assess the impact of each host variable on the dental plaque microbiome, we examined the 
Spearman correlation between each host variable and Shannon diversity, a measure of alpha 
diversity that explains diversity within a sample. For bacteria, three variables, SEFI score, 
frequency of tooth brushing, and breastfeeding status, had a significant impact on Shannon 
diversity (Figure 5A). For fungi, the variables significantly associated with Shannon diversity 
index were SEFI score, ECC status, and ECOHIS score (Figure 5A). The observed relationship 
between Shannon diversity for bacteria and fungi due to the host variables demonstrated mostly 
contrasting trends; variables positively correlated with bacterial diversity were inversely 
correlated with fungal diversity, and the reverse was also true. 
In the beta diversity analysis, PERMANOVA, where we tested a multivariable model using Bray-
Curtis distance as the response variable, identified most of the variables as significant, with the 
exceptions of sex and use of Fluoride toothpaste for both bacterial and fungal samples, vaginal 
birth in bacterial samples, and age, NutriSTEP score, and bedtime snacking for fungal samples 
(Figure 5B). However, the proportion of variance (R2) explained by the host variables was 
higher in the fungal microbiome than in the bacterial microbiome.   

Association between microbiome and host variables  
The associations of different species-level taxa with host variables are shown in Figure 6. The 
majority of microbial species associated with at least one host variable were linked to ECC 
status, exhibiting a similar pattern to species influenced by child dental health. After controlling 
for age, sex, and urban status, the mode of childbirth, NutriSTEP score, and fluoride toothpaste 
use showed no association with any species. While other variables related to eating habits such 
as breastfed child, bottle-fed child, and bedtime snacking habit were associated with not more 
than three species. S. mutans, which also showed the most prominent association with ECC 
status, was also found to be strongly associated with child dental health, SEFI score, and 
ECOHIS score. Prevotella and Alloprevotella (formerly classified as Prevotella) species were 
among the most prevalent in ECC-associated species, for instance, Prevotella species P. 
salivae, P. oulorum, P. denticola, P. nigrescens, P. veroralis, and Alloprevotella sp. HMT-308. 
Alloprevotella sp. HMT-912, P. maculosa, and P. oris were unique in that they were positively 
associated only with socioeconomic variables, SEFI score and social deprivation scores. Many 
species strongly associated with the SEFI score were also strongly associated with ECC status, 
even after adjusting for place of residence, suggesting that ECC is highly linked to 
socioeconomic conditions. This further emphasizes that socioeconomic factors are associated 
with both caries-causing and caries-protective species. 
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DISCUSSION 
This study is the first large-scale investigation into how socioeconomic and behavioral factors 
are associated with the diversity and composition of the dental plaque microbiome in the context 
of caries and CF conditions in the Canadian preschool population. Previous research on the 
factors shaping the oral microbiome has primarily focused on ECC status, whereas other host 
variables included in this study remain largely underexplored. Our research found that 
socioeconomic status and place of residence (rural or urban), along with certain behavioral 
factors such as bedtime snacking habits, are associated with ECC, as well as with variations in 
plaque microbial diversity (Figure 4B and Figure 5). Additionally, we identified specific 
taxonomic differences attributable to these factors (Figure 6). Furthermore, we identified 
potential shifts in the interkingdom interactions between bacteria and fungi in the presence and 
absence of ECC (Figure 2). 

The differences in oral microbiome composition were very prominent in fungi, as the two most 
common species, C. dubliniensis and C. albicans, occupied close to 75% abundance in ECC, 
whereas their abundances were very low in children who were CF. In contrast, the taxonomic 
changes in the bacterial data were more subtle. Fungal data also showed significantly higher 
Shannon and Simpson diversities in samples from CF children compared to ECC; however, 
these differences were not significant for bacterial composition. This indicates that while the 
overall number of species and their distribution within groups may be similar, as suggested by 
alpha diversity, the specific species present or their relative abundances across samples vary 
between the groups. For beta diversity, both fungal and bacterial data showed a similar pattern, 
where differences between the CF and ECC groups were significant but had a low effect on 
overall differences. The results for alpha diversity are similar to those of our previous 
publication, where a significant change was observed in Chao1 diversity but not in Shannon 
diversity in bacteria (de Jesus et al., 2021). A similar trend has been previously observed in the 
salivary bacteriomes of CF children and those with caries (Grier et al., 2020). Although not 
significant, the mean Shannon diversity value in our bacteriome was slightly increased in ECC, 
which is similar to an earlier report on the dental plaque microbiome (Richards et al., 2017). We 
also found Shannon diversity to be the most commonly used metric for comparing alpha 
diversity (Alyousef et al., 2023; de Jesus et al., 2021; Grier et al., 2020; Q. Jiang et al., 2018; 
Richards et al., 2017). Owing to its standardized, relative, and comprehensive analysis, which 
considers both richness and evenness, we suggest including it in future publications for proper 
diversity comparison. 

Our present study suggests that a species-level analysis is crucial for understanding the 
etiology of ECC. This importance extends beyond species-specific biochemical transformations, 
as species belonging to the same genus can exhibit contrasting effects leading to disease 
pathology. For instance, N. bacilliformis was found to be associated with ECC, whereas 
Neisseria oralis was associated with CF status. Similar distinctions were observed with L. shahii 
(ECC) compared to Leptotrichia sp. HMT-212 and Leptotrichia sp. HMT-225 (CF) and among 
some Prevotella species (Figure 6). This conclusion is supported by findings from other studies 
(S. Jiang et al., 2016; H. Xu et al., 2014). This pattern also applies to the genus Streptococcus. 
While S. mutans and Streptococcus salivarius were significantly associated with ECC, the 
genus Streptococcus as a whole was not (Figure S2B). These results are consistent with those 
of other studies (S. Jiang et al., 2016; Yang et al., 2023). 

Several studies have investigated the interkingdom associations, particularly between bacteria 
and fungi, in the oral microbiome (Balakrishnan et al., 2021; Sztajer et al., 2014). We found an 
interaction between C. dubliniensis and N. bacilliformis, which was exclusively observed in the 
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ECC cohort. However, this novel interaction has not been reported previously. Interestingly, 
these two species were not found to be positively associated with any other species in the ECC 
group. Such interkingdom associations within ECC microbiomes derived from dental plaque 
samples have rarely been reported (de Jesus et al., 2020). Furthermore, most studies on 
interactions in the oral microbiome are restricted to C. albicans and Streptococci, specifically, 
the interactions between C. albicans and S. mutans and their co-localization in ECC (Du et al., 
2022; Montelongo-Jauregui & Lopez-Ribot, 2018). In contrast, our findings suggest that the 
interactions between C. albicans and S. mutans are more prominent in the CF group than in the 
ECC group (Figure 2). Our intrakingdom associations also support recent findings where 
species correlations within the same genus of Leptotrichia and Prevotella were high (Cho et al., 
2023). Furthermore, Cho et al. showed S. mutans interactions with P. salivae and Leptotrichia 
wadei, which in our results was not direct but appears to be mediated by another species 
Mitsuokella sp. HMT-131. While their in vivo study showed that S. sputigena interacts with S. 
mutans, a clear correlation was not observed in their metagenomic analysis. Similarly, in our 
analysis, both S. sputigena and S. mutans were found to be significantly associated with ECC 
status, but a correlation between them was not observed. On the other hand, S. mutans was 
found to be significantly correlated with S. wiggsiae, supporting a previous study in adolescents’ 
caries (Eriksson et al., 2018).  

ML-based classifiers are instrumental in distinguishing between the two conditions based on 
microbiome data. Previous research on caries has used ML to identify caries-related biomarkers 
(Butcher et al., 2022; de Jesus et al., 2021, 2020; Grier et al., 2020). Moreover, these models 
help to determine the contribution of each species to this classification, which indirectly 
suggests their empirical importance. We identified RF as the best among the ML algorithms 
selected in our study. Other studies have also found RF to provide good predictive potential 
(Butcher et al., 2022; Thomas et al., 2019). In addition to its prediction capacity, RF also 
provides the importance of the variables used in the model, which aids in identifying the species 
ranking in outcome prediction. Given the variations in performance shown by other classifiers, 
hyperparameter spaces, and model interpretability, we recommend using the RF method for 
such analyses. In our ML analysis for feature importance, in addition to Streptococcus, Candida, 
and Neisseria species, S. wiggsiae emerged as one of the top feature species for classifying 
ECC and CF samples. The prominence of ECC-associated species in the model can potentially 
be attributed to the significant shifts observed in these species between CF and ECC 
conditions. Even though bacterial samples demonstrated superior classification performance for 
CF and ECC compared to fungal samples, we suggest including both bacterial and fungal 
species in future studies (Figure 3A). This recommendation is based on the observation that 
fungal species are among the top-ranking features based on their variable importance (Figure 
3B). The AUROC metric is better suited for perfectly balanced classes. As our samples were 
not perfectly balanced for disease outcome, we also included the AUPRC metric, which is less 
affected by class imbalances. The performance remained consistent across both metrics, 
potentially owing to the large sample size, which is critical for ML, especially when the feature 
count is nearly 300, as in our case. Our large sample size, supporting the application of ML 
methods, is evident from the high and similar AUROC and AUPRC values. These limitations 
and considerations were previously discussed (Grier et al., 2020). 

Our study found no significant association between ECC status and sex, consistent with findings 
from a review of Canadian studies, in which only one of five studies reported sex as a significant 
variable in ECC (Pierce et al., 2019; Schroth & Cheba, 2007). This finding suggests an equal 
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prevalence of caries among male and female children. We also observed a pattern of 
differentially abundant species linked to child dental health, similar to that observed in ECC, 
attributable to a high correlation between these variables. We also identified that a higher SEFI 
score, which indicates less favorable socioeconomic conditions, is associated with an increased 
risk of ECC. Additionally, ECC's association with bedtime snacking habits shows that ECC is 
influenced by an intricate interplay of biological, behavioral, and socioeconomic factors (Anil & 
Anand, 2017; Hussein et al., 2017). For differential species analysis, we used age, sex, and 
place of residence as confounding factors. The influence of age and sex on ECC microbial 
differences has been shown previously (de Jesus et al., 2020; L. Xu et al., 2018). The variability 
in differentially abundant species with and without confounding factors is compared in Figure 6 
and Figure S2A. The association between ECC and bedtime snacking habits underscores the 
importance of dental hygiene, especially before bedtime, in preventing caries. Furthermore, the 
association between fluoride toothpaste and ECC could be attributed to the more prevalent use 
of fluoride toothpaste by children with existing poor dental health. 

A high prevalence of Prevotella spp. associated with ECC was observed in our analysis. 
Prevotella species serve as biomarkers for ECC detection and their role as potential periodontal 
pathogens has been widely recognized (He et al., 2018; Teng et al., 2015; Yang et al., 2023). In 
contrast, none of the Lactobacillus species were identified as ECC-associated. Lactobacillus 
species have been previously found to be associated with dental caries (X. Chen et al., 2020). 
From our results, N. oralis can be considered a potential biomarker for CF status, while the role 
of N. bacilliformis in ECC has been further emphasized by recent studies (Cherkasov et al., 
2019; Fakhruddin et al., 2022; E. Lee et al., 2021). 

Our findings on fungi are consistent with both our previous study and other research where C. 
albicans and C. dubliniensis were the most prevalent species (Al-Ahmad et al., 2016; de Jesus 
et al., 2020). These two species also appeared as biomarkers in both differential abundance 
analysis and RF-based classification. The differential abundance results obtained from our 
analysis were also compared with those derived using an alternative method, LinDA (Zhou et 
al., 2022). This comparison revealed a high degree of consistency between the outcomes of 
both the models (data not shown). This consistency strengthens the validity of our results and 
contributes to a broader understanding of the microbial interactions in ECC. 

Our analysis was based on 16S rRNA and ITS sequencing rather than metagenomic data. ITS 
sequencing is widely accepted for studying fungal composition owing to its reasonable 
discriminatory power and well-defined reference databases (Conti et al., 2023; Schoch et al., 
2012). However, metagenomic sequencing offers additional advantages, as it enhances strain-
level resolution, which is somewhat challenging with 16S rRNA and ITS sequencing. We also 
recognize the value of longitudinal studies and matching participants by sex, age, and 
socioeconomic status to capture temporal differences, while reducing confounding effects. The 
lack of species-level information for fungi in some samples, attributed to a low number of reads, 
may have resulted from insufficient fungal DNA in the original samples, owing to low fungal 
biomass. Additionally, the UNITE database, commonly used for fungal taxonomic assignments, 
does not offer as high taxonomic resolution as bacterial databases such as HOMD and Silva 
(Nilsson et al., 2016; Quast et al., 2013). In the future, enhancing the understanding of ECC 
could be achieved through longitudinal birth cohort studies. Such an analysis would yield more 
specific differences and capture dynamic changes over time, while effectively controlling for 
numerous confounding variables. While many ECC associated species and interactions 
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identified in our analysis corroborated with previous studies, these findings may not be 
generalized across different populations due to the variations identified by place of residence 
and socioeconomic conditions. Furthermore, the biases introduced by class imbalance for 
variables selected in the study, sample processing and sequencing at different time points are 
also inevitable in microbiome studies, however, some biases were minimized using centered log 
ratio transformation. Some studies have highlighted the association between host taste genetics 
and the incidence of caries, including ECC (de Jesus et al., 2022; Orlova et al., 2022). 
Therefore, the inclusion of genetic data, especially in the field of taste genetics, may help to 
identify the role of nutrition and food intake in the susceptibility to ECC. Furthermore, multimodal 
machine learning tools can identify ECC contributors to the microbiome, host behaviors, 
socioeconomic status, and genetic components. 

In summary, our study investigated the impact of dental plaque microbiome, socioeconomic, 
and behavioral factors on the presence of ECC. We reported several novel interactions between 
the bacteriome and mycobiome in the ECC and CF groups. This includes interkingdom 
interactions between C. dubliniensis and N. bacilliformis, and C. albicans and C. durum. Our 
study identified key species associated with ECC, including S. mutans, C. dubliniensis, N. 
bacilliformis, among others. This analysis was facilitated using microbiome association analysis 
methods and ML models, made possible by inclusion of mycobiome sequencing and a large 
sample size. This study provides empirical evidence linking socioeconomic and behavioral 
factors, such as SEFI score and bedtime snacking habits, to ECC and offers new insights into 
the contributors to ECC. Our research will aid oral healthcare providers in the development and 
implementation of targeted intervention strategies for ECC based on the specific host variables 
included in the study. 
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TABLES 
STAR METHODS 

KEY RESOURCES TABLE 

RESOURCE SOURCE IDENTIFIER 

Critical commercial assays 

QIAamp DNA Mini Kit Qiagen Cat # 51306 

DNeasy PowerSoil Kit Qiagen Cat # 12888-100 

Software and algorithms 

QIIME2 v 2022.11 (Bolyen et al., 2019) https://docs.qiime2.org/2022.11/  

HOMD v 15.23 (Escapa et al., 2018) https://homd.org/  

DECIPHER v 2.24.0 (Wright, 2016) https://bioconductor.org/packages/DECIPH

ER/  

phyloseq v 1.40.0 (McMurdie & Holmes, 2013) https://joey711-github-

io.uml.idm.oclc.org/phyloseq/  

metamicrobiomeR v 1.2  (Ho et al., 2019) https://github.com/nhanhocu/metamicrobio

meR  

vegan v 2.6-4 (Dixon, 2003) https://github.com/vegandevs/vegan  

microbiomeMarker v 1.4.0 (Cao et al., 2022) https://bioconductor.org/packages/microbio

meMarker/  

Microeco v 1.4.0 (Liu et al., 2020) https://chiliubio.github.io/microeco/  

mikropml v 1.4.0 (Topçuoğlu et al., 2021) https://github.com/SchlossLab/mikropml  

SIAMCAT v 2.0.1 (Wirbel et al., 2021) https://github.com/zellerlab/siamcat 

R v 4.3.2  (R Core Team, 2023) https://www.r-project.org/  

ggplot2 v 3.4.3 (Wickham, 2016) https://ggplot2.tidyverse.org/  

NetCoMi v 1.1.0 (Peschel et al., 2020) https://github.com/stefpeschel/NetCoMi  

Tidymodels v 1.1.1 (Kuhn & Wickham, 2020) https://www.tidymodels.org/  

Mice v 3.16.0 (van Buuren & Groothuis-

Oudshoorn, 2011) 

https://github.com/amices/mice  

MicrobiomeStat v 1.1.2 (Zhou et al., 2022) https://cran.r-

project.org/package=MicrobiomeStat  

MaAsLin 2 v 1.14.1  https://github.com/biobakery/Maaslin2  

Micropower (Kelly et al., 2015) https://fedematt.shinyapps.io/shinyMB/  
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Table 1: Host variables analyzed in the study. 

 Variable Name Type Description Encoding 

1 ECC Status Binary Indicates the dental caries status of the 
child. 

Caries free (0), 
ECC (1) 

2 Sex Binary The biological sex of the child. Female (0), 
Male (1) 

3 Vaginal Birth Binary Mode of childbirth. Cesarian (0), 
Vaginal (1) 

4 Breastfeed Child Binary Whether the child was breastfed. No (0), 
Yes (1) 

5 Bottlefeed Child Binary Whether the child was bottle-fed. No (0), 
Yes (1) 

6 Bedtime Snack Binary Consumption of snacks by the child at 
bedtime. 

No (0), 
Yes (1) 

7 Urban_Rural Binary The residential setting of the child's 
home. 

Rural (0), 
Urban (1) 

8 Times Day Brushed Ordinal Number of times the child's teeth are 
brushed per day. 

Never (1), 
Sometimes (2), 
1x (3), 
2x (4), 
>2x (5) 

9 Child Dental Health Ordinal Parental perception of the child's dental 
health.  

Very good (1), 
Good (2), 
Fair (3), 
Poor (4), 
Very poor (5) 

10 Age Continuous The age of the child. Measured in months 

11 ECOHIS Total Score Continuous Score from the Early Childhood Oral 
Health Impact Scale measures the oral 
health-related quality of life (OHRQoL) 
of preschool children and their families. 
 

Higher ECOHIS score 
signifies worsening 
oral health related 
quality of life. 

12 NutriSTEP Total Score Continuous 17 questions about a child’s typical food 
choices, eating behaviors, as well as 
physical activity, and growth to assess 
the nutrition risk for preschoolers 

A higher score 
indicates a greater 
nutritional risk. 

13 SEFI score  Continuous Derived from Census data that reflects 
non-medical social determinants of 
health and is used as a proxy measure 
of socioeconomic status 

Lower scores indicate 
more favorable 
conditions 

14 Material deprivation score Continuous Calculated from Canadian Census data 
which reflects the deprivation of wealth, 
goods, and conveniences 

Lower scores indicate 
less deprivation 
(better status) 

15 Social deprivation score Continuous Calculated from Canadian Census data 
which reflect the deprivation of 
relationships among individuals in the 
family, the workplace, and the 
community 

Lower scores indicate 
less deprivation 
(better status) 

16 Fluoride toothpaste Binary Use of fluoride toothpaste No (0), 
Yes (1) 

Footnote: Binary variables are encoded as 0 or 1 based on the alphabetical order of their categories. 
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Table 2: Table for participants characteristics 

Variable N CF, N = 2261 ECC, N = 3121 p-value2 

Sex 538   >0.9 
Female (0)  114 (50%) 157 (50%)  
Male (1)  112 (50%) 155 (50%)  

Age 538 43 (28, 55) 49 (36, 58) <0.001 

Vaginal_birth 530   0.002 

No (0)   72 (32%) 62 (20%)  
Yes (1)  152 (68%) 244 (80%)  

Breastfeed_child 530   <0.001 

No (0)   40 (18%) 113 (37%)  
Yes (1)  184 (82%) 193 (63%)  

Bottlefeed_child 531   0.012 

No (0)   64 (29%) 59 (19%)  
Yes (1)  160 (71%) 248 (81%)  

Bedtime_snack 536   <0.001 

No (0)   143 (64%) 127 (41%)  
Yes (1)  81 (36%) 185 (59%)  

Child_dental_health 534   <0.001 

Very good (1)  118 (53%) 12 (3.8%)  
Good (2)  91 (41%) 64 (21%)  
Fair (3)  12 (5.4%) 113 (36%)  
Poor (4)  1 (0.5%) 108 (35%)  
Very poor (5)  0 (0%) 15 (4.8%)  

Times_day_brushed 536   0.003 

Never (1)  2 (0.9%) 2 (0.6%)  
Sometimes (2)  5 (2.2%) 29 (9.3%)  
Once daily (3)  85 (38%) 130 (42%)  
Twice daily (4)  129 (58%) 147 (47%)  
>2 time daily (5)  3 (1.3%) 4 (1.3%)  

Fluoride_toothpaste 492   <0.001 

No (0)   63 (30%) 38 (14%)  
Yes (1)  148 (70%) 243 (86%)  

Urban_status 534   <0.001 

Rural (0)  8 (3.6%) 156 (50%)  
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Variable N CF, N = 2261 ECC, N = 3121 p-value2 

Urban (1)  216 (96%) 154 (50%)  

Material_depr_score 498 -0.10 (-0.69, 0.44) 0.75 (0.06, 1.72) <0.001 

SEFI_score 498 -0.06 (-0.67, 0.71) 0.87 (0.04, 1.89) <0.001 

Social_depr_score 498 0.17 (-0.36, 1.01) -0.01 (-0.57, 0.63) 0.003 

ECOHIS_total_score 454 0 (0, 1) 6 (2, 12) <0.001 

NutriSTEP_total_score 455 20 (16, 24) 23 (19, 27) <0.001 

N, Number of non-missing entries for each variable 
CF, Caries-free 
ECC, Early childhood caries 

1n (%); Median (IQR) 
2Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test 
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Table S1: STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies  

 Item 
No Recommendation 

Page 
No 

Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or 

the abstract 

1 

(b) Provide in the abstract an informative and balanced summary of what 

was done and what was found 

2 

Introduction 

Background/rationale 2 Explain the scientific background and rationale for the investigation being 

reported 

3 

Objectives 3 State specific objectives, including any prespecified hypotheses 3-4 

Methods 

Study design 4 Present key elements of study design early in the paper 4 

Setting 5 Describe the setting, locations, and relevant dates, including periods of 

recruitment, exposure, follow-up, and data collection 

4 

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of 

participants 

4 

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, 

and effect modifiers. Give diagnostic criteria, if applicable 

4-6 

Data sources/ 

measurement 

8  For each variable of interest, give sources of data and details of methods 

of assessment (measurement). Describe comparability of assessment 

methods if there is more than one group 

4-6 

Bias 9 Describe any efforts to address potential sources of bias 12 

Study size 10 Explain how the study size was arrived at 4 

Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 

applicable, describe which groupings were chosen and why 

5-6 

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 

confounding 

5-6 

(b) Describe any methods used to examine subgroups and interactions NA 

(c) Explain how missing data were addressed 6 

(d) If applicable, describe analytical methods taking account of sampling 

strategy 

5-6 

(e) Describe any sensitivity analyses NA 

Results 

Participants 13 (a) Report numbers of individuals at each stage of study—eg numbers 

potentially eligible, examined for eligibility, confirmed eligible, included in 

the study, completing follow-up, and analysed 

4 

(b) Give reasons for non-participation at each stage 4 

(c) Consider use of a flow diagram NA 

Descriptive data 14 (a) Give characteristics of study participants (eg demographic, clinical, 

social) and information on exposures and potential confounders 

8 

(b) Indicate number of participants with missing data for each variable of 16-17 
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interest 

Outcome data 15 Report numbers of outcome events or summary measures 8, 16-

17 

Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 

estimates and their precision (eg, 95% confidence interval). Make clear 

which confounders were adjusted for and why they were included 

8 

(b) Report category boundaries when continuous variables were 

categorized 

NA 

(c) If relevant, consider translating estimates of relative risk into absolute 

risk for a meaningful time period 

NA 

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, 

and sensitivity analyses 

NA 

Discussion 

Key results 18 Summarise key results with reference to study objectives 9,12 

Limitations 19 Discuss limitations of the study, taking into account sources of potential 

bias or imprecision. Discuss both direction and magnitude of any potential 

bias 

12 

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 

limitations, multiplicity of analyses, results from similar studies, and other 

relevant evidence 

9-12 

Generalisability 21 Discuss the generalisability (external validity) of the study results 12 

Other information 

Funding 22 Give the source of funding and the role of the funders for the present 

study and, if applicable, for the original study on which the present article 

is based 

13 
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FIGURES 

 

Figure 1: Microbiome composition and alpha and beta diversity in caries-free and early 
childhood caries. (Left panel for bacteria and right panel represents fungi) 
(A) Relative abundance of most abundant species. (B) Boxplot for alpha diversity comparison 
for Chao1, Shannon and Simpson. Each dot represents one sample and boxplot representing 
median and 1.5 interquartile range. (C) Principal component analysis for beta diversity 
comparison using adonis2 function. 
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Figure 2: Differential network analysis for CF and ECC samples on combined bacterial 
and fungal datasets 
The network plot visualizes the associations between species identified as differentially 
abundant, highlighting their relevance to CF and ECC conditions. Each node represents one 
species, and the size of the node is proportional to its coefficient value, indicating the strength of 
association with either CF or ECC conditions. Edges between nodes signify the interactions 
from the differential matrix, with each edge type categorized by the nature of interaction within 
CF or ECC samples: '0' denotes no correlation, '-' indicates a negative correlation, and '+' 
signifies a positive correlation between two species. To limit the edge connections, only the 
interactions involving species identified as differentially abundant through MaAsLin2 analysis 
are included. 
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Figure 3: Machine learning performance for the classification of ECC and CF status 
(A) Barplot for Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area 
Under the Precision-Recall Curve (AUPRC) values of five machine learning classifiers for the 
classification of ECC and CF samples, evaluated for the combined dataset and for bacterial and 
fungal datasets separately. (B) Barplot for the variable importance derived from Random Forest 
model on combined bacterial and fungal datasets. 
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Figure 4: Association between host variables and early childhood caries 
(A) The correlation heatmap displays the relationships between various socioeconomic and 
health-related factors. Darker blue circles indicate a stronger positive correlation, while darker 
red circles represent a stronger negative correlation between the variables. (B) The forest plot 
illustrates the log odds ratios for the association of each factor with ECC status (right). Factors 
significantly associated with disease status are highlighted in red, with the horizontal lines 
representing the 95% confidence intervals. Features with positive log odds values indicate the 
likelihood of ECC, while negative values signify protective factors against ECC. The left panel 
shows the estimates for a multivariate model and the right panel shows the result for a 
univariate model adjusted for age, sex, and residential status. 
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Figure 5: Association of the host variables with diversity metrics 
(A) Host variables and their Spearman correlation coefficient (ρ) values for alpha diversity, 
assessed using Shannon's metric in bacteria and fungi. (B) Beta diversity analyses of host 
variables via PERMANOVA, with R² values indicating variance explained in bacterial and fungal 
communities. The colored bar in each plot represents the statistical significance at p<0.05. 
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Figure 6: Associations between microbial features and various socioeconomic factors 
The coefficient estimate values are after adjusting for age, sex and rural/urban status using 
MaAsLin2 method for differential abundance analysis. Features are categorized as B_ for 
bacterial and F_ for fungal. Significance levels are denoted as: * q-value < 0.01 and ** q-value < 
0.001, where q-value = Benjamini-Hochberg adjusted p-value. 
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Figure S1: Exploratory data analysis for the distribution of host variables used as 
socioeconomic and behavioral factors after imputation 
(A) Binary variables. (B) Ordinal Variables. (C) Continuous variables for age, ECOHIS AND 
NutriSTEP score. (D) Continuous variables for socioeconomic factors. The detail of these 
variables is provided in Table 1 in the main article. 
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Figure S2: Association between microbial features and various socioeconomic factors 
(A) Species level. (B) Genus level. The coefficient estimates values from MaAsLin2 differential 
abundance analysis method without adjusting for any confounder. Features are categorized as 
B_ for bacterial and F_ for fungal. Significance levels are denoted as: * q-value < 0.01 and ** q-
value < 0.001, where q-value = Benjamini-Hochberg adjusted p-value.  
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