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HIGHLIGHTS
e Characterized interkingdom association between cariogenic species of genus Neisseria
and Candida
e Both bacterial and fungal species are important for caries status prediction using artificial
intelligence
e Socioeconomic index is associated with caries status and caries-associated microbial
markers
SUMMARY

Early childhood caries (ECC) is influenced by microbial and host factors, including social,
behavioral, and oral health. In this cross-sectional study, we analyzed interkingdom dynamics in
the dental plaque microbiome and its association with host variables. The samples collected
from the preschool children underwent 16S rRNA and ITS1 rRNA gene sequencing. The
guestionnaire data were analyzed for social determinants of oral health. The results indicated a
significant enrichment of Streptococcus mutans and Candida dubliniensis in ECC samples, in
contrast to Neisseria oralis in caries-free children. Our interkingdom correlation analysis
revealed that Candida dubliniensis was strongly correlated with both Neisseria bacilliformis and
Prevotella veroralis in ECC. Additionally, ECC showed significant associations with host
variables, including oral health status, age, place of residence, and mode of childbirth. This
study provides empirical evidence associating the oral microbiome with socioeconomic and
behavioral factors in relation to ECC, offering insights for developing targeted prevention
strategies.

Keywords: Early childhood caries; Oral microbiome; Machine learning; Host factors;
interkingdom correlations
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INTRODUCTION

Early childhood caries (ECC) is a condition involving tooth decay in the primary dentition in
children under 72 months of age. The prevalence of ECC is a major public health concern
worldwide, affecting nearly half of all children globally (El Tantawi et al., 2018; Uribe et al., 2021)
In Canada, the prevalence of ECC in some disadvantaged communities can be as high as
98.5% (Pierce et al., 2019). This high prevalence imposes significant socioeconomic and
psychological burdens on families and society (Bencze et al., 2021; Carvalho et al., 2018). The
link between ECC and future caries experiences in permanent dentition highlights its importance
as a critical factor in long-term oral health (Jordan et al., 2016; Tsai et al., 2023). Furthermore,
ECC can increase the risk of other dental diseases, malocclusion, negative oral health related
quality of life (OHRQoL), and nutritional status (Davidson et al., 2016; Khan et al., 2023; J. Lee
et al., 2022; Schroth et al., 2022).

The oral cavity is known to harbor more than 700 species of bacteria and 100 species of fungi
(Diaz & Dongari-Bagtzoglou, 2021; Escapa et al., 2018; Peters et al., 2017). Acidogenic and
aciduric microorganisms are crucial in the pathogenesis of dental caries and form an integral
part of dental plaque biofilms identified in caries (Alam et al., 2000; X. Chen et al., 2020;
Struzycka, 2014). Dysbiosis in microbial composition, characterized by an overabundance of
acidogenic microbes, increases the risk of caries (J. Chen et al., 2021; Grier et al., 2020).
Constant exposure to acidic conditions leads to the demineralization of tooth enamel (Marsh &
Nyvad, 2008; Takahashi & Nyvad, 2011). This effect can be partially reversed by using fluoride,
which alters the dental plague microenvironment and promotes remineralization of the enamel
(Zhang et al., 2022). Host variables, encompassing various demographic, socioeconomic, and
behavioral factors, also influence the development of caries (Arora et al., 2011; Imes et al.,
2021; Pierce et al., 2019). Therefore, researchers are increasingly interested in investigating the
comprehensive role of these risk factors in ECC, such as diet, fluoride exposure, limited access
to care, and poor oral hygiene (Adler et al., 2021; Ganesh et al., 2020; Handsley-Davis et al.,
2021; Kahharova et al., 2023; Schroth et al., 2009).

Bacteria and fungi, present on all human sites in contact with the external environment, exhibit a
diverse range of interactions. These interactions, both symbiotic and competitive, play a crucial
role in maintaining the microenvironment (Barbosa et al., 2016; He et al., 2017). A similar trend
is observed in ECC-associated bacteria and fungi, where Streptococcus mutans and
opportunistic Candida albicans can exhibit both synergistic and antagonistic behaviors in ECC
(Lu et al., 2023). These interactions can affect the host through pathogenesis induced by
ecological shifts (Balakrishnan et al., 2021). However, previous studies have generally limited
their focus to interkingdom interactions at the genus level or specific microbial species (Kim et
al., 2021; Krzysciak et al., 2017; Tu et al., 2022). Therefore, further investigations are necessary
to enhance our understanding of interkingdom microbial signaling and their interactions with
host risk factors in caries development.

Using a cross-sectional design, we analyzed dental plaque samples from preschool children
(n = 538) by advanced sequencing techniques, statistical, and machine learning analyses. The
objectives of this study were twofold: first, to enhance our understanding of the role of social
and behavioral variables associated with ECC, and second, to identify the interkingdom
interactions between bacteria and fungi within the dental plague microbiome associated with
ECC. Our study provides a comprehensive analysis of the ECC microbiome, considering a
broad spectrum of host variables, including socioeconomic and behavioral factors. We expect
that our findings based on these variables will enhance the screening of young children at a
high risk of caries and the development of informed strategies for intervention.


https://doi.org/10.1101/2024.03.12.584708
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584708; this version posted March 18, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

METHODOLOGY

Participant recruitment and sample collection

This study enrolled 553 participants, who were recruited between December 2017 and July
2022 at the Misericordia Health Centre (MHC), Children’s Hospital Research Institute of
Manitoba (CHRIM), and various community dental clinics in Winnipeg, Manitoba, Canada.
Among the participants, 538 children were under the age of 72 months. Children aged > 72
months or missing age information (n = 15) were excluded from the study. The remaining
participants included 226 caries-free (CF) children and 312 children with ECC, implementing a
cross-sectional study design. The dental examination was performed by experienced dentists to
determine the CF and ECC status. From these participants, supragingival plaque samples were
collected from all tooth surfaces (Agnello et al., 2017). Children on any antibiotic and who did
not meet the case definition for ECC were not selected for this study (American Academy of
Pediatric Dentistry, 2003). At MHC, the samples were collected before the scheduled surgery,
and for other locations, the samples were obtained during standard oral examinations by a
dentist or research staff. The participants' information was collected as metadata through a
guestionnaire completed by parents or caregivers who also provided written informed consent.
Participant recruitment, sample collection, and information collection for this study were
approved by the University of Manitoba’s Health Research Ethics Board (HS22388 —
H2018:472). This study adhered to the checklist provided by the STROBE guidelines for
conducting cross-sectional studies (Supplementary Table S1). The methodology for dental
plague sample collection and DNA extraction was consistent with the procedures described in
our previous studies (de Jesus et al., 2021, 2022). To estimate the statistical power of our
microbiome study, an online tool “micropower” was used for supragingival plaque at a
significance level of 0.05, while maintaining other parameters at their default settings (Kelly et
al., 2015).

Amplicon sequencing

Library preparation and sequencing were performed using either MiSeq or NovaSeg6000
instruments (lllumina Inc., San Diego, CA, USA), employing paired-end (250 x 2 bp in length)
sequencing technology at the Genome Quebec Innovation Center (Montreal, Canada), using
amplicon sequencing targeting the V4 hypervariable region of bacterial 16S rRNA and fungal
ITS1 (internal transcribed spacer 1) spacer DNA. Primers for the 16S rRNA V4 region were
515F (5-GTGCCAGCMGCCGCGGTAA-3') and 806R (5'-GGACTACHVGGGTWTCTAAT-3").
Primers targeting the ITS1 region were ITS1-30 (5-GTCCCTGCCCTTTGTACACA-3') and
ITS1-217 (5-TTTCGCTGCGTTCTTCATCG-3') (de Jesus et al., 2020; Usyk et al., 2017).

Sequencing data processing and taxonomic assignment

The sequencing reads received from the sequencing center were provided as demultiplexed,
barcode-removed, and paired-end FASTQ files. These reads were processed using QIIME2
(version 2022.11) to create separate amplicon sequence variant (ASV) tables for 16S and ITS1
reads (Bolyen et al., 2019). For the 16S sequencing data, quality trimming, filtering, removal of
chimeric reads, and merging were performed using DADA2 within the QIIME2. The read
trimming length for each sequencing batch was optimized using different combinations of
forward and reverse reads, and the best combination was selected for final trimming. For ITS
data, the Q2-ITSxpress QIIME2 plugin was used to trim the conserved regions around ITS1
before applying DADAZ2 for merging and chimera removal (Bengtsson-Palme et al., 2013; Rivers
et al., 2018). The Human Oral Microbiome Database (HOMD, version 15.23) and UNITE
database, which uses dynamic clustering thresholds (version 9; QIIME release), were employed
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for taxonomic assignment of bacterial and fungal ASVs, respectively. Separate ASV tables
consisting of the abundance at each taxonomic level were generated for bacteria and fungi. The
ASV tables were filtered to retain features that exhibited a minimum prevalence of 5% across all
the samples.

Microbiome community and network analysis

All community analyses were performed using the phyloseq object in R package “phyloseq”
(version 1.40.0). For alpha diversity, the Chaol, Shannon, and Simpson diversity indices were
used. Beta diversity was calculated using the adonis2 function in the “vegan” package (version
2.6-4). For the plotting of the most abundant species “microeco” (version 1.4.0) options were
considered. All figures were generated in the “ggplot2” (version 3.4.3) library in R.

To identify the differentially abundant species between CF and ECC, association analysis with a
linear model was implemented using MaAsLin2 (version 1.14.1) in R (Mallick et al., 2021).
MaAsLin2 is a statistical model designed to identify the associations between microbial taxa and
clinical metadata. It employs general linear models and incorporates methods for data
normalization and transformations to identify multivariable associations, while controlling for the
false discovery rate. In our application of MaAsLin2, the "LM" method was utilized on center log-
ratio (CLR) transformed abundance data as the response variable and ECC status as the
independent variable. In this analysis age, sex, and place of residence were considered as
confounding variables along with the Benjamini-Hochberg (BH) method to control for false
discovery rates. To further minimize the number of false positives, associations based on a g-
value (adjusted p-value) threshold of less than 0.01 were considered significant.

For the correlation network analysis, the species identified by MaAsLin2 were used to generate
a network plot illustrating the associations between species using the “NetCoMi” package
(version 1.1.0) in R. First, network associations for the CF and ECC groups were obtained
separately, employing the association measure "SPRING". Subsequently, a differential network
was generated from these two groups using “discordant” as the differential network method.

Classification of CF and ECC samples

To discriminate between CF and ECC samples, machine learning (ML) classifiers were
constructed in R using the "tidymodels" package (version 1.1.1). To perform the classification
between CF and ECC samples, we applied commonly used ML methods (Topguoglu et al.,
2021; Wirbel et al., 2020). We tested five ML classifiers: LASSO logistic regression, ridge
logistic regression, Support Vector Machine (SVM), Random Forest (RF), and LightGBM. A
stratified 5-fold cross-validation approach with 10 repeats was employed. The features used in
these classifiers were the CLR normalized abundance data for 16S and ITS sequences.

For the lasso and ridge logistic regression, the 'gimnet' package was utilized for L1 and L2
regularization, respectively, with fine-tuning of the loss-function hyperparameter. In the SVM
model, the cost and degree hyperparameters were fine-tuned, with the other parameters set to
their default values. For the RF model, the number of trees, the minimum node size, and the
number of variables at each split were tuned. In the LightGBM model, the tree depth and
learning rate were fine-tuned along with the hyperparameters used in the RF model. To ensure
a comprehensive analysis, a grid size of 50 was used for tuning the hyperparameters in all
selected classifiers. The performance of each method was compared using the Area Under the
Receiver Operating Characteristic Curve (AUROC) and Precision-Recall Curve (AUPRC)
metrics.
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Analysis of socioeconomic and behavioral variables

Demographic, lifestyle, socioeconomic, and behavioral variables were collected using a
comprehensive questionnaire obtained from parents or caregivers at the time of participant
recruitment. These variables will be referred to as 'host variables' and include age, sex, feeding,
and oral hygiene habits, among others (Table 1). Residential information using the postal codes
of the participants was utilized for rural-urban designation as well as to determine the Socio-
Economic Factor Index (SEFI) score, social deprivation score, and material deprivation score
(Fransoo et al., 2013). These data were obtained from the Manitoba Centre for Health Policy
(MCHP) (Metge et al., 2009). The Early Childhood Oral Health Impact Scale (ECOHIS) and
NutriSTEP scores were determined based on responses to a standard set of questions (Pahel
et al., 2007; Randall Simpson et al., 2008).

To assess the number of missing entries prior to imputation, the R packages “mice” (version
3.16.0) was used. Missing information in the data was imputed using the default methods in the
Multiple Imputation by Chained Equations (MICE) approach for binary, categorical, and
numerical data. The data was then checked for correlations among the variables using
Spearman’s correlation analysis. Variables were tested for associations with ECC status using
both multivariable and univariate approaches. In the multivariable analysis, age, sex, and place
of residence were considered as confounding variables.

Microbiome and socioeconomic variables

The data was analyzed to determine the association between host variables and various
microbiome phenotypes. For the alpha diversity index, a non-parametric Spearman correlation
test was used. For beta diversity dissimilarities, PERMANOVA was applied using adonis2 on
the Bray-Curtis distance with 999 permutations. The p-value for each variable was adjusted
using the BH method. All statistical analyses were performed using R version 4.3.2 (R Core
Team, 2023). To identify the associations between individual taxa and host variables, MaAsLin2
was used, as described above.

RESULTS

Microbiome community analyses

A total of 230 bacterial and 95 fungal species were consisted in the filtered ASV tables obtained
from QIIMEZ2 analysis. Based on the number of bacterial species, our sample size would
achieve a power of 0.93 at significant level 0.05. The most abundant bacterial species identified
in bacterial data were Haemophilus parainfluenzae, Corynebacterium matruchotii, and Lautropia
mirabilis (Figure 1A). The alpha diversity metric, Chaol, revealed significant differences
between CF and ECC status suggesting a higher number of total species in ECC samples,
however, these differences were not observed in the Shannon and Simpson diversity indices.
Chaol diversity estimates the total number of species in a community based on the number of
rare species, that is, species that are present in only a few individuals (Figure 1B). Upon
comparing the beta diversity differences among the microbial communities, a significant
difference was found between CF and ECC (Figure 1C).

For fungi, the most common species were Candida dubliniensis, C. albicans, and Blumeria
graminis with the former two exhibiting clear differences in their abundance between CF and
ECC (Figure 1A). The fungal data was found to be significantly different for Chaol, Shannon,
and diversity metrics, although the diversity was lower than the corresponding bacterial
diversities (Figure 1B). The beta diversity in the fungal data was largely similar to the bacterial
diversity, showing significant differences between CF and ECC (Figure 1C).
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Interkingdom network analysis

To study the correlation among species abundance at both intra and interkingdom levels, we
conducted network analyses for ECC and CF samples separately. To visualize ECC-relevant
species, we selected only those species found to be associated with ECC status using the
MaAsLin2 model. When comparing the networks of the CF samples with those of the ECC
samples, more positive connections were observed in the ECC samples than in the CF
samples. Prevotella species exhibited numerous novel and strong positive associations in ECC
samples compared to CF samples. In the differential network plot, C. dubliniensis demonstrated
positive associations with Neisseria bacilliformis and negative associations with Streptococcus
salivarius and Prevotella veroralis (Figure 2). Another interkingdom negative correlation in ECC
was observed between ECC-associated C. albicans and CF-associated Corynebacterium
durum, Cladosporium herbarum, and Lautrpia mirabilis. Species exhibiting positive correlations
in ECC group included Selenomonas sputigena, P. veroralis, Selenomonas flueggei, Prevotella
salivae, and Streptococcus salivarius. Additional connections involved S. sputigena, P.
veroralis, and N. bacilliformis. A third path connecting ECC associated species and originating
from S. sputigena encompassed Leptotrichia shahii, and Prevotella Olurum. Another distinct
connection, not related to these species, was between S. mutans and Scardovia wiggsiae.
Interestingly, C. albicans was positively associated with S. mutans in CF samples, this
association was absent in ECC samples while associations between C. dubliniensis and S.
mutans were negative in CF which shifted to no interactions in ECC. The differential network
revealed that numerous associations between the CF and ECC samples changed from a state
of no interaction to either positive or negative. However, it is hoteworthy that we did not identify
any instances of drastic shifts in which associations changed from a negative to positive state,
or vice versa. Moreover, ECC associated species appeared more dynamic, exhibiting a higher
number of both positive and negative associations than those associated with CF.

Classification of caries status using microbiome data

We evaluated the performance of the classification model separately for bacterial and fungal
data, and then on the combined dataset. Among the five machine learning (ML) classifiers
selected for the classification of CF and ECC, the RF algorithm emerged as the most effective
for bacteria and the combined data of bacteria and fungi, achieving AUROC and AUPRC values
of 0.92 and 0.93, respectively (Figure 3A). The performance of RF and LightGBM was
comparable for fungi, with AUROC and AUPRC values of 0.85 and 0.89, respectively. Other
classifiers, such as Lasso, Ridge, and SVM, displayed a performance similar to that of RF for
bacteria; however, they did not perform as well as RF or LightGBM for fungi. Except for
LightGBM, the overall performance of these classifiers on bacterial data was slightly better than
that on fungal data, while the performance on combined data did not improve the results further.
The AUPRC values remained consistent for both bacteria and combined data; however, they
were notably higher for fungi than their respective AUROC values. Further investigation into the
RF model, focusing on combined data for feature importance based on the "permutations”
measure, revealed that the species identified as most significant were S. mutans and C.
dubliniensis, with S. mutans being significantly more important than any other species

(Figure 3B). The other top species that appeared in the RF model were N. bacilliformis,
Prevotella denticola, C. albicans, and S. wiggsiae.

Association of host variables with caries status

A total of 16 host variables from 538 participants were included in the analysis. A summary of
these variables is presented in Table 2. The ECC status, age, and sex information were not
missing from any of the samples, on the other hand, NutriSTEP and ECOHIS scores were not
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available in 79 and 80 entries, respectively. The distributions of these variables after using
MICE imputation for the missing values are shown in Figure S1. Spearman correlation analysis
revealed a 0.95 coefficient value between the material deprivation score and the SEFI score
(Figure 4A); therefore, only the SEFI score was used in all subsequent analyses. ECC status,
ECOHIS score, and child dental health were also correlated with a correlation coefficient of >
0.65. A negative correlation was observed between the ECC status and urban residence. Our
multivariable logistic regression analysis identified a strong association between ECC and other
host variables such as child dental health, bedtime snacking, and residency status (Figure 4B).
Of these variables, child dental health, fluoride toothpaste, vaginal birth, bedtime snacking, age,
and ECOHIS score were positively associated with ECC, whereas social deprivation score
exhibited a negative trend, though not statistically significant.

Microbial diversity and host variables

To assess the impact of each host variable on the dental plaque microbiome, we examined the
Spearman correlation between each host variable and Shannon diversity, a measure of alpha
diversity that explains diversity within a sample. For bacteria, three variables, SEFI score,
frequency of tooth brushing, and breastfeeding status, had a significant impact on Shannon
diversity (Figure 5A). For fungi, the variables significantly associated with Shannon diversity
index were SEFI score, ECC status, and ECOHIS score (Figure 5A). The observed relationship
between Shannon diversity for bacteria and fungi due to the host variables demonstrated mostly
contrasting trends; variables positively correlated with bacterial diversity were inversely
correlated with fungal diversity, and the reverse was also true.

In the beta diversity analysis, PERMANOVA, where we tested a multivariable model using Bray-
Curtis distance as the response variable, identified most of the variables as significant, with the
exceptions of sex and use of Fluoride toothpaste for both bacterial and fungal samples, vaginal
birth in bacterial samples, and age, NutriSTEP score, and bedtime snacking for fungal samples
(Figure 5B). However, the proportion of variance (R?) explained by the host variables was
higher in the fungal microbiome than in the bacterial microbiome.

Association between microbiome and host variables

The associations of different species-level taxa with host variables are shown in Figure 6. The
majority of microbial species associated with at least one host variable were linked to ECC
status, exhibiting a similar pattern to species influenced by child dental health. After controlling
for age, sex, and urban status, the mode of childbirth, NutriSTEP score, and fluoride toothpaste
use showed no association with any species. While other variables related to eating habits such
as breastfed child, bottle-fed child, and bedtime snacking habit were associated with not more
than three species. S. mutans, which also showed the most prominent association with ECC
status, was also found to be strongly associated with child dental health, SEFI score, and
ECOHIS score. Prevotella and Alloprevotella (formerly classified as Prevotella) species were
among the most prevalent in ECC-associated species, for instance, Prevotella species P.
salivae, P. oulorum, P. denticola, P. nigrescens, P. veroralis, and Alloprevotella sp. HMT-308.
Alloprevotella sp. HMT-912, P. maculosa, and P. oris were unique in that they were positively
associated only with socioeconomic variables, SEFI score and social deprivation scores. Many
species strongly associated with the SEFI score were also strongly associated with ECC status,
even after adjusting for place of residence, suggesting that ECC is highly linked to
socioeconomic conditions. This further emphasizes that socioeconomic factors are associated
with both caries-causing and caries-protective species.
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DISCUSSION

This study is the first large-scale investigation into how socioeconomic and behavioral factors
are associated with the diversity and composition of the dental plaque microbiome in the context
of caries and CF conditions in the Canadian preschool population. Previous research on the
factors shaping the oral microbiome has primarily focused on ECC status, whereas other host
variables included in this study remain largely underexplored. Our research found that
socioeconomic status and place of residence (rural or urban), along with certain behavioral
factors such as bedtime snacking habits, are associated with ECC, as well as with variations in
plague microbial diversity (Figure 4B and Figure 5). Additionally, we identified specific
taxonomic differences attributable to these factors (Figure 6). Furthermore, we identified
potential shifts in the interkingdom interactions between bacteria and fungi in the presence and
absence of ECC (Figure 2).

The differences in oral microbiome composition were very prominent in fungi, as the two most
common species, C. dubliniensis and C. albicans, occupied close to 75% abundance in ECC,
whereas their abundances were very low in children who were CF. In contrast, the taxonomic
changes in the bacterial data were more subtle. Fungal data also showed significantly higher
Shannon and Simpson diversities in samples from CF children compared to ECC; however,
these differences were not significant for bacterial composition. This indicates that while the
overall number of species and their distribution within groups may be similar, as suggested by
alpha diversity, the specific species present or their relative abundances across samples vary
between the groups. For beta diversity, both fungal and bacterial data showed a similar pattern,
where differences between the CF and ECC groups were significant but had a low effect on
overall differences. The results for alpha diversity are similar to those of our previous
publication, where a significant change was observed in Chaol diversity but not in Shannon
diversity in bacteria (de Jesus et al., 2021). A similar trend has been previously observed in the
salivary bacteriomes of CF children and those with caries (Grier et al., 2020). Although not
significant, the mean Shannon diversity value in our bacteriome was slightly increased in ECC,
which is similar to an earlier report on the dental plague microbiome (Richards et al., 2017). We
also found Shannon diversity to be the most commonly used metric for comparing alpha
diversity (Alyousef et al., 2023; de Jesus et al., 2021; Grier et al., 2020; Q. Jiang et al., 2018;
Richards et al., 2017). Owing to its standardized, relative, and comprehensive analysis, which
considers both richness and evenness, we suggest including it in future publications for proper
diversity comparison.

Our present study suggests that a species-level analysis is crucial for understanding the
etiology of ECC. This importance extends beyond species-specific biochemical transformations,
as species belonging to the same genus can exhibit contrasting effects leading to disease
pathology. For instance, N. bacilliformis was found to be associated with ECC, whereas
Neisseria oralis was associated with CF status. Similar distinctions were observed with L. shahii
(ECC) compared to Leptotrichia sp. HMT-212 and Leptotrichia sp. HMT-225 (CF) and among
some Prevotella species (Figure 6). This conclusion is supported by findings from other studies
(S. Jiang et al., 2016; H. Xu et al., 2014). This pattern also applies to the genus Streptococcus.
While S. mutans and Streptococcus salivarius were significantly associated with ECC, the
genus Streptococcus as a whole was not (Figure S2B). These results are consistent with those
of other studies (S. Jiang et al., 2016; Yang et al., 2023).

Several studies have investigated the interkingdom associations, particularly between bacteria
and fungi, in the oral microbiome (Balakrishnan et al., 2021; Sztajer et al., 2014). We found an
interaction between C. dubliniensis and N. bacilliformis, which was exclusively observed in the
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ECC cohort. However, this novel interaction has not been reported previously. Interestingly,
these two species were not found to be positively associated with any other species in the ECC
group. Such interkingdom associations within ECC microbiomes derived from dental plaque
samples have rarely been reported (de Jesus et al., 2020). Furthermore, most studies on
interactions in the oral microbiome are restricted to C. albicans and Streptococci, specifically,
the interactions between C. albicans and S. mutans and their co-localization in ECC (Du et al.,
2022; Montelongo-Jauregui & Lopez-Ribot, 2018). In contrast, our findings suggest that the
interactions between C. albicans and S. mutans are more prominent in the CF group than in the
ECC group (Figure 2). Our intrakingdom associations also support recent findings where
species correlations within the same genus of Leptotrichia and Prevotella were high (Cho et al.,
2023). Furthermore, Cho et al. showed S. mutans interactions with P. salivae and Leptotrichia
wadei, which in our results was not direct but appears to be mediated by another species
Mitsuokella sp. HMT-131. While their in vivo study showed that S. sputigena interacts with S.
mutans, a clear correlation was not observed in their metagenomic analysis. Similarly, in our
analysis, both S. sputigena and S. mutans were found to be significantly associated with ECC
status, but a correlation between them was not observed. On the other hand, S. mutans was
found to be significantly correlated with S. wiggsiae, supporting a previous study in adolescents’
caries (Eriksson et al., 2018).

ML-based classifiers are instrumental in distinguishing between the two conditions based on
microbiome data. Previous research on caries has used ML to identify caries-related biomarkers
(Butcher et al., 2022; de Jesus et al., 2021, 2020; Grier et al., 2020). Moreover, these models
help to determine the contribution of each species to this classification, which indirectly
suggests their empirical importance. We identified RF as the best among the ML algorithms
selected in our study. Other studies have also found RF to provide good predictive potential
(Butcher et al., 2022; Thomas et al., 2019). In addition to its prediction capacity, RF also
provides the importance of the variables used in the model, which aids in identifying the species
ranking in outcome prediction. Given the variations in performance shown by other classifiers,
hyperparameter spaces, and model interpretability, we recommend using the RF method for
such analyses. In our ML analysis for feature importance, in addition to Streptococcus, Candida,
and Neisseria species, S. wiggsiae emerged as one of the top feature species for classifying
ECC and CF samples. The prominence of ECC-associated species in the model can potentially
be attributed to the significant shifts observed in these species between CF and ECC
conditions. Even though bacterial samples demonstrated superior classification performance for
CF and ECC compared to fungal samples, we suggest including both bacterial and fungal
species in future studies (Figure 3A). This recommendation is based on the observation that
fungal species are among the top-ranking features based on their variable importance (Figure
3B). The AUROC metric is better suited for perfectly balanced classes. As our samples were
not perfectly balanced for disease outcome, we also included the AUPRC metric, which is less
affected by class imbalances. The performance remained consistent across both metrics,
potentially owing to the large sample size, which is critical for ML, especially when the feature
count is nearly 300, as in our case. Our large sample size, supporting the application of ML
methaods, is evident from the high and similar AUROC and AUPRC values. These limitations
and considerations were previously discussed (Grier et al., 2020).

Our study found no significant association between ECC status and sex, consistent with findings
from a review of Canadian studies, in which only one of five studies reported sex as a significant
variable in ECC (Pierce et al., 2019; Schroth & Cheba, 2007). This finding suggests an equal
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prevalence of caries among male and female children. We also observed a pattern of
differentially abundant species linked to child dental health, similar to that observed in ECC,
attributable to a high correlation between these variables. We also identified that a higher SEFI
score, which indicates less favorable socioeconomic conditions, is associated with an increased
risk of ECC. Additionally, ECC's association with bedtime snacking habits shows that ECC is
influenced by an intricate interplay of biological, behavioral, and socioeconomic factors (Anil &
Anand, 2017; Hussein et al., 2017). For differential species analysis, we used age, sex, and
place of residence as confounding factors. The influence of age and sex on ECC microbial
differences has been shown previously (de Jesus et al., 2020; L. Xu et al., 2018). The variability
in differentially abundant species with and without confounding factors is compared in Figure 6
and Figure S2A. The association between ECC and bedtime snacking habits underscores the
importance of dental hygiene, especially before bedtime, in preventing caries. Furthermore, the
association between fluoride toothpaste and ECC could be attributed to the more prevalent use
of fluoride toothpaste by children with existing poor dental health.

A high prevalence of Prevotella spp. associated with ECC was observed in our analysis.
Prevotella species serve as biomarkers for ECC detection and their role as potential periodontal
pathogens has been widely recognized (He et al., 2018; Teng et al., 2015; Yang et al., 2023). In
contrast, none of the Lactobacillus species were identified as ECC-associated. Lactobacillus
species have been previously found to be associated with dental caries (X. Chen et al., 2020).
From our results, N. oralis can be considered a potential biomarker for CF status, while the role
of N. bacilliformis in ECC has been further emphasized by recent studies (Cherkasov et al.,
2019; Fakhruddin et al., 2022; E. Lee et al., 2021).

Our findings on fungi are consistent with both our previous study and other research where C.
albicans and C. dubliniensis were the most prevalent species (Al-Ahmad et al., 2016; de Jesus
et al., 2020). These two species also appeared as biomarkers in both differential abundance
analysis and RF-based classification. The differential abundance results obtained from our
analysis were also compared with those derived using an alternative method, LinDA (Zhou et
al., 2022). This comparison revealed a high degree of consistency between the outcomes of
both the models (data not shown). This consistency strengthens the validity of our results and
contributes to a broader understanding of the microbial interactions in ECC.

Our analysis was based on 16S rRNA and ITS sequencing rather than metagenomic data. ITS
sequencing is widely accepted for studying fungal composition owing to its reasonable
discriminatory power and well-defined reference databases (Conti et al., 2023; Schoch et al.,
2012). However, metagenomic sequencing offers additional advantages, as it enhances strain-
level resolution, which is somewhat challenging with 16S rRNA and ITS sequencing. We also
recognize the value of longitudinal studies and matching participants by sex, age, and
socioeconomic status to capture temporal differences, while reducing confounding effects. The
lack of species-level information for fungi in some samples, attributed to a low number of reads,
may have resulted from insufficient fungal DNA in the original samples, owing to low fungal
biomass. Additionally, the UNITE database, commonly used for fungal taxonomic assignments,
does not offer as high taxonomic resolution as bacterial databases such as HOMD and Silva
(Nilsson et al., 2016; Quast et al., 2013). In the future, enhancing the understanding of ECC
could be achieved through longitudinal birth cohort studies. Such an analysis would yield more
specific differences and capture dynamic changes over time, while effectively controlling for
numerous confounding variables. While many ECC associated species and interactions
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identified in our analysis corroborated with previous studies, these findings may not be
generalized across different populations due to the variations identified by place of residence
and socioeconomic conditions. Furthermore, the biases introduced by class imbalance for
variables selected in the study, sample processing and sequencing at different time points are
also inevitable in microbiome studies, however, some biases were minimized using centered log
ratio transformation. Some studies have highlighted the association between host taste genetics
and the incidence of caries, including ECC (de Jesus et al., 2022; Orlova et al., 2022).
Therefore, the inclusion of genetic data, especially in the field of taste genetics, may help to
identify the role of nutrition and food intake in the susceptibility to ECC. Furthermore, multimodal
machine learning tools can identify ECC contributors to the microbiome, host behaviors,
socioeconomic status, and genetic components.

In summary, our study investigated the impact of dental plaque microbiome, socioeconomic,
and behavioral factors on the presence of ECC. We reported several novel interactions between
the bacteriome and mycobiome in the ECC and CF groups. This includes interkingdom
interactions between C. dubliniensis and N. bacilliformis, and C. albicans and C. durum. Our
study identified key species associated with ECC, including S. mutans, C. dubliniensis, N.
bacilliformis, among others. This analysis was facilitated using microbiome association analysis
methods and ML models, made possible by inclusion of mycobiome sequencing and a large
sample size. This study provides empirical evidence linking socioeconomic and behavioral
factors, such as SEFI score and bedtime snacking habits, to ECC and offers new insights into
the contributors to ECC. Our research will aid oral healthcare providers in the development and
implementation of targeted intervention strategies for ECC based on the specific host variables
included in the study.
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TABLES
STAR METHODS

KEY RESOURCES TABLE

RESOURCE SOURCE IDENTIFIER
Critical commercial assays

QlAamp DNA Mini Kit Qiagen Cat # 51306
DNeasy PowerSoil Kit Qiagen Cat # 12888-100

Software and algorithms

QIIME2 v 2022.11
HOMD v 15.23
DECIPHER v 2.24.0

phyloseq v 1.40.0

metamicrobiomeR v 1.2

veganyv 2.6-4

microbiomeMarker v 1.4.0

Microeco v 1.4.0
mikropml v 1.4.0
SIAMCAT v 2.0.1
Rv4.32

ggplot2 v 3.4.3
NetCoMiv 1.1.0
Tidymodels v 1.1.1
Mice v 3.16.0

MicrobiomeStat v 1.1.2

MaAsLin2v 1.14.1

Micropower

(Bolyen et al., 2019)
(Escapa et al., 2018)
(Wright, 2016)

(McMurdie & Holmes, 2013)

(Ho et al., 2019)

(Dixon, 2003)
(Cao et al., 2022)

(Liu et al., 2020)
(Topcguoglu et al., 2021)
(Wirbel et al., 2021)

(R Core Team, 2023)
(Wickham, 2016)
(Peschel et al., 2020)
(Kuhn & Wickham, 2020)
(van Buuren & Groothuis-
Oudshoorn, 2011)

(Zhou et al., 2022)

(Kelly et al., 2015)

https://docs.qgiime2.org/2022.11/

https://homd.org/

https://bioconductor.org/packages/DECIPH
ER/
https://joey711-github-

io.uml.idm.oclc.org/phyloseq/

https://github.com/nhanhocu/metamicrobio

meR

https://github.com/vegandevs/vegan

https://bioconductor.org/packages/microbio

meMarker/

https://chiliubio.qgithub.io/microeco/

https://github.com/SchlossLab/mikropml

https://github.com/zellerlab/siamcat

https://www.r-project.org/

https://ggplot2.tidyverse.org/
https://github.com/stefpeschel/NetCoMi

https://www.tidymodels.org/

https://github.com/amices/mice

https://cran.r-
project.org/package=MicrobiomeStat

https://github.com/biobakery/Maaslin2

https://fedematt.shinyapps.io/shinyMB/
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Table 1: Host variables analyzed in the study.

10
11

12

13

14

15

16

Variable Name
ECC Status

Sex

Vaginal Birth
Breastfeed Child
Bottlefeed Child
Bedtime Snack
Urban_Rural

Times Day Brushed

Child Dental Health

Age
ECOHIS Total Score

NutriSTEP Total Score

SEFI score

Material deprivation score

Social deprivation score

Fluoride toothpaste

Type
Binary

Binary
Binary
Binary
Binary
Binary
Binary

Ordinal

Ordinal

Continuous
Continuous

Continuous

Continuous

Continuous

Continuous

Binary

Description

Indicates the dental caries status of the
child.
The biological sex of the child.

Mode of childbirth.
Whether the child was breastfed.
Whether the child was bottle-fed.

Consumption of snacks by the child at
bedtime.

The residential setting of the child's
home.

Number of times the child's teeth are
brushed per day.

Parental perception of the child's dental
health.

The age of the child.

Score from the Early Childhood Oral

Health Impact Scale measures the oral
health-related quality of life (OHRQoL)
of preschool children and their families.

17 questions about a child’s typical food
choices, eating behaviors, as well as
physical activity, and growth to assess
the nutrition risk for preschoolers
Derived from Census data that reflects
non-medical social determinants of
health and is used as a proxy measure
of socioeconomic status

Calculated from Canadian Census data
which reflects the deprivation of wealth,
goods, and conveniences

Calculated from Canadian Census data
which reflect the deprivation of
relationships among individuals in the
family, the workplace, and the
community

Use of fluoride toothpaste

Encoding

Caries free (0),
ECC (2)
Female (0),
Male (1)
Cesarian (0),
Vaginal (1)

No (0),

Yes (1)

No (0),

Yes (1)

No (0),

Yes (1)

Rural (0),
Urban (1)
Never (1),
Sometimes (2),
1x(3),

2x (4),

>2x (5)

Very good (1),
Good (2),

Fair (3),

Poor (4),

Very poor (5)
Measured in months

Higher ECOHIS score
signifies worsening
oral health related
quality of life.

A higher score
indicates a greater
nutritional risk.

Lower scores indicate
more favorable
conditions

Lower scores indicate
less deprivation
(better status)

Lower scores indicate
less deprivation
(better status)

No (0),
Yes (1)

Footnote: Binary variables are encoded as 0 or 1 based on the alphabetical order of their categories.
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Table 2: Table for participants characteristics

Variable N CF, N = 226" ECC, N = 312" p-value?
Sex 538 >0.9
Female (0) 114 (50%) 157 (50%)
Male (1) 112 (50%) 155 (50%)
Age 538 43 (28, 55) 49 (36, 58) <0.001
Vaginal_birth 530 0.002
No (0) 72 (32%) 62 (20%)
Yes (1) 152 (68%) 244 (80%)
Breastfeed_child 530 <0.001
No (0) 40 (18%) 113 (37%)
Yes (1) 184 (82%) 193 (63%)
Bottlefeed_child 531 0.012
No (0) 64 (29%) 59 (19%)
Yes (1) 160 (71%) 248 (81%)
Bedtime_snack 536 <0.001
No (0) 143 (64%) 127 (41%)
Yes (1) 81 (36%) 185 (59%)
Child_dental _health 534 <0.001
Very good (1) 118 (53%) 12 (3.8%)
Good (2) 91 (41%) 64 (21%)
Fair (3) 12 (5.4%) 113 (36%)
Poor (4) 1 (0.5%) 108 (35%)
Very poor (5) 0 (0%) 15 (4.8%)
Times_day_brushed 536 0.003
Never (1) 2 (0.9%) 2 (0.6%)
Sometimes (2) 5 (2.2%) 29 (9.3%)
Once daily (3) 85 (38%) 130 (42%)
Twice daily (4) 129 (58%) 147 (47%)
>2 time daily (5) 3 (1.3%) 4 (1.3%)
Fluoride_toothpaste 492 <0.001
No (0) 63 (30%) 38 (14%)
Yes (1) 148 (70%) 243 (86%)
Urban_status 534 <0.001

Rural (0)

8 (3.6%)

156 (50%)
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Variable N CF, N = 226" ECC, N = 312" p-value?
Urban (1) 216 (96%) 154 (50%)

Material_depr_score 498 -0.10 (-0.69, 0.44) 0.75 (0.06, 1.72) <0.001

SEFI_score 498 -0.06 (-0.67, 0.71) 0.87 (0.04, 1.89) <0.001

Social_depr_score 498 0.17 (-0.36, 1.01) -0.01 (-0.57, 0.63) 0.003

ECOHIS_total_score 454 0(0,1) 6 (2, 12) <0.001

NutriSTEP_total_score 455 20 (16, 24) 23 (19, 27) <0.001

N, Number of non-missing entries for each variable

CF, Caries-free

ECC, Early childhood caries

'n (%); Median (IQR)

®Pearson's Chi-squared test; Wilcoxon rank sum test; Fisher's exact test
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Table S1: STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

Item Page
No Recommendation No
Title and abstract 1 (a) Indicate the study’s design with a commonly used term in the title or 1

the abstract

(b) Provide in the abstract an informative and balanced summary of what 2
was done and what was found

Introduction

Background/rationale 2 Explain the scientific background and rationale for the investigation being | 3
reported

Objectives 3 State specific objectives, including any prespecified hypotheses 3-4

Methods

Study design 4 Present key elements of study design early in the paper

Setting 5 Describe the setting, locations, and relevant dates, including periods of

recruitment, exposure, follow-up, and data collection

Participants 6 (a) Give the eligibility criteria, and the sources and methods of selection of | 4
participants

Variables 7 Clearly define all outcomes, exposures, predictors, potential confounders, | 4-6
and effect modifiers. Give diagnostic criteria, if applicable

Data sources/ 8 For each variable of interest, give sources of data and details of methods | 4-6
measurement of assessment (measurement). Describe comparability of assessment
methods if there is more than one group

Bias 9 Describe any efforts to address potential sources of bias 12
Study size 10 Explain how the study size was arrived at 4
Quantitative variables 11 Explain how quantitative variables were handled in the analyses. If 5-6

applicable, describe which groupings were chosen and why

Statistical methods 12 (a) Describe all statistical methods, including those used to control for 5-6
confounding

(b) Describe any methods used to examine subgroups and interactions NA

(c) Explain how missing data were addressed 6

(d) If applicable, describe analytical methods taking account of sampling 5-6

strategy

(e) Describe any sensitivity analyses NA
Results
Participants 13 (a) Report numbers of individuals at each stage of study—eg numbers 4

potentially eligible, examined for eligibility, confirmed eligible, included in

the study, completing follow-up, and analysed

(b) Give reasons for non-participation at each stage 4

(c) Consider use of a flow diagram NA
Descriptive data 14 (a) Give characteristics of study participants (eg demographic, clinical, 8

social) and information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of 16-17
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interest
Outcome data 15 Report numbers of outcome events or summary measures 8, 16-
17
Main results 16 (a) Give unadjusted estimates and, if applicable, confounder-adjusted 8
estimates and their precision (eg, 95% confidence interval). Make clear
which confounders were adjusted for and why they were included
(b) Report category boundaries when continuous variables were NA

categorized

(c) If relevant, consider translating estimates of relative risk into absolute NA

risk for a meaningful time period

Other analyses 17 Report other analyses done—eg analyses of subgroups and interactions, NA

and sensitivity analyses

Discussion

Key results 18 Summarise key results with reference to study objectives 9,12

Limitations 19 Discuss limitations of the study, taking into account sources of potential 12
bias or imprecision. Discuss both direction and magnitude of any potential
bias

Interpretation 20 Give a cautious overall interpretation of results considering objectives, 9-12
limitations, multiplicity of analyses, results from similar studies, and other
relevant evidence

Generalisability 21 Discuss the generalisability (external validity) of the study results 12

Other information

Funding 22 Give the source of funding and the role of the funders for the present 13
study and, if applicable, for the original study on which the present article

is based
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Figure 1: Microbiome composition and alpha and beta diversity in caries-free and early
childhood caries. (Left panel for bacteria and right panel represents fungi)

(A) Relative abundance of most abundant species. (B) Boxplot for alpha diversity comparison
for Chaol, Shannon and Simpson. Each dot represents one sample and boxplot representing
median and 1.5 interquartile range. (C) Principal component analysis for beta diversity
comparison using adonis2 function.
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Figure 2: Differential network analysis for CF and ECC samples on combined bacterial
and fungal datasets

The network plot visualizes the associations between species identified as differentially
abundant, highlighting their relevance to CF and ECC conditions. Each node represents one
species, and the size of the node is proportional to its coefficient value, indicating the strength of
association with either CF or ECC conditions. Edges between nodes signify the interactions
from the differential matrix, with each edge type categorized by the nature of interaction within
CF or ECC samples: '0' denotes no correlation, - indicates a negative correlation, and '+'
signifies a positive correlation between two species. To limit the edge connections, only the
interactions involving species identified as differentially abundant through MaAsLin2 analysis
are included.
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Figure 3: Machine learning performance for the classification of ECC and CF status

(A) Barplot for Area Under the Receiver Operating Characteristic Curve (AUROC) and the Area
Under the Precision-Recall Curve (AUPRC) values of five machine learning classifiers for the
classification of ECC and CF samples, evaluated for the combined dataset and for bacterial and
fungal datasets separately. (B) Barplot for the variable importance derived from Random Forest

model on combined bacterial and fungal datasets.
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Figure 4: Association between host variables and early childhood caries

(A) The correlation heatmap displays the relationships between various socioeconomic and
health-related factors. Darker blue circles indicate a stronger positive correlation, while darker
red circles represent a stronger negative correlation between the variables. (B) The forest plot
illustrates the log odds ratios for the association of each factor with ECC status (right). Factors
significantly associated with disease status are highlighted in red, with the horizontal lines
representing the 95% confidence intervals. Features with positive log odds values indicate the
likelihood of ECC, while negative values signify protective factors against ECC. The left panel
shows the estimates for a multivariate model and the right panel shows the result for a
univariate model adjusted for age, sex, and residential status.
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Figure 5: Association of the host variables with diversity metrics

(A) Host variables and their Spearman correlation coefficient (p) values for alpha diversity,
assessed using Shannon's metric in bacteria and fungi. (B) Beta diversity analyses of host
variables via PERMANOVA, with R2 values indicating variance explained in bacterial and fungal
communities. The colored bar in each plot represents the statistical significance at p<0.05.
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Figure 6: Associations between microbial features and various socioeconomic factors
The coefficient estimate values are after adjusting for age, sex and rural/urban status using
MaAsLin2 method for differential abundance analysis. Features are categorized as B_ for
bacterial and F_ for fungal. Significance levels are denoted as: * g-value < 0.01 and ** g-value <
0.001, where g-value = Benjamini-Hochberg adjusted p-value.
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Figure S1: Exploratory data analysis for the distribution of host variables used as
socioeconomic and behavioral factors after imputation

(A) Binary variables. (B) Ordinal Variables. (C) Continuous variables for age, ECOHIS AND
NutriSTEP score. (D) Continuous variables for socioeconomic factors. The detail of these
variables is provided in Table 1 in the main article.
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Figure S2: Association between microbial features and various socioeconomic factors
(A) Species level. (B) Genus level. The coefficient estimates values from MaAsLin2 differential
abundance analysis method without adjusting for any confounder. Features are categorized as
B_ for bacterial and F_ for fungal. Significance levels are denoted as: * g-value < 0.01 and ** g-
value < 0.001, where g-value = Benjamini-Hochberg adjusted p-value.
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