bioRxiv preprint doi: https://doi.org/10.1101/2024.03.12.584554; this version posted March 14, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Bayesian inference of state feedback control parameters for f,

perturbation responses in cerebellar ataxia

. . * . . . 2
Jessica L. Gaines!”, Kwang S. Kim?, Ben Parrell®, Vikram Ramanarayanan®?®, Alvincé

L. Pongos!, Srikantan S. Nagarajan®%, John F. Houde*

1 UC Berkeley - UCSF Graduate Program in Bioengineering, University of
California-San Francisco, San Francisco, California, USA

2 Department of Speech, Language, and Hearing Sciences, Purdue University, West
Lafayette, Indiana, USA

3 Department of Communication Sciences and Disorders, University of
Wisconsin-Madison, Madison, Wisconsin, USA

4 Department of Otolaryngology, University of California-San Francisco, San Francisco,
California, USA

5 Modality.ai, San Francisco, California, USA

6 Department of Radiology, University of California-San Francisco, San Francisco,

California, USA

* jessica.gaines@berkeley.edu

Abstract

Behavioral speech tasks have been widely used to understand the mechanisms of speech
motor control in healthy speakers as well as in various clinical populations. However,
determining which neural functions differ between healthy speakers and clinical
populations based on behavioral data alone is difficult because multiple mechanisms
may lead to the same behavioral differences. For example, individuals with cerebellar
ataxia (CA) produce abnormally large compensatory responses to pitch perturbations in
their auditory feedback, compared to controls, but this pattern could have many

explanations.
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Here, computational modeling techniques were used to address this challenge.
Bayesian inference was used to fit a state feedback control (SFC) model of voice
fundamental frequency (f,) control to the behavioral pitch perturbation responses of
individuals with CA and healthy controls. This fitting process resulted in estimates of
posterior likelihood distributions of five model parameters (sensory feedback delays,
absolute and relative levels of auditory and somatosensory feedback noise, and controller
gain), which were compared between the two groups. Results suggest that the CA
group may proportionally weight auditory and somatosensory feedback differently from
the control group. Specifically, the CA group showed a greater relative sensitivity to
auditory feedback than the control group. There were also large group differences in the
controller gain parameter, suggesting increased motor output responses to target errors
in the CA group. These modeling results generate hypotheses about how CA may affect
the speech motor system, which could help guide future empirical investigations in CA.
This study also demonstrates the overall proof-of-principle of using this Bayesian
inference approach to understand behavioral speech data in terms of interpretable

parameters of speech motor control models.

Author summary

Cerebellar ataxia is a condition characterized by a loss of coordination in the control of
muscle movements, including those required for speech, due to damage in the cerebellar
region of the brain. Behavioral speech experiments have been used to understand this
disorder’s impact on speech motor control, but the results can be ambiguous to
interpret. In this study, we fit a computational model of the neural speech motor
control system to the speech data of individuals with cerebellar ataxia and that of
healthy controls to determine what differences in model parameters best explain how
the two groups differ in their control of vocal pitch. We found that group differences
may be explained by increased sensitivity to auditory feedback prediction errors
(differences between the actual sound speakers hear of their own speech as they produce
it and the sound they expected to hear) and increased motor response in individuals
with cerebellar ataxia. These computational results help us understand how cerebellar

ataxia impacts speech motor control, and this general approach can also be applied to
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study other neurological speech disorders.

Introduction

Altered auditory feedback experiments have been widely used to probe the mechanisms
of speech motor control. In this class of experiments, participants speak while listening
to a digitally-altered version of their own voice through headphones. This allows
experimenters to observe how the speech motor system responds to a perceived error in
some acoustic property of the voice such as pitch, formant frequencies, or loudness (for
a review, see [1]). In a pitch perturbation task, the auditory feedback of participants’
production of a sustained vowel sound is, at an unexpected time and for a brief period
(usually a fraction of a second), digitally altered to have a higher or lower fundamental
frequency (f,; which is perceived as vocal pitch) than was actually produced.
Participants tend to compensate for this perceived error within the ongoing production
by shifting their produced pitch in the opposite direction of the perturbation,
demonstrating that people use auditory feedback for online control during speech.
Variations of this task have been used to inform the understanding of speech motor
control in typical speakers [2H4] and, more recently, to compare the responses of healthy
speakers with those of various clinical populations (e.g., Alzheimer’s disease [5];
Parkinson’s disease [6]; Hyperfunctional voice disorders [7]; Laryngeal dystonia [8];
Cerebellar ataxia [9,/10]).

However, due to the complexity of the speech motor system, it remains difficult to
determine what specific mechanisms may lead to the observed differences in behavioral
results in different populations. A difference in how two groups respond to a mid-trial
pitch perturbation may create multiple hypotheses about the differences in the speech
motor control system between the two groups. A mechanistic computational model can
thus be a powerful tool in evaluating these hypotheses by simulating the effects of
specific model changes on the observable output. Tuning the parameters of a
computational model to fit observed behavioral data has the potential to distinguish
how different model components contribute to the observed effect [11H16].

A recent example of mechanistic ambiguity in behavioral speech data is the

increased response to pitch perturbations observed in individuals with cerebellar ataxia
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(CA; [9,/10]). CA is a condition characterized by a loss of coordination in limb
movements, eye movements, and gait, as well as speech symptoms such as articulatory
impreciseness, harsh or breathy voice, slowed speech, hypernasality, excessive variation
of loudness, scanning speech, and/or impaired timing of voice onset [17,[18]. In CA
these movement-related symptoms are caused by cerebellar lesions or degeneration,
which is consistent with the idea of the cerebellum as a likely neural substrate for
internal models, or neural representations of the body used in neuromotor

control [19,20]. However, open questions remain about the precise impact of cerebellar
lesions on internal models and the speech motor control system.

Previous pitch feedback perturbation studies involving individuals with CA have
examined the effects of CA on speech motor control. Houde et al. |9] found that
individuals with CA displayed a heightened response to a 400 ms, mid-utterance pitch
perturbation of 100 cents, with the peak of the CA group average response observed to
be twice as high as that of the control group average. Around 300 ms after the end of
the perturbation, however, the response of the CA group had fallen such that there was
no significant difference between the average normalized pitch of the two groups during
the time period from 0.7 to 1.0 s. The latency of the peak response was approximately
the same for the two groups. These results are reproduced in Fig|[l] Similar results were
observed by Li et al. [10] using a slightly different paradigm with a 200 ms perturbation
of 200 or 500 cents.

Houde et al. [9] proposed two possibilities to explain these findings:

Hypothesis 1: Compared to the control group, the CA group exhibits increased
reliance on auditory feedback in comparison with somatosensory feedback.

Hypothesis 2: Compared to the control group, the CA group displays an increased
reliance on all types of sensory feedback collectively due to impairment of the
feedforward system.

The current study further investigated these two hypotheses by estimating
parameter values to fit a computational model of voice f, to the empirical pitch
perturbation responses of CA and control groups (as observed in Houde et al. [9]). A
recently developed Bayesian inference method called simulation-based inference (SBI;
https://sbi-dev.github.io/sbi/; [21,22] was used to estimate posterior likelihood

distributions for each model parameter based on each data set. The above hypotheses
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Fig 1. Behavioral data. Group averaged response (thick dotted line) to a 400 ms
pitch perturbation of 100 cents for the CA group (blue) and control group (red) [9]. The
thin dotted line indicates standard error. The CA group response showed a significantly
larger magnitude than that of the control group with no change in peak latency.

were investigated by comparing posterior probability distributions of parameters
between the two groups and observing the impact of parameter ablation on the quality

of model fit.

Model

Overview of state feedback control

The computational model used in this investigation implements a state feedback control
(SFC) architecture to simulate a participant’s response to an unexpected pitch
perturbation during a sustained vowel production. The theory of state feedback control
has been well established as a plausible neural mechanism for non-speech motor

tasks [231[24] and has more recently been explored in the field of speech motor

control [13}[25}26].

This SFC model of voice control we consider is greatly simplified from the full task
of voice control. Our model simulates only the control of f, in ongoing voice output,
which we idealize as controlling the rest-length of a spring in a single damped
spring-mass system that is somewhat analogous to the cricothyroid muscle’s control of

pitch [2527]. The controls generated by laryngeal motor cortex are modeled as desired
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changes in the rest-length of a single muscle determining f, in our simplified larynx.
The SFC architecture for motor control of this simplified larynx is shown in Fig
Motor controls are calculated by comparing the desired laryngeal state to an internal
estimate of the current state of the larynx, which is maintained by a process of state
prediction and subsequent correction based on auditory and somatosensory feedback
signals. The controls are scaled by a tunable controller gain g.. An efference copy of
these commands is used to predict the state of the larynx for the following time step,
and consequently the expected auditory and somatosensory feedback. Meanwhile, the
actual sensory feedback is generated by the larynx model. This simulated feedback can
be altered to simulate the effects of a pitch perturbation experiment. Each sensory
feedback signal contains Gaussian noise with zero mean and tunable variance o and has
some tunable delay A. The delayed and noisy feedback is compared with the predicted
feedback to generate an error signal. The error signals from each feedback modality are
used to correct the internal estimate of laryngeal state. The error signals are weighted
by a Kalman gain matrix, which is calculated based on the noise in each signal, to
determine the appropriate correction to the internal state estimate. Across multiple
frames, the auditory output of the larynx model can be compared to a behavioral pitch

perturbation response.
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Control Law 9, > Larynx Som. Feedback
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2 Som. Noise ~N(0,0), .= o/r |
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Fig 2. Overview of state feedback control. A state feedback model of vocal f,
control where A, is auditory feedback delay, A, is somatosensory feedback delay, o is
overall feedback noise variance, r is feedback noise ratio, and g. is controller gain.
Parameters tuned in this investigation are highlighted in red.
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State space representation

The plant of the control system, the larynx, is modeled using a state space
representation of a dynamical system (Eq [28]). Specifically, the larynx is modeled
as a simple spring-mass system in which the length of the spring represents muscle
tension on the vocal folds, and is therefore linearly related to vocal pitch. There exist
many more complicated and accurate models of the generation of voice by the complex
system of muscles controlling the larynx (see [29,30]); however, for the current study, a
very simple model was used to represent broadly the dynamics of the plant that must

be controlled.

[t] = Ax[t — 1] + Bult — 1] + w[] (1)

ylt] = Cult] + vlt] (2)

In these equations, x is the state (position and velocity of the mass on the spring) of
the larynx dynamical system (elsewhere referred to as “larynx”), ¢ is the current time

step, u is the control input, and w is Gaussian process noise. The variable y is a vector

containing auditory and somatosensory feedback and v is Gaussian measurement noise.

A and B are matrices encoding the spring constant, damping constant, and mass of the
system, which would be determined by the anatomy of the individual, and C' encodes

the transformation from state to sensory feedback. These three matrices are constants
of the larynx plant (Eq3)) and remain fixed throughout the study at the values used by

Houde et al. [27].

0 1 0 1 0
A= B = C = (3)
—160000 —1600 160000 10

Process noise w is defined such that
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(4)

where o, is the variance of noise applied to each element of laryngeal state. o, was

held constant at 1le-8 throughout the simulations, a value that was found to produce

stable simulator output.

Measurement noise v is defined such that

R =

E[w!] =

o, O

0 o4

(5)

where o, is the variance of Gaussian noise on the auditory feedback signal and o is

the variance of Gaussian noise on the somatosensory signal.

Another state space system defined by A =0, B=1, C' =1 is connected in series

preceding this main system, serving to integrate over the main system and thus produce

a laryngeal position from the motor commands output by the main system.

Additionally, the full continuous system is discretized using zero-order hold methods

with a 0.004 s sampling time.

Pitch perturbation

The variable y is a two-element vector containing auditory and somatosensory feedback

from the larynx. The pitch perturbation is implemented as an addend to the auditory

component of the vector as follows:

—100
0

,0 <t < 400ms
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Controller

The controller command to change the state of the larynx is defined by

U[t] =gc* (xtarget [t] — Testimate [t]) (7)

where g. is the controller gain, Ztarget is the desired laryngeal state and Zestimate is the

internal estimate of the laryngeal state.

Observer

The observer provides the internal estimate of the state of the larynx through iterative
prediction of state and subsequent update of the prediction using sensory feedback. The

state is predicted by

Lpredicted [t] = AZcstimate [t - 1] + Bu[t - 1] (8)

where A and B matrices are identical to those used to define the larynx (Eq [3)and
uft — 1] is the efference copy of the controller commands from the previous timestep

(Eq . Predicted state is used to predict the sensory feedback by

Ypredicted [t] = C(Epredicted [t] (9)

where C' is identical to the state-to-feedback transformation matrix of the laryngeal
system (Eq. The error between the predicted sensory feedback and the actual sensory

feedback is then determined by

a

Yerror [t - A] = y[t - A} - ypredicted [t - AL Where A = (10)
A

where A, is auditory feedback delay and A, is somatosensory feedback delay.

Sensory feedback error is used to estimate the error in laryngeal state by
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Zerror [t] =K x Yerror [t - A]

(11)

where K is the steady-state Kalman gain. Kalman gain is the optimal gain matrix

calculated by first solving the discrete-time algebraic Ricatti equation (Eq using the

Python Control Systems Library (python-control; [31]) for P where the equation is

satisfied when P = P.

ATPA—-P - ATPB(B"PB+R) 'B"PA+Q =0

(12)

In the above equation, A and B are defined by the larynx dynamical system (Eq

and @ and R are defined by noise variances (Eq Eq . Optimal Kalman gain is then

calculated as follows where C' is defined by the larynx dynamical system (Eq .

K = PCT(RCPCT)™1

(13)

Finally, the predicted laryngeal state is updated by the error to find the estimated

state using

Testimate [t] = Tpredicted [t] + Terror [t]

Tunable Parameters

(14)

The values of a set of tunable parameters in the SFC model affect the shape of the

model output, a simulated time course of vocal f, in response to a mid-trial pitch

perturbation. These parameters include the sensory delay parameters A, and Ag,

controller gain g., and sensory feedback noise variance parameters. In order to separate

the effects of absolute noise level from the relative amount of noise between the two

sensory feedback modalities, the noise variance parameters o, and o were
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parameterized to o and r such that o, = 0 and o; = o/r. Thus o represents the
variance of sensory feedback noise overall in both auditory and somatosensory feedback
modalities and r represents the ratio of auditory feedback noise variance to
somatosensory feedback noise variance. Overall feedback noise variance o was explored
on a log;, scale in order to more effectively search many orders of magnitude of noise

variance. Thus the parameter set tuned in this investigation was 6 = {A,, As, 0,7, 9.}

Expression of Study Hypotheses in the Context of the SFC
Model

Houde et al. [9] proposed two possible explanations for the behavioral pitch
perturbation response differences between CA and control groups: 1) an increase in the
CA group’s reliance on auditory feedback, or 2) an increase in the CA group’s reliance
on all types of sensory feedback collectively compared to that of the control group.
These hypotheses can be examined using the feedback noise parameters, which are
inversely related to reliance on sensory feedback through the calculation of Kalman gain
K. An increase in the variance of the noise distribution of a particular feedback
modality results in a lower Kalman gain on that feedback signal. Thus the hypotheses
can be conceptualized in terms of the SFC model as follows:

Hypothesis 1: Compared to the control group, the CA group exhibits increased
reliance on auditory feedback over somatosensory feedback. Mathematically, this can be

expressed as:

i) ()
> (15)
( KS CA KS control

Since Kalman gain is inversely related to noise variance, this is equivalent to:

(%) (%) a0
Os/ cA Os / control
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or 184

TcA < Tcontrol (17)

Hypothesis 2: Compared to the control group, the CA group displays an increased — 1ss

reliance on all types of sensory feedback collectively due to impairment of the 186

feedforward system. Mathematically, this can be expressed as: 187
(Ka)CA > (Ka)control and (KS)CA > (Ks)control (18)

which is equivalent to: 188
(Ua)CA < (Ua)control and (US)CA < (Us)control (19)

or simply: 189
ocA < Ocontrol (20)

Thus Hypothesis 1 can be examined by comparing the feedback noise ratio 190

parameter r between the two groups, while Hypothesis 2 can be examined by comparing 1o
the overall feedback noise variance parameter o between groups. The finding of a 192
smaller value for r in the CA group compared with the control group would support 103

Hypothesis 1, while a smaller value for ¢ in the CA group would support Hypothesis 2. 10

Results 195
Parameter effect size 106
Bayesian inference was used to fit a five-parameter SFC model of voice f, to the 197

empirical pitch perturbation responses of CA and control groups as observed in Houde 10

et al. |9]. For each empirical data set, simulation-based inference (SBI; 199
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https://github.com/sbi-dev/sbi/; [21,/22] was used to generate a posterior 200
likelihood distribution across values for each parameter. To improve robustness, the 201
posterior distributions from 10 repetitions of the inference procedure were combined. 202

Fig. [3] shows the combined posterior distributions generated for each parameter, with 203
the median and 95% Bayesian credible interval marked in each distribution. Since tests o4
of significance lose meaning under the high statistical power of simulated data [32], 205

effect size was used to quantify which parameters were most different between control 206

and CA groups. Glass’s delta effect size was used because it is designed to compare 207
populations with unequal variances. The mean and standard error of effect size 208
calculated from 100 bootstrap samples of size 1000 are annotated on each subplot. 200

Controller gain and feedback noise ratio had the largest effect size, while somatosensory 2w
feedback delay, auditory feedback delay and overall feedback noise variance had 211
relatively small effect size. Notably, feedback noise ratio had a much larger effect size 22
than the overall variance of sensory feedback noise, suggesting that the relative amount 213
of noise between feedback modalities contributed much more to group differences than 21

the overall level of feedback noise. All of the distributions are unimodal, which suggests 21

there was a single optimal parameter set rather than several local optima. 216
Controller Gain  Fb Noise Ratio (Aud:Som) Somat Delay (ms) Aud Delay (ms) Fb Noise Var (log)
5.26 +/- 0.01 5.10 +/- 0.01 1.67 +/- 0.01 0.88 +/- 0.00 0.83 +/- 0.00
o8 6 80 200 -3
=
©
o 4 60 150 —4
2
qE) 4 40 -5
s, + 2 ? 100
5 ‘ 20 6
0 0 0 50
Controls CA patients Controls CA patients Controls CA patients Controls CA patients Controls CA patients

Fig 3. Parameter likelihood distributions. Posterior likelihood distributions
(pooled from 10 repetitions of inference) for each parameter, with control group
distributions on the left (red) and CA group distributions on the right (blue). The 95%
Bayesian credible interval is indicated by horizontal bars and the median value of each
distribution is indicated by a black dot. Glass’s delta effect size (mean and standard
error from bootstrap samples) is printed at the top of each subplot.

Model fit 217
The median of each marginal likelihood distribution was chosen as the inferred 218
parameter set for each participant group (see Table . The inferred parameter sets 210
were validated by using them in the SFC simulator to check that the results were 220
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broadly similar to the empirical data from each group. The close alignment of the tuned
model with the empirical data can be seen in Fig[4 The mean of 100 simulator outputs
using each group’s inferred parameter set were plotted to account for stochasticity
within the SFC simulator. The standard error of these simulator outputs was also
plotted, but was too small to be distinguished from the mean. Root mean square error
(RMSE) between the simulator output and the behavioral data was used to quantify the
quality of model fit for each group with a statistic not explicitly optimized during
training. RMSE (mean + standard error across 100 simulations) was 0.8613 & 0.0002
cents for the control group (4.06% of the range of the data) and 1.5544 4 0.0003 cents

for the CA group (3.84% of the range of the data).

401 v, CApatients
el Controls

Pitch (cents)
N w
° 9

[
o

02 0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Fig 4. Model fit. The simulator output (solid lines) using the inferred parameter set
for each group closely aligned with the behavioral data (dotted lines) previously seen in
Fig|l]l For simulator output and behavioral data, the mean is plotted with a thick line
and standard error with a thin line, although standard error on simulator output was
too small to visibly distinguish from the mean. Blue lines indicate data associated with
the CA group and the corresponding simulator output, while red lines indicate those
associated with the control group.

Table 1. Inferred values for control and CA groups.

Parameter | Aud Delay Somat Delay Fb Noise Var Fb Noise Ratio Controller
(ms) (ms) (logyq scale)  (Aud:Somat) Gain

Symbol A, A, o r Je

Control 102.7 35.3 -5.8 2.0 1.9

CA 91.5 15.5 -5.6 1.0 3.1
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Ablation study

Above, we have shown a successful model fit of the pitch perturbation responses for CA
and control groups and quantified the parameter distribution differences between
groups; however, the impact of these parameter differences on the simulator output are
not immediately clear from previous results. Thus, ablation techniques [33] were used to
understand the extent to which differences in inferred parameter values may translate to
meaningful changes in model output. In this ablation study, the impact of each
parameter on group differences was assessed by fitting the behavioral data set from the
CA group with a series of reduced models. For each reduced model, one of the five
original parameters was fixed to the control group’s inferred value for that parameter
(as listed in Table [1)) and a model composed of the four remaining parameters was used
to fit the behavioral data. This allowed us to quantify the impact of each parameter on
group differences and simulate the pitch perturbation response we might expect to see if
individuals with CA did not differ from controls in terms of each parameter.

As seen in Fig[pl the quality of the model fit for the CA group was most greatly
impacted by fixing the feedback noise ratio parameter, followed by the controller gain
parameter. This provided additional evidence that these parameters were the most
impactful in explaining the differences between the pitch perturbation responses of the
two groups. Fixing either the somatosensory feedback delay or feedback noise variance
parameter did not seem to change the quality of model fit from that of the full
five-parameter model, supporting the idea that these parameters have low impact in
explaining the differences between CA and control groups. Once again, the impact of
the feedback noise ratio parameter was much greater than that of the feedback noise
variance parameter, showing that the absolute amount of noise in each feedback signal
is less impactful than the relative amount of noise between signals. To validate the
method, the reduced models were also used to fit the control group data. As expected,
RMSE between the simulated and behavioral control group responses remained similar
to that of the full model, showing that changes in the RMSE of the CA group in the
reduced model fit are attributable to group differences in parameter values rather than
an artifact of reducing the number of parameters.

For each four-parameter model, the optimized simulator output of control and CA
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7 1 Il Controls
Il CA patients

\
e 2 N &Oe\a\‘\ o>
WO O (w8 W

Reduced model

Fig 5. Quality of fit for reduced models. Quality of fit for each 4-parameter model
with one parameter fixed to the inferred value for the control group. The quality of each
model’s fit is quantified by RMSE between empirical data and optimized model output
(mean RMSE across 100 simulator runs).

group data are shown in Fig[6] along with the posterior distributions of the remaining
parameters. The optimized simulator output for each four-parameter model provides
insight regarding the impact of each parameter on the shape of the pitch perturbation
response, while the distributions of the remaining parameters indicate which parameters
may interact with the ablated parameter.

The results of the ablation of the feedback noise ratio parameter are shown in
Fig[(JA. We can see from the posterior distributions that while the somatosensory
feedback delay, feedback noise variance, and auditory feedback delay parameter
distributions remained mostly similar to those of the full model, the controller gain
parameter distribution for the CA group shifted up to a much larger median value. This
allowed the simulated response to nearly reach the peak response of the behavioral CA
data, but it dipped far below the behavioral CA data during the period from 0.7 to 1.0

s after perturbation onset.
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Fig 6. Reduced models: simulator output and posterior distributions of remaining parameters. Inference
results for each of five reduced models in which a single parameter is fixed to the inferred value of the control group from
the full model fit and the remaining four parameters are used to fit the behavioral pitch perturbation data. Shown for
each reduced model are the posterior distributions of the four remaining parameters and the simulator output (mean of
100 simulations) using the inferred reduced parameter set.

Alternately, when the controller gain parameter was ablated, the feedback noise ratio
greatly increased in effect size as the median value of the CA group distribution shifted

down from 1.04 to 0.62. The median value of the somatosensory delay parameter also
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increased but the effect size of this parameter increased only slightly due to the large
variance of the distribution. These changes allowed the simulator output to nearly reach
the peak magnitude of the behavioral data of the CA group, but with the controller
gain fixed at the value of the control group, the optimized simulator output was higher
and more oscillatory than the behavioral data during the period from 0.7 to 1.0 s after
perturbation onset. Thus contributions from both the feedback noise ratio and controller
gain parameters are needed to replicate both the large magnitude of the CA group
response and the flat, moderate time course of f, after the end of the perturbation.
When auditory feedback delay was fixed to the inferred value for the control group
(Fig Ep), the CA group response became more oscillatory, contributing to a small
increase in error from the behavioral data. Fixing either somatosensory feedback delay
or overall feedback noise variance, meanwhile, did not appear to change the model fit. It
can be seen in (Fig @D) that the ablation of feedback noise variance caused a change in
the distribution of the somatosensory feedback delay parameter, and vice versa in
(Fig @E) Thus these two parameters, interestingly, seem to have similar effects on

model output.

Discussion

In this study, simulation-based Bayesian inference was used to disambiguate possible
mechanisms underlying the observed differences in the pitch perturbation responses of
individuals with CA and healthy controls by identifying speech motor control model
parameter differences between these two groups. The results indicate that most of the

differences between the pitch perturbation responses of individuals with CA and healthy

controls can be explained by differences in the feedback noise ratio and controller gain.

These parameters showed both (a) the largest effect size between groups in comparing
the posterior distributions and (b) the greatest loss of fit accuracy for the CA group
when fixed to the inferred value of the control group.

Our finding that the feedback noise ratio was lower in the CA group than in the
control group with substantial effect size supports Hypothesis 1, which suggests
increased reliance on auditory feedback relative to somatosensory feedback in the CA

group. In contrast, we did not find evidence in support of Hypothesis 2, the idea that
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CA group displays an increased reliance on all types of sensory feedback collectively.
The small effect size for the overall sensory feedback noise parameter and the minimal
change when this parameter was ablated were inconsistent with this hypothesis.

Here we will discuss how these findings fit into the previous literature regarding pitch
perturbation response in individuals with CA, new hypotheses generated by the model,

and the strengths and limitations of the modeling techniques used in this analysis.

Evidence for overreliance on auditory feedback

The high effect size of the feedback noise ratio suggests that the CA group may show
increased reliance on auditory feedback relative to somatosensory feedback. This may
appear to conflict with the results of Li et al. |10, which showed in individuals with
spinocerebellar ataxia a decreased cortical P2 response in the right superior temporal
gyrus (STG), primary auditory cortex (Al), and supramarginal gyrus (SMG) during a
pitch perturbation task. However, while this finding may provide evidence against the
idea that the absolute value of auditory feedback error gain is larger in the CA group
than the control group ((K.)ca > (K4)control), We argue that it does not rule out the
idea of increased sensitivity to auditory feedback as we have defined it in this study,

Kq

that is, relative to somatosensory feedback ((7)CA > (Ka

KS

)Contml; Hypothesis 1). If
both auditory and somatosensory gains are smaller in the CA group compared to
controls, it is possible that the resulting ratio between auditory gain and somatosensory
gain may still be larger in the CA group compared to the control group (i.e., if the
somatosensory gain in the CA group were much smaller compared that of the control
group). Defining feedback noise in terms of a ratio between sensory modalities has been
previously used by Crevecoeur et al. [23] to model relative sensitivity to visual and
proprioceptive feedback in arm reaching. Furthermore, the P2 response may not be a
direct measure of gain on auditory feedback error; the functional relevance of P2
response remains controversial and has been suggested to have contributions from
multiple sensory modalities including auditory and somatosensory [34]. Although this
view is highly speculative, we argue that the measurement of decreased P2 response in
the CA group |10] does not completely rule out Hypothesis 1 and that our findings

warrant further investigations.
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Lack of evidence for overall overreliance on feedback

Given the ties between internal models and the cerebellum [19)/20], it is indeed somewhat
surprising that we did not find evidence of overreliance on sensory feedback overall. It
would be reasonable to expect that if the internal models, and thus the state prediction
process, are disrupted in CA, sensory feedback would be more heavily weighted to
compensate for impairment in the feedforward system [9]. However, the results indicate
similar weighting of sensory feedback overall between the two groups, with perhaps even
slightly lower weighting (increased noise) of sensory feedback in the CA group. We
speculate that perhaps the nature of the disruption of internal models impairs the
integration of sensory feedback, which has similar effects to a slightly decreased
weighting. Alternatively, perhaps the auditory nature of the task created a result in

which auditory feedback appears to be emphasized rather than overall feedback.

Novel hypothesis generated by the model: controller gain

parameter

In addition to support for the previously stated hypothesis that individuals with CA

show increased reliance on auditory feedback relative to somatosensory feedback, our

results lead us to propose an additional hypothesis to be tested in future investigations.

The high impact of the controller gain parameter suggests a difference between
individuals with CA and healthy controls in the scaling of the motor command to the
larynx, which has likely neural substrate in the motor cortex [25]. Although any direct
ties between this parameter and the cerebellum are unknown, we speculate that perhaps
the increased value of controller gain in the CA group, which could also be interpreted
as increased sensitivity to target error (the difference between the intended production
and the actual production) may indicate a learned mechanism in the motor cortex to
compensate for deficits related to the disorder. Further study is needed to investigate

this hypothesis.
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Efficacy of simulation-based inference for model parameter

estimation

Simulation-based inference allowed us to obtain posterior likelihood distributions across
each parameter rather than a single set of optimal values. This made it possible to take
into account the spread of each distribution in addition to the inferred value and thus
determine the effect size of the difference between groups for each parameter.
Additionally, in a complex system it is possible to have many locally optimal parameter
sets that can achieve high quality fit to the empirical data. Obtaining a unimodal
posterior likelihood distribution for each parameter showed that the parameter set
selected could approximate a globally optimal solution within the bounds of the prior.
Simulation-based inference also offered advantages over other Bayesian methods since it
does not require an analytical form of the model (allowing us to analyze a complex
model like state feedback control) and is more computationally efficient than other

numerical techniques such as Markov Chain Monte Carlo methods [35].

Limitations

It is important to note that the current work is beneficial for generating hypotheses,
rather than drawing conclusions. The larynx was modeled here as a simple spring-mass
system. While this implementation may approximate many of the dynamics of laryngeal
movement, future studies should investigate how results may vary with more detailed
models of laryngeal muscles. Additionally, real speakers vary in their vocal tract
dimensions, damping, and other properties that are not possible to measure. The model
cannot quantitatively reflect all of these properties to represent an actual speaker.

Furthermore, these properties were left unchanged in the model throughout the present

set of simulations, so the vocal tract properties of at most one speaker were represented.

Meanwhile, the behavioral data used in the present study were group averages of many
subjects with different physiologies. To account for the averaging of multiple
observations, the simulator was run 100 times and the mean output was plotted.
However, standard error on model output was so small (< 0.1 cent) that it could not be
differentiated from the mean production on the plot. Standard error on the empirical

mean was larger, in the range of 0-3 cents, further demonstrating that the model does
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not account for the variation that is present among individual speakers.

Additionally, the present study was limited to the model changes that could be
captured by five model parameters. The same model architecture was used to model
both control and CA groups, with all differences captured in the tuning of model
parameters. Thus possible differences in the structure of neural systems between the
groups were not tested in the current study. Furthermore, many of the model
parameters tested here are abstract concepts whose precise neural implementation is not
yet fully understood. Each parameter that is represented in the model as a single value
may in fact be the result of many complex processes. Finally, only five parameters were
considered in the present study. Since training data was generated by testing values for
each parameter in combination with all other parameters, the number of parameters
tested was in exponential tradeoff with the resolution of values tested and the range of
the prior for each one. While the irrelevance of other untested model parameters cannot
be proven, the tested parameters can be argued to be sufficient since the model output

for each set of inferred values closely matched the behavioral data.

Conclusion

This work has shown that the controller gain and feedback noise ratio parameters have
high effect size and large contributions to the group differences between the pitch
perturbation responses of individuals with CA and healthy controls. These results (a)
provide support for the previous hypothesis that individuals with CA show increased
sensitivity to auditory feedback prediction error and (b) generate a new hypothesis of
increased sensitivity to target error in the CA group. Furthermore, this work
demonstrates the value of simulation-based inference methods in analyzing behavioral

speech data using tunable parameters of a state feedback control model.

Materials and Methods

Simulation-based inference overview

The SBI package in Python (https://github.com/sbi-dev/sbi/} [21L22]) was used

to obtain posterior likelihood distributions of five tunable parameters in the SFC model
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(see Model section for an overview of SFC) for the CA and control group average pitch
perturbation responses observed in Houde et al. [9]. As detailed in Fig m SBI takes as
input a computational model with a finite set of input parameters (“simulator”), a prior
distribution for each parameter, and an empirical observation analogous to the output
of the simulator. It generates a data set by running the simulator with inputs from the
prior distributions of the parameters, and then, using the Sequential Neural Posterior

Estimation (SNPE) option for inference, trains a deep neural density estimator to

predict the posterior distribution of parameters given the empirical observation.
Prior

P(6)

Sample

Parameter set 0

Y

Simulator

Pitch perturbation
\ 4 response simulation

> Neurall Density
Estimator

Posterior function P(6/x)

Empirical X
Observation Sample

P(6[X)

Posterior distribution
Fig 7. SBI overview. A pipeline for performing simulation-based inference [21}22].
Parameter values are inferred for a particular empirical observation given a mechanistic
model ("simulator”) and a prior distribution for each tunable parameter.
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Simulator

A Python implementation (https://github.com/jessicagaines/1d-sfc) of a state
feedback control model of f, |25[27] was used as the simulator (see Model section for
more details). The input parameter set included the following parameters: auditory
feedback delay A,, somatosensory feedback delay Ag, controller gain g., feedback noise
variance o, and feedback noise ratio . The parameters ¢ and r are parameterizations of
auditory feedback noise variance o, and somatosensory feedback noise variance o, such
that o, = o and o5 = o/r. This idea of exploring relative levels of feedback noise
between different sensory modalities was also used by Crevecoeur et al. [23] in their
state feedback control model of arm reaching. The output simulated a time course of
voice f, in response to a -100 cent, 400 ms, mid-utterance perturbation of f, feedback.
Random noise was added to model output during training as Jin et al. [36] found that
this increased reconstruction accuracy. Uniform noise distributions of increasing width
were tested and since the quality of model fit stopped improving for training noise
distribution wider than 7 cents, noise with distribution ~ U(—3.5,3.5) was added to the

simulator output during training.

Prior distribution of parameters

The SBI inference procedure requires the input of a prior distribution for each
parameter, which defines the search space of the training data. A uniform prior was
used for each parameter. For some parameters, the bounds of the prior could be
estimated from measurable quantities. For example, Abbs and Gracco [37] indicate that
latencies in response to a somatosensory perturbation are on the order of tens of
milliseconds, so a prior of 3 to 80 ms was used for somatosensory delay. Latencies to
auditory perturbations, meanwhile, have been reported in the range of 100-200 ms [38],
so a prior of 50 to 200 ms was used. Measurable latencies may be greater than delays
since they include motor response time, so the lower bounds were set lower than the
measured response latencies. The lower bound for somatosensory delay is quite low, in
the range of what is typically associated with non-cortical reflex [39], but since no
minimum delay value can be definitively measured, we opted not to restrict the prior

based on this information. The remaining parameters could not be estimated from
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measurable quantities, so wide initial priors were selected to fully explore the space.
Initial bounds of 0.1 to 10 were selected for the feedback noise ratio and controller gain
parameters to include two orders of magnitude, and the range of 1e-10 to le-1 was
selected for feedback noise variance. The auditory feedback noise variance parameter
was converted to a base-10 logarithmic scale to search many orders of magnitude more
effectively. For likely parameter sets in this regime, the simulator was found to be
unstable for feedback noise variance less than 1e-6.5, and so the lower bound for this
parameter was increased to le-6.5 to train the likelihood estimator on stable simulator
outputs. Finally, the results of the wide prior showed that the tails of the posterior
likelihood distributions of feedback noise variance, feedback noise ratio, and controller
gain parameters were far from the upper bounds of each prior. The bounds were
narrowed slightly to increase the search resolution for each parameter and decrease the
computational resources needed. The final bounds selected are shown in Table [2 This
choice of prior is validated by the result that the likelihood distributions for each
parameter (see Fig lie comfortably within these bounds, except for feedback noise
variance, which was restricted for stability, and somatosensory delay, which by definition

cannot be less than one frame of simulator operation.

Table 2. Uniform priors with the following bounds were selected for each parameter.

Parameter | Aud Delay Somat Delay Fb Noise Var Fb Noise Ratio Controller
(ms) (ms) (logyq scale)  (Aud:Somat) Gain

Symbol A, Ay o r Je

Lower 50 3 -6.5 0.1 0.1

bound

Upper 200 80 -3 6 8

bound

Empirical observation

Behavioral group average pitch perturbation responses from CA and control groups [9]
as described in the Introduction were used as empirical observations to sample the
posterior. Each behavioral data set was downsampled from 413 to 300 frames per 1.2 s

trial to match the output of the simulator.
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Inference

10° simulations were used to train the neural density estimator [36]. The posterior was
then sampled 10* times for each group. To improve robustness, this procedure was
repeated 10 times and the samples from each repetition were pooled to obtain the final
parameter distributions. A 95% Bayesian credible interval was calculated for each
distribution. Glass’s delta was used to calculate the effect size of each parameter
between groups. To assess the quality of model fit, the median of each pooled
distribution was considered the ”inferred value” for each parameter and each inferred
parameter set was supplied as input to the simulator. To reduce the effects of
stochasticity within the simulator, 100 simulations were run with each inferred
parameter set and the mean of these was plotted. The quality of the fit was assessed
quantitatively by calculating the point-wise root mean square error (RMSE) between
the model output and the empirical data. This statistic was not used in training the
neural network and therefore provided a separate method of quantifying the success of

the model fit.

Ablation study

Finally, an ablation study was used to further understand the impact of each parameter
on model output [33]. One at a time, each parameter was ablated by fixing it to the
inferred value (the median value of the pooled posterior distribution) of the control
group and repeating the inference procedure to generate posterior distributions for the
four remaining parameters. The medians of these distributions were once again used in
the simulator to assess the quality of fit for each reduced model using RMSE and
compare the result to that of the full model. A greater increase in error for a particular
reduced model indicated that the parameter ablated in that model had greater impact

on group differences.
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