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Abstract

Behavioral speech tasks have been widely used to understand the mechanisms of speech

motor control in healthy speakers as well as in various clinical populations. However,

determining which neural functions differ between healthy speakers and clinical

populations based on behavioral data alone is difficult because multiple mechanisms

may lead to the same behavioral differences. For example, individuals with cerebellar

ataxia (CA) produce abnormally large compensatory responses to pitch perturbations in

their auditory feedback, compared to controls, but this pattern could have many

explanations.
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Here, computational modeling techniques were used to address this challenge.

Bayesian inference was used to fit a state feedback control (SFC) model of voice

fundamental frequency (fo) control to the behavioral pitch perturbation responses of

individuals with CA and healthy controls. This fitting process resulted in estimates of

posterior likelihood distributions of five model parameters (sensory feedback delays,

absolute and relative levels of auditory and somatosensory feedback noise, and controller

gain), which were compared between the two groups. Results suggest that the CA

group may proportionally weight auditory and somatosensory feedback differently from

the control group. Specifically, the CA group showed a greater relative sensitivity to

auditory feedback than the control group. There were also large group differences in the

controller gain parameter, suggesting increased motor output responses to target errors

in the CA group. These modeling results generate hypotheses about how CA may affect

the speech motor system, which could help guide future empirical investigations in CA.

This study also demonstrates the overall proof-of-principle of using this Bayesian

inference approach to understand behavioral speech data in terms of interpretable

parameters of speech motor control models.

Author summary

Cerebellar ataxia is a condition characterized by a loss of coordination in the control of

muscle movements, including those required for speech, due to damage in the cerebellar

region of the brain. Behavioral speech experiments have been used to understand this

disorder’s impact on speech motor control, but the results can be ambiguous to

interpret. In this study, we fit a computational model of the neural speech motor

control system to the speech data of individuals with cerebellar ataxia and that of

healthy controls to determine what differences in model parameters best explain how

the two groups differ in their control of vocal pitch. We found that group differences

may be explained by increased sensitivity to auditory feedback prediction errors

(differences between the actual sound speakers hear of their own speech as they produce

it and the sound they expected to hear) and increased motor response in individuals

with cerebellar ataxia. These computational results help us understand how cerebellar

ataxia impacts speech motor control, and this general approach can also be applied to
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study other neurological speech disorders.

Introduction 1

Altered auditory feedback experiments have been widely used to probe the mechanisms 2

of speech motor control. In this class of experiments, participants speak while listening 3

to a digitally-altered version of their own voice through headphones. This allows 4

experimenters to observe how the speech motor system responds to a perceived error in 5

some acoustic property of the voice such as pitch, formant frequencies, or loudness (for 6

a review, see [1]). In a pitch perturbation task, the auditory feedback of participants’ 7

production of a sustained vowel sound is, at an unexpected time and for a brief period 8

(usually a fraction of a second), digitally altered to have a higher or lower fundamental 9

frequency (fo; which is perceived as vocal pitch) than was actually produced. 10

Participants tend to compensate for this perceived error within the ongoing production 11

by shifting their produced pitch in the opposite direction of the perturbation, 12

demonstrating that people use auditory feedback for online control during speech. 13

Variations of this task have been used to inform the understanding of speech motor 14

control in typical speakers [2–4] and, more recently, to compare the responses of healthy 15

speakers with those of various clinical populations (e.g., Alzheimer’s disease [5]; 16

Parkinson’s disease [6]; Hyperfunctional voice disorders [7]; Laryngeal dystonia [8]; 17

Cerebellar ataxia [9, 10]). 18

However, due to the complexity of the speech motor system, it remains difficult to 19

determine what specific mechanisms may lead to the observed differences in behavioral 20

results in different populations. A difference in how two groups respond to a mid-trial 21

pitch perturbation may create multiple hypotheses about the differences in the speech 22

motor control system between the two groups. A mechanistic computational model can 23

thus be a powerful tool in evaluating these hypotheses by simulating the effects of 24

specific model changes on the observable output. Tuning the parameters of a 25

computational model to fit observed behavioral data has the potential to distinguish 26

how different model components contribute to the observed effect [11–16]. 27

A recent example of mechanistic ambiguity in behavioral speech data is the 28

increased response to pitch perturbations observed in individuals with cerebellar ataxia 29
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(CA; [9, 10]). CA is a condition characterized by a loss of coordination in limb 30

movements, eye movements, and gait, as well as speech symptoms such as articulatory 31

impreciseness, harsh or breathy voice, slowed speech, hypernasality, excessive variation 32

of loudness, scanning speech, and/or impaired timing of voice onset [17,18]. In CA 33

these movement-related symptoms are caused by cerebellar lesions or degeneration, 34

which is consistent with the idea of the cerebellum as a likely neural substrate for 35

internal models, or neural representations of the body used in neuromotor 36

control [19,20]. However, open questions remain about the precise impact of cerebellar 37

lesions on internal models and the speech motor control system. 38

Previous pitch feedback perturbation studies involving individuals with CA have 39

examined the effects of CA on speech motor control. Houde et al. [9] found that 40

individuals with CA displayed a heightened response to a 400 ms, mid-utterance pitch 41

perturbation of 100 cents, with the peak of the CA group average response observed to 42

be twice as high as that of the control group average. Around 300 ms after the end of 43

the perturbation, however, the response of the CA group had fallen such that there was 44

no significant difference between the average normalized pitch of the two groups during 45

the time period from 0.7 to 1.0 s. The latency of the peak response was approximately 46

the same for the two groups. These results are reproduced in Fig 1. Similar results were 47

observed by Li et al. [10] using a slightly different paradigm with a 200 ms perturbation 48

of 200 or 500 cents. 49

Houde et al. [9] proposed two possibilities to explain these findings: 50

Hypothesis 1 : Compared to the control group, the CA group exhibits increased 51

reliance on auditory feedback in comparison with somatosensory feedback. 52

Hypothesis 2 : Compared to the control group, the CA group displays an increased 53

reliance on all types of sensory feedback collectively due to impairment of the 54

feedforward system. 55

The current study further investigated these two hypotheses by estimating 56

parameter values to fit a computational model of voice fo to the empirical pitch 57

perturbation responses of CA and control groups (as observed in Houde et al. [9]). A 58

recently developed Bayesian inference method called simulation-based inference (SBI; 59

https://sbi-dev.github.io/sbi/; [21, 22] was used to estimate posterior likelihood 60

distributions for each model parameter based on each data set. The above hypotheses 61
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Fig 1. Behavioral data. Group averaged response (thick dotted line) to a 400 ms
pitch perturbation of 100 cents for the CA group (blue) and control group (red) [9]. The
thin dotted line indicates standard error. The CA group response showed a significantly
larger magnitude than that of the control group with no change in peak latency.

were investigated by comparing posterior probability distributions of parameters 62

between the two groups and observing the impact of parameter ablation on the quality 63

of model fit. 64

Model 65

Overview of state feedback control 66

The computational model used in this investigation implements a state feedback control 67

(SFC) architecture to simulate a participant’s response to an unexpected pitch 68

perturbation during a sustained vowel production. The theory of state feedback control 69

has been well established as a plausible neural mechanism for non-speech motor 70

tasks [23,24] and has more recently been explored in the field of speech motor 71

control [13,25,26]. 72

This SFC model of voice control we consider is greatly simplified from the full task 73

of voice control. Our model simulates only the control of fo in ongoing voice output, 74

which we idealize as controlling the rest-length of a spring in a single damped 75

spring-mass system that is somewhat analogous to the cricothyroid muscle’s control of 76

pitch [25,27]. The controls generated by laryngeal motor cortex are modeled as desired 77
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changes in the rest-length of a single muscle determining fo in our simplified larynx. 78

The SFC architecture for motor control of this simplified larynx is shown in Fig 2. 79

Motor controls are calculated by comparing the desired laryngeal state to an internal 80

estimate of the current state of the larynx, which is maintained by a process of state 81

prediction and subsequent correction based on auditory and somatosensory feedback 82

signals. The controls are scaled by a tunable controller gain gc. An efference copy of 83

these commands is used to predict the state of the larynx for the following time step, 84

and consequently the expected auditory and somatosensory feedback. Meanwhile, the 85

actual sensory feedback is generated by the larynx model. This simulated feedback can 86

be altered to simulate the effects of a pitch perturbation experiment. Each sensory 87

feedback signal contains Gaussian noise with zero mean and tunable variance σ and has 88

some tunable delay ∆. The delayed and noisy feedback is compared with the predicted 89

feedback to generate an error signal. The error signals from each feedback modality are 90

used to correct the internal estimate of laryngeal state. The error signals are weighted 91

by a Kalman gain matrix, which is calculated based on the noise in each signal, to 92

determine the appropriate correction to the internal state estimate. Across multiple 93

frames, the auditory output of the larynx model can be compared to a behavioral pitch 94

perturbation response. 95
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Fig 2. Overview of state feedback control. A state feedback model of vocal fo
control where ∆a is auditory feedback delay, ∆s is somatosensory feedback delay, σ is
overall feedback noise variance, r is feedback noise ratio, and gc is controller gain.
Parameters tuned in this investigation are highlighted in red.
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State space representation 96

The plant of the control system, the larynx, is modeled using a state space 97

representation of a dynamical system (Eq 1,2; [28]). Specifically, the larynx is modeled 98

as a simple spring-mass system in which the length of the spring represents muscle 99

tension on the vocal folds, and is therefore linearly related to vocal pitch. There exist 100

many more complicated and accurate models of the generation of voice by the complex 101

system of muscles controlling the larynx (see [29, 30]); however, for the current study, a 102

very simple model was used to represent broadly the dynamics of the plant that must 103

be controlled. 104

ẋ[t] = Ax[t− 1] +Bu[t− 1] + w[t] (1)

105

y[t] = Cx[t] + v[t] (2)

In these equations, x is the state (position and velocity of the mass on the spring) of 106

the larynx dynamical system (elsewhere referred to as “larynx”), t is the current time 107

step, u is the control input, and w is Gaussian process noise. The variable y is a vector 108

containing auditory and somatosensory feedback and v is Gaussian measurement noise. 109

A and B are matrices encoding the spring constant, damping constant, and mass of the 110

system, which would be determined by the anatomy of the individual, and C encodes 111

the transformation from state to sensory feedback. These three matrices are constants 112

of the larynx plant (Eq 3) and remain fixed throughout the study at the values used by 113

Houde et al. [27]. 114

A =

 0 1

−160000 −1600

 , B =

 0

160000

 , C =

1 0

1 0

 (3)

Process noise w is defined such that 115
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Q = E[wwT ] =

σq 0

0 σq

 (4)

where σq is the variance of noise applied to each element of laryngeal state. σq was 116

held constant at 1e-8 throughout the simulations, a value that was found to produce 117

stable simulator output. 118

Measurement noise v is defined such that 119

R = E[vvT ] =

σa 0

0 σs

 (5)

where σa is the variance of Gaussian noise on the auditory feedback signal and σs is 120

the variance of Gaussian noise on the somatosensory signal. 121

Another state space system defined by A = 0, B = 1, C = 1 is connected in series 122

preceding this main system, serving to integrate over the main system and thus produce 123

a laryngeal position from the motor commands output by the main system. 124

Additionally, the full continuous system is discretized using zero-order hold methods 125

with a 0.004 s sampling time. 126

Pitch perturbation 127

The variable y is a two-element vector containing auditory and somatosensory feedback 128

from the larynx. The pitch perturbation is implemented as an addend to the auditory 129

component of the vector as follows: 130

y[t] =

ya[t]
ys[t]

+

−100

0

 , 0 ≤ t < 400ms (6)
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Controller 131

The controller command to change the state of the larynx is defined by 132

u[t] = gc ∗ (xtarget[t]− xestimate[t]) (7)

where gc is the controller gain, xtarget is the desired laryngeal state and xestimate is the 133

internal estimate of the laryngeal state. 134

Observer 135

The observer provides the internal estimate of the state of the larynx through iterative 136

prediction of state and subsequent update of the prediction using sensory feedback. The 137

state is predicted by 138

xpredicted[t] = Axestimate[t− 1] +Bu[t− 1] (8)

where A and B matrices are identical to those used to define the larynx (Eq 3)and 139

u[t− 1] is the efference copy of the controller commands from the previous timestep 140

(Eq 7). Predicted state is used to predict the sensory feedback by 141

ypredicted[t] = Cxpredicted[t] (9)

where C is identical to the state-to-feedback transformation matrix of the laryngeal 142

system (Eq 3). The error between the predicted sensory feedback and the actual sensory 143

feedback is then determined by 144

yerror[t−∆] = y[t−∆]− ypredicted[t−∆], where ∆ =

∆a

∆s

 (10)

where ∆a is auditory feedback delay and ∆s is somatosensory feedback delay. 145

Sensory feedback error is used to estimate the error in laryngeal state by 146
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xerror[t] = K ∗ yerror[t−∆] (11)

where K is the steady-state Kalman gain. Kalman gain is the optimal gain matrix 147

calculated by first solving the discrete-time algebraic Ricatti equation (Eq 12) using the 148

Python Control Systems Library (python-control; [31]) for P̂ where the equation is 149

satisfied when P = P̂ . 150

ATPA− P −ATPB(BTPB +R)−1BTPA+Q = 0 (12)

In the above equation, A and B are defined by the larynx dynamical system (Eq 3) 151

and Q and R are defined by noise variances (Eq 4, Eq 5). Optimal Kalman gain is then 152

calculated as follows where C is defined by the larynx dynamical system (Eq 3). 153

K = P̂CT (RCP̂CT )−1 (13)

Finally, the predicted laryngeal state is updated by the error to find the estimated 154

state using 155

xestimate[t] = xpredicted[t] + xerror[t] (14)

Tunable Parameters 156

The values of a set of tunable parameters in the SFC model affect the shape of the 157

model output, a simulated time course of vocal fo in response to a mid-trial pitch 158

perturbation. These parameters include the sensory delay parameters ∆a and ∆s, 159

controller gain gc, and sensory feedback noise variance parameters. In order to separate 160

the effects of absolute noise level from the relative amount of noise between the two 161

sensory feedback modalities, the noise variance parameters σa and σs were 162
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parameterized to σ and r such that σa = σ and σs = σ/r. Thus σ represents the 163

variance of sensory feedback noise overall in both auditory and somatosensory feedback 164

modalities and r represents the ratio of auditory feedback noise variance to 165

somatosensory feedback noise variance. Overall feedback noise variance σ was explored 166

on a log10 scale in order to more effectively search many orders of magnitude of noise 167

variance. Thus the parameter set tuned in this investigation was θ = {∆a,∆s, σ, r, gc} 168

Expression of Study Hypotheses in the Context of the SFC 169

Model 170

Houde et al. [9] proposed two possible explanations for the behavioral pitch 171

perturbation response differences between CA and control groups: 1) an increase in the 172

CA group’s reliance on auditory feedback, or 2) an increase in the CA group’s reliance 173

on all types of sensory feedback collectively compared to that of the control group. 174

These hypotheses can be examined using the feedback noise parameters, which are 175

inversely related to reliance on sensory feedback through the calculation of Kalman gain 176

K. An increase in the variance of the noise distribution of a particular feedback 177

modality results in a lower Kalman gain on that feedback signal. Thus the hypotheses 178

can be conceptualized in terms of the SFC model as follows: 179

Hypothesis 1 : Compared to the control group, the CA group exhibits increased 180

reliance on auditory feedback over somatosensory feedback. Mathematically, this can be 181

expressed as: 182

(
Ka

Ks

)
CA

>

(
Ka

Ks

)
control

(15)

Since Kalman gain is inversely related to noise variance, this is equivalent to: 183

(
σa

σs

)
CA

<

(
σa

σs

)
control

(16)
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or 184

rCA < rcontrol (17)

Hypothesis 2 : Compared to the control group, the CA group displays an increased 185

reliance on all types of sensory feedback collectively due to impairment of the 186

feedforward system. Mathematically, this can be expressed as: 187

(Ka)CA > (Ka)control and (Ks)CA > (Ks)control (18)

which is equivalent to: 188

(σa)CA < (σa)control and (σs)CA < (σs)control (19)

or simply: 189

σCA < σcontrol (20)

Thus Hypothesis 1 can be examined by comparing the feedback noise ratio 190

parameter r between the two groups, while Hypothesis 2 can be examined by comparing 191

the overall feedback noise variance parameter σ between groups. The finding of a 192

smaller value for r in the CA group compared with the control group would support 193

Hypothesis 1, while a smaller value for σ in the CA group would support Hypothesis 2. 194

Results 195

Parameter effect size 196

Bayesian inference was used to fit a five-parameter SFC model of voice fo to the 197

empirical pitch perturbation responses of CA and control groups as observed in Houde 198

et al. [9]. For each empirical data set, simulation-based inference (SBI; 199

March 11, 2024 12/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584554doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584554
http://creativecommons.org/licenses/by/4.0/


https://github.com/sbi-dev/sbi/; [21, 22] was used to generate a posterior 200

likelihood distribution across values for each parameter. To improve robustness, the 201

posterior distributions from 10 repetitions of the inference procedure were combined. 202

Fig. 3 shows the combined posterior distributions generated for each parameter, with 203

the median and 95% Bayesian credible interval marked in each distribution. Since tests 204

of significance lose meaning under the high statistical power of simulated data [32], 205

effect size was used to quantify which parameters were most different between control 206

and CA groups. Glass’s delta effect size was used because it is designed to compare 207

populations with unequal variances. The mean and standard error of effect size 208

calculated from 100 bootstrap samples of size 1000 are annotated on each subplot. 209

Controller gain and feedback noise ratio had the largest effect size, while somatosensory 210

feedback delay, auditory feedback delay and overall feedback noise variance had 211

relatively small effect size. Notably, feedback noise ratio had a much larger effect size 212

than the overall variance of sensory feedback noise, suggesting that the relative amount 213

of noise between feedback modalities contributed much more to group differences than 214

the overall level of feedback noise. All of the distributions are unimodal, which suggests 215

there was a single optimal parameter set rather than several local optima. 216
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Fig 3. Parameter likelihood distributions. Posterior likelihood distributions
(pooled from 10 repetitions of inference) for each parameter, with control group
distributions on the left (red) and CA group distributions on the right (blue). The 95%
Bayesian credible interval is indicated by horizontal bars and the median value of each
distribution is indicated by a black dot. Glass’s delta effect size (mean and standard
error from bootstrap samples) is printed at the top of each subplot.

Model fit 217

The median of each marginal likelihood distribution was chosen as the inferred 218

parameter set for each participant group (see Table 1). The inferred parameter sets 219

were validated by using them in the SFC simulator to check that the results were 220
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broadly similar to the empirical data from each group. The close alignment of the tuned 221

model with the empirical data can be seen in Fig 4. The mean of 100 simulator outputs 222

using each group’s inferred parameter set were plotted to account for stochasticity 223

within the SFC simulator. The standard error of these simulator outputs was also 224

plotted, but was too small to be distinguished from the mean. Root mean square error 225

(RMSE) between the simulator output and the behavioral data was used to quantify the 226

quality of model fit for each group with a statistic not explicitly optimized during 227

training. RMSE (mean ± standard error across 100 simulations) was 0.8613± 0.0002 228

cents for the control group (4.06% of the range of the data) and 1.5544± 0.0003 cents 229

for the CA group (3.84% of the range of the data). 230
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Fig 4. Model fit. The simulator output (solid lines) using the inferred parameter set
for each group closely aligned with the behavioral data (dotted lines) previously seen in
Fig 1. For simulator output and behavioral data, the mean is plotted with a thick line
and standard error with a thin line, although standard error on simulator output was
too small to visibly distinguish from the mean. Blue lines indicate data associated with
the CA group and the corresponding simulator output, while red lines indicate those
associated with the control group.

Table 1. Inferred values for control and CA groups.

Parameter Aud Delay
(ms)

Somat Delay
(ms)

Fb Noise Var
(log10 scale)

Fb Noise Ratio
(Aud:Somat)

Controller
Gain

Symbol ∆a ∆s σ r gc
Control 102.7 35.3 -5.8 2.0 1.9
CA 91.5 15.5 -5.6 1.0 3.1
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Ablation study 231

Above, we have shown a successful model fit of the pitch perturbation responses for CA 232

and control groups and quantified the parameter distribution differences between 233

groups; however, the impact of these parameter differences on the simulator output are 234

not immediately clear from previous results. Thus, ablation techniques [33] were used to 235

understand the extent to which differences in inferred parameter values may translate to 236

meaningful changes in model output. In this ablation study, the impact of each 237

parameter on group differences was assessed by fitting the behavioral data set from the 238

CA group with a series of reduced models. For each reduced model, one of the five 239

original parameters was fixed to the control group’s inferred value for that parameter 240

(as listed in Table 1) and a model composed of the four remaining parameters was used 241

to fit the behavioral data. This allowed us to quantify the impact of each parameter on 242

group differences and simulate the pitch perturbation response we might expect to see if 243

individuals with CA did not differ from controls in terms of each parameter. 244

As seen in Fig 5, the quality of the model fit for the CA group was most greatly 245

impacted by fixing the feedback noise ratio parameter, followed by the controller gain 246

parameter. This provided additional evidence that these parameters were the most 247

impactful in explaining the differences between the pitch perturbation responses of the 248

two groups. Fixing either the somatosensory feedback delay or feedback noise variance 249

parameter did not seem to change the quality of model fit from that of the full 250

five-parameter model, supporting the idea that these parameters have low impact in 251

explaining the differences between CA and control groups. Once again, the impact of 252

the feedback noise ratio parameter was much greater than that of the feedback noise 253

variance parameter, showing that the absolute amount of noise in each feedback signal 254

is less impactful than the relative amount of noise between signals. To validate the 255

method, the reduced models were also used to fit the control group data. As expected, 256

RMSE between the simulated and behavioral control group responses remained similar 257

to that of the full model, showing that changes in the RMSE of the CA group in the 258

reduced model fit are attributable to group differences in parameter values rather than 259

an artifact of reducing the number of parameters. 260

For each four-parameter model, the optimized simulator output of control and CA 261
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Fig 5. Quality of fit for reduced models. Quality of fit for each 4-parameter model
with one parameter fixed to the inferred value for the control group. The quality of each
model’s fit is quantified by RMSE between empirical data and optimized model output
(mean RMSE across 100 simulator runs).

group data are shown in Fig 6, along with the posterior distributions of the remaining 262

parameters. The optimized simulator output for each four-parameter model provides 263

insight regarding the impact of each parameter on the shape of the pitch perturbation 264

response, while the distributions of the remaining parameters indicate which parameters 265

may interact with the ablated parameter. 266

The results of the ablation of the feedback noise ratio parameter are shown in 267

Fig 6A. We can see from the posterior distributions that while the somatosensory 268

feedback delay, feedback noise variance, and auditory feedback delay parameter 269

distributions remained mostly similar to those of the full model, the controller gain 270

parameter distribution for the CA group shifted up to a much larger median value. This 271

allowed the simulated response to nearly reach the peak response of the behavioral CA 272

data, but it dipped far below the behavioral CA data during the period from 0.7 to 1.0 273

s after perturbation onset. 274
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Fig 6. Reduced models: simulator output and posterior distributions of remaining parameters. Inference
results for each of five reduced models in which a single parameter is fixed to the inferred value of the control group from
the full model fit and the remaining four parameters are used to fit the behavioral pitch perturbation data. Shown for
each reduced model are the posterior distributions of the four remaining parameters and the simulator output (mean of
100 simulations) using the inferred reduced parameter set.

Alternately, when the controller gain parameter was ablated, the feedback noise ratio 275

greatly increased in effect size as the median value of the CA group distribution shifted 276

down from 1.04 to 0.62. The median value of the somatosensory delay parameter also 277
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increased but the effect size of this parameter increased only slightly due to the large 278

variance of the distribution. These changes allowed the simulator output to nearly reach 279

the peak magnitude of the behavioral data of the CA group, but with the controller 280

gain fixed at the value of the control group, the optimized simulator output was higher 281

and more oscillatory than the behavioral data during the period from 0.7 to 1.0 s after 282

perturbation onset. Thus contributions from both the feedback noise ratio and controller 283

gain parameters are needed to replicate both the large magnitude of the CA group 284

response and the flat, moderate time course of fo after the end of the perturbation. 285

When auditory feedback delay was fixed to the inferred value for the control group 286

(Fig 6C), the CA group response became more oscillatory, contributing to a small 287

increase in error from the behavioral data. Fixing either somatosensory feedback delay 288

or overall feedback noise variance, meanwhile, did not appear to change the model fit. It 289

can be seen in (Fig 6D) that the ablation of feedback noise variance caused a change in 290

the distribution of the somatosensory feedback delay parameter, and vice versa in 291

(Fig 6E). Thus these two parameters, interestingly, seem to have similar effects on 292

model output. 293

Discussion 294

In this study, simulation-based Bayesian inference was used to disambiguate possible 295

mechanisms underlying the observed differences in the pitch perturbation responses of 296

individuals with CA and healthy controls by identifying speech motor control model 297

parameter differences between these two groups. The results indicate that most of the 298

differences between the pitch perturbation responses of individuals with CA and healthy 299

controls can be explained by differences in the feedback noise ratio and controller gain. 300

These parameters showed both (a) the largest effect size between groups in comparing 301

the posterior distributions and (b) the greatest loss of fit accuracy for the CA group 302

when fixed to the inferred value of the control group. 303

Our finding that the feedback noise ratio was lower in the CA group than in the 304

control group with substantial effect size supports Hypothesis 1, which suggests 305

increased reliance on auditory feedback relative to somatosensory feedback in the CA 306

group. In contrast, we did not find evidence in support of Hypothesis 2, the idea that 307
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CA group displays an increased reliance on all types of sensory feedback collectively. 308

The small effect size for the overall sensory feedback noise parameter and the minimal 309

change when this parameter was ablated were inconsistent with this hypothesis. 310

Here we will discuss how these findings fit into the previous literature regarding pitch 311

perturbation response in individuals with CA, new hypotheses generated by the model, 312

and the strengths and limitations of the modeling techniques used in this analysis. 313

Evidence for overreliance on auditory feedback 314

The high effect size of the feedback noise ratio suggests that the CA group may show 315

increased reliance on auditory feedback relative to somatosensory feedback. This may 316

appear to conflict with the results of Li et al. [10], which showed in individuals with 317

spinocerebellar ataxia a decreased cortical P2 response in the right superior temporal 318

gyrus (STG), primary auditory cortex (A1), and supramarginal gyrus (SMG) during a 319

pitch perturbation task. However, while this finding may provide evidence against the 320

idea that the absolute value of auditory feedback error gain is larger in the CA group 321

than the control group ((Ka)CA > (Ka)control), we argue that it does not rule out the 322

idea of increased sensitivity to auditory feedback as we have defined it in this study, 323

that is, relative to somatosensory feedback (
(

Ka

Ks

)
CA

>
(

Ka

Ks

)
control

; Hypothesis 1). If 324

both auditory and somatosensory gains are smaller in the CA group compared to 325

controls, it is possible that the resulting ratio between auditory gain and somatosensory 326

gain may still be larger in the CA group compared to the control group (i.e., if the 327

somatosensory gain in the CA group were much smaller compared that of the control 328

group). Defining feedback noise in terms of a ratio between sensory modalities has been 329

previously used by Crevecoeur et al. [23] to model relative sensitivity to visual and 330

proprioceptive feedback in arm reaching. Furthermore, the P2 response may not be a 331

direct measure of gain on auditory feedback error; the functional relevance of P2 332

response remains controversial and has been suggested to have contributions from 333

multiple sensory modalities including auditory and somatosensory [34]. Although this 334

view is highly speculative, we argue that the measurement of decreased P2 response in 335

the CA group [10] does not completely rule out Hypothesis 1 and that our findings 336

warrant further investigations. 337
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Lack of evidence for overall overreliance on feedback 338

Given the ties between internal models and the cerebellum [19,20], it is indeed somewhat 339

surprising that we did not find evidence of overreliance on sensory feedback overall. It 340

would be reasonable to expect that if the internal models, and thus the state prediction 341

process, are disrupted in CA, sensory feedback would be more heavily weighted to 342

compensate for impairment in the feedforward system [9]. However, the results indicate 343

similar weighting of sensory feedback overall between the two groups, with perhaps even 344

slightly lower weighting (increased noise) of sensory feedback in the CA group. We 345

speculate that perhaps the nature of the disruption of internal models impairs the 346

integration of sensory feedback, which has similar effects to a slightly decreased 347

weighting. Alternatively, perhaps the auditory nature of the task created a result in 348

which auditory feedback appears to be emphasized rather than overall feedback. 349

Novel hypothesis generated by the model: controller gain 350

parameter 351

In addition to support for the previously stated hypothesis that individuals with CA 352

show increased reliance on auditory feedback relative to somatosensory feedback, our 353

results lead us to propose an additional hypothesis to be tested in future investigations. 354

The high impact of the controller gain parameter suggests a difference between 355

individuals with CA and healthy controls in the scaling of the motor command to the 356

larynx, which has likely neural substrate in the motor cortex [25]. Although any direct 357

ties between this parameter and the cerebellum are unknown, we speculate that perhaps 358

the increased value of controller gain in the CA group, which could also be interpreted 359

as increased sensitivity to target error (the difference between the intended production 360

and the actual production) may indicate a learned mechanism in the motor cortex to 361

compensate for deficits related to the disorder. Further study is needed to investigate 362

this hypothesis. 363
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Efficacy of simulation-based inference for model parameter 364

estimation 365

Simulation-based inference allowed us to obtain posterior likelihood distributions across 366

each parameter rather than a single set of optimal values. This made it possible to take 367

into account the spread of each distribution in addition to the inferred value and thus 368

determine the effect size of the difference between groups for each parameter. 369

Additionally, in a complex system it is possible to have many locally optimal parameter 370

sets that can achieve high quality fit to the empirical data. Obtaining a unimodal 371

posterior likelihood distribution for each parameter showed that the parameter set 372

selected could approximate a globally optimal solution within the bounds of the prior. 373

Simulation-based inference also offered advantages over other Bayesian methods since it 374

does not require an analytical form of the model (allowing us to analyze a complex 375

model like state feedback control) and is more computationally efficient than other 376

numerical techniques such as Markov Chain Monte Carlo methods [35]. 377

Limitations 378

It is important to note that the current work is beneficial for generating hypotheses, 379

rather than drawing conclusions. The larynx was modeled here as a simple spring-mass 380

system. While this implementation may approximate many of the dynamics of laryngeal 381

movement, future studies should investigate how results may vary with more detailed 382

models of laryngeal muscles. Additionally, real speakers vary in their vocal tract 383

dimensions, damping, and other properties that are not possible to measure. The model 384

cannot quantitatively reflect all of these properties to represent an actual speaker. 385

Furthermore, these properties were left unchanged in the model throughout the present 386

set of simulations, so the vocal tract properties of at most one speaker were represented. 387

Meanwhile, the behavioral data used in the present study were group averages of many 388

subjects with different physiologies. To account for the averaging of multiple 389

observations, the simulator was run 100 times and the mean output was plotted. 390

However, standard error on model output was so small (< 0.1 cent) that it could not be 391

differentiated from the mean production on the plot. Standard error on the empirical 392

mean was larger, in the range of 0-3 cents, further demonstrating that the model does 393
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not account for the variation that is present among individual speakers. 394

Additionally, the present study was limited to the model changes that could be 395

captured by five model parameters. The same model architecture was used to model 396

both control and CA groups, with all differences captured in the tuning of model 397

parameters. Thus possible differences in the structure of neural systems between the 398

groups were not tested in the current study. Furthermore, many of the model 399

parameters tested here are abstract concepts whose precise neural implementation is not 400

yet fully understood. Each parameter that is represented in the model as a single value 401

may in fact be the result of many complex processes. Finally, only five parameters were 402

considered in the present study. Since training data was generated by testing values for 403

each parameter in combination with all other parameters, the number of parameters 404

tested was in exponential tradeoff with the resolution of values tested and the range of 405

the prior for each one. While the irrelevance of other untested model parameters cannot 406

be proven, the tested parameters can be argued to be sufficient since the model output 407

for each set of inferred values closely matched the behavioral data. 408

Conclusion 409

This work has shown that the controller gain and feedback noise ratio parameters have 410

high effect size and large contributions to the group differences between the pitch 411

perturbation responses of individuals with CA and healthy controls. These results (a) 412

provide support for the previous hypothesis that individuals with CA show increased 413

sensitivity to auditory feedback prediction error and (b) generate a new hypothesis of 414

increased sensitivity to target error in the CA group. Furthermore, this work 415

demonstrates the value of simulation-based inference methods in analyzing behavioral 416

speech data using tunable parameters of a state feedback control model. 417

Materials and Methods 418

Simulation-based inference overview 419

The SBI package in Python (https://github.com/sbi-dev/sbi/; [21, 22]) was used 420

to obtain posterior likelihood distributions of five tunable parameters in the SFC model 421
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(see Model section for an overview of SFC) for the CA and control group average pitch 422

perturbation responses observed in Houde et al. [9]. As detailed in Fig 7, SBI takes as 423

input a computational model with a finite set of input parameters (“simulator”), a prior 424

distribution for each parameter, and an empirical observation analogous to the output 425

of the simulator. It generates a data set by running the simulator with inputs from the 426

prior distributions of the parameters, and then, using the Sequential Neural Posterior 427

Estimation (SNPE) option for inference, trains a deep neural density estimator to 428

predict the posterior distribution of parameters given the empirical observation. 429

Sample

Sample

Prior

P(θ)

Posterior distribution

Posterior function P(θ|x)

Empirical

Observation

X

Pitch perturbation

response simulation

P(θ|X)

Parameter set θ

Simulator

Neural Density

Estimator

Fig 7. SBI overview. A pipeline for performing simulation-based inference [21,22].
Parameter values are inferred for a particular empirical observation given a mechanistic
model (”simulator”) and a prior distribution for each tunable parameter.

March 11, 2024 23/31

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2024. ; https://doi.org/10.1101/2024.03.12.584554doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.12.584554
http://creativecommons.org/licenses/by/4.0/


Simulator 430

A Python implementation (https://github.com/jessicagaines/1d-sfc) of a state 431

feedback control model of fo [25, 27] was used as the simulator (see Model section for 432

more details). The input parameter set included the following parameters: auditory 433

feedback delay ∆a, somatosensory feedback delay ∆s, controller gain gc, feedback noise 434

variance σ, and feedback noise ratio r. The parameters σ and r are parameterizations of 435

auditory feedback noise variance σa and somatosensory feedback noise variance σs such 436

that σa = σ and σs = σ/r. This idea of exploring relative levels of feedback noise 437

between different sensory modalities was also used by Crevecoeur et al. [23] in their 438

state feedback control model of arm reaching. The output simulated a time course of 439

voice fo in response to a -100 cent, 400 ms, mid-utterance perturbation of fo feedback. 440

Random noise was added to model output during training as Jin et al. [36] found that 441

this increased reconstruction accuracy. Uniform noise distributions of increasing width 442

were tested and since the quality of model fit stopped improving for training noise 443

distribution wider than 7 cents, noise with distribution ∼ U(−3.5, 3.5) was added to the 444

simulator output during training. 445

Prior distribution of parameters 446

The SBI inference procedure requires the input of a prior distribution for each 447

parameter, which defines the search space of the training data. A uniform prior was 448

used for each parameter. For some parameters, the bounds of the prior could be 449

estimated from measurable quantities. For example, Abbs and Gracco [37] indicate that 450

latencies in response to a somatosensory perturbation are on the order of tens of 451

milliseconds, so a prior of 3 to 80 ms was used for somatosensory delay. Latencies to 452

auditory perturbations, meanwhile, have been reported in the range of 100-200 ms [38], 453

so a prior of 50 to 200 ms was used. Measurable latencies may be greater than delays 454

since they include motor response time, so the lower bounds were set lower than the 455

measured response latencies. The lower bound for somatosensory delay is quite low, in 456

the range of what is typically associated with non-cortical reflex [39], but since no 457

minimum delay value can be definitively measured, we opted not to restrict the prior 458

based on this information. The remaining parameters could not be estimated from 459
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measurable quantities, so wide initial priors were selected to fully explore the space. 460

Initial bounds of 0.1 to 10 were selected for the feedback noise ratio and controller gain 461

parameters to include two orders of magnitude, and the range of 1e-10 to 1e-1 was 462

selected for feedback noise variance. The auditory feedback noise variance parameter 463

was converted to a base-10 logarithmic scale to search many orders of magnitude more 464

effectively. For likely parameter sets in this regime, the simulator was found to be 465

unstable for feedback noise variance less than 1e-6.5, and so the lower bound for this 466

parameter was increased to 1e-6.5 to train the likelihood estimator on stable simulator 467

outputs. Finally, the results of the wide prior showed that the tails of the posterior 468

likelihood distributions of feedback noise variance, feedback noise ratio, and controller 469

gain parameters were far from the upper bounds of each prior. The bounds were 470

narrowed slightly to increase the search resolution for each parameter and decrease the 471

computational resources needed. The final bounds selected are shown in Table 2. This 472

choice of prior is validated by the result that the likelihood distributions for each 473

parameter (see Fig 3) lie comfortably within these bounds, except for feedback noise 474

variance, which was restricted for stability, and somatosensory delay, which by definition 475

cannot be less than one frame of simulator operation. 476

Table 2. Uniform priors with the following bounds were selected for each parameter.

Parameter Aud Delay
(ms)

Somat Delay
(ms)

Fb Noise Var
(log10 scale)

Fb Noise Ratio
(Aud:Somat)

Controller
Gain

Symbol ∆a ∆s σ r gc
Lower
bound

50 3 -6.5 0.1 0.1

Upper
bound

200 80 -3 6 8

Empirical observation 477

Behavioral group average pitch perturbation responses from CA and control groups [9] 478

as described in the Introduction were used as empirical observations to sample the 479

posterior. Each behavioral data set was downsampled from 413 to 300 frames per 1.2 s 480

trial to match the output of the simulator. 481
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Inference 482

105 simulations were used to train the neural density estimator [36]. The posterior was 483

then sampled 104 times for each group. To improve robustness, this procedure was 484

repeated 10 times and the samples from each repetition were pooled to obtain the final 485

parameter distributions. A 95% Bayesian credible interval was calculated for each 486

distribution. Glass’s delta was used to calculate the effect size of each parameter 487

between groups. To assess the quality of model fit, the median of each pooled 488

distribution was considered the ”inferred value” for each parameter and each inferred 489

parameter set was supplied as input to the simulator. To reduce the effects of 490

stochasticity within the simulator, 100 simulations were run with each inferred 491

parameter set and the mean of these was plotted. The quality of the fit was assessed 492

quantitatively by calculating the point-wise root mean square error (RMSE) between 493

the model output and the empirical data. This statistic was not used in training the 494

neural network and therefore provided a separate method of quantifying the success of 495

the model fit. 496

Ablation study 497

Finally, an ablation study was used to further understand the impact of each parameter 498

on model output [33]. One at a time, each parameter was ablated by fixing it to the 499

inferred value (the median value of the pooled posterior distribution) of the control 500

group and repeating the inference procedure to generate posterior distributions for the 501

four remaining parameters. The medians of these distributions were once again used in 502

the simulator to assess the quality of fit for each reduced model using RMSE and 503

compare the result to that of the full model. A greater increase in error for a particular 504

reduced model indicated that the parameter ablated in that model had greater impact 505

on group differences. 506
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