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Abstract 

Mucosal-associated invariant T (MAIT) cells are a group of unconventional T cells that 

mainly recognize bacterial vitamin B metabolites presented on MHC-related protein 1 

(MR1). MAIT cells have been shown to play an important role in controlling bacterial 

infection and in responding to viral infections. Furthermore, MAIT cells have been 

implicated in different chronic inflammatory diseases such as inflammatory bowel disease 

and multiple sclerosis. Despite their involvement in different physiological and 

pathological processes, a deeper understanding of MAIT cells is still lacking. Arguably, 

this can be attributed to the difficulty of quantifying and measuring MAIT cells in different 

biological samples which is commonly done using flow cytometry-based methods and 

single-cell-based RNA sequencing techniques. These methods mostly require fresh 

samples which are difficult to obtain, especially from tissues, have low to medium 

throughput, and are costly and labor-intensive. To address these limitations, we 

developed sequence-to-MAIT (Seq2MAIT) which is a transformer-based deep neural 

network capable of identifying MAIT cells in bulk TCR-sequencing datasets, enabling the 

quantification of MAIT cells from any biological materials where human DNA is available. 

Benchmarking Seq2MAIT across different test datasets showed an average area-under-

the-receiver-operator-curve (AU[ROC]) >0.80. In conclusion, Seq2MAIT is a novel, 

economical, and scalable method for identifying and quantifying MAIT cells in virtually 

any biological sample. 
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Introduction  

The immune system in jawed vertebrates has been broadly categorized into innate and 

adaptive components. Innate immunity utilizes pattern recognition receptors such as toll-

like receptors (TLR) and NOD-like receptors (NLR) to identify conserved markers of 

microbial infection such as peptidoglycans and lipopolysaccharides. Conversely, adaptive 

immunity uses V(D)J recombination, a somatic recombination mechanism that takes 

place on T and B cells, to generate a large repertoire of antigen-specific T and B cell 

receptors (TCR/BCR). A growing body of research has identified different groups of 

innate-like T and B cells termed innate-like or unconventional T and B cells, respectively1–

6. Unconventional T cells, as opposed to conventional T cells, do not recognize peptides 

presented on polymorphic major histocompatibility complexes (MHC) and instead 

recognize lipids, glycolipids, metabolites, and peptides presented by less polymorphic7 

receptors such as CD1a8,9, CD1b10,11, CD1c12,13, CD1d14,15, HLA-E16, or MHC-related 

protein 1 (MR1)17,18. Furthermore, some of these cell subsets can be activated in a TCR-

independent fashion, i.e., in the absence of their target antigen or in an innate-like 

manner, using cytokines such as IL-12 and IL-1819,20 which cause these cells to release 

large quantities of cytokines for example INF-γ and TNF-α21. 

  

Several subtypes of unconventional T cells have been identified such as mucosal-

associated invariant T (MAIT) cells1,22, natural killer T cells (NKT)23–25, and germline-

encoded mycoyl-reactive (GEM) T11 cells, with MAIT cells being one of the most well-

characterized groups. MAIT cells are characterized by a semi-invariant Vα-7.2+ 

(TCRAV01-02) TCR-alpha chain that pairs with a more diverse set of beta-chains, albeit 

with some preferential V-gene usage such as Vβ13 (TCRBV06) family and Vβ2 

(TCRBV20) family to form a TCR that recognizes bacterial vitamin B2 metabolites 
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presented on MR1 protein22,26,27. Although the full antigenic repertoire of MAIT cells has 

not been determined, some cognate antigens have been identified such as 7-hydroxy-6-

methyl-8-D-ribityllumazine (RL-6-Me-7-OH)28,29, 5-(2-oxoethylideneamino)-6-D-

ribitylaminouracil (5-OE-RU) 30 and 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil (5-

OP-RU)30. In peripheral blood, MAIT abundance ranges from ~1 – 10% of T cells31. As 

their name implies, MAIT cells also localize to body barriers and tissues, with an 

abundance of ~20 – 40% in the liver31, 1.2-2.5% in the gut ileum, and 1-10% in the colon 

32. 

 

Given the ability of MAIT cells to bridge innate and adaptive immunity and their dominant 

presence in different tissues and body compartments, they have been implicated in a 

wide spectrum of physiological and pathological processes. MR1 deficient mice have 

been shown to develop a worse disease course in infection models of K. pneumoniae 

and E. coli relative to wild-type mice33–36. Similarly, MAIT cells have been implicated in 

other types of bacterial infections such as L. longbeachae35,37,38, M. tuberculosis 

(Mtb)39,40, and F. tularensis40–42. Viral infection can also trigger MAIT activation, although 

this is mediated in a TCR-independent manner primarily using IL-1843,44. Besides 

controlling infectious agents, MAIT cells have been implicated in autoimmune and 

inflammatory diseases, for example, ~ 5% of CD8+ T cells identified in Multiple Sclerosis 

brain lesions are MAIT cells (defined as Vα7.2+CD161+ cells)45,46. Furthermore, in 

inflammatory bowel disease, the frequency of MAIT cells in peripheral blood has been 

repeatedly shown to be decreased relative to healthy individuals46–48.  

  

In most, if not all cases, MAIT cells are identified using staining of different cell markers 

such as CD161, Vα-7.2, or MR1 tetramers loaded with known antigens such as 5-OP-RU. 

Nonetheless, this has three limitations, first, it limits the starting biological material to 

intact cells which is not always available or accessible, second, it has a low throughput 

and cannot be easily scaled to a large number of samples and lastly, it is labor intensive 

and time consuming. To mitigate these limitations, we developed sequence-to-MAIT 

(Seq2MAIT) which is a deep learning framework that can be used to identify MAIT cells 

directly in T cell repertoire sequencing datasets. This enables Seq2MAIT to be used with 
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existing datasets and with any sample where DNA or RNA is available. As a result, 

Seq2MAIT can be used to estimate the percentage of MAIT cells in different tissues under 

different physiological and pathological conditions, such as infection, inflammation, aging 

as well as different cancers. This would shed some light on the contribution of MAIT cells 

to these different conditions as well as contributing to the development of novel 

therapeutic targets. Beyond this, Seq2MAIT can also be used to annotate bulk TCR-Seq 

datasets, as Seq2MAIT can assign a probability score of MAIT identity to each clonotype. 

This can be used to predict the source of many disease-associated clonotypes49,50, i.e. 

estimate the likelihood that these disease-associated clonotypes are derived from MAIT 

cells, which leads to the development of a better understanding of the pathophysiological 

mechanisms involved in the disease. Here, we describe the development of Seq2MAIT 

and benchmark its performance on multiple independent test datasets. 

 

Materials and Methods 

I. Sample collection and cohort description 

TCR and HLA sequence data from human samples used for these studies were 

aggregated from several independent study collections described below. All necessary 

patient/participant consent has been obtained for each study and the appropriate 

institutional forms have been archived. PBMC used for sorted repertoire experiments 

were collected either by DLS (Discovery Life Sciences, Huntsville, AL) under Protocol 

DLS13 for collection of clinical samples or by Bloodworks Northwest (Seattle, WA). 

Volunteer donors were consented and collected under the Bloodworks Research Donor 

Collection Protocol BT001. An independent cohort of cells sorted for CD8+, CD161+, and 

Vα-7.2+ was included for additional validation51. 

 

II. Isolating and sorting MAIT cells using MR1 tetramers  

PBMCs from 20 donors were stained with MR1 tetramer and sorted for repertoire 

sequencing. To enhance tetramer staining PBMCs were treated with the protein kinase 

inhibitor Dasatinib at 50nM for 10 minutes at 37C. Cells were then treated with Fc receptor 

blocking solution (Human TruStain FcX, Biolegend) for 5 minutes at RT followed by MR1 

tetramer staining (T-Select Human MR1 Tetramer v2-PE, MBL). The tetramer was pre-
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loaded with 5-OP-RU and stored according to the manufacturer’s protocol. MR1 tetramer 

staining was performed for 40 minutes at 4C. Midway through the tetramer stain PE-Cy7-

TCR Vα7.2 antibody (clone 3C10, Biolegend) was added to the cells for the remainder of 

the stain. To enrich for stained cells and decrease sort time, cells were washed after that 

stained with anti-PE ultrapure microbeads (Miltenyi Biotec) for 15 minutes at 4C. After 

washing a small aliquot was taken for pre-enrichment flow analysis and the remaining 

cells were loaded onto magnetic columns (MS or LS columns, Miltenyi Biotec). PE and 

PE-Cy7 stained cells were captured on the column and subsequently eluted after washing 

away unstained cells. After elution, the cells were stained for 20min at 4C with an antibody 

cocktail that included CD3-BV786, CD4-BV510, CD8-FITC, CD161-BV421, CD14-

PerCP_Cy5.5 and CD19_PerCP_Cy5.5. Cells were washed and resuspended in MACS 

buffer and BD ViaProbe Cell Viability Solution (BD Biosciences) was added prior to 

loading onto the BD FACSMelody. Populations sorted: ViaProbe-/CD19-/CD14-

/CD3+/Vα7.2+and-/MR1-5OP-RU+ and ViaProbe-/CD19-/CD14-/CD3+/Vα7.2+/MR1-5OP-

RU-. In addition to the sorted samples, there were 19 PBMC donors analyzed by flow 

cytometry using the same reagents. For flow analysis alone, magnetic bead enrichment 

was not performed, and all antibodies were added at the same time after the tetramer 

stain. The MR1 bound fraction of the total CD3+ population was calculated using the pre-

enrichment sample for sorted donors as well as the samples analyzed by flow for unsorted 

donors. Calculations were performed using FloJo Software. 

 

III. Repertoire sequencing 
 
All sorted cells, which ranged from 9.5k to 1.1million, were sent for sequencing. Two 

million PBMCs from each of the 20 sorted donors were also sequenced along with five 

million PBMCs from 19 unsorted donors. RNA was isolated from the sorted samples and 

both RNA and gDNA were isolated from the matched PBMCs. The sorted samples and 

their matched PBMCs were then divided in two and sent for TCR-α and TCR-β 

sequencing using the ImmunoSEQ assay at Adaptive Biotechnologies and TCR-β/TCR-

α/TCR-δ sequencing was performed in our high throughput R&D lab. The TCR-β 

sequencing leveraged cDNA for the sorted samples and their matched PBMCs. The 

TCRβ/TCRα/TCRδ sequencing leveraged cDNA for the sorted samples and gDNA for 
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their matched PBMCs. The 19 PBMCs from unsorted donors leveraged gDNA only for 

both sequencing assays. 

 

IV. Model architecture 

Seq2MAIT is a transformer-based deep learning architecture52 that is used to model the 

probability that a TCR-α or TCR-β chain is derived from a MAIT’s TCR. Each clonotype 

derived from an alpha or a beta chain is represented using three components, namely, 

the amino acid sequence of the complementary determining region 3 (CDR3), the V gene, 

and the J gene that recombined to form this TCR-α or TCR-β chain. Seq2MAIT has three 

input layers the first and the third layer receives tokenized V and J genes, i.e. a numerical 

translation of each gene into an integer, e.g., the gene TCRBV06-02 is represented as 

integer 3. However, the second input layer receives the padded and tokenized CDR3 

sequence, in which each CDR3 shorter than 20 is padded with zeros, subsequently, each 

amino acid is translated or mapped to a specific integer, for example, the amino acid 

lysine (L) is mapped to integer 4. Hence, the model expects TCR chains to be numerically 

encoded as a tuple of three vectors, the first is the numerically encoded representation of 

the V gene which is a vector of length 1. The second vector is the numerical 

representation of the CDR3-sequence, which is a vector of length 20 and lastly, the third 

vector is a numerical representation of the J-gene, again, a vector of length 1.  

 

After feeding each vector to its corresponding input layer, each token is projected to a 

learned embedding space of eight dimensions53. In the case of V and J genes, this is 

achieved using an embedding layer while the CDR3 is encoded using a positional 

encoding embedding layer. It is also worth mentioning that each of the three inputs has 

its own embedding, for example, there is a dedicated embedding layer for V genes that 

is not used to embed the CDR3 or the J gene and vice versa. After embedding, the TCR 

chain is presented as a tuple of three matrices, the first is the v gene (1 × 8), the second 

is the CDR3 region (20 × 8) and the third is the J gene (1 × 8). These three matrices are 

then concatenated to generate a 22 × 8 matrix that contains a learned representation of 

the provided TCR chain. The matrix representation is then forwarded to a transformer-

encoded layer to learn dependencies and interactions between the V, J, and CDR3 
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tokens. Subsequently, the output of the transformer layer is reduced using a max-pooling 

layer and is then forwarded to a fully connected layer that further processes the generated 

representation by the transformer layer and then produces a value between zero and one 

that represents the probability that the input TCR chain belongs to a MAIT’s TCR.  

 
V. Training and implementation 

Seq2MAIT was implemented using Keras54 and TensorFlow55 and the prediction problem 

was formulated as a classification task in which the model learns features and 

representations to classify an input sequence (TCR-α or TCR-β) into MAIT (positive class) 

or non-MAIT (negative class). To do this, the set of unique TCR sequences identified from 

MR1 sorted cells was defined as the positive class, and an equal number of sequences 

were randomly selected from unsorted repertoires (bulk TCR-Seq) and labeled as the 

negative class. In case, a TCR sequence was present in the set of positive and negative 

examples, it was removed from the set of negative examples and a replacement 

sequence from the unsorted repertoire pool was added. Thus, an equal number of MAIT 

(MR1 binding T cells) and non-MAIT (randomly selected from unsorted repertoire without 

overlapping with the MAIT set) TCRs were selected. Subsequently, labels were created 

for each group, with positives represented as ones and negatives represented as zeros. 

Lastly, the examples were shuffled and numerically encoded as described above. 

Seq2MAIT was trained using Adam56 as an optimizer with the default learning rate in 

batches of size 4,096 examples for 100 epochs. Binary cross entropy was used as a loss 

function to optimize Seq2MAIT’s weights with equal weight for positive and negative 

classes.  

 

Results 

Study design 

We started our analysis by obtaining blood samples from a cohort of 20 healthy individuals 

(Fig. 1A), subsequently, inducing with MR1-5-OP-RU tetramers was used to isolate MAIT 

cells (defined as CD3+TCRVα7.2+MR1+) (Materials and Methods) from the donors’ 

PBMCs (Fig. 1B-1C). RNA and DNA were extracted from the isolated MAIT cells and the 

unsorted repertoire (Fig. 1D). Subsequently, immunoSEQ was conducted to characterize 
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the TCR-Seq repertoire of the MAIT cells and of total T cells in the blood (Materials and 

Methods). The sorted MAIT TCR repertoire was analyzed and computationally compared 

to the unsorted population of T cells (Fig. 1E). Next, a training dataset was constructed 

which contained the MAIT’s TCR-α/β repertoires and an equivalent number of clonotypes 

derived from the unsorted T cell repertoire (Materials and Methods). Model performance 

was measured and evaluated on independent test datasets that were not used in either 

the training of the models or in optimizing their architecture (Fig. 1F).  

 

 

 

Figure 1: A schematic representation of the study design. (A) Assembly of a cohort of healthy donors to isolate blood 
samples. (B) Incubation of isolated samples with MR1 tetramers and other markers such as anti-alpha 7.2 antibodies 
to isolate this population of cells. (C) Isolation of MAIT cells using FACS. (D) DNA was extracted from the unsorted 
population of cells as well as the sorted MR1+ cells, subsequently, TCR-α and TCR-β were sequenced using 
immunoSEQ. (E) Bioinformatic and computational analysis of the MAIT cells, i.e. MR1+ sorted cells, gene usage relative 
to unsorted repertoire. (F) Development and training of Seq2MAIT using the dataset curated and assembled in (E) as 
well as the testing of the model on different independent test datasets. 
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Characterizing the alpha and the beta-chains of MR1 sorted cells 
 
We started our analysis by looking at the preferential usage of different V and J genes, in 

the alpha and beta chain of MAIT cells relative to unsorted repertoire. The unsorted T cell 

repertoires were used to estimate the background level of gene usage in peripheral blood. 

Unsurprisingly, the alpha-chain of MR1-sorted cells showed a strong preference for using 

the TCRAV01-02 gene, i.e. α-7.2, which was used in >30% of all MAIT cells (Fig. 2A). 

This confirms what has been identified previously about the biased usage of TCRAV01-

02 gene in MAIT cells57. A weaker preference toward specific J genes (e.g. TCRJ33-01 

and TCRJ20-01 (Fig. 2C)) could also be observed, which agrees with what has been 

previously shown57,58. Interestingly, the degree of J gene preference was much weaker 

than that observed at the V-gene level with the most used J gene, TCRJ33-01, being 

used by less than 10% of all clonotypes identified from MR1 sorted cells. 

 

At the TCR-β chain, MAIT cells have been shown to exhibit a strong preference for using 

genes of the TCRBV06 family, such as TCRBV06-04 and TCRBV06-01 as well as the 

TCRBV04 family (e.g., TCRBV04-01 and TCRBV04-03)57,58. This was strongly seen in 

our dataset where ~30% and ~10% of all MAIT’s clonotypes were derived from TCRBV06-

04 and TCRBV06-01 V genes, respectively (Fig. 2B). These usages also agree with study 

from Garner and colleagues58 which showed a preferential usage of TCRBV06-01 and 

TCRBV06-04 in MAIT cells using single-cell RNA sequencing of MAIT cells (defined as: 

CD8+CCR7−MR1-5-OP-RU+). A weaker preference can be observed at the J gene level, 

with TCRBJ02-01 and TCRBJ02-03 being the most utilized genes (Fig.2D). 

 

MAIT cells are expected to be a group of cells targeting vitamin B metabolites presented 

by MR1 protein, thereby sharing similar and public TCR sequences. To quantify the 

degree of publicity of MAIT TCRs we looked at the fraction of MAIT TCRs that is shared 

among an increasing number of individuals (Fig. S2A) and investigated the relationship 

between the degree of publicity and the generation probability, i.e. the likelihood of 

generating a specific T cell clonotype that is a specific V(D)J rearrangement59, estimated 

using OLGA60 (Fig. S2B). As seen in Fig. S2A, the majority of MAIT TCR sequences are 

private, i.e., are observed only in a single donor. Furthermore, there was an inverse 
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relationship between the generation probability and the degree of publicity. We also 

sampled an equal number of clonotypes from the unsorted repertoires and compared 

their generation probability to that of MAIT cells (MR1 sorted cells). As seen in Fig. S2C, 

although the majority of MAIT cells are private with a wide range of generation 

probabilities, they tend to have a higher generation probability relative to the unsorted 

repertoire which contains a large fraction of conventional α/β T cells. 

 
 

 

Figure 2: Differential usage of V and J genes in MR1-sorted T cells (MAIT) relative to unsorted repertoires. Plots are 
based on 9,816 MR1-sorted TCR-α sequences, 709,734 unsorted TCR-α sequences, 14,284 MR1-sorted TCR-β 
sequences, and 931,612 unsorted TCR-β sequences. The plots show the 10 most commonly found genes in the 
category of (A) TCR-α V gene usage (B) TCR-β V gene usage (C) TCR-α J gene usage (D) TCR-β J gene usage. 
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Seq2MAIT can accurately distinguish MAIT from non-MAIT cells  
 
Given the observed diversity in the TCR sequences of MAIT cells and the lack of a clear 

motif that distinguishes these cells from other T cell subsets, we sought to develop a 

deep-learning model to address this problem. The developed model will extract 

generalizable subtle features from the TCR sequences of MR1-sorted cells, enabling the 

model to discriminate between MR1-sorted cells (MAIT cells) and other T cell populations 

based on either TCR-α or TCR-β sequences. 

 

To this end, we developed the sequence-to-MAIT model (Seq2MAIT) which is a 

transformer-based model that receives TCR-α or TCR-β chain clonotypes as an input and 

returns the probability that the provided sequence is derived from a MAIT cell. Most of the 

observed variation in TCRs is in complementary determining regions (CDRs)61 with each 

of the TCR chains exhibiting 3 CDRs, namely, CDR1, CDR2, and CDR3 (Fig. 3A). Studies 

investigating the interaction between TCRs, and peptide-HLA complexes have shown that 

CDR1 and CDR2 are involved in interacting with HLA proteins while CDR3 are mainly 

involved in interacting with the presented peptide62,63. CDR1 and CDR2 are germline-

encoded in the V gene while the CDR3 is formed due to somatic recombination between 

the V and the J gene in the case of the TCR-α chain and the V, the J and the D gene in 

the case of the TCR-β chain in addition to random nucleotide insertions and deletions 

during the recombination event (Fig. 3A). Hence, we represented a TCR chain as a 

unique combination of a V-gene, a J-gene, and the amino acid sequence of the CDR3 

(Fig. 3A). After selecting this representation, we assigned each V and J gene a unique 

integer that represents its identity numerically, i.e. a V or J token, and encoding each 

amino acid in the CDR3 as a unique integer representing the code of the amino acid, i.e. 

amino acid token (Materials and Methods). 

 

The architecture of Seq2MAIT was built to support this encoded representation of TCR 

chains where the model receives three inputs, representing the code of each V and J 

gene as well as the code of each CDR3 from either TCR-α or TCR-β chains. A learned 

embedding layer is used to represent, in a task-specific manner, the corresponding V and 

J gene as well as the CDR3 (Fig. 3B), followed by a transformer encoder layer52 to learn 
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dependencies and interactions between these components of the TCR chains (Fig. 3B). 

This generates an information-rich representation of the chain that is forwarded to 

feedforward layers, i.e. fully connected neural networks, and after that to a sigmoidal 

neuron to calculate the probability that a given sequence is derived from a MAIT cell (Fig. 

3B; Materials and Methods). 

 

 
Figure 3: The numerical representation of a TCR and the layout of Seq2MAIT. (A) The representation and numerical 
encoding of TCR chains. (B) The layout of Seq2MAIT is built using three modular parts or components: (i) an embedding 
part responsible for generating a learned representation of the encoded TCR representation, (ii) a self-attention 
component responsible for learning interactions and dependencies between the V and J genes and the CDR3. Lastly, 
a decision-making component is responsible for calculating the probability that a sequence is a MAIT sequence given 
its learned and processed representation. 
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Given the observed diversity at the TCR-α and the TCR-β chains of MAIT cells, we trained 

two versions of Seq2MAIT, each corresponding to one of the chains, i.e. training a model 

on the TCR-α chain and a model on the TCR-β chain separately. As described in the 

Materials and Methods, Seq2MAIT was trained on an equal number of negative cases 

(i.e. unsorted repertoire) and positive cases (i.e. MR1 sorted clonotypes). To control for 

the strong bias in the V gene of the alpha-chain of MAIT cells, where most sequences are 

derived from TCRAV01-02, we developed a training dataset composite of MAIT and non-

MAIT sequences derived from TCRAV01-02 clonotypes. This enabled us to build a 

classifier that can predict whether a TCRAV01-02 clonotype is derived from a MAIT cell 

or not without any bias introduced by the difference in the TCRAV01-02 gene usage in 

MAIT relative to unsorted T cells. 

 

The TCR-α model was trained on 3,671 MAIT sequences with a matching number of 

controls for each chain, we tested the generality of the model on a test dataset composite 

of 366 MR1+ TCRs, i.e. MAIT, and 369 non-MR1 TCRs sampled from unsorted 

repertoires. Seq2MAIT had an area under the receiver operator curve, AU[ROC] of ~ 0.76 

(Fig. 4A) and an area under the precision-recall curve AU[PR] of ~0.79 (Fig. 4B).  

Regarding TCR-β sequences, we trained a Seq2MAIT model on 10,975 MR1-sorted 

clonotypes (~81% of the full dataset) and equivalent matched controls. We optimized its 

hyperparameters using a validation dataset composite of 1,248 MR1-sorted clonotypes 

(~9% of the full dataset) and equivalent matched controls. Lastly, its performance was 

measured on the test dataset which contains 1,381 MR1-sorted clonotypes (~10% of the 

full dataset) and equivalent matched controls. As seen in Fig. 4C and 4D, Seq2MAIT can 

discriminate between MAIT-derived and non-MAIT TCR-β chains with an AU[ROC] of 

~0.875 and AU[PR] of ~0.882. 

 

 To characterize the impact of different parts of the input on the overall performance, we 

masked different combinations of the inputs, for both TCR-α and TCR-β chains, and 

quantified the impact on the model performance (Fig. S3). As seen in the figure, the 

models achieve their highest performance accuracy when conditioning the predictions on 

encoded V and J genes as well as CDR3s, while zero-masking all inputs, produces a 
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random model. Beyond these two trivial cases, we observed a substantial degree of 

information-leaking between these three components, for example, conditioning the 

predictions on the V and J gene only or the CDR3 sequences only, did not result in a 

substantial deterioration of the predictive performance. Given the encouraging 

performance of the Seq2MAIT TCR-β model and the widespread availability of TCR-β 

datasets, we focused our efforts on further optimizing the Seq2MAIT model for identifying 

MAIT’s TCR-β sequences. 

  

 

Figure 4: The performance of the TCR-α and TCR-β models on unseen test datasets. (A) represents the receiver 
operator curve and (B) represents the precision-recall curve for the predictions of the TCR-α model on 366 MR1 TCRs 
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and 369 non-MR1 binding, i.e. unsorted, TCRs both of which are derived from TCRVA01-02 gene. (C) is the receiver 
operator curve and (D) is the precision-recall curve for the predictions of the TCR-β model on 1,381 MR1 TCRs and 
1,340 non-MR1 TCRs. 

To investigate the generalizability of Seq2MAIT on datasets generated under different 

experimental conditions we utilized the dataset of MAIT cells (defined as CD8+CD161+Vα-

7.2+) recently published by Williams and colleagues51. Taking only the MAIT sorted 

sequences from this dataset, we started by looking at the distribution of the model’s 

scores for these clonotypes. As seen in Fig. 5A, for most TCR-β chains (~84% of all TCR-

β chains in the dataset) the estimated MAIT probabilities (i.e. Seq2MAIT scores) were 

above 0.5 indicating the generalizable performance of the model. To gain a better 

understanding of cases where Seq2MAIT predicted a low score for MAIT TCR-β chains, 

we looked at the score distribution within clonotypes derived from different V genes. As 

seen in Fig. 5B, the model scores varied largely between sequences bearing different V 

genes. Members of the TCRBV06 family, such as TCRBV06-01 and TCRBV06-04 which 

are preferentially used by MAIT cells, are estimated to have a higher likelihood of being 

MAIT sequences, while families such as TCRBV02 generally have a low score, i.e. a low-

probability of being MAIT. Given that V genes with low scores are generally not reported 

in the literature to be preferentially used by MAIT cells, our findings might reflect noise in 

this test dataset introduced by using a different definition of MAIT cells (CD8+CD161+Vα-

7.2+,) which contains MR1-bindings and non-MR1 binding T cells. 

 

Lastly, we were interested in assessing the ability of Seq2MAIT to quantify the abundance 

of MAIT cells in the blood. To this end, we generated a dataset in which the TCR-β of 

unsorted T cells from blood were sequenced, and the abundance of MAIT cells was 

quantified using flow cytometry on MR1-tetramers stains (Materials and Methods). To 

quantify the abundance of MAIT cells computationally, we first utilized Seq2MAIT to 

identify MAIT clonotypes from the unsorted repertoire data using different cutoff values 

(Fig. 5C-5F). Subsequently, MAIT cell abundance was estimated by summing the 

template count of each MAIT clonotype and dividing this sum by the total template count 

of the unsorted repertoire. As seen in the figure, there is a strong positive correlation 

between the computationally estimated abundance of MAIT cells using Seq2MAIT and 

the experimentally measured values. With lower cutoffs (i.e. only counting sequences with 
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larger predicted scores), the estimated abundance is generally much higher than 

experimentally measured values (Fig. 5C), however, as the cutoff increases, the 

predicted MAIT abundance approaches experimentally measured values (Fig. 5E-5F). 

 

 

 

Figure 5: Model performance on independent test datasets. (A) Distribution of models' scores on a publicly available 
test dataset of MAIT cells. (B) Distribution of the model’s scores across the TCR-β chain belonging to different V genes. 
(C) Correlation between the estimated MAIT abundance using Seq2MAIT and the experimentally measured abundance 
using a cutoff of 0.5, while (D) shows the correlation using a cutoff of 0.65, (E) shows 0.8 as a cutoff value, and lastly 
(F) shows the correlation between the estimated abundance and the experimentally measured abundance using 0.95 
as a cutoff value. 
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Discussion 
 
MAIT cells are a group of unconventional T cells that are characterized by a semi-invariant 

TCR-α chain and can recognize vitamin B metabolites presented on MR1 proteins22,26,27. 

Despite their abundance and relevance to different physiological and pathological 

processes, characterizing MAIT cells has proven to be a difficult task because MAIT cells 

are primarily defined by flow cytometry, either using MR1 tetramer staining or using a 

combination of other markers such as CD161 and Vα7.2. Although flow cytometry can 

provide valuable insights about the abundance of MAIT cells and their phenotype, it is 

time and labor-intensive, requires access to viable cells, and has a low to medium 

throughput.  

 

Here, we tried to address this problem by developing Seq2MAIT which is a deep-learning 

model for identifying MAIT cells in bulk TCR repertoire sequencing datasets. As shown 

above, Seq2MAIT can accurately identify the TCR-α and TCR-β chains of MAIT cells with 

an accuracy of around 80% across different datasets. This enables Seq2MAIT to be 

applied to the hundreds of thousands of repertoires generated over the last two decades. 

Seq2MAIT also enables the abundance of MAIT cells to be quantified in any biomaterial 

where DNA is available, effectively bypassing the need for living cells and enabling MAIT 

cell identification in, virtually, any sample. 

 

Despite all the advantages of Seq2MAIT it still has several limitations, first, it only enables 

the identification of MAIT cells without any information regarding other phenotypic 

markers. For example, with live-cell-based methods, cells can be stained with different 

markers to identify their phenotypic properties such as activation markers and cytokine 

receptors, e.g. IL-17. This becomes apparent when identifying the subset of MAIT cells, 

e.g. MAIT 1 vs MAIT 1758,64, is critical for understanding the biological process under 

investigation. Hence, Seq2MAIT is not intended as a replacement for flow-cytometry-

based methods but as a complementary method that can be used to identify MAIT cells 

in samples where living cells are not available or to prioritize samples for further 

characterization using flow-cytometry or scRNA-Seq based methods. 
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Seq2MAIT can be categorized as a specialized case of TCR-antigenicity prediction 

models, such as NetTCR65, NetTCR-2.066, and DeepAIR67, which aim at predicting the 

interaction between a specific TCR and a given peptide-HLA complex. This is a much 

harder problem because of the high allelic diversity of HLA proteins relative to the 

monomorphic MR1 protein as well as due to the large antigenic space of antigenic 

peptides that are presented on HLA proteins relative to the few vitamin B metabolites 

presented on MR1 proteins. Nonetheless, the same experimental and modeling 

strategies used here can be utilized for other non-conventional T cells such as NKT cells, 

GEM cells, CD1a-restricted cells, et cetera. We envision that another version of 

Seq2MAIT will be developed in the foreseeable future to identify and characterize all 

unconventional T cells in bulk TCR-Seq data. Given that these cells represent a 

substantial fraction of the T cell population in different tissues and organs such as the 

liver, gut, and respiratory system, studying their abundance and response to different 

stimuli would contribute to a better understanding of their contribution to different 

physiological and pathological processes. 

 

Although, to the best of our knowledge, Seq2MAIT is the first deep learning framework 

that can be used to accurately identify MAIT cells from sequencing data, different future 

extensions can be developed to improve its performance further. Currently, Seq2MAIT 

predicts the probability of MAIT cells solely from a single chain of the TCR ( i.e. TCR-α or 

TCR-β), however, extending Seq2MAIT to model the paired TCR-α/β chains of MAIT 

cells, i.e. receptor-level instead of chain-level modeling, would enhance our ability to 

identify MAIT cells. Nonetheless, most repertoire sequencing experiments are still 

performed at the single chain level, mainly the TCR-β chain, and only a limited number of 

experimental methods can provide paired TCR-α/β chains such as pairSEQ68.  

 

A second future direction to improve the model performance further is to extend and refine 

the definition of MAIT cells. As discussed above, MAIT cells have different definitions such 

as CD8+CCR7−MR1/5-OP-RU+ 58 or as CD3+CD4−TCRγδ−CD161highTCRAV01-02+ 69. 

These definitions generally capture only a subset of the MAIT cell population, for example, 

the former definition by Garner et al.58 only captures CD8+ MAIT cells and excludes CD4+ 
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MAIT cells. Interestingly, Xiong and colleagues70 have recently shown an important role 

for CD4+ MAIT cells in responding to M. tuberculosis infection. Furthermore, other subsets 

of unconventional T cells use α-7.2 as an alpha-chain, for example, germline-encoded 

mycolyl-reactive (GEM) T cells which are a subset of CD1b restricted cells that recognize 

the M. tuberculosis-derived glycolipid glucosemonomycolate11. Although MR1 tetramers-

based sorting enables the identification of MR1 restricted T cells, i.e. MAIT cells, it is only 

based on a handful of antigens, mainly 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil 

(5-OP-RU). Thus, MR1-tetramers do not capture the full repertoire of MR1-restricted cells 

but only sample cells that bind reactively to the antigen loaded on the MR1 protein. As a 

result, performing the sorting with tetramers loaded with different antigens might enable 

a more inclusive definition of MAIT cells which would enable a better characterization of 

these cells and their contribution to different biological processes. 

 

In conclusion, our developed model Seq2MAIT has shown a robust ability to identify MAIT 

cells across different datasets. Future efforts shall focus on extending Seq2MAIT to other 

unconventional T cell populations such as GEM and NKT cells which would enable a 

better understanding of the role of these cells in different diseases as well as advance 

our understanding of different immunological processes they are involved in. 
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Supplementary figures  
 

 

Figure S1: Representative plot of a pre-enrichment sample. Post-enrichment samples were used for sorting, while pre-
enrichment samples were used to calculate MAIT frequencies. The gating for the sorts excluded outliers to obtain pure 
populations. Sorted cells in this plot were first gated on the lymphocyte population in the FSC vs SSC plot then gated 
to exclude doublets followed by gating on live CD3+ cells. 
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Figure S2: General features of TCR-β chains derived from MR1 sorted cells relative to unsorted repertoires. (A) 
Quantification of the degree of publicity in the TCR-β chain of MR1 sorted cells. The x-axis represents the number of 
donors, and the y-axis represents the number of MR1-binding TCR-β clonotypes observed in the corresponding number 
of donors, for example, the first bar represents the number of TCR-β clonotypes observed in only one donor, i.e. private 
clonotypes. (B) Relationship between the number of donors with a specific MR1-binding TCR-β chain and the 
generation probability of this chain. (C) The difference in the generation probability between MR1-binding TCR-β chains 
relative to the unsorted repertoire. 
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Figure S3: Feature importance analysis where the importance of different inputs on the accuracy of Seq2MAIT is 
quantified. V and J refer to the V and J genes, respectively, while the CDR3 is the amino acid sequence of the 
Complementarity-determining region 3. 
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